]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/frv/mloop.in
sim/frv/
[thirdparty/binutils-gdb.git] / sim / frv / mloop.in
CommitLineData
b34f6357 1# Simulator main loop for frv. -*- C -*-
e930b1f5 2# Copyright (C) 1998, 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
b34f6357
DB
3# Contributed by Red Hat.
4#
5# This file is part of the GNU Simulators.
6#
7# This program is free software; you can redistribute it and/or modify
8# it under the terms of the GNU General Public License as published by
9# the Free Software Foundation; either version 2, or (at your option)
10# any later version.
11#
12# This program is distributed in the hope that it will be useful,
13# but WITHOUT ANY WARRANTY; without even the implied warranty of
14# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15# GNU General Public License for more details.
16#
17# You should have received a copy of the GNU General Public License along
18# with this program; if not, write to the Free Software Foundation, Inc.,
19# 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20
21# Syntax:
22# /bin/sh mainloop.in command
23#
24# Command is one of:
25#
26# init
27# support
28# extract-{simple,scache,pbb}
29# {full,fast}-exec-{simple,scache,pbb}
30#
31# A target need only provide a "full" version of one of simple,scache,pbb.
32# If the target wants it can also provide a fast version of same.
33# It can't provide more than this.
34
35# ??? After a few more ports are done, revisit.
36# Will eventually need to machine generate a lot of this.
37
38case "x$1" in
39
40xsupport)
41
42cat <<EOF
43
44static INLINE const IDESC *
45extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
46 int fast_p)
47{
48 const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
49 @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
50 if (! fast_p)
51 {
52 int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
53 int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
54 @cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
55 }
56 return id;
57}
58
59static INLINE SEM_PC
60execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
61{
62 SEM_PC vpc;
63
64 /* Force gr0 to zero before every insn. */
65 @cpu@_h_gr_set (current_cpu, 0, 0);
66
67 if (fast_p)
68 {
69 vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
70 }
71 else
72 {
73 ARGBUF *abuf = &sc->argbuf;
74 const IDESC *idesc = abuf->idesc;
75#if WITH_SCACHE_PBB
76 int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
77#else
78 int virtual_p = 0;
79#endif
80
81 if (! virtual_p)
82 {
83 /* FIXME: call x-before */
84 if (ARGBUF_PROFILE_P (abuf))
85 PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
86 /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
87 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
88 {
89 @cpu@_model_insn_before (current_cpu, sc->first_insn_p);
90 model_insn = FRV_INSN_MODEL_PASS_1;
91 if (idesc->timing->model_fn != NULL)
92 (*idesc->timing->model_fn) (current_cpu, sc);
93 }
94 else
95 model_insn = FRV_INSN_NO_MODELING;
96 TRACE_INSN_INIT (current_cpu, abuf, 1);
97 TRACE_INSN (current_cpu, idesc->idata,
98 (const struct argbuf *) abuf, abuf->addr);
99 }
100#if WITH_SCACHE
101 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
102#else
103 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
104#endif
105 if (! virtual_p)
106 {
107 /* FIXME: call x-after */
108 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
109 {
110 int cycles;
111 if (idesc->timing->model_fn != NULL)
112 {
113 model_insn = FRV_INSN_MODEL_PASS_2;
114 cycles = (*idesc->timing->model_fn) (current_cpu, sc);
115 }
116 else
117 cycles = 1;
118 @cpu@_model_insn_after (current_cpu, sc->last_insn_p, cycles);
119 }
120 TRACE_INSN_FINI (current_cpu, abuf, 1);
121 }
122 }
123
124 return vpc;
125}
126
127static void
128@cpu@_parallel_write_init (SIM_CPU *current_cpu)
129{
130 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
131 CGEN_WRITE_QUEUE_CLEAR (q);
132 previous_vliw_pc = CPU_PC_GET(current_cpu);
133 frv_interrupt_state.f_ne_flags[0] = 0;
134 frv_interrupt_state.f_ne_flags[1] = 0;
135 frv_interrupt_state.imprecise_interrupt = NULL;
136}
137
138static void
139@cpu@_parallel_write_queued (SIM_CPU *current_cpu)
140{
141 int i;
142
143 FRV_VLIW *vliw = CPU_VLIW (current_cpu);
144 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
145
146 /* Loop over the queued writes, executing them. Set the pc to the address
147 of the insn which queued each write for the proper context in case an
148 interrupt is caused. Restore the proper pc after the writes are
149 completed. */
150 IADDR save_pc = CPU_PC_GET (current_cpu);
151 IADDR new_pc = save_pc;
152 int branch_taken = 0;
153 int limit = CGEN_WRITE_QUEUE_INDEX (q);
154 frv_interrupt_state.data_written.length = 0;
155
156 for (i = 0; i < limit; ++i)
157 {
158 CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, i);
159
160 /* If an imprecise interrupt was generated, then, check whether the
161 result should still be written. */
162 if (frv_interrupt_state.imprecise_interrupt != NULL)
163 {
164 /* Only check writes by the insn causing the exception. */
165 if (CGEN_WRITE_QUEUE_ELEMENT_IADDR (item)
166 == frv_interrupt_state.imprecise_interrupt->vpc)
167 {
168 /* Execute writes of floating point operations resulting in
169 overflow, underflow or inexact. */
170 if (frv_interrupt_state.imprecise_interrupt->kind
171 == FRV_FP_EXCEPTION)
172 {
173 if ((frv_interrupt_state.imprecise_interrupt
174 ->u.fp_info.fsr_mask
175 & ~(FSR_INEXACT | FSR_OVERFLOW | FSR_UNDERFLOW)))
176 continue; /* Don't execute */
177 }
178 /* Execute writes marked as 'forced'. */
179 else if (! (CGEN_WRITE_QUEUE_ELEMENT_FLAGS (item)
180 & FRV_WRITE_QUEUE_FORCE_WRITE))
181 continue; /* Don't execute */
182 }
183 }
184
185 /* Only execute the first branch on the queue. */
186 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE
187 || CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_FN_PC_WRITE)
188 {
189 if (branch_taken)
190 continue;
191 branch_taken = 1;
192 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE)
193 new_pc = item->kinds.pc_write.value;
194 else
195 new_pc = item->kinds.fn_pc_write.value;
196 }
197
198 CPU_PC_SET (current_cpu, CGEN_WRITE_QUEUE_ELEMENT_IADDR (item));
199 frv_save_data_written_for_interrupts (current_cpu, item);
200 cgen_write_queue_element_execute (current_cpu, item);
201 }
202
203 /* Update the LR with the address of the next insn if the flag is set.
204 This flag gets set in frvbf_set_write_next_vliw_to_LR by the JMPL,
205 JMPIL and CALL insns. */
206 if (frvbf_write_next_vliw_addr_to_LR)
207 {
208 frvbf_h_spr_set_handler (current_cpu, H_SPR_LR, save_pc);
209 frvbf_write_next_vliw_addr_to_LR = 0;
210 }
211
212 CPU_PC_SET (current_cpu, new_pc);
213 CGEN_WRITE_QUEUE_CLEAR (q);
214}
215
216void
217@cpu@_perform_writeback (SIM_CPU *current_cpu)
218{
219 @cpu@_parallel_write_queued (current_cpu);
220}
221
222static unsigned cache_reqno = 0x80000000; /* Start value is for debugging. */
223
224#if 0 /* experimental */
225/* FR400 has single prefetch. */
226static void
227fr400_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
228{
229 int cur_ix;
230 FRV_CACHE *cache;
231
232/* The cpu receives 8 bytes worth of insn data for each fetch aligned
233 on 8 byte boundary. */
234#define FR400_FETCH_SIZE 8
235
236 cur_ix = LS;
237 vpc &= ~(FR400_FETCH_SIZE - 1);
238 cache = CPU_INSN_CACHE (current_cpu);
239
240 /* Request a load of the current address buffer, if necessary. */
241 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
242 {
243 frv_insn_fetch_buffer[cur_ix].address = vpc;
244 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
245 if (FRV_COUNT_CYCLES (current_cpu, 1))
246 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
247 frv_insn_fetch_buffer[cur_ix].address,
248 UNIT_I0 + cur_ix);
249 }
250
251 /* Wait for the current address buffer to be loaded, if necessary. */
252 if (FRV_COUNT_CYCLES (current_cpu, 1))
253 {
254 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
255 int wait;
256
257 /* Account for any branch penalty. */
258 if (ps->branch_penalty > 0 && ! ps->past_first_p)
259 {
260 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
261 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
262 "Branch penalty:");
263 ps->branch_penalty = 0;
264 }
265
266 /* Account for insn fetch latency. */
267 wait = 0;
268 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
269 {
270 frv_model_advance_cycles (current_cpu, 1);
271 ++wait;
272 }
273 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
274 return;
275 }
276
277 /* Otherwise just load the insns directly from the cache.
278 */
279 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
280 {
281 frv_cache_read (cache, cur_ix, vpc);
282 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
283 }
284}
285#endif /* experimental */
286
287/* FR500 has dual prefetch. */
288static void
289simulate_dual_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc, int fetch_size)
290{
291 int i;
292 int cur_ix, pre_ix;
293 SI pre_address;
294 FRV_CACHE *cache;
295
296 /* See if the pc is within the addresses specified by either of the
297 fetch buffers. If so, that will be the current buffer. Otherwise,
298 arbitrarily select the LD buffer as the current one since it gets
299 priority in the case of interfering load requests. */
300 cur_ix = LD;
301 vpc &= ~(fetch_size - 1);
302 for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
303 {
304 if (frv_insn_fetch_buffer[i].address == vpc)
305 {
306 cur_ix = i;
307 break;
308 }
309 }
310 cache = CPU_INSN_CACHE (current_cpu);
311
312 /* Request a load of the current address buffer, if necessary. */
313 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
314 {
315 frv_insn_fetch_buffer[cur_ix].address = vpc;
316 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
317 if (FRV_COUNT_CYCLES (current_cpu, 1))
318 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
319 frv_insn_fetch_buffer[cur_ix].address,
320 UNIT_I0 + cur_ix);
321 }
322
323 /* If the prefetch buffer does not represent the next sequential address, then
324 request a load of the next sequential address. */
325 pre_ix = (cur_ix + 1) % FRV_CACHE_PIPELINES;
326 pre_address = vpc + fetch_size;
327 if (frv_insn_fetch_buffer[pre_ix].address != pre_address)
328 {
329 frv_insn_fetch_buffer[pre_ix].address = pre_address;
330 frv_insn_fetch_buffer[pre_ix].reqno = cache_reqno++;
331 if (FRV_COUNT_CYCLES (current_cpu, 1))
332 frv_cache_request_load (cache, frv_insn_fetch_buffer[pre_ix].reqno,
333 frv_insn_fetch_buffer[pre_ix].address,
334 UNIT_I0 + pre_ix);
335 }
336
337 /* If counting cycles, account for any branch penalty and/or insn fetch
338 latency here. */
339 if (FRV_COUNT_CYCLES (current_cpu, 1))
340 {
341 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
342 int wait;
343
344 /* Account for any branch penalty. */
345 if (ps->branch_penalty > 0 && ! ps->past_first_p)
346 {
347 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
348 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
349 "Branch penalty:");
350 ps->branch_penalty = 0;
351 }
352
353 /* Account for insn fetch latency. */
354 wait = 0;
355 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
356 {
357 frv_model_advance_cycles (current_cpu, 1);
358 ++wait;
359 }
360 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
361 return;
362 }
363
364 /* Otherwise just load the insns directly from the cache.
365 */
366 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
367 {
368 frv_cache_read (cache, cur_ix, vpc);
369 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
370 }
371 if (frv_insn_fetch_buffer[pre_ix].reqno != NO_REQNO)
372 {
373 frv_cache_read (cache, pre_ix, pre_address);
374 frv_insn_fetch_buffer[pre_ix].reqno = NO_REQNO;
375 }
376}
377
378static void
379@cpu@_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
380{
381 SI hsr0;
382 SIM_DESC sd;
383
384 /* Nothing to do if not counting cycles and the cache is not enabled. */
385 hsr0 = GET_HSR0 ();
386 if (! GET_HSR0_ICE (hsr0) && ! FRV_COUNT_CYCLES (current_cpu, 1))
387 return;
388
389 /* Different machines handle prefetch defferently. */
390 sd = CPU_STATE (current_cpu);
391 switch (STATE_ARCHITECTURE (sd)->mach)
392 {
393 case bfd_mach_fr400:
394 simulate_dual_insn_prefetch (current_cpu, vpc, 8);
395 break;
396 case bfd_mach_frvtomcat:
397 case bfd_mach_fr500:
e930b1f5 398 case bfd_mach_fr550:
b34f6357
DB
399 case bfd_mach_frv:
400 simulate_dual_insn_prefetch (current_cpu, vpc, 16);
401 break;
402 default:
403 break;
404 }
405}
406
407int frv_save_profile_model_p;
408EOF
409
410;;
411
412xinit)
413
414cat <<EOF
415/*xxxinit*/
416 /* If the timer is enabled, then we will enable model profiling during
417 execution. This is because the timer needs accurate cycles counts to
418 work properly. Save the original setting of model profiling. */
419 if (frv_interrupt_state.timer.enabled)
420 frv_save_profile_model_p = PROFILE_MODEL_P (current_cpu);
421EOF
422
423;;
424
425xextract-simple | xextract-scache)
426
427# Inputs: current_cpu, vpc, sc, FAST_P
428# Outputs: sc filled in
429# SET_LAST_INSN_P(last_p) called to indicate whether insn is last one
430
431cat <<EOF
432{
433 CGEN_INSN_INT insn = frvbf_read_imem_USI (current_cpu, vpc);
434 extract (current_cpu, vpc, insn, SEM_ARGBUF (sc), FAST_P);
435 SET_LAST_INSN_P ((insn & 0x80000000) != 0);
436}
437EOF
438
439;;
440
441xfull-exec-* | xfast-exec-*)
442
443# Inputs: current_cpu, vpc, FAST_P
444# Outputs:
445# vpc contains the address of the next insn to execute
446# pc of current_cpu must be up to date (=vpc) upon exit
447# CPU_INSN_COUNT (current_cpu) must be updated by number of insns executed
448#
449# Unlike the non-parallel case, this version is responsible for doing the
450# scache lookup.
451
452cat <<EOF
453{
454 FRV_VLIW *vliw;
455 int first_insn_p = 1;
456 int last_insn_p = 0;
457 int ninsns;
e930b1f5 458 CGEN_ATTR_VALUE_TYPE slot;
b34f6357
DB
459
460 /* If the timer is enabled, then enable model profiling. This is because
461 the timer needs accurate cycles counts to work properly. */
462 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
463 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "1");
464
465 /* Init parallel-write queue and vliw. */
466 @cpu@_parallel_write_init (current_cpu);
467 vliw = CPU_VLIW (current_cpu);
468 frv_vliw_reset (vliw, STATE_ARCHITECTURE (CPU_STATE (current_cpu))->mach,
469 CPU_ELF_FLAGS (current_cpu));
e930b1f5 470 frv_current_fm_slot = UNIT_NIL;
b34f6357
DB
471
472 for (ninsns = 0; ! last_insn_p && ninsns < FRV_VLIW_SIZE; ++ninsns)
473 {
474 SCACHE *sc;
475 const CGEN_INSN *insn;
476 int error;
477 /* Go through the motions of finding the insns in the cache. */
478 @cpu@_simulate_insn_prefetch (current_cpu, vpc);
479
480 sc = @cpu@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
481 sc->first_insn_p = first_insn_p;
482 last_insn_p = sc->last_insn_p;
483
484 /* Add the insn to the vliw and set up the interrupt state. */
485 insn = sc->argbuf.idesc->idata;
486 error = frv_vliw_add_insn (vliw, insn);
487 if (! error)
488 frv_vliw_setup_insn (current_cpu, insn);
489 frv_detect_insn_access_interrupts (current_cpu, sc);
e930b1f5
DB
490 slot = (*vliw->current_vliw)[vliw->next_slot - 1];
491 if (slot >= UNIT_FM0 && slot <= UNIT_FM3)
492 frv_current_fm_slot = slot;
b34f6357
DB
493
494 vpc = execute (current_cpu, sc, FAST_P);
495
496 SET_H_PC (vpc); /* needed for interrupt handling */
497 first_insn_p = 0;
498 }
499
500 /* If the timer is enabled, and model profiling was not originally enabled,
501 then turn it off again. This is the only place we can currently gain
502 control to do this. */
503 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
504 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "0");
505
506 /* Check for interrupts. Also handles writeback if necessary. */
507 frv_process_interrupts (current_cpu);
508
509 CPU_INSN_COUNT (current_cpu) += ninsns;
510}
511EOF
512
513;;
514
515*)
516 echo "Invalid argument to mainloop.in: $1" >&2
517 exit 1
518 ;;
519
520esac