]>
| Commit | Line | Data |
|---|---|---|
| ddd44b70 | 1 | /* Simulator for the Texas Instruments PRU processor |
| d01e8234 | 2 | Copyright 2009-2025 Free Software Foundation, Inc. |
| ddd44b70 DD |
3 | Inspired by the Microblaze simulator |
| 4 | Contributed by Dimitar Dimitrov <dimitar@dinux.eu> | |
| 5 | ||
| 6 | This file is part of the simulators. | |
| 7 | ||
| 8 | This program is free software; you can redistribute it and/or modify | |
| 9 | it under the terms of the GNU General Public License as published by | |
| 10 | the Free Software Foundation; either version 3 of the License, or | |
| 11 | (at your option) any later version. | |
| 12 | ||
| 13 | This program is distributed in the hope that it will be useful, | |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 16 | GNU General Public License for more details. | |
| 17 | ||
| 18 | You should have received a copy of the GNU General Public License | |
| 19 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ | |
| 20 | ||
| 6df01ab8 MF |
21 | /* This must come before any other includes. */ |
| 22 | #include "defs.h" | |
| 23 | ||
| ddd44b70 DD |
24 | #include <stdbool.h> |
| 25 | #include <stdint.h> | |
| 26 | #include <stddef.h> | |
| 27 | #include "bfd.h" | |
| df68e12b | 28 | #include "sim/callback.h" |
| ddd44b70 | 29 | #include "libiberty.h" |
| df68e12b | 30 | #include "sim/sim.h" |
| ddd44b70 DD |
31 | #include "sim-main.h" |
| 32 | #include "sim-assert.h" | |
| 33 | #include "sim-options.h" | |
| 1fef66b0 | 34 | #include "sim-signal.h" |
| ddd44b70 DD |
35 | #include "sim-syscall.h" |
| 36 | #include "pru.h" | |
| 37 | ||
| 38 | /* DMEM zero address is perfectly valid. But if CRT leaves the first word | |
| 39 | alone, we can use it as a trap to catch NULL pointer access. */ | |
| 40 | static bfd_boolean abort_on_dmem_zero_access; | |
| 41 | ||
| 42 | enum { | |
| 43 | OPTION_ERROR_NULL_DEREF = OPTION_START, | |
| 44 | }; | |
| 45 | ||
| 46 | /* Extract (from PRU endianess) and return an integer in HOST's endianness. */ | |
| 47 | static uint32_t | |
| ed60d3ed | 48 | pru_extract_unsigned_integer (const uint8_t *addr, size_t len) |
| ddd44b70 DD |
49 | { |
| 50 | uint32_t retval; | |
| ed60d3ed MF |
51 | const uint8_t *p; |
| 52 | const uint8_t *startaddr = addr; | |
| 53 | const uint8_t *endaddr = startaddr + len; | |
| ddd44b70 DD |
54 | |
| 55 | /* Start at the most significant end of the integer, and work towards | |
| 56 | the least significant. */ | |
| 57 | retval = 0; | |
| 58 | ||
| 59 | for (p = endaddr; p > startaddr;) | |
| 60 | retval = (retval << 8) | * -- p; | |
| 61 | return retval; | |
| 62 | } | |
| 63 | ||
| 64 | /* Store "val" (which is in HOST's endianess) into "addr" | |
| 65 | (using PRU's endianness). */ | |
| 66 | static void | |
| 67 | pru_store_unsigned_integer (uint8_t *addr, size_t len, uint32_t val) | |
| 68 | { | |
| 69 | uint8_t *p; | |
| 70 | uint8_t *startaddr = (uint8_t *)addr; | |
| 71 | uint8_t *endaddr = startaddr + len; | |
| 72 | ||
| 73 | for (p = startaddr; p < endaddr;) | |
| 74 | { | |
| 75 | *p++ = val & 0xff; | |
| 76 | val >>= 8; | |
| 77 | } | |
| 78 | } | |
| 79 | ||
| 80 | /* Extract a field value from CPU register using the given REGSEL selector. | |
| 81 | ||
| 82 | Byte number maps directly to first values of RSEL, so we can | |
| 83 | safely use "regsel" as a register byte number (0..3). */ | |
| 84 | static inline uint32_t | |
| 85 | extract_regval (uint32_t val, uint32_t regsel) | |
| 86 | { | |
| 87 | ASSERT (RSEL_7_0 == 0); | |
| 88 | ASSERT (RSEL_15_8 == 1); | |
| 89 | ASSERT (RSEL_23_16 == 2); | |
| 90 | ASSERT (RSEL_31_24 == 3); | |
| 91 | ||
| 92 | switch (regsel) | |
| 93 | { | |
| 94 | case RSEL_7_0: return (val >> 0) & 0xff; | |
| 95 | case RSEL_15_8: return (val >> 8) & 0xff; | |
| 96 | case RSEL_23_16: return (val >> 16) & 0xff; | |
| 97 | case RSEL_31_24: return (val >> 24) & 0xff; | |
| 98 | case RSEL_15_0: return (val >> 0) & 0xffff; | |
| 99 | case RSEL_23_8: return (val >> 8) & 0xffff; | |
| 100 | case RSEL_31_16: return (val >> 16) & 0xffff; | |
| 101 | case RSEL_31_0: return val; | |
| 102 | default: sim_io_error (NULL, "invalid regsel"); | |
| 103 | } | |
| 104 | } | |
| 105 | ||
| 106 | /* Write a value into CPU subregister pointed by reg and regsel. */ | |
| 107 | static inline void | |
| 108 | write_regval (uint32_t val, uint32_t *reg, uint32_t regsel) | |
| 109 | { | |
| 110 | uint32_t mask, sh; | |
| 111 | ||
| 112 | switch (regsel) | |
| 113 | { | |
| 114 | case RSEL_7_0: mask = (0xffu << 0); sh = 0; break; | |
| 115 | case RSEL_15_8: mask = (0xffu << 8); sh = 8; break; | |
| 116 | case RSEL_23_16: mask = (0xffu << 16); sh = 16; break; | |
| 117 | case RSEL_31_24: mask = (0xffu << 24); sh = 24; break; | |
| 118 | case RSEL_15_0: mask = (0xffffu << 0); sh = 0; break; | |
| 119 | case RSEL_23_8: mask = (0xffffu << 8); sh = 8; break; | |
| 120 | case RSEL_31_16: mask = (0xffffu << 16); sh = 16; break; | |
| 121 | case RSEL_31_0: mask = 0xffffffffu; sh = 0; break; | |
| 122 | default: sim_io_error (NULL, "invalid regsel"); | |
| 123 | } | |
| 124 | ||
| 125 | *reg = (*reg & ~mask) | ((val << sh) & mask); | |
| 126 | } | |
| 127 | ||
| 128 | /* Convert the given IMEM word address to a regular byte address used by the | |
| 129 | GNU ELF container. */ | |
| 130 | static uint32_t | |
| 131 | imem_wordaddr_to_byteaddr (SIM_CPU *cpu, uint16_t wa) | |
| 132 | { | |
| 3d165c11 MF |
133 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 134 | ||
| ddd44b70 DD |
135 | return (((uint32_t) wa << 2) & IMEM_ADDR_MASK) | PC_ADDR_SPACE_MARKER; |
| 136 | } | |
| 137 | ||
| 138 | /* Convert the given ELF text byte address to IMEM word address. */ | |
| 139 | static uint16_t | |
| 140 | imem_byteaddr_to_wordaddr (SIM_CPU *cpu, uint32_t ba) | |
| 141 | { | |
| 142 | return (ba >> 2) & 0xffff; | |
| 143 | } | |
| 144 | ||
| 145 | ||
| 146 | /* Store "nbytes" into DMEM "addr" from CPU register file, starting with | |
| 147 | register "regn", and byte "regb" within it. */ | |
| 148 | static inline void | |
| 149 | pru_reg2dmem (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes, | |
| 150 | int regn, int regb) | |
| 151 | { | |
| 3d165c11 | 152 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
153 | /* GDB assumes unconditional access to all memories, so enable additional |
| 154 | checks only in standalone mode. */ | |
| 155 | bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE); | |
| 156 | ||
| 157 | if (abort_on_dmem_zero_access && addr < 4) | |
| 158 | { | |
| 159 | sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map, | |
| 160 | nbytes, addr, write_transfer, | |
| 161 | sim_core_unmapped_signal); | |
| 162 | } | |
| 163 | else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER) | |
| 164 | || (addr + nbytes > PC_ADDR_SPACE_MARKER))) | |
| 165 | { | |
| 166 | sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map, | |
| 167 | nbytes, addr, write_transfer, | |
| 168 | sim_core_unmapped_signal); | |
| 169 | } | |
| 170 | else if ((regn * 4 + regb + nbytes) > (32 * 4)) | |
| 171 | { | |
| 172 | sim_io_eprintf (CPU_STATE (cpu), | |
| 173 | "SBBO/SBCO with invalid store data length\n"); | |
| 174 | RAISE_SIGILL (CPU_STATE (cpu)); | |
| 175 | } | |
| 176 | else | |
| 177 | { | |
| 178 | TRACE_MEMORY (cpu, "write of %d bytes to %08x", nbytes, addr); | |
| 179 | while (nbytes--) | |
| 180 | { | |
| 181 | sim_core_write_1 (cpu, | |
| 182 | PC_byteaddr, | |
| 183 | write_map, | |
| 184 | addr++, | |
| 185 | extract_regval (CPU.regs[regn], regb)); | |
| 186 | ||
| 187 | if (++regb >= 4) | |
| 188 | { | |
| 189 | regb = 0; | |
| 190 | regn++; | |
| 191 | } | |
| 192 | } | |
| 193 | } | |
| 194 | } | |
| 195 | ||
| 196 | /* Load "nbytes" from DMEM "addr" into CPU register file, starting with | |
| 197 | register "regn", and byte "regb" within it. */ | |
| 198 | static inline void | |
| 199 | pru_dmem2reg (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes, | |
| 200 | int regn, int regb) | |
| 201 | { | |
| 3d165c11 | 202 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
203 | /* GDB assumes unconditional access to all memories, so enable additional |
| 204 | checks only in standalone mode. */ | |
| 205 | bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE); | |
| 206 | ||
| 207 | if (abort_on_dmem_zero_access && addr < 4) | |
| 208 | { | |
| 209 | sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map, | |
| 210 | nbytes, addr, read_transfer, | |
| 211 | sim_core_unmapped_signal); | |
| 212 | } | |
| 213 | else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER) | |
| 214 | || (addr + nbytes > PC_ADDR_SPACE_MARKER))) | |
| 215 | { | |
| 216 | /* This check is necessary because our IMEM "address space" | |
| 217 | is not really accessible, yet we have mapped it as a generic | |
| 218 | memory space. */ | |
| 219 | sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map, | |
| 220 | nbytes, addr, read_transfer, | |
| 221 | sim_core_unmapped_signal); | |
| 222 | } | |
| 223 | else if ((regn * 4 + regb + nbytes) > (32 * 4)) | |
| 224 | { | |
| 225 | sim_io_eprintf (CPU_STATE (cpu), | |
| 226 | "LBBO/LBCO with invalid load data length\n"); | |
| 227 | RAISE_SIGILL (CPU_STATE (cpu)); | |
| 228 | } | |
| 229 | else | |
| 230 | { | |
| 231 | unsigned int b; | |
| 232 | TRACE_MEMORY (cpu, "read of %d bytes from %08x", nbytes, addr); | |
| 233 | while (nbytes--) | |
| 234 | { | |
| 235 | b = sim_core_read_1 (cpu, PC_byteaddr, read_map, addr++); | |
| 236 | ||
| 237 | /* Reuse the fact the Register Byte Number maps directly to RSEL. */ | |
| 238 | ASSERT (RSEL_7_0 == 0); | |
| 239 | write_regval (b, &CPU.regs[regn], regb); | |
| 240 | ||
| 241 | if (++regb >= 4) | |
| 242 | { | |
| 243 | regb = 0; | |
| 244 | regn++; | |
| 245 | } | |
| 246 | } | |
| 247 | } | |
| 248 | } | |
| 249 | ||
| 250 | /* Set reset values of general-purpose registers. */ | |
| 251 | static void | |
| 252 | set_initial_gprs (SIM_CPU *cpu) | |
| 253 | { | |
| 3d165c11 | 254 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
255 | int i; |
| 256 | ||
| 257 | /* Set up machine just out of reset. */ | |
| 258 | CPU_PC_SET (cpu, 0); | |
| 259 | PC_ADDR_SPACE_MARKER = IMEM_ADDR_DEFAULT; /* from default linker script? */ | |
| 260 | ||
| 261 | /* Clean out the GPRs. */ | |
| 262 | for (i = 0; i < ARRAY_SIZE (CPU.regs); i++) | |
| 263 | CPU.regs[i] = 0; | |
| 264 | for (i = 0; i < ARRAY_SIZE (CPU.macregs); i++) | |
| 265 | CPU.macregs[i] = 0; | |
| 266 | ||
| 267 | CPU.loop.looptop = CPU.loop.loopend = 0; | |
| 268 | CPU.loop.loop_in_progress = 0; | |
| 269 | CPU.loop.loop_counter = 0; | |
| 270 | ||
| 271 | CPU.carry = 0; | |
| 272 | CPU.insts = 0; | |
| 273 | CPU.cycles = 0; | |
| 274 | ||
| 275 | /* AM335x should provide sane defaults. */ | |
| 276 | CPU.ctable[0] = 0x00020000; | |
| 277 | CPU.ctable[1] = 0x48040000; | |
| 278 | CPU.ctable[2] = 0x4802a000; | |
| 279 | CPU.ctable[3] = 0x00030000; | |
| 280 | CPU.ctable[4] = 0x00026000; | |
| 281 | CPU.ctable[5] = 0x48060000; | |
| 282 | CPU.ctable[6] = 0x48030000; | |
| 283 | CPU.ctable[7] = 0x00028000; | |
| 284 | CPU.ctable[8] = 0x46000000; | |
| 285 | CPU.ctable[9] = 0x4a100000; | |
| 286 | CPU.ctable[10] = 0x48318000; | |
| 287 | CPU.ctable[11] = 0x48022000; | |
| 288 | CPU.ctable[12] = 0x48024000; | |
| 289 | CPU.ctable[13] = 0x48310000; | |
| 290 | CPU.ctable[14] = 0x481cc000; | |
| 291 | CPU.ctable[15] = 0x481d0000; | |
| 292 | CPU.ctable[16] = 0x481a0000; | |
| 293 | CPU.ctable[17] = 0x4819c000; | |
| 294 | CPU.ctable[18] = 0x48300000; | |
| 295 | CPU.ctable[19] = 0x48302000; | |
| 296 | CPU.ctable[20] = 0x48304000; | |
| 297 | CPU.ctable[21] = 0x00032400; | |
| 298 | CPU.ctable[22] = 0x480c8000; | |
| 299 | CPU.ctable[23] = 0x480ca000; | |
| 300 | CPU.ctable[24] = 0x00000000; | |
| 301 | CPU.ctable[25] = 0x00002000; | |
| 302 | CPU.ctable[26] = 0x0002e000; | |
| 303 | CPU.ctable[27] = 0x00032000; | |
| 304 | CPU.ctable[28] = 0x00000000; | |
| 305 | CPU.ctable[29] = 0x49000000; | |
| 306 | CPU.ctable[30] = 0x40000000; | |
| 307 | CPU.ctable[31] = 0x80000000; | |
| 308 | } | |
| 309 | ||
| 310 | /* Map regsel selector to subregister field width. */ | |
| 311 | static inline unsigned int | |
| 312 | regsel_width (uint32_t regsel) | |
| 313 | { | |
| 314 | switch (regsel) | |
| 315 | { | |
| 316 | case RSEL_7_0: return 8; | |
| 317 | case RSEL_15_8: return 8; | |
| 318 | case RSEL_23_16: return 8; | |
| 319 | case RSEL_31_24: return 8; | |
| 320 | case RSEL_15_0: return 16; | |
| 321 | case RSEL_23_8: return 16; | |
| 322 | case RSEL_31_16: return 16; | |
| 323 | case RSEL_31_0: return 32; | |
| 324 | default: sim_io_error (NULL, "invalid regsel"); | |
| 325 | } | |
| 326 | } | |
| 327 | ||
| 328 | /* Handle XIN instruction addressing the MAC peripheral. */ | |
| 329 | static void | |
| 330 | pru_sim_xin_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn, | |
| 331 | unsigned int rdb, unsigned int length) | |
| 332 | { | |
| 3d165c11 MF |
333 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 334 | ||
| ddd44b70 DD |
335 | if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4) |
| 336 | sim_io_error (sd, "XIN MAC: invalid transfer regn=%u.%u, length=%u\n", | |
| 337 | rd_regn, rdb, length); | |
| 338 | ||
| 339 | /* Copy from MAC to PRU regs. Ranges have been validated above. */ | |
| 340 | while (length--) | |
| 341 | { | |
| 342 | write_regval (CPU.macregs[rd_regn - 25] >> (rdb * 8), | |
| 343 | &CPU.regs[rd_regn], | |
| 344 | rdb); | |
| 345 | if (++rdb == 4) | |
| 346 | { | |
| 347 | rdb = 0; | |
| 348 | rd_regn++; | |
| 349 | } | |
| 350 | } | |
| 351 | } | |
| 352 | ||
| 353 | /* Handle XIN instruction. */ | |
| 354 | static void | |
| 355 | pru_sim_xin (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, | |
| 356 | unsigned int rd_regn, unsigned int rdb, unsigned int length) | |
| 357 | { | |
| 3d165c11 MF |
358 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 359 | ||
| ddd44b70 DD |
360 | if (wba == 0) |
| 361 | { | |
| 362 | pru_sim_xin_mac (sd, cpu, rd_regn, rdb, length); | |
| 363 | } | |
| 364 | else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 | |
| 365 | || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) | |
| 366 | { | |
| 367 | while (length--) | |
| 368 | { | |
| 369 | unsigned int val; | |
| 370 | ||
| 371 | val = extract_regval (CPU.scratchpads[wba][rd_regn], rdb); | |
| 372 | write_regval (val, &CPU.regs[rd_regn], rdb); | |
| 373 | if (++rdb == 4) | |
| 374 | { | |
| 375 | rdb = 0; | |
| 376 | rd_regn++; | |
| 377 | } | |
| 378 | } | |
| 379 | } | |
| 380 | else if (wba == 254 || wba == 255) | |
| 381 | { | |
| 382 | /* FILL/ZERO pseudos implemented via XIN. */ | |
| 383 | unsigned int fillbyte = (wba == 254) ? 0xff : 0x00; | |
| 384 | while (length--) | |
| 385 | { | |
| 386 | write_regval (fillbyte, &CPU.regs[rd_regn], rdb); | |
| 387 | if (++rdb == 4) | |
| 388 | { | |
| 389 | rdb = 0; | |
| 390 | rd_regn++; | |
| 391 | } | |
| 392 | } | |
| 393 | } | |
| 394 | else | |
| 395 | { | |
| 396 | sim_io_error (sd, "XIN: XFR device %d not supported.\n", wba); | |
| 397 | } | |
| 398 | } | |
| 399 | ||
| 400 | /* Handle XOUT instruction addressing the MAC peripheral. */ | |
| 401 | static void | |
| 402 | pru_sim_xout_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn, | |
| 403 | unsigned int rdb, unsigned int length) | |
| 404 | { | |
| 3d165c11 | 405 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
406 | const int modereg_accessed = (rd_regn == 25); |
| 407 | ||
| 408 | /* Multiple Accumulate. */ | |
| 409 | if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4) | |
| 410 | sim_io_error (sd, "XOUT MAC: invalid transfer regn=%u.%u, length=%u\n", | |
| 411 | rd_regn, rdb, length); | |
| 412 | ||
| 413 | /* Copy from PRU to MAC regs. Ranges have been validated above. */ | |
| 414 | while (length--) | |
| 415 | { | |
| 416 | write_regval (CPU.regs[rd_regn] >> (rdb * 8), | |
| 417 | &CPU.macregs[rd_regn - 25], | |
| 418 | rdb); | |
| 419 | if (++rdb == 4) | |
| 420 | { | |
| 421 | rdb = 0; | |
| 422 | rd_regn++; | |
| 423 | } | |
| 424 | } | |
| 425 | ||
| 426 | if (modereg_accessed | |
| 427 | && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK)) | |
| 428 | { | |
| 429 | /* MUL/MAC operands are sampled every XOUT in multiply and | |
| 430 | accumulate mode. */ | |
| 431 | uint64_t prod, oldsum, sum; | |
| 432 | CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28]; | |
| 433 | CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29]; | |
| 434 | ||
| 435 | prod = CPU.macregs[PRU_MACREG_OP_0]; | |
| 436 | prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1]; | |
| 437 | ||
| 438 | oldsum = CPU.macregs[PRU_MACREG_ACC_L]; | |
| 439 | oldsum += (uint64_t)CPU.macregs[PRU_MACREG_ACC_H] << 32; | |
| 440 | sum = oldsum + prod; | |
| 441 | ||
| 442 | CPU.macregs[PRU_MACREG_PROD_L] = sum & 0xfffffffful; | |
| 443 | CPU.macregs[PRU_MACREG_PROD_H] = sum >> 32; | |
| 444 | CPU.macregs[PRU_MACREG_ACC_L] = CPU.macregs[PRU_MACREG_PROD_L]; | |
| 445 | CPU.macregs[PRU_MACREG_ACC_H] = CPU.macregs[PRU_MACREG_PROD_H]; | |
| 446 | ||
| 447 | if (oldsum > sum) | |
| 448 | CPU.macregs[PRU_MACREG_MODE] |= MAC_R25_ACC_CARRY_MASK; | |
| 449 | } | |
| 450 | if (modereg_accessed | |
| 451 | && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_ACC_CARRY_MASK)) | |
| 452 | { | |
| 453 | /* store 1 to clear. */ | |
| 454 | CPU.macregs[PRU_MACREG_MODE] &= ~MAC_R25_ACC_CARRY_MASK; | |
| 455 | CPU.macregs[PRU_MACREG_ACC_L] = 0; | |
| 456 | CPU.macregs[PRU_MACREG_ACC_H] = 0; | |
| 457 | } | |
| 458 | ||
| 459 | } | |
| 460 | ||
| 461 | /* Handle XOUT instruction. */ | |
| 462 | static void | |
| 463 | pru_sim_xout (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, | |
| 464 | unsigned int rd_regn, unsigned int rdb, unsigned int length) | |
| 465 | { | |
| 3d165c11 MF |
466 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 467 | ||
| ddd44b70 DD |
468 | if (wba == 0) |
| 469 | { | |
| 470 | pru_sim_xout_mac (sd, cpu, rd_regn, rdb, length); | |
| 471 | } | |
| 472 | else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 | |
| 473 | || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) | |
| 474 | { | |
| 475 | while (length--) | |
| 476 | { | |
| 477 | unsigned int val; | |
| 478 | ||
| 479 | val = extract_regval (CPU.regs[rd_regn], rdb); | |
| 480 | write_regval (val, &CPU.scratchpads[wba][rd_regn], rdb); | |
| 481 | if (++rdb == 4) | |
| 482 | { | |
| 483 | rdb = 0; | |
| 484 | rd_regn++; | |
| 485 | } | |
| 486 | } | |
| 487 | } | |
| 488 | else | |
| 489 | sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba); | |
| 490 | } | |
| 491 | ||
| 492 | /* Handle XCHG instruction. */ | |
| 493 | static void | |
| 494 | pru_sim_xchg (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba, | |
| 495 | unsigned int rd_regn, unsigned int rdb, unsigned int length) | |
| 496 | { | |
| 3d165c11 MF |
497 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 498 | ||
| ddd44b70 DD |
499 | if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1 |
| 500 | || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER) | |
| 501 | { | |
| 502 | while (length--) | |
| 503 | { | |
| 504 | unsigned int valr, vals; | |
| 505 | ||
| 506 | valr = extract_regval (CPU.regs[rd_regn], rdb); | |
| 507 | vals = extract_regval (CPU.scratchpads[wba][rd_regn], rdb); | |
| 508 | write_regval (valr, &CPU.scratchpads[wba][rd_regn], rdb); | |
| 509 | write_regval (vals, &CPU.regs[rd_regn], rdb); | |
| 510 | if (++rdb == 4) | |
| 511 | { | |
| 512 | rdb = 0; | |
| 513 | rd_regn++; | |
| 514 | } | |
| 515 | } | |
| 516 | } | |
| 517 | else | |
| 518 | sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba); | |
| 519 | } | |
| 520 | ||
| 521 | /* Handle syscall simulation. Its ABI is specific to the GNU simulator. */ | |
| 522 | static void | |
| 523 | pru_sim_syscall (SIM_DESC sd, SIM_CPU *cpu) | |
| 524 | { | |
| 3d165c11 | 525 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
526 | /* If someday TI confirms that the "reserved" HALT opcode fields |
| 527 | can be used for extra arguments, then maybe we can embed | |
| 528 | the syscall number there. Until then, let's use R1. */ | |
| 529 | const uint32_t syscall_num = CPU.regs[1]; | |
| 530 | long ret; | |
| 531 | ||
| 532 | ret = sim_syscall (cpu, syscall_num, | |
| 533 | CPU.regs[14], CPU.regs[15], | |
| 534 | CPU.regs[16], CPU.regs[17]); | |
| 535 | CPU.regs[14] = ret; | |
| 536 | } | |
| 537 | ||
| 538 | /* Simulate one instruction. */ | |
| 539 | static void | |
| 540 | sim_step_once (SIM_DESC sd) | |
| 541 | { | |
| 542 | SIM_CPU *cpu = STATE_CPU (sd, 0); | |
| 3d165c11 | 543 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
544 | const struct pru_opcode *op; |
| 545 | uint32_t inst; | |
| 546 | uint32_t _RDVAL, OP2; /* intermediate values. */ | |
| 547 | int rd_is_modified = 0; /* RD modified and must be stored back. */ | |
| 548 | ||
| 549 | /* Fetch the initial instruction that we'll decode. */ | |
| 550 | inst = sim_core_read_4 (cpu, PC_byteaddr, exec_map, PC_byteaddr); | |
| 551 | TRACE_MEMORY (cpu, "read of insn 0x%08x from %08x", inst, PC_byteaddr); | |
| 552 | ||
| 553 | op = pru_find_opcode (inst); | |
| 554 | ||
| 555 | if (!op) | |
| 556 | { | |
| 557 | sim_io_eprintf (sd, "Unknown instruction 0x%04x\n", inst); | |
| 558 | RAISE_SIGILL (sd); | |
| 559 | } | |
| 560 | else | |
| 561 | { | |
| 562 | TRACE_DISASM (cpu, PC_byteaddr); | |
| 563 | ||
| 564 | /* In multiply-only mode, R28/R29 operands are sampled on every clock | |
| 565 | cycle. */ | |
| 566 | if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0) | |
| 567 | { | |
| 568 | CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28]; | |
| 569 | CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29]; | |
| 570 | } | |
| 571 | ||
| 572 | switch (op->type) | |
| 573 | { | |
| 574 | /* Helper macro to improve clarity of pru.isa. The empty while is a | |
| 575 | guard against using RD as a left-hand side value. */ | |
| 576 | #define RD do { } while (0); rd_is_modified = 1; _RDVAL | |
| 577 | #define INSTRUCTION(NAME, ACTION) \ | |
| 578 | case prui_ ## NAME: \ | |
| 579 | ACTION; \ | |
| 580 | break; | |
| 581 | #include "pru.isa" | |
| 582 | #undef INSTRUCTION | |
| 583 | #undef RD | |
| 584 | ||
| 585 | default: | |
| 586 | RAISE_SIGILL (sd); | |
| 587 | } | |
| 588 | ||
| 589 | if (rd_is_modified) | |
| 590 | write_regval (_RDVAL, &CPU.regs[RD_REGN], RDSEL); | |
| 591 | ||
| 592 | /* Don't treat r30 and r31 as regular registers, they are I/O! */ | |
| 593 | CPU.regs[30] = 0; | |
| 594 | CPU.regs[31] = 0; | |
| 595 | ||
| 596 | /* Handle PC match of loop end. */ | |
| 597 | if (LOOP_IN_PROGRESS && (PC == LOOPEND)) | |
| 598 | { | |
| 599 | SIM_ASSERT (LOOPCNT > 0); | |
| 600 | if (--LOOPCNT == 0) | |
| 601 | LOOP_IN_PROGRESS = 0; | |
| 602 | else | |
| 603 | PC = LOOPTOP; | |
| 604 | } | |
| 605 | ||
| 606 | /* In multiply-only mode, MAC does multiplication every cycle. */ | |
| 607 | if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0) | |
| 608 | { | |
| 609 | uint64_t prod; | |
| 610 | prod = CPU.macregs[PRU_MACREG_OP_0]; | |
| 611 | prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1]; | |
| 612 | CPU.macregs[PRU_MACREG_PROD_L] = prod & 0xfffffffful; | |
| 613 | CPU.macregs[PRU_MACREG_PROD_H] = prod >> 32; | |
| 614 | ||
| 615 | /* Clear the MAC accumulator when in normal mode. */ | |
| 616 | CPU.macregs[PRU_MACREG_ACC_L] = 0; | |
| 617 | CPU.macregs[PRU_MACREG_ACC_H] = 0; | |
| 618 | } | |
| 619 | ||
| 620 | /* Update cycle counts. */ | |
| 621 | CPU.insts += 1; /* One instruction completed ... */ | |
| 622 | CPU.cycles += 1; /* ... and it takes a single cycle. */ | |
| 623 | ||
| 624 | /* Account for memory access latency with a reasonable estimate. | |
| 625 | No distinction is currently made between SRAM, DRAM and generic | |
| 626 | L3 slaves. */ | |
| 627 | if (op->type == prui_lbbo || op->type == prui_sbbo | |
| 628 | || op->type == prui_lbco || op->type == prui_sbco) | |
| 629 | CPU.cycles += 2; | |
| 630 | ||
| 631 | } | |
| 632 | } | |
| 633 | ||
| 634 | /* Implement standard sim_engine_run function. */ | |
| 635 | void | |
| 636 | sim_engine_run (SIM_DESC sd, | |
| 637 | int next_cpu_nr, /* ignore */ | |
| 638 | int nr_cpus, /* ignore */ | |
| 639 | int siggnal) /* ignore */ | |
| 640 | { | |
| 641 | while (1) | |
| 642 | { | |
| 643 | sim_step_once (sd); | |
| 644 | if (sim_events_tick (sd)) | |
| 645 | sim_events_process (sd); | |
| 646 | } | |
| 647 | } | |
| 648 | ||
| 649 | ||
| 650 | /* Implement callback for standard CPU_PC_FETCH routine. */ | |
| 651 | static sim_cia | |
| 652 | pru_pc_get (sim_cpu *cpu) | |
| 653 | { | |
| 3d165c11 MF |
654 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 655 | ||
| ddd44b70 | 656 | /* Present PC as byte address. */ |
| 3d165c11 | 657 | return imem_wordaddr_to_byteaddr (cpu, pru_cpu->pc); |
| ddd44b70 DD |
658 | } |
| 659 | ||
| 660 | /* Implement callback for standard CPU_PC_STORE routine. */ | |
| 661 | static void | |
| 662 | pru_pc_set (sim_cpu *cpu, sim_cia pc) | |
| 663 | { | |
| 3d165c11 MF |
664 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 665 | ||
| ddd44b70 | 666 | /* PC given as byte address. */ |
| 3d165c11 | 667 | pru_cpu->pc = imem_byteaddr_to_wordaddr (cpu, pc); |
| ddd44b70 DD |
668 | } |
| 669 | ||
| 670 | ||
| 671 | /* Implement callback for standard CPU_REG_STORE routine. */ | |
| 672 | static int | |
| ee1cffd3 | 673 | pru_store_register (SIM_CPU *cpu, int rn, const void *memory, int length) |
| ddd44b70 | 674 | { |
| 3d165c11 MF |
675 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 676 | ||
| ddd44b70 DD |
677 | if (rn < NUM_REGS && rn >= 0) |
| 678 | { | |
| 679 | if (length == 4) | |
| 680 | { | |
| 681 | /* Misalignment safe. */ | |
| 682 | long ival = pru_extract_unsigned_integer (memory, 4); | |
| 683 | if (rn < 32) | |
| 684 | CPU.regs[rn] = ival; | |
| 685 | else | |
| 686 | pru_pc_set (cpu, ival); | |
| 687 | return 4; | |
| 688 | } | |
| 689 | else | |
| 690 | return 0; | |
| 691 | } | |
| 692 | else | |
| 693 | return 0; | |
| 694 | } | |
| 695 | ||
| 696 | /* Implement callback for standard CPU_REG_FETCH routine. */ | |
| 697 | static int | |
| ee1cffd3 | 698 | pru_fetch_register (SIM_CPU *cpu, int rn, void *memory, int length) |
| ddd44b70 | 699 | { |
| 3d165c11 | 700 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| ddd44b70 DD |
701 | long ival; |
| 702 | ||
| 703 | if (rn < NUM_REGS && rn >= 0) | |
| 704 | { | |
| 705 | if (length == 4) | |
| 706 | { | |
| 707 | if (rn < 32) | |
| 708 | ival = CPU.regs[rn]; | |
| 709 | else | |
| 710 | ival = pru_pc_get (cpu); | |
| 711 | ||
| 712 | /* Misalignment-safe. */ | |
| 713 | pru_store_unsigned_integer (memory, 4, ival); | |
| 714 | return 4; | |
| 715 | } | |
| 716 | else | |
| 717 | return 0; | |
| 718 | } | |
| 719 | else | |
| 720 | return 0; | |
| 721 | } | |
| 722 | ||
| 723 | static void | |
| 724 | free_state (SIM_DESC sd) | |
| 725 | { | |
| 726 | if (STATE_MODULES (sd) != NULL) | |
| 727 | sim_module_uninstall (sd); | |
| 728 | sim_cpu_free_all (sd); | |
| 729 | sim_state_free (sd); | |
| 730 | } | |
| 731 | ||
| 732 | /* Declare the PRU option handler. */ | |
| 733 | static DECLARE_OPTION_HANDLER (pru_option_handler); | |
| 734 | ||
| 735 | /* Implement the PRU option handler. */ | |
| 736 | static SIM_RC | |
| 737 | pru_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg, | |
| 738 | int is_command) | |
| 739 | { | |
| 740 | switch (opt) | |
| 741 | { | |
| 742 | case OPTION_ERROR_NULL_DEREF: | |
| 743 | abort_on_dmem_zero_access = TRUE; | |
| 744 | return SIM_RC_OK; | |
| 745 | ||
| 746 | default: | |
| 747 | sim_io_eprintf (sd, "Unknown PRU option %d\n", opt); | |
| 748 | return SIM_RC_FAIL; | |
| 749 | } | |
| 750 | } | |
| 751 | ||
| 752 | /* List of PRU-specific options. */ | |
| 753 | static const OPTION pru_options[] = | |
| 754 | { | |
| 755 | { {"error-null-deref", no_argument, NULL, OPTION_ERROR_NULL_DEREF}, | |
| 756 | '\0', NULL, "Trap any access to DMEM address zero", | |
| 757 | pru_option_handler, NULL }, | |
| 758 | ||
| 759 | { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL } | |
| 760 | }; | |
| 761 | ||
| 762 | /* Implement standard sim_open function. */ | |
| 763 | SIM_DESC | |
| 764 | sim_open (SIM_OPEN_KIND kind, host_callback *cb, | |
| 765 | struct bfd *abfd, char * const *argv) | |
| 766 | { | |
| 767 | int i; | |
| 768 | char c; | |
| 769 | SIM_DESC sd = sim_state_alloc (kind, cb); | |
| 770 | SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); | |
| 771 | ||
| ba307cdd MF |
772 | /* Set default options before parsing user options. */ |
| 773 | current_alignment = STRICT_ALIGNMENT; | |
| f9a4d543 | 774 | current_target_byte_order = BFD_ENDIAN_LITTLE; |
| ba307cdd | 775 | |
| ddd44b70 | 776 | /* The cpu data is kept in a separately allocated chunk of memory. */ |
| 883be197 | 777 | if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct pru_regset)) != SIM_RC_OK) |
| ddd44b70 DD |
778 | { |
| 779 | free_state (sd); | |
| 780 | return 0; | |
| 781 | } | |
| 782 | ||
| 783 | if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) | |
| 784 | { | |
| 785 | free_state (sd); | |
| 786 | return 0; | |
| 787 | } | |
| 788 | sim_add_option_table (sd, NULL, pru_options); | |
| 789 | ||
| 790 | /* The parser will print an error message for us, so we silently return. */ | |
| 791 | if (sim_parse_args (sd, argv) != SIM_RC_OK) | |
| 792 | { | |
| 793 | free_state (sd); | |
| 794 | return 0; | |
| 795 | } | |
| 796 | ||
| 797 | /* Check for/establish a reference program image. */ | |
| e8f20a28 | 798 | if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK) |
| ddd44b70 DD |
799 | { |
| 800 | free_state (sd); | |
| 801 | return 0; | |
| 802 | } | |
| 803 | ||
| 804 | /* Configure/verify the target byte order and other runtime | |
| 805 | configuration options. */ | |
| 806 | if (sim_config (sd) != SIM_RC_OK) | |
| 807 | { | |
| 808 | sim_module_uninstall (sd); | |
| 809 | return 0; | |
| 810 | } | |
| 811 | ||
| 812 | if (sim_post_argv_init (sd) != SIM_RC_OK) | |
| 813 | { | |
| 814 | /* Uninstall the modules to avoid memory leaks, | |
| 815 | file descriptor leaks, etc. */ | |
| 816 | sim_module_uninstall (sd); | |
| 817 | return 0; | |
| 818 | } | |
| 819 | ||
| 820 | /* CPU specific initialization. */ | |
| 821 | for (i = 0; i < MAX_NR_PROCESSORS; ++i) | |
| 822 | { | |
| 823 | SIM_CPU *cpu = STATE_CPU (sd, i); | |
| 824 | ||
| 825 | CPU_REG_STORE (cpu) = pru_store_register; | |
| 826 | CPU_REG_FETCH (cpu) = pru_fetch_register; | |
| 827 | CPU_PC_FETCH (cpu) = pru_pc_get; | |
| 828 | CPU_PC_STORE (cpu) = pru_pc_set; | |
| 829 | ||
| 830 | set_initial_gprs (cpu); | |
| 831 | } | |
| 832 | ||
| 833 | /* Allocate external memory if none specified by user. | |
| 834 | Use address 4 here in case the user wanted address 0 unmapped. */ | |
| 835 | if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0) | |
| 836 | { | |
| 837 | sim_do_commandf (sd, "memory-region 0x%x,0x%x", | |
| 838 | 0, | |
| 839 | DMEM_DEFAULT_SIZE); | |
| 840 | } | |
| 841 | if (sim_core_read_buffer (sd, NULL, read_map, &c, IMEM_ADDR_DEFAULT, 1) == 0) | |
| 842 | { | |
| 843 | sim_do_commandf (sd, "memory-region 0x%x,0x%x", | |
| 844 | IMEM_ADDR_DEFAULT, | |
| 845 | IMEM_DEFAULT_SIZE); | |
| 846 | } | |
| 847 | ||
| 848 | return sd; | |
| 849 | } | |
| 850 | ||
| 851 | /* Implement standard sim_create_inferior function. */ | |
| 852 | SIM_RC | |
| 853 | sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd, | |
| 854 | char * const *argv, char * const *env) | |
| 855 | { | |
| 856 | SIM_CPU *cpu = STATE_CPU (sd, 0); | |
| 3d165c11 | 857 | struct pru_regset *pru_cpu = PRU_SIM_CPU (cpu); |
| 8cfc9a18 | 858 | host_callback *cb = STATE_CALLBACK (sd); |
| 20fea663 | 859 | bfd_vma addr; |
| ddd44b70 DD |
860 | |
| 861 | addr = bfd_get_start_address (prog_bfd); | |
| 862 | ||
| 863 | sim_pc_set (cpu, addr); | |
| 864 | PC_ADDR_SPACE_MARKER = addr & ~IMEM_ADDR_MASK; | |
| 865 | ||
| 866 | /* Standalone mode (i.e. `run`) will take care of the argv for us in | |
| 867 | sim_open () -> sim_parse_args (). But in debug mode (i.e. 'target sim' | |
| 868 | with `gdb`), we need to handle it because the user can change the | |
| 869 | argv on the fly via gdb's 'run'. */ | |
| 870 | if (STATE_PROG_ARGV (sd) != argv) | |
| 871 | { | |
| 872 | freeargv (STATE_PROG_ARGV (sd)); | |
| 873 | STATE_PROG_ARGV (sd) = dupargv (argv); | |
| 874 | } | |
| 875 | ||
| 54f7a83a MF |
876 | if (STATE_PROG_ENVP (sd) != env) |
| 877 | { | |
| 878 | freeargv (STATE_PROG_ENVP (sd)); | |
| 879 | STATE_PROG_ENVP (sd) = dupargv (env); | |
| 880 | } | |
| 881 | ||
| 8cfc9a18 MF |
882 | cb->argv = STATE_PROG_ARGV (sd); |
| 883 | cb->envp = STATE_PROG_ENVP (sd); | |
| 884 | ||
| ddd44b70 DD |
885 | return SIM_RC_OK; |
| 886 | } |