]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/mn10300/interp.c
* eCos->devo merge
[thirdparty/binutils-gdb.git] / sim / mn10300 / interp.c
CommitLineData
05ccbdfd 1#include <signal.h>
6274d39b
JJ
2
3#if WITH_COMMON
4#include "sim-main.h"
e855e576 5#include "sim-options.h"
6d133cc9 6/* start-sanitize-am30 */
6100784a 7#include "sim-hw.h"
6d133cc9 8/* end-sanitize-am30 */
6274d39b
JJ
9#else
10#include "mn10300_sim.h"
11#endif
12
05ccbdfd
JL
13#include "sysdep.h"
14#include "bfd.h"
6274d39b
JJ
15#include "sim-assert.h"
16
17
18#ifdef HAVE_STDLIB_H
19#include <stdlib.h>
20#endif
21
22#ifdef HAVE_STRING_H
23#include <string.h>
24#else
25#ifdef HAVE_STRINGS_H
26#include <strings.h>
27#endif
28#endif
29
30#include "bfd.h"
31
32#ifndef INLINE
33#ifdef __GNUC__
34#define INLINE inline
35#else
36#define INLINE
37#endif
38#endif
05ccbdfd 39
05ccbdfd 40
05ccbdfd
JL
41host_callback *mn10300_callback;
42int mn10300_debug;
43
6adf5185
JJ
44
45/* simulation target board. NULL=default configuration */
46static char* board = NULL;
47
48static DECLARE_OPTION_HANDLER (mn10300_option_handler);
49
50enum {
51 OPTION_BOARD = OPTION_START,
52};
53
54static SIM_RC
55mn10300_option_handler (sd, cpu, opt, arg, is_command)
56 SIM_DESC sd;
57 sim_cpu *cpu;
58 int opt;
59 char *arg;
60 int is_command;
61{
62 int cpu_nr;
63 switch (opt)
64 {
65 case OPTION_BOARD:
66 {
67 if (arg)
68 {
69 board = zalloc(strlen(arg) + 1);
70 strcpy(board, arg);
71 }
72 return SIM_RC_OK;
73 }
74 }
75
76 return SIM_RC_OK;
77}
78
79static const OPTION mn10300_options[] =
80{
81/* start-sanitize-am30 */
0df90cd8 82#define BOARD_AM32 "stdeval1"
6adf5185
JJ
83 { {"board", required_argument, NULL, OPTION_BOARD},
84 '\0', "none" /* rely on compile-time string concatenation for other options */
85 "|" BOARD_AM32
86 , "Customize simulation for a particular board.", mn10300_option_handler },
87/* end-sanitize-am30 */
88
89 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
90};
91
6274d39b
JJ
92#if WITH_COMMON
93#else
baa83bcc 94static void dispatch PARAMS ((uint32, uint32, int));
05ccbdfd
JL
95static long hash PARAMS ((long));
96static void init_system PARAMS ((void));
e855e576
AC
97
98static SIM_OPEN_KIND sim_kind;
99static char *myname;
baa83bcc 100#define MAX_HASH 127
05ccbdfd
JL
101
102struct hash_entry
103{
104 struct hash_entry *next;
105 long opcode;
106 long mask;
107 struct simops *ops;
baa83bcc
JL
108#ifdef HASH_STAT
109 unsigned long count;
110#endif
05ccbdfd
JL
111};
112
234a9a49 113static int max_mem = 0;
05ccbdfd
JL
114struct hash_entry hash_table[MAX_HASH+1];
115
116
d2523010
JL
117/* This probably doesn't do a very good job at bucket filling, but
118 it's simple... */
05ccbdfd
JL
119static INLINE long
120hash(insn)
121 long insn;
122{
baa83bcc
JL
123 /* These are one byte insns, we special case these since, in theory,
124 they should be the most heavily used. */
d2523010
JL
125 if ((insn & 0xffffff00) == 0)
126 {
baa83bcc
JL
127 switch (insn & 0xf0)
128 {
129 case 0x00:
130 return 0x70;
131
132 case 0x40:
133 return 0x71;
134
135 case 0x10:
136 return 0x72;
137
138 case 0x30:
139 return 0x73;
140
141 case 0x50:
142 return 0x74;
143
144 case 0x60:
145 return 0x75;
146
147 case 0x70:
148 return 0x76;
149
150 case 0x80:
151 return 0x77;
152
153 case 0x90:
154 return 0x78;
155
156 case 0xa0:
157 return 0x79;
158
159 case 0xb0:
160 return 0x7a;
161
162 case 0xe0:
163 return 0x7b;
164
165 default:
166 return 0x7c;
167 }
d2523010
JL
168 }
169
170 /* These are two byte insns */
171 if ((insn & 0xffff0000) == 0)
172 {
173 if ((insn & 0xf000) == 0x2000
174 || (insn & 0xf000) == 0x5000)
baa83bcc 175 return ((insn & 0xfc00) >> 8) & 0x7f;
d2523010
JL
176
177 if ((insn & 0xf000) == 0x4000)
baa83bcc 178 return ((insn & 0xf300) >> 8) & 0x7f;
d2523010
JL
179
180 if ((insn & 0xf000) == 0x8000
181 || (insn & 0xf000) == 0x9000
182 || (insn & 0xf000) == 0xa000
183 || (insn & 0xf000) == 0xb000)
baa83bcc
JL
184 return ((insn & 0xf000) >> 8) & 0x7f;
185
186 if ((insn & 0xff00) == 0xf000
187 || (insn & 0xff00) == 0xf100
188 || (insn & 0xff00) == 0xf200
189 || (insn & 0xff00) == 0xf500
190 || (insn & 0xff00) == 0xf600)
191 return ((insn & 0xfff0) >> 4) & 0x7f;
192
193 if ((insn & 0xf000) == 0xc000)
194 return ((insn & 0xff00) >> 8) & 0x7f;
195
196 return ((insn & 0xffc0) >> 6) & 0x7f;
d2523010
JL
197 }
198
199 /* These are three byte insns. */
200 if ((insn & 0xff000000) == 0)
201 {
202 if ((insn & 0xf00000) == 0x000000)
baa83bcc 203 return ((insn & 0xf30000) >> 16) & 0x7f;
d2523010
JL
204
205 if ((insn & 0xf00000) == 0x200000
206 || (insn & 0xf00000) == 0x300000)
baa83bcc
JL
207 return ((insn & 0xfc0000) >> 16) & 0x7f;
208
209 if ((insn & 0xff0000) == 0xf80000)
210 return ((insn & 0xfff000) >> 12) & 0x7f;
d2523010 211
baa83bcc
JL
212 if ((insn & 0xff0000) == 0xf90000)
213 return ((insn & 0xfffc00) >> 10) & 0x7f;
214
215 return ((insn & 0xff0000) >> 16) & 0x7f;
d2523010
JL
216 }
217
218 /* These are four byte or larger insns. */
baa83bcc
JL
219 if ((insn & 0xf0000000) == 0xf0000000)
220 return ((insn & 0xfff00000) >> 20) & 0x7f;
221
222 return ((insn & 0xff000000) >> 24) & 0x7f;
05ccbdfd
JL
223}
224
4df7aeb3 225static INLINE void
baa83bcc
JL
226dispatch (insn, extension, length)
227 uint32 insn;
228 uint32 extension;
d2523010 229 int length;
05ccbdfd
JL
230{
231 struct hash_entry *h;
232
baa83bcc 233 h = &hash_table[hash(insn)];
05ccbdfd 234
baa83bcc
JL
235 while ((insn & h->mask) != h->opcode
236 || (length != h->ops->length))
05ccbdfd 237 {
baa83bcc 238 if (!h->next)
05ccbdfd 239 {
baa83bcc
JL
240 (*mn10300_callback->printf_filtered) (mn10300_callback,
241 "ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC);
05ccbdfd
JL
242 exit(1);
243 }
244 h = h->next;
245 }
baa83bcc
JL
246
247
248#ifdef HASH_STAT
249 h->count++;
250#endif
251
252 /* Now call the right function. */
253 (h->ops->func)(insn, extension);
254 PC += length;
05ccbdfd
JL
255}
256
05ccbdfd
JL
257void
258sim_size (power)
259 int power;
260
261{
262 if (State.mem)
263 free (State.mem);
264
234a9a49 265 max_mem = 1 << power;
05ccbdfd
JL
266 State.mem = (uint8 *) calloc (1, 1 << power);
267 if (!State.mem)
268 {
269 (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
270 exit (1);
271 }
272}
273
274static void
275init_system ()
276{
277 if (!State.mem)
6cc6987e 278 sim_size(19);
05ccbdfd
JL
279}
280
281int
6cc6987e
DE
282sim_write (sd, addr, buffer, size)
283 SIM_DESC sd;
05ccbdfd
JL
284 SIM_ADDR addr;
285 unsigned char *buffer;
286 int size;
287{
288 int i;
289
290 init_system ();
291
292 for (i = 0; i < size; i++)
003c91be 293 store_byte (addr + i, buffer[i]);
05ccbdfd
JL
294
295 return size;
296}
297
b07a1e78
JL
298/* Compare two opcode table entries for qsort. */
299static int
300compare_simops (arg1, arg2)
301 const PTR arg1;
302 const PTR arg2;
303{
304 unsigned long code1 = ((struct simops *)arg1)->opcode;
305 unsigned long code2 = ((struct simops *)arg2)->opcode;
306
307 if (code1 < code2)
308 return -1;
309 if (code2 < code1)
310 return 1;
311 return 0;
312}
313
6cc6987e 314SIM_DESC
247fccde 315sim_open (kind, cb, abfd, argv)
6cc6987e 316 SIM_OPEN_KIND kind;
003c91be 317 host_callback *cb;
247fccde 318 struct _bfd *abfd;
6cc6987e 319 char **argv;
05ccbdfd
JL
320{
321 struct simops *s;
322 struct hash_entry *h;
6cc6987e 323 char **p;
b07a1e78
JL
324 int i;
325
003c91be
JL
326 mn10300_callback = cb;
327
b07a1e78
JL
328 /* Sort the opcode array from smallest opcode to largest.
329 This will generally improve simulator performance as the smaller
330 opcodes are generally preferred to the larger opcodes. */
331 for (i = 0, s = Simops; s->func; s++, i++)
332 ;
333 qsort (Simops, i, sizeof (Simops[0]), compare_simops);
6cc6987e
DE
334
335 sim_kind = kind;
336 myname = argv[0];
337
338 for (p = argv + 1; *p; ++p)
05ccbdfd 339 {
6cc6987e
DE
340 if (strcmp (*p, "-E") == 0)
341 ++p; /* ignore endian spec */
342 else
05ccbdfd 343#ifdef DEBUG
6cc6987e 344 if (strcmp (*p, "-t") == 0)
05ccbdfd
JL
345 mn10300_debug = DEBUG;
346 else
347#endif
6cc6987e 348 (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p);
05ccbdfd
JL
349 }
350
baa83bcc 351 /* put all the opcodes in the hash table */
05ccbdfd
JL
352 for (s = Simops; s->func; s++)
353 {
354 h = &hash_table[hash(s->opcode)];
baa83bcc 355
05ccbdfd
JL
356 /* go to the last entry in the chain */
357 while (h->next)
baa83bcc
JL
358 {
359 /* Don't insert the same opcode more than once. */
360 if (h->opcode == s->opcode
361 && h->mask == s->mask
362 && h->ops == s)
247fccde 363 break;
baa83bcc
JL
364 else
365 h = h->next;
366 }
367
368 /* Don't insert the same opcode more than once. */
369 if (h->opcode == s->opcode
370 && h->mask == s->mask
371 && h->ops == s)
372 continue;
05ccbdfd
JL
373
374 if (h->ops)
375 {
376 h->next = calloc(1,sizeof(struct hash_entry));
377 h = h->next;
378 }
379 h->ops = s;
380 h->mask = s->mask;
381 h->opcode = s->opcode;
baa83bcc
JL
382#if HASH_STAT
383 h->count = 0;
384#endif
05ccbdfd 385 }
6cc6987e 386
baa83bcc 387
6cc6987e
DE
388 /* fudge our descriptor for now */
389 return (SIM_DESC) 1;
05ccbdfd
JL
390}
391
392
393void
6cc6987e
DE
394sim_close (sd, quitting)
395 SIM_DESC sd;
05ccbdfd
JL
396 int quitting;
397{
398 /* nothing to do */
399}
400
401void
402sim_set_profile (n)
403 int n;
404{
405 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
406}
407
408void
409sim_set_profile_size (n)
410 int n;
411{
412 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
413}
414
baa83bcc
JL
415int
416sim_stop (sd)
417 SIM_DESC sd;
418{
419 return 0;
420}
421
05ccbdfd 422void
6cc6987e
DE
423sim_resume (sd, step, siggnal)
424 SIM_DESC sd;
05ccbdfd
JL
425 int step, siggnal;
426{
7c52bf32 427 uint32 inst;
05ccbdfd 428 reg_t oldpc;
d2523010 429 struct hash_entry *h;
05ccbdfd
JL
430
431 if (step)
432 State.exception = SIGTRAP;
433 else
434 State.exception = 0;
435
247fccde
AC
436 State.exited = 0;
437
05ccbdfd
JL
438 do
439 {
d2523010
JL
440 unsigned long insn, extension;
441
05ccbdfd 442 /* Fetch the current instruction. */
baa83bcc 443 inst = load_mem_big (PC, 2);
05ccbdfd 444 oldpc = PC;
05ccbdfd 445
baa83bcc
JL
446 /* Using a giant case statement may seem like a waste because of the
447 code/rodata size the table itself will consume. However, using
448 a giant case statement speeds up the simulator by 10-15% by avoiding
449 cascading if/else statements or cascading case statements. */
d2523010 450
baa83bcc 451 switch ((inst >> 8) & 0xff)
d2523010 452 {
baa83bcc
JL
453 /* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0
454 which must be handled specially. */
455 case 0x00:
456 case 0x04:
457 case 0x08:
458 case 0x0c:
09e142d5 459 case 0x10:
baa83bcc
JL
460 case 0x11:
461 case 0x12:
462 case 0x13:
463 case 0x14:
464 case 0x15:
465 case 0x16:
466 case 0x17:
467 case 0x18:
468 case 0x19:
469 case 0x1a:
470 case 0x1b:
471 case 0x1c:
472 case 0x1d:
473 case 0x1e:
474 case 0x1f:
475 case 0x3c:
476 case 0x3d:
477 case 0x3e:
478 case 0x3f:
479 case 0x40:
480 case 0x41:
481 case 0x44:
482 case 0x45:
483 case 0x48:
484 case 0x49:
485 case 0x4c:
486 case 0x4d:
487 case 0x50:
488 case 0x51:
489 case 0x52:
490 case 0x53:
491 case 0x54:
492 case 0x55:
493 case 0x56:
494 case 0x57:
495 case 0x60:
496 case 0x61:
497 case 0x62:
498 case 0x63:
499 case 0x64:
500 case 0x65:
501 case 0x66:
502 case 0x67:
503 case 0x68:
504 case 0x69:
505 case 0x6a:
506 case 0x6b:
507 case 0x6c:
508 case 0x6d:
509 case 0x6e:
510 case 0x6f:
511 case 0x70:
512 case 0x71:
513 case 0x72:
514 case 0x73:
515 case 0x74:
516 case 0x75:
517 case 0x76:
518 case 0x77:
519 case 0x78:
520 case 0x79:
521 case 0x7a:
522 case 0x7b:
523 case 0x7c:
524 case 0x7d:
525 case 0x7e:
526 case 0x7f:
527 case 0xcb:
528 case 0xd0:
529 case 0xd1:
530 case 0xd2:
531 case 0xd3:
532 case 0xd4:
533 case 0xd5:
534 case 0xd6:
535 case 0xd7:
536 case 0xd8:
537 case 0xd9:
538 case 0xda:
539 case 0xdb:
540 case 0xe0:
541 case 0xe1:
542 case 0xe2:
543 case 0xe3:
544 case 0xe4:
545 case 0xe5:
546 case 0xe6:
547 case 0xe7:
548 case 0xe8:
549 case 0xe9:
550 case 0xea:
551 case 0xeb:
552 case 0xec:
553 case 0xed:
554 case 0xee:
555 case 0xef:
556 case 0xff:
557 insn = (inst >> 8) & 0xff;
558 extension = 0;
559 dispatch (insn, extension, 1);
560 break;
561
562 /* Special cases where dm == dn is used to encode a different
563 instruction. */
564 case 0x80:
565 case 0x85:
566 case 0x8a:
567 case 0x8f:
568 case 0x90:
569 case 0x95:
570 case 0x9a:
571 case 0x9f:
572 case 0xa0:
573 case 0xa5:
574 case 0xaa:
575 case 0xaf:
576 case 0xb0:
577 case 0xb5:
578 case 0xba:
579 case 0xbf:
580 insn = inst;
581 extension = 0;
582 dispatch (insn, extension, 2);
583 break;
584
585 case 0x81:
586 case 0x82:
587 case 0x83:
588 case 0x84:
589 case 0x86:
590 case 0x87:
591 case 0x88:
592 case 0x89:
593 case 0x8b:
594 case 0x8c:
595 case 0x8d:
596 case 0x8e:
597 case 0x91:
598 case 0x92:
599 case 0x93:
600 case 0x94:
601 case 0x96:
602 case 0x97:
603 case 0x98:
604 case 0x99:
605 case 0x9b:
606 case 0x9c:
607 case 0x9d:
608 case 0x9e:
609 case 0xa1:
610 case 0xa2:
611 case 0xa3:
612 case 0xa4:
613 case 0xa6:
614 case 0xa7:
615 case 0xa8:
616 case 0xa9:
617 case 0xab:
618 case 0xac:
619 case 0xad:
620 case 0xae:
621 case 0xb1:
622 case 0xb2:
623 case 0xb3:
624 case 0xb4:
625 case 0xb6:
626 case 0xb7:
627 case 0xb8:
628 case 0xb9:
629 case 0xbb:
630 case 0xbc:
631 case 0xbd:
632 case 0xbe:
633 insn = (inst >> 8) & 0xff;
634 extension = 0;
635 dispatch (insn, extension, 1);
636 break;
637
638 /* The two byte instructions. */
639 case 0x20:
640 case 0x21:
641 case 0x22:
642 case 0x23:
643 case 0x28:
644 case 0x29:
645 case 0x2a:
646 case 0x2b:
647 case 0x42:
648 case 0x43:
649 case 0x46:
650 case 0x47:
651 case 0x4a:
652 case 0x4b:
653 case 0x4e:
654 case 0x4f:
655 case 0x58:
656 case 0x59:
657 case 0x5a:
658 case 0x5b:
659 case 0x5c:
660 case 0x5d:
661 case 0x5e:
662 case 0x5f:
663 case 0xc0:
664 case 0xc1:
665 case 0xc2:
666 case 0xc3:
667 case 0xc4:
668 case 0xc5:
669 case 0xc6:
670 case 0xc7:
671 case 0xc8:
672 case 0xc9:
673 case 0xca:
674 case 0xce:
675 case 0xcf:
676 case 0xf0:
677 case 0xf1:
678 case 0xf2:
679 case 0xf3:
680 case 0xf4:
681 case 0xf5:
682 case 0xf6:
683 insn = inst;
684 extension = 0;
685 dispatch (insn, extension, 2);
686 break;
687
688 /* The three byte insns with a 16bit operand in little endian
689 format. */
690 case 0x01:
691 case 0x02:
692 case 0x03:
693 case 0x05:
694 case 0x06:
695 case 0x07:
696 case 0x09:
697 case 0x0a:
698 case 0x0b:
699 case 0x0d:
700 case 0x0e:
701 case 0x0f:
702 case 0x24:
703 case 0x25:
704 case 0x26:
705 case 0x27:
706 case 0x2c:
707 case 0x2d:
708 case 0x2e:
709 case 0x2f:
710 case 0x30:
711 case 0x31:
712 case 0x32:
713 case 0x33:
714 case 0x34:
715 case 0x35:
716 case 0x36:
717 case 0x37:
718 case 0x38:
719 case 0x39:
720 case 0x3a:
721 case 0x3b:
722 case 0xcc:
003c91be 723 insn = load_byte (PC);
baa83bcc 724 insn <<= 16;
003c91be 725 insn |= load_half (PC + 1);
baa83bcc
JL
726 extension = 0;
727 dispatch (insn, extension, 3);
728 break;
729
730 /* The three byte insns without 16bit operand. */
731 case 0xde:
732 case 0xdf:
733 case 0xf8:
734 case 0xf9:
735 insn = load_mem_big (PC, 3);
736 extension = 0;
737 dispatch (insn, extension, 3);
738 break;
739
740 /* Four byte insns. */
741 case 0xfa:
742 case 0xfb:
743 if ((inst & 0xfffc) == 0xfaf0
744 || (inst & 0xfffc) == 0xfaf4
745 || (inst & 0xfffc) == 0xfaf8)
746 insn = load_mem_big (PC, 4);
747 else
748 {
749 insn = inst;
750 insn <<= 16;
003c91be 751 insn |= load_half (PC + 2);
baa83bcc
JL
752 extension = 0;
753 }
754 dispatch (insn, extension, 4);
755 break;
756
757 /* Five byte insns. */
758 case 0xcd:
003c91be 759 insn = load_byte (PC);
baa83bcc 760 insn <<= 24;
003c91be
JL
761 insn |= (load_half (PC + 1) << 8);
762 insn |= load_byte (PC + 3);
763 extension = load_byte (PC + 4);
baa83bcc
JL
764 dispatch (insn, extension, 5);
765 break;
766
767 case 0xdc:
003c91be 768 insn = load_byte (PC);
baa83bcc 769 insn <<= 24;
003c91be 770 extension = load_word (PC + 1);
baa83bcc
JL
771 insn |= (extension & 0xffffff00) >> 8;
772 extension &= 0xff;
773 dispatch (insn, extension, 5);
774 break;
775
776 /* Six byte insns. */
777 case 0xfc:
778 case 0xfd:
779 insn = (inst << 16);
003c91be 780 extension = load_word (PC + 2);
baa83bcc
JL
781 insn |= ((extension & 0xffff0000) >> 16);
782 extension &= 0xffff;
783 dispatch (insn, extension, 6);
784 break;
785
786 case 0xdd:
003c91be
JL
787 insn = load_byte (PC) << 24;
788 extension = load_word (PC + 1);
baa83bcc
JL
789 insn |= ((extension >> 8) & 0xffffff);
790 extension = (extension & 0xff) << 16;
003c91be
JL
791 extension |= load_byte (PC + 5) << 8;
792 extension |= load_byte (PC + 6);
baa83bcc
JL
793 dispatch (insn, extension, 7);
794 break;
795
796 case 0xfe:
797 insn = inst << 16;
003c91be 798 extension = load_word (PC + 2);
baa83bcc
JL
799 insn |= ((extension >> 16) & 0xffff);
800 extension <<= 8;
801 extension &= 0xffff00;
003c91be 802 extension |= load_byte (PC + 6);
baa83bcc
JL
803 dispatch (insn, extension, 7);
804 break;
805
806 default:
807 abort ();
05ccbdfd
JL
808 }
809 }
810 while (!State.exception);
baa83bcc
JL
811
812#ifdef HASH_STAT
813 {
814 int i;
815 for (i = 0; i < MAX_HASH; i++)
816 {
817 struct hash_entry *h;
818 h = &hash_table[i];
819
820 printf("hash 0x%x:\n", i);
821
822 while (h)
823 {
824 printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count);
825 h = h->next;
826 }
827
828 printf("\n\n");
829 }
830 fflush (stdout);
831 }
832#endif
833
05ccbdfd
JL
834}
835
836int
6cc6987e
DE
837sim_trace (sd)
838 SIM_DESC sd;
05ccbdfd
JL
839{
840#ifdef DEBUG
841 mn10300_debug = DEBUG;
842#endif
6cc6987e 843 sim_resume (sd, 0, 0);
05ccbdfd
JL
844 return 1;
845}
846
847void
6cc6987e
DE
848sim_info (sd, verbose)
849 SIM_DESC sd;
05ccbdfd
JL
850 int verbose;
851{
852 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
853}
854
6cc6987e 855SIM_RC
6274d39b 856sim_create_inferior (sd, abfd, argv, env)
6cc6987e 857 SIM_DESC sd;
6274d39b 858 struct _bfd *abfd;
05ccbdfd
JL
859 char **argv;
860 char **env;
861{
6274d39b
JJ
862 if (abfd != NULL)
863 PC = bfd_get_start_address (abfd);
864 else
865 PC = 0;
6cc6987e 866 return SIM_RC_OK;
05ccbdfd
JL
867}
868
05ccbdfd 869void
003c91be 870sim_set_callbacks (p)
05ccbdfd
JL
871 host_callback *p;
872{
873 mn10300_callback = p;
874}
875
876/* All the code for exiting, signals, etc needs to be revamped.
877
878 This is enough to get c-torture limping though. */
879
880void
6cc6987e
DE
881sim_stop_reason (sd, reason, sigrc)
882 SIM_DESC sd;
05ccbdfd
JL
883 enum sim_stop *reason;
884 int *sigrc;
885{
247fccde
AC
886 if (State.exited)
887 *reason = sim_exited;
888 else
889 *reason = sim_stopped;
05ccbdfd
JL
890 if (State.exception == SIGQUIT)
891 *sigrc = 0;
892 else
893 *sigrc = State.exception;
894}
895
05ccbdfd 896int
6cc6987e
DE
897sim_read (sd, addr, buffer, size)
898 SIM_DESC sd;
05ccbdfd
JL
899 SIM_ADDR addr;
900 unsigned char *buffer;
901 int size;
902{
903 int i;
904 for (i = 0; i < size; i++)
003c91be 905 buffer[i] = load_byte (addr + i);
05ccbdfd
JL
906
907 return size;
908}
909
910void
6cc6987e
DE
911sim_do_command (sd, cmd)
912 SIM_DESC sd;
05ccbdfd
JL
913 char *cmd;
914{
915 (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
916}
917
6cc6987e
DE
918SIM_RC
919sim_load (sd, prog, abfd, from_tty)
920 SIM_DESC sd;
05ccbdfd 921 char *prog;
6cc6987e 922 bfd *abfd;
05ccbdfd
JL
923 int from_tty;
924{
6cc6987e
DE
925 extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
926 bfd *prog_bfd;
927
928 prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd,
6274d39b
JJ
929 sim_kind == SIM_OPEN_DEBUG,
930 0, sim_write);
6cc6987e
DE
931 if (prog_bfd == NULL)
932 return SIM_RC_FAIL;
6cc6987e
DE
933 if (abfd == NULL)
934 bfd_close (prog_bfd);
935 return SIM_RC_OK;
05ccbdfd 936}
6274d39b
JJ
937#endif /* not WITH_COMMON */
938
939
940#if WITH_COMMON
941
942/* For compatibility */
943SIM_DESC simulator;
944
6274d39b
JJ
945/* These default values correspond to expected usage for the chip. */
946
947SIM_DESC
948sim_open (kind, cb, abfd, argv)
949 SIM_OPEN_KIND kind;
950 host_callback *cb;
951 struct _bfd *abfd;
952 char **argv;
953{
954 SIM_DESC sd = sim_state_alloc (kind, cb);
6274d39b
JJ
955 mn10300_callback = cb;
956
957 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
958
959 /* for compatibility */
960 simulator = sd;
961
6100784a
AC
962 /* FIXME: should be better way of setting up interrupts. For
963 moment, only support watchpoints causing a breakpoint (gdb
964 halt). */
6274d39b
JJ
965 STATE_WATCHPOINTS (sd)->pc = &(PC);
966 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
6100784a
AC
967 STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
968 STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
6274d39b
JJ
969
970 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
971 return 0;
6adf5185 972 sim_add_option_table (sd, NULL, mn10300_options);
6274d39b
JJ
973
974 /* Allocate core managed memory */
6274d39b 975 sim_do_command (sd, "memory region 0,0x100000");
6100784a 976 sim_do_command (sd, "memory region 0x40000000,0x100000");
6274d39b
JJ
977
978 /* getopt will print the error message so we just have to exit if this fails.
979 FIXME: Hmmm... in the case of gdb we need getopt to call
980 print_filtered. */
981 if (sim_parse_args (sd, argv) != SIM_RC_OK)
982 {
983 /* Uninstall the modules to avoid memory leaks,
984 file descriptor leaks, etc. */
985 sim_module_uninstall (sd);
986 return 0;
987 }
988
6d133cc9 989 /* start-sanitize-am30 */
6adf5185
JJ
990 if ( NULL != board
991 && (strcmp(board, BOARD_AM32) == 0 ) )
992 {
993 /* device support for mn1030002 */
994 /* interrupt controller */
995
f0ce242f 996 sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
6adf5185
JJ
997
998 /* DEBUG: NMI input's */
999 sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
1000 sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
1001 sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
1002 sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
1003
1004 /* DEBUG: ACK input */
1005 sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
1006 sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
1007
1008 /* DEBUG: LEVEL output */
1009 sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
1010 sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
1011 sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
1012
1013 /* DEBUG: A bunch of interrupt inputs */
1014 sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
1015 sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
1016 sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
1017 sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
1018 sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
1019 sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
1020 sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
1021 sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
1022 sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
1023
1024 /* processor interrupt device */
1025
1026 /* the device */
1027 sim_hw_parse (sd, "/mn103cpu@0x20000000");
1028 sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
1029
1030 /* DEBUG: ACK output wired upto a glue device */
1031 sim_hw_parse (sd, "/glue@0x20002000");
1032 sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
1033 sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
1034
1035 /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
1036 sim_hw_parse (sd, "/glue@0x20004000");
1037 sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
1038 sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
1039 sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
1040 sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
1041
1042 /* REAL: The processor wired up to the real interrupt controller */
1043 sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
1044 sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
1045 sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
1046
1047
1048 /* PAL */
1049
1050 /* the device */
1051 sim_hw_parse (sd, "/pal@0x31000000");
1052 sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
1053 sim_hw_parse (sd, "/pal@0x31000000/poll? true");
1054
1055 /* DEBUG: PAL wired up to a glue device */
1056 sim_hw_parse (sd, "/glue@0x31002000");
1057 sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
1058 sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
1059 sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
1060 sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
1061 sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
1062 sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
1063 sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
1064
1065 /* REAL: The PAL wired up to the real interrupt controller */
1066 sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
1067 sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
1068 sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
1069
1070 /* 8 and 16 bit timers */
1071 sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100");
1072
1073 /* Hook timer interrupts up to interrupt controller */
1074 sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
1075 sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
1076 sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
1077 sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
1078 sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
1079 sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
1080 sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
1081 sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
1082 sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
1083
1084
1085 /* Serial devices 0,1,2 */
1086 sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
f0ce242f 1087 sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
6adf5185
JJ
1088
1089 /* Hook serial interrupts up to interrupt controller */
1090 sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
1091 sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
1092 sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-0-receive /mn103int");
1093 sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-0-transmit /mn103int");
1094 sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-0-receive /mn103int");
1095 sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-0-transmit /mn103int");
f0ce242f
JJ
1096
1097 sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
6adf5185
JJ
1098 }
1099
6d133cc9 1100 /* end-sanitize-am30 */
6100784a 1101
6274d39b
JJ
1102 /* check for/establish the a reference program image */
1103 if (sim_analyze_program (sd,
1104 (STATE_PROG_ARGV (sd) != NULL
1105 ? *STATE_PROG_ARGV (sd)
1106 : NULL),
1107 abfd) != SIM_RC_OK)
1108 {
1109 sim_module_uninstall (sd);
1110 return 0;
1111 }
1112
1113 /* establish any remaining configuration options */
1114 if (sim_config (sd) != SIM_RC_OK)
1115 {
1116 sim_module_uninstall (sd);
1117 return 0;
1118 }
1119
1120 if (sim_post_argv_init (sd) != SIM_RC_OK)
1121 {
1122 /* Uninstall the modules to avoid memory leaks,
1123 file descriptor leaks, etc. */
1124 sim_module_uninstall (sd);
1125 return 0;
1126 }
1127
1128
1129 /* set machine specific configuration */
1130/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
1131/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
1132
1133 return sd;
1134}
1135
1136
1137void
1138sim_close (sd, quitting)
1139 SIM_DESC sd;
1140 int quitting;
1141{
1142 sim_module_uninstall (sd);
1143}
1144
1145
1146SIM_RC
1147sim_create_inferior (sd, prog_bfd, argv, env)
1148 SIM_DESC sd;
1149 struct _bfd *prog_bfd;
1150 char **argv;
1151 char **env;
1152{
1153 memset (&State, 0, sizeof (State));
1154 if (prog_bfd != NULL) {
1155 PC = bfd_get_start_address (prog_bfd);
1156 } else {
1157 PC = 0;
1158 }
1159 CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
1160
1161 return SIM_RC_OK;
1162}
1163
1164void
1165sim_do_command (sd, cmd)
1166 SIM_DESC sd;
1167 char *cmd;
1168{
1169 char *mm_cmd = "memory-map";
1170 char *int_cmd = "interrupt";
1171
1172 if (sim_args_command (sd, cmd) != SIM_RC_OK)
1173 {
1174 if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
1175 sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
1176 else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
1177 sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
1178 else
1179 sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
1180 }
1181}
1182#endif /* WITH_COMMON */
1183
1184/* FIXME These would more efficient to use than load_mem/store_mem,
1185 but need to be changed to use the memory map. */
1186
1187uint8
1188get_byte (x)
1189 uint8 *x;
1190{
1191 return *x;
1192}
1193
1194uint16
1195get_half (x)
1196 uint8 *x;
1197{
1198 uint8 *a = x;
1199 return (a[1] << 8) + (a[0]);
1200}
1201
1202uint32
1203get_word (x)
1204 uint8 *x;
1205{
1206 uint8 *a = x;
1207 return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
1208}
1209
1210void
1211put_byte (addr, data)
1212 uint8 *addr;
1213 uint8 data;
1214{
1215 uint8 *a = addr;
1216 a[0] = data;
1217}
1218
1219void
1220put_half (addr, data)
1221 uint8 *addr;
1222 uint16 data;
1223{
1224 uint8 *a = addr;
1225 a[0] = data & 0xff;
1226 a[1] = (data >> 8) & 0xff;
1227}
1228
1229void
1230put_word (addr, data)
1231 uint8 *addr;
1232 uint32 data;
1233{
1234 uint8 *a = addr;
1235 a[0] = data & 0xff;
1236 a[1] = (data >> 8) & 0xff;
1237 a[2] = (data >> 16) & 0xff;
1238 a[3] = (data >> 24) & 0xff;
1239}
1240
1241int
1242sim_fetch_register (sd, rn, memory, length)
1243 SIM_DESC sd;
1244 int rn;
1245 unsigned char *memory;
1246 int length;
1247{
1248 put_word (memory, State.regs[rn]);
1249 return -1;
1250}
1251
1252int
1253sim_store_register (sd, rn, memory, length)
1254 SIM_DESC sd;
1255 int rn;
1256 unsigned char *memory;
1257 int length;
1258{
1259 State.regs[rn] = get_word (memory);
1260 return -1;
1261}