]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/d10v/d10v_sim.h
sim: d10v: migrate to standard uintXX_t types
[thirdparty/binutils-gdb.git] / sim / d10v / d10v_sim.h
CommitLineData
c906108c
SS
1#include <stdio.h>
2#include <ctype.h>
3#include <limits.h>
4#include "ansidecl.h"
df68e12b 5#include "sim/callback.h"
c906108c
SS
6#include "opcode/d10v.h"
7#include "bfd.h"
8
9#define DEBUG_TRACE 0x00000001
10#define DEBUG_VALUES 0x00000002
11#define DEBUG_LINE_NUMBER 0x00000004
12#define DEBUG_MEMSIZE 0x00000008
13#define DEBUG_INSTRUCTION 0x00000010
14#define DEBUG_TRAP 0x00000020
4ce44c66 15#define DEBUG_MEMORY 0x00000040
c906108c
SS
16
17#ifndef DEBUG
18#define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)
19#endif
20
21extern int d10v_debug;
22
df68e12b 23#include "sim/sim.h"
c906108c
SS
24#include "sim-config.h"
25#include "sim-types.h"
26
c906108c 27/* FIXME: D10V defines */
eae126cb 28typedef uint16_t reg_t;
c906108c
SS
29
30struct simops
31{
32 long opcode;
33 int is_long;
34 long mask;
35 int format;
36 int cycles;
37 int unit;
38 int exec_type;
67954606 39 void (*func)(SIM_DESC, SIM_CPU *);
c906108c
SS
40 int numops;
41 int operands[9];
42};
43
44enum _ins_type
45{
46 INS_UNKNOWN, /* unknown instruction */
47 INS_COND_TRUE, /* # times EXExxx executed other instruction */
48 INS_COND_FALSE, /* # times EXExxx did not execute other instruction */
49 INS_COND_JUMP, /* # times JUMP skipped other instruction */
50 INS_CYCLES, /* # cycles */
51 INS_LONG, /* long instruction (both containers, ie FM == 11) */
52 INS_LEFTRIGHT, /* # times instruction encoded as L -> R (ie, FM == 01) */
53 INS_RIGHTLEFT, /* # times instruction encoded as L <- R (ie, FM == 10) */
54 INS_PARALLEL, /* # times instruction encoded as L || R (ie, RM == 00) */
55
56 INS_LEFT, /* normal left instructions */
57 INS_LEFT_PARALLEL, /* left side of || */
58 INS_LEFT_COND_TEST, /* EXExx test on left side */
59 INS_LEFT_COND_EXE, /* execution after EXExxx test on right side succeeded */
60 INS_LEFT_NOPS, /* NOP on left side */
61
62 INS_RIGHT, /* normal right instructions */
63 INS_RIGHT_PARALLEL, /* right side of || */
64 INS_RIGHT_COND_TEST, /* EXExx test on right side */
65 INS_RIGHT_COND_EXE, /* execution after EXExxx test on left side succeeded */
66 INS_RIGHT_NOPS, /* NOP on right side */
67
68 INS_MAX
69};
70
71extern unsigned long ins_type_counters[ (int)INS_MAX ];
72
73enum {
74 SP_IDX = 15,
75};
76
77/* Write-back slots */
78union slot_data {
79 unsigned_1 _1;
80 unsigned_2 _2;
81 unsigned_4 _4;
82 unsigned_8 _8;
83};
84struct slot {
85 void *dest;
86 int size;
87 union slot_data data;
88 union slot_data mask;
89};
90enum {
91 NR_SLOTS = 16,
92};
93#define SLOT (State.slot)
94#define SLOT_NR (State.slot_nr)
95#define SLOT_PEND_MASK(DEST, MSK, VAL) \
96 do \
97 { \
98 SLOT[SLOT_NR].dest = &(DEST); \
99 SLOT[SLOT_NR].size = sizeof (DEST); \
100 switch (sizeof (DEST)) \
101 { \
102 case 1: \
103 SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \
104 SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \
105 break; \
106 case 2: \
107 SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \
108 SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \
109 break; \
110 case 4: \
111 SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \
112 SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \
113 break; \
114 case 8: \
115 SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \
116 SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \
117 break; \
118 } \
119 SLOT_NR = (SLOT_NR + 1); \
120 } \
121 while (0)
122#define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)
123#define SLOT_DISCARD() (SLOT_NR = 0)
124#define SLOT_FLUSH() \
125 do \
126 { \
127 int i; \
128 for (i = 0; i < SLOT_NR; i++) \
129 { \
130 switch (SLOT[i].size) \
131 { \
132 case 1: \
133 *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \
134 *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \
135 break; \
136 case 2: \
137 *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \
138 *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \
139 break; \
140 case 4: \
141 *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \
142 *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \
143 break; \
144 case 8: \
145 *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \
146 *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \
147 break; \
148 } \
149 } \
150 SLOT_NR = 0; \
151 } \
152 while (0)
153#define SLOT_DUMP() \
154 do \
155 { \
156 int i; \
157 for (i = 0; i < SLOT_NR; i++) \
158 { \
159 switch (SLOT[i].size) \
160 { \
161 case 1: \
162 printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \
163 (long) SLOT[i].dest, \
164 (unsigned) SLOT[i].mask._1, \
165 (unsigned) SLOT[i].data._1); \
166 break; \
167 case 2: \
168 printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \
169 (long) SLOT[i].dest, \
170 (unsigned) SLOT[i].mask._2, \
171 (unsigned) SLOT[i].data._2); \
172 break; \
173 case 4: \
174 printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \
175 (long) SLOT[i].dest, \
176 (unsigned) SLOT[i].mask._4, \
177 (unsigned) SLOT[i].data._4); \
178 break; \
179 case 8: \
180 printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \
181 (long) SLOT[i].dest, \
182 (unsigned) (SLOT[i].mask._8 >> 32), \
183 (unsigned) SLOT[i].mask._8, \
184 (unsigned) (SLOT[i].data._8 >> 32), \
185 (unsigned) SLOT[i].data._8); \
186 break; \
187 } \
188 } \
189 } \
190 while (0)
191
4ce44c66
JM
192/* d10v memory: There are three separate d10v memory regions IMEM,
193 UMEM and DMEM. The IMEM and DMEM are further broken down into
194 blocks (very like VM pages). */
195
196enum
197{
198 IMAP_BLOCK_SIZE = 0x20000,
199 DMAP_BLOCK_SIZE = 0x4000,
200};
201
202/* Implement the three memory regions using sparse arrays. Allocate
203 memory using ``segments''. A segment must be at least as large as
204 a BLOCK - ensures that an access that doesn't cross a block
205 boundary can't cross a segment boundary */
206
207enum
208{
209 SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */
210 IMEM_SEGMENTS = 8, /* 1MB */
211 DMEM_SEGMENTS = 8, /* 1MB */
212 UMEM_SEGMENTS = 128 /* 16MB */
213};
214
215struct d10v_memory
216{
eae126cb
MF
217 uint8_t *insn[IMEM_SEGMENTS];
218 uint8_t *data[DMEM_SEGMENTS];
219 uint8_t *unif[UMEM_SEGMENTS];
4ce44c66
JM
220};
221
c906108c
SS
222struct _state
223{
224 reg_t regs[16]; /* general-purpose registers */
225#define GPR(N) (State.regs[(N)] + 0)
226#define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))
227
eae126cb
MF
228#define GPR32(N) ((((uint32_t) State.regs[(N) + 0]) << 16) \
229 | (uint16_t) State.regs[(N) + 1])
c906108c
SS
230#define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)
231
232 reg_t cregs[16]; /* control registers */
233#define CREG(N) (State.cregs[(N)] + 0)
67954606
MF
234#define SET_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 0)
235#define SET_HW_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 1)
c906108c
SS
236
237 reg_t sp[2]; /* holding area for SPI(0)/SPU(1) */
238#define HELD_SP(N) (State.sp[(N)] + 0)
239#define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))
240
eae126cb 241 int64_t a[2]; /* accumulators */
c906108c
SS
242#define ACC(N) (State.a[(N)] + 0)
243#define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)
244
245 /* writeback info */
246 struct slot slot[NR_SLOTS];
247 int slot_nr;
248
249 /* trace data */
250 struct {
eae126cb 251 uint16_t psw;
c906108c
SS
252 } trace;
253
eae126cb 254 uint8_t exe;
c906108c
SS
255 int pc_changed;
256
4ce44c66
JM
257 /* NOTE: everything below this line is not reset by
258 sim_create_inferior() */
259
260 struct d10v_memory mem;
261
c906108c
SS
262 enum _ins_type ins_type;
263
7eb99e5e
MF
264};
265
266extern struct _state State;
c906108c
SS
267
268
eae126cb 269extern uint16_t OP[4];
c906108c 270extern struct simops Simops[];
c906108c
SS
271
272enum
273{
274 PSW_CR = 0,
275 BPSW_CR = 1,
276 PC_CR = 2,
277 BPC_CR = 3,
278 DPSW_CR = 4,
279 DPC_CR = 5,
280 RPT_C_CR = 7,
281 RPT_S_CR = 8,
282 RPT_E_CR = 9,
283 MOD_S_CR = 10,
284 MOD_E_CR = 11,
285 IBA_CR = 14,
286};
287
288enum
289{
290 PSW_SM_BIT = 0x8000,
291 PSW_EA_BIT = 0x2000,
292 PSW_DB_BIT = 0x1000,
293 PSW_DM_BIT = 0x0800,
294 PSW_IE_BIT = 0x0400,
295 PSW_RP_BIT = 0x0200,
296 PSW_MD_BIT = 0x0100,
297 PSW_FX_BIT = 0x0080,
298 PSW_ST_BIT = 0x0040,
299 PSW_F0_BIT = 0x0008,
300 PSW_F1_BIT = 0x0004,
301 PSW_C_BIT = 0x0001,
302};
303
304#define PSW CREG (PSW_CR)
305#define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))
4ce44c66 306#define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))
67954606 307#define SET_PSW_BIT(MASK,VAL) move_to_cr (sd, cpu, PSW_CR, ~((reg_t) MASK), (VAL) ? (MASK) : 0, 1)
c906108c
SS
308
309#define PSW_SM ((PSW & PSW_SM_BIT) != 0)
310#define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))
311
312#define PSW_EA ((PSW & PSW_EA_BIT) != 0)
313#define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))
314
315#define PSW_DB ((PSW & PSW_DB_BIT) != 0)
316#define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))
317
318#define PSW_DM ((PSW & PSW_DM_BIT) != 0)
319#define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))
320
321#define PSW_IE ((PSW & PSW_IE_BIT) != 0)
322#define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))
323
324#define PSW_RP ((PSW & PSW_RP_BIT) != 0)
325#define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))
326
327#define PSW_MD ((PSW & PSW_MD_BIT) != 0)
328#define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))
329
330#define PSW_FX ((PSW & PSW_FX_BIT) != 0)
331#define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))
332
333#define PSW_ST ((PSW & PSW_ST_BIT) != 0)
334#define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))
335
336#define PSW_F0 ((PSW & PSW_F0_BIT) != 0)
337#define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))
338
339#define PSW_F1 ((PSW & PSW_F1_BIT) != 0)
340#define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))
341
342#define PSW_C ((PSW & PSW_C_BIT) != 0)
343#define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))
344
345/* See simopsc.:move_to_cr() for registers that can not be read-from
346 or assigned-to directly */
347
348#define PC CREG (PC_CR)
349#define SET_PC(VAL) SET_CREG (PC_CR, (VAL))
350
351#define BPSW CREG (BPSW_CR)
352#define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))
353
354#define BPC CREG (BPC_CR)
355#define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))
356
357#define DPSW CREG (DPSW_CR)
358#define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))
359
360#define DPC CREG (DPC_CR)
361#define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))
362
363#define RPT_C CREG (RPT_C_CR)
364#define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))
365
366#define RPT_S CREG (RPT_S_CR)
367#define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))
368
369#define RPT_E CREG (RPT_E_CR)
370#define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))
371
372#define MOD_S CREG (MOD_S_CR)
373#define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))
374
375#define MOD_E CREG (MOD_E_CR)
376#define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))
377
378#define IBA CREG (IBA_CR)
379#define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))
380
381
382#define SIG_D10V_STOP -1
383#define SIG_D10V_EXIT -2
7fc5b5ad 384#define SIG_D10V_BUS -3
c906108c 385
541ebcee
MF
386/* TODO: Resolve conflicts with common headers. */
387#undef SEXT8
388#undef SEXT16
389#undef SEXT32
390#undef MASK32
391
c906108c
SS
392#define SEXT3(x) ((((x)&0x7)^(~3))+4)
393
394/* sign-extend a 4-bit number */
395#define SEXT4(x) ((((x)&0xf)^(~7))+8)
396
397/* sign-extend an 8-bit number */
398#define SEXT8(x) ((((x)&0xff)^(~0x7f))+0x80)
399
400/* sign-extend a 16-bit number */
401#define SEXT16(x) ((((x)&0xffff)^(~0x7fff))+0x8000)
402
403/* sign-extend a 32-bit number */
404#define SEXT32(x) ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))
405
406/* sign extend a 40 bit number */
407#define SEXT40(x) ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))
408
409/* sign extend a 44 bit number */
410#define SEXT44(x) ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))
411
412/* sign extend a 56 bit number */
413#define SEXT56(x) ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))
414
415/* sign extend a 60 bit number */
416#define SEXT60(x) ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))
417
418#define MAX32 SIGNED64(0x7fffffff)
419#define MIN32 SIGNED64(0xff80000000)
420#define MASK32 SIGNED64(0xffffffff)
421#define MASK40 SIGNED64(0xffffffffff)
422
423/* The alignment of MOD_E in the following macro depends upon "i"
424 always being a power of 2. */
425#define INC_ADDR(x,i) \
426do \
427 { \
c3f6f71d
JM
428 int test_i = i < 0 ? i : ~((i) - 1); \
429 if (PSW_MD && GPR (x) == (MOD_E & test_i)) \
c7675842 430 SET_GPR (x, MOD_S & test_i); \
c906108c
SS
431 else \
432 SET_GPR (x, GPR (x) + (i)); \
433 } \
434while (0)
435
eae126cb
MF
436extern uint8_t *dmem_addr (SIM_DESC, SIM_CPU *, uint16_t offset);
437extern uint8_t *imem_addr (SIM_DESC, SIM_CPU *, uint32_t);
c906108c 438
67954606 439#define RB(x) (*(dmem_addr (sd, cpu, x)))
c906108c
SS
440#define SB(addr,data) ( RB(addr) = (data & 0xff))
441
442#if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)
443#define ENDIAN_INLINE static __inline__
444#include "endian.c"
445#undef ENDIAN_INLINE
446
447#else
eae126cb
MF
448extern uint32_t get_longword (uint8_t *);
449extern uint16_t get_word (uint8_t *);
450extern int64_t get_longlong (uint8_t *);
451extern void write_word (uint8_t *addr, uint16_t data);
452extern void write_longword (uint8_t *addr, uint32_t data);
453extern void write_longlong (uint8_t *addr, int64_t data);
c906108c
SS
454#endif
455
67954606
MF
456#define SW(addr,data) write_word (dmem_addr (sd, cpu, addr), data)
457#define RW(x) get_word (dmem_addr (sd, cpu, x))
458#define SLW(addr,data) write_longword (dmem_addr (sd, cpu, addr), data)
459#define RLW(x) get_longword (dmem_addr (sd, cpu, x))
c906108c
SS
460#define READ_16(x) get_word(x)
461#define WRITE_16(addr,data) write_word(addr,data)
462#define READ_64(x) get_longlong(x)
463#define WRITE_64(addr,data) write_longlong(addr,data)
464
c906108c
SS
465#define JMP(x) do { SET_PC (x); State.pc_changed = 1; } while (0)
466
467#define RIE_VECTOR_START 0xffc2
468#define AE_VECTOR_START 0xffc3
469#define TRAP_VECTOR_START 0xffc4 /* vector for trap 0 */
470#define DBT_VECTOR_START 0xffd4
471#define SDBT_VECTOR_START 0xffd5
472
4ce44c66
JM
473/* Scedule a store of VAL into cr[CR]. MASK indicates the bits in
474 cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |
475 (VAL & ~MASK)). In addition, unless PSW_HW_P, a VAL intended for
476 PSW is masked for zero bits. */
477
67954606 478extern reg_t move_to_cr (SIM_DESC, SIM_CPU *, int cr, reg_t mask, reg_t val, int psw_hw_p);