]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/mips/interp.c
2002-06-04 Chris Demetriou <cgd@broadcom.com>
[thirdparty/binutils-gdb.git] / sim / mips / interp.c
CommitLineData
c906108c
SS
1/*> interp.c <*/
2/* Simulator for the MIPS architecture.
3
4 This file is part of the MIPS sim
5
6 THIS SOFTWARE IS NOT COPYRIGHTED
7
8 Cygnus offers the following for use in the public domain. Cygnus
9 makes no warranty with regard to the software or it's performance
10 and the user accepts the software "AS IS" with all faults.
11
12 CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
13 THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
c906108c
SS
16NOTEs:
17
18The IDT monitor (found on the VR4300 board), seems to lie about
19register contents. It seems to treat the registers as sign-extended
2032-bit values. This cause *REAL* problems when single-stepping 64-bit
21code on the hardware.
22
23*/
24
25/* The TRACE manifests enable the provision of extra features. If they
26 are not defined then a simpler (quicker) simulator is constructed
27 without the required run-time checks, etc. */
28#if 1 /* 0 to allow user build selection, 1 to force inclusion */
29#define TRACE (1)
30#endif
31
32#include "bfd.h"
33#include "sim-main.h"
34#include "sim-utils.h"
35#include "sim-options.h"
36#include "sim-assert.h"
37#include "sim-hw.h"
38
39#include "itable.h"
40
41
42#include "config.h"
43
44#include <stdio.h>
45#include <stdarg.h>
46#include <ansidecl.h>
47#include <ctype.h>
48#include <limits.h>
49#include <math.h>
50#ifdef HAVE_STDLIB_H
51#include <stdlib.h>
52#endif
53#ifdef HAVE_STRING_H
54#include <string.h>
55#else
56#ifdef HAVE_STRINGS_H
57#include <strings.h>
58#endif
59#endif
60
61#include "getopt.h"
62#include "libiberty.h"
63#include "bfd.h"
64#include "callback.h" /* GDB simulator callback interface */
65#include "remote-sim.h" /* GDB simulator interface */
66
67#include "sysdep.h"
68
69#ifndef PARAMS
70#define PARAMS(x)
71#endif
72
73char* pr_addr PARAMS ((SIM_ADDR addr));
74char* pr_uword64 PARAMS ((uword64 addr));
75
76
77/* Within interp.c we refer to the sim_state and sim_cpu directly. */
78#define CPU cpu
79#define SD sd
80
81
82/* The following reserved instruction value is used when a simulator
83 trap is required. NOTE: Care must be taken, since this value may be
84 used in later revisions of the MIPS ISA. */
85
86#define RSVD_INSTRUCTION (0x00000005)
87#define RSVD_INSTRUCTION_MASK (0xFC00003F)
88
89#define RSVD_INSTRUCTION_ARG_SHIFT 6
90#define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
91
92
93/* Bits in the Debug register */
94#define Debug_DBD 0x80000000 /* Debug Branch Delay */
95#define Debug_DM 0x40000000 /* Debug Mode */
96#define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
97
98/*---------------------------------------------------------------------------*/
99/*-- GDB simulator interface ------------------------------------------------*/
100/*---------------------------------------------------------------------------*/
101
102static void ColdReset PARAMS((SIM_DESC sd));
103
104/*---------------------------------------------------------------------------*/
105
106
107
108#define DELAYSLOT() {\
109 if (STATE & simDELAYSLOT)\
110 sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
111 STATE |= simDELAYSLOT;\
112 }
113
114#define JALDELAYSLOT() {\
115 DELAYSLOT ();\
116 STATE |= simJALDELAYSLOT;\
117 }
118
119#define NULLIFY() {\
120 STATE &= ~simDELAYSLOT;\
121 STATE |= simSKIPNEXT;\
122 }
123
124#define CANCELDELAYSLOT() {\
125 DSSTATE = 0;\
126 STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
127 }
128
129#define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
130#define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
131
adf40b2e
JM
132/* Note that the monitor code essentially assumes this layout of memory.
133 If you change these, change the monitor code, too. */
c906108c
SS
134#define K0BASE (0x80000000)
135#define K0SIZE (0x20000000)
136#define K1BASE (0xA0000000)
137#define K1SIZE (0x20000000)
adf40b2e
JM
138
139/* Simple run-time monitor support.
140
141 We emulate the monitor by placing magic reserved instructions at
142 the monitor's entry points; when we hit these instructions, instead
143 of raising an exception (as we would normally), we look at the
144 instruction and perform the appropriate monitory operation.
145
146 `*_monitor_base' are the physical addresses at which the corresponding
147 monitor vectors are located. `0' means none. By default,
148 install all three.
149 The RSVD_INSTRUCTION... macros specify the magic instructions we
150 use at the monitor entry points. */
151static int firmware_option_p = 0;
152static SIM_ADDR idt_monitor_base = 0xBFC00000;
153static SIM_ADDR pmon_monitor_base = 0xBFC00500;
154static SIM_ADDR lsipmon_monitor_base = 0xBFC00200;
155
156static SIM_RC sim_firmware_command (SIM_DESC sd, char* arg);
157
158
c906108c
SS
159#define MEM_SIZE (2 << 20)
160
161
162#if defined(TRACE)
163static char *tracefile = "trace.din"; /* default filename for trace log */
164FILE *tracefh = NULL;
165static void open_trace PARAMS((SIM_DESC sd));
166#endif /* TRACE */
167
168static const char * get_insn_name (sim_cpu *, int);
169
170/* simulation target board. NULL=canonical */
171static char* board = NULL;
172
173
174static DECLARE_OPTION_HANDLER (mips_option_handler);
175
176enum {
177 OPTION_DINERO_TRACE = OPTION_START,
178 OPTION_DINERO_FILE,
adf40b2e 179 OPTION_FIRMWARE,
c906108c
SS
180 OPTION_BOARD
181};
182
183
184static SIM_RC
185mips_option_handler (sd, cpu, opt, arg, is_command)
186 SIM_DESC sd;
187 sim_cpu *cpu;
188 int opt;
189 char *arg;
190 int is_command;
191{
192 int cpu_nr;
193 switch (opt)
194 {
195 case OPTION_DINERO_TRACE: /* ??? */
196#if defined(TRACE)
197 /* Eventually the simTRACE flag could be treated as a toggle, to
198 allow external control of the program points being traced
199 (i.e. only from main onwards, excluding the run-time setup,
200 etc.). */
201 for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
202 {
203 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
204 if (arg == NULL)
205 STATE |= simTRACE;
206 else if (strcmp (arg, "yes") == 0)
207 STATE |= simTRACE;
208 else if (strcmp (arg, "no") == 0)
209 STATE &= ~simTRACE;
210 else if (strcmp (arg, "on") == 0)
211 STATE |= simTRACE;
212 else if (strcmp (arg, "off") == 0)
213 STATE &= ~simTRACE;
214 else
215 {
216 fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
217 return SIM_RC_FAIL;
218 }
219 }
220 return SIM_RC_OK;
221#else /* !TRACE */
222 fprintf(stderr,"\
223Simulator constructed without dinero tracing support (for performance).\n\
224Re-compile simulator with \"-DTRACE\" to enable this option.\n");
225 return SIM_RC_FAIL;
226#endif /* !TRACE */
227
228 case OPTION_DINERO_FILE:
229#if defined(TRACE)
230 if (optarg != NULL) {
231 char *tmp;
232 tmp = (char *)malloc(strlen(optarg) + 1);
233 if (tmp == NULL)
234 {
235 sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
236 return SIM_RC_FAIL;
237 }
238 else {
239 strcpy(tmp,optarg);
240 tracefile = tmp;
241 sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
242 }
243 }
244#endif /* TRACE */
245 return SIM_RC_OK;
246
adf40b2e
JM
247 case OPTION_FIRMWARE:
248 return sim_firmware_command (sd, arg);
249
c906108c
SS
250 case OPTION_BOARD:
251 {
252 if (arg)
253 {
254 board = zalloc(strlen(arg) + 1);
255 strcpy(board, arg);
256 }
257 return SIM_RC_OK;
258 }
259 }
260
261 return SIM_RC_OK;
262}
263
264
265static const OPTION mips_options[] =
266{
267 { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
268 '\0', "on|off", "Enable dinero tracing",
269 mips_option_handler },
270 { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
271 '\0', "FILE", "Write dinero trace to FILE",
272 mips_option_handler },
adf40b2e
JM
273 { {"firmware", required_argument, NULL, OPTION_FIRMWARE},
274 '\0', "[idt|pmon|lsipmon|none][@ADDRESS]", "Emulate ROM monitor",
275 mips_option_handler },
c906108c
SS
276 { {"board", required_argument, NULL, OPTION_BOARD},
277 '\0', "none" /* rely on compile-time string concatenation for other options */
278
279#define BOARD_JMR3904 "jmr3904"
280 "|" BOARD_JMR3904
281#define BOARD_JMR3904_PAL "jmr3904pal"
282 "|" BOARD_JMR3904_PAL
283#define BOARD_JMR3904_DEBUG "jmr3904debug"
284 "|" BOARD_JMR3904_DEBUG
43e526b9
JM
285#define BOARD_BSP "bsp"
286 "|" BOARD_BSP
c906108c
SS
287
288 , "Customize simulation for a particular board.", mips_option_handler },
289
290 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
291};
292
293
294int interrupt_pending;
295
296void
297interrupt_event (SIM_DESC sd, void *data)
298{
299 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
300 address_word cia = CIA_GET (cpu);
301 if (SR & status_IE)
302 {
303 interrupt_pending = 0;
304 SignalExceptionInterrupt (1); /* interrupt "1" */
305 }
306 else if (!interrupt_pending)
307 sim_events_schedule (sd, 1, interrupt_event, data);
308}
309
310
311/*---------------------------------------------------------------------------*/
312/*-- Device registration hook -----------------------------------------------*/
313/*---------------------------------------------------------------------------*/
314static void device_init(SIM_DESC sd) {
315#ifdef DEVICE_INIT
316 extern void register_devices(SIM_DESC);
317 register_devices(sd);
318#endif
319}
320
321/*---------------------------------------------------------------------------*/
322/*-- GDB simulator interface ------------------------------------------------*/
323/*---------------------------------------------------------------------------*/
324
325SIM_DESC
326sim_open (kind, cb, abfd, argv)
327 SIM_OPEN_KIND kind;
328 host_callback *cb;
329 struct _bfd *abfd;
330 char **argv;
331{
332 SIM_DESC sd = sim_state_alloc (kind, cb);
333 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
334
335 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
336
337 /* FIXME: watchpoints code shouldn't need this */
338 STATE_WATCHPOINTS (sd)->pc = &(PC);
339 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
340 STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
341
342 /* Initialize the mechanism for doing insn profiling. */
343 CPU_INSN_NAME (cpu) = get_insn_name;
344 CPU_MAX_INSNS (cpu) = nr_itable_entries;
345
346 STATE = 0;
347
348 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
349 return 0;
350 sim_add_option_table (sd, NULL, mips_options);
351
352
353 /* getopt will print the error message so we just have to exit if this fails.
354 FIXME: Hmmm... in the case of gdb we need getopt to call
355 print_filtered. */
356 if (sim_parse_args (sd, argv) != SIM_RC_OK)
357 {
358 /* Uninstall the modules to avoid memory leaks,
359 file descriptor leaks, etc. */
360 sim_module_uninstall (sd);
361 return 0;
362 }
363
364 /* handle board-specific memory maps */
365 if (board == NULL)
366 {
367 /* Allocate core managed memory */
368
adf40b2e 369
c906108c
SS
370 /* For compatibility with the old code - under this (at level one)
371 are the kernel spaces K0 & K1. Both of these map to a single
372 smaller sub region */
373 sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
374 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
375 K1BASE, K0SIZE,
376 MEM_SIZE, /* actual size */
377 K0BASE);
378
379 device_init(sd);
380 }
43e526b9
JM
381 else if (board != NULL
382 && (strcmp(board, BOARD_BSP) == 0))
383 {
384 int i;
385
386 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
387
388 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
389 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
390 0x9FC00000,
391 4 * 1024 * 1024, /* 4 MB */
392 0xBFC00000);
393
394 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
395 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
396 0x80000000,
397 4 * 1024 * 1024, /* 4 MB */
398 0xA0000000);
399
400 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
401 for (i=0; i<8; i++) /* 32 MB total */
402 {
403 unsigned size = 4 * 1024 * 1024; /* 4 MB */
404 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
405 0x88000000 + (i * size),
406 size,
407 0xA8000000 + (i * size));
408 }
409 }
c906108c 410#if (WITH_HW)
43e526b9
JM
411 else if (board != NULL
412 && (strcmp(board, BOARD_JMR3904) == 0 ||
413 strcmp(board, BOARD_JMR3904_PAL) == 0 ||
414 strcmp(board, BOARD_JMR3904_DEBUG) == 0))
c906108c
SS
415 {
416 /* match VIRTUAL memory layout of JMR-TX3904 board */
417 int i;
418
adf40b2e
JM
419 /* --- disable monitor unless forced on by user --- */
420
421 if (! firmware_option_p)
422 {
423 idt_monitor_base = 0;
424 pmon_monitor_base = 0;
425 lsipmon_monitor_base = 0;
426 }
427
c906108c
SS
428 /* --- environment --- */
429
430 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
431
432 /* --- memory --- */
433
434 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
435 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
436 0x9FC00000,
437 4 * 1024 * 1024, /* 4 MB */
438 0xBFC00000);
439
440 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
441 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
442 0x80000000,
443 4 * 1024 * 1024, /* 4 MB */
444 0xA0000000);
445
446 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
447 for (i=0; i<8; i++) /* 32 MB total */
448 {
449 unsigned size = 4 * 1024 * 1024; /* 4 MB */
450 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
451 0x88000000 + (i * size),
452 size,
453 0xA8000000 + (i * size));
454 }
455
cb7450ea 456 /* Dummy memory regions for unsimulated devices - sorted by address */
c906108c 457
d4f3574e 458 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB1000000, 0x400); /* ISA I/O */
c2d11a7d
JM
459 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2100000, 0x004); /* ISA ctl */
460 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2500000, 0x004); /* LED/switch */
d4f3574e
SS
461 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2700000, 0x004); /* RTC */
462 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB3C00000, 0x004); /* RTC */
cb7450ea
FCE
463 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF8000, 0x900); /* DRAMC */
464 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */
465 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE000, 0x01c); /* EBIF */
466 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */
467
c906108c
SS
468
469 /* --- simulated devices --- */
470 sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
471 sim_hw_parse (sd, "/tx3904cpu");
472 sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
473 sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
474 sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
475 sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
476 {
477 /* FIXME: poking at dv-sockser internals, use tcp backend if
478 --sockser_addr option was given.*/
479 extern char* sockser_addr;
480 if(sockser_addr == NULL)
481 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
482 else
483 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
484 }
485 sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
486 sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
487
488 /* -- device connections --- */
489 sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
490 sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
491 sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
492 sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
493 sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
494 sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
495
496 /* add PAL timer & I/O module */
497 if(! strcmp(board, BOARD_JMR3904_PAL))
498 {
499 /* the device */
500 sim_hw_parse (sd, "/pal@0xffff0000");
501 sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
502
503 /* wire up interrupt ports to irc */
504 sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
505 sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
506 sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
507 }
508
509 if(! strcmp(board, BOARD_JMR3904_DEBUG))
510 {
511 /* -- DEBUG: glue interrupt generators --- */
512 sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
513 sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
514 sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
515 sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
516 sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
517 sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
518 sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
519 sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
520 sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
521 sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
522 sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
523 sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
524 sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
525 sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
526 sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
527 sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
528 sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
529 sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
530 sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
531 }
532
533 device_init(sd);
534 }
535#endif
536
537
538 /* check for/establish the a reference program image */
539 if (sim_analyze_program (sd,
540 (STATE_PROG_ARGV (sd) != NULL
541 ? *STATE_PROG_ARGV (sd)
542 : NULL),
543 abfd) != SIM_RC_OK)
544 {
545 sim_module_uninstall (sd);
546 return 0;
547 }
548
549 /* Configure/verify the target byte order and other runtime
550 configuration options */
551 if (sim_config (sd) != SIM_RC_OK)
552 {
553 sim_module_uninstall (sd);
554 return 0;
555 }
556
557 if (sim_post_argv_init (sd) != SIM_RC_OK)
558 {
559 /* Uninstall the modules to avoid memory leaks,
560 file descriptor leaks, etc. */
561 sim_module_uninstall (sd);
562 return 0;
563 }
564
565 /* verify assumptions the simulator made about the host type system.
566 This macro does not return if there is a problem */
567 SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
568 SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
569
570 /* This is NASTY, in that we are assuming the size of specific
571 registers: */
572 {
573 int rn;
574 for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
575 {
576 if (rn < 32)
577 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
578 else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR)))
579 cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
580 else if ((rn >= 33) && (rn <= 37))
581 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
582 else if ((rn == SRIDX)
583 || (rn == FCR0IDX)
584 || (rn == FCR31IDX)
585 || ((rn >= 72) && (rn <= 89)))
586 cpu->register_widths[rn] = 32;
587 else
588 cpu->register_widths[rn] = 0;
589 }
590
591
592 }
593
594#if defined(TRACE)
595 if (STATE & simTRACE)
596 open_trace(sd);
597#endif /* TRACE */
598
adf40b2e
JM
599 /*
600 sim_io_eprintf (sd, "idt@%x pmon@%x lsipmon@%x\n",
601 idt_monitor_base,
602 pmon_monitor_base,
603 lsipmon_monitor_base);
604 */
c906108c
SS
605
606 /* Write the monitor trap address handlers into the monitor (eeprom)
607 address space. This can only be done once the target endianness
608 has been determined. */
adf40b2e
JM
609 if (idt_monitor_base != 0)
610 {
611 unsigned loop;
612 unsigned idt_monitor_size = 1 << 11;
613
614 /* the default monitor region */
615 sim_do_commandf (sd, "memory region 0x%x,0x%x",
616 idt_monitor_base, idt_monitor_size);
617
618 /* Entry into the IDT monitor is via fixed address vectors, and
619 not using machine instructions. To avoid clashing with use of
620 the MIPS TRAP system, we place our own (simulator specific)
621 "undefined" instructions into the relevant vector slots. */
622 for (loop = 0; (loop < idt_monitor_size); loop += 4)
623 {
624 address_word vaddr = (idt_monitor_base + loop);
625 unsigned32 insn = (RSVD_INSTRUCTION |
626 (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK)
627 << RSVD_INSTRUCTION_ARG_SHIFT));
628 H2T (insn);
629 sim_write (sd, vaddr, (char *)&insn, sizeof (insn));
630 }
631 }
632
633 if ((pmon_monitor_base != 0) || (lsipmon_monitor_base != 0))
634 {
c906108c
SS
635 /* The PMON monitor uses the same address space, but rather than
636 branching into it the address of a routine is loaded. We can
637 cheat for the moment, and direct the PMON routine to IDT style
638 instructions within the monitor space. This relies on the IDT
639 monitor not using the locations from 0xBFC00500 onwards as its
640 entry points.*/
adf40b2e
JM
641 unsigned loop;
642 for (loop = 0; (loop < 24); loop++)
643 {
644 unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
645 switch (loop)
646 {
c906108c
SS
647 case 0: /* read */
648 value = 7;
649 break;
650 case 1: /* write */
651 value = 8;
652 break;
653 case 2: /* open */
654 value = 6;
655 break;
656 case 3: /* close */
657 value = 10;
658 break;
659 case 5: /* printf */
660 value = ((0x500 - 16) / 8); /* not an IDT reason code */
661 break;
662 case 8: /* cliexit */
663 value = 17;
664 break;
665 case 11: /* flush_cache */
666 value = 28;
667 break;
668 }
adf40b2e
JM
669
670 SIM_ASSERT (idt_monitor_base != 0);
671 value = ((unsigned int) idt_monitor_base + (value * 8));
c906108c 672 H2T (value);
c906108c 673
adf40b2e
JM
674 if (pmon_monitor_base != 0)
675 {
676 address_word vaddr = (pmon_monitor_base + (loop * 4));
677 sim_write (sd, vaddr, (char *)&value, sizeof (value));
678 }
679
680 if (lsipmon_monitor_base != 0)
681 {
682 address_word vaddr = (lsipmon_monitor_base + (loop * 4));
683 sim_write (sd, vaddr, (char *)&value, sizeof (value));
684 }
c906108c 685 }
adf40b2e
JM
686
687 /* Write an abort sequence into the TRAP (common) exception vector
688 addresses. This is to catch code executing a TRAP (et.al.)
689 instruction without installing a trap handler. */
690 if ((idt_monitor_base != 0) ||
691 (pmon_monitor_base != 0) ||
692 (lsipmon_monitor_base != 0))
693 {
694 unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
695 HALT_INSTRUCTION /* BREAK */ };
696 H2T (halt[0]);
697 H2T (halt[1]);
698 sim_write (sd, 0x80000000, (char *) halt, sizeof (halt));
699 sim_write (sd, 0x80000180, (char *) halt, sizeof (halt));
700 sim_write (sd, 0x80000200, (char *) halt, sizeof (halt));
701 /* XXX: Write here unconditionally? */
702 sim_write (sd, 0xBFC00200, (char *) halt, sizeof (halt));
703 sim_write (sd, 0xBFC00380, (char *) halt, sizeof (halt));
704 sim_write (sd, 0xBFC00400, (char *) halt, sizeof (halt));
705 }
c906108c
SS
706 }
707
708
709
710 return sd;
711}
712
713#if defined(TRACE)
714static void
715open_trace(sd)
716 SIM_DESC sd;
717{
718 tracefh = fopen(tracefile,"wb+");
719 if (tracefh == NULL)
720 {
721 sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
722 tracefh = stderr;
723 }
724}
725#endif /* TRACE */
726
727/* Return name of an insn, used by insn profiling. */
728static const char *
729get_insn_name (sim_cpu *cpu, int i)
730{
731 return itable[i].name;
732}
733
734void
735sim_close (sd, quitting)
736 SIM_DESC sd;
737 int quitting;
738{
739#ifdef DEBUG
740 printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
741#endif
742
743
744 /* "quitting" is non-zero if we cannot hang on errors */
745
746 /* shut down modules */
747 sim_module_uninstall (sd);
748
749 /* Ensure that any resources allocated through the callback
750 mechanism are released: */
751 sim_io_shutdown (sd);
752
753#if defined(TRACE)
754 if (tracefh != NULL && tracefh != stderr)
755 fclose(tracefh);
756 tracefh = NULL;
757#endif /* TRACE */
758
759 /* FIXME - free SD */
760
761 return;
762}
763
764
765int
766sim_write (sd,addr,buffer,size)
767 SIM_DESC sd;
768 SIM_ADDR addr;
769 unsigned char *buffer;
770 int size;
771{
772 int index;
773 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
774
775 /* Return the number of bytes written, or zero if error. */
776#ifdef DEBUG
777 sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
778#endif
779
780 /* We use raw read and write routines, since we do not want to count
781 the GDB memory accesses in our statistics gathering. */
782
783 for (index = 0; index < size; index++)
784 {
785 address_word vaddr = (address_word)addr + index;
786 address_word paddr;
787 int cca;
788 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW))
789 break;
790 if (sim_core_write_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
791 break;
792 }
793
794 return(index);
795}
796
797int
798sim_read (sd,addr,buffer,size)
799 SIM_DESC sd;
800 SIM_ADDR addr;
801 unsigned char *buffer;
802 int size;
803{
804 int index;
805 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
806
807 /* Return the number of bytes read, or zero if error. */
808#ifdef DEBUG
809 sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
810#endif /* DEBUG */
811
812 for (index = 0; (index < size); index++)
813 {
814 address_word vaddr = (address_word)addr + index;
815 address_word paddr;
816 int cca;
817 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW))
818 break;
819 if (sim_core_read_buffer (SD, CPU, read_map, buffer + index, paddr, 1) != 1)
820 break;
821 }
822
823 return(index);
824}
825
826int
827sim_store_register (sd,rn,memory,length)
828 SIM_DESC sd;
829 int rn;
830 unsigned char *memory;
831 int length;
832{
833 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
834 /* NOTE: gdb (the client) stores registers in target byte order
835 while the simulator uses host byte order */
836#ifdef DEBUG
837 sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
838#endif /* DEBUG */
839
840 /* Unfortunately this suffers from the same problem as the register
841 numbering one. We need to know what the width of each logical
842 register number is for the architecture being simulated. */
843
844 if (cpu->register_widths[rn] == 0)
845 {
846 sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn);
847 return 0;
848 }
849
850
851
852 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
853 {
7a292a7a 854 cpu->fpr_state[rn - FGRIDX] = fmt_uninterpreted;
c906108c
SS
855 if (cpu->register_widths[rn] == 32)
856 {
a0b3c4fd
JM
857 if (length == 8)
858 {
859 cpu->fgr[rn - FGRIDX] =
860 (unsigned32) T2H_8 (*(unsigned64*)memory);
861 return 8;
862 }
863 else
864 {
865 cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory);
866 return 4;
867 }
c906108c
SS
868 }
869 else
870 {
871 cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory);
872 return 8;
873 }
874 }
875
876 if (cpu->register_widths[rn] == 32)
877 {
a0b3c4fd
JM
878 if (length == 8)
879 {
880 cpu->registers[rn] =
881 (unsigned32) T2H_8 (*(unsigned64*)memory);
882 return 8;
883 }
884 else
885 {
886 cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
887 return 4;
888 }
c906108c
SS
889 }
890 else
891 {
892 cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
893 return 8;
894 }
895
896 return 0;
897}
898
899int
900sim_fetch_register (sd,rn,memory,length)
901 SIM_DESC sd;
902 int rn;
903 unsigned char *memory;
904 int length;
905{
906 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
907 /* NOTE: gdb (the client) stores registers in target byte order
908 while the simulator uses host byte order */
909#ifdef DEBUG
910#if 0 /* FIXME: doesn't compile */
911 sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
912#endif
913#endif /* DEBUG */
914
915 if (cpu->register_widths[rn] == 0)
916 {
917 sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn);
918 return 0;
919 }
920
921
922
923 /* Any floating point register */
924 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
925 {
926 if (cpu->register_widths[rn] == 32)
927 {
a0b3c4fd
JM
928 if (length == 8)
929 {
930 *(unsigned64*)memory =
931 H2T_8 ((unsigned32) (cpu->fgr[rn - FGRIDX]));
932 return 8;
933 }
934 else
935 {
936 *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]);
937 return 4;
938 }
c906108c
SS
939 }
940 else
941 {
942 *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]);
943 return 8;
944 }
945 }
946
947 if (cpu->register_widths[rn] == 32)
948 {
a0b3c4fd
JM
949 if (length == 8)
950 {
951 *(unsigned64*)memory =
952 H2T_8 ((unsigned32) (cpu->registers[rn]));
953 return 8;
954 }
955 else
956 {
957 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
958 return 4;
959 }
c906108c
SS
960 }
961 else
962 {
963 *(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn]));
964 return 8;
965 }
966
967 return 0;
968}
969
970
971SIM_RC
972sim_create_inferior (sd, abfd, argv,env)
973 SIM_DESC sd;
974 struct _bfd *abfd;
975 char **argv;
976 char **env;
977{
978
979#ifdef DEBUG
980#if 0 /* FIXME: doesn't compile */
981 printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
982 pr_addr(PC));
983#endif
984#endif /* DEBUG */
985
986 ColdReset(sd);
987
988 if (abfd != NULL)
989 {
990 /* override PC value set by ColdReset () */
991 int cpu_nr;
992 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
993 {
994 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
995 CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
996 }
997 }
998
999#if 0 /* def DEBUG */
1000 if (argv || env)
1001 {
1002 /* We should really place the argv slot values into the argument
1003 registers, and onto the stack as required. However, this
1004 assumes that we have a stack defined, which is not
1005 necessarily true at the moment. */
1006 char **cptr;
1007 sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
1008 for (cptr = argv; (cptr && *cptr); cptr++)
1009 printf("DBG: arg \"%s\"\n",*cptr);
1010 }
1011#endif /* DEBUG */
1012
1013 return SIM_RC_OK;
1014}
1015
1016void
1017sim_do_command (sd,cmd)
1018 SIM_DESC sd;
1019 char *cmd;
1020{
1021 if (sim_args_command (sd, cmd) != SIM_RC_OK)
1022 sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n",
1023 cmd);
1024}
1025
1026/*---------------------------------------------------------------------------*/
1027/*-- Private simulator support interface ------------------------------------*/
1028/*---------------------------------------------------------------------------*/
1029
1030/* Read a null terminated string from memory, return in a buffer */
1031static char *
1032fetch_str (SIM_DESC sd,
1033 address_word addr)
1034{
1035 char *buf;
1036 int nr = 0;
1037 char null;
1038 while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
1039 nr++;
1040 buf = NZALLOC (char, nr + 1);
1041 sim_read (sd, addr, buf, nr);
1042 return buf;
1043}
1044
adf40b2e
JM
1045
1046/* Implements the "sim firmware" command:
1047 sim firmware NAME[@ADDRESS] --- emulate ROM monitor named NAME.
1048 NAME can be idt, pmon, or lsipmon. If omitted, ADDRESS
1049 defaults to the normal address for that monitor.
1050 sim firmware none --- don't emulate any ROM monitor. Useful
1051 if you need a clean address space. */
1052static SIM_RC
1053sim_firmware_command (SIM_DESC sd, char *arg)
1054{
1055 int address_present = 0;
1056 SIM_ADDR address;
1057
1058 /* Signal occurrence of this option. */
1059 firmware_option_p = 1;
1060
1061 /* Parse out the address, if present. */
1062 {
1063 char *p = strchr (arg, '@');
1064 if (p)
1065 {
1066 char *q;
1067 address_present = 1;
1068 p ++; /* skip over @ */
1069
1070 address = strtoul (p, &q, 0);
1071 if (*q != '\0')
1072 {
1073 sim_io_printf (sd, "Invalid address given to the"
1074 "`sim firmware NAME@ADDRESS' command: %s\n",
1075 p);
1076 return SIM_RC_FAIL;
1077 }
1078 }
1079 else
1080 address_present = 0;
1081 }
1082
1083 if (! strncmp (arg, "idt", 3))
1084 {
1085 idt_monitor_base = address_present ? address : 0xBFC00000;
1086 pmon_monitor_base = 0;
1087 lsipmon_monitor_base = 0;
1088 }
1089 else if (! strncmp (arg, "pmon", 4))
1090 {
1091 /* pmon uses indirect calls. Hook into implied idt. */
1092 pmon_monitor_base = address_present ? address : 0xBFC00500;
1093 idt_monitor_base = pmon_monitor_base - 0x500;
1094 lsipmon_monitor_base = 0;
1095 }
1096 else if (! strncmp (arg, "lsipmon", 7))
1097 {
1098 /* lsipmon uses indirect calls. Hook into implied idt. */
1099 pmon_monitor_base = 0;
1100 lsipmon_monitor_base = address_present ? address : 0xBFC00200;
1101 idt_monitor_base = lsipmon_monitor_base - 0x200;
1102 }
1103 else if (! strncmp (arg, "none", 4))
1104 {
1105 if (address_present)
1106 {
1107 sim_io_printf (sd,
1108 "The `sim firmware none' command does "
1109 "not take an `ADDRESS' argument.\n");
1110 return SIM_RC_FAIL;
1111 }
1112 idt_monitor_base = 0;
1113 pmon_monitor_base = 0;
1114 lsipmon_monitor_base = 0;
1115 }
1116 else
1117 {
1118 sim_io_printf (sd, "\
1119Unrecognized name given to the `sim firmware NAME' command: %s\n\
1120Recognized firmware names are: `idt', `pmon', `lsipmon', and `none'.\n",
1121 arg);
1122 return SIM_RC_FAIL;
1123 }
1124
1125 return SIM_RC_OK;
1126}
1127
1128
1129
c906108c 1130/* Simple monitor interface (currently setup for the IDT and PMON monitors) */
8030f857 1131int
c906108c
SS
1132sim_monitor (SIM_DESC sd,
1133 sim_cpu *cpu,
1134 address_word cia,
1135 unsigned int reason)
1136{
1137#ifdef DEBUG
1138 printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
1139#endif /* DEBUG */
1140
1141 /* The IDT monitor actually allows two instructions per vector
1142 slot. However, the simulator currently causes a trap on each
1143 individual instruction. We cheat, and lose the bottom bit. */
1144 reason >>= 1;
1145
1146 /* The following callback functions are available, however the
1147 monitor we are simulating does not make use of them: get_errno,
1148 isatty, lseek, rename, system, time and unlink */
1149 switch (reason)
1150 {
1151
1152 case 6: /* int open(char *path,int flags) */
1153 {
1154 char *path = fetch_str (sd, A0);
1155 V0 = sim_io_open (sd, path, (int)A1);
1156 zfree (path);
1157 break;
1158 }
1159
1160 case 7: /* int read(int file,char *ptr,int len) */
1161 {
1162 int fd = A0;
1163 int nr = A2;
1164 char *buf = zalloc (nr);
1165 V0 = sim_io_read (sd, fd, buf, nr);
1166 sim_write (sd, A1, buf, nr);
1167 zfree (buf);
1168 }
1169 break;
1170
1171 case 8: /* int write(int file,char *ptr,int len) */
1172 {
1173 int fd = A0;
1174 int nr = A2;
1175 char *buf = zalloc (nr);
1176 sim_read (sd, A1, buf, nr);
1177 V0 = sim_io_write (sd, fd, buf, nr);
1178 zfree (buf);
1179 break;
1180 }
1181
1182 case 10: /* int close(int file) */
1183 {
1184 V0 = sim_io_close (sd, (int)A0);
1185 break;
1186 }
1187
1188 case 2: /* Densan monitor: char inbyte(int waitflag) */
1189 {
1190 if (A0 == 0) /* waitflag == NOWAIT */
1191 V0 = (unsigned_word)-1;
1192 }
1193 /* Drop through to case 11 */
1194
1195 case 11: /* char inbyte(void) */
1196 {
1197 char tmp;
43e526b9
JM
1198 /* ensure that all output has gone... */
1199 sim_io_flush_stdout (sd);
c906108c
SS
1200 if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
1201 {
1202 sim_io_error(sd,"Invalid return from character read");
1203 V0 = (unsigned_word)-1;
1204 }
1205 else
1206 V0 = (unsigned_word)tmp;
1207 break;
1208 }
1209
1210 case 3: /* Densan monitor: void co(char chr) */
1211 case 12: /* void outbyte(char chr) : write a byte to "stdout" */
1212 {
1213 char tmp = (char)(A0 & 0xFF);
1214 sim_io_write_stdout (sd, &tmp, sizeof(char));
1215 break;
1216 }
1217
1218 case 17: /* void _exit() */
1219 {
1220 sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
1221 sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
1222 (unsigned int)(A0 & 0xFFFFFFFF));
1223 break;
1224 }
1225
e80fc152 1226 case 28: /* PMON flush_cache */
c906108c
SS
1227 break;
1228
1229 case 55: /* void get_mem_info(unsigned int *ptr) */
1230 /* in: A0 = pointer to three word memory location */
1231 /* out: [A0 + 0] = size */
1232 /* [A0 + 4] = instruction cache size */
1233 /* [A0 + 8] = data cache size */
1234 {
1235 unsigned_4 value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */;
1236 unsigned_4 zero = 0;
1237 H2T (value);
1238 sim_write (sd, A0 + 0, (char *)&value, 4);
1239 sim_write (sd, A0 + 4, (char *)&zero, 4);
1240 sim_write (sd, A0 + 8, (char *)&zero, 4);
5accf1ff 1241 /* sim_io_eprintf (sd, "sim: get_mem_info() deprecated\n"); */
c906108c
SS
1242 break;
1243 }
1244
e80fc152 1245 case 158: /* PMON printf */
c906108c
SS
1246 /* in: A0 = pointer to format string */
1247 /* A1 = optional argument 1 */
1248 /* A2 = optional argument 2 */
1249 /* A3 = optional argument 3 */
1250 /* out: void */
1251 /* The following is based on the PMON printf source */
1252 {
1253 address_word s = A0;
1254 char c;
1255 signed_word *ap = &A1; /* 1st argument */
1256 /* This isn't the quickest way, since we call the host print
1257 routine for every character almost. But it does avoid
1258 having to allocate and manage a temporary string buffer. */
1259 /* TODO: Include check that we only use three arguments (A1,
1260 A2 and A3) */
1261 while (sim_read (sd, s++, &c, 1) && c != '\0')
1262 {
1263 if (c == '%')
1264 {
1265 char tmp[40];
1266 enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
1267 int width = 0, trunc = 0, haddot = 0, longlong = 0;
1268 while (sim_read (sd, s++, &c, 1) && c != '\0')
1269 {
1270 if (strchr ("dobxXulscefg%", c))
1271 break;
1272 else if (c == '-')
1273 fmt = FMT_LJUST;
1274 else if (c == '0')
1275 fmt = FMT_RJUST0;
1276 else if (c == '~')
1277 fmt = FMT_CENTER;
1278 else if (c == '*')
1279 {
1280 if (haddot)
1281 trunc = (int)*ap++;
1282 else
1283 width = (int)*ap++;
1284 }
1285 else if (c >= '1' && c <= '9')
1286 {
1287 address_word t = s;
1288 unsigned int n;
1289 while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
1290 tmp[s - t] = c;
1291 tmp[s - t] = '\0';
1292 n = (unsigned int)strtol(tmp,NULL,10);
1293 if (haddot)
1294 trunc = n;
1295 else
1296 width = n;
1297 s--;
1298 }
1299 else if (c == '.')
1300 haddot = 1;
1301 }
1302 switch (c)
1303 {
1304 case '%':
1305 sim_io_printf (sd, "%%");
1306 break;
1307 case 's':
1308 if ((int)*ap != 0)
1309 {
1310 address_word p = *ap++;
1311 char ch;
1312 while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
1313 sim_io_printf(sd, "%c", ch);
1314 }
1315 else
1316 sim_io_printf(sd,"(null)");
1317 break;
1318 case 'c':
1319 sim_io_printf (sd, "%c", (int)*ap++);
1320 break;
1321 default:
1322 if (c == 'l')
1323 {
1324 sim_read (sd, s++, &c, 1);
1325 if (c == 'l')
1326 {
1327 longlong = 1;
1328 sim_read (sd, s++, &c, 1);
1329 }
1330 }
1331 if (strchr ("dobxXu", c))
1332 {
1333 word64 lv = (word64) *ap++;
1334 if (c == 'b')
1335 sim_io_printf(sd,"<binary not supported>");
1336 else
1337 {
1338 sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
1339 if (longlong)
1340 sim_io_printf(sd, tmp, lv);
1341 else
1342 sim_io_printf(sd, tmp, (int)lv);
1343 }
1344 }
1345 else if (strchr ("eEfgG", c))
1346 {
1347 double dbl = *(double*)(ap++);
1348 sprintf (tmp, "%%%d.%d%c", width, trunc, c);
1349 sim_io_printf (sd, tmp, dbl);
1350 trunc = 0;
1351 }
1352 }
1353 }
1354 else
1355 sim_io_printf(sd, "%c", c);
1356 }
1357 break;
1358 }
1359
1360 default:
8030f857
BE
1361 /* Unknown reason. */
1362 return 0;
c906108c 1363 }
8030f857 1364 return 1;
c906108c
SS
1365}
1366
1367/* Store a word into memory. */
1368
1369static void
1370store_word (SIM_DESC sd,
1371 sim_cpu *cpu,
1372 address_word cia,
1373 uword64 vaddr,
1374 signed_word val)
1375{
1376 address_word paddr;
1377 int uncached;
1378
1379 if ((vaddr & 3) != 0)
1380 SignalExceptionAddressStore ();
1381 else
1382 {
1383 if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
1384 isTARGET, isREAL))
1385 {
1386 const uword64 mask = 7;
1387 uword64 memval;
1388 unsigned int byte;
1389
1390 paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
1391 byte = (vaddr & mask) ^ (BigEndianCPU << 2);
1392 memval = ((uword64) val) << (8 * byte);
1393 StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
1394 isREAL);
1395 }
1396 }
1397}
1398
1399/* Load a word from memory. */
1400
1401static signed_word
1402load_word (SIM_DESC sd,
1403 sim_cpu *cpu,
1404 address_word cia,
1405 uword64 vaddr)
1406{
1407 if ((vaddr & 3) != 0)
1408 {
1409 SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal);
1410 }
1411 else
1412 {
1413 address_word paddr;
1414 int uncached;
1415
1416 if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
1417 isTARGET, isREAL))
1418 {
1419 const uword64 mask = 0x7;
1420 const unsigned int reverse = ReverseEndian ? 1 : 0;
1421 const unsigned int bigend = BigEndianCPU ? 1 : 0;
1422 uword64 memval;
1423 unsigned int byte;
1424
1425 paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
1426 LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
1427 isDATA, isREAL);
1428 byte = (vaddr & mask) ^ (bigend << 2);
043b7057 1429 return EXTEND32 (memval >> (8 * byte));
c906108c
SS
1430 }
1431 }
1432
1433 return 0;
1434}
1435
1436/* Simulate the mips16 entry and exit pseudo-instructions. These
1437 would normally be handled by the reserved instruction exception
1438 code, but for ease of simulation we just handle them directly. */
1439
1440static void
1441mips16_entry (SIM_DESC sd,
1442 sim_cpu *cpu,
1443 address_word cia,
1444 unsigned int insn)
1445{
1446 int aregs, sregs, rreg;
1447
1448#ifdef DEBUG
1449 printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
1450#endif /* DEBUG */
1451
1452 aregs = (insn & 0x700) >> 8;
1453 sregs = (insn & 0x0c0) >> 6;
1454 rreg = (insn & 0x020) >> 5;
1455
1456 /* This should be checked by the caller. */
1457 if (sregs == 3)
1458 abort ();
1459
1460 if (aregs < 5)
1461 {
1462 int i;
1463 signed_word tsp;
1464
1465 /* This is the entry pseudo-instruction. */
1466
1467 for (i = 0; i < aregs; i++)
1468 store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
1469
1470 tsp = SP;
1471 SP -= 32;
1472
1473 if (rreg)
1474 {
1475 tsp -= 4;
1476 store_word (SD, CPU, cia, (uword64) tsp, RA);
1477 }
1478
1479 for (i = 0; i < sregs; i++)
1480 {
1481 tsp -= 4;
1482 store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
1483 }
1484 }
1485 else
1486 {
1487 int i;
1488 signed_word tsp;
1489
1490 /* This is the exit pseudo-instruction. */
1491
1492 tsp = SP + 32;
1493
1494 if (rreg)
1495 {
1496 tsp -= 4;
1497 RA = load_word (SD, CPU, cia, (uword64) tsp);
1498 }
1499
1500 for (i = 0; i < sregs; i++)
1501 {
1502 tsp -= 4;
1503 GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
1504 }
1505
1506 SP += 32;
1507
1508 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1509 {
1510 if (aregs == 5)
1511 {
1512 FGR[0] = WORD64LO (GPR[4]);
1513 FPR_STATE[0] = fmt_uninterpreted;
1514 }
1515 else if (aregs == 6)
1516 {
1517 FGR[0] = WORD64LO (GPR[5]);
1518 FGR[1] = WORD64LO (GPR[4]);
1519 FPR_STATE[0] = fmt_uninterpreted;
1520 FPR_STATE[1] = fmt_uninterpreted;
1521 }
1522 }
1523
1524 PC = RA;
1525 }
1526
1527}
1528
1529/*-- trace support ----------------------------------------------------------*/
1530
1531/* The TRACE support is provided (if required) in the memory accessing
1532 routines. Since we are also providing the architecture specific
1533 features, the architecture simulation code can also deal with
1534 notifying the TRACE world of cache flushes, etc. Similarly we do
1535 not need to provide profiling support in the simulator engine,
1536 since we can sample in the instruction fetch control loop. By
1537 defining the TRACE manifest, we add tracing as a run-time
1538 option. */
1539
1540#if defined(TRACE)
1541/* Tracing by default produces "din" format (as required by
1542 dineroIII). Each line of such a trace file *MUST* have a din label
1543 and address field. The rest of the line is ignored, so comments can
1544 be included if desired. The first field is the label which must be
1545 one of the following values:
1546
1547 0 read data
1548 1 write data
1549 2 instruction fetch
1550 3 escape record (treated as unknown access type)
1551 4 escape record (causes cache flush)
1552
1553 The address field is a 32bit (lower-case) hexadecimal address
1554 value. The address should *NOT* be preceded by "0x".
1555
1556 The size of the memory transfer is not important when dealing with
1557 cache lines (as long as no more than a cache line can be
1558 transferred in a single operation :-), however more information
1559 could be given following the dineroIII requirement to allow more
1560 complete memory and cache simulators to provide better
1561 results. i.e. the University of Pisa has a cache simulator that can
1562 also take bus size and speed as (variable) inputs to calculate
1563 complete system performance (a much more useful ability when trying
1564 to construct an end product, rather than a processor). They
1565 currently have an ARM version of their tool called ChARM. */
1566
1567
1568void
1569dotrace (SIM_DESC sd,
1570 sim_cpu *cpu,
1571 FILE *tracefh,
1572 int type,
1573 SIM_ADDR address,
1574 int width,
1575 char *comment,...)
1576{
1577 if (STATE & simTRACE) {
1578 va_list ap;
1579 fprintf(tracefh,"%d %s ; width %d ; ",
1580 type,
1581 pr_addr(address),
1582 width);
1583 va_start(ap,comment);
1584 vfprintf(tracefh,comment,ap);
1585 va_end(ap);
1586 fprintf(tracefh,"\n");
1587 }
1588 /* NOTE: Since the "din" format will only accept 32bit addresses, and
1589 we may be generating 64bit ones, we should put the hi-32bits of the
1590 address into the comment field. */
1591
1592 /* TODO: Provide a buffer for the trace lines. We can then avoid
1593 performing writes until the buffer is filled, or the file is
1594 being closed. */
1595
1596 /* NOTE: We could consider adding a comment field to the "din" file
1597 produced using type 3 markers (unknown access). This would then
1598 allow information about the program that the "din" is for, and
1599 the MIPs world that was being simulated, to be placed into the
1600 trace file. */
1601
1602 return;
1603}
1604#endif /* TRACE */
1605
1606/*---------------------------------------------------------------------------*/
1607/*-- simulator engine -------------------------------------------------------*/
1608/*---------------------------------------------------------------------------*/
1609
1610static void
1611ColdReset (SIM_DESC sd)
1612{
1613 int cpu_nr;
1614 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1615 {
1616 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1617 /* RESET: Fixed PC address: */
1618 PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
1619 /* The reset vector address is in the unmapped, uncached memory space. */
1620
1621 SR &= ~(status_SR | status_TS | status_RP);
1622 SR |= (status_ERL | status_BEV);
1623
1624 /* Cheat and allow access to the complete register set immediately */
1625 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
1626 && WITH_TARGET_WORD_BITSIZE == 64)
1627 SR |= status_FR; /* 64bit registers */
1628
1629 /* Ensure that any instructions with pending register updates are
1630 cleared: */
1631 PENDING_INVALIDATE();
1632
1633 /* Initialise the FPU registers to the unknown state */
1634 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1635 {
1636 int rn;
1637 for (rn = 0; (rn < 32); rn++)
1638 FPR_STATE[rn] = fmt_uninterpreted;
1639 }
1640
1641 }
1642}
1643
1644
1645
1646
1647/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1648/* Signal an exception condition. This will result in an exception
1649 that aborts the instruction. The instruction operation pseudocode
1650 will never see a return from this function call. */
1651
1652void
1653signal_exception (SIM_DESC sd,
1654 sim_cpu *cpu,
1655 address_word cia,
1656 int exception,...)
1657{
1658 /* int vector; */
1659
1660#ifdef DEBUG
1661 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1662#endif /* DEBUG */
1663
1664 /* Ensure that any active atomic read/modify/write operation will fail: */
1665 LLBIT = 0;
1666
1667 /* Save registers before interrupt dispatching */
1668#ifdef SIM_CPU_EXCEPTION_TRIGGER
1669 SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia);
1670#endif
1671
1672 switch (exception) {
1673
e80fc152 1674 case DebugBreakPoint:
c906108c
SS
1675 if (! (Debug & Debug_DM))
1676 {
1677 if (INDELAYSLOT())
1678 {
1679 CANCELDELAYSLOT();
1680
1681 Debug |= Debug_DBD; /* signaled from within in delay slot */
1682 DEPC = cia - 4; /* reference the branch instruction */
1683 }
1684 else
1685 {
1686 Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
1687 DEPC = cia;
1688 }
1689
1690 Debug |= Debug_DM; /* in debugging mode */
1691 Debug |= Debug_DBp; /* raising a DBp exception */
1692 PC = 0xBFC00200;
1693 sim_engine_restart (SD, CPU, NULL, NULL_CIA);
1694 }
1695 break;
1696
e80fc152 1697 case ReservedInstruction:
c906108c
SS
1698 {
1699 va_list ap;
1700 unsigned int instruction;
1701 va_start(ap,exception);
1702 instruction = va_arg(ap,unsigned int);
1703 va_end(ap);
1704 /* Provide simple monitor support using ReservedInstruction
1705 exceptions. The following code simulates the fixed vector
1706 entry points into the IDT monitor by causing a simulator
1707 trap, performing the monitor operation, and returning to
1708 the address held in the $ra register (standard PCS return
1709 address). This means we only need to pre-load the vector
1710 space with suitable instruction values. For systems were
1711 actual trap instructions are used, we would not need to
1712 perform this magic. */
1713 if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
1714 {
8030f857
BE
1715 int reason = (instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK;
1716 if (!sim_monitor (SD, CPU, cia, reason))
1717 sim_io_error (sd, "sim_monitor: unhandled reason = %d, pc = 0x%s\n", reason, pr_addr (cia));
1718
c906108c
SS
1719 /* NOTE: This assumes that a branch-and-link style
1720 instruction was used to enter the vector (which is the
1721 case with the current IDT monitor). */
1722 sim_engine_restart (SD, CPU, NULL, RA);
1723 }
1724 /* Look for the mips16 entry and exit instructions, and
1725 simulate a handler for them. */
1726 else if ((cia & 1) != 0
1727 && (instruction & 0xf81f) == 0xe809
1728 && (instruction & 0x0c0) != 0x0c0)
1729 {
1730 mips16_entry (SD, CPU, cia, instruction);
1731 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
1732 }
1733 /* else fall through to normal exception processing */
1734 sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
1735 }
1736
1737 default:
1738 /* Store exception code into current exception id variable (used
1739 by exit code): */
1740
1741 /* TODO: If not simulating exceptions then stop the simulator
1742 execution. At the moment we always stop the simulation. */
1743
1744#ifdef SUBTARGET_R3900
1745 /* update interrupt-related registers */
1746
1747 /* insert exception code in bits 6:2 */
1748 CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
1749 /* shift IE/KU history bits left */
1750 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
1751
1752 if (STATE & simDELAYSLOT)
1753 {
1754 STATE &= ~simDELAYSLOT;
1755 CAUSE |= cause_BD;
1756 EPC = (cia - 4); /* reference the branch instruction */
1757 }
1758 else
1759 EPC = cia;
1760
1761 if (SR & status_BEV)
1762 PC = (signed)0xBFC00000 + 0x180;
1763 else
1764 PC = (signed)0x80000000 + 0x080;
1765#else
1766 /* See figure 5-17 for an outline of the code below */
1767 if (! (SR & status_EXL))
1768 {
1769 CAUSE = (exception << 2);
1770 if (STATE & simDELAYSLOT)
1771 {
1772 STATE &= ~simDELAYSLOT;
1773 CAUSE |= cause_BD;
1774 EPC = (cia - 4); /* reference the branch instruction */
1775 }
1776 else
1777 EPC = cia;
1778 /* FIXME: TLB et.al. */
1779 /* vector = 0x180; */
1780 }
1781 else
1782 {
1783 CAUSE = (exception << 2);
1784 /* vector = 0x180; */
1785 }
1786 SR |= status_EXL;
1787 /* Store exception code into current exception id variable (used
1788 by exit code): */
1789
1790 if (SR & status_BEV)
1791 PC = (signed)0xBFC00200 + 0x180;
1792 else
1793 PC = (signed)0x80000000 + 0x180;
1794#endif
1795
1796 switch ((CAUSE >> 2) & 0x1F)
1797 {
1798 case Interrupt:
1799 /* Interrupts arrive during event processing, no need to
1800 restart */
1801 return;
1802
1803 case NMIReset:
1804 /* Ditto */
1805#ifdef SUBTARGET_3900
1806 /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
1807 PC = (signed)0xBFC00000;
0d3e762b 1808#endif /* SUBTARGET_3900 */
c906108c
SS
1809 return;
1810
1811 case TLBModification:
1812 case TLBLoad:
1813 case TLBStore:
1814 case AddressLoad:
1815 case AddressStore:
1816 case InstructionFetch:
1817 case DataReference:
1818 /* The following is so that the simulator will continue from the
1819 exception handler address. */
1820 sim_engine_halt (SD, CPU, NULL, PC,
1821 sim_stopped, SIM_SIGBUS);
1822
1823 case ReservedInstruction:
1824 case CoProcessorUnusable:
1825 PC = EPC;
1826 sim_engine_halt (SD, CPU, NULL, PC,
1827 sim_stopped, SIM_SIGILL);
1828
1829 case IntegerOverflow:
1830 case FPE:
1831 sim_engine_halt (SD, CPU, NULL, PC,
1832 sim_stopped, SIM_SIGFPE);
1833
1834 case BreakPoint:
1835 sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP);
1836 break;
1837
1838 case SystemCall:
1839 case Trap:
1840 sim_engine_restart (SD, CPU, NULL, PC);
1841 break;
1842
1843 case Watch:
1844 PC = EPC;
1845 sim_engine_halt (SD, CPU, NULL, PC,
1846 sim_stopped, SIM_SIGTRAP);
1847
e80fc152 1848 default: /* Unknown internal exception */
c906108c
SS
1849 PC = EPC;
1850 sim_engine_halt (SD, CPU, NULL, PC,
1851 sim_stopped, SIM_SIGABRT);
1852
1853 }
1854
1855 case SimulatorFault:
1856 {
1857 va_list ap;
1858 char *msg;
1859 va_start(ap,exception);
1860 msg = va_arg(ap,char *);
1861 va_end(ap);
1862 sim_engine_abort (SD, CPU, NULL_CIA,
1863 "FATAL: Simulator error \"%s\"\n",msg);
1864 }
1865 }
1866
1867 return;
1868}
1869
1870
1871
402586aa
CD
1872/* This function implements what the MIPS32 and MIPS64 ISAs define as
1873 "UNPREDICTABLE" behaviour.
1874
1875 About UNPREDICTABLE behaviour they say: "UNPREDICTABLE results
1876 may vary from processor implementation to processor implementation,
1877 instruction to instruction, or as a function of time on the same
1878 implementation or instruction. Software can never depend on results
1879 that are UNPREDICTABLE. ..." (MIPS64 Architecture for Programmers
1880 Volume II, The MIPS64 Instruction Set. MIPS Document MD00087 revision
1881 0.95, page 2.)
1882
1883 For UNPREDICTABLE behaviour, we print a message, if possible print
1884 the offending instructions mips.igen instruction name (provided by
1885 the caller), and stop the simulator.
1886
1887 XXX FIXME: eventually, stopping the simulator should be made conditional
1888 on a command-line option. */
1889void
1890unpredictable_action(sim_cpu *cpu, address_word cia)
c906108c 1891{
402586aa
CD
1892 SIM_DESC sd = CPU_STATE(cpu);
1893
1894 sim_io_eprintf(sd, "UNPREDICTABLE: PC = 0x%s\n", pr_addr (cia));
1895 sim_engine_halt (SD, CPU, NULL, cia, sim_stopped, SIM_SIGABRT);
c906108c 1896}
c906108c 1897
c906108c
SS
1898
1899/*-- co-processor support routines ------------------------------------------*/
1900
1901static int UNUSED
1902CoProcPresent(unsigned int coproc_number)
1903{
1904 /* Return TRUE if simulator provides a model for the given co-processor number */
1905 return(0);
1906}
1907
1908void
1909cop_lw (SIM_DESC sd,
1910 sim_cpu *cpu,
1911 address_word cia,
1912 int coproc_num,
1913 int coproc_reg,
1914 unsigned int memword)
1915{
1916 switch (coproc_num)
1917 {
1918 case 1:
1919 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1920 {
1921#ifdef DEBUG
1922 printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
1923#endif
1924 StoreFPR(coproc_reg,fmt_word,(uword64)memword);
1925 FPR_STATE[coproc_reg] = fmt_uninterpreted;
1926 break;
1927 }
1928
1929 default:
1930#if 0 /* this should be controlled by a configuration option */
1931 sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
1932#endif
1933 break;
1934 }
1935
1936 return;
1937}
1938
1939void
1940cop_ld (SIM_DESC sd,
1941 sim_cpu *cpu,
1942 address_word cia,
1943 int coproc_num,
1944 int coproc_reg,
1945 uword64 memword)
1946{
1947
1948#ifdef DEBUG
1949 printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia) );
1950#endif
1951
1952 switch (coproc_num) {
1953 case 1:
1954 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1955 {
1956 StoreFPR(coproc_reg,fmt_uninterpreted,memword);
1957 break;
1958 }
1959
1960 default:
1961#if 0 /* this message should be controlled by a configuration option */
1962 sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
1963#endif
1964 break;
1965 }
1966
1967 return;
1968}
1969
1970
1971
1972
1973unsigned int
1974cop_sw (SIM_DESC sd,
1975 sim_cpu *cpu,
1976 address_word cia,
1977 int coproc_num,
1978 int coproc_reg)
1979{
1980 unsigned int value = 0;
1981
1982 switch (coproc_num)
1983 {
1984 case 1:
1985 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1986 {
1987 FP_formats hold;
1988 hold = FPR_STATE[coproc_reg];
1989 FPR_STATE[coproc_reg] = fmt_word;
1990 value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
1991 FPR_STATE[coproc_reg] = hold;
1992 break;
1993 }
1994
1995 default:
1996#if 0 /* should be controlled by configuration option */
1997 sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
1998#endif
1999 break;
2000 }
2001
2002 return(value);
2003}
2004
2005uword64
2006cop_sd (SIM_DESC sd,
2007 sim_cpu *cpu,
2008 address_word cia,
2009 int coproc_num,
2010 int coproc_reg)
2011{
2012 uword64 value = 0;
2013 switch (coproc_num)
2014 {
2015 case 1:
2016 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2017 {
2018 value = ValueFPR(coproc_reg,fmt_uninterpreted);
2019 break;
2020 }
2021
2022 default:
2023#if 0 /* should be controlled by configuration option */
2024 sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
2025#endif
2026 break;
2027 }
2028
2029 return(value);
2030}
2031
2032
2033
2034
2035void
2036decode_coproc (SIM_DESC sd,
2037 sim_cpu *cpu,
2038 address_word cia,
2039 unsigned int instruction)
2040{
2041 int coprocnum = ((instruction >> 26) & 3);
2042
2043 switch (coprocnum)
2044 {
2045 case 0: /* standard CPU control and cache registers */
2046 {
2047 int code = ((instruction >> 21) & 0x1F);
2048 int rt = ((instruction >> 16) & 0x1F);
2049 int rd = ((instruction >> 11) & 0x1F);
2050 int tail = instruction & 0x3ff;
2051 /* R4000 Users Manual (second edition) lists the following CP0
2052 instructions:
2053 CODE><-RT><RD-><--TAIL--->
2054 DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
2055 DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
2056 MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
2057 MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
2058 TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
2059 TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
2060 TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
2061 TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
2062 CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
2063 ERET Exception return (VR4100 = 01000010000000000000000000011000)
2064 */
4ce44c66
JM
2065 if (((code == 0x00) || (code == 0x04) /* MFC0 / MTC0 */
2066 || (code == 0x01) || (code == 0x05)) /* DMFC0 / DMTC0 */
2067 && tail == 0)
c906108c 2068 {
4ce44c66
JM
2069 /* Clear double/single coprocessor move bit. */
2070 code &= ~1;
2071
2072 /* M[TF]C0 (32 bits) | DM[TF]C0 (64 bits) */
c906108c
SS
2073
2074 switch (rd) /* NOTEs: Standard CP0 registers */
2075 {
2076 /* 0 = Index R4000 VR4100 VR4300 */
2077 /* 1 = Random R4000 VR4100 VR4300 */
2078 /* 2 = EntryLo0 R4000 VR4100 VR4300 */
2079 /* 3 = EntryLo1 R4000 VR4100 VR4300 */
2080 /* 4 = Context R4000 VR4100 VR4300 */
2081 /* 5 = PageMask R4000 VR4100 VR4300 */
2082 /* 6 = Wired R4000 VR4100 VR4300 */
2083 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2084 /* 9 = Count R4000 VR4100 VR4300 */
2085 /* 10 = EntryHi R4000 VR4100 VR4300 */
2086 /* 11 = Compare R4000 VR4100 VR4300 */
2087 /* 12 = SR R4000 VR4100 VR4300 */
2088#ifdef SUBTARGET_R3900
2089 case 3:
2090 /* 3 = Config R3900 */
2091 case 7:
2092 /* 7 = Cache R3900 */
2093 case 15:
2094 /* 15 = PRID R3900 */
2095
2096 /* ignore */
2097 break;
2098
2099 case 8:
2100 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2101 if (code == 0x00)
2102 GPR[rt] = COP0_BADVADDR;
2103 else
2104 COP0_BADVADDR = GPR[rt];
2105 break;
2106
2107#endif /* SUBTARGET_R3900 */
2108 case 12:
2109 if (code == 0x00)
2110 GPR[rt] = SR;
2111 else
2112 SR = GPR[rt];
2113 break;
2114 /* 13 = Cause R4000 VR4100 VR4300 */
2115 case 13:
2116 if (code == 0x00)
2117 GPR[rt] = CAUSE;
2118 else
2119 CAUSE = GPR[rt];
2120 break;
2121 /* 14 = EPC R4000 VR4100 VR4300 */
2122 case 14:
2123 if (code == 0x00)
2124 GPR[rt] = (signed_word) (signed_address) EPC;
2125 else
2126 EPC = GPR[rt];
2127 break;
2128 /* 15 = PRId R4000 VR4100 VR4300 */
2129#ifdef SUBTARGET_R3900
2130 /* 16 = Debug */
2131 case 16:
2132 if (code == 0x00)
2133 GPR[rt] = Debug;
2134 else
2135 Debug = GPR[rt];
2136 break;
2137#else
2138 /* 16 = Config R4000 VR4100 VR4300 */
2139 case 16:
2140 if (code == 0x00)
2141 GPR[rt] = C0_CONFIG;
2142 else
2143 C0_CONFIG = GPR[rt];
2144 break;
2145#endif
2146#ifdef SUBTARGET_R3900
2147 /* 17 = Debug */
2148 case 17:
2149 if (code == 0x00)
2150 GPR[rt] = DEPC;
2151 else
2152 DEPC = GPR[rt];
2153 break;
2154#else
2155 /* 17 = LLAddr R4000 VR4100 VR4300 */
2156#endif
2157 /* 18 = WatchLo R4000 VR4100 VR4300 */
2158 /* 19 = WatchHi R4000 VR4100 VR4300 */
2159 /* 20 = XContext R4000 VR4100 VR4300 */
2160 /* 26 = PErr or ECC R4000 VR4100 VR4300 */
2161 /* 27 = CacheErr R4000 VR4100 */
2162 /* 28 = TagLo R4000 VR4100 VR4300 */
2163 /* 29 = TagHi R4000 VR4100 VR4300 */
2164 /* 30 = ErrorEPC R4000 VR4100 VR4300 */
a3027dd7
FCE
2165 if (STATE_VERBOSE_P(SD))
2166 sim_io_eprintf (SD,
e30db738
AC
2167 "Warning: PC 0x%lx:interp.c decode_coproc DEADC0DE\n",
2168 (unsigned long)cia);
c906108c
SS
2169 GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
2170 /* CPR[0,rd] = GPR[rt]; */
2171 default:
2172 if (code == 0x00)
2173 GPR[rt] = (signed_word) (signed32) COP0_GPR[rd];
2174 else
2175 COP0_GPR[rd] = GPR[rt];
2176#if 0
2177 if (code == 0x00)
2178 sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2179 else
2180 sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2181#endif
2182 }
2183 }
2184 else if (code == 0x10 && (tail & 0x3f) == 0x18)
2185 {
2186 /* ERET */
2187 if (SR & status_ERL)
2188 {
2189 /* Oops, not yet available */
2190 sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
2191 PC = EPC;
2192 SR &= ~status_ERL;
2193 }
2194 else
2195 {
2196 PC = EPC;
2197 SR &= ~status_EXL;
2198 }
2199 }
2200 else if (code == 0x10 && (tail & 0x3f) == 0x10)
2201 {
2202 /* RFE */
2203#ifdef SUBTARGET_R3900
2204 /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
2205
2206 /* shift IE/KU history bits right */
2207 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
2208
2209 /* TODO: CACHE register */
2210#endif /* SUBTARGET_R3900 */
2211 }
2212 else if (code == 0x10 && (tail & 0x3f) == 0x1F)
2213 {
2214 /* DERET */
2215 Debug &= ~Debug_DM;
2216 DELAYSLOT();
2217 DSPC = DEPC;
2218 }
2219 else
2220 sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
2221 /* TODO: When executing an ERET or RFE instruction we should
2222 clear LLBIT, to ensure that any out-standing atomic
2223 read/modify/write sequence fails. */
2224 }
2225 break;
2226
2227 case 2: /* co-processor 2 */
2228 {
2229 int handle = 0;
2230
2231
2232 if(! handle)
2233 {
2234 sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
2235 instruction,pr_addr(cia));
2236 }
2237 }
2238 break;
2239
2240 case 1: /* should not occur (FPU co-processor) */
2241 case 3: /* should not occur (FPU co-processor) */
2242 SignalException(ReservedInstruction,instruction);
2243 break;
2244 }
2245
2246 return;
2247}
2248
2249
2250/* This code copied from gdb's utils.c. Would like to share this code,
2251 but don't know of a common place where both could get to it. */
2252
2253/* Temporary storage using circular buffer */
2254#define NUMCELLS 16
2255#define CELLSIZE 32
2256static char*
2257get_cell (void)
2258{
2259 static char buf[NUMCELLS][CELLSIZE];
2260 static int cell=0;
2261 if (++cell>=NUMCELLS) cell=0;
2262 return buf[cell];
2263}
2264
2265/* Print routines to handle variable size regs, etc */
2266
2267/* Eliminate warning from compiler on 32-bit systems */
2268static int thirty_two = 32;
2269
2270char*
2271pr_addr(addr)
2272 SIM_ADDR addr;
2273{
2274 char *paddr_str=get_cell();
2275 switch (sizeof(addr))
2276 {
2277 case 8:
2278 sprintf(paddr_str,"%08lx%08lx",
2279 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2280 break;
2281 case 4:
2282 sprintf(paddr_str,"%08lx",(unsigned long)addr);
2283 break;
2284 case 2:
2285 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
2286 break;
2287 default:
2288 sprintf(paddr_str,"%x",addr);
2289 }
2290 return paddr_str;
2291}
2292
2293char*
2294pr_uword64(addr)
2295 uword64 addr;
2296{
2297 char *paddr_str=get_cell();
2298 sprintf(paddr_str,"%08lx%08lx",
2299 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2300 return paddr_str;
2301}
2302
2303
2304void
2305mips_core_signal (SIM_DESC sd,
2306 sim_cpu *cpu,
2307 sim_cia cia,
2308 unsigned map,
2309 int nr_bytes,
2310 address_word addr,
2311 transfer_type transfer,
2312 sim_core_signals sig)
2313{
2314 const char *copy = (transfer == read_transfer ? "read" : "write");
2315 address_word ip = CIA_ADDR (cia);
2316
2317 switch (sig)
2318 {
2319 case sim_core_unmapped_signal:
2320 sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
2321 nr_bytes, copy,
2322 (unsigned long) addr, (unsigned long) ip);
2323 COP0_BADVADDR = addr;
2324 SignalExceptionDataReference();
2325 break;
2326
2327 case sim_core_unaligned_signal:
2328 sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
2329 nr_bytes, copy,
2330 (unsigned long) addr, (unsigned long) ip);
2331 COP0_BADVADDR = addr;
2332 if(transfer == read_transfer)
2333 SignalExceptionAddressLoad();
2334 else
2335 SignalExceptionAddressStore();
2336 break;
2337
2338 default:
2339 sim_engine_abort (sd, cpu, cia,
2340 "mips_core_signal - internal error - bad switch");
2341 }
2342}
2343
2344
2345void
2346mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
2347{
2348 ASSERT(cpu != NULL);
2349
2350 if(cpu->exc_suspended > 0)
2351 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended);
2352
2353 PC = cia;
2354 memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers));
2355 cpu->exc_suspended = 0;
2356}
2357
2358void
2359mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
2360{
2361 ASSERT(cpu != NULL);
2362
2363 if(cpu->exc_suspended > 0)
2364 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
2365 cpu->exc_suspended, exception);
2366
2367 memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers));
2368 memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers));
2369 cpu->exc_suspended = exception;
2370}
2371
2372void
2373mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
2374{
2375 ASSERT(cpu != NULL);
2376
2377 if(exception == 0 && cpu->exc_suspended > 0)
2378 {
2379 /* warn not for breakpoints */
2380 if(cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP))
2381 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
2382 cpu->exc_suspended);
2383 }
2384 else if(exception != 0 && cpu->exc_suspended > 0)
2385 {
2386 if(exception != cpu->exc_suspended)
2387 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
2388 cpu->exc_suspended, exception);
2389
2390 memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers));
2391 }
2392 else if(exception != 0 && cpu->exc_suspended == 0)
2393 {
2394 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
2395 }
2396 cpu->exc_suspended = 0;
2397}
2398
2399
2400/*---------------------------------------------------------------------------*/
2401/*> EOF interp.c <*/