]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memblock.c
mm/memblock.c: skip kmemleak for kasan_init()
[thirdparty/kernel/stable.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885 19#include <linux/debugfs.h>
514c6032 20#include <linux/kmemleak.h>
6d03b885 21#include <linux/seq_file.h>
95f72d1e
YL
22#include <linux/memblock.h>
23
c4c5ad6b 24#include <asm/sections.h>
26f09e9b
SS
25#include <linux/io.h>
26
27#include "internal.h"
79442ed1 28
3e039c5c
MR
29/**
30 * DOC: memblock overview
31 *
32 * Memblock is a method of managing memory regions during the early
33 * boot period when the usual kernel memory allocators are not up and
34 * running.
35 *
36 * Memblock views the system memory as collections of contiguous
37 * regions. There are several types of these collections:
38 *
39 * * ``memory`` - describes the physical memory available to the
40 * kernel; this may differ from the actual physical memory installed
41 * in the system, for instance when the memory is restricted with
42 * ``mem=`` command line parameter
43 * * ``reserved`` - describes the regions that were allocated
44 * * ``physmap`` - describes the actual physical memory regardless of
45 * the possible restrictions; the ``physmap`` type is only available
46 * on some architectures.
47 *
48 * Each region is represented by :c:type:`struct memblock_region` that
49 * defines the region extents, its attributes and NUMA node id on NUMA
50 * systems. Every memory type is described by the :c:type:`struct
51 * memblock_type` which contains an array of memory regions along with
52 * the allocator metadata. The memory types are nicely wrapped with
53 * :c:type:`struct memblock`. This structure is statically initialzed
54 * at build time. The region arrays for the "memory" and "reserved"
55 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
56 * "physmap" type to %INIT_PHYSMEM_REGIONS.
57 * The :c:func:`memblock_allow_resize` enables automatic resizing of
58 * the region arrays during addition of new regions. This feature
59 * should be used with care so that memory allocated for the region
60 * array will not overlap with areas that should be reserved, for
61 * example initrd.
62 *
63 * The early architecture setup should tell memblock what the physical
64 * memory layout is by using :c:func:`memblock_add` or
65 * :c:func:`memblock_add_node` functions. The first function does not
66 * assign the region to a NUMA node and it is appropriate for UMA
67 * systems. Yet, it is possible to use it on NUMA systems as well and
68 * assign the region to a NUMA node later in the setup process using
69 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
70 * performs such an assignment directly.
71 *
72 * Once memblock is setup the memory can be allocated using either
73 * memblock or bootmem APIs.
74 *
75 * As the system boot progresses, the architecture specific
76 * :c:func:`mem_init` function frees all the memory to the buddy page
77 * allocator.
78 *
79 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
80 * memblock data structures will be discarded after the system
81 * initialization compltes.
82 */
83
bda49a81
MR
84#ifndef CONFIG_NEED_MULTIPLE_NODES
85struct pglist_data __refdata contig_page_data;
86EXPORT_SYMBOL(contig_page_data);
87#endif
88
89unsigned long max_low_pfn;
90unsigned long min_low_pfn;
91unsigned long max_pfn;
92unsigned long long max_possible_pfn;
93
fe091c20
TH
94static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
95static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
96#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
97static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
98#endif
fe091c20
TH
99
100struct memblock memblock __initdata_memblock = {
101 .memory.regions = memblock_memory_init_regions,
102 .memory.cnt = 1, /* empty dummy entry */
103 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 104 .memory.name = "memory",
fe091c20
TH
105
106 .reserved.regions = memblock_reserved_init_regions,
107 .reserved.cnt = 1, /* empty dummy entry */
108 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 109 .reserved.name = "reserved",
fe091c20 110
70210ed9
PH
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 .physmem.regions = memblock_physmem_init_regions,
113 .physmem.cnt = 1, /* empty dummy entry */
114 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 115 .physmem.name = "physmem",
70210ed9
PH
116#endif
117
79442ed1 118 .bottom_up = false,
fe091c20
TH
119 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
120};
95f72d1e 121
10d06439 122int memblock_debug __initdata_memblock;
a3f5bafc 123static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 124static int memblock_can_resize __initdata_memblock;
181eb394
GS
125static int memblock_memory_in_slab __initdata_memblock = 0;
126static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 127
e1720fee 128enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
129{
130 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
131}
132
eb18f1b5
TH
133/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
134static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
135{
1c4bc43d 136 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
137}
138
6ed311b2
BH
139/*
140 * Address comparison utilities
141 */
10d06439 142static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 143 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
144{
145 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
146}
147
95cf82ec 148bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 149 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
150{
151 unsigned long i;
152
f14516fb
AK
153 for (i = 0; i < type->cnt; i++)
154 if (memblock_addrs_overlap(base, size, type->regions[i].base,
155 type->regions[i].size))
6ed311b2 156 break;
c5c5c9d1 157 return i < type->cnt;
6ed311b2
BH
158}
159
47cec443 160/**
79442ed1
TC
161 * __memblock_find_range_bottom_up - find free area utility in bottom-up
162 * @start: start of candidate range
47cec443
MR
163 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
164 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
165 * @size: size of free area to find
166 * @align: alignment of free area to find
b1154233 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 168 * @flags: pick from blocks based on memory attributes
79442ed1
TC
169 *
170 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
171 *
47cec443 172 * Return:
79442ed1
TC
173 * Found address on success, 0 on failure.
174 */
175static phys_addr_t __init_memblock
176__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 177 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 178 enum memblock_flags flags)
79442ed1
TC
179{
180 phys_addr_t this_start, this_end, cand;
181 u64 i;
182
fc6daaf9 183 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
184 this_start = clamp(this_start, start, end);
185 this_end = clamp(this_end, start, end);
186
187 cand = round_up(this_start, align);
188 if (cand < this_end && this_end - cand >= size)
189 return cand;
190 }
191
192 return 0;
193}
194
7bd0b0f0 195/**
1402899e 196 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 197 * @start: start of candidate range
47cec443
MR
198 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
200 * @size: size of free area to find
201 * @align: alignment of free area to find
b1154233 202 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 203 * @flags: pick from blocks based on memory attributes
7bd0b0f0 204 *
1402899e 205 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 206 *
47cec443 207 * Return:
79442ed1 208 * Found address on success, 0 on failure.
6ed311b2 209 */
1402899e
TC
210static phys_addr_t __init_memblock
211__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 212 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 213 enum memblock_flags flags)
f7210e6c
TC
214{
215 phys_addr_t this_start, this_end, cand;
216 u64 i;
217
fc6daaf9
TL
218 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
219 NULL) {
f7210e6c
TC
220 this_start = clamp(this_start, start, end);
221 this_end = clamp(this_end, start, end);
222
223 if (this_end < size)
224 continue;
225
226 cand = round_down(this_end - size, align);
227 if (cand >= this_start)
228 return cand;
229 }
1402899e 230
f7210e6c
TC
231 return 0;
232}
6ed311b2 233
1402899e
TC
234/**
235 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
236 * @size: size of free area to find
237 * @align: alignment of free area to find
87029ee9 238 * @start: start of candidate range
47cec443
MR
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 242 * @flags: pick from blocks based on memory attributes
1402899e
TC
243 *
244 * Find @size free area aligned to @align in the specified range and node.
245 *
79442ed1
TC
246 * When allocation direction is bottom-up, the @start should be greater
247 * than the end of the kernel image. Otherwise, it will be trimmed. The
248 * reason is that we want the bottom-up allocation just near the kernel
249 * image so it is highly likely that the allocated memory and the kernel
250 * will reside in the same node.
251 *
252 * If bottom-up allocation failed, will try to allocate memory top-down.
253 *
47cec443 254 * Return:
79442ed1 255 * Found address on success, 0 on failure.
1402899e 256 */
87029ee9
GS
257phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
258 phys_addr_t align, phys_addr_t start,
e1720fee
MR
259 phys_addr_t end, int nid,
260 enum memblock_flags flags)
1402899e 261{
0cfb8f0c 262 phys_addr_t kernel_end, ret;
79442ed1 263
1402899e 264 /* pump up @end */
051b746c
QC
265 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
266 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
267 end = memblock.current_limit;
268
269 /* avoid allocating the first page */
270 start = max_t(phys_addr_t, start, PAGE_SIZE);
271 end = max(start, end);
79442ed1
TC
272 kernel_end = __pa_symbol(_end);
273
274 /*
275 * try bottom-up allocation only when bottom-up mode
276 * is set and @end is above the kernel image.
277 */
278 if (memblock_bottom_up() && end > kernel_end) {
279 phys_addr_t bottom_up_start;
280
281 /* make sure we will allocate above the kernel */
282 bottom_up_start = max(start, kernel_end);
283
284 /* ok, try bottom-up allocation first */
285 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 286 size, align, nid, flags);
79442ed1
TC
287 if (ret)
288 return ret;
289
290 /*
291 * we always limit bottom-up allocation above the kernel,
292 * but top-down allocation doesn't have the limit, so
293 * retrying top-down allocation may succeed when bottom-up
294 * allocation failed.
295 *
296 * bottom-up allocation is expected to be fail very rarely,
297 * so we use WARN_ONCE() here to see the stack trace if
298 * fail happens.
299 */
e3d301ca
MH
300 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
301 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 302 }
1402899e 303
fc6daaf9
TL
304 return __memblock_find_range_top_down(start, end, size, align, nid,
305 flags);
1402899e
TC
306}
307
7bd0b0f0
TH
308/**
309 * memblock_find_in_range - find free area in given range
310 * @start: start of candidate range
47cec443
MR
311 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
312 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
313 * @size: size of free area to find
314 * @align: alignment of free area to find
315 *
316 * Find @size free area aligned to @align in the specified range.
317 *
47cec443 318 * Return:
79442ed1 319 * Found address on success, 0 on failure.
fc769a8e 320 */
7bd0b0f0
TH
321phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
322 phys_addr_t end, phys_addr_t size,
323 phys_addr_t align)
6ed311b2 324{
a3f5bafc 325 phys_addr_t ret;
e1720fee 326 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
327
328again:
329 ret = memblock_find_in_range_node(size, align, start, end,
330 NUMA_NO_NODE, flags);
331
332 if (!ret && (flags & MEMBLOCK_MIRROR)) {
333 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
334 &size);
335 flags &= ~MEMBLOCK_MIRROR;
336 goto again;
337 }
338
339 return ret;
6ed311b2
BH
340}
341
10d06439 342static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 343{
1440c4e2 344 type->total_size -= type->regions[r].size;
7c0caeb8
TH
345 memmove(&type->regions[r], &type->regions[r + 1],
346 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 347 type->cnt--;
95f72d1e 348
8f7a6605
BH
349 /* Special case for empty arrays */
350 if (type->cnt == 0) {
1440c4e2 351 WARN_ON(type->total_size != 0);
8f7a6605
BH
352 type->cnt = 1;
353 type->regions[0].base = 0;
354 type->regions[0].size = 0;
66a20757 355 type->regions[0].flags = 0;
7c0caeb8 356 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 357 }
95f72d1e
YL
358}
359
354f17e1 360#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
3010f876 361/**
47cec443 362 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
363 */
364void __init memblock_discard(void)
5e270e25 365{
3010f876 366 phys_addr_t addr, size;
5e270e25 367
3010f876
PT
368 if (memblock.reserved.regions != memblock_reserved_init_regions) {
369 addr = __pa(memblock.reserved.regions);
370 size = PAGE_ALIGN(sizeof(struct memblock_region) *
371 memblock.reserved.max);
372 __memblock_free_late(addr, size);
373 }
5e270e25 374
91b540f9 375 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 __memblock_free_late(addr, size);
380 }
5e270e25 381}
5e270e25
PH
382#endif
383
48c3b583
GP
384/**
385 * memblock_double_array - double the size of the memblock regions array
386 * @type: memblock type of the regions array being doubled
387 * @new_area_start: starting address of memory range to avoid overlap with
388 * @new_area_size: size of memory range to avoid overlap with
389 *
390 * Double the size of the @type regions array. If memblock is being used to
391 * allocate memory for a new reserved regions array and there is a previously
47cec443 392 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
393 * waiting to be reserved, ensure the memory used by the new array does
394 * not overlap.
395 *
47cec443 396 * Return:
48c3b583
GP
397 * 0 on success, -1 on failure.
398 */
399static int __init_memblock memblock_double_array(struct memblock_type *type,
400 phys_addr_t new_area_start,
401 phys_addr_t new_area_size)
142b45a7
BH
402{
403 struct memblock_region *new_array, *old_array;
29f67386 404 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 405 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 406 int use_slab = slab_is_available();
181eb394 407 int *in_slab;
142b45a7
BH
408
409 /* We don't allow resizing until we know about the reserved regions
410 * of memory that aren't suitable for allocation
411 */
412 if (!memblock_can_resize)
413 return -1;
414
142b45a7
BH
415 /* Calculate new doubled size */
416 old_size = type->max * sizeof(struct memblock_region);
417 new_size = old_size << 1;
29f67386
YL
418 /*
419 * We need to allocated new one align to PAGE_SIZE,
420 * so we can free them completely later.
421 */
422 old_alloc_size = PAGE_ALIGN(old_size);
423 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 424
181eb394
GS
425 /* Retrieve the slab flag */
426 if (type == &memblock.memory)
427 in_slab = &memblock_memory_in_slab;
428 else
429 in_slab = &memblock_reserved_in_slab;
430
142b45a7
BH
431 /* Try to find some space for it.
432 *
433 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
434 * we use MEMBLOCK for allocations. That means that this is unsafe to
435 * use when bootmem is currently active (unless bootmem itself is
436 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
437 *
438 * This should however not be an issue for now, as we currently only
fd07383b
AM
439 * call into MEMBLOCK while it's still active, or much later when slab
440 * is active for memory hotplug operations
142b45a7
BH
441 */
442 if (use_slab) {
443 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 444 addr = new_array ? __pa(new_array) : 0;
4e2f0775 445 } else {
48c3b583
GP
446 /* only exclude range when trying to double reserved.regions */
447 if (type != &memblock.reserved)
448 new_area_start = new_area_size = 0;
449
450 addr = memblock_find_in_range(new_area_start + new_area_size,
451 memblock.current_limit,
29f67386 452 new_alloc_size, PAGE_SIZE);
48c3b583
GP
453 if (!addr && new_area_size)
454 addr = memblock_find_in_range(0,
fd07383b
AM
455 min(new_area_start, memblock.current_limit),
456 new_alloc_size, PAGE_SIZE);
48c3b583 457
15674868 458 new_array = addr ? __va(addr) : NULL;
4e2f0775 459 }
1f5026a7 460 if (!addr) {
142b45a7 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 462 type->name, type->max, type->max * 2);
142b45a7
BH
463 return -1;
464 }
142b45a7 465
a36aab89
MR
466 new_end = addr + new_size - 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type->name, type->max * 2, &addr, &new_end);
ea9e4376 469
fd07383b
AM
470 /*
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
473 * full.
142b45a7
BH
474 */
475 memcpy(new_array, type->regions, old_size);
476 memset(new_array + type->max, 0, old_size);
477 old_array = type->regions;
478 type->regions = new_array;
479 type->max <<= 1;
480
fd07383b 481 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
482 if (*in_slab)
483 kfree(old_array);
484 else if (old_array != memblock_memory_init_regions &&
485 old_array != memblock_reserved_init_regions)
29f67386 486 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 487
fd07383b
AM
488 /*
489 * Reserve the new array if that comes from the memblock. Otherwise, we
490 * needn't do it
181eb394
GS
491 */
492 if (!use_slab)
29f67386 493 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
494
495 /* Update slab flag */
496 *in_slab = use_slab;
497
142b45a7
BH
498 return 0;
499}
500
784656f9
TH
501/**
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
504 *
505 * Scan @type and merge neighboring compatible regions.
506 */
507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 508{
784656f9 509 int i = 0;
95f72d1e 510
784656f9
TH
511 /* cnt never goes below 1 */
512 while (i < type->cnt - 1) {
513 struct memblock_region *this = &type->regions[i];
514 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 515
7c0caeb8
TH
516 if (this->base + this->size != next->base ||
517 memblock_get_region_node(this) !=
66a20757
TC
518 memblock_get_region_node(next) ||
519 this->flags != next->flags) {
784656f9
TH
520 BUG_ON(this->base + this->size > next->base);
521 i++;
522 continue;
8f7a6605
BH
523 }
524
784656f9 525 this->size += next->size;
c0232ae8
LF
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 528 type->cnt--;
95f72d1e 529 }
784656f9 530}
95f72d1e 531
784656f9
TH
532/**
533 * memblock_insert_region - insert new memblock region
209ff86d
TC
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
66a20757 539 * @flags: flags of the new region
784656f9 540 *
47cec443 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 542 * @type must already have extra room to accommodate the new region.
784656f9
TH
543 */
544static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 int idx, phys_addr_t base,
66a20757 546 phys_addr_t size,
e1720fee
MR
547 int nid,
548 enum memblock_flags flags)
784656f9
TH
549{
550 struct memblock_region *rgn = &type->regions[idx];
551
552 BUG_ON(type->cnt >= type->max);
553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 rgn->base = base;
555 rgn->size = size;
66a20757 556 rgn->flags = flags;
7c0caeb8 557 memblock_set_region_node(rgn, nid);
784656f9 558 type->cnt++;
1440c4e2 559 type->total_size += size;
784656f9
TH
560}
561
562/**
f1af9d3a 563 * memblock_add_range - add new memblock region
784656f9
TH
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
7fb0bc3f 567 * @nid: nid of the new region
66a20757 568 * @flags: flags of the new region
784656f9 569 *
47cec443 570 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
574 *
47cec443 575 * Return:
784656f9
TH
576 * 0 on success, -errno on failure.
577 */
f1af9d3a 578int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 579 phys_addr_t base, phys_addr_t size,
e1720fee 580 int nid, enum memblock_flags flags)
784656f9
TH
581{
582 bool insert = false;
eb18f1b5
TH
583 phys_addr_t obase = base;
584 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
585 int idx, nr_new;
586 struct memblock_region *rgn;
784656f9 587
b3dc627c
TH
588 if (!size)
589 return 0;
590
784656f9
TH
591 /* special case for empty array */
592 if (type->regions[0].size == 0) {
1440c4e2 593 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
594 type->regions[0].base = base;
595 type->regions[0].size = size;
66a20757 596 type->regions[0].flags = flags;
7fb0bc3f 597 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 598 type->total_size = size;
8f7a6605 599 return 0;
95f72d1e 600 }
784656f9
TH
601repeat:
602 /*
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
412d0008 605 * to accommodate the new area. The second actually inserts them.
142b45a7 606 */
784656f9
TH
607 base = obase;
608 nr_new = 0;
95f72d1e 609
66e8b438 610 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
611 phys_addr_t rbase = rgn->base;
612 phys_addr_t rend = rbase + rgn->size;
613
614 if (rbase >= end)
95f72d1e 615 break;
784656f9
TH
616 if (rend <= base)
617 continue;
618 /*
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
621 */
622 if (rbase > base) {
c0a29498
WY
623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid != memblock_get_region_node(rgn));
625#endif
4fcab5f4 626 WARN_ON(flags != rgn->flags);
784656f9
TH
627 nr_new++;
628 if (insert)
8c9c1701 629 memblock_insert_region(type, idx++, base,
66a20757
TC
630 rbase - base, nid,
631 flags);
95f72d1e 632 }
784656f9
TH
633 /* area below @rend is dealt with, forget about it */
634 base = min(rend, end);
95f72d1e 635 }
784656f9
TH
636
637 /* insert the remaining portion */
638 if (base < end) {
639 nr_new++;
640 if (insert)
8c9c1701 641 memblock_insert_region(type, idx, base, end - base,
66a20757 642 nid, flags);
95f72d1e 643 }
95f72d1e 644
ef3cc4db 645 if (!nr_new)
646 return 0;
647
784656f9
TH
648 /*
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
142b45a7 651 */
784656f9
TH
652 if (!insert) {
653 while (type->cnt + nr_new > type->max)
48c3b583 654 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
655 return -ENOMEM;
656 insert = true;
657 goto repeat;
658 } else {
659 memblock_merge_regions(type);
660 return 0;
142b45a7 661 }
95f72d1e
YL
662}
663
48a833cc
MR
664/**
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f
TH
676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 int nid)
678{
f1af9d3a 679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
680}
681
48a833cc
MR
682/**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
f705ac4b 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 694{
5d63f81c
MC
695 phys_addr_t end = base + size - 1;
696
697 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
698 &base, &end, (void *)_RET_IP_);
6a4055bc 699
f705ac4b 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
701}
702
6a9ceb31
TH
703/**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 712 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
47cec443 716 * Return:
6a9ceb31
TH
717 * 0 on success, -errno on failure.
718 */
719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722{
eb18f1b5 723 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
724 int idx;
725 struct memblock_region *rgn;
6a9ceb31
TH
726
727 *start_rgn = *end_rgn = 0;
728
b3dc627c
TH
729 if (!size)
730 return 0;
731
6a9ceb31
TH
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
48c3b583 734 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
735 return -ENOMEM;
736
66e8b438 737 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
1440c4e2
TH
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
8c9c1701 754 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
755 memblock_get_region_node(rgn),
756 rgn->flags);
6a9ceb31
TH
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
1440c4e2
TH
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
8c9c1701 765 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
766 memblock_get_region_node(rgn),
767 rgn->flags);
6a9ceb31
TH
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
8c9c1701
AK
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
6a9ceb31
TH
773 }
774 }
775
776 return 0;
777}
6a9ceb31 778
35bd16a2 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 780 phys_addr_t base, phys_addr_t size)
95f72d1e 781{
71936180
TH
782 int start_rgn, end_rgn;
783 int i, ret;
95f72d1e 784
71936180
TH
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
95f72d1e 788
71936180
TH
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
8f7a6605 791 return 0;
95f72d1e
YL
792}
793
581adcbe 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 795{
25cf23d7
MK
796 phys_addr_t end = base + size - 1;
797
798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 &base, &end, (void *)_RET_IP_);
800
f1af9d3a 801 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
802}
803
f1af9d3a 804
581adcbe 805int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 806{
5d63f81c
MC
807 phys_addr_t end = base + size - 1;
808
809 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
810 &base, &end, (void *)_RET_IP_);
24aa0788 811
9099daed 812 kmemleak_free_part_phys(base, size);
f1af9d3a 813 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
814}
815
f705ac4b 816int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 817{
5d63f81c
MC
818 phys_addr_t end = base + size - 1;
819
820 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
821 &base, &end, (void *)_RET_IP_);
95f72d1e 822
f705ac4b 823 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
824}
825
66b16edf 826/**
47cec443
MR
827 * memblock_setclr_flag - set or clear flag for a memory region
828 * @base: base address of the region
829 * @size: size of the region
830 * @set: set or clear the flag
831 * @flag: the flag to udpate
66b16edf 832 *
4308ce17 833 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 834 *
47cec443 835 * Return: 0 on success, -errno on failure.
66b16edf 836 */
4308ce17
TL
837static int __init_memblock memblock_setclr_flag(phys_addr_t base,
838 phys_addr_t size, int set, int flag)
66b16edf
TC
839{
840 struct memblock_type *type = &memblock.memory;
841 int i, ret, start_rgn, end_rgn;
842
843 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
844 if (ret)
845 return ret;
846
847 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
848 if (set)
849 memblock_set_region_flags(&type->regions[i], flag);
850 else
851 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
852
853 memblock_merge_regions(type);
854 return 0;
855}
856
857/**
4308ce17 858 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
859 * @base: the base phys addr of the region
860 * @size: the size of the region
861 *
47cec443 862 * Return: 0 on success, -errno on failure.
4308ce17
TL
863 */
864int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
865{
866 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
867}
868
869/**
870 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
871 * @base: the base phys addr of the region
872 * @size: the size of the region
66b16edf 873 *
47cec443 874 * Return: 0 on success, -errno on failure.
66b16edf
TC
875 */
876int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
877{
4308ce17 878 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
879}
880
a3f5bafc
TL
881/**
882 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
883 * @base: the base phys addr of the region
884 * @size: the size of the region
885 *
47cec443 886 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
887 */
888int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
889{
890 system_has_some_mirror = true;
891
892 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
893}
894
bf3d3cc5
AB
895/**
896 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
897 * @base: the base phys addr of the region
898 * @size: the size of the region
899 *
47cec443 900 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
901 */
902int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
903{
904 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
905}
a3f5bafc 906
4c546b8a
AT
907/**
908 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
909 * @base: the base phys addr of the region
910 * @size: the size of the region
911 *
47cec443 912 * Return: 0 on success, -errno on failure.
4c546b8a
AT
913 */
914int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
915{
916 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
917}
918
8e7a7f86
RH
919/**
920 * __next_reserved_mem_region - next function for for_each_reserved_region()
921 * @idx: pointer to u64 loop variable
922 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
923 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
924 *
925 * Iterate over all reserved memory regions.
926 */
927void __init_memblock __next_reserved_mem_region(u64 *idx,
928 phys_addr_t *out_start,
929 phys_addr_t *out_end)
930{
567d117b 931 struct memblock_type *type = &memblock.reserved;
8e7a7f86 932
cd33a76b 933 if (*idx < type->cnt) {
567d117b 934 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
935 phys_addr_t base = r->base;
936 phys_addr_t size = r->size;
937
938 if (out_start)
939 *out_start = base;
940 if (out_end)
941 *out_end = base + size - 1;
942
943 *idx += 1;
944 return;
945 }
946
947 /* signal end of iteration */
948 *idx = ULLONG_MAX;
949}
950
35fd0808 951/**
f1af9d3a 952 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 953 * @idx: pointer to u64 loop variable
b1154233 954 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 955 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
956 * @type_a: pointer to memblock_type from where the range is taken
957 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
958 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
959 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
960 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 961 *
f1af9d3a 962 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 963 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
964 * *@idx contains index into type_a and the upper 32bit indexes the
965 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
966 * look like the following,
967 *
968 * 0:[0-16), 1:[32-48), 2:[128-130)
969 *
970 * The upper 32bit indexes the following regions.
971 *
972 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
973 *
974 * As both region arrays are sorted, the function advances the two indices
975 * in lockstep and returns each intersection.
976 */
e1720fee
MR
977void __init_memblock __next_mem_range(u64 *idx, int nid,
978 enum memblock_flags flags,
f1af9d3a
PH
979 struct memblock_type *type_a,
980 struct memblock_type *type_b,
981 phys_addr_t *out_start,
982 phys_addr_t *out_end, int *out_nid)
35fd0808 983{
f1af9d3a
PH
984 int idx_a = *idx & 0xffffffff;
985 int idx_b = *idx >> 32;
b1154233 986
f1af9d3a
PH
987 if (WARN_ONCE(nid == MAX_NUMNODES,
988 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 989 nid = NUMA_NO_NODE;
35fd0808 990
f1af9d3a
PH
991 for (; idx_a < type_a->cnt; idx_a++) {
992 struct memblock_region *m = &type_a->regions[idx_a];
993
35fd0808
TH
994 phys_addr_t m_start = m->base;
995 phys_addr_t m_end = m->base + m->size;
f1af9d3a 996 int m_nid = memblock_get_region_node(m);
35fd0808
TH
997
998 /* only memory regions are associated with nodes, check it */
f1af9d3a 999 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
1000 continue;
1001
0a313a99
XQ
1002 /* skip hotpluggable memory regions if needed */
1003 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1004 continue;
1005
a3f5bafc
TL
1006 /* if we want mirror memory skip non-mirror memory regions */
1007 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1008 continue;
1009
bf3d3cc5
AB
1010 /* skip nomap memory unless we were asked for it explicitly */
1011 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1012 continue;
1013
f1af9d3a
PH
1014 if (!type_b) {
1015 if (out_start)
1016 *out_start = m_start;
1017 if (out_end)
1018 *out_end = m_end;
1019 if (out_nid)
1020 *out_nid = m_nid;
1021 idx_a++;
1022 *idx = (u32)idx_a | (u64)idx_b << 32;
1023 return;
1024 }
1025
1026 /* scan areas before each reservation */
1027 for (; idx_b < type_b->cnt + 1; idx_b++) {
1028 struct memblock_region *r;
1029 phys_addr_t r_start;
1030 phys_addr_t r_end;
1031
1032 r = &type_b->regions[idx_b];
1033 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1034 r_end = idx_b < type_b->cnt ?
1c4bc43d 1035 r->base : PHYS_ADDR_MAX;
35fd0808 1036
f1af9d3a
PH
1037 /*
1038 * if idx_b advanced past idx_a,
1039 * break out to advance idx_a
1040 */
35fd0808
TH
1041 if (r_start >= m_end)
1042 break;
1043 /* if the two regions intersect, we're done */
1044 if (m_start < r_end) {
1045 if (out_start)
f1af9d3a
PH
1046 *out_start =
1047 max(m_start, r_start);
35fd0808
TH
1048 if (out_end)
1049 *out_end = min(m_end, r_end);
1050 if (out_nid)
f1af9d3a 1051 *out_nid = m_nid;
35fd0808 1052 /*
f1af9d3a
PH
1053 * The region which ends first is
1054 * advanced for the next iteration.
35fd0808
TH
1055 */
1056 if (m_end <= r_end)
f1af9d3a 1057 idx_a++;
35fd0808 1058 else
f1af9d3a
PH
1059 idx_b++;
1060 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1061 return;
1062 }
1063 }
1064 }
1065
1066 /* signal end of iteration */
1067 *idx = ULLONG_MAX;
1068}
1069
7bd0b0f0 1070/**
f1af9d3a
PH
1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072 *
7bd0b0f0 1073 * @idx: pointer to u64 loop variable
ad5ea8cd 1074 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1075 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1076 * @type_a: pointer to memblock_type from where the range is taken
1077 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1078 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1079 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1080 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1081 *
47cec443
MR
1082 * Finds the next range from type_a which is not marked as unsuitable
1083 * in type_b.
1084 *
f1af9d3a 1085 * Reverse of __next_mem_range().
7bd0b0f0 1086 */
e1720fee
MR
1087void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1088 enum memblock_flags flags,
f1af9d3a
PH
1089 struct memblock_type *type_a,
1090 struct memblock_type *type_b,
1091 phys_addr_t *out_start,
1092 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1093{
f1af9d3a
PH
1094 int idx_a = *idx & 0xffffffff;
1095 int idx_b = *idx >> 32;
b1154233 1096
560dca27
GS
1097 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1098 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1099
1100 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1101 idx_a = type_a->cnt - 1;
e47608ab 1102 if (type_b != NULL)
1103 idx_b = type_b->cnt;
1104 else
1105 idx_b = 0;
7bd0b0f0
TH
1106 }
1107
f1af9d3a
PH
1108 for (; idx_a >= 0; idx_a--) {
1109 struct memblock_region *m = &type_a->regions[idx_a];
1110
7bd0b0f0
TH
1111 phys_addr_t m_start = m->base;
1112 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1113 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1114
1115 /* only memory regions are associated with nodes, check it */
f1af9d3a 1116 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1117 continue;
1118
55ac590c
TC
1119 /* skip hotpluggable memory regions if needed */
1120 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1121 continue;
1122
a3f5bafc
TL
1123 /* if we want mirror memory skip non-mirror memory regions */
1124 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1125 continue;
1126
bf3d3cc5
AB
1127 /* skip nomap memory unless we were asked for it explicitly */
1128 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1129 continue;
1130
f1af9d3a
PH
1131 if (!type_b) {
1132 if (out_start)
1133 *out_start = m_start;
1134 if (out_end)
1135 *out_end = m_end;
1136 if (out_nid)
1137 *out_nid = m_nid;
fb399b48 1138 idx_a--;
f1af9d3a
PH
1139 *idx = (u32)idx_a | (u64)idx_b << 32;
1140 return;
1141 }
1142
1143 /* scan areas before each reservation */
1144 for (; idx_b >= 0; idx_b--) {
1145 struct memblock_region *r;
1146 phys_addr_t r_start;
1147 phys_addr_t r_end;
1148
1149 r = &type_b->regions[idx_b];
1150 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1151 r_end = idx_b < type_b->cnt ?
1c4bc43d 1152 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1153 /*
1154 * if idx_b advanced past idx_a,
1155 * break out to advance idx_a
1156 */
7bd0b0f0 1157
7bd0b0f0
TH
1158 if (r_end <= m_start)
1159 break;
1160 /* if the two regions intersect, we're done */
1161 if (m_end > r_start) {
1162 if (out_start)
1163 *out_start = max(m_start, r_start);
1164 if (out_end)
1165 *out_end = min(m_end, r_end);
1166 if (out_nid)
f1af9d3a 1167 *out_nid = m_nid;
7bd0b0f0 1168 if (m_start >= r_start)
f1af9d3a 1169 idx_a--;
7bd0b0f0 1170 else
f1af9d3a
PH
1171 idx_b--;
1172 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1173 return;
1174 }
1175 }
1176 }
f1af9d3a 1177 /* signal end of iteration */
7bd0b0f0
TH
1178 *idx = ULLONG_MAX;
1179}
1180
7c0caeb8
TH
1181#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1182/*
45e79815 1183 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1184 */
1185void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1186 unsigned long *out_start_pfn,
1187 unsigned long *out_end_pfn, int *out_nid)
1188{
1189 struct memblock_type *type = &memblock.memory;
1190 struct memblock_region *r;
1191
1192 while (++*idx < type->cnt) {
1193 r = &type->regions[*idx];
1194
1195 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1196 continue;
1197 if (nid == MAX_NUMNODES || nid == r->nid)
1198 break;
1199 }
1200 if (*idx >= type->cnt) {
1201 *idx = -1;
1202 return;
1203 }
1204
1205 if (out_start_pfn)
1206 *out_start_pfn = PFN_UP(r->base);
1207 if (out_end_pfn)
1208 *out_end_pfn = PFN_DOWN(r->base + r->size);
1209 if (out_nid)
1210 *out_nid = r->nid;
1211}
1212
1213/**
1214 * memblock_set_node - set node ID on memblock regions
1215 * @base: base of area to set node ID for
1216 * @size: size of area to set node ID for
e7e8de59 1217 * @type: memblock type to set node ID for
7c0caeb8
TH
1218 * @nid: node ID to set
1219 *
47cec443 1220 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1221 * Regions which cross the area boundaries are split as necessary.
1222 *
47cec443 1223 * Return:
7c0caeb8
TH
1224 * 0 on success, -errno on failure.
1225 */
1226int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1227 struct memblock_type *type, int nid)
7c0caeb8 1228{
6a9ceb31
TH
1229 int start_rgn, end_rgn;
1230 int i, ret;
7c0caeb8 1231
6a9ceb31
TH
1232 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1233 if (ret)
1234 return ret;
7c0caeb8 1235
6a9ceb31 1236 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1237 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1238
1239 memblock_merge_regions(type);
1240 return 0;
1241}
1242#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1243
2bfc2862
AM
1244static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1245 phys_addr_t align, phys_addr_t start,
e1720fee
MR
1246 phys_addr_t end, int nid,
1247 enum memblock_flags flags)
95f72d1e 1248{
6ed311b2 1249 phys_addr_t found;
95f72d1e 1250
2f770806
MR
1251 if (!align) {
1252 /* Can't use WARNs this early in boot on powerpc */
1253 dump_stack();
1254 align = SMP_CACHE_BYTES;
1255 }
1256
fc6daaf9
TL
1257 found = memblock_find_in_range_node(size, align, start, end, nid,
1258 flags);
aedf95ea
CM
1259 if (found && !memblock_reserve(found, size)) {
1260 /*
1261 * The min_count is set to 0 so that memblock allocations are
1262 * never reported as leaks.
1263 */
9099daed 1264 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1265 return found;
aedf95ea 1266 }
6ed311b2 1267 return 0;
95f72d1e
YL
1268}
1269
2bfc2862 1270phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9 1271 phys_addr_t start, phys_addr_t end,
e1720fee 1272 enum memblock_flags flags)
2bfc2862 1273{
fc6daaf9
TL
1274 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1275 flags);
2bfc2862
AM
1276}
1277
b575454f 1278phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
2bfc2862 1279 phys_addr_t align, phys_addr_t max_addr,
e1720fee 1280 int nid, enum memblock_flags flags)
2bfc2862 1281{
fc6daaf9 1282 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1283}
1284
9a8dd708 1285phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
7bd0b0f0 1286{
e1720fee 1287 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
1288 phys_addr_t ret;
1289
1290again:
1291 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1292 nid, flags);
1293
1294 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1295 flags &= ~MEMBLOCK_MIRROR;
1296 goto again;
1297 }
1298 return ret;
7bd0b0f0
TH
1299}
1300
1301phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1302{
fc6daaf9
TL
1303 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1304 MEMBLOCK_NONE);
7bd0b0f0
TH
1305}
1306
6ed311b2 1307phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1308{
6ed311b2
BH
1309 phys_addr_t alloc;
1310
1311 alloc = __memblock_alloc_base(size, align, max_addr);
1312
1313 if (alloc == 0)
5d63f81c
MC
1314 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1315 &size, &max_addr);
6ed311b2
BH
1316
1317 return alloc;
95f72d1e
YL
1318}
1319
9a8dd708 1320phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1321{
6ed311b2
BH
1322 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1323}
95f72d1e 1324
9a8dd708 1325phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1326{
9a8dd708 1327 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
9d1e2492
BH
1328
1329 if (res)
1330 return res;
15fb0972 1331 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1332}
1333
26f09e9b 1334/**
eb31d559 1335 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1336 * @size: size of memory block to be allocated in bytes
1337 * @align: alignment of the region and block's size
1338 * @min_addr: the lower bound of the memory region to allocate (phys address)
1339 * @max_addr: the upper bound of the memory region to allocate (phys address)
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1343 * will fall back to memory below @min_addr. Also, allocation may fall back
1344 * to any node in the system if the specified node can not
1345 * hold the requested memory.
1346 *
1347 * The allocation is performed from memory region limited by
97ad1087 1348 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
26f09e9b 1349 *
26f09e9b
SS
1350 * The phys address of allocated boot memory block is converted to virtual and
1351 * allocated memory is reset to 0.
1352 *
1353 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1354 * allocated boot memory block, so that it is never reported as leaks.
1355 *
47cec443 1356 * Return:
26f09e9b
SS
1357 * Virtual address of allocated memory block on success, NULL on failure.
1358 */
eb31d559 1359static void * __init memblock_alloc_internal(
26f09e9b
SS
1360 phys_addr_t size, phys_addr_t align,
1361 phys_addr_t min_addr, phys_addr_t max_addr,
1362 int nid)
1363{
1364 phys_addr_t alloc;
1365 void *ptr;
e1720fee 1366 enum memblock_flags flags = choose_memblock_flags();
26f09e9b 1367
560dca27
GS
1368 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1369 nid = NUMA_NO_NODE;
26f09e9b
SS
1370
1371 /*
1372 * Detect any accidental use of these APIs after slab is ready, as at
1373 * this moment memblock may be deinitialized already and its
c6ffc5ca 1374 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1375 */
1376 if (WARN_ON_ONCE(slab_is_available()))
1377 return kzalloc_node(size, GFP_NOWAIT, nid);
1378
2f770806
MR
1379 if (!align) {
1380 dump_stack();
1381 align = SMP_CACHE_BYTES;
1382 }
1383
f544e14f
YL
1384 if (max_addr > memblock.current_limit)
1385 max_addr = memblock.current_limit;
26f09e9b
SS
1386again:
1387 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1388 nid, flags);
7d41c03e 1389 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1390 goto done;
1391
1392 if (nid != NUMA_NO_NODE) {
1393 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1394 max_addr, NUMA_NO_NODE,
a3f5bafc 1395 flags);
7d41c03e 1396 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1397 goto done;
1398 }
1399
1400 if (min_addr) {
1401 min_addr = 0;
1402 goto again;
26f09e9b
SS
1403 }
1404
a3f5bafc
TL
1405 if (flags & MEMBLOCK_MIRROR) {
1406 flags &= ~MEMBLOCK_MIRROR;
1407 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1408 &size);
1409 goto again;
1410 }
1411
1412 return NULL;
26f09e9b 1413done:
26f09e9b 1414 ptr = phys_to_virt(alloc);
26f09e9b 1415
051b746c
QC
1416 /* Skip kmemleak for kasan_init() due to high volume. */
1417 if (max_addr != MEMBLOCK_ALLOC_KASAN)
1418 /*
1419 * The min_count is set to 0 so that bootmem allocated
1420 * blocks are never reported as leaks. This is because many
1421 * of these blocks are only referred via the physical
1422 * address which is not looked up by kmemleak.
1423 */
1424 kmemleak_alloc(ptr, size, 0, 0);
26f09e9b
SS
1425
1426 return ptr;
26f09e9b
SS
1427}
1428
ea1f5f37 1429/**
eb31d559 1430 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1431 * memory and without panicking
1432 * @size: size of memory block to be allocated in bytes
1433 * @align: alignment of the region and block's size
1434 * @min_addr: the lower bound of the memory region from where the allocation
1435 * is preferred (phys address)
1436 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1437 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1438 * allocate only from memory limited by memblock.current_limit value
1439 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1440 *
1441 * Public function, provides additional debug information (including caller
1442 * info), if enabled. Does not zero allocated memory, does not panic if request
1443 * cannot be satisfied.
1444 *
47cec443 1445 * Return:
ea1f5f37
PT
1446 * Virtual address of allocated memory block on success, NULL on failure.
1447 */
eb31d559 1448void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1449 phys_addr_t size, phys_addr_t align,
1450 phys_addr_t min_addr, phys_addr_t max_addr,
1451 int nid)
1452{
1453 void *ptr;
1454
a36aab89
MR
1455 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1456 __func__, (u64)size, (u64)align, nid, &min_addr,
1457 &max_addr, (void *)_RET_IP_);
ea1f5f37 1458
eb31d559 1459 ptr = memblock_alloc_internal(size, align,
ea1f5f37 1460 min_addr, max_addr, nid);
ea1f5f37 1461 if (ptr && size > 0)
f682a97a
AD
1462 page_init_poison(ptr, size);
1463
ea1f5f37
PT
1464 return ptr;
1465}
1466
26f09e9b 1467/**
eb31d559 1468 * memblock_alloc_try_nid_nopanic - allocate boot memory block
26f09e9b
SS
1469 * @size: size of memory block to be allocated in bytes
1470 * @align: alignment of the region and block's size
1471 * @min_addr: the lower bound of the memory region from where the allocation
1472 * is preferred (phys address)
1473 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1474 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1475 * allocate only from memory limited by memblock.current_limit value
1476 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1477 *
ea1f5f37
PT
1478 * Public function, provides additional debug information (including caller
1479 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1480 *
47cec443 1481 * Return:
26f09e9b
SS
1482 * Virtual address of allocated memory block on success, NULL on failure.
1483 */
eb31d559 1484void * __init memblock_alloc_try_nid_nopanic(
26f09e9b
SS
1485 phys_addr_t size, phys_addr_t align,
1486 phys_addr_t min_addr, phys_addr_t max_addr,
1487 int nid)
1488{
ea1f5f37
PT
1489 void *ptr;
1490
a36aab89
MR
1491 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1492 __func__, (u64)size, (u64)align, nid, &min_addr,
1493 &max_addr, (void *)_RET_IP_);
ea1f5f37 1494
eb31d559 1495 ptr = memblock_alloc_internal(size, align,
ea1f5f37
PT
1496 min_addr, max_addr, nid);
1497 if (ptr)
1498 memset(ptr, 0, size);
1499 return ptr;
26f09e9b
SS
1500}
1501
1502/**
eb31d559 1503 * memblock_alloc_try_nid - allocate boot memory block with panicking
26f09e9b
SS
1504 * @size: size of memory block to be allocated in bytes
1505 * @align: alignment of the region and block's size
1506 * @min_addr: the lower bound of the memory region from where the allocation
1507 * is preferred (phys address)
1508 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1509 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1510 * allocate only from memory limited by memblock.current_limit value
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 *
eb31d559 1513 * Public panicking version of memblock_alloc_try_nid_nopanic()
26f09e9b
SS
1514 * which provides debug information (including caller info), if enabled,
1515 * and panics if the request can not be satisfied.
1516 *
47cec443 1517 * Return:
26f09e9b
SS
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
eb31d559 1520void * __init memblock_alloc_try_nid(
26f09e9b
SS
1521 phys_addr_t size, phys_addr_t align,
1522 phys_addr_t min_addr, phys_addr_t max_addr,
1523 int nid)
1524{
1525 void *ptr;
1526
a36aab89
MR
1527 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1528 __func__, (u64)size, (u64)align, nid, &min_addr,
1529 &max_addr, (void *)_RET_IP_);
eb31d559 1530 ptr = memblock_alloc_internal(size, align,
26f09e9b 1531 min_addr, max_addr, nid);
ea1f5f37
PT
1532 if (ptr) {
1533 memset(ptr, 0, size);
26f09e9b 1534 return ptr;
ea1f5f37 1535 }
26f09e9b 1536
a36aab89
MR
1537 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1538 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
26f09e9b
SS
1539 return NULL;
1540}
1541
1542/**
1543 * __memblock_free_early - free boot memory block
1544 * @base: phys starting address of the boot memory block
1545 * @size: size of the boot memory block in bytes
1546 *
eb31d559 1547 * Free boot memory block previously allocated by memblock_alloc_xx() API.
26f09e9b
SS
1548 * The freeing memory will not be released to the buddy allocator.
1549 */
1550void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1551{
a36aab89
MR
1552 phys_addr_t end = base + size - 1;
1553
1554 memblock_dbg("%s: [%pa-%pa] %pF\n",
1555 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1556 kmemleak_free_part_phys(base, size);
f1af9d3a 1557 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1558}
1559
48a833cc 1560/**
26f09e9b 1561 * __memblock_free_late - free bootmem block pages directly to buddy allocator
48a833cc 1562 * @base: phys starting address of the boot memory block
26f09e9b
SS
1563 * @size: size of the boot memory block in bytes
1564 *
1565 * This is only useful when the bootmem allocator has already been torn
1566 * down, but we are still initializing the system. Pages are released directly
1567 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1568 */
1569void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1570{
a36aab89 1571 phys_addr_t cursor, end;
26f09e9b 1572
a36aab89
MR
1573 end = base + size - 1;
1574 memblock_dbg("%s: [%pa-%pa] %pF\n",
1575 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1576 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1577 cursor = PFN_UP(base);
1578 end = PFN_DOWN(base + size);
1579
1580 for (; cursor < end; cursor++) {
7c2ee349 1581 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1582 totalram_pages++;
1583 }
1584}
9d1e2492
BH
1585
1586/*
1587 * Remaining API functions
1588 */
1589
1f1ffb8a 1590phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1591{
1440c4e2 1592 return memblock.memory.total_size;
95f72d1e
YL
1593}
1594
8907de5d
SD
1595phys_addr_t __init_memblock memblock_reserved_size(void)
1596{
1597 return memblock.reserved.total_size;
1598}
1599
595ad9af
YL
1600phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1601{
1602 unsigned long pages = 0;
1603 struct memblock_region *r;
1604 unsigned long start_pfn, end_pfn;
1605
1606 for_each_memblock(memory, r) {
1607 start_pfn = memblock_region_memory_base_pfn(r);
1608 end_pfn = memblock_region_memory_end_pfn(r);
1609 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1610 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1611 pages += end_pfn - start_pfn;
1612 }
1613
16763230 1614 return PFN_PHYS(pages);
595ad9af
YL
1615}
1616
0a93ebef
SR
1617/* lowest address */
1618phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1619{
1620 return memblock.memory.regions[0].base;
1621}
1622
10d06439 1623phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1624{
1625 int idx = memblock.memory.cnt - 1;
1626
e3239ff9 1627 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1628}
1629
a571d4eb 1630static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1631{
1c4bc43d 1632 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1633 struct memblock_region *r;
95f72d1e 1634
a571d4eb
DC
1635 /*
1636 * translate the memory @limit size into the max address within one of
1637 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1638 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1639 */
136199f0 1640 for_each_memblock(memory, r) {
c0ce8fef
TH
1641 if (limit <= r->size) {
1642 max_addr = r->base + limit;
1643 break;
95f72d1e 1644 }
c0ce8fef 1645 limit -= r->size;
95f72d1e 1646 }
c0ce8fef 1647
a571d4eb
DC
1648 return max_addr;
1649}
1650
1651void __init memblock_enforce_memory_limit(phys_addr_t limit)
1652{
1c4bc43d 1653 phys_addr_t max_addr = PHYS_ADDR_MAX;
a571d4eb
DC
1654
1655 if (!limit)
1656 return;
1657
1658 max_addr = __find_max_addr(limit);
1659
1660 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1661 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1662 return;
1663
c0ce8fef 1664 /* truncate both memory and reserved regions */
f1af9d3a 1665 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1666 PHYS_ADDR_MAX);
f1af9d3a 1667 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1668 PHYS_ADDR_MAX);
95f72d1e
YL
1669}
1670
c9ca9b4e
AT
1671void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1672{
1673 int start_rgn, end_rgn;
1674 int i, ret;
1675
1676 if (!size)
1677 return;
1678
1679 ret = memblock_isolate_range(&memblock.memory, base, size,
1680 &start_rgn, &end_rgn);
1681 if (ret)
1682 return;
1683
1684 /* remove all the MAP regions */
1685 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1686 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687 memblock_remove_region(&memblock.memory, i);
1688
1689 for (i = start_rgn - 1; i >= 0; i--)
1690 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1691 memblock_remove_region(&memblock.memory, i);
1692
1693 /* truncate the reserved regions */
1694 memblock_remove_range(&memblock.reserved, 0, base);
1695 memblock_remove_range(&memblock.reserved,
1c4bc43d 1696 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1697}
1698
a571d4eb
DC
1699void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1700{
a571d4eb 1701 phys_addr_t max_addr;
a571d4eb
DC
1702
1703 if (!limit)
1704 return;
1705
1706 max_addr = __find_max_addr(limit);
1707
1708 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1709 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1710 return;
1711
c9ca9b4e 1712 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1713}
1714
cd79481d 1715static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1716{
1717 unsigned int left = 0, right = type->cnt;
1718
1719 do {
1720 unsigned int mid = (right + left) / 2;
1721
1722 if (addr < type->regions[mid].base)
1723 right = mid;
1724 else if (addr >= (type->regions[mid].base +
1725 type->regions[mid].size))
1726 left = mid + 1;
1727 else
1728 return mid;
1729 } while (left < right);
1730 return -1;
1731}
1732
f5a222dc 1733bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1734{
72d4b0b4
BH
1735 return memblock_search(&memblock.reserved, addr) != -1;
1736}
95f72d1e 1737
b4ad0c7e 1738bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1739{
1740 return memblock_search(&memblock.memory, addr) != -1;
1741}
1742
937f0c26 1743bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1744{
1745 int i = memblock_search(&memblock.memory, addr);
1746
1747 if (i == -1)
1748 return false;
1749 return !memblock_is_nomap(&memblock.memory.regions[i]);
1750}
1751
e76b63f8
YL
1752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1753int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1754 unsigned long *start_pfn, unsigned long *end_pfn)
1755{
1756 struct memblock_type *type = &memblock.memory;
16763230 1757 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1758
1759 if (mid == -1)
1760 return -1;
1761
f7e2f7e8
FF
1762 *start_pfn = PFN_DOWN(type->regions[mid].base);
1763 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1764
1765 return type->regions[mid].nid;
1766}
1767#endif
1768
eab30949
SB
1769/**
1770 * memblock_is_region_memory - check if a region is a subset of memory
1771 * @base: base of region to check
1772 * @size: size of region to check
1773 *
47cec443 1774 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1775 *
47cec443 1776 * Return:
eab30949
SB
1777 * 0 if false, non-zero if true
1778 */
937f0c26 1779bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1780{
abb65272 1781 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1782 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1783
1784 if (idx == -1)
937f0c26 1785 return false;
ef415ef4 1786 return (memblock.memory.regions[idx].base +
eb18f1b5 1787 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1788}
1789
eab30949
SB
1790/**
1791 * memblock_is_region_reserved - check if a region intersects reserved memory
1792 * @base: base of region to check
1793 * @size: size of region to check
1794 *
47cec443
MR
1795 * Check if the region [@base, @base + @size) intersects a reserved
1796 * memory block.
eab30949 1797 *
47cec443 1798 * Return:
c5c5c9d1 1799 * True if they intersect, false if not.
eab30949 1800 */
c5c5c9d1 1801bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1802{
eb18f1b5 1803 memblock_cap_size(base, &size);
c5c5c9d1 1804 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1805}
1806
6ede1fd3
YL
1807void __init_memblock memblock_trim_memory(phys_addr_t align)
1808{
6ede1fd3 1809 phys_addr_t start, end, orig_start, orig_end;
136199f0 1810 struct memblock_region *r;
6ede1fd3 1811
136199f0
EM
1812 for_each_memblock(memory, r) {
1813 orig_start = r->base;
1814 orig_end = r->base + r->size;
6ede1fd3
YL
1815 start = round_up(orig_start, align);
1816 end = round_down(orig_end, align);
1817
1818 if (start == orig_start && end == orig_end)
1819 continue;
1820
1821 if (start < end) {
136199f0
EM
1822 r->base = start;
1823 r->size = end - start;
6ede1fd3 1824 } else {
136199f0
EM
1825 memblock_remove_region(&memblock.memory,
1826 r - memblock.memory.regions);
1827 r--;
6ede1fd3
YL
1828 }
1829 }
1830}
e63075a3 1831
3661ca66 1832void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1833{
1834 memblock.current_limit = limit;
1835}
1836
fec51014
LA
1837phys_addr_t __init_memblock memblock_get_current_limit(void)
1838{
1839 return memblock.current_limit;
1840}
1841
0262d9c8 1842static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1843{
5d63f81c 1844 phys_addr_t base, end, size;
e1720fee 1845 enum memblock_flags flags;
8c9c1701
AK
1846 int idx;
1847 struct memblock_region *rgn;
6ed311b2 1848
0262d9c8 1849 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1850
66e8b438 1851 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1852 char nid_buf[32] = "";
1853
1854 base = rgn->base;
1855 size = rgn->size;
5d63f81c 1856 end = base + size - 1;
66a20757 1857 flags = rgn->flags;
7c0caeb8
TH
1858#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1859 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1860 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1861 memblock_get_region_node(rgn));
1862#endif
e1720fee 1863 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1864 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1865 }
1866}
1867
4ff7b82f 1868void __init_memblock __memblock_dump_all(void)
6ed311b2 1869{
6ed311b2 1870 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1871 pr_info(" memory size = %pa reserved size = %pa\n",
1872 &memblock.memory.total_size,
1873 &memblock.reserved.total_size);
6ed311b2 1874
0262d9c8
HC
1875 memblock_dump(&memblock.memory);
1876 memblock_dump(&memblock.reserved);
409efd4c 1877#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1878 memblock_dump(&memblock.physmem);
409efd4c 1879#endif
6ed311b2
BH
1880}
1881
1aadc056 1882void __init memblock_allow_resize(void)
6ed311b2 1883{
142b45a7 1884 memblock_can_resize = 1;
6ed311b2
BH
1885}
1886
6ed311b2
BH
1887static int __init early_memblock(char *p)
1888{
1889 if (p && strstr(p, "debug"))
1890 memblock_debug = 1;
1891 return 0;
1892}
1893early_param("memblock", early_memblock);
1894
bda49a81
MR
1895static void __init __free_pages_memory(unsigned long start, unsigned long end)
1896{
1897 int order;
1898
1899 while (start < end) {
1900 order = min(MAX_ORDER - 1UL, __ffs(start));
1901
1902 while (start + (1UL << order) > end)
1903 order--;
1904
1905 memblock_free_pages(pfn_to_page(start), start, order);
1906
1907 start += (1UL << order);
1908 }
1909}
1910
1911static unsigned long __init __free_memory_core(phys_addr_t start,
1912 phys_addr_t end)
1913{
1914 unsigned long start_pfn = PFN_UP(start);
1915 unsigned long end_pfn = min_t(unsigned long,
1916 PFN_DOWN(end), max_low_pfn);
1917
1918 if (start_pfn >= end_pfn)
1919 return 0;
1920
1921 __free_pages_memory(start_pfn, end_pfn);
1922
1923 return end_pfn - start_pfn;
1924}
1925
1926static unsigned long __init free_low_memory_core_early(void)
1927{
1928 unsigned long count = 0;
1929 phys_addr_t start, end;
1930 u64 i;
1931
1932 memblock_clear_hotplug(0, -1);
1933
1934 for_each_reserved_mem_region(i, &start, &end)
1935 reserve_bootmem_region(start, end);
1936
1937 /*
1938 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1939 * because in some case like Node0 doesn't have RAM installed
1940 * low ram will be on Node1
1941 */
1942 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1943 NULL)
1944 count += __free_memory_core(start, end);
1945
1946 return count;
1947}
1948
1949static int reset_managed_pages_done __initdata;
1950
1951void reset_node_managed_pages(pg_data_t *pgdat)
1952{
1953 struct zone *z;
1954
1955 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1956 z->managed_pages = 0;
1957}
1958
1959void __init reset_all_zones_managed_pages(void)
1960{
1961 struct pglist_data *pgdat;
1962
1963 if (reset_managed_pages_done)
1964 return;
1965
1966 for_each_online_pgdat(pgdat)
1967 reset_node_managed_pages(pgdat);
1968
1969 reset_managed_pages_done = 1;
1970}
1971
1972/**
1973 * memblock_free_all - release free pages to the buddy allocator
1974 *
1975 * Return: the number of pages actually released.
1976 */
1977unsigned long __init memblock_free_all(void)
1978{
1979 unsigned long pages;
1980
1981 reset_all_zones_managed_pages();
1982
1983 pages = free_low_memory_core_early();
1984 totalram_pages += pages;
1985
1986 return pages;
1987}
1988
c378ddd5 1989#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1990
1991static int memblock_debug_show(struct seq_file *m, void *private)
1992{
1993 struct memblock_type *type = m->private;
1994 struct memblock_region *reg;
1995 int i;
5d63f81c 1996 phys_addr_t end;
6d03b885
BH
1997
1998 for (i = 0; i < type->cnt; i++) {
1999 reg = &type->regions[i];
5d63f81c 2000 end = reg->base + reg->size - 1;
6d03b885 2001
5d63f81c
MC
2002 seq_printf(m, "%4d: ", i);
2003 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2004 }
2005 return 0;
2006}
5ad35093 2007DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2008
2009static int __init memblock_init_debugfs(void)
2010{
2011 struct dentry *root = debugfs_create_dir("memblock", NULL);
2012 if (!root)
2013 return -ENXIO;
0825a6f9
JP
2014 debugfs_create_file("memory", 0444, root,
2015 &memblock.memory, &memblock_debug_fops);
2016 debugfs_create_file("reserved", 0444, root,
2017 &memblock.reserved, &memblock_debug_fops);
70210ed9 2018#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
2019 debugfs_create_file("physmem", 0444, root,
2020 &memblock.physmem, &memblock_debug_fops);
70210ed9 2021#endif
6d03b885
BH
2022
2023 return 0;
2024}
2025__initcall(memblock_init_debugfs);
2026
2027#endif /* CONFIG_DEBUG_FS */