]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/slab.h
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
89c2d061
VB
4
5#include <linux/reciprocal_div.h>
6#include <linux/list_lru.h>
7#include <linux/local_lock.h>
8#include <linux/random.h>
9#include <linux/kobject.h>
10#include <linux/sched/mm.h>
11#include <linux/memcontrol.h>
89c2d061
VB
12#include <linux/kfence.h>
13#include <linux/kasan.h>
14
97d06609
CL
15/*
16 * Internal slab definitions
17 */
18
6801be4f
PZ
19#ifdef CONFIG_64BIT
20# ifdef system_has_cmpxchg128
21# define system_has_freelist_aba() system_has_cmpxchg128()
22# define try_cmpxchg_freelist try_cmpxchg128
23# endif
24#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
25typedef u128 freelist_full_t;
26#else /* CONFIG_64BIT */
27# ifdef system_has_cmpxchg64
28# define system_has_freelist_aba() system_has_cmpxchg64()
29# define try_cmpxchg_freelist try_cmpxchg64
30# endif
31#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
32typedef u64 freelist_full_t;
33#endif /* CONFIG_64BIT */
34
35#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
36#undef system_has_freelist_aba
37#endif
38
39/*
40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
41 * problems with cmpxchg of just a pointer.
42 */
43typedef union {
44 struct {
45 void *freelist;
46 unsigned long counter;
47 };
48 freelist_full_t full;
49} freelist_aba_t;
50
d122019b
MWO
51/* Reuses the bits in struct page */
52struct slab {
53 unsigned long __page_flags;
401fb12c 54
401fb12c 55 struct kmem_cache *slab_cache;
d122019b 56 union {
401fb12c 57 struct {
130d4df5
VB
58 union {
59 struct list_head slab_list;
60#ifdef CONFIG_SLUB_CPU_PARTIAL
61 struct {
62 struct slab *next;
63 int slabs; /* Nr of slabs left */
64 };
65#endif
66 };
67 /* Double-word boundary */
130d4df5 68 union {
130d4df5 69 struct {
6801be4f
PZ
70 void *freelist; /* first free object */
71 union {
72 unsigned long counters;
73 struct {
74 unsigned inuse:16;
75 unsigned objects:15;
76 unsigned frozen:1;
77 };
78 };
130d4df5 79 };
6801be4f
PZ
80#ifdef system_has_freelist_aba
81 freelist_aba_t freelist_counter;
82#endif
130d4df5 83 };
d122019b 84 };
130d4df5 85 struct rcu_head rcu_head;
d122019b 86 };
401fb12c 87
46df8e73 88 unsigned int __page_type;
d122019b 89 atomic_t __page_refcount;
21c690a3
SB
90#ifdef CONFIG_SLAB_OBJ_EXT
91 unsigned long obj_exts;
d122019b
MWO
92#endif
93};
94
95#define SLAB_MATCH(pg, sl) \
96 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
97SLAB_MATCH(flags, __page_flags);
130d4df5 98SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
d122019b 99SLAB_MATCH(_refcount, __page_refcount);
21c690a3
SB
100#ifdef CONFIG_SLAB_OBJ_EXT
101SLAB_MATCH(memcg_data, obj_exts);
d122019b
MWO
102#endif
103#undef SLAB_MATCH
104static_assert(sizeof(struct slab) <= sizeof(struct page));
a9e0b9f2 105#if defined(system_has_freelist_aba)
6801be4f 106static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
130d4df5 107#endif
d122019b
MWO
108
109/**
110 * folio_slab - Converts from folio to slab.
111 * @folio: The folio.
112 *
113 * Currently struct slab is a different representation of a folio where
114 * folio_test_slab() is true.
115 *
116 * Return: The slab which contains this folio.
117 */
118#define folio_slab(folio) (_Generic((folio), \
119 const struct folio *: (const struct slab *)(folio), \
120 struct folio *: (struct slab *)(folio)))
121
122/**
123 * slab_folio - The folio allocated for a slab
124 * @slab: The slab.
125 *
126 * Slabs are allocated as folios that contain the individual objects and are
127 * using some fields in the first struct page of the folio - those fields are
128 * now accessed by struct slab. It is occasionally necessary to convert back to
129 * a folio in order to communicate with the rest of the mm. Please use this
130 * helper function instead of casting yourself, as the implementation may change
131 * in the future.
132 */
133#define slab_folio(s) (_Generic((s), \
134 const struct slab *: (const struct folio *)s, \
135 struct slab *: (struct folio *)s))
136
137/**
138 * page_slab - Converts from first struct page to slab.
139 * @p: The first (either head of compound or single) page of slab.
140 *
141 * A temporary wrapper to convert struct page to struct slab in situations where
142 * we know the page is the compound head, or single order-0 page.
143 *
144 * Long-term ideally everything would work with struct slab directly or go
145 * through folio to struct slab.
146 *
147 * Return: The slab which contains this page
148 */
149#define page_slab(p) (_Generic((p), \
150 const struct page *: (const struct slab *)(p), \
151 struct page *: (struct slab *)(p)))
152
153/**
154 * slab_page - The first struct page allocated for a slab
155 * @slab: The slab.
156 *
157 * A convenience wrapper for converting slab to the first struct page of the
158 * underlying folio, to communicate with code not yet converted to folio or
159 * struct slab.
160 */
161#define slab_page(s) folio_page(slab_folio(s), 0)
162
163/*
164 * If network-based swap is enabled, sl*b must keep track of whether pages
165 * were allocated from pfmemalloc reserves.
166 */
167static inline bool slab_test_pfmemalloc(const struct slab *slab)
168{
169 return folio_test_active((struct folio *)slab_folio(slab));
170}
171
172static inline void slab_set_pfmemalloc(struct slab *slab)
173{
174 folio_set_active(slab_folio(slab));
175}
176
177static inline void slab_clear_pfmemalloc(struct slab *slab)
178{
179 folio_clear_active(slab_folio(slab));
180}
181
182static inline void __slab_clear_pfmemalloc(struct slab *slab)
183{
184 __folio_clear_active(slab_folio(slab));
185}
186
187static inline void *slab_address(const struct slab *slab)
188{
189 return folio_address(slab_folio(slab));
190}
191
192static inline int slab_nid(const struct slab *slab)
193{
194 return folio_nid(slab_folio(slab));
195}
196
197static inline pg_data_t *slab_pgdat(const struct slab *slab)
198{
199 return folio_pgdat(slab_folio(slab));
200}
201
202static inline struct slab *virt_to_slab(const void *addr)
203{
204 struct folio *folio = virt_to_folio(addr);
205
206 if (!folio_test_slab(folio))
207 return NULL;
208
209 return folio_slab(folio);
210}
211
212static inline int slab_order(const struct slab *slab)
213{
214 return folio_order((struct folio *)slab_folio(slab));
215}
216
217static inline size_t slab_size(const struct slab *slab)
218{
219 return PAGE_SIZE << slab_order(slab);
220}
221
19975f83
VB
222#ifdef CONFIG_SLUB_CPU_PARTIAL
223#define slub_percpu_partial(c) ((c)->partial)
224
225#define slub_set_percpu_partial(c, p) \
226({ \
227 slub_percpu_partial(c) = (p)->next; \
228})
229
230#define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c))
231#else
232#define slub_percpu_partial(c) NULL
233
234#define slub_set_percpu_partial(c, p)
235
236#define slub_percpu_partial_read_once(c) NULL
237#endif // CONFIG_SLUB_CPU_PARTIAL
238
239/*
240 * Word size structure that can be atomically updated or read and that
241 * contains both the order and the number of objects that a slab of the
242 * given order would contain.
243 */
244struct kmem_cache_order_objects {
245 unsigned int x;
246};
247
248/*
249 * Slab cache management.
250 */
251struct kmem_cache {
252#ifndef CONFIG_SLUB_TINY
253 struct kmem_cache_cpu __percpu *cpu_slab;
254#endif
255 /* Used for retrieving partial slabs, etc. */
256 slab_flags_t flags;
257 unsigned long min_partial;
258 unsigned int size; /* Object size including metadata */
259 unsigned int object_size; /* Object size without metadata */
260 struct reciprocal_value reciprocal_size;
261 unsigned int offset; /* Free pointer offset */
262#ifdef CONFIG_SLUB_CPU_PARTIAL
263 /* Number of per cpu partial objects to keep around */
264 unsigned int cpu_partial;
265 /* Number of per cpu partial slabs to keep around */
266 unsigned int cpu_partial_slabs;
267#endif
268 struct kmem_cache_order_objects oo;
269
270 /* Allocation and freeing of slabs */
271 struct kmem_cache_order_objects min;
272 gfp_t allocflags; /* gfp flags to use on each alloc */
273 int refcount; /* Refcount for slab cache destroy */
274 void (*ctor)(void *object); /* Object constructor */
275 unsigned int inuse; /* Offset to metadata */
276 unsigned int align; /* Alignment */
277 unsigned int red_left_pad; /* Left redzone padding size */
278 const char *name; /* Name (only for display!) */
279 struct list_head list; /* List of slab caches */
280#ifdef CONFIG_SYSFS
281 struct kobject kobj; /* For sysfs */
282#endif
283#ifdef CONFIG_SLAB_FREELIST_HARDENED
284 unsigned long random;
285#endif
286
287#ifdef CONFIG_NUMA
288 /*
289 * Defragmentation by allocating from a remote node.
290 */
291 unsigned int remote_node_defrag_ratio;
292#endif
293
294#ifdef CONFIG_SLAB_FREELIST_RANDOM
295 unsigned int *random_seq;
296#endif
297
298#ifdef CONFIG_KASAN_GENERIC
299 struct kasan_cache kasan_info;
300#endif
301
302#ifdef CONFIG_HARDENED_USERCOPY
303 unsigned int useroffset; /* Usercopy region offset */
304 unsigned int usersize; /* Usercopy region size */
305#endif
306
307 struct kmem_cache_node *node[MAX_NUMNODES];
308};
309
310#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY)
311#define SLAB_SUPPORTS_SYSFS
312void sysfs_slab_unlink(struct kmem_cache *s);
313void sysfs_slab_release(struct kmem_cache *s);
314#else
315static inline void sysfs_slab_unlink(struct kmem_cache *s) { }
316static inline void sysfs_slab_release(struct kmem_cache *s) { }
317#endif
318
319void *fixup_red_left(struct kmem_cache *s, void *p);
320
321static inline void *nearest_obj(struct kmem_cache *cache,
322 const struct slab *slab, void *x)
323{
324 void *object = x - (x - slab_address(slab)) % cache->size;
325 void *last_object = slab_address(slab) +
326 (slab->objects - 1) * cache->size;
327 void *result = (unlikely(object > last_object)) ? last_object : object;
328
329 result = fixup_red_left(cache, result);
330 return result;
331}
332
333/* Determine object index from a given position */
334static inline unsigned int __obj_to_index(const struct kmem_cache *cache,
335 void *addr, void *obj)
336{
337 return reciprocal_divide(kasan_reset_tag(obj) - addr,
338 cache->reciprocal_size);
339}
340
341static inline unsigned int obj_to_index(const struct kmem_cache *cache,
342 const struct slab *slab, void *obj)
343{
344 if (is_kfence_address(obj))
345 return 0;
346 return __obj_to_index(cache, slab_address(slab), obj);
347}
348
349static inline int objs_per_slab(const struct kmem_cache *cache,
350 const struct slab *slab)
351{
352 return slab->objects;
353}
07f361b2 354
97d06609
CL
355/*
356 * State of the slab allocator.
357 *
358 * This is used to describe the states of the allocator during bootup.
359 * Allocators use this to gradually bootstrap themselves. Most allocators
360 * have the problem that the structures used for managing slab caches are
361 * allocated from slab caches themselves.
362 */
363enum slab_state {
364 DOWN, /* No slab functionality yet */
365 PARTIAL, /* SLUB: kmem_cache_node available */
97d06609
CL
366 UP, /* Slab caches usable but not all extras yet */
367 FULL /* Everything is working */
368};
369
370extern enum slab_state slab_state;
371
18004c5d
CL
372/* The slab cache mutex protects the management structures during changes */
373extern struct mutex slab_mutex;
9b030cb8
CL
374
375/* The list of all slab caches on the system */
18004c5d
CL
376extern struct list_head slab_caches;
377
9b030cb8
CL
378/* The slab cache that manages slab cache information */
379extern struct kmem_cache *kmem_cache;
380
af3b5f87
VB
381/* A table of kmalloc cache names and sizes */
382extern const struct kmalloc_info_struct {
cb5d9fb3 383 const char *name[NR_KMALLOC_TYPES];
55de8b9c 384 unsigned int size;
af3b5f87
VB
385} kmalloc_info[];
386
f97d5f63 387/* Kmalloc array related functions */
34cc6990 388void setup_kmalloc_cache_index_table(void);
66b3dc1f 389void create_kmalloc_caches(void);
2c59dd65 390
5a9d31d9
VB
391extern u8 kmalloc_size_index[24];
392
393static inline unsigned int size_index_elem(unsigned int bytes)
394{
395 return (bytes - 1) / 8;
396}
397
398/*
399 * Find the kmem_cache structure that serves a given size of
400 * allocation
401 *
402 * This assumes size is larger than zero and not larger than
403 * KMALLOC_MAX_CACHE_SIZE and the caller must check that.
404 */
405static inline struct kmem_cache *
406kmalloc_slab(size_t size, gfp_t flags, unsigned long caller)
407{
408 unsigned int index;
409
410 if (size <= 192)
411 index = kmalloc_size_index[size_index_elem(size)];
412 else
413 index = fls(size - 1);
414
415 return kmalloc_caches[kmalloc_type(flags, caller)][index];
416}
ed4cd17e 417
44405099 418gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 419
9b030cb8 420/* Functions provided by the slab allocators */
d50112ed 421int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 422
89c2d061 423void __init kmem_cache_init(void);
45530c44 424extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
425 unsigned int size, slab_flags_t flags,
426 unsigned int useroffset, unsigned int usersize);
45530c44 427
423c929c 428int slab_unmergeable(struct kmem_cache *s);
f4957d5b 429struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 430 slab_flags_t flags, const char *name, void (*ctor)(void *));
2633d7a0 431struct kmem_cache *
f4957d5b 432__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 433 slab_flags_t flags, void (*ctor)(void *));
423c929c 434
303cd693 435slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name);
cbb79694 436
bb944290
FT
437static inline bool is_kmalloc_cache(struct kmem_cache *s)
438{
bb944290 439 return (s->flags & SLAB_KMALLOC);
bb944290 440}
cbb79694 441
d8843922 442/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
443#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
444 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 445 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922 446
a9e0b9f2 447#ifdef CONFIG_SLUB_DEBUG
d8843922 448#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 449 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
450#else
451#define SLAB_DEBUG_FLAGS (0)
452#endif
453
d8843922 454#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
6cd6d33c 455 SLAB_TEMPORARY | SLAB_ACCOUNT | \
d0bf7d57 456 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
d8843922 457
e70954fd 458/* Common flags available with current configuration */
d8843922
GC
459#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
460
e70954fd
TG
461/* Common flags permitted for kmem_cache_create */
462#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
463 SLAB_RED_ZONE | \
464 SLAB_POISON | \
465 SLAB_STORE_USER | \
466 SLAB_TRACE | \
467 SLAB_CONSISTENCY_CHECKS | \
e70954fd
TG
468 SLAB_NOLEAKTRACE | \
469 SLAB_RECLAIM_ACCOUNT | \
470 SLAB_TEMPORARY | \
a285909f 471 SLAB_ACCOUNT | \
6cd6d33c 472 SLAB_KMALLOC | \
d0bf7d57 473 SLAB_NO_MERGE | \
a285909f 474 SLAB_NO_USER_FLAGS)
e70954fd 475
f9e13c0a 476bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 477int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 478void __kmem_cache_release(struct kmem_cache *);
c9fc5864 479int __kmem_cache_shrink(struct kmem_cache *);
41a21285 480void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 481
b7454ad3
GC
482struct seq_file;
483struct file;
b7454ad3 484
0d7561c6
GC
485struct slabinfo {
486 unsigned long active_objs;
487 unsigned long num_objs;
488 unsigned long active_slabs;
489 unsigned long num_slabs;
490 unsigned long shared_avail;
491 unsigned int limit;
492 unsigned int batchcount;
493 unsigned int shared;
494 unsigned int objects_per_slab;
495 unsigned int cache_order;
496};
497
498void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
ba6c496e 499
e42f174e
VB
500#ifdef CONFIG_SLUB_DEBUG
501#ifdef CONFIG_SLUB_DEBUG_ON
502DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
503#else
504DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
505#endif
506extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 507long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
508static inline bool __slub_debug_enabled(void)
509{
510 return static_branch_unlikely(&slub_debug_enabled);
511}
e42f174e
VB
512#else
513static inline void print_tracking(struct kmem_cache *s, void *object)
514{
515}
0d4a062a
ME
516static inline bool __slub_debug_enabled(void)
517{
518 return false;
519}
e42f174e
VB
520#endif
521
522/*
671776b3 523 * Returns true if any of the specified slab_debug flags is enabled for the
e42f174e
VB
524 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
525 * the static key.
526 */
527static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
528{
0d4a062a
ME
529 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
530 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
531 if (__slub_debug_enabled())
e42f174e 532 return s->flags & flags;
e42f174e
VB
533 return false;
534}
535
21c690a3
SB
536#ifdef CONFIG_SLAB_OBJ_EXT
537
4b5f8d9a 538/*
21c690a3
SB
539 * slab_obj_exts - get the pointer to the slab object extension vector
540 * associated with a slab.
4b5f8d9a
VB
541 * @slab: a pointer to the slab struct
542 *
21c690a3 543 * Returns a pointer to the object extension vector associated with the slab,
4b5f8d9a
VB
544 * or NULL if no such vector has been associated yet.
545 */
21c690a3 546static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a 547{
21c690a3 548 unsigned long obj_exts = READ_ONCE(slab->obj_exts);
4b5f8d9a 549
21c690a3
SB
550#ifdef CONFIG_MEMCG
551 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS),
4b5f8d9a 552 slab_page(slab));
21c690a3 553 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab));
21c690a3 554#endif
53ce7203 555 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK);
4b5f8d9a
VB
556}
557
e6100a45
VB
558int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
559 gfp_t gfp, bool new_slab);
560
21c690a3
SB
561#else /* CONFIG_SLAB_OBJ_EXT */
562
563static inline struct slabobj_ext *slab_obj_exts(struct slab *slab)
4b5f8d9a
VB
564{
565 return NULL;
566}
567
21c690a3
SB
568#endif /* CONFIG_SLAB_OBJ_EXT */
569
e6100a45 570static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
286e04b8 571{
e6100a45
VB
572 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
573 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
286e04b8 574}
e6100a45 575
21c690a3 576#ifdef CONFIG_MEMCG_KMEM
e6100a45
VB
577bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
578 gfp_t flags, size_t size, void **p);
579void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
580 void **p, int objects, struct slabobj_ext *obj_exts);
21c690a3 581#endif
b9ce5ef4 582
8dfa9d55
HY
583size_t __ksize(const void *objp);
584
11c7aec2
JDB
585static inline size_t slab_ksize(const struct kmem_cache *s)
586{
a9e0b9f2 587#ifdef CONFIG_SLUB_DEBUG
11c7aec2
JDB
588 /*
589 * Debugging requires use of the padding between object
590 * and whatever may come after it.
591 */
592 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
593 return s->object_size;
a9e0b9f2 594#endif
80a9201a
AP
595 if (s->flags & SLAB_KASAN)
596 return s->object_size;
11c7aec2
JDB
597 /*
598 * If we have the need to store the freelist pointer
599 * back there or track user information then we can
600 * only use the space before that information.
601 */
5f0d5a3a 602 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
603 return s->inuse;
604 /*
605 * Else we can use all the padding etc for the allocation
606 */
607 return s->size;
11c7aec2
JDB
608}
609
a9e0b9f2 610#ifdef CONFIG_SLUB_DEBUG
852d8be0
YS
611void dump_unreclaimable_slab(void);
612#else
613static inline void dump_unreclaimable_slab(void)
614{
615}
616#endif
617
55834c59
AP
618void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
619
7c00fce9
TG
620#ifdef CONFIG_SLAB_FREELIST_RANDOM
621int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
622 gfp_t gfp);
623void cache_random_seq_destroy(struct kmem_cache *cachep);
624#else
625static inline int cache_random_seq_create(struct kmem_cache *cachep,
626 unsigned int count, gfp_t gfp)
627{
628 return 0;
629}
630static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
631#endif /* CONFIG_SLAB_FREELIST_RANDOM */
632
6471384a
AP
633static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
634{
51cba1eb
KC
635 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
636 &init_on_alloc)) {
6471384a
AP
637 if (c->ctor)
638 return false;
639 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
640 return flags & __GFP_ZERO;
641 return true;
642 }
643 return flags & __GFP_ZERO;
644}
645
646static inline bool slab_want_init_on_free(struct kmem_cache *c)
647{
51cba1eb
KC
648 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
649 &init_on_free))
6471384a
AP
650 return !(c->ctor ||
651 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
652 return false;
653}
654
64dd6849
FM
655#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
656void debugfs_slab_release(struct kmem_cache *);
657#else
658static inline void debugfs_slab_release(struct kmem_cache *s) { }
659#endif
660
5bb1bb35 661#ifdef CONFIG_PRINTK
8e7f37f2
PM
662#define KS_ADDRS_COUNT 16
663struct kmem_obj_info {
664 void *kp_ptr;
7213230a 665 struct slab *kp_slab;
8e7f37f2
PM
666 void *kp_objp;
667 unsigned long kp_data_offset;
668 struct kmem_cache *kp_slab_cache;
669 void *kp_ret;
670 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 671 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 672};
2dfe63e6 673void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 674#endif
8e7f37f2 675
0b3eb091
MWO
676void __check_heap_object(const void *ptr, unsigned long n,
677 const struct slab *slab, bool to_user);
0b3eb091 678
946fa0db
FT
679#ifdef CONFIG_SLUB_DEBUG
680void skip_orig_size_check(struct kmem_cache *s, const void *object);
681#endif
682
5240ab40 683#endif /* MM_SLAB_H */