]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/frv/traps.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / sim / frv / traps.c
CommitLineData
b34f6357 1/* frv trap support
c5a57081
JB
2 Copyright (C) 1999-2001, 2003, 2007-2012 Free Software Foundation,
3 Inc.
b34f6357
DB
4 Contributed by Red Hat.
5
6This file is part of the GNU simulators.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
4744ac1b
JB
10the Free Software Foundation; either version 3 of the License, or
11(at your option) any later version.
b34f6357
DB
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
4744ac1b
JB
18You should have received a copy of the GNU General Public License
19along with this program. If not, see <http://www.gnu.org/licenses/>. */
b34f6357
DB
20
21#define WANT_CPU frvbf
22#define WANT_CPU_FRVBF
23
24#include "sim-main.h"
25#include "targ-vals.h"
26#include "cgen-engine.h"
27#include "cgen-par.h"
28#include "sim-fpu.h"
29
30#include "bfd.h"
31#include "libiberty.h"
32
79e59fe6 33CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
e930b1f5 34
b34f6357
DB
35/* The semantic code invokes this for invalid (unrecognized) instructions. */
36
37SEM_PC
38sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
39{
40 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
41 return vpc;
42}
43
44/* Process an address exception. */
45
46void
47frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
48 unsigned int map, int nr_bytes, address_word addr,
49 transfer_type transfer, sim_core_signals sig)
50{
51 if (sig == sim_core_unaligned_signal)
52 {
676a64f4
RS
53 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
54 || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
b34f6357
DB
55 frv_queue_data_access_error_interrupt (current_cpu, addr);
56 else
57 frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
58 }
59
60 frv_term (sd);
61 sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
62}
63
64void
65frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
66{
67 int i;
68 if (current_cpu != NULL)
69 CIA_SET (current_cpu, cia);
70
71 /* Invalidate the insn and data caches of all cpus. */
72 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
73 {
74 current_cpu = STATE_CPU (sd, i);
75 frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
76 frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
77 }
78 frv_term (sd);
79}
80\f
81/* Read/write functions for system call interface. */
82
83static int
84syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
85 unsigned long taddr, char *buf, int bytes)
86{
87 SIM_DESC sd = (SIM_DESC) sc->p1;
88 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
89
90 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
91 return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
92}
93
94static int
95syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
96 unsigned long taddr, const char *buf, int bytes)
97{
98 SIM_DESC sd = (SIM_DESC) sc->p1;
99 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
100
101 frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
102 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
103 return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
104}
105
106/* Handle TRA and TIRA insns. */
107void
108frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
109{
110 SIM_DESC sd = CPU_STATE (current_cpu);
111 host_callback *cb = STATE_CALLBACK (sd);
112 USI num = ((base + offset) & 0x7f) + 0x80;
113
114#ifdef SIM_HAVE_BREAKPOINTS
115 /* Check for breakpoints "owned" by the simulator first, regardless
116 of --environment. */
117 if (num == TRAP_BREAKPOINT)
118 {
119 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
120 it doesn't return. Otherwise it returns and let's us try. */
121 sim_handle_breakpoint (sd, current_cpu, pc);
122 /* Fall through. */
123 }
124#endif
125
126 if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
127 {
128 frv_queue_software_interrupt (current_cpu, num);
129 return;
130 }
131
132 switch (num)
133 {
134 case TRAP_SYSCALL :
135 {
136 CB_SYSCALL s;
137 CB_SYSCALL_INIT (&s);
138 s.func = GET_H_GR (7);
139 s.arg1 = GET_H_GR (8);
140 s.arg2 = GET_H_GR (9);
141 s.arg3 = GET_H_GR (10);
142
143 if (s.func == TARGET_SYS_exit)
144 {
145 sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
146 }
147
148 s.p1 = (PTR) sd;
149 s.p2 = (PTR) current_cpu;
150 s.read_mem = syscall_read_mem;
151 s.write_mem = syscall_write_mem;
152 cb_syscall (cb, &s);
153 SET_H_GR (8, s.result);
154 SET_H_GR (9, s.result2);
155 SET_H_GR (10, s.errcode);
156 break;
157 }
158
159 case TRAP_BREAKPOINT:
160 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
161 break;
162
163 /* Add support for dumping registers, either at fixed traps, or all
164 unknown traps if configured with --enable-sim-trapdump. */
165 default:
166#if !TRAPDUMP
167 frv_queue_software_interrupt (current_cpu, num);
168 return;
169#endif
170
171#ifdef TRAP_REGDUMP1
172 case TRAP_REGDUMP1:
173#endif
174
175#ifdef TRAP_REGDUMP2
176 case TRAP_REGDUMP2:
177#endif
178
179#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
180 {
181 char buf[256];
182 int i, j;
183
184 buf[0] = 0;
185 if (STATE_TEXT_SECTION (sd)
186 && pc >= STATE_TEXT_START (sd)
187 && pc < STATE_TEXT_END (sd))
188 {
189 const char *pc_filename = (const char *)0;
190 const char *pc_function = (const char *)0;
191 unsigned int pc_linenum = 0;
192
193 if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
194 STATE_TEXT_SECTION (sd),
fc0a2244 195 (struct bfd_symbol **) 0,
b34f6357
DB
196 pc - STATE_TEXT_START (sd),
197 &pc_filename, &pc_function, &pc_linenum)
198 && (pc_function || pc_filename))
199 {
200 char *p = buf+2;
201 buf[0] = ' ';
202 buf[1] = '(';
203 if (pc_function)
204 {
205 strcpy (p, pc_function);
206 p += strlen (p);
207 }
208 else
209 {
210 char *q = (char *) strrchr (pc_filename, '/');
211 strcpy (p, (q) ? q+1 : pc_filename);
212 p += strlen (p);
213 }
214
215 if (pc_linenum)
216 {
217 sprintf (p, " line %d", pc_linenum);
218 p += strlen (p);
219 }
220
221 p[0] = ')';
222 p[1] = '\0';
223 if ((p+1) - buf > sizeof (buf))
224 abort ();
225 }
226 }
227
228 sim_io_printf (sd,
229 "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
230 (unsigned)pc, buf, (unsigned)base, (int)offset);
231
232 for (i = 0; i < 64; i += 8)
233 {
234 long g0 = (long)GET_H_GR (i);
235 long g1 = (long)GET_H_GR (i+1);
236 long g2 = (long)GET_H_GR (i+2);
237 long g3 = (long)GET_H_GR (i+3);
238 long g4 = (long)GET_H_GR (i+4);
239 long g5 = (long)GET_H_GR (i+5);
240 long g6 = (long)GET_H_GR (i+6);
241 long g7 = (long)GET_H_GR (i+7);
242
243 if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
244 sim_io_printf (sd,
245 "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
246 i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
247 }
248
249 for (i = 0; i < 64; i += 8)
250 {
251 long f0 = (long)GET_H_FR (i);
252 long f1 = (long)GET_H_FR (i+1);
253 long f2 = (long)GET_H_FR (i+2);
254 long f3 = (long)GET_H_FR (i+3);
255 long f4 = (long)GET_H_FR (i+4);
256 long f5 = (long)GET_H_FR (i+5);
257 long f6 = (long)GET_H_FR (i+6);
258 long f7 = (long)GET_H_FR (i+7);
259
260 if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
261 sim_io_printf (sd,
262 "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
263 i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
264 }
265
266 sim_io_printf (sd,
267 "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
268 (long)GET_H_SPR (272),
269 (long)GET_H_SPR (273),
270 (long)GET_H_SPR (256),
271 (long)GET_H_SPR (263));
272 }
273 break;
274#endif
275 }
276}
277
278/* Handle the MTRAP insn. */
279void
280frv_mtrap (SIM_CPU *current_cpu)
281{
e930b1f5
DB
282 SIM_DESC sd = CPU_STATE (current_cpu);
283
b34f6357
DB
284 /* Check the status of media exceptions in MSR0. */
285 SI msr = GET_MSR (0);
e930b1f5 286 if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
b34f6357
DB
287 frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
288}
289
290/* Handle the BREAK insn. */
291void
292frv_break (SIM_CPU *current_cpu)
293{
294 IADDR pc;
295 SIM_DESC sd = CPU_STATE (current_cpu);
296
297#ifdef SIM_HAVE_BREAKPOINTS
298 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
299 it doesn't return. Otherwise it returns and let's us try. */
300 pc = GET_H_PC ();
301 sim_handle_breakpoint (sd, current_cpu, pc);
302 /* Fall through. */
303#endif
304
305 if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
306 {
307 /* Invalidate the insn cache because the debugger will presumably
308 replace the breakpoint insn with the real one. */
309#ifndef SIM_HAVE_BREAKPOINTS
310 pc = GET_H_PC ();
311#endif
312 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
313 }
314
315 frv_queue_break_interrupt (current_cpu);
316}
317
318/* Return from trap. */
319USI
320frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
321{
322 USI new_pc;
323 /* if (normal running mode and debug_field==0
324 PC=PCSR
325 PSR.ET=1
326 PSR.S=PSR.PS
327 else if (debug running mode and debug_field==1)
328 PC=(BPCSR)
329 PSR.ET=BPSR.BET
330 PSR.S=BPSR.BS
331 change to normal running mode
332 */
333 int psr_s = GET_H_PSR_S ();
334 int psr_et = GET_H_PSR_ET ();
335
336 /* Check for exceptions in the priority order listed in the FRV Architecture
337 Volume 2. */
338 if (! psr_s)
339 {
340 /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
341 if (! psr_et)
342 {
343 SIM_DESC sd = CPU_STATE (current_cpu);
344 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
345 }
346
347 /* privileged_instruction interrupt will have already been queued by
348 frv_detect_insn_access_interrupts. */
349 new_pc = pc + 4;
350 }
351 else if (psr_et)
352 {
353 /* Halt if PSR.S is set. See chapter 6 of the LSI. */
354 if (psr_s)
355 {
356 SIM_DESC sd = CPU_STATE (current_cpu);
357 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
358 }
359
360 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
361 new_pc = pc + 4;
362 }
363 else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
364 {
365 USI psr = GET_PSR ();
366 /* Return from normal running state. */
367 new_pc = GET_H_SPR (H_SPR_PCSR);
368 SET_PSR_ET (psr, 1);
369 SET_PSR_S (psr, GET_PSR_PS (psr));
370 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
371 }
372 else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
373 {
374 USI psr = GET_PSR ();
375 /* Return from debug state. */
376 new_pc = GET_H_SPR (H_SPR_BPCSR);
377 SET_PSR_ET (psr, GET_H_BPSR_BET ());
378 SET_PSR_S (psr, GET_H_BPSR_BS ());
379 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
380 CPU_DEBUG_STATE (current_cpu) = 0;
381 }
382 else
383 new_pc = pc + 4;
384
385 return new_pc;
386}
387\f
388/* Functions for handling non-excepting instruction side effects. */
389static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
390{
391 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
392 if (control->spr[H_SPR_NECR].implemented)
393 {
394 int limit;
395 USI necr = GET_NECR ();
396
397 /* See if any NESRs are implemented. First need to check the validity of
398 the NECR. */
399 if (! GET_NECR_VALID (necr))
400 return NO_NESR;
401
402 limit = GET_NECR_NEN (necr);
403 for (++current_index; current_index < limit; ++current_index)
404 {
405 SI nesr = GET_NESR (current_index);
406 if (! GET_NESR_VALID (nesr))
407 return current_index;
408 }
409 }
410 return NO_NESR;
411}
412
413static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
414{
415 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
416 if (control->spr[H_SPR_NECR].implemented)
417 {
418 int limit;
419 USI necr = GET_NECR ();
420
421 /* See if any NESRs are implemented. First need to check the validity of
422 the NECR. */
423 if (! GET_NECR_VALID (necr))
424 return NO_NESR;
425
426 limit = GET_NECR_NEN (necr);
427 for (++current_index; current_index < limit; ++current_index)
428 {
429 SI nesr = GET_NESR (current_index);
430 if (GET_NESR_VALID (nesr))
431 return current_index;
432 }
433 }
434 return NO_NESR;
435}
436
437BI
438frvbf_check_non_excepting_load (
439 SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
440 SI immediate_disp, QI data_size, BI is_float
441)
442{
443 BI rc = 1; /* perform the load. */
444 SIM_DESC sd = CPU_STATE (current_cpu);
445 int daec = 0;
446 int rec = 0;
447 int ec = 0;
448 USI necr;
449 int do_elos;
450 SI NE_flags[2];
451 SI NE_base;
452 SI nesr;
453 SI ne_index;
454 FRV_REGISTER_CONTROL *control;
455
456 SI address = GET_H_GR (base_index);
457 if (disp_index >= 0)
458 address += GET_H_GR (disp_index);
459 else
460 address += immediate_disp;
461
462 /* Check for interrupt factors. */
463 switch (data_size)
464 {
465 case NESR_UQI_SIZE:
466 case NESR_QI_SIZE:
467 break;
468 case NESR_UHI_SIZE:
469 case NESR_HI_SIZE:
470 if (address & 1)
471 ec = 1;
472 break;
473 case NESR_SI_SIZE:
474 if (address & 3)
475 ec = 1;
476 break;
477 case NESR_DI_SIZE:
478 if (address & 7)
479 ec = 1;
480 if (target_index & 1)
481 rec = 1;
482 break;
483 case NESR_XI_SIZE:
484 if (address & 0xf)
485 ec = 1;
486 if (target_index & 3)
487 rec = 1;
488 break;
489 default:
490 {
491 IADDR pc = GET_H_PC ();
492 sim_engine_abort (sd, current_cpu, pc,
493 "check_non_excepting_load: Incorrect data_size\n");
494 break;
495 }
496 }
497
498 control = CPU_REGISTER_CONTROL (current_cpu);
499 if (control->spr[H_SPR_NECR].implemented)
500 {
501 necr = GET_NECR ();
502 do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
503 }
504 else
505 do_elos = 0;
506
507 /* NECR, NESR, NEEAR are only implemented for the full frv machine. */
508 if (do_elos)
509 {
510 ne_index = next_available_nesr (current_cpu, NO_NESR);
511 if (ne_index == NO_NESR)
512 {
513 IADDR pc = GET_H_PC ();
514 sim_engine_abort (sd, current_cpu, pc,
515 "No available NESR register\n");
516 }
517
518 /* Fill in the basic fields of the NESR. */
519 nesr = GET_NESR (ne_index);
520 SET_NESR_VALID (nesr);
521 SET_NESR_EAV (nesr);
522 SET_NESR_DRN (nesr, target_index);
523 SET_NESR_SIZE (nesr, data_size);
524 SET_NESR_NEAN (nesr, ne_index);
525 if (is_float)
526 SET_NESR_FR (nesr);
527 else
528 CLEAR_NESR_FR (nesr);
529
530 /* Set the corresponding NEEAR. */
531 SET_NEEAR (ne_index, address);
532
533 SET_NESR_DAEC (nesr, 0);
534 SET_NESR_REC (nesr, 0);
535 SET_NESR_EC (nesr, 0);
536 }
537
538 /* Set the NE flag corresponding to the target register if an interrupt
539 factor was detected.
540 daec is not checked here yet, but is declared for future reference. */
541 if (is_float)
542 NE_base = H_SPR_FNER0;
543 else
544 NE_base = H_SPR_GNER0;
545
546 GET_NE_FLAGS (NE_flags, NE_base);
547 if (rec)
548 {
549 SET_NE_FLAG (NE_flags, target_index);
550 if (do_elos)
551 SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
552 }
553
554 if (ec)
555 {
556 SET_NE_FLAG (NE_flags, target_index);
557 if (do_elos)
558 SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
559 }
560
561 if (do_elos)
562 SET_NESR (ne_index, nesr);
563
564 /* If no interrupt factor was detected then set the NE flag on the
565 target register if the NE flag on one of the input registers
566 is already set. */
567 if (! rec && ! ec && ! daec)
568 {
569 BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
570 if (disp_index >= 0)
571 ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
572 if (ne_flag)
573 {
574 SET_NE_FLAG (NE_flags, target_index);
575 rc = 0; /* Do not perform the load. */
576 }
577 else
578 CLEAR_NE_FLAG (NE_flags, target_index);
579 }
580
581 SET_NE_FLAGS (NE_base, NE_flags);
582
583 return rc; /* perform the load? */
584}
585
586/* Record state for media exception: media_cr_not_aligned. */
587void
588frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
589{
590 SIM_DESC sd = CPU_STATE (current_cpu);
591
e930b1f5
DB
592 /* On some machines this generates an illegal_instruction interrupt. */
593 switch (STATE_ARCHITECTURE (sd)->mach)
594 {
676a64f4
RS
595 /* Note: there is a discrepancy between V2.2 of the FR400
596 instruction manual and the various FR4xx LSI specs. The former
597 claims that unaligned registers cause an mp_exception while the
598 latter say it's an illegal_instruction. The LSI specs appear
599 to be correct since MTT is fixed at 1. */
e930b1f5 600 case bfd_mach_fr400:
676a64f4 601 case bfd_mach_fr450:
e930b1f5
DB
602 case bfd_mach_fr550:
603 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
604 break;
605 default:
606 frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
607 break;
608 }
b34f6357
DB
609}
610
611/* Record state for media exception: media_acc_not_aligned. */
612void
613frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
614{
615 SIM_DESC sd = CPU_STATE (current_cpu);
616
e930b1f5
DB
617 /* On some machines this generates an illegal_instruction interrupt. */
618 switch (STATE_ARCHITECTURE (sd)->mach)
619 {
676a64f4 620 /* See comment in frvbf_cr_not_aligned(). */
e930b1f5 621 case bfd_mach_fr400:
676a64f4 622 case bfd_mach_fr450:
e930b1f5
DB
623 case bfd_mach_fr550:
624 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
625 break;
626 default:
627 frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
628 break;
629 }
b34f6357
DB
630}
631
632/* Record state for media exception: media_register_not_aligned. */
633void
634frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
635{
636 SIM_DESC sd = CPU_STATE (current_cpu);
637
e930b1f5
DB
638 /* On some machines this generates an illegal_instruction interrupt. */
639 switch (STATE_ARCHITECTURE (sd)->mach)
640 {
676a64f4 641 /* See comment in frvbf_cr_not_aligned(). */
e930b1f5 642 case bfd_mach_fr400:
676a64f4 643 case bfd_mach_fr450:
e930b1f5
DB
644 case bfd_mach_fr550:
645 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
646 break;
647 default:
648 frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
649 break;
650 }
b34f6357
DB
651}
652
653/* Record state for media exception: media_overflow. */
654void
655frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
656{
657 frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
658}
659
660/* Queue a division exception. */
661enum frv_dtt
662frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
663 int target_index, int non_excepting)
664{
665 /* If there was an overflow and it is masked, then record it in
666 ISR.AEXC. */
667 USI isr = GET_ISR ();
668 if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
669 {
670 dtt &= ~FRV_DTT_OVERFLOW;
671 SET_ISR_AEXC (isr);
672 SET_ISR (isr);
673 }
674 if (dtt != FRV_DTT_NO_EXCEPTION)
675 {
676 if (non_excepting)
677 {
678 /* Non excepting instruction, simply set the NE flag for the target
679 register. */
680 SI NE_flags[2];
681 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
682 SET_NE_FLAG (NE_flags, target_index);
683 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
684 }
685 else
686 frv_queue_division_exception_interrupt (current_cpu, dtt);
687 }
688 return dtt;
689}
690
691void
692frvbf_check_recovering_store (
693 SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
694)
695{
696 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
697 int reg_ix;
698
699 CPU_RSTR_INVALIDATE(current_cpu) = 0;
700
701 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
702 reg_ix != NO_NESR;
703 reg_ix = next_valid_nesr (current_cpu, reg_ix))
704 {
705 if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
706 {
707 SI nesr = GET_NESR (reg_ix);
708 int nesr_drn = GET_NESR_DRN (nesr);
709 BI nesr_fr = GET_NESR_FR (nesr);
710 SI remain;
711
712 /* Invalidate cache block containing this address.
713 If we need to count cycles, then the cache operation will be
714 initiated from the model profiling functions.
715 See frvbf_model_.... */
716 if (model_insn)
717 {
718 CPU_RSTR_INVALIDATE(current_cpu) = 1;
719 CPU_LOAD_ADDRESS (current_cpu) = address;
720 }
721 else
722 frv_cache_invalidate (cache, address, 1/* flush */);
723
724 /* Copy the stored value to the register indicated by NESR.DRN. */
725 for (remain = size; remain > 0; remain -= 4)
726 {
727 SI value;
728
729 if (is_float)
730 value = GET_H_FR (regno);
731 else
732 value = GET_H_GR (regno);
733
734 switch (size)
735 {
736 case 1:
737 value &= 0xff;
738 break;
739 case 2:
740 value &= 0xffff;
741 break;
742 default:
743 break;
744 }
745
746 if (nesr_fr)
747 sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
748 value);
749 else
750 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
751 value);
752
753 nesr_drn++;
754 regno++;
755 }
756 break; /* Only consider the first matching register. */
757 }
758 } /* loop over active neear registers. */
759}
760
e930b1f5
DB
761SI
762frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
763{
764 /* Only applicable to fr550 */
765 SIM_DESC sd = CPU_STATE (current_cpu);
766 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
767 return;
768
769 /* On the fr550, media insns in slots 0 and 2 can only access
770 accumulators acc0-acc3. Insns in slots 1 and 3 can only access
771 accumulators acc4-acc7 */
772 switch (frv_current_fm_slot)
773 {
774 case UNIT_FM0:
775 case UNIT_FM2:
776 if (regno <= 3)
777 return 1; /* all is ok */
778 break;
779 case UNIT_FM1:
780 case UNIT_FM3:
781 if (regno >= 4)
782 return 1; /* all is ok */
783 break;
784 }
785
786 /* The specified accumulator is out of range. Queue an illegal_instruction
787 interrupt. */
788 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
789 return 0;
790}
791
792void
793frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
794{
795 /* Only applicable to fr550 */
796 SIM_DESC sd = CPU_STATE (current_cpu);
797 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
798 return;
799
800 /* Adress must be aligned on a word boundary. */
801 if (address & 0x3)
802 frv_queue_data_access_exception_interrupt (current_cpu);
803}
804
b34f6357
DB
805static void
806clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
807{
808 int reg_ix;
809
810 /* Only implemented for full frv. */
811 SIM_DESC sd = CPU_STATE (current_cpu);
812 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
813 return;
814
815 /* Clear the appropriate NESR and NEEAR registers. */
816 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
817 reg_ix != NO_NESR;
818 reg_ix = next_valid_nesr (current_cpu, reg_ix))
819 {
820 SI nesr;
821 /* The register is available, now check if it is active. */
822 nesr = GET_NESR (reg_ix);
823 if (GET_NESR_FR (nesr) == is_float)
824 {
825 if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
826 {
827 SET_NESR (reg_ix, 0);
828 SET_NEEAR (reg_ix, 0);
829 }
830 }
831 }
832}
833
834static void
835clear_ne_flags (
836 SIM_CPU *current_cpu,
837 SI target_index,
838 int hi_available,
839 int lo_available,
840 SI NE_base
841)
842{
843 SI NE_flags[2];
844 int exception;
845
846 GET_NE_FLAGS (NE_flags, NE_base);
847 if (target_index >= 0)
848 CLEAR_NE_FLAG (NE_flags, target_index);
849 else
850 {
851 if (lo_available)
852 NE_flags[1] = 0;
853 if (hi_available)
854 NE_flags[0] = 0;
855 }
856 SET_NE_FLAGS (NE_base, NE_flags);
857}
858
859/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
860 means to check for any register available. */
861static void
862which_registers_available (
863 SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
864)
865{
866 if (is_float)
867 frv_fr_registers_available (current_cpu, hi_available, lo_available);
868 else
869 frv_gr_registers_available (current_cpu, hi_available, lo_available);
870}
871
872void
873frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
874{
875 int hi_available;
876 int lo_available;
877 int exception;
878 SI NE_base;
879 USI necr;
880 FRV_REGISTER_CONTROL *control;
881
882 /* Check for availability of the target register(s). */
883 which_registers_available (current_cpu, & hi_available, & lo_available,
884 is_float);
885
886 /* Check to make sure that the target register is available. */
887 if (! frv_check_register_access (current_cpu, target_index,
888 hi_available, lo_available))
889 return;
890
891 /* Determine whether we're working with GR or FR registers. */
892 if (is_float)
893 NE_base = H_SPR_FNER0;
894 else
895 NE_base = H_SPR_GNER0;
896
897 /* Always clear the appropriate NE flags. */
898 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
899 NE_base);
900
901 /* Clear the appropriate NESR and NEEAR registers. */
902 control = CPU_REGISTER_CONTROL (current_cpu);
903 if (control->spr[H_SPR_NECR].implemented)
904 {
905 necr = GET_NECR ();
906 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
907 clear_nesr_neear (current_cpu, target_index, is_float);
908 }
909}
910
911void
912frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
913{
914 SI NE_base;
915 SI NE_flags[2];
916 BI NE_flag;
917 int exception;
918 int hi_available;
919 int lo_available;
920 USI necr;
921 FRV_REGISTER_CONTROL *control;
922
923 /* Check for availability of the target register(s). */
924 which_registers_available (current_cpu, & hi_available, & lo_available,
925 is_float);
926
927 /* Check to make sure that the target register is available. */
928 if (! frv_check_register_access (current_cpu, target_index,
929 hi_available, lo_available))
930 return;
931
932 /* Determine whether we're working with GR or FR registers. */
933 if (is_float)
934 NE_base = H_SPR_FNER0;
935 else
936 NE_base = H_SPR_GNER0;
937
938 /* Determine whether a ne exception is pending. */
939 GET_NE_FLAGS (NE_flags, NE_base);
940 if (target_index >= 0)
941 NE_flag = GET_NE_FLAG (NE_flags, target_index);
942 else
943 {
944 NE_flag =
945 hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
946 }
947
948 /* Always clear the appropriate NE flags. */
949 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
950 NE_base);
951
952 control = CPU_REGISTER_CONTROL (current_cpu);
953 if (control->spr[H_SPR_NECR].implemented)
954 {
955 necr = GET_NECR ();
956 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
957 {
958 /* Clear the appropriate NESR and NEEAR registers. */
959 clear_nesr_neear (current_cpu, target_index, is_float);
960 frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
961 }
962 }
963}
964
965/* Generate the appropriate fp_exception(s) based on the given status code. */
966void
967frvbf_fpu_error (CGEN_FPU* fpu, int status)
968{
969 struct frv_fp_exception_info fp_info = {
970 FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
971 };
972
973 if (status &
974 (sim_fpu_status_invalid_snan |
975 sim_fpu_status_invalid_qnan |
976 sim_fpu_status_invalid_isi |
977 sim_fpu_status_invalid_idi |
978 sim_fpu_status_invalid_zdz |
979 sim_fpu_status_invalid_imz |
980 sim_fpu_status_invalid_cvi |
981 sim_fpu_status_invalid_cmp |
982 sim_fpu_status_invalid_sqrt))
983 fp_info.fsr_mask |= FSR_INVALID_OPERATION;
984
985 if (status & sim_fpu_status_invalid_div0)
986 fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
987
988 if (status & sim_fpu_status_inexact)
989 fp_info.fsr_mask |= FSR_INEXACT;
990
991 if (status & sim_fpu_status_overflow)
992 fp_info.fsr_mask |= FSR_OVERFLOW;
993
994 if (status & sim_fpu_status_underflow)
995 fp_info.fsr_mask |= FSR_UNDERFLOW;
996
997 if (status & sim_fpu_status_denorm)
998 {
999 fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
1000 fp_info.ftt = FTT_DENORMAL_INPUT;
1001 }
1002
1003 if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
1004 {
1005 SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
1006 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
1007 }
1008}