]> git.ipfire.org Git - thirdparty/qemu.git/blame - plugins/api.c
plugins: Use DisasContextBase for qemu_plugin_insn_haddr
[thirdparty/qemu.git] / plugins / api.c
CommitLineData
5c5d69b0
AB
1/*
2 * QEMU Plugin API
3 *
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
8 *
9 * qemu_plugin_tb
10 * qemu_plugin_insn
8df5e27c 11 * qemu_plugin_register
5c5d69b0
AB
12 *
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
15 * qemu-plugin.h.
16 *
17 * The general life-cycle of a plugin is:
18 *
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
25 * instruction
26 * - when QEMU exits all the registered atexit callbacks are called
27 *
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
30 *
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
33 *
34 * SPDX-License-Identifier: GPL-2.0-or-later
35 *
36 */
37
38#include "qemu/osdep.h"
8df5e27c 39#include "qemu/main-loop.h"
5c5d69b0 40#include "qemu/plugin.h"
cd617484 41#include "qemu/log.h"
5c5d69b0 42#include "tcg/tcg.h"
cbafa236 43#include "exec/exec-all.h"
8df5e27c 44#include "exec/gdbstub.h"
36bc99bc 45#include "exec/translator.h"
cbafa236 46#include "disas/disas.h"
5c5d69b0
AB
47#include "plugin.h"
48#ifndef CONFIG_USER_ONLY
155fb465 49#include "exec/ram_addr.h"
235537fa 50#include "qemu/plugin-memory.h"
5c5d69b0 51#include "hw/boards.h"
91d40327
IA
52#else
53#include "qemu.h"
54#ifdef CONFIG_LINUX
55#include "loader.h"
56#endif
5c5d69b0
AB
57#endif
58
59/* Uninstall and Reset handlers */
60
61void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
62{
63 plugin_reset_uninstall(id, cb, false);
64}
65
66void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
67{
68 plugin_reset_uninstall(id, cb, true);
69}
70
71/*
72 * Plugin Register Functions
73 *
74 * This allows the plugin to register callbacks for various events
75 * during the translation.
76 */
77
78void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
79 qemu_plugin_vcpu_simple_cb_t cb)
80{
81 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
82}
83
84void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
85 qemu_plugin_vcpu_simple_cb_t cb)
86{
87 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
88}
89
e5013259
RH
90static bool tb_is_mem_only(void)
91{
92 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
93}
94
5c5d69b0
AB
95void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
96 qemu_plugin_vcpu_udata_cb_t cb,
97 enum qemu_plugin_cb_flags flags,
98 void *udata)
99{
e5013259 100 if (!tb_is_mem_only()) {
db409c01 101 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
cfd405ea 102 }
5c5d69b0
AB
103}
104
0bcebaba
PB
105void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
106 struct qemu_plugin_tb *tb,
107 enum qemu_plugin_op op,
108 qemu_plugin_u64 entry,
109 uint64_t imm)
110{
e5013259 111 if (!tb_is_mem_only()) {
db409c01 112 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
0bcebaba
PB
113 }
114}
115
5c5d69b0
AB
116void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
117 qemu_plugin_vcpu_udata_cb_t cb,
118 enum qemu_plugin_cb_flags flags,
119 void *udata)
120{
e5013259 121 if (!tb_is_mem_only()) {
db409c01 122 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
cfd405ea 123 }
5c5d69b0
AB
124}
125
0bcebaba
PB
126void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
127 struct qemu_plugin_insn *insn,
128 enum qemu_plugin_op op,
129 qemu_plugin_u64 entry,
130 uint64_t imm)
131{
e5013259 132 if (!tb_is_mem_only()) {
db409c01 133 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
0bcebaba
PB
134 }
135}
136
5c5d69b0 137
cfd405ea
AB
138/*
139 * We always plant memory instrumentation because they don't finalise until
140 * after the operation has complete.
141 */
5c5d69b0
AB
142void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
143 qemu_plugin_vcpu_mem_cb_t cb,
144 enum qemu_plugin_cb_flags flags,
145 enum qemu_plugin_mem_rw rw,
146 void *udata)
147{
db409c01 148 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
5c5d69b0
AB
149}
150
0bcebaba
PB
151void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
152 struct qemu_plugin_insn *insn,
153 enum qemu_plugin_mem_rw rw,
154 enum qemu_plugin_op op,
155 qemu_plugin_u64 entry,
156 uint64_t imm)
157{
db409c01 158 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
0bcebaba
PB
159}
160
5c5d69b0
AB
161void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
162 qemu_plugin_vcpu_tb_trans_cb_t cb)
163{
164 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
165}
166
167void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
168 qemu_plugin_vcpu_syscall_cb_t cb)
169{
170 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
171}
172
173void
174qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
175 qemu_plugin_vcpu_syscall_ret_cb_t cb)
176{
177 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
178}
179
180/*
181 * Plugin Queries
182 *
183 * These are queries that the plugin can make to gauge information
184 * from our opaque data types. We do not want to leak internal details
185 * here just information useful to the plugin.
186 */
187
188/*
189 * Translation block information:
190 *
191 * A plugin can query the virtual address of the start of the block
192 * and the number of instructions in it. It can also get access to
193 * each translated instruction.
194 */
195
196size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
197{
198 return tb->n;
199}
200
201uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
202{
203 return tb->vaddr;
204}
205
206struct qemu_plugin_insn *
207qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
208{
cfd405ea 209 struct qemu_plugin_insn *insn;
5c5d69b0
AB
210 if (unlikely(idx >= tb->n)) {
211 return NULL;
212 }
cfd405ea 213 insn = g_ptr_array_index(tb->insns, idx);
cfd405ea 214 return insn;
5c5d69b0
AB
215}
216
217/*
218 * Instruction information
219 *
220 * These queries allow the plugin to retrieve information about each
221 * instruction being translated.
222 */
223
4abc8923
RH
224size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
225 void *dest, size_t len)
5c5d69b0 226{
36bc99bc
RH
227 const DisasContextBase *db = tcg_ctx->plugin_db;
228
229 len = MIN(len, insn->len);
230 return translator_st(db, dest, insn->vaddr, len) ? len : 0;
5c5d69b0
AB
231}
232
233size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
234{
36bc99bc 235 return insn->len;
5c5d69b0
AB
236}
237
238uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
239{
240 return insn->vaddr;
241}
242
243void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
244{
d3ace105
RH
245 const DisasContextBase *db = tcg_ctx->plugin_db;
246 vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK;
247
248 if (db->fake_insn) {
249 return NULL;
250 }
251
252 /*
253 * ??? The return value is not intended for use of host memory,
254 * but as a proxy for address space and physical address.
255 * Thus we are only interested in the first byte and do not
256 * care about spanning pages.
257 */
258 if (insn->vaddr <= page0_last) {
259 if (db->host_addr[0] == NULL) {
260 return NULL;
261 }
262 return db->host_addr[0] + insn->vaddr - db->pc_first;
263 } else {
264 if (db->host_addr[1] == NULL) {
265 return NULL;
266 }
267 return db->host_addr[1] + insn->vaddr - (page0_last + 1);
268 }
5c5d69b0
AB
269}
270
cbafa236
AB
271char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
272{
273 CPUState *cpu = current_cpu;
36bc99bc 274 return plugin_disas(cpu, insn->vaddr, insn->len);
cbafa236
AB
275}
276
7c4ab60f
AB
277const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
278{
279 const char *sym = lookup_symbol(insn->vaddr);
280 return sym[0] != 0 ? sym : NULL;
281}
282
5c5d69b0
AB
283/*
284 * The memory queries allow the plugin to query information about a
285 * memory access.
286 */
287
288unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
289{
37aff087
RH
290 MemOp op = get_memop(info);
291 return op & MO_SIZE;
5c5d69b0
AB
292}
293
294bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
295{
37aff087
RH
296 MemOp op = get_memop(info);
297 return op & MO_SIGN;
5c5d69b0
AB
298}
299
300bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
301{
37aff087
RH
302 MemOp op = get_memop(info);
303 return (op & MO_BSWAP) == MO_BE;
5c5d69b0
AB
304}
305
306bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
307{
37aff087 308 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
5c5d69b0
AB
309}
310
311/*
312 * Virtual Memory queries
313 */
314
235537fa
AB
315#ifdef CONFIG_SOFTMMU
316static __thread struct qemu_plugin_hwaddr hwaddr_info;
a2b88169 317#endif
235537fa
AB
318
319struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
320 uint64_t vaddr)
321{
a2b88169 322#ifdef CONFIG_SOFTMMU
235537fa 323 CPUState *cpu = current_cpu;
37aff087
RH
324 unsigned int mmu_idx = get_mmuidx(info);
325 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
326 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
235537fa 327
5413c37f
RH
328 assert(mmu_idx < NB_MMU_MODES);
329
235537fa 330 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
37aff087 331 hwaddr_info.is_store, &hwaddr_info)) {
235537fa
AB
332 error_report("invalid use of qemu_plugin_get_hwaddr");
333 return NULL;
334 }
335
336 return &hwaddr_info;
235537fa 337#else
5c5d69b0 338 return NULL;
235537fa 339#endif
a2b88169 340}
235537fa 341
308e7549 342bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
235537fa
AB
343{
344#ifdef CONFIG_SOFTMMU
308e7549 345 return haddr->is_io;
235537fa
AB
346#else
347 return false;
348#endif
349}
350
787148bf 351uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
235537fa
AB
352{
353#ifdef CONFIG_SOFTMMU
354 if (haddr) {
405c02d8 355 return haddr->phys_addr;
235537fa
AB
356 }
357#endif
358 return 0;
359}
5c5d69b0 360
b853a79f
AB
361const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
362{
363#ifdef CONFIG_SOFTMMU
364 if (h && h->is_io) {
405c02d8
RH
365 MemoryRegion *mr = h->mr;
366 if (!mr->name) {
367 unsigned maddr = (uintptr_t)mr;
368 g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
b853a79f
AB
369 return g_intern_string(temp);
370 } else {
405c02d8 371 return g_intern_string(mr->name);
b853a79f
AB
372 }
373 } else {
374 return g_intern_static_string("RAM");
375 }
376#else
377 return g_intern_static_string("Invalid");
378#endif
379}
380
4a448b14
PB
381int qemu_plugin_num_vcpus(void)
382{
383 return plugin_num_vcpus();
384}
385
ca76a669
AB
386/*
387 * Plugin output
388 */
389void qemu_plugin_outs(const char *string)
390{
391 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
392}
6a9e8a08
MM
393
394bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
395{
396 return name && value && qapi_bool_parse(name, value, ret, NULL);
397}
91d40327
IA
398
399/*
400 * Binary path, start and end locations
401 */
402const char *qemu_plugin_path_to_binary(void)
403{
404 char *path = NULL;
405#ifdef CONFIG_USER_ONLY
e4e5cb4a 406 TaskState *ts = get_task_state(current_cpu);
91d40327
IA
407 path = g_strdup(ts->bprm->filename);
408#endif
409 return path;
410}
411
412uint64_t qemu_plugin_start_code(void)
413{
414 uint64_t start = 0;
415#ifdef CONFIG_USER_ONLY
e4e5cb4a 416 TaskState *ts = get_task_state(current_cpu);
91d40327
IA
417 start = ts->info->start_code;
418#endif
419 return start;
420}
421
422uint64_t qemu_plugin_end_code(void)
423{
424 uint64_t end = 0;
425#ifdef CONFIG_USER_ONLY
e4e5cb4a 426 TaskState *ts = get_task_state(current_cpu);
91d40327
IA
427 end = ts->info->end_code;
428#endif
429 return end;
430}
431
432uint64_t qemu_plugin_entry_code(void)
433{
434 uint64_t entry = 0;
435#ifdef CONFIG_USER_ONLY
e4e5cb4a 436 TaskState *ts = get_task_state(current_cpu);
91d40327
IA
437 entry = ts->info->entry;
438#endif
439 return entry;
440}
8df5e27c
AB
441
442/*
443 * Create register handles.
444 *
445 * We need to create a handle for each register so the plugin
446 * infrastructure can call gdbstub to read a register. They are
447 * currently just a pointer encapsulation of the gdb_reg but in
448 * future may hold internal plugin state so its important plugin
449 * authors are not tempted to treat them as numbers.
450 *
451 * We also construct a result array with those handles and some
452 * ancillary data the plugin might find useful.
453 */
454
455static GArray *create_register_handles(GArray *gdbstub_regs)
456{
457 GArray *find_data = g_array_new(true, true,
458 sizeof(qemu_plugin_reg_descriptor));
459
460 for (int i = 0; i < gdbstub_regs->len; i++) {
461 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
462 qemu_plugin_reg_descriptor desc;
463
464 /* skip "un-named" regs */
465 if (!grd->name) {
466 continue;
467 }
468
469 /* Create a record for the plugin */
470 desc.handle = GINT_TO_POINTER(grd->gdb_reg);
471 desc.name = g_intern_string(grd->name);
472 desc.feature = g_intern_string(grd->feature_name);
473 g_array_append_val(find_data, desc);
474 }
475
476 return find_data;
477}
478
479GArray *qemu_plugin_get_registers(void)
480{
481 g_assert(current_cpu);
482
483 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
484 return create_register_handles(regs);
485}
486
487int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
488{
489 g_assert(current_cpu);
490
491 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));
492}
a3c2cf0b
PB
493
494struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
495{
496 return plugin_scoreboard_new(element_size);
497}
498
499void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
500{
501 plugin_scoreboard_free(score);
502}
503
504void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
505 unsigned int vcpu_index)
506{
507 g_assert(vcpu_index < qemu_plugin_num_vcpus());
508 /* we can't use g_array_index since entry size is not statically known */
509 char *base_ptr = score->data->data;
510 return base_ptr + vcpu_index * g_array_get_element_size(score->data);
511}
8042e2ea
PB
512
513static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
514 unsigned int vcpu_index)
515{
516 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
517 return (uint64_t *)(ptr + entry.offset);
518}
519
520void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
521 uint64_t added)
522{
523 *plugin_u64_address(entry, vcpu_index) += added;
524}
525
526uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
527 unsigned int vcpu_index)
528{
529 return *plugin_u64_address(entry, vcpu_index);
530}
531
532void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
533 uint64_t val)
534{
535 *plugin_u64_address(entry, vcpu_index) = val;
536}
537
538uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
539{
540 uint64_t total = 0;
541 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
542 total += qemu_plugin_u64_get(entry, i);
543 }
544 return total;
545}