]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/frv/traps.c
Index: sim/frv/ChangeLog
[thirdparty/binutils-gdb.git] / sim / frv / traps.c
CommitLineData
b34f6357 1/* frv trap support
e930b1f5 2 Copyright (C) 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
b34f6357
DB
3 Contributed by Red Hat.
4
5This file is part of the GNU simulators.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License along
18with this program; if not, write to the Free Software Foundation, Inc.,
1959 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#define WANT_CPU frvbf
22#define WANT_CPU_FRVBF
23
24#include "sim-main.h"
25#include "targ-vals.h"
26#include "cgen-engine.h"
27#include "cgen-par.h"
28#include "sim-fpu.h"
29
30#include "bfd.h"
31#include "libiberty.h"
32
e930b1f5
DB
33CGEN_ATTR_VALUE_TYPE frv_current_fm_slot;
34
b34f6357
DB
35/* The semantic code invokes this for invalid (unrecognized) instructions. */
36
37SEM_PC
38sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
39{
40 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
41 return vpc;
42}
43
44/* Process an address exception. */
45
46void
47frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
48 unsigned int map, int nr_bytes, address_word addr,
49 transfer_type transfer, sim_core_signals sig)
50{
51 if (sig == sim_core_unaligned_signal)
52 {
53 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
54 frv_queue_data_access_error_interrupt (current_cpu, addr);
55 else
56 frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
57 }
58
59 frv_term (sd);
60 sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
61}
62
63void
64frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
65{
66 int i;
67 if (current_cpu != NULL)
68 CIA_SET (current_cpu, cia);
69
70 /* Invalidate the insn and data caches of all cpus. */
71 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
72 {
73 current_cpu = STATE_CPU (sd, i);
74 frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
75 frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
76 }
77 frv_term (sd);
78}
79\f
80/* Read/write functions for system call interface. */
81
82static int
83syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
84 unsigned long taddr, char *buf, int bytes)
85{
86 SIM_DESC sd = (SIM_DESC) sc->p1;
87 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
88
89 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
90 return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
91}
92
93static int
94syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
95 unsigned long taddr, const char *buf, int bytes)
96{
97 SIM_DESC sd = (SIM_DESC) sc->p1;
98 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
99
100 frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
101 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
102 return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
103}
104
105/* Handle TRA and TIRA insns. */
106void
107frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
108{
109 SIM_DESC sd = CPU_STATE (current_cpu);
110 host_callback *cb = STATE_CALLBACK (sd);
111 USI num = ((base + offset) & 0x7f) + 0x80;
112
113#ifdef SIM_HAVE_BREAKPOINTS
114 /* Check for breakpoints "owned" by the simulator first, regardless
115 of --environment. */
116 if (num == TRAP_BREAKPOINT)
117 {
118 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
119 it doesn't return. Otherwise it returns and let's us try. */
120 sim_handle_breakpoint (sd, current_cpu, pc);
121 /* Fall through. */
122 }
123#endif
124
125 if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
126 {
127 frv_queue_software_interrupt (current_cpu, num);
128 return;
129 }
130
131 switch (num)
132 {
133 case TRAP_SYSCALL :
134 {
135 CB_SYSCALL s;
136 CB_SYSCALL_INIT (&s);
137 s.func = GET_H_GR (7);
138 s.arg1 = GET_H_GR (8);
139 s.arg2 = GET_H_GR (9);
140 s.arg3 = GET_H_GR (10);
141
142 if (s.func == TARGET_SYS_exit)
143 {
144 sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
145 }
146
147 s.p1 = (PTR) sd;
148 s.p2 = (PTR) current_cpu;
149 s.read_mem = syscall_read_mem;
150 s.write_mem = syscall_write_mem;
151 cb_syscall (cb, &s);
152 SET_H_GR (8, s.result);
153 SET_H_GR (9, s.result2);
154 SET_H_GR (10, s.errcode);
155 break;
156 }
157
158 case TRAP_BREAKPOINT:
159 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
160 break;
161
162 /* Add support for dumping registers, either at fixed traps, or all
163 unknown traps if configured with --enable-sim-trapdump. */
164 default:
165#if !TRAPDUMP
166 frv_queue_software_interrupt (current_cpu, num);
167 return;
168#endif
169
170#ifdef TRAP_REGDUMP1
171 case TRAP_REGDUMP1:
172#endif
173
174#ifdef TRAP_REGDUMP2
175 case TRAP_REGDUMP2:
176#endif
177
178#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
179 {
180 char buf[256];
181 int i, j;
182
183 buf[0] = 0;
184 if (STATE_TEXT_SECTION (sd)
185 && pc >= STATE_TEXT_START (sd)
186 && pc < STATE_TEXT_END (sd))
187 {
188 const char *pc_filename = (const char *)0;
189 const char *pc_function = (const char *)0;
190 unsigned int pc_linenum = 0;
191
192 if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
193 STATE_TEXT_SECTION (sd),
fc0a2244 194 (struct bfd_symbol **) 0,
b34f6357
DB
195 pc - STATE_TEXT_START (sd),
196 &pc_filename, &pc_function, &pc_linenum)
197 && (pc_function || pc_filename))
198 {
199 char *p = buf+2;
200 buf[0] = ' ';
201 buf[1] = '(';
202 if (pc_function)
203 {
204 strcpy (p, pc_function);
205 p += strlen (p);
206 }
207 else
208 {
209 char *q = (char *) strrchr (pc_filename, '/');
210 strcpy (p, (q) ? q+1 : pc_filename);
211 p += strlen (p);
212 }
213
214 if (pc_linenum)
215 {
216 sprintf (p, " line %d", pc_linenum);
217 p += strlen (p);
218 }
219
220 p[0] = ')';
221 p[1] = '\0';
222 if ((p+1) - buf > sizeof (buf))
223 abort ();
224 }
225 }
226
227 sim_io_printf (sd,
228 "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
229 (unsigned)pc, buf, (unsigned)base, (int)offset);
230
231 for (i = 0; i < 64; i += 8)
232 {
233 long g0 = (long)GET_H_GR (i);
234 long g1 = (long)GET_H_GR (i+1);
235 long g2 = (long)GET_H_GR (i+2);
236 long g3 = (long)GET_H_GR (i+3);
237 long g4 = (long)GET_H_GR (i+4);
238 long g5 = (long)GET_H_GR (i+5);
239 long g6 = (long)GET_H_GR (i+6);
240 long g7 = (long)GET_H_GR (i+7);
241
242 if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
243 sim_io_printf (sd,
244 "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
245 i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
246 }
247
248 for (i = 0; i < 64; i += 8)
249 {
250 long f0 = (long)GET_H_FR (i);
251 long f1 = (long)GET_H_FR (i+1);
252 long f2 = (long)GET_H_FR (i+2);
253 long f3 = (long)GET_H_FR (i+3);
254 long f4 = (long)GET_H_FR (i+4);
255 long f5 = (long)GET_H_FR (i+5);
256 long f6 = (long)GET_H_FR (i+6);
257 long f7 = (long)GET_H_FR (i+7);
258
259 if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
260 sim_io_printf (sd,
261 "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
262 i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
263 }
264
265 sim_io_printf (sd,
266 "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
267 (long)GET_H_SPR (272),
268 (long)GET_H_SPR (273),
269 (long)GET_H_SPR (256),
270 (long)GET_H_SPR (263));
271 }
272 break;
273#endif
274 }
275}
276
277/* Handle the MTRAP insn. */
278void
279frv_mtrap (SIM_CPU *current_cpu)
280{
e930b1f5
DB
281 SIM_DESC sd = CPU_STATE (current_cpu);
282
b34f6357
DB
283 /* Check the status of media exceptions in MSR0. */
284 SI msr = GET_MSR (0);
e930b1f5 285 if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
b34f6357
DB
286 frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
287}
288
289/* Handle the BREAK insn. */
290void
291frv_break (SIM_CPU *current_cpu)
292{
293 IADDR pc;
294 SIM_DESC sd = CPU_STATE (current_cpu);
295
296#ifdef SIM_HAVE_BREAKPOINTS
297 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
298 it doesn't return. Otherwise it returns and let's us try. */
299 pc = GET_H_PC ();
300 sim_handle_breakpoint (sd, current_cpu, pc);
301 /* Fall through. */
302#endif
303
304 if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
305 {
306 /* Invalidate the insn cache because the debugger will presumably
307 replace the breakpoint insn with the real one. */
308#ifndef SIM_HAVE_BREAKPOINTS
309 pc = GET_H_PC ();
310#endif
311 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
312 }
313
314 frv_queue_break_interrupt (current_cpu);
315}
316
317/* Return from trap. */
318USI
319frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
320{
321 USI new_pc;
322 /* if (normal running mode and debug_field==0
323 PC=PCSR
324 PSR.ET=1
325 PSR.S=PSR.PS
326 else if (debug running mode and debug_field==1)
327 PC=(BPCSR)
328 PSR.ET=BPSR.BET
329 PSR.S=BPSR.BS
330 change to normal running mode
331 */
332 int psr_s = GET_H_PSR_S ();
333 int psr_et = GET_H_PSR_ET ();
334
335 /* Check for exceptions in the priority order listed in the FRV Architecture
336 Volume 2. */
337 if (! psr_s)
338 {
339 /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
340 if (! psr_et)
341 {
342 SIM_DESC sd = CPU_STATE (current_cpu);
343 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
344 }
345
346 /* privileged_instruction interrupt will have already been queued by
347 frv_detect_insn_access_interrupts. */
348 new_pc = pc + 4;
349 }
350 else if (psr_et)
351 {
352 /* Halt if PSR.S is set. See chapter 6 of the LSI. */
353 if (psr_s)
354 {
355 SIM_DESC sd = CPU_STATE (current_cpu);
356 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
357 }
358
359 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
360 new_pc = pc + 4;
361 }
362 else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
363 {
364 USI psr = GET_PSR ();
365 /* Return from normal running state. */
366 new_pc = GET_H_SPR (H_SPR_PCSR);
367 SET_PSR_ET (psr, 1);
368 SET_PSR_S (psr, GET_PSR_PS (psr));
369 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
370 }
371 else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
372 {
373 USI psr = GET_PSR ();
374 /* Return from debug state. */
375 new_pc = GET_H_SPR (H_SPR_BPCSR);
376 SET_PSR_ET (psr, GET_H_BPSR_BET ());
377 SET_PSR_S (psr, GET_H_BPSR_BS ());
378 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
379 CPU_DEBUG_STATE (current_cpu) = 0;
380 }
381 else
382 new_pc = pc + 4;
383
384 return new_pc;
385}
386\f
387/* Functions for handling non-excepting instruction side effects. */
388static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
389{
390 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
391 if (control->spr[H_SPR_NECR].implemented)
392 {
393 int limit;
394 USI necr = GET_NECR ();
395
396 /* See if any NESRs are implemented. First need to check the validity of
397 the NECR. */
398 if (! GET_NECR_VALID (necr))
399 return NO_NESR;
400
401 limit = GET_NECR_NEN (necr);
402 for (++current_index; current_index < limit; ++current_index)
403 {
404 SI nesr = GET_NESR (current_index);
405 if (! GET_NESR_VALID (nesr))
406 return current_index;
407 }
408 }
409 return NO_NESR;
410}
411
412static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
413{
414 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
415 if (control->spr[H_SPR_NECR].implemented)
416 {
417 int limit;
418 USI necr = GET_NECR ();
419
420 /* See if any NESRs are implemented. First need to check the validity of
421 the NECR. */
422 if (! GET_NECR_VALID (necr))
423 return NO_NESR;
424
425 limit = GET_NECR_NEN (necr);
426 for (++current_index; current_index < limit; ++current_index)
427 {
428 SI nesr = GET_NESR (current_index);
429 if (GET_NESR_VALID (nesr))
430 return current_index;
431 }
432 }
433 return NO_NESR;
434}
435
436BI
437frvbf_check_non_excepting_load (
438 SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
439 SI immediate_disp, QI data_size, BI is_float
440)
441{
442 BI rc = 1; /* perform the load. */
443 SIM_DESC sd = CPU_STATE (current_cpu);
444 int daec = 0;
445 int rec = 0;
446 int ec = 0;
447 USI necr;
448 int do_elos;
449 SI NE_flags[2];
450 SI NE_base;
451 SI nesr;
452 SI ne_index;
453 FRV_REGISTER_CONTROL *control;
454
455 SI address = GET_H_GR (base_index);
456 if (disp_index >= 0)
457 address += GET_H_GR (disp_index);
458 else
459 address += immediate_disp;
460
461 /* Check for interrupt factors. */
462 switch (data_size)
463 {
464 case NESR_UQI_SIZE:
465 case NESR_QI_SIZE:
466 break;
467 case NESR_UHI_SIZE:
468 case NESR_HI_SIZE:
469 if (address & 1)
470 ec = 1;
471 break;
472 case NESR_SI_SIZE:
473 if (address & 3)
474 ec = 1;
475 break;
476 case NESR_DI_SIZE:
477 if (address & 7)
478 ec = 1;
479 if (target_index & 1)
480 rec = 1;
481 break;
482 case NESR_XI_SIZE:
483 if (address & 0xf)
484 ec = 1;
485 if (target_index & 3)
486 rec = 1;
487 break;
488 default:
489 {
490 IADDR pc = GET_H_PC ();
491 sim_engine_abort (sd, current_cpu, pc,
492 "check_non_excepting_load: Incorrect data_size\n");
493 break;
494 }
495 }
496
497 control = CPU_REGISTER_CONTROL (current_cpu);
498 if (control->spr[H_SPR_NECR].implemented)
499 {
500 necr = GET_NECR ();
501 do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
502 }
503 else
504 do_elos = 0;
505
506 /* NECR, NESR, NEEAR are only implemented for the full frv machine. */
507 if (do_elos)
508 {
509 ne_index = next_available_nesr (current_cpu, NO_NESR);
510 if (ne_index == NO_NESR)
511 {
512 IADDR pc = GET_H_PC ();
513 sim_engine_abort (sd, current_cpu, pc,
514 "No available NESR register\n");
515 }
516
517 /* Fill in the basic fields of the NESR. */
518 nesr = GET_NESR (ne_index);
519 SET_NESR_VALID (nesr);
520 SET_NESR_EAV (nesr);
521 SET_NESR_DRN (nesr, target_index);
522 SET_NESR_SIZE (nesr, data_size);
523 SET_NESR_NEAN (nesr, ne_index);
524 if (is_float)
525 SET_NESR_FR (nesr);
526 else
527 CLEAR_NESR_FR (nesr);
528
529 /* Set the corresponding NEEAR. */
530 SET_NEEAR (ne_index, address);
531
532 SET_NESR_DAEC (nesr, 0);
533 SET_NESR_REC (nesr, 0);
534 SET_NESR_EC (nesr, 0);
535 }
536
537 /* Set the NE flag corresponding to the target register if an interrupt
538 factor was detected.
539 daec is not checked here yet, but is declared for future reference. */
540 if (is_float)
541 NE_base = H_SPR_FNER0;
542 else
543 NE_base = H_SPR_GNER0;
544
545 GET_NE_FLAGS (NE_flags, NE_base);
546 if (rec)
547 {
548 SET_NE_FLAG (NE_flags, target_index);
549 if (do_elos)
550 SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
551 }
552
553 if (ec)
554 {
555 SET_NE_FLAG (NE_flags, target_index);
556 if (do_elos)
557 SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
558 }
559
560 if (do_elos)
561 SET_NESR (ne_index, nesr);
562
563 /* If no interrupt factor was detected then set the NE flag on the
564 target register if the NE flag on one of the input registers
565 is already set. */
566 if (! rec && ! ec && ! daec)
567 {
568 BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
569 if (disp_index >= 0)
570 ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
571 if (ne_flag)
572 {
573 SET_NE_FLAG (NE_flags, target_index);
574 rc = 0; /* Do not perform the load. */
575 }
576 else
577 CLEAR_NE_FLAG (NE_flags, target_index);
578 }
579
580 SET_NE_FLAGS (NE_base, NE_flags);
581
582 return rc; /* perform the load? */
583}
584
585/* Record state for media exception: media_cr_not_aligned. */
586void
587frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
588{
589 SIM_DESC sd = CPU_STATE (current_cpu);
590
e930b1f5
DB
591 /* On some machines this generates an illegal_instruction interrupt. */
592 switch (STATE_ARCHITECTURE (sd)->mach)
593 {
594 case bfd_mach_fr400:
595 case bfd_mach_fr550:
596 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
597 break;
598 default:
599 frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
600 break;
601 }
b34f6357
DB
602}
603
604/* Record state for media exception: media_acc_not_aligned. */
605void
606frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
607{
608 SIM_DESC sd = CPU_STATE (current_cpu);
609
e930b1f5
DB
610 /* On some machines this generates an illegal_instruction interrupt. */
611 switch (STATE_ARCHITECTURE (sd)->mach)
612 {
613 case bfd_mach_fr400:
614 case bfd_mach_fr550:
615 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
616 break;
617 default:
618 frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
619 break;
620 }
b34f6357
DB
621}
622
623/* Record state for media exception: media_register_not_aligned. */
624void
625frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
626{
627 SIM_DESC sd = CPU_STATE (current_cpu);
628
e930b1f5
DB
629 /* On some machines this generates an illegal_instruction interrupt. */
630 switch (STATE_ARCHITECTURE (sd)->mach)
631 {
632 case bfd_mach_fr400:
633 case bfd_mach_fr550:
634 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
635 break;
636 default:
637 frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
638 break;
639 }
b34f6357
DB
640}
641
642/* Record state for media exception: media_overflow. */
643void
644frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
645{
646 frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
647}
648
649/* Queue a division exception. */
650enum frv_dtt
651frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
652 int target_index, int non_excepting)
653{
654 /* If there was an overflow and it is masked, then record it in
655 ISR.AEXC. */
656 USI isr = GET_ISR ();
657 if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
658 {
659 dtt &= ~FRV_DTT_OVERFLOW;
660 SET_ISR_AEXC (isr);
661 SET_ISR (isr);
662 }
663 if (dtt != FRV_DTT_NO_EXCEPTION)
664 {
665 if (non_excepting)
666 {
667 /* Non excepting instruction, simply set the NE flag for the target
668 register. */
669 SI NE_flags[2];
670 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
671 SET_NE_FLAG (NE_flags, target_index);
672 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
673 }
674 else
675 frv_queue_division_exception_interrupt (current_cpu, dtt);
676 }
677 return dtt;
678}
679
680void
681frvbf_check_recovering_store (
682 SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
683)
684{
685 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
686 int reg_ix;
687
688 CPU_RSTR_INVALIDATE(current_cpu) = 0;
689
690 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
691 reg_ix != NO_NESR;
692 reg_ix = next_valid_nesr (current_cpu, reg_ix))
693 {
694 if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
695 {
696 SI nesr = GET_NESR (reg_ix);
697 int nesr_drn = GET_NESR_DRN (nesr);
698 BI nesr_fr = GET_NESR_FR (nesr);
699 SI remain;
700
701 /* Invalidate cache block containing this address.
702 If we need to count cycles, then the cache operation will be
703 initiated from the model profiling functions.
704 See frvbf_model_.... */
705 if (model_insn)
706 {
707 CPU_RSTR_INVALIDATE(current_cpu) = 1;
708 CPU_LOAD_ADDRESS (current_cpu) = address;
709 }
710 else
711 frv_cache_invalidate (cache, address, 1/* flush */);
712
713 /* Copy the stored value to the register indicated by NESR.DRN. */
714 for (remain = size; remain > 0; remain -= 4)
715 {
716 SI value;
717
718 if (is_float)
719 value = GET_H_FR (regno);
720 else
721 value = GET_H_GR (regno);
722
723 switch (size)
724 {
725 case 1:
726 value &= 0xff;
727 break;
728 case 2:
729 value &= 0xffff;
730 break;
731 default:
732 break;
733 }
734
735 if (nesr_fr)
736 sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
737 value);
738 else
739 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
740 value);
741
742 nesr_drn++;
743 regno++;
744 }
745 break; /* Only consider the first matching register. */
746 }
747 } /* loop over active neear registers. */
748}
749
e930b1f5
DB
750SI
751frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
752{
753 /* Only applicable to fr550 */
754 SIM_DESC sd = CPU_STATE (current_cpu);
755 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
756 return;
757
758 /* On the fr550, media insns in slots 0 and 2 can only access
759 accumulators acc0-acc3. Insns in slots 1 and 3 can only access
760 accumulators acc4-acc7 */
761 switch (frv_current_fm_slot)
762 {
763 case UNIT_FM0:
764 case UNIT_FM2:
765 if (regno <= 3)
766 return 1; /* all is ok */
767 break;
768 case UNIT_FM1:
769 case UNIT_FM3:
770 if (regno >= 4)
771 return 1; /* all is ok */
772 break;
773 }
774
775 /* The specified accumulator is out of range. Queue an illegal_instruction
776 interrupt. */
777 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
778 return 0;
779}
780
781void
782frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
783{
784 /* Only applicable to fr550 */
785 SIM_DESC sd = CPU_STATE (current_cpu);
786 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
787 return;
788
789 /* Adress must be aligned on a word boundary. */
790 if (address & 0x3)
791 frv_queue_data_access_exception_interrupt (current_cpu);
792}
793
b34f6357
DB
794static void
795clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
796{
797 int reg_ix;
798
799 /* Only implemented for full frv. */
800 SIM_DESC sd = CPU_STATE (current_cpu);
801 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
802 return;
803
804 /* Clear the appropriate NESR and NEEAR registers. */
805 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
806 reg_ix != NO_NESR;
807 reg_ix = next_valid_nesr (current_cpu, reg_ix))
808 {
809 SI nesr;
810 /* The register is available, now check if it is active. */
811 nesr = GET_NESR (reg_ix);
812 if (GET_NESR_FR (nesr) == is_float)
813 {
814 if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
815 {
816 SET_NESR (reg_ix, 0);
817 SET_NEEAR (reg_ix, 0);
818 }
819 }
820 }
821}
822
823static void
824clear_ne_flags (
825 SIM_CPU *current_cpu,
826 SI target_index,
827 int hi_available,
828 int lo_available,
829 SI NE_base
830)
831{
832 SI NE_flags[2];
833 int exception;
834
835 GET_NE_FLAGS (NE_flags, NE_base);
836 if (target_index >= 0)
837 CLEAR_NE_FLAG (NE_flags, target_index);
838 else
839 {
840 if (lo_available)
841 NE_flags[1] = 0;
842 if (hi_available)
843 NE_flags[0] = 0;
844 }
845 SET_NE_FLAGS (NE_base, NE_flags);
846}
847
848/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
849 means to check for any register available. */
850static void
851which_registers_available (
852 SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
853)
854{
855 if (is_float)
856 frv_fr_registers_available (current_cpu, hi_available, lo_available);
857 else
858 frv_gr_registers_available (current_cpu, hi_available, lo_available);
859}
860
861void
862frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
863{
864 int hi_available;
865 int lo_available;
866 int exception;
867 SI NE_base;
868 USI necr;
869 FRV_REGISTER_CONTROL *control;
870
871 /* Check for availability of the target register(s). */
872 which_registers_available (current_cpu, & hi_available, & lo_available,
873 is_float);
874
875 /* Check to make sure that the target register is available. */
876 if (! frv_check_register_access (current_cpu, target_index,
877 hi_available, lo_available))
878 return;
879
880 /* Determine whether we're working with GR or FR registers. */
881 if (is_float)
882 NE_base = H_SPR_FNER0;
883 else
884 NE_base = H_SPR_GNER0;
885
886 /* Always clear the appropriate NE flags. */
887 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
888 NE_base);
889
890 /* Clear the appropriate NESR and NEEAR registers. */
891 control = CPU_REGISTER_CONTROL (current_cpu);
892 if (control->spr[H_SPR_NECR].implemented)
893 {
894 necr = GET_NECR ();
895 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
896 clear_nesr_neear (current_cpu, target_index, is_float);
897 }
898}
899
900void
901frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
902{
903 SI NE_base;
904 SI NE_flags[2];
905 BI NE_flag;
906 int exception;
907 int hi_available;
908 int lo_available;
909 USI necr;
910 FRV_REGISTER_CONTROL *control;
911
912 /* Check for availability of the target register(s). */
913 which_registers_available (current_cpu, & hi_available, & lo_available,
914 is_float);
915
916 /* Check to make sure that the target register is available. */
917 if (! frv_check_register_access (current_cpu, target_index,
918 hi_available, lo_available))
919 return;
920
921 /* Determine whether we're working with GR or FR registers. */
922 if (is_float)
923 NE_base = H_SPR_FNER0;
924 else
925 NE_base = H_SPR_GNER0;
926
927 /* Determine whether a ne exception is pending. */
928 GET_NE_FLAGS (NE_flags, NE_base);
929 if (target_index >= 0)
930 NE_flag = GET_NE_FLAG (NE_flags, target_index);
931 else
932 {
933 NE_flag =
934 hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
935 }
936
937 /* Always clear the appropriate NE flags. */
938 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
939 NE_base);
940
941 control = CPU_REGISTER_CONTROL (current_cpu);
942 if (control->spr[H_SPR_NECR].implemented)
943 {
944 necr = GET_NECR ();
945 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
946 {
947 /* Clear the appropriate NESR and NEEAR registers. */
948 clear_nesr_neear (current_cpu, target_index, is_float);
949 frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
950 }
951 }
952}
953
954/* Generate the appropriate fp_exception(s) based on the given status code. */
955void
956frvbf_fpu_error (CGEN_FPU* fpu, int status)
957{
958 struct frv_fp_exception_info fp_info = {
959 FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
960 };
961
962 if (status &
963 (sim_fpu_status_invalid_snan |
964 sim_fpu_status_invalid_qnan |
965 sim_fpu_status_invalid_isi |
966 sim_fpu_status_invalid_idi |
967 sim_fpu_status_invalid_zdz |
968 sim_fpu_status_invalid_imz |
969 sim_fpu_status_invalid_cvi |
970 sim_fpu_status_invalid_cmp |
971 sim_fpu_status_invalid_sqrt))
972 fp_info.fsr_mask |= FSR_INVALID_OPERATION;
973
974 if (status & sim_fpu_status_invalid_div0)
975 fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
976
977 if (status & sim_fpu_status_inexact)
978 fp_info.fsr_mask |= FSR_INEXACT;
979
980 if (status & sim_fpu_status_overflow)
981 fp_info.fsr_mask |= FSR_OVERFLOW;
982
983 if (status & sim_fpu_status_underflow)
984 fp_info.fsr_mask |= FSR_UNDERFLOW;
985
986 if (status & sim_fpu_status_denorm)
987 {
988 fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
989 fp_info.ftt = FTT_DENORMAL_INPUT;
990 }
991
992 if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
993 {
994 SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
995 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
996 }
997}