]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/core/cgroup.c
Merge pull request #22791 from keszybz/bootctl-invert-order
[thirdparty/systemd.git] / src / core / cgroup.c
CommitLineData
db9ecf05 1/* SPDX-License-Identifier: LGPL-2.1-or-later */
8e274523 2
c6c18be3 3#include <fcntl.h>
8c6db833 4
afcfaa69
LP
5#include "sd-messages.h"
6
a4817536 7#include "af-list.h"
b5efdb8a 8#include "alloc-util.h"
18c528e9 9#include "blockdev-util.h"
d8b4d14d 10#include "bpf-devices.h"
906c06f6 11#include "bpf-firewall.h"
506ea51b 12#include "bpf-foreign.h"
cd09a5f3 13#include "bpf-socket-bind.h"
45c2e068 14#include "btrfs-util.h"
6592b975 15#include "bus-error.h"
fdb3deca 16#include "cgroup-setup.h"
03a7b521 17#include "cgroup-util.h"
3ffd4af2
LP
18#include "cgroup.h"
19#include "fd-util.h"
0d39fa9c 20#include "fileio.h"
84ebe6f0 21#include "in-addr-prefix-util.h"
9e5fd717 22#include "inotify-util.h"
d9e45bc3 23#include "io-util.h"
5587ce7f 24#include "ip-protocol-list.h"
3a0f06c4 25#include "limits-util.h"
d9e45bc3 26#include "nulstr-util.h"
6bedfcbb 27#include "parse-util.h"
9eb977db 28#include "path-util.h"
1ead0b2a 29#include "percent-util.h"
03a7b521 30#include "process-util.h"
c36a69f4 31#include "procfs-util.h"
6f50d4f7 32#include "restrict-ifaces.h"
9444b1f2 33#include "special.h"
74c48bf5 34#include "stat-util.h"
906c06f6 35#include "stdio-util.h"
8b43440b 36#include "string-table.h"
07630cea 37#include "string-util.h"
cc6271f1 38#include "virt.h"
8e274523 39
b1994387
ILG
40#if BPF_FRAMEWORK
41#include "bpf-dlopen.h"
42#include "bpf-link.h"
43#include "bpf/restrict_fs/restrict-fs-skel.h"
44#endif
45
10f28641 46#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
9a054909 47
39b9fefb
LP
48/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
49 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
50 * out specific attributes from us. */
51#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
52
3a0f06c4
ZJS
53uint64_t tasks_max_resolve(const TasksMax *tasks_max) {
54 if (tasks_max->scale == 0)
55 return tasks_max->value;
56
57 return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
58}
59
611c4f8a 60bool manager_owns_host_root_cgroup(Manager *m) {
cc6271f1
LP
61 assert(m);
62
63 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
64 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
65 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
66 * we run in any kind of container virtualization. */
67
28cfdc5a
LP
68 if (MANAGER_IS_USER(m))
69 return false;
70
cc6271f1
LP
71 if (detect_container() > 0)
72 return false;
73
57ea45e1 74 return empty_or_root(m->cgroup_root);
cc6271f1
LP
75}
76
9dfb6a3a
PM
77bool unit_has_startup_cgroup_constraints(Unit *u) {
78 assert(u);
79
80 /* Returns true if this unit has any directives which apply during
81 * startup/shutdown phases. */
82
83 CGroupContext *c;
84
85 c = unit_get_cgroup_context(u);
86 if (!c)
87 return false;
88
89 return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
90 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
91 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
92 c->startup_cpuset_cpus.set ||
93 c->startup_cpuset_mems.set;
94}
95
611c4f8a 96bool unit_has_host_root_cgroup(Unit *u) {
f3725e64
LP
97 assert(u);
98
cc6271f1
LP
99 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
100 * the manager manages the root cgroup. */
f3725e64 101
611c4f8a 102 if (!manager_owns_host_root_cgroup(u->manager))
f3725e64
LP
103 return false;
104
cc6271f1 105 return unit_has_name(u, SPECIAL_ROOT_SLICE);
f3725e64
LP
106}
107
293d32df
LP
108static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
109 int r;
110
111 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
112 if (r < 0)
8ed6f81b 113 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
6178e2f8 114 strna(attribute), empty_to_root(u->cgroup_path), (int) strcspn(value, NEWLINE), value);
293d32df
LP
115
116 return r;
117}
118
2b40998d 119static void cgroup_compat_warn(void) {
128fadc9
TH
120 static bool cgroup_compat_warned = false;
121
122 if (cgroup_compat_warned)
123 return;
124
cc6271f1
LP
125 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
126 "See cgroup-compat debug messages for details.");
127
128fadc9
TH
128 cgroup_compat_warned = true;
129}
130
131#define log_cgroup_compat(unit, fmt, ...) do { \
132 cgroup_compat_warn(); \
133 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
2b40998d 134 } while (false)
128fadc9 135
4ad49000
LP
136void cgroup_context_init(CGroupContext *c) {
137 assert(c);
138
de8a711a 139 /* Initialize everything to the kernel defaults. */
4ad49000 140
de8a711a
LP
141 *c = (CGroupContext) {
142 .cpu_weight = CGROUP_WEIGHT_INVALID,
143 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
144 .cpu_quota_per_sec_usec = USEC_INFINITY,
10f28641 145 .cpu_quota_period_usec = USEC_INFINITY,
66ebf6c0 146
de8a711a
LP
147 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
148 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
d53d9474 149
de8a711a
LP
150 .memory_high = CGROUP_LIMIT_MAX,
151 .memory_max = CGROUP_LIMIT_MAX,
152 .memory_swap_max = CGROUP_LIMIT_MAX,
da4d897e 153
de8a711a 154 .memory_limit = CGROUP_LIMIT_MAX,
b2f8b02e 155
de8a711a
LP
156 .io_weight = CGROUP_WEIGHT_INVALID,
157 .startup_io_weight = CGROUP_WEIGHT_INVALID,
13c31542 158
de8a711a
LP
159 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
160 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
d53d9474 161
3a0f06c4 162 .tasks_max = TASKS_MAX_UNSET,
4d824a4e
AZ
163
164 .moom_swap = MANAGED_OOM_AUTO,
165 .moom_mem_pressure = MANAGED_OOM_AUTO,
4e806bfa 166 .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
de8a711a 167 };
4ad49000 168}
8e274523 169
4ad49000
LP
170void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
171 assert(c);
172 assert(a);
173
71fda00f 174 LIST_REMOVE(device_allow, c->device_allow, a);
4ad49000
LP
175 free(a->path);
176 free(a);
177}
178
13c31542
TH
179void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
180 assert(c);
181 assert(w);
182
183 LIST_REMOVE(device_weights, c->io_device_weights, w);
184 free(w->path);
185 free(w);
186}
187
6ae4283c
TH
188void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
189 assert(c);
190 assert(l);
191
192 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
193 free(l->path);
194 free(l);
195}
196
13c31542
TH
197void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
198 assert(c);
199 assert(l);
200
201 LIST_REMOVE(device_limits, c->io_device_limits, l);
202 free(l->path);
203 free(l);
204}
205
4ad49000
LP
206void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
207 assert(c);
208 assert(w);
209
71fda00f 210 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
4ad49000
LP
211 free(w->path);
212 free(w);
213}
214
215void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
216 assert(c);
8e274523 217 assert(b);
8e274523 218
71fda00f 219 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
4ad49000
LP
220 free(b->path);
221 free(b);
222}
223
b894ef1b
JK
224void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
225 assert(c);
226 assert(p);
227
228 LIST_REMOVE(programs, c->bpf_foreign_programs, p);
229 free(p->bpffs_path);
230 free(p);
231}
232
b18e9fc1 233void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
b18e9fc1
JK
234 assert(head);
235
236 while (*head) {
a67abc49 237 CGroupSocketBindItem *h = *head;
b18e9fc1
JK
238 LIST_REMOVE(socket_bind_items, *head, h);
239 free(h);
240 }
241}
242
4ad49000
LP
243void cgroup_context_done(CGroupContext *c) {
244 assert(c);
245
13c31542
TH
246 while (c->io_device_weights)
247 cgroup_context_free_io_device_weight(c, c->io_device_weights);
248
6ae4283c
TH
249 while (c->io_device_latencies)
250 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
251
13c31542
TH
252 while (c->io_device_limits)
253 cgroup_context_free_io_device_limit(c, c->io_device_limits);
254
4ad49000
LP
255 while (c->blockio_device_weights)
256 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
257
258 while (c->blockio_device_bandwidths)
259 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
260
261 while (c->device_allow)
262 cgroup_context_free_device_allow(c, c->device_allow);
6a48d82f 263
b18e9fc1
JK
264 cgroup_context_remove_socket_bind(&c->socket_bind_allow);
265 cgroup_context_remove_socket_bind(&c->socket_bind_deny);
266
84ebe6f0
YW
267 c->ip_address_allow = set_free(c->ip_address_allow);
268 c->ip_address_deny = set_free(c->ip_address_deny);
fab34748
KL
269
270 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
271 c->ip_filters_egress = strv_free(c->ip_filters_egress);
047f5d63 272
b894ef1b
JK
273 while (c->bpf_foreign_programs)
274 cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
275
6f50d4f7
MV
276 c->restrict_network_interfaces = set_free(c->restrict_network_interfaces);
277
047f5d63 278 cpu_set_reset(&c->cpuset_cpus);
31d3a520 279 cpu_set_reset(&c->startup_cpuset_cpus);
047f5d63 280 cpu_set_reset(&c->cpuset_mems);
31d3a520 281 cpu_set_reset(&c->startup_cpuset_mems);
4ad49000
LP
282}
283
74b5fb27 284static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
74b5fb27
CD
285 assert(u);
286
287 if (!u->cgroup_realized)
288 return -EOWNERDEAD;
289
613328c3 290 return cg_get_attribute_as_uint64("memory", u->cgroup_path, file, ret);
74b5fb27
CD
291}
292
293static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
294 CGroupContext *c;
295 CGroupMask m;
296 const char *file;
297 uint64_t unit_value;
298 int r;
299
300 /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
301 * return -ENODATA) on cgroup v1.
302 *
303 * Returns:
304 *
305 * <0: On error.
306 * 0: If the kernel memory setting doesn't match our configuration.
307 * >0: If the kernel memory setting matches our configuration.
308 *
309 * The following values are only guaranteed to be populated on return >=0:
310 *
311 * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
312 * - ret_kernel_value will contain the actual value presented by the kernel. */
313
314 assert(u);
315
316 r = cg_all_unified();
317 if (r < 0)
318 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
319
320 /* Unsupported on v1.
321 *
322 * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
323 * silently masked the controller. */
324 if (r == 0)
325 return -ENODATA;
326
327 /* The root slice doesn't have any controller files, so we can't compare anything. */
328 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
329 return -ENODATA;
330
331 /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
332 * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
333 * avoid specious errors in these scenarios, check that we even expect the memory controller to be
334 * enabled at all. */
335 m = unit_get_target_mask(u);
336 if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
337 return -ENODATA;
338
806a9362 339 assert_se(c = unit_get_cgroup_context(u));
74b5fb27
CD
340
341 if (streq(property_name, "MemoryLow")) {
342 unit_value = unit_get_ancestor_memory_low(u);
343 file = "memory.low";
344 } else if (streq(property_name, "MemoryMin")) {
345 unit_value = unit_get_ancestor_memory_min(u);
346 file = "memory.min";
347 } else if (streq(property_name, "MemoryHigh")) {
348 unit_value = c->memory_high;
349 file = "memory.high";
350 } else if (streq(property_name, "MemoryMax")) {
351 unit_value = c->memory_max;
352 file = "memory.max";
353 } else if (streq(property_name, "MemorySwapMax")) {
354 unit_value = c->memory_swap_max;
355 file = "memory.swap.max";
356 } else
357 return -EINVAL;
358
359 r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
360 if (r < 0)
361 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
362
363 /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
364 * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
365 * our internal page-counting. To support those future kernels, just check the value itself first
366 * without any page-alignment. */
367 if (*ret_kernel_value == unit_value) {
368 *ret_unit_value = unit_value;
369 return 1;
370 }
371
372 /* The current kernel behaviour, by comparison, is that even if you write a particular number of
373 * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
374 * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
375 * cricket. */
376 if (unit_value != CGROUP_LIMIT_MAX)
377 unit_value = PAGE_ALIGN_DOWN(unit_value);
378
379 *ret_unit_value = unit_value;
380
381 return *ret_kernel_value == *ret_unit_value;
382}
383
bc0623df
CD
384#define FORMAT_CGROUP_DIFF_MAX 128
385
386static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
387 uint64_t kval, sval;
388 int r;
389
390 assert(u);
391 assert(buf);
392 assert(l > 0);
393
394 r = unit_compare_memory_limit(u, property_name, &sval, &kval);
395
396 /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
397 * In the absence of reliably being able to detect whether memcg swap support is available or not,
398 * only complain if the error is not ENOENT. */
399 if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
400 (r == -ENOENT && streq(property_name, "MemorySwapMax"))) {
401 buf[0] = 0;
402 return buf;
403 }
404
405 if (r < 0) {
121ed16c 406 (void) snprintf(buf, l, " (error getting kernel value: %s)", strerror_safe(r));
bc0623df
CD
407 return buf;
408 }
409
121ed16c 410 (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
bc0623df
CD
411
412 return buf;
413}
414
415void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
31d3a520 416 _cleanup_free_ char *disable_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
bc0623df 417 CGroupContext *c;
84ebe6f0 418 struct in_addr_prefix *iaai;
4ad49000 419
bc0623df
CD
420 char cda[FORMAT_CGROUP_DIFF_MAX];
421 char cdb[FORMAT_CGROUP_DIFF_MAX];
422 char cdc[FORMAT_CGROUP_DIFF_MAX];
423 char cdd[FORMAT_CGROUP_DIFF_MAX];
424 char cde[FORMAT_CGROUP_DIFF_MAX];
425
426 assert(u);
4ad49000
LP
427 assert(f);
428
806a9362 429 assert_se(c = unit_get_cgroup_context(u));
bc0623df 430
4ad49000
LP
431 prefix = strempty(prefix);
432
25cc30c4
AZ
433 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
434
047f5d63 435 cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
31d3a520 436 startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
047f5d63 437 cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
31d3a520 438 startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
047f5d63 439
4ad49000 440 fprintf(f,
6dfb9282
CD
441 "%sCPUAccounting: %s\n"
442 "%sIOAccounting: %s\n"
443 "%sBlockIOAccounting: %s\n"
444 "%sMemoryAccounting: %s\n"
445 "%sTasksAccounting: %s\n"
446 "%sIPAccounting: %s\n"
447 "%sCPUWeight: %" PRIu64 "\n"
448 "%sStartupCPUWeight: %" PRIu64 "\n"
449 "%sCPUShares: %" PRIu64 "\n"
450 "%sStartupCPUShares: %" PRIu64 "\n"
451 "%sCPUQuotaPerSecSec: %s\n"
452 "%sCPUQuotaPeriodSec: %s\n"
453 "%sAllowedCPUs: %s\n"
31d3a520 454 "%sStartupAllowedCPUs: %s\n"
6dfb9282 455 "%sAllowedMemoryNodes: %s\n"
31d3a520 456 "%sStartupAllowedMemoryNodes: %s\n"
6dfb9282
CD
457 "%sIOWeight: %" PRIu64 "\n"
458 "%sStartupIOWeight: %" PRIu64 "\n"
459 "%sBlockIOWeight: %" PRIu64 "\n"
460 "%sStartupBlockIOWeight: %" PRIu64 "\n"
461 "%sDefaultMemoryMin: %" PRIu64 "\n"
462 "%sDefaultMemoryLow: %" PRIu64 "\n"
bc0623df
CD
463 "%sMemoryMin: %" PRIu64 "%s\n"
464 "%sMemoryLow: %" PRIu64 "%s\n"
465 "%sMemoryHigh: %" PRIu64 "%s\n"
466 "%sMemoryMax: %" PRIu64 "%s\n"
467 "%sMemorySwapMax: %" PRIu64 "%s\n"
6dfb9282
CD
468 "%sMemoryLimit: %" PRIu64 "\n"
469 "%sTasksMax: %" PRIu64 "\n"
470 "%sDevicePolicy: %s\n"
471 "%sDisableControllers: %s\n"
4d824a4e
AZ
472 "%sDelegate: %s\n"
473 "%sManagedOOMSwap: %s\n"
474 "%sManagedOOMMemoryPressure: %s\n"
d9d3f05d 475 "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
0f6bb1ed 476 "%sManagedOOMPreference: %s\n",
4ad49000 477 prefix, yes_no(c->cpu_accounting),
13c31542 478 prefix, yes_no(c->io_accounting),
4ad49000
LP
479 prefix, yes_no(c->blockio_accounting),
480 prefix, yes_no(c->memory_accounting),
d53d9474 481 prefix, yes_no(c->tasks_accounting),
c21c9906 482 prefix, yes_no(c->ip_accounting),
66ebf6c0
TH
483 prefix, c->cpu_weight,
484 prefix, c->startup_cpu_weight,
4ad49000 485 prefix, c->cpu_shares,
95ae05c0 486 prefix, c->startup_cpu_shares,
5291f26d
ZJS
487 prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
488 prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
85c3b278 489 prefix, strempty(cpuset_cpus),
31d3a520 490 prefix, strempty(startup_cpuset_cpus),
85c3b278 491 prefix, strempty(cpuset_mems),
31d3a520 492 prefix, strempty(startup_cpuset_mems),
13c31542
TH
493 prefix, c->io_weight,
494 prefix, c->startup_io_weight,
4ad49000 495 prefix, c->blockio_weight,
95ae05c0 496 prefix, c->startup_blockio_weight,
7ad5439e 497 prefix, c->default_memory_min,
c52db42b 498 prefix, c->default_memory_low,
bc0623df
CD
499 prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
500 prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
501 prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "MemoryHigh"),
502 prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryMax"),
503 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "MemorySwapMax"),
4ad49000 504 prefix, c->memory_limit,
3a0f06c4 505 prefix, tasks_max_resolve(&c->tasks_max),
a931ad47 506 prefix, cgroup_device_policy_to_string(c->device_policy),
f4c43a81 507 prefix, strempty(disable_controllers_str),
4d824a4e
AZ
508 prefix, yes_no(c->delegate),
509 prefix, managed_oom_mode_to_string(c->moom_swap),
510 prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
d9d3f05d 511 prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
4e806bfa 512 prefix, managed_oom_preference_to_string(c->moom_preference));
4ad49000 513
02638280
LP
514 if (c->delegate) {
515 _cleanup_free_ char *t = NULL;
516
517 (void) cg_mask_to_string(c->delegate_controllers, &t);
518
6dfb9282 519 fprintf(f, "%sDelegateControllers: %s\n",
02638280
LP
520 prefix,
521 strempty(t));
522 }
523
4ad49000
LP
524 LIST_FOREACH(device_allow, a, c->device_allow)
525 fprintf(f,
6dfb9282 526 "%sDeviceAllow: %s %s%s%s\n",
4ad49000
LP
527 prefix,
528 a->path,
529 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
530
13c31542
TH
531 LIST_FOREACH(device_weights, iw, c->io_device_weights)
532 fprintf(f,
6dfb9282 533 "%sIODeviceWeight: %s %" PRIu64 "\n",
13c31542
TH
534 prefix,
535 iw->path,
536 iw->weight);
537
6ae4283c
TH
538 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
539 fprintf(f,
6dfb9282 540 "%sIODeviceLatencyTargetSec: %s %s\n",
6ae4283c
TH
541 prefix,
542 l->path,
5291f26d 543 FORMAT_TIMESPAN(l->target_usec, 1));
6ae4283c 544
2b59bf51 545 LIST_FOREACH(device_limits, il, c->io_device_limits)
e8616626 546 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
9be57249
TH
547 if (il->limits[type] != cgroup_io_limit_defaults[type])
548 fprintf(f,
6dfb9282 549 "%s%s: %s %s\n",
9be57249
TH
550 prefix,
551 cgroup_io_limit_type_to_string(type),
552 il->path,
2b59bf51 553 FORMAT_BYTES(il->limits[type]));
13c31542 554
4ad49000
LP
555 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
556 fprintf(f,
6dfb9282 557 "%sBlockIODeviceWeight: %s %" PRIu64,
4ad49000
LP
558 prefix,
559 w->path,
560 w->weight);
561
562 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
979d0311
TH
563 if (b->rbps != CGROUP_LIMIT_MAX)
564 fprintf(f,
6dfb9282 565 "%sBlockIOReadBandwidth: %s %s\n",
979d0311
TH
566 prefix,
567 b->path,
2b59bf51 568 FORMAT_BYTES(b->rbps));
979d0311
TH
569 if (b->wbps != CGROUP_LIMIT_MAX)
570 fprintf(f,
6dfb9282 571 "%sBlockIOWriteBandwidth: %s %s\n",
979d0311
TH
572 prefix,
573 b->path,
2b59bf51 574 FORMAT_BYTES(b->wbps));
4ad49000 575 }
c21c9906 576
84ebe6f0 577 SET_FOREACH(iaai, c->ip_address_allow) {
c21c9906
LP
578 _cleanup_free_ char *k = NULL;
579
84ebe6f0
YW
580 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
581 fprintf(f, "%sIPAddressAllow: %s\n", prefix, strnull(k));
c21c9906
LP
582 }
583
84ebe6f0 584 SET_FOREACH(iaai, c->ip_address_deny) {
c21c9906
LP
585 _cleanup_free_ char *k = NULL;
586
84ebe6f0
YW
587 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
588 fprintf(f, "%sIPAddressDeny: %s\n", prefix, strnull(k));
c21c9906 589 }
fab34748
KL
590
591 STRV_FOREACH(path, c->ip_filters_ingress)
6dfb9282 592 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
fab34748
KL
593
594 STRV_FOREACH(path, c->ip_filters_egress)
6dfb9282 595 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
b894ef1b
JK
596
597 LIST_FOREACH(programs, p, c->bpf_foreign_programs)
598 fprintf(f, "%sBPFProgram: %s:%s",
599 prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
b18e9fc1
JK
600
601 if (c->socket_bind_allow) {
602 fprintf(f, "%sSocketBindAllow:", prefix);
603 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_allow)
604 cgroup_context_dump_socket_bind_item(bi, f);
605 fputc('\n', f);
606 }
607
608 if (c->socket_bind_deny) {
609 fprintf(f, "%sSocketBindDeny:", prefix);
610 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_deny)
611 cgroup_context_dump_socket_bind_item(bi, f);
612 fputc('\n', f);
613 }
6f50d4f7
MV
614
615 if (c->restrict_network_interfaces) {
616 char *iface;
617 SET_FOREACH(iface, c->restrict_network_interfaces)
618 fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
619 }
b18e9fc1
JK
620}
621
622void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
5587ce7f 623 const char *family, *colon1, *protocol = "", *colon2 = "";
a4817536
LP
624
625 family = strempty(af_to_ipv4_ipv6(item->address_family));
5587ce7f
JK
626 colon1 = isempty(family) ? "" : ":";
627
628 if (item->ip_protocol != 0) {
629 protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
630 colon2 = ":";
631 }
b18e9fc1
JK
632
633 if (item->nr_ports == 0)
5587ce7f 634 fprintf(f, " %s%s%s%sany", family, colon1, protocol, colon2);
b18e9fc1 635 else if (item->nr_ports == 1)
5587ce7f 636 fprintf(f, " %s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
b18e9fc1
JK
637 else {
638 uint16_t port_max = item->port_min + item->nr_ports - 1;
5587ce7f
JK
639 fprintf(f, " %s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
640 item->port_min, port_max);
b18e9fc1 641 }
4ad49000
LP
642}
643
fd870bac
YW
644int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
645 _cleanup_free_ CGroupDeviceAllow *a = NULL;
646 _cleanup_free_ char *d = NULL;
647
648 assert(c);
649 assert(dev);
650 assert(isempty(mode) || in_charset(mode, "rwm"));
651
652 a = new(CGroupDeviceAllow, 1);
653 if (!a)
654 return -ENOMEM;
655
656 d = strdup(dev);
657 if (!d)
658 return -ENOMEM;
659
660 *a = (CGroupDeviceAllow) {
661 .path = TAKE_PTR(d),
490c5a37
LP
662 .r = isempty(mode) || strchr(mode, 'r'),
663 .w = isempty(mode) || strchr(mode, 'w'),
664 .m = isempty(mode) || strchr(mode, 'm'),
fd870bac
YW
665 };
666
667 LIST_PREPEND(device_allow, c->device_allow, a);
668 TAKE_PTR(a);
669
670 return 0;
671}
672
b894ef1b
JK
673int cgroup_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
674 CGroupBPFForeignProgram *p;
675 _cleanup_free_ char *d = NULL;
676
677 assert(c);
678 assert(bpffs_path);
679
680 if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
681 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
682
683 d = strdup(bpffs_path);
684 if (!d)
685 return log_oom();
686
687 p = new(CGroupBPFForeignProgram, 1);
688 if (!p)
689 return log_oom();
690
691 *p = (CGroupBPFForeignProgram) {
692 .attach_type = attach_type,
693 .bpffs_path = TAKE_PTR(d),
694 };
695
696 LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
697
698 return 0;
699}
700
6264b85e
CD
701#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
702 uint64_t unit_get_ancestor_##entry(Unit *u) { \
703 CGroupContext *c; \
704 \
705 /* 1. Is entry set in this unit? If so, use that. \
706 * 2. Is the default for this entry set in any \
707 * ancestor? If so, use that. \
708 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
709 \
710 assert(u); \
711 \
712 c = unit_get_cgroup_context(u); \
c5322608 713 if (c && c->entry##_set) \
6264b85e
CD
714 return c->entry; \
715 \
12f64221 716 while ((u = UNIT_GET_SLICE(u))) { \
6264b85e 717 c = unit_get_cgroup_context(u); \
c5322608 718 if (c && c->default_##entry##_set) \
6264b85e
CD
719 return c->default_##entry; \
720 } \
721 \
722 /* We've reached the root, but nobody had default for \
723 * this entry set, so set it to the kernel default. */ \
724 return CGROUP_LIMIT_MIN; \
c52db42b
CD
725}
726
6264b85e 727UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
7ad5439e 728UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
6264b85e 729
1fa3b6c2
LP
730static void unit_set_xattr_graceful(Unit *u, const char *cgroup_path, const char *name, const void *data, size_t size) {
731 int r;
732
733 assert(u);
734 assert(name);
735
736 if (!cgroup_path) {
737 if (!u->cgroup_path)
738 return;
739
740 cgroup_path = u->cgroup_path;
741 }
742
743 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name, data, size, 0);
744 if (r < 0)
745 log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
746}
747
748static void unit_remove_xattr_graceful(Unit *u, const char *cgroup_path, const char *name) {
749 int r;
750
751 assert(u);
752 assert(name);
753
754 if (!cgroup_path) {
755 if (!u->cgroup_path)
756 return;
757
758 cgroup_path = u->cgroup_path;
759 }
760
761 r = cg_remove_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name);
762 if (r < 0 && r != -ENODATA)
763 log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
764}
765
4e806bfa
AZ
766void cgroup_oomd_xattr_apply(Unit *u, const char *cgroup_path) {
767 CGroupContext *c;
4e806bfa
AZ
768
769 assert(u);
770
771 c = unit_get_cgroup_context(u);
772 if (!c)
773 return;
774
1fa3b6c2
LP
775 if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
776 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_omit", "1", 1);
4e806bfa 777
1fa3b6c2
LP
778 if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
779 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_avoid", "1", 1);
4e806bfa 780
1fa3b6c2
LP
781 if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
782 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_avoid");
4e806bfa 783
1fa3b6c2
LP
784 if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
785 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_omit");
4e806bfa
AZ
786}
787
0d2d6fbf 788static void cgroup_xattr_apply(Unit *u) {
d9bc1c36
LP
789 const char *xn;
790 bool b;
0d2d6fbf
CD
791
792 assert(u);
793
794 if (!MANAGER_IS_SYSTEM(u->manager))
795 return;
796
1fa3b6c2
LP
797 b = !sd_id128_is_null(u->invocation_id);
798 FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
799 if (b)
800 unit_set_xattr_graceful(u, NULL, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
801 else
802 unit_remove_xattr_graceful(u, NULL, xn);
3288ea8f 803 }
0d2d6fbf 804
d9bc1c36
LP
805 /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
806 * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
807 * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
808 * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
809 * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
810 * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
811 * be a big problem given this communicates delegation state to clients, but the manager never reads
812 * it. */
813 b = unit_cgroup_delegate(u);
814 FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
1fa3b6c2
LP
815 if (b)
816 unit_set_xattr_graceful(u, NULL, xn, "1", 1);
817 else
818 unit_remove_xattr_graceful(u, NULL, xn);
3288ea8f 819 }
4e806bfa
AZ
820
821 cgroup_oomd_xattr_apply(u, u->cgroup_path);
0d2d6fbf
CD
822}
823
45c2e068 824static int lookup_block_device(const char *p, dev_t *ret) {
f5855697
YS
825 dev_t rdev, dev = 0;
826 mode_t mode;
45c2e068 827 int r;
4ad49000
LP
828
829 assert(p);
45c2e068 830 assert(ret);
4ad49000 831
f5855697 832 r = device_path_parse_major_minor(p, &mode, &rdev);
d5aecba6 833 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
f5855697 834 struct stat st;
57f1030b 835
d5aecba6
LP
836 if (stat(p, &st) < 0)
837 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
57f1030b 838
f5855697 839 mode = st.st_mode;
a0d6590c
LP
840 rdev = st.st_rdev;
841 dev = st.st_dev;
d5aecba6
LP
842 } else if (r < 0)
843 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
844
57f1030b
LP
845 if (S_ISCHR(mode))
846 return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
847 "Device node '%s' is a character device, but block device needed.", p);
848 if (S_ISBLK(mode))
f5855697
YS
849 *ret = rdev;
850 else if (major(dev) != 0)
851 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
45c2e068
LP
852 else {
853 /* If this is btrfs, getting the backing block device is a bit harder */
854 r = btrfs_get_block_device(p, ret);
57f1030b
LP
855 if (r == -ENOTTY)
856 return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
857 "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
858 if (r < 0)
45c2e068 859 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
4ad49000 860 }
8e274523 861
b7cf4b4e
BB
862 /* If this is a LUKS/DM device, recursively try to get the originating block device */
863 while (block_get_originating(*ret, ret) > 0);
45c2e068
LP
864
865 /* If this is a partition, try to get the originating block device */
866 (void) block_get_whole_disk(*ret, ret);
8e274523 867 return 0;
8e274523
LP
868}
869
66ebf6c0
TH
870static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
871 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
872 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
873}
874
875static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
876 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
877 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
878}
879
31d3a520
PM
880static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
881 return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
882}
883
884static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
885 return c->cpuset_mems.set || c->startup_cpuset_mems.set;
886}
887
66ebf6c0 888static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
9dfb6a3a 889 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
66ebf6c0
TH
890 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
891 return c->startup_cpu_weight;
892 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
893 return c->cpu_weight;
894 else
895 return CGROUP_WEIGHT_DEFAULT;
896}
897
898static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
9dfb6a3a 899 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
66ebf6c0
TH
900 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
901 return c->startup_cpu_shares;
902 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
903 return c->cpu_shares;
904 else
905 return CGROUP_CPU_SHARES_DEFAULT;
906}
907
31d3a520 908static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
9dfb6a3a 909 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
31d3a520
PM
910 c->startup_cpuset_cpus.set)
911 return &c->startup_cpuset_cpus;
912 else
913 return &c->cpuset_cpus;
914}
915
916static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
9dfb6a3a 917 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
31d3a520
PM
918 c->startup_cpuset_mems.set)
919 return &c->startup_cpuset_mems;
920 else
921 return &c->cpuset_mems;
922}
923
10f28641
FB
924usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
925 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
926 * need to be higher than that boundary. quota is specified in USecPerSec.
927 * Additionally, period must be at most max_period. */
928 assert(quota > 0);
929
930 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
931}
932
933static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
934 usec_t new_period;
935
936 if (quota == USEC_INFINITY)
937 /* Always use default period for infinity quota. */
938 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
939
940 if (period == USEC_INFINITY)
941 /* Default period was requested. */
942 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
943
944 /* Clamp to interval [1ms, 1s] */
945 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
946
947 if (new_period != period) {
8ed6f81b 948 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
10f28641 949 "Clamping CPU interval for cpu.max: period is now %s",
5291f26d 950 FORMAT_TIMESPAN(new_period, 1));
527ede0c 951 u->warned_clamping_cpu_quota_period = true;
10f28641
FB
952 }
953
954 return new_period;
955}
956
52fecf20
LP
957static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
958 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
959
960 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 961 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
52fecf20
LP
962}
963
10f28641 964static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 965 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
66ebf6c0 966
10f28641 967 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
66ebf6c0
TH
968 if (quota != USEC_INFINITY)
969 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
10f28641 970 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
66ebf6c0 971 else
10f28641 972 xsprintf(buf, "max " USEC_FMT "\n", period);
293d32df 973 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
66ebf6c0
TH
974}
975
52fecf20
LP
976static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
977 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
978
979 xsprintf(buf, "%" PRIu64 "\n", shares);
293d32df 980 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
52fecf20
LP
981}
982
10f28641 983static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 984 char buf[DECIMAL_STR_MAX(usec_t) + 2];
66ebf6c0 985
10f28641
FB
986 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
987
988 xsprintf(buf, USEC_FMT "\n", period);
293d32df 989 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
66ebf6c0
TH
990
991 if (quota != USEC_INFINITY) {
10f28641 992 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
293d32df 993 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
66ebf6c0 994 } else
589a5f7a 995 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
66ebf6c0
TH
996}
997
998static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
999 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
1000 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1001}
1002
1003static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
1004 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1005 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
1006}
1007
2cea199e 1008static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
047f5d63
PH
1009 _cleanup_free_ char *buf = NULL;
1010
2cea199e 1011 buf = cpu_set_to_range_string(cpus);
c259ac9a
LP
1012 if (!buf) {
1013 log_oom();
1014 return;
1015 }
047f5d63
PH
1016
1017 (void) set_attribute_and_warn(u, "cpuset", name, buf);
1018}
1019
508c45da 1020static bool cgroup_context_has_io_config(CGroupContext *c) {
538b4852
TH
1021 return c->io_accounting ||
1022 c->io_weight != CGROUP_WEIGHT_INVALID ||
1023 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
1024 c->io_device_weights ||
6ae4283c 1025 c->io_device_latencies ||
538b4852
TH
1026 c->io_device_limits;
1027}
1028
508c45da 1029static bool cgroup_context_has_blockio_config(CGroupContext *c) {
538b4852
TH
1030 return c->blockio_accounting ||
1031 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1032 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1033 c->blockio_device_weights ||
1034 c->blockio_device_bandwidths;
1035}
1036
508c45da 1037static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
9dfb6a3a 1038 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
64faf04c
TH
1039 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1040 return c->startup_io_weight;
1041 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
1042 return c->io_weight;
1043 else
1044 return CGROUP_WEIGHT_DEFAULT;
1045}
1046
508c45da 1047static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
9dfb6a3a 1048 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
64faf04c
TH
1049 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1050 return c->startup_blockio_weight;
1051 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1052 return c->blockio_weight;
1053 else
1054 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1055}
1056
508c45da 1057static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
538b4852
TH
1058 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1059 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1060}
1061
508c45da 1062static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
538b4852
TH
1063 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1064 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1065}
1066
bec17e80
MK
1067static void set_bfq_weight(Unit *u, const char *controller, uint64_t io_weight) {
1068 char buf[DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
1069 const char *p;
1070 uint64_t bfq_weight;
1071
1072 /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
1073 * See also: https://github.com/systemd/systemd/pull/13335 and
1074 * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
1075 p = strjoina(controller, ".bfq.weight");
1076 /* Adjust to kernel range is 1..1000, the default is 100. */
1077 bfq_weight = BFQ_WEIGHT(io_weight);
1078
1079 xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
1080
1081 if (set_attribute_and_warn(u, controller, p, buf) >= 0 && io_weight != bfq_weight)
1082 log_unit_debug(u, "%sIOWeight=%" PRIu64 " scaled to %s=%" PRIu64,
1083 streq(controller, "blkio") ? "Block" : "",
1084 io_weight, p, bfq_weight);
1085}
1086
f29ff115 1087static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
64faf04c
TH
1088 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1089 dev_t dev;
1090 int r;
1091
1092 r = lookup_block_device(dev_path, &dev);
1093 if (r < 0)
1094 return;
1095
1096 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
293d32df 1097 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
64faf04c
TH
1098}
1099
f29ff115 1100static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
64faf04c
TH
1101 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1102 dev_t dev;
1103 int r;
1104
1105 r = lookup_block_device(dev_path, &dev);
1106 if (r < 0)
1107 return;
1108
1109 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
293d32df 1110 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
64faf04c
TH
1111}
1112
6ae4283c
TH
1113static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1114 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1115 dev_t dev;
1116 int r;
1117
1118 r = lookup_block_device(dev_path, &dev);
1119 if (r < 0)
1120 return;
1121
1122 if (target != USEC_INFINITY)
1123 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
1124 else
1125 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
1126
293d32df 1127 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
6ae4283c
TH
1128}
1129
17ae2780 1130static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
4c1f9343
ZJS
1131 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
1132 buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
64faf04c 1133 dev_t dev;
64faf04c 1134
4c1f9343 1135 if (lookup_block_device(dev_path, &dev) < 0)
17ae2780 1136 return;
64faf04c 1137
4c1f9343 1138 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
17ae2780 1139 if (limits[type] != cgroup_io_limit_defaults[type])
64faf04c 1140 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
17ae2780 1141 else
64faf04c 1142 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
64faf04c
TH
1143
1144 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
1145 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1146 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
293d32df 1147 (void) set_attribute_and_warn(u, "io", "io.max", buf);
64faf04c
TH
1148}
1149
17ae2780 1150static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
64faf04c
TH
1151 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1152 dev_t dev;
64faf04c 1153
4c1f9343 1154 if (lookup_block_device(dev_path, &dev) < 0)
17ae2780 1155 return;
64faf04c 1156
64faf04c 1157 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
293d32df 1158 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
64faf04c 1159
64faf04c 1160 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
293d32df 1161 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
64faf04c
TH
1162}
1163
c52db42b
CD
1164static bool unit_has_unified_memory_config(Unit *u) {
1165 CGroupContext *c;
1166
1167 assert(u);
1168
806a9362 1169 assert_se(c = unit_get_cgroup_context(u));
c52db42b 1170
7c9d2b79 1171 return unit_get_ancestor_memory_min(u) > 0 || unit_get_ancestor_memory_low(u) > 0 ||
c52db42b
CD
1172 c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
1173 c->memory_swap_max != CGROUP_LIMIT_MAX;
da4d897e
TH
1174}
1175
f29ff115 1176static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
589a5f7a 1177 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
da4d897e
TH
1178
1179 if (v != CGROUP_LIMIT_MAX)
1180 xsprintf(buf, "%" PRIu64 "\n", v);
1181
293d32df 1182 (void) set_attribute_and_warn(u, "memory", file, buf);
da4d897e
TH
1183}
1184
0f2d84d2 1185static void cgroup_apply_firewall(Unit *u) {
0f2d84d2
LP
1186 assert(u);
1187
acf7f253 1188 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
906c06f6 1189
acf7f253 1190 if (bpf_firewall_compile(u) < 0)
906c06f6
DM
1191 return;
1192
fab34748 1193 (void) bpf_firewall_load_custom(u);
906c06f6 1194 (void) bpf_firewall_install(u);
906c06f6
DM
1195}
1196
a8e5eb17
JK
1197static void cgroup_apply_socket_bind(Unit *u) {
1198 assert(u);
1199
cd09a5f3 1200 (void) bpf_socket_bind_install(u);
a8e5eb17
JK
1201}
1202
6f50d4f7
MV
1203static void cgroup_apply_restrict_network_interfaces(Unit *u) {
1204 assert(u);
1205
1206 (void) restrict_network_interfaces_install(u);
1207}
1208
8b139557 1209static int cgroup_apply_devices(Unit *u) {
76dc1725 1210 _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
8b139557
ZJS
1211 const char *path;
1212 CGroupContext *c;
45669ae2 1213 CGroupDevicePolicy policy;
8b139557
ZJS
1214 int r;
1215
1216 assert_se(c = unit_get_cgroup_context(u));
1217 assert_se(path = u->cgroup_path);
1218
45669ae2
ZJS
1219 policy = c->device_policy;
1220
8b139557 1221 if (cg_all_unified() > 0) {
45669ae2 1222 r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
8b139557
ZJS
1223 if (r < 0)
1224 return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1225
1226 } else {
1227 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
1228 * EINVAL here. */
1229
45669ae2 1230 if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
8b139557
ZJS
1231 r = cg_set_attribute("devices", path, "devices.deny", "a");
1232 else
1233 r = cg_set_attribute("devices", path, "devices.allow", "a");
1234 if (r < 0)
8ed6f81b
YW
1235 log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1236 "Failed to reset devices.allow/devices.deny: %m");
8b139557
ZJS
1237 }
1238
6b000af4 1239 bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
45669ae2 1240 (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
6b000af4
LP
1241 if (allow_list_static)
1242 (void) bpf_devices_allow_list_static(prog, path);
8b139557 1243
6b000af4 1244 bool any = allow_list_static;
8b139557
ZJS
1245 LIST_FOREACH(device_allow, a, c->device_allow) {
1246 char acc[4], *val;
1247 unsigned k = 0;
1248
1249 if (a->r)
1250 acc[k++] = 'r';
1251 if (a->w)
1252 acc[k++] = 'w';
1253 if (a->m)
1254 acc[k++] = 'm';
8b139557
ZJS
1255 if (k == 0)
1256 continue;
8b139557
ZJS
1257 acc[k++] = 0;
1258
1259 if (path_startswith(a->path, "/dev/"))
6b000af4 1260 r = bpf_devices_allow_list_device(prog, path, a->path, acc);
8b139557 1261 else if ((val = startswith(a->path, "block-")))
6b000af4 1262 r = bpf_devices_allow_list_major(prog, path, val, 'b', acc);
8b139557 1263 else if ((val = startswith(a->path, "char-")))
6b000af4 1264 r = bpf_devices_allow_list_major(prog, path, val, 'c', acc);
45669ae2 1265 else {
8b139557 1266 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
45669ae2
ZJS
1267 continue;
1268 }
1269
1270 if (r >= 0)
1271 any = true;
1272 }
1273
1274 if (prog && !any) {
1275 log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
1276
1277 /* The kernel verifier would reject a program we would build with the normal intro and outro
6b000af4 1278 but no allow-listing rules (outro would contain an unreachable instruction for successful
45669ae2
ZJS
1279 return). */
1280 policy = CGROUP_DEVICE_POLICY_STRICT;
8b139557
ZJS
1281 }
1282
76dc1725 1283 r = bpf_devices_apply_policy(&prog, policy, any, path, &u->bpf_device_control_installed);
8b139557
ZJS
1284 if (r < 0) {
1285 static bool warned = false;
1286
1287 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1288 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1289 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1290 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1291
1292 warned = true;
1293 }
1294 return r;
1295}
1296
17283ce7
YW
1297static void set_io_weight(Unit *u, uint64_t weight) {
1298 char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
17283ce7
YW
1299
1300 assert(u);
29eb0eef 1301
bec17e80 1302 set_bfq_weight(u, "io", weight);
29eb0eef 1303
29eb0eef 1304 xsprintf(buf, "default %" PRIu64 "\n", weight);
17283ce7
YW
1305 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1306}
1307
1308static void set_blkio_weight(Unit *u, uint64_t weight) {
1309 char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
17283ce7
YW
1310
1311 assert(u);
29eb0eef 1312
bec17e80 1313 set_bfq_weight(u, "blkio", weight);
17283ce7
YW
1314
1315 xsprintf(buf, "%" PRIu64 "\n", weight);
1316 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
29eb0eef
ZJS
1317}
1318
506ea51b
JK
1319static void cgroup_apply_bpf_foreign_program(Unit *u) {
1320 assert(u);
1321
1322 (void) bpf_foreign_install(u);
1323}
1324
906c06f6
DM
1325static void cgroup_context_apply(
1326 Unit *u,
1327 CGroupMask apply_mask,
906c06f6
DM
1328 ManagerState state) {
1329
f29ff115
TH
1330 const char *path;
1331 CGroupContext *c;
52fecf20 1332 bool is_host_root, is_local_root;
4ad49000
LP
1333 int r;
1334
f29ff115
TH
1335 assert(u);
1336
906c06f6 1337 /* Nothing to do? Exit early! */
17f14955 1338 if (apply_mask == 0)
4ad49000 1339 return;
8e274523 1340
52fecf20
LP
1341 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
1342 * attributes should only be managed for cgroups further down the tree. */
1343 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
1344 is_host_root = unit_has_host_root_cgroup(u);
f3725e64
LP
1345
1346 assert_se(c = unit_get_cgroup_context(u));
1347 assert_se(path = u->cgroup_path);
1348
52fecf20 1349 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
6da13913 1350 path = "/";
01efdf13 1351
be2c0327
LP
1352 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
1353 * then), and missing cgroups, i.e. EROFS and ENOENT. */
714e2e1d 1354
be2c0327
LP
1355 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
1356 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
1357 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
4e1dfa45 1358 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
be2c0327
LP
1359 * we couldn't even write to them if we wanted to). */
1360 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
8e274523 1361
b4cccbc1 1362 if (cg_all_unified() > 0) {
be2c0327 1363 uint64_t weight;
b2f8b02e 1364
be2c0327
LP
1365 if (cgroup_context_has_cpu_weight(c))
1366 weight = cgroup_context_cpu_weight(c, state);
1367 else if (cgroup_context_has_cpu_shares(c)) {
1368 uint64_t shares;
66ebf6c0 1369
be2c0327
LP
1370 shares = cgroup_context_cpu_shares(c, state);
1371 weight = cgroup_cpu_shares_to_weight(shares);
66ebf6c0 1372
be2c0327
LP
1373 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1374 shares, weight, path);
1375 } else
1376 weight = CGROUP_WEIGHT_DEFAULT;
66ebf6c0 1377
be2c0327 1378 cgroup_apply_unified_cpu_weight(u, weight);
10f28641 1379 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1380
52fecf20 1381 } else {
be2c0327 1382 uint64_t shares;
52fecf20 1383
be2c0327
LP
1384 if (cgroup_context_has_cpu_weight(c)) {
1385 uint64_t weight;
52fecf20 1386
be2c0327
LP
1387 weight = cgroup_context_cpu_weight(c, state);
1388 shares = cgroup_cpu_weight_to_shares(weight);
52fecf20 1389
be2c0327
LP
1390 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1391 weight, shares, path);
1392 } else if (cgroup_context_has_cpu_shares(c))
1393 shares = cgroup_context_cpu_shares(c, state);
1394 else
1395 shares = CGROUP_CPU_SHARES_DEFAULT;
66ebf6c0 1396
be2c0327 1397 cgroup_apply_legacy_cpu_shares(u, shares);
10f28641 1398 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1399 }
4ad49000
LP
1400 }
1401
047f5d63 1402 if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
31d3a520
PM
1403 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
1404 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
047f5d63
PH
1405 }
1406
4e1dfa45 1407 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
52fecf20
LP
1408 * controller), and in case of containers we want to leave control of these attributes to the container manager
1409 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1410 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
52fecf20
LP
1411 bool has_io, has_blockio;
1412 uint64_t weight;
13c31542 1413
52fecf20
LP
1414 has_io = cgroup_context_has_io_config(c);
1415 has_blockio = cgroup_context_has_blockio_config(c);
13c31542 1416
52fecf20
LP
1417 if (has_io)
1418 weight = cgroup_context_io_weight(c, state);
1419 else if (has_blockio) {
1420 uint64_t blkio_weight;
128fadc9 1421
52fecf20
LP
1422 blkio_weight = cgroup_context_blkio_weight(c, state);
1423 weight = cgroup_weight_blkio_to_io(blkio_weight);
128fadc9 1424
67e2ea15 1425 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
52fecf20
LP
1426 blkio_weight, weight);
1427 } else
1428 weight = CGROUP_WEIGHT_DEFAULT;
13c31542 1429
17283ce7 1430 set_io_weight(u, weight);
2dbc45ae 1431
52fecf20 1432 if (has_io) {
52fecf20
LP
1433 LIST_FOREACH(device_weights, w, c->io_device_weights)
1434 cgroup_apply_io_device_weight(u, w->path, w->weight);
128fadc9 1435
52fecf20
LP
1436 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1437 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
6ae4283c 1438
52fecf20
LP
1439 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1440 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
6ae4283c 1441
52fecf20 1442 } else if (has_blockio) {
52fecf20
LP
1443 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1444 weight = cgroup_weight_blkio_to_io(w->weight);
17ae2780 1445
67e2ea15 1446 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
52fecf20 1447 w->weight, weight, w->path);
538b4852 1448
52fecf20
LP
1449 cgroup_apply_io_device_weight(u, w->path, weight);
1450 }
538b4852 1451
17ae2780 1452 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
538b4852 1453 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
538b4852 1454
e8616626 1455 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
538b4852
TH
1456 limits[type] = cgroup_io_limit_defaults[type];
1457
1458 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1459 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1460
67e2ea15 1461 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
128fadc9
TH
1462 b->rbps, b->wbps, b->path);
1463
17ae2780 1464 cgroup_apply_io_device_limit(u, b->path, limits);
538b4852 1465 }
13c31542
TH
1466 }
1467 }
1468
906c06f6 1469 if (apply_mask & CGROUP_MASK_BLKIO) {
52fecf20 1470 bool has_io, has_blockio;
4ad49000 1471
52fecf20
LP
1472 has_io = cgroup_context_has_io_config(c);
1473 has_blockio = cgroup_context_has_blockio_config(c);
1474
1475 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1476 * left to our container manager, too. */
1477 if (!is_local_root) {
64faf04c 1478 uint64_t weight;
64faf04c 1479
7d862ab8 1480 if (has_io) {
52fecf20 1481 uint64_t io_weight;
128fadc9 1482
52fecf20 1483 io_weight = cgroup_context_io_weight(c, state);
538b4852 1484 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
128fadc9 1485
67e2ea15 1486 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
128fadc9 1487 io_weight, weight);
7d862ab8
TH
1488 } else if (has_blockio)
1489 weight = cgroup_context_blkio_weight(c, state);
1490 else
538b4852 1491 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
64faf04c 1492
17283ce7 1493 set_blkio_weight(u, weight);
35e7a62c 1494
03677889 1495 if (has_io)
128fadc9
TH
1496 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1497 weight = cgroup_weight_io_to_blkio(w->weight);
1498
67e2ea15 1499 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
128fadc9
TH
1500 w->weight, weight, w->path);
1501
1502 cgroup_apply_blkio_device_weight(u, w->path, weight);
1503 }
03677889 1504 else if (has_blockio)
7d862ab8
TH
1505 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1506 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
4ad49000
LP
1507 }
1508
5238e957 1509 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
52fecf20
LP
1510 * roots, as there we want the container manager to handle it */
1511 if (is_host_root || !is_local_root) {
03677889 1512 if (has_io)
52fecf20 1513 LIST_FOREACH(device_limits, l, c->io_device_limits) {
67e2ea15 1514 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
52fecf20 1515 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
128fadc9 1516
52fecf20
LP
1517 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1518 }
03677889 1519 else if (has_blockio)
52fecf20
LP
1520 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1521 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
d686d8a9 1522 }
8e274523
LP
1523 }
1524
be2c0327
LP
1525 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1526 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
4e1dfa45 1527 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
be2c0327
LP
1528 * write to this if we wanted to.) */
1529 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
efdb0237 1530
52fecf20 1531 if (cg_all_unified() > 0) {
be2c0327
LP
1532 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1533
c52db42b 1534 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1535 max = c->memory_max;
1536 swap_max = c->memory_swap_max;
1537 } else {
1538 max = c->memory_limit;
efdb0237 1539
be2c0327
LP
1540 if (max != CGROUP_LIMIT_MAX)
1541 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
128fadc9 1542 }
da4d897e 1543
64fe532e 1544 cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
c52db42b 1545 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
be2c0327
LP
1546 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1547 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1548 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
128fadc9 1549
afcfaa69
LP
1550 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1551
be2c0327
LP
1552 } else {
1553 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1554 uint64_t val;
52fecf20 1555
c52db42b 1556 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1557 val = c->memory_max;
1558 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1559 } else
1560 val = c->memory_limit;
78a4ee59 1561
be2c0327
LP
1562 if (val == CGROUP_LIMIT_MAX)
1563 strncpy(buf, "-1\n", sizeof(buf));
1564 else
1565 xsprintf(buf, "%" PRIu64 "\n", val);
1566
1567 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
da4d897e 1568 }
4ad49000 1569 }
8e274523 1570
4e1dfa45 1571 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
52fecf20
LP
1572 * containers, where we leave this to the manager */
1573 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
8b139557
ZJS
1574 (is_host_root || cg_all_unified() > 0 || !is_local_root))
1575 (void) cgroup_apply_devices(u);
03a7b521 1576
00b5974f
LP
1577 if (apply_mask & CGROUP_MASK_PIDS) {
1578
52fecf20 1579 if (is_host_root) {
00b5974f
LP
1580 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1581 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1582 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1583 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1584 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1585 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1586 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1587 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1588 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1589 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
5238e957 1590 * which is desirable so that there's an official way to release control of the sysctl from
00b5974f
LP
1591 * systemd: set the limit to unbounded and reload. */
1592
3a0f06c4 1593 if (tasks_max_isset(&c->tasks_max)) {
00b5974f 1594 u->manager->sysctl_pid_max_changed = true;
3a0f06c4 1595 r = procfs_tasks_set_limit(tasks_max_resolve(&c->tasks_max));
00b5974f
LP
1596 } else if (u->manager->sysctl_pid_max_changed)
1597 r = procfs_tasks_set_limit(TASKS_MAX);
1598 else
1599 r = 0;
00b5974f 1600 if (r < 0)
8ed6f81b
YW
1601 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1602 "Failed to write to tasks limit sysctls: %m");
52fecf20 1603 }
03a7b521 1604
52fecf20
LP
1605 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1606 * leave it for the container manager. */
1607 if (!is_local_root) {
3a0f06c4
ZJS
1608 if (tasks_max_isset(&c->tasks_max)) {
1609 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
03a7b521 1610
3a0f06c4 1611 xsprintf(buf, "%" PRIu64 "\n", tasks_max_resolve(&c->tasks_max));
293d32df 1612 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
00b5974f 1613 } else
589a5f7a 1614 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
00b5974f 1615 }
03a7b521 1616 }
906c06f6 1617
17f14955 1618 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
0f2d84d2 1619 cgroup_apply_firewall(u);
506ea51b
JK
1620
1621 if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
1622 cgroup_apply_bpf_foreign_program(u);
a8e5eb17
JK
1623
1624 if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
1625 cgroup_apply_socket_bind(u);
6f50d4f7
MV
1626
1627 if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
1628 cgroup_apply_restrict_network_interfaces(u);
fb385181
LP
1629}
1630
16492445
LP
1631static bool unit_get_needs_bpf_firewall(Unit *u) {
1632 CGroupContext *c;
16492445
LP
1633 assert(u);
1634
1635 c = unit_get_cgroup_context(u);
1636 if (!c)
1637 return false;
1638
1639 if (c->ip_accounting ||
84ebe6f0
YW
1640 !set_isempty(c->ip_address_allow) ||
1641 !set_isempty(c->ip_address_deny) ||
fab34748
KL
1642 c->ip_filters_ingress ||
1643 c->ip_filters_egress)
16492445
LP
1644 return true;
1645
1646 /* If any parent slice has an IP access list defined, it applies too */
e8616626 1647 for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
16492445
LP
1648 c = unit_get_cgroup_context(p);
1649 if (!c)
1650 return false;
1651
84ebe6f0
YW
1652 if (!set_isempty(c->ip_address_allow) ||
1653 !set_isempty(c->ip_address_deny))
16492445
LP
1654 return true;
1655 }
1656
1657 return false;
1658}
1659
506ea51b
JK
1660static bool unit_get_needs_bpf_foreign_program(Unit *u) {
1661 CGroupContext *c;
1662 assert(u);
1663
1664 c = unit_get_cgroup_context(u);
1665 if (!c)
1666 return false;
1667
1668 return !LIST_IS_EMPTY(c->bpf_foreign_programs);
1669}
1670
a8e5eb17
JK
1671static bool unit_get_needs_socket_bind(Unit *u) {
1672 CGroupContext *c;
1673 assert(u);
1674
1675 c = unit_get_cgroup_context(u);
1676 if (!c)
1677 return false;
1678
11ab01e4 1679 return c->socket_bind_allow || c->socket_bind_deny;
a8e5eb17
JK
1680}
1681
6f50d4f7
MV
1682static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
1683 CGroupContext *c;
1684 assert(u);
1685
1686 c = unit_get_cgroup_context(u);
1687 if (!c)
1688 return false;
1689
1690 return !set_isempty(c->restrict_network_interfaces);
1691}
1692
c52db42b 1693static CGroupMask unit_get_cgroup_mask(Unit *u) {
efdb0237 1694 CGroupMask mask = 0;
c52db42b
CD
1695 CGroupContext *c;
1696
1697 assert(u);
1698
806a9362 1699 assert_se(c = unit_get_cgroup_context(u));
c710d3b4 1700
fae9bc29 1701 /* Figure out which controllers we need, based on the cgroup context object */
8e274523 1702
fae9bc29 1703 if (c->cpu_accounting)
f98c2585 1704 mask |= get_cpu_accounting_mask();
fae9bc29
LP
1705
1706 if (cgroup_context_has_cpu_weight(c) ||
66ebf6c0 1707 cgroup_context_has_cpu_shares(c) ||
3a43da28 1708 c->cpu_quota_per_sec_usec != USEC_INFINITY)
fae9bc29 1709 mask |= CGROUP_MASK_CPU;
ecedd90f 1710
31d3a520 1711 if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
047f5d63
PH
1712 mask |= CGROUP_MASK_CPUSET;
1713
538b4852
TH
1714 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1715 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
ecedd90f 1716
4ad49000 1717 if (c->memory_accounting ||
da4d897e 1718 c->memory_limit != CGROUP_LIMIT_MAX ||
c52db42b 1719 unit_has_unified_memory_config(u))
efdb0237 1720 mask |= CGROUP_MASK_MEMORY;
8e274523 1721
a931ad47 1722 if (c->device_allow ||
084870f9 1723 c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
084c7007 1724 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
4ad49000 1725
03a7b521 1726 if (c->tasks_accounting ||
3a0f06c4 1727 tasks_max_isset(&c->tasks_max))
03a7b521
LP
1728 mask |= CGROUP_MASK_PIDS;
1729
fae9bc29 1730 return CGROUP_MASK_EXTEND_JOINED(mask);
8e274523
LP
1731}
1732
53aea74a 1733static CGroupMask unit_get_bpf_mask(Unit *u) {
17f14955
RG
1734 CGroupMask mask = 0;
1735
fae9bc29
LP
1736 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1737 * too. */
1738
17f14955
RG
1739 if (unit_get_needs_bpf_firewall(u))
1740 mask |= CGROUP_MASK_BPF_FIREWALL;
1741
506ea51b
JK
1742 if (unit_get_needs_bpf_foreign_program(u))
1743 mask |= CGROUP_MASK_BPF_FOREIGN;
1744
a8e5eb17
JK
1745 if (unit_get_needs_socket_bind(u))
1746 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
1747
6f50d4f7
MV
1748 if (unit_get_needs_restrict_network_interfaces(u))
1749 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
1750
17f14955
RG
1751 return mask;
1752}
1753
efdb0237 1754CGroupMask unit_get_own_mask(Unit *u) {
4ad49000 1755 CGroupContext *c;
8e274523 1756
442ce775
LP
1757 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1758 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1759
1760 if (u->load_state != UNIT_LOADED)
1761 return 0;
efdb0237 1762
4ad49000
LP
1763 c = unit_get_cgroup_context(u);
1764 if (!c)
1765 return 0;
8e274523 1766
12b975e0 1767 return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
02638280
LP
1768}
1769
1770CGroupMask unit_get_delegate_mask(Unit *u) {
1771 CGroupContext *c;
1772
1773 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1774 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
19af675e 1775 *
02638280 1776 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
a931ad47 1777
1d9cc876 1778 if (!unit_cgroup_delegate(u))
02638280
LP
1779 return 0;
1780
1781 if (cg_all_unified() <= 0) {
a931ad47
LP
1782 ExecContext *e;
1783
1784 e = unit_get_exec_context(u);
02638280
LP
1785 if (e && !exec_context_maintains_privileges(e))
1786 return 0;
a931ad47
LP
1787 }
1788
1d9cc876 1789 assert_se(c = unit_get_cgroup_context(u));
fae9bc29 1790 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
8e274523
LP
1791}
1792
d9ef5944
MK
1793static CGroupMask unit_get_subtree_mask(Unit *u) {
1794
1795 /* Returns the mask of this subtree, meaning of the group
1796 * itself and its children. */
1797
1798 return unit_get_own_mask(u) | unit_get_members_mask(u);
1799}
1800
efdb0237 1801CGroupMask unit_get_members_mask(Unit *u) {
4ad49000 1802 assert(u);
bc432dc7 1803
02638280 1804 /* Returns the mask of controllers all of the unit's children require, merged */
efdb0237 1805
bc432dc7 1806 if (u->cgroup_members_mask_valid)
26a17ca2 1807 return u->cgroup_members_mask; /* Use cached value if possible */
bc432dc7 1808
64e844e5 1809 u->cgroup_members_mask = 0;
bc432dc7
LP
1810
1811 if (u->type == UNIT_SLICE) {
1812 Unit *member;
bc432dc7 1813
d219a2b0 1814 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
15ed3c3a 1815 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
bc432dc7
LP
1816 }
1817
1818 u->cgroup_members_mask_valid = true;
6414b7c9 1819 return u->cgroup_members_mask;
246aa6dd
LP
1820}
1821
efdb0237 1822CGroupMask unit_get_siblings_mask(Unit *u) {
12f64221 1823 Unit *slice;
4ad49000 1824 assert(u);
246aa6dd 1825
efdb0237
LP
1826 /* Returns the mask of controllers all of the unit's siblings
1827 * require, i.e. the members mask of the unit's parent slice
1828 * if there is one. */
1829
12f64221
LP
1830 slice = UNIT_GET_SLICE(u);
1831 if (slice)
1832 return unit_get_members_mask(slice);
4ad49000 1833
64e844e5 1834 return unit_get_subtree_mask(u); /* we are the top-level slice */
246aa6dd
LP
1835}
1836
d9ef5944 1837static CGroupMask unit_get_disable_mask(Unit *u) {
4f6f62e4
CD
1838 CGroupContext *c;
1839
1840 c = unit_get_cgroup_context(u);
1841 if (!c)
1842 return 0;
1843
1844 return c->disable_controllers;
1845}
1846
1847CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1848 CGroupMask mask;
12f64221 1849 Unit *slice;
4f6f62e4
CD
1850
1851 assert(u);
1852 mask = unit_get_disable_mask(u);
1853
1854 /* Returns the mask of controllers which are marked as forcibly
1855 * disabled in any ancestor unit or the unit in question. */
1856
12f64221
LP
1857 slice = UNIT_GET_SLICE(u);
1858 if (slice)
1859 mask |= unit_get_ancestor_disable_mask(slice);
4f6f62e4
CD
1860
1861 return mask;
1862}
1863
efdb0237 1864CGroupMask unit_get_target_mask(Unit *u) {
a437c5e4 1865 CGroupMask own_mask, mask;
efdb0237 1866
a437c5e4
LP
1867 /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
1868 * it needs itself, plus all that its children need, plus all that its siblings need. This is
1869 * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
efdb0237 1870 * hierarchy that shall be enabled for it. */
6414b7c9 1871
a437c5e4 1872 own_mask = unit_get_own_mask(u);
84d2744b 1873
a437c5e4 1874 if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
84d2744b
ZJS
1875 emit_bpf_firewall_warning(u);
1876
a437c5e4
LP
1877 mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1878
efdb0237 1879 mask &= u->manager->cgroup_supported;
c72703e2 1880 mask &= ~unit_get_ancestor_disable_mask(u);
efdb0237
LP
1881
1882 return mask;
1883}
1884
1885CGroupMask unit_get_enable_mask(Unit *u) {
1886 CGroupMask mask;
1887
1888 /* This returns the cgroup mask of all controllers to enable
1889 * for the children of a specific cgroup. This is primarily
1890 * useful for the unified cgroup hierarchy, where each cgroup
1891 * controls which controllers are enabled for its children. */
1892
1893 mask = unit_get_members_mask(u);
6414b7c9 1894 mask &= u->manager->cgroup_supported;
c72703e2 1895 mask &= ~unit_get_ancestor_disable_mask(u);
6414b7c9
DS
1896
1897 return mask;
1898}
1899
5af88058 1900void unit_invalidate_cgroup_members_masks(Unit *u) {
12f64221
LP
1901 Unit *slice;
1902
bc432dc7
LP
1903 assert(u);
1904
5af88058
LP
1905 /* Recurse invalidate the member masks cache all the way up the tree */
1906 u->cgroup_members_mask_valid = false;
bc432dc7 1907
12f64221
LP
1908 slice = UNIT_GET_SLICE(u);
1909 if (slice)
1910 unit_invalidate_cgroup_members_masks(slice);
6414b7c9
DS
1911}
1912
6592b975 1913const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
03b90d4b 1914
6592b975 1915 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
03b90d4b
LP
1916
1917 while (u) {
6592b975 1918
03b90d4b
LP
1919 if (u->cgroup_path &&
1920 u->cgroup_realized &&
d94a24ca 1921 FLAGS_SET(u->cgroup_realized_mask, mask))
03b90d4b
LP
1922 return u->cgroup_path;
1923
12f64221 1924 u = UNIT_GET_SLICE(u);
03b90d4b
LP
1925 }
1926
1927 return NULL;
1928}
1929
6592b975 1930static const char *migrate_callback(CGroupMask mask, void *userdata) {
7b639614
MK
1931 /* If not realized at all, migrate to root ("").
1932 * It may happen if we're upgrading from older version that didn't clean up.
1933 */
1934 return strempty(unit_get_realized_cgroup_path(userdata, mask));
6592b975
LP
1935}
1936
303ee601 1937char *unit_default_cgroup_path(const Unit *u) {
12f64221
LP
1938 _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
1939 Unit *slice;
efdb0237
LP
1940 int r;
1941
1942 assert(u);
1943
1944 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1945 return strdup(u->manager->cgroup_root);
1946
12f64221
LP
1947 slice = UNIT_GET_SLICE(u);
1948 if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
1949 r = cg_slice_to_path(slice->id, &slice_path);
efdb0237
LP
1950 if (r < 0)
1951 return NULL;
1952 }
1953
1954 escaped = cg_escape(u->id);
1955 if (!escaped)
1956 return NULL;
1957
12f64221 1958 return path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
efdb0237
LP
1959}
1960
1961int unit_set_cgroup_path(Unit *u, const char *path) {
1962 _cleanup_free_ char *p = NULL;
1963 int r;
1964
1965 assert(u);
1966
5210387e
LP
1967 if (streq_ptr(u->cgroup_path, path))
1968 return 0;
1969
efdb0237
LP
1970 if (path) {
1971 p = strdup(path);
1972 if (!p)
1973 return -ENOMEM;
5210387e 1974 }
efdb0237
LP
1975
1976 if (p) {
1977 r = hashmap_put(u->manager->cgroup_unit, p, u);
1978 if (r < 0)
1979 return r;
1980 }
1981
1982 unit_release_cgroup(u);
ae2a15bc 1983 u->cgroup_path = TAKE_PTR(p);
efdb0237
LP
1984
1985 return 1;
1986}
1987
1988int unit_watch_cgroup(Unit *u) {
ab2c3861 1989 _cleanup_free_ char *events = NULL;
efdb0237
LP
1990 int r;
1991
1992 assert(u);
1993
0bb814c2
LP
1994 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
1995 * cgroupv2 is available. */
1996
efdb0237
LP
1997 if (!u->cgroup_path)
1998 return 0;
1999
0bb814c2 2000 if (u->cgroup_control_inotify_wd >= 0)
efdb0237
LP
2001 return 0;
2002
2003 /* Only applies to the unified hierarchy */
c22800e4 2004 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2005 if (r < 0)
2006 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
2007 if (r == 0)
efdb0237
LP
2008 return 0;
2009
0bb814c2 2010 /* No point in watch the top-level slice, it's never going to run empty. */
efdb0237
LP
2011 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2012 return 0;
2013
0bb814c2 2014 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
efdb0237
LP
2015 if (r < 0)
2016 return log_oom();
2017
ab2c3861 2018 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
efdb0237
LP
2019 if (r < 0)
2020 return log_oom();
2021
0bb814c2
LP
2022 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2023 if (u->cgroup_control_inotify_wd < 0) {
efdb0237 2024
0bb814c2
LP
2025 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2026 * is not an error */
efdb0237
LP
2027 return 0;
2028
6178e2f8 2029 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
efdb0237
LP
2030 }
2031
0bb814c2 2032 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
efdb0237 2033 if (r < 0)
6178e2f8 2034 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
efdb0237
LP
2035
2036 return 0;
2037}
2038
afcfaa69
LP
2039int unit_watch_cgroup_memory(Unit *u) {
2040 _cleanup_free_ char *events = NULL;
2041 CGroupContext *c;
2042 int r;
2043
2044 assert(u);
2045
2046 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
2047 * cgroupv2 is available. */
2048
2049 if (!u->cgroup_path)
2050 return 0;
2051
2052 c = unit_get_cgroup_context(u);
2053 if (!c)
2054 return 0;
2055
2056 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
2057 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
2058 * all. */
2059 if (!c->memory_accounting)
2060 return 0;
2061
2062 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
2063 * we also don't want to generate a log message for each parent cgroup of a process. */
2064 if (u->type == UNIT_SLICE)
2065 return 0;
2066
2067 if (u->cgroup_memory_inotify_wd >= 0)
2068 return 0;
2069
2070 /* Only applies to the unified hierarchy */
2071 r = cg_all_unified();
2072 if (r < 0)
2073 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
2074 if (r == 0)
2075 return 0;
2076
2077 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
2078 if (r < 0)
2079 return log_oom();
2080
2081 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
2082 if (r < 0)
2083 return log_oom();
2084
2085 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2086 if (u->cgroup_memory_inotify_wd < 0) {
2087
2088 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2089 * is not an error */
2090 return 0;
2091
6178e2f8 2092 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
afcfaa69
LP
2093 }
2094
2095 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
2096 if (r < 0)
6178e2f8 2097 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
afcfaa69
LP
2098
2099 return 0;
2100}
2101
a4634b21
LP
2102int unit_pick_cgroup_path(Unit *u) {
2103 _cleanup_free_ char *path = NULL;
2104 int r;
2105
2106 assert(u);
2107
2108 if (u->cgroup_path)
2109 return 0;
2110
2111 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2112 return -EINVAL;
2113
2114 path = unit_default_cgroup_path(u);
2115 if (!path)
2116 return log_oom();
2117
2118 r = unit_set_cgroup_path(u, path);
2119 if (r == -EEXIST)
6178e2f8 2120 return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
a4634b21 2121 if (r < 0)
6178e2f8 2122 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
a4634b21
LP
2123
2124 return 0;
2125}
2126
7b639614 2127static int unit_update_cgroup(
efdb0237
LP
2128 Unit *u,
2129 CGroupMask target_mask,
0d2d6fbf
CD
2130 CGroupMask enable_mask,
2131 ManagerState state) {
efdb0237 2132
7b639614
MK
2133 bool created, is_root_slice;
2134 CGroupMask migrate_mask = 0;
184b4f78 2135 _cleanup_free_ char *cgroup_full_path = NULL;
27adcc97 2136 int r;
64747e2d 2137
4ad49000 2138 assert(u);
64747e2d 2139
27c4ed79 2140 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0cd385d3
LP
2141 return 0;
2142
a4634b21
LP
2143 /* Figure out our cgroup path */
2144 r = unit_pick_cgroup_path(u);
2145 if (r < 0)
2146 return r;
b58b8e11 2147
03b90d4b 2148 /* First, create our own group */
efdb0237 2149 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
23bbb0de 2150 if (r < 0)
6178e2f8 2151 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(u->cgroup_path));
490c5a37 2152 created = r;
efdb0237 2153
184b4f78 2154 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
1b420223
LP
2155 uint64_t cgroup_id = 0;
2156
184b4f78
ILG
2157 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &cgroup_full_path);
2158 if (r == 0) {
2159 r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
2160 if (r < 0)
1b420223
LP
2161 log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
2162 "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
184b4f78
ILG
2163 } else
2164 log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2165
2166 u->cgroup_id = cgroup_id;
2167 }
2168
efdb0237
LP
2169 /* Start watching it */
2170 (void) unit_watch_cgroup(u);
afcfaa69 2171 (void) unit_watch_cgroup_memory(u);
efdb0237 2172
7b639614
MK
2173 /* For v2 we preserve enabled controllers in delegated units, adjust others,
2174 * for v1 we figure out which controller hierarchies need migration. */
1fd3a10c 2175 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
27adcc97 2176 CGroupMask result_mask = 0;
65be7e06
ZJS
2177
2178 /* Enable all controllers we need */
27adcc97 2179 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
65be7e06 2180 if (r < 0)
6178e2f8 2181 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
27adcc97 2182
27adcc97
LP
2183 /* Remember what's actually enabled now */
2184 u->cgroup_enabled_mask = result_mask;
7b639614
MK
2185
2186 migrate_mask = u->cgroup_realized_mask ^ target_mask;
65be7e06 2187 }
03b90d4b
LP
2188
2189 /* Keep track that this is now realized */
4ad49000 2190 u->cgroup_realized = true;
efdb0237 2191 u->cgroup_realized_mask = target_mask;
4ad49000 2192
7b639614
MK
2193 /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
2194 *
2195 * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
2196 * We perform migration also with whole slices for cases when users don't care about leave
2197 * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
2198 * delegated units.
2199 */
2200 if (cg_all_unified() == 0) {
2201 r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, u->cgroup_path, migrate_callback, u);
2202 if (r < 0)
6178e2f8 2203 log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(u->cgroup_path));
0cd385d3 2204
7b639614
MK
2205 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2206 r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, u->cgroup_path, !is_root_slice);
0cd385d3 2207 if (r < 0)
6178e2f8 2208 log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(u->cgroup_path));
0cd385d3 2209 }
03b90d4b 2210
0d2d6fbf
CD
2211 /* Set attributes */
2212 cgroup_context_apply(u, target_mask, state);
2213 cgroup_xattr_apply(u);
2214
64747e2d
LP
2215 return 0;
2216}
2217
6592b975
LP
2218static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2219 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2220 char *pp;
7b3fd631 2221 int r;
6592b975 2222
7b3fd631
LP
2223 assert(u);
2224
6592b975
LP
2225 if (MANAGER_IS_SYSTEM(u->manager))
2226 return -EINVAL;
2227
2228 if (!u->manager->system_bus)
2229 return -EIO;
2230
2231 if (!u->cgroup_path)
2232 return -EINVAL;
2233
2234 /* Determine this unit's cgroup path relative to our cgroup root */
2235 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
2236 if (!pp)
2237 return -EINVAL;
2238
2239 pp = strjoina("/", pp, suffix_path);
4ff361cc 2240 path_simplify(pp);
6592b975
LP
2241
2242 r = sd_bus_call_method(u->manager->system_bus,
2243 "org.freedesktop.systemd1",
2244 "/org/freedesktop/systemd1",
2245 "org.freedesktop.systemd1.Manager",
2246 "AttachProcessesToUnit",
2247 &error, NULL,
2248 "ssau",
2249 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
7b3fd631 2250 if (r < 0)
6592b975
LP
2251 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2252
2253 return 0;
2254}
2255
2256int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2257 CGroupMask delegated_mask;
2258 const char *p;
6592b975 2259 void *pidp;
db4229d1 2260 int ret, r;
6592b975
LP
2261
2262 assert(u);
2263
2264 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2265 return -EINVAL;
2266
2267 if (set_isempty(pids))
2268 return 0;
7b3fd631 2269
fab34748
KL
2270 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
2271 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
2272 r = bpf_firewall_load_custom(u);
2273 if (r < 0)
2274 return r;
2275
6592b975 2276 r = unit_realize_cgroup(u);
7b3fd631
LP
2277 if (r < 0)
2278 return r;
2279
6592b975
LP
2280 if (isempty(suffix_path))
2281 p = u->cgroup_path;
2282 else
270384b2 2283 p = prefix_roota(u->cgroup_path, suffix_path);
6592b975
LP
2284
2285 delegated_mask = unit_get_delegate_mask(u);
2286
db4229d1 2287 ret = 0;
90e74a66 2288 SET_FOREACH(pidp, pids) {
6592b975 2289 pid_t pid = PTR_TO_PID(pidp);
6592b975
LP
2290
2291 /* First, attach the PID to the main cgroup hierarchy */
db4229d1
LP
2292 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
2293 if (r < 0) {
2294 bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
6592b975 2295
db4229d1 2296 log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
7a2ba407 2297 "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
6178e2f8 2298 pid, again ? " directly" : "", empty_to_root(p));
7a2ba407
ZJS
2299
2300 if (again) {
6592b975
LP
2301 int z;
2302
7a2ba407
ZJS
2303 /* If we are in a user instance, and we can't move the process ourselves due
2304 * to permission problems, let's ask the system instance about it instead.
2305 * Since it's more privileged it might be able to move the process across the
2306 * leaves of a subtree whose top node is not owned by us. */
6592b975
LP
2307
2308 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
2309 if (z < 0)
6178e2f8 2310 log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid, empty_to_root(p));
c65417a0
JW
2311 else {
2312 if (ret >= 0)
2313 ret++; /* Count successful additions */
6592b975 2314 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
c65417a0 2315 }
6592b975
LP
2316 }
2317
db4229d1
LP
2318 if (ret >= 0)
2319 ret = r; /* Remember first error */
6592b975
LP
2320
2321 continue;
8d3e4ac7
LP
2322 } else if (ret >= 0)
2323 ret++; /* Count successful additions */
6592b975 2324
db4229d1
LP
2325 r = cg_all_unified();
2326 if (r < 0)
2327 return r;
2328 if (r > 0)
6592b975
LP
2329 continue;
2330
2331 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
2332 * innermost realized one */
2333
e8616626 2334 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
6592b975
LP
2335 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2336 const char *realized;
2337
2338 if (!(u->manager->cgroup_supported & bit))
2339 continue;
2340
2341 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2342 if (delegated_mask & u->cgroup_realized_mask & bit) {
db4229d1
LP
2343 r = cg_attach(cgroup_controller_to_string(c), p, pid);
2344 if (r >= 0)
6592b975
LP
2345 continue; /* Success! */
2346
db4229d1 2347 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
6178e2f8 2348 pid, empty_to_root(p), cgroup_controller_to_string(c));
6592b975
LP
2349 }
2350
2351 /* So this controller is either not delegate or realized, or something else weird happened. In
2352 * that case let's attach the PID at least to the closest cgroup up the tree that is
2353 * realized. */
2354 realized = unit_get_realized_cgroup_path(u, bit);
2355 if (!realized)
2356 continue; /* Not even realized in the root slice? Then let's not bother */
2357
db4229d1
LP
2358 r = cg_attach(cgroup_controller_to_string(c), realized, pid);
2359 if (r < 0)
2360 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
6592b975
LP
2361 pid, realized, cgroup_controller_to_string(c));
2362 }
2363 }
2364
db4229d1 2365 return ret;
7b3fd631
LP
2366}
2367
906c06f6
DM
2368static bool unit_has_mask_realized(
2369 Unit *u,
2370 CGroupMask target_mask,
17f14955 2371 CGroupMask enable_mask) {
906c06f6 2372
bc432dc7
LP
2373 assert(u);
2374
d5095dcd
LP
2375 /* Returns true if this unit is fully realized. We check four things:
2376 *
2377 * 1. Whether the cgroup was created at all
4e1dfa45
CD
2378 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2379 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
d5095dcd
LP
2380 * 4. Whether the invalidation mask is currently zero
2381 *
2382 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
4e1dfa45
CD
2383 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2384 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2385 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
d5095dcd
LP
2386 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2387 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2388 * simply don't matter. */
2389
906c06f6 2390 return u->cgroup_realized &&
d5095dcd
LP
2391 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2392 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
17f14955 2393 u->cgroup_invalidated_mask == 0;
6414b7c9
DS
2394}
2395
4f6f62e4
CD
2396static bool unit_has_mask_disables_realized(
2397 Unit *u,
2398 CGroupMask target_mask,
2399 CGroupMask enable_mask) {
2400
2401 assert(u);
2402
2403 /* Returns true if all controllers which should be disabled are indeed disabled.
2404 *
2405 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2406 * already removed. */
2407
2408 return !u->cgroup_realized ||
2409 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2410 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2411}
2412
a57669d2
CD
2413static bool unit_has_mask_enables_realized(
2414 Unit *u,
2415 CGroupMask target_mask,
2416 CGroupMask enable_mask) {
2417
2418 assert(u);
2419
2420 /* Returns true if all controllers which should be enabled are indeed enabled.
2421 *
2422 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2423 * we want to add is already added. */
2424
2425 return u->cgroup_realized &&
c72703e2
CD
2426 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2427 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
a57669d2
CD
2428}
2429
fb46fca7 2430static void unit_add_to_cgroup_realize_queue(Unit *u) {
2aa57a65
LP
2431 assert(u);
2432
2433 if (u->in_cgroup_realize_queue)
2434 return;
2435
a479c21e 2436 LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2aa57a65
LP
2437 u->in_cgroup_realize_queue = true;
2438}
2439
2440static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2441 assert(u);
2442
2443 if (!u->in_cgroup_realize_queue)
2444 return;
2445
2446 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2447 u->in_cgroup_realize_queue = false;
2448}
2449
a57669d2
CD
2450/* Controllers can only be enabled breadth-first, from the root of the
2451 * hierarchy downwards to the unit in question. */
2452static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2453 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
12f64221 2454 Unit *slice;
a57669d2
CD
2455 int r;
2456
2457 assert(u);
2458
2459 /* First go deal with this unit's parent, or we won't be able to enable
2460 * any new controllers at this layer. */
12f64221
LP
2461 slice = UNIT_GET_SLICE(u);
2462 if (slice) {
2463 r = unit_realize_cgroup_now_enable(slice, state);
a57669d2
CD
2464 if (r < 0)
2465 return r;
2466 }
2467
2468 target_mask = unit_get_target_mask(u);
2469 enable_mask = unit_get_enable_mask(u);
2470
2471 /* We can only enable in this direction, don't try to disable anything.
2472 */
2473 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2474 return 0;
2475
2476 new_target_mask = u->cgroup_realized_mask | target_mask;
2477 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2478
7b639614 2479 return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
a57669d2
CD
2480}
2481
4f6f62e4
CD
2482/* Controllers can only be disabled depth-first, from the leaves of the
2483 * hierarchy upwards to the unit in question. */
2484static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
4f6f62e4 2485 Unit *m;
4f6f62e4
CD
2486
2487 assert(u);
2488
2489 if (u->type != UNIT_SLICE)
2490 return 0;
2491
d219a2b0 2492 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
4f6f62e4
CD
2493 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2494 int r;
2495
defe63b0
LP
2496 /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
2497 * holding any controllers open anyway. */
d9ef5944 2498 if (!m->cgroup_realized)
4f6f62e4
CD
2499 continue;
2500
defe63b0 2501 /* We must disable those below us first in order to release the controller. */
4f6f62e4
CD
2502 if (m->type == UNIT_SLICE)
2503 (void) unit_realize_cgroup_now_disable(m, state);
2504
2505 target_mask = unit_get_target_mask(m);
2506 enable_mask = unit_get_enable_mask(m);
2507
defe63b0 2508 /* We can only disable in this direction, don't try to enable anything. */
4f6f62e4
CD
2509 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2510 continue;
2511
2512 new_target_mask = m->cgroup_realized_mask & target_mask;
2513 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2514
7b639614 2515 r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
4f6f62e4
CD
2516 if (r < 0)
2517 return r;
2518 }
2519
2520 return 0;
2521}
a57669d2 2522
6414b7c9
DS
2523/* Check if necessary controllers and attributes for a unit are in place.
2524 *
a57669d2
CD
2525 * - If so, do nothing.
2526 * - If not, create paths, move processes over, and set attributes.
2527 *
2528 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2529 * a depth-first way. As such the process looks like this:
2530 *
2531 * Suppose we have a cgroup hierarchy which looks like this:
2532 *
2533 * root
2534 * / \
2535 * / \
2536 * / \
2537 * a b
2538 * / \ / \
2539 * / \ / \
2540 * c d e f
2541 * / \ / \ / \ / \
2542 * h i j k l m n o
2543 *
2544 * 1. We want to realise cgroup "d" now.
c72703e2 2545 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
a57669d2
CD
2546 * 3. cgroup "k" just started requesting the memory controller.
2547 *
2548 * To make this work we must do the following in order:
2549 *
2550 * 1. Disable CPU controller in k, j
2551 * 2. Disable CPU controller in d
2552 * 3. Enable memory controller in root
2553 * 4. Enable memory controller in a
2554 * 5. Enable memory controller in d
2555 * 6. Enable memory controller in k
2556 *
2557 * Notice that we need to touch j in one direction, but not the other. We also
2558 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2559 * wants to disable further. The basic rules are therefore:
2560 *
2561 * - If you're disabling something, you need to realise all of the cgroups from
2562 * your recursive descendants to the root. This starts from the leaves.
2563 * - If you're enabling something, you need to realise from the root cgroup
2564 * downwards, but you don't need to iterate your recursive descendants.
6414b7c9
DS
2565 *
2566 * Returns 0 on success and < 0 on failure. */
db785129 2567static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
efdb0237 2568 CGroupMask target_mask, enable_mask;
12f64221 2569 Unit *slice;
6414b7c9 2570 int r;
64747e2d 2571
4ad49000 2572 assert(u);
64747e2d 2573
2aa57a65 2574 unit_remove_from_cgroup_realize_queue(u);
64747e2d 2575
efdb0237 2576 target_mask = unit_get_target_mask(u);
ccf78df1
TH
2577 enable_mask = unit_get_enable_mask(u);
2578
17f14955 2579 if (unit_has_mask_realized(u, target_mask, enable_mask))
0a1eb06d 2580 return 0;
64747e2d 2581
4f6f62e4
CD
2582 /* Disable controllers below us, if there are any */
2583 r = unit_realize_cgroup_now_disable(u, state);
2584 if (r < 0)
2585 return r;
2586
2587 /* Enable controllers above us, if there are any */
12f64221
LP
2588 slice = UNIT_GET_SLICE(u);
2589 if (slice) {
2590 r = unit_realize_cgroup_now_enable(slice, state);
6414b7c9
DS
2591 if (r < 0)
2592 return r;
2593 }
4ad49000 2594
0d2d6fbf 2595 /* Now actually deal with the cgroup we were trying to realise and set attributes */
7b639614 2596 r = unit_update_cgroup(u, target_mask, enable_mask, state);
6414b7c9
DS
2597 if (r < 0)
2598 return r;
2599
c2baf11c
LP
2600 /* Now, reset the invalidation mask */
2601 u->cgroup_invalidated_mask = 0;
6414b7c9 2602 return 0;
64747e2d
LP
2603}
2604
91a6073e 2605unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
db785129 2606 ManagerState state;
4ad49000 2607 unsigned n = 0;
db785129 2608 Unit *i;
6414b7c9 2609 int r;
ecedd90f 2610
91a6073e
LP
2611 assert(m);
2612
db785129
LP
2613 state = manager_state(m);
2614
91a6073e
LP
2615 while ((i = m->cgroup_realize_queue)) {
2616 assert(i->in_cgroup_realize_queue);
ecedd90f 2617
2aa57a65
LP
2618 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2619 /* Maybe things changed, and the unit is not actually active anymore? */
2620 unit_remove_from_cgroup_realize_queue(i);
2621 continue;
2622 }
2623
db785129 2624 r = unit_realize_cgroup_now(i, state);
6414b7c9 2625 if (r < 0)
efdb0237 2626 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
0a1eb06d 2627
4ad49000
LP
2628 n++;
2629 }
ecedd90f 2630
4ad49000 2631 return n;
8e274523
LP
2632}
2633
4c591f39
MK
2634void unit_add_family_to_cgroup_realize_queue(Unit *u) {
2635 assert(u);
2636 assert(u->type == UNIT_SLICE);
ca949c9d 2637
4c591f39
MK
2638 /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
2639 * its ancestors.
2640 *
2641 * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
2642 * very weird if two units that own processes reside in the same slice, but one is realized in the
2643 * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
2644 * not), because that means individual processes need to be scheduled against whole cgroups. Let's
2645 * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
2646 * controller hierarchies too (if unit requires the controller to be realized).
e1e98911 2647 *
4c591f39
MK
2648 * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
2649 * masks. */
2650
2651 do {
4ad49000 2652 Unit *m;
8f53a7b8 2653
4c591f39
MK
2654 /* Children of u likely changed when we're called */
2655 u->cgroup_members_mask_valid = false;
f23ba94d 2656
d219a2b0 2657 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
8e274523 2658
65f6b6bd 2659 /* No point in doing cgroup application for units without active processes. */
6414b7c9
DS
2660 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2661 continue;
2662
e1e98911
LP
2663 /* We only enqueue siblings if they were realized once at least, in the main
2664 * hierarchy. */
2665 if (!m->cgroup_realized)
2666 continue;
2667
defe63b0
LP
2668 /* If the unit doesn't need any new controllers and has current ones
2669 * realized, it doesn't need any changes. */
906c06f6
DM
2670 if (unit_has_mask_realized(m,
2671 unit_get_target_mask(m),
17f14955 2672 unit_get_enable_mask(m)))
6414b7c9
DS
2673 continue;
2674
91a6073e 2675 unit_add_to_cgroup_realize_queue(m);
50159e6a
LP
2676 }
2677
4c591f39
MK
2678 /* Parent comes after children */
2679 unit_add_to_cgroup_realize_queue(u);
12f64221
LP
2680
2681 u = UNIT_GET_SLICE(u);
2682 } while (u);
4ad49000
LP
2683}
2684
0a1eb06d 2685int unit_realize_cgroup(Unit *u) {
12f64221
LP
2686 Unit *slice;
2687
4ad49000
LP
2688 assert(u);
2689
35b7ff80 2690 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0a1eb06d 2691 return 0;
8e274523 2692
4c591f39
MK
2693 /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
2694 * parents, but there's more actually: for the weight-based controllers we also need to make sure
2695 * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
2696 * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
2697 * and ancestors and they should be (de)realized too.
2698 *
2699 * This call will defer work on the siblings and derealized ancestors to the next event loop
2700 * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
ca949c9d 2701
12f64221
LP
2702 slice = UNIT_GET_SLICE(u);
2703 if (slice)
2704 unit_add_family_to_cgroup_realize_queue(slice);
4ad49000 2705
6414b7c9 2706 /* And realize this one now (and apply the values) */
db785129 2707 return unit_realize_cgroup_now(u, manager_state(u->manager));
8e274523
LP
2708}
2709
efdb0237
LP
2710void unit_release_cgroup(Unit *u) {
2711 assert(u);
2712
8a0d5388
LP
2713 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2714 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
efdb0237
LP
2715
2716 if (u->cgroup_path) {
2717 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2718 u->cgroup_path = mfree(u->cgroup_path);
2719 }
2720
0bb814c2
LP
2721 if (u->cgroup_control_inotify_wd >= 0) {
2722 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2723 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
efdb0237 2724
0bb814c2
LP
2725 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2726 u->cgroup_control_inotify_wd = -1;
efdb0237 2727 }
afcfaa69
LP
2728
2729 if (u->cgroup_memory_inotify_wd >= 0) {
2730 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2731 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2732
2733 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2734 u->cgroup_memory_inotify_wd = -1;
2735 }
efdb0237
LP
2736}
2737
e08dabfe
AZ
2738bool unit_maybe_release_cgroup(Unit *u) {
2739 int r;
2740
2741 assert(u);
2742
2743 if (!u->cgroup_path)
2744 return true;
2745
2746 /* Don't release the cgroup if there are still processes under it. If we get notified later when all the
2747 * processes exit (e.g. the processes were in D-state and exited after the unit was marked as failed)
2748 * we need the cgroup paths to continue to be tracked by the manager so they can be looked up and cleaned
2749 * up later. */
2750 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2751 if (r < 0)
2752 log_unit_debug_errno(u, r, "Error checking if the cgroup is recursively empty, ignoring: %m");
2753 else if (r == 1) {
2754 unit_release_cgroup(u);
2755 return true;
2756 }
2757
2758 return false;
2759}
2760
efdb0237 2761void unit_prune_cgroup(Unit *u) {
8e274523 2762 int r;
efdb0237 2763 bool is_root_slice;
8e274523 2764
4ad49000 2765 assert(u);
8e274523 2766
efdb0237
LP
2767 /* Removes the cgroup, if empty and possible, and stops watching it. */
2768
4ad49000
LP
2769 if (!u->cgroup_path)
2770 return;
8e274523 2771
fe700f46
LP
2772 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2773
b1994387
ILG
2774#if BPF_FRAMEWORK
2775 (void) lsm_bpf_cleanup(u); /* Remove cgroup from the global LSM BPF map */
2776#endif
2777
efdb0237
LP
2778 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2779
2780 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
0219b352
DB
2781 if (r < 0)
2782 /* One reason we could have failed here is, that the cgroup still contains a process.
2783 * However, if the cgroup becomes removable at a later time, it might be removed when
2784 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2785 * that the cgroup is still realized the next time it is started. Do not return early
2786 * on error, continue cleanup. */
6178e2f8 2787 log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
8e274523 2788
efdb0237
LP
2789 if (is_root_slice)
2790 return;
2791
e08dabfe
AZ
2792 if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
2793 return;
0a1eb06d 2794
4ad49000 2795 u->cgroup_realized = false;
bc432dc7 2796 u->cgroup_realized_mask = 0;
ccf78df1 2797 u->cgroup_enabled_mask = 0;
084c7007 2798
76dc1725 2799 u->bpf_device_control_installed = bpf_program_free(u->bpf_device_control_installed);
8e274523
LP
2800}
2801
efdb0237 2802int unit_search_main_pid(Unit *u, pid_t *ret) {
4ad49000 2803 _cleanup_fclose_ FILE *f = NULL;
4d051546 2804 pid_t pid = 0, npid;
efdb0237 2805 int r;
4ad49000
LP
2806
2807 assert(u);
efdb0237 2808 assert(ret);
4ad49000
LP
2809
2810 if (!u->cgroup_path)
efdb0237 2811 return -ENXIO;
4ad49000 2812
efdb0237
LP
2813 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2814 if (r < 0)
2815 return r;
4ad49000 2816
4ad49000 2817 while (cg_read_pid(f, &npid) > 0) {
4ad49000
LP
2818
2819 if (npid == pid)
2820 continue;
8e274523 2821
4d051546 2822 if (pid_is_my_child(npid) == 0)
4ad49000 2823 continue;
8e274523 2824
efdb0237 2825 if (pid != 0)
4ad49000
LP
2826 /* Dang, there's more than one daemonized PID
2827 in this group, so we don't know what process
2828 is the main process. */
efdb0237
LP
2829
2830 return -ENODATA;
8e274523 2831
4ad49000 2832 pid = npid;
8e274523
LP
2833 }
2834
efdb0237
LP
2835 *ret = pid;
2836 return 0;
2837}
2838
2839static int unit_watch_pids_in_path(Unit *u, const char *path) {
b3c5bad3 2840 _cleanup_closedir_ DIR *d = NULL;
efdb0237
LP
2841 _cleanup_fclose_ FILE *f = NULL;
2842 int ret = 0, r;
2843
2844 assert(u);
2845 assert(path);
2846
2847 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2848 if (r < 0)
2849 ret = r;
2850 else {
2851 pid_t pid;
2852
2853 while ((r = cg_read_pid(f, &pid)) > 0) {
f75f613d 2854 r = unit_watch_pid(u, pid, false);
efdb0237
LP
2855 if (r < 0 && ret >= 0)
2856 ret = r;
2857 }
2858
2859 if (r < 0 && ret >= 0)
2860 ret = r;
2861 }
2862
2863 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2864 if (r < 0) {
2865 if (ret >= 0)
2866 ret = r;
2867 } else {
2868 char *fn;
2869
2870 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2871 _cleanup_free_ char *p = NULL;
2872
95b21cff 2873 p = path_join(empty_to_root(path), fn);
efdb0237
LP
2874 free(fn);
2875
2876 if (!p)
2877 return -ENOMEM;
2878
2879 r = unit_watch_pids_in_path(u, p);
2880 if (r < 0 && ret >= 0)
2881 ret = r;
2882 }
2883
2884 if (r < 0 && ret >= 0)
2885 ret = r;
2886 }
2887
2888 return ret;
2889}
2890
11aef522
LP
2891int unit_synthesize_cgroup_empty_event(Unit *u) {
2892 int r;
2893
2894 assert(u);
2895
2896 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2897 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2898 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2899
2900 if (!u->cgroup_path)
2901 return -ENOENT;
2902
2903 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2904 if (r < 0)
2905 return r;
2906 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2907 return 0;
2908
2909 if (!set_isempty(u->pids))
2910 return 0;
2911
2912 unit_add_to_cgroup_empty_queue(u);
2913 return 0;
2914}
2915
efdb0237 2916int unit_watch_all_pids(Unit *u) {
b4cccbc1
LP
2917 int r;
2918
efdb0237
LP
2919 assert(u);
2920
2921 /* Adds all PIDs from our cgroup to the set of PIDs we
2922 * watch. This is a fallback logic for cases where we do not
2923 * get reliable cgroup empty notifications: we try to use
2924 * SIGCHLD as replacement. */
2925
2926 if (!u->cgroup_path)
2927 return -ENOENT;
2928
c22800e4 2929 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2930 if (r < 0)
2931 return r;
2932 if (r > 0) /* On unified we can use proper notifications */
efdb0237
LP
2933 return 0;
2934
2935 return unit_watch_pids_in_path(u, u->cgroup_path);
2936}
2937
09e24654
LP
2938static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2939 Manager *m = userdata;
2940 Unit *u;
efdb0237
LP
2941 int r;
2942
09e24654
LP
2943 assert(s);
2944 assert(m);
efdb0237 2945
09e24654
LP
2946 u = m->cgroup_empty_queue;
2947 if (!u)
efdb0237
LP
2948 return 0;
2949
09e24654
LP
2950 assert(u->in_cgroup_empty_queue);
2951 u->in_cgroup_empty_queue = false;
2952 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2953
2954 if (m->cgroup_empty_queue) {
2955 /* More stuff queued, let's make sure we remain enabled */
2956 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2957 if (r < 0)
19a691a9 2958 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
09e24654 2959 }
efdb0237 2960
f7829525
NK
2961 /* Update state based on OOM kills before we notify about cgroup empty event */
2962 (void) unit_check_oom(u);
2963 (void) unit_check_oomd_kill(u);
2964
efdb0237
LP
2965 unit_add_to_gc_queue(u);
2966
2967 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2968 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2969
2970 return 0;
2971}
2972
09e24654
LP
2973void unit_add_to_cgroup_empty_queue(Unit *u) {
2974 int r;
2975
2976 assert(u);
2977
2978 /* Note that there are four different ways how cgroup empty events reach us:
2979 *
2980 * 1. On the unified hierarchy we get an inotify event on the cgroup
2981 *
2982 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2983 *
2984 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2985 *
2986 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2987 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2988 *
2989 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2990 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2991 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2992 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2993 * case for scope units). */
2994
2995 if (u->in_cgroup_empty_queue)
2996 return;
2997
2998 /* Let's verify that the cgroup is really empty */
2999 if (!u->cgroup_path)
3000 return;
e1e98911 3001
09e24654
LP
3002 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
3003 if (r < 0) {
6178e2f8 3004 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
09e24654
LP
3005 return;
3006 }
3007 if (r == 0)
3008 return;
3009
3010 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3011 u->in_cgroup_empty_queue = true;
3012
3013 /* Trigger the defer event */
3014 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
3015 if (r < 0)
3016 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
3017}
3018
d9e45bc3
MS
3019static void unit_remove_from_cgroup_empty_queue(Unit *u) {
3020 assert(u);
3021
3022 if (!u->in_cgroup_empty_queue)
3023 return;
3024
3025 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3026 u->in_cgroup_empty_queue = false;
3027}
3028
fe8d22fb
AZ
3029int unit_check_oomd_kill(Unit *u) {
3030 _cleanup_free_ char *value = NULL;
3031 bool increased;
3032 uint64_t n = 0;
3033 int r;
3034
3035 if (!u->cgroup_path)
3036 return 0;
3037
3038 r = cg_all_unified();
3039 if (r < 0)
3040 return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
3041 else if (r == 0)
3042 return 0;
3043
38c41427 3044 r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_ooms", &value);
fe8d22fb
AZ
3045 if (r < 0 && r != -ENODATA)
3046 return r;
3047
3048 if (!isempty(value)) {
3049 r = safe_atou64(value, &n);
3050 if (r < 0)
3051 return r;
3052 }
3053
3054 increased = n > u->managed_oom_kill_last;
3055 u->managed_oom_kill_last = n;
3056
3057 if (!increased)
3058 return 0;
3059
38c41427
NK
3060 n = 0;
3061 value = mfree(value);
3062 r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_kill", &value);
3063 if (r >= 0 && !isempty(value))
3064 (void) safe_atou64(value, &n);
3065
fe8d22fb 3066 if (n > 0)
c2503e35
RH
3067 log_unit_struct(u, LOG_NOTICE,
3068 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3069 LOG_UNIT_INVOCATION_ID(u),
38c41427
NK
3070 LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
3071 "N_PROCESSES=%" PRIu64, n);
3072 else
3073 log_unit_struct(u, LOG_NOTICE,
3074 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3075 LOG_UNIT_INVOCATION_ID(u),
3076 LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
3077
3078 unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
fe8d22fb
AZ
3079
3080 return 1;
3081}
3082
2ba6ae6b 3083int unit_check_oom(Unit *u) {
afcfaa69
LP
3084 _cleanup_free_ char *oom_kill = NULL;
3085 bool increased;
3086 uint64_t c;
3087 int r;
3088
3089 if (!u->cgroup_path)
3090 return 0;
3091
3092 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
fc594dee
LP
3093 if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
3094 c = 0;
3095 else if (r < 0)
afcfaa69 3096 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
fc594dee
LP
3097 else {
3098 r = safe_atou64(oom_kill, &c);
3099 if (r < 0)
3100 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
3101 }
afcfaa69
LP
3102
3103 increased = c > u->oom_kill_last;
3104 u->oom_kill_last = c;
3105
3106 if (!increased)
3107 return 0;
3108
c2503e35
RH
3109 log_unit_struct(u, LOG_NOTICE,
3110 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
3111 LOG_UNIT_INVOCATION_ID(u),
3112 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
afcfaa69 3113
38c41427 3114 unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
afcfaa69
LP
3115
3116 return 1;
3117}
3118
3119static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
3120 Manager *m = userdata;
3121 Unit *u;
3122 int r;
3123
3124 assert(s);
3125 assert(m);
3126
3127 u = m->cgroup_oom_queue;
3128 if (!u)
3129 return 0;
3130
3131 assert(u->in_cgroup_oom_queue);
3132 u->in_cgroup_oom_queue = false;
3133 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
3134
3135 if (m->cgroup_oom_queue) {
3136 /* More stuff queued, let's make sure we remain enabled */
3137 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3138 if (r < 0)
3139 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
3140 }
3141
3142 (void) unit_check_oom(u);
3143 return 0;
3144}
3145
3146static void unit_add_to_cgroup_oom_queue(Unit *u) {
3147 int r;
3148
3149 assert(u);
3150
3151 if (u->in_cgroup_oom_queue)
3152 return;
3153 if (!u->cgroup_path)
3154 return;
3155
3156 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
3157 u->in_cgroup_oom_queue = true;
3158
3159 /* Trigger the defer event */
3160 if (!u->manager->cgroup_oom_event_source) {
3161 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3162
3163 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
3164 if (r < 0) {
3165 log_error_errno(r, "Failed to create cgroup oom event source: %m");
3166 return;
3167 }
3168
3169 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
3170 if (r < 0) {
3171 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
3172 return;
3173 }
3174
3175 (void) sd_event_source_set_description(s, "cgroup-oom");
3176 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
3177 }
3178
3179 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
3180 if (r < 0)
3181 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
3182}
3183
d9e45bc3
MS
3184static int unit_check_cgroup_events(Unit *u) {
3185 char *values[2] = {};
3186 int r;
3187
3188 assert(u);
3189
869f52f2
DS
3190 if (!u->cgroup_path)
3191 return 0;
3192
d9e45bc3
MS
3193 r = cg_get_keyed_attribute_graceful(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
3194 STRV_MAKE("populated", "frozen"), values);
3195 if (r < 0)
3196 return r;
3197
3198 /* The cgroup.events notifications can be merged together so act as we saw the given state for the
3199 * first time. The functions we call to handle given state are idempotent, which makes them
3200 * effectively remember the previous state. */
3201 if (values[0]) {
3202 if (streq(values[0], "1"))
3203 unit_remove_from_cgroup_empty_queue(u);
3204 else
3205 unit_add_to_cgroup_empty_queue(u);
3206 }
3207
3208 /* Disregard freezer state changes due to operations not initiated by us */
3209 if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING)) {
3210 if (streq(values[1], "0"))
3211 unit_thawed(u);
3212 else
3213 unit_frozen(u);
3214 }
3215
3216 free(values[0]);
3217 free(values[1]);
3218
3219 return 0;
3220}
3221
efdb0237
LP
3222static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
3223 Manager *m = userdata;
3224
3225 assert(s);
3226 assert(fd >= 0);
3227 assert(m);
3228
3229 for (;;) {
3230 union inotify_event_buffer buffer;
3231 struct inotify_event *e;
3232 ssize_t l;
3233
3234 l = read(fd, &buffer, sizeof(buffer));
3235 if (l < 0) {
8add30a0 3236 if (ERRNO_IS_TRANSIENT(errno))
efdb0237
LP
3237 return 0;
3238
3239 return log_error_errno(errno, "Failed to read control group inotify events: %m");
3240 }
3241
3242 FOREACH_INOTIFY_EVENT(e, buffer, l) {
3243 Unit *u;
3244
3245 if (e->wd < 0)
3246 /* Queue overflow has no watch descriptor */
3247 continue;
3248
3249 if (e->mask & IN_IGNORED)
3250 /* The watch was just removed */
3251 continue;
3252
afcfaa69
LP
3253 /* Note that inotify might deliver events for a watch even after it was removed,
3254 * because it was queued before the removal. Let's ignore this here safely. */
3255
0bb814c2 3256 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
afcfaa69 3257 if (u)
d9e45bc3 3258 unit_check_cgroup_events(u);
efdb0237 3259
afcfaa69
LP
3260 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
3261 if (u)
3262 unit_add_to_cgroup_oom_queue(u);
efdb0237
LP
3263 }
3264 }
8e274523
LP
3265}
3266
17f14955
RG
3267static int cg_bpf_mask_supported(CGroupMask *ret) {
3268 CGroupMask mask = 0;
3269 int r;
3270
3271 /* BPF-based firewall */
3272 r = bpf_firewall_supported();
ad13559e
YW
3273 if (r < 0)
3274 return r;
17f14955
RG
3275 if (r > 0)
3276 mask |= CGROUP_MASK_BPF_FIREWALL;
3277
084c7007
RG
3278 /* BPF-based device access control */
3279 r = bpf_devices_supported();
ad13559e
YW
3280 if (r < 0)
3281 return r;
084c7007
RG
3282 if (r > 0)
3283 mask |= CGROUP_MASK_BPF_DEVICES;
3284
506ea51b
JK
3285 /* BPF pinned prog */
3286 r = bpf_foreign_supported();
ad13559e
YW
3287 if (r < 0)
3288 return r;
506ea51b
JK
3289 if (r > 0)
3290 mask |= CGROUP_MASK_BPF_FOREIGN;
3291
a8e5eb17 3292 /* BPF-based bind{4|6} hooks */
cd09a5f3 3293 r = bpf_socket_bind_supported();
ad13559e
YW
3294 if (r < 0)
3295 return r;
a8e5eb17
JK
3296 if (r > 0)
3297 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
3298
6f50d4f7
MV
3299 /* BPF-based cgroup_skb/{egress|ingress} hooks */
3300 r = restrict_network_interfaces_supported();
ad13559e
YW
3301 if (r < 0)
3302 return r;
6f50d4f7
MV
3303 if (r > 0)
3304 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
3305
17f14955
RG
3306 *ret = mask;
3307 return 0;
3308}
3309
8e274523 3310int manager_setup_cgroup(Manager *m) {
9444b1f2 3311 _cleanup_free_ char *path = NULL;
10bd3e2e 3312 const char *scope_path;
b4cccbc1 3313 int r, all_unified;
17f14955 3314 CGroupMask mask;
efdb0237 3315 char *e;
8e274523
LP
3316
3317 assert(m);
3318
35d2e7ec 3319 /* 1. Determine hierarchy */
efdb0237 3320 m->cgroup_root = mfree(m->cgroup_root);
9444b1f2 3321 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
23bbb0de
MS
3322 if (r < 0)
3323 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
8e274523 3324
efdb0237
LP
3325 /* Chop off the init scope, if we are already located in it */
3326 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
0d8c31ff 3327
efdb0237
LP
3328 /* LEGACY: Also chop off the system slice if we are in
3329 * it. This is to support live upgrades from older systemd
3330 * versions where PID 1 was moved there. Also see
3331 * cg_get_root_path(). */
463d0d15 3332 if (!e && MANAGER_IS_SYSTEM(m)) {
9444b1f2 3333 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
15c60e99 3334 if (!e)
efdb0237 3335 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
0baf24dd 3336 }
efdb0237
LP
3337 if (e)
3338 *e = 0;
7ccfb64a 3339
7546145e
LP
3340 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
3341 * easily prepend it everywhere. */
3342 delete_trailing_chars(m->cgroup_root, "/");
8e274523 3343
35d2e7ec 3344 /* 2. Show data */
9444b1f2 3345 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
23bbb0de
MS
3346 if (r < 0)
3347 return log_error_errno(r, "Cannot find cgroup mount point: %m");
8e274523 3348
d4d99bc6 3349 r = cg_unified();
415fc41c
TH
3350 if (r < 0)
3351 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
5da38d07 3352
b4cccbc1 3353 all_unified = cg_all_unified();
d4c819ed
ZJS
3354 if (all_unified < 0)
3355 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
3356 if (all_unified > 0)
efdb0237 3357 log_debug("Unified cgroup hierarchy is located at %s.", path);
b4cccbc1 3358 else {
c22800e4 3359 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
3360 if (r < 0)
3361 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
3362 if (r > 0)
3363 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
3364 else
3365 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
3366 }
efdb0237 3367
09e24654 3368 /* 3. Allocate cgroup empty defer event source */
5dcadb4c 3369 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
09e24654
LP
3370 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
3371 if (r < 0)
3372 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
3373
cbe83389
LP
3374 /* Schedule cgroup empty checks early, but after having processed service notification messages or
3375 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
3376 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
09e24654
LP
3377 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
3378 if (r < 0)
3379 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
3380
3381 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
3382 if (r < 0)
3383 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
3384
3385 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
3386
3387 /* 4. Install notifier inotify object, or agent */
10bd3e2e 3388 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
c6c18be3 3389
09e24654 3390 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
efdb0237 3391
5dcadb4c 3392 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
10bd3e2e 3393 safe_close(m->cgroup_inotify_fd);
efdb0237 3394
10bd3e2e
LP
3395 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
3396 if (m->cgroup_inotify_fd < 0)
3397 return log_error_errno(errno, "Failed to create control group inotify object: %m");
efdb0237 3398
10bd3e2e
LP
3399 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
3400 if (r < 0)
3401 return log_error_errno(r, "Failed to watch control group inotify object: %m");
efdb0237 3402
cbe83389
LP
3403 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
3404 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
3405 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
3406 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
10bd3e2e
LP
3407 if (r < 0)
3408 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
efdb0237 3409
10bd3e2e 3410 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
efdb0237 3411
611c4f8a 3412 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
efdb0237 3413
10bd3e2e
LP
3414 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
3415 * since it does not generate events when control groups with children run empty. */
8e274523 3416
ce906769 3417 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
23bbb0de 3418 if (r < 0)
10bd3e2e
LP
3419 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
3420 else if (r > 0)
3421 log_debug("Installed release agent.");
3422 else if (r == 0)
3423 log_debug("Release agent already installed.");
3424 }
efdb0237 3425
09e24654 3426 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
10bd3e2e
LP
3427 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3428 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
aa77e234
MS
3429 if (r >= 0) {
3430 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
3431 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3432 if (r < 0)
3433 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
c6c18be3 3434
aa77e234
MS
3435 /* 6. And pin it, so that it cannot be unmounted */
3436 safe_close(m->pin_cgroupfs_fd);
3437 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
3438 if (m->pin_cgroupfs_fd < 0)
3439 return log_error_errno(errno, "Failed to open pin file: %m");
0d8c31ff 3440
638cece4 3441 } else if (!MANAGER_IS_TEST_RUN(m))
aa77e234 3442 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
10bd3e2e 3443
09e24654 3444 /* 7. Always enable hierarchical support if it exists... */
638cece4 3445 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
10bd3e2e 3446 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
c6c18be3 3447
17f14955 3448 /* 8. Figure out which controllers are supported */
0fa7b500 3449 r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
efdb0237
LP
3450 if (r < 0)
3451 return log_error_errno(r, "Failed to determine supported controllers: %m");
17f14955
RG
3452
3453 /* 9. Figure out which bpf-based pseudo-controllers are supported */
3454 r = cg_bpf_mask_supported(&mask);
3455 if (r < 0)
3456 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
3457 m->cgroup_supported |= mask;
3458
3459 /* 10. Log which controllers are supported */
e8616626
ZJS
3460 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
3461 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
3462 yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
9156e799 3463
a32360f1 3464 return 0;
8e274523
LP
3465}
3466
c6c18be3 3467void manager_shutdown_cgroup(Manager *m, bool delete) {
8e274523
LP
3468 assert(m);
3469
9444b1f2
LP
3470 /* We can't really delete the group, since we are in it. But
3471 * let's trim it. */
5dd2f5ff 3472 if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
efdb0237
LP
3473 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
3474
5dcadb4c 3475 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
09e24654 3476
0bb814c2 3477 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
afcfaa69 3478 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
efdb0237 3479
5dcadb4c 3480 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
efdb0237 3481 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
8e274523 3482
03e334a1 3483 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
c6c18be3 3484
efdb0237 3485 m->cgroup_root = mfree(m->cgroup_root);
8e274523
LP
3486}
3487
4ad49000 3488Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
acb14d31 3489 char *p;
4ad49000 3490 Unit *u;
acb14d31
LP
3491
3492 assert(m);
3493 assert(cgroup);
acb14d31 3494
4ad49000
LP
3495 u = hashmap_get(m->cgroup_unit, cgroup);
3496 if (u)
3497 return u;
acb14d31 3498
2f82562b 3499 p = strdupa_safe(cgroup);
acb14d31
LP
3500 for (;;) {
3501 char *e;
3502
3503 e = strrchr(p, '/');
efdb0237
LP
3504 if (!e || e == p)
3505 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
acb14d31
LP
3506
3507 *e = 0;
3508
4ad49000
LP
3509 u = hashmap_get(m->cgroup_unit, p);
3510 if (u)
3511 return u;
acb14d31
LP
3512 }
3513}
3514
b3ac818b 3515Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
4ad49000 3516 _cleanup_free_ char *cgroup = NULL;
8e274523 3517
8c47c732
LP
3518 assert(m);
3519
62a76913 3520 if (!pid_is_valid(pid))
b3ac818b
LP
3521 return NULL;
3522
62a76913 3523 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
b3ac818b
LP
3524 return NULL;
3525
3526 return manager_get_unit_by_cgroup(m, cgroup);
3527}
3528
3529Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
62a76913 3530 Unit *u, **array;
b3ac818b
LP
3531
3532 assert(m);
3533
62a76913
LP
3534 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3535 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3536 * relevant one as children of the process will be assigned to that one, too, before all else. */
3537
3538 if (!pid_is_valid(pid))
8c47c732
LP
3539 return NULL;
3540
2ca9d979 3541 if (pid == getpid_cached())
efdb0237
LP
3542 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3543
62a76913 3544 u = manager_get_unit_by_pid_cgroup(m, pid);
5fe8876b
LP
3545 if (u)
3546 return u;
3547
62a76913 3548 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
5fe8876b
LP
3549 if (u)
3550 return u;
3551
62a76913
LP
3552 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3553 if (array)
3554 return array[0];
3555
3556 return NULL;
6dde1f33 3557}
4fbf50b3 3558
4ad49000
LP
3559int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3560 Unit *u;
4fbf50b3 3561
4ad49000
LP
3562 assert(m);
3563 assert(cgroup);
4fbf50b3 3564
09e24654
LP
3565 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3566 * or from the --system instance */
3567
d8fdc620
LP
3568 log_debug("Got cgroup empty notification for: %s", cgroup);
3569
4ad49000 3570 u = manager_get_unit_by_cgroup(m, cgroup);
5ad096b3
LP
3571 if (!u)
3572 return 0;
b56c28c3 3573
09e24654
LP
3574 unit_add_to_cgroup_empty_queue(u);
3575 return 1;
5ad096b3
LP
3576}
3577
93ff34e4
LB
3578int unit_get_memory_available(Unit *u, uint64_t *ret) {
3579 uint64_t unit_current, available = UINT64_MAX;
3580 CGroupContext *unit_context;
3581 const char *memory_file;
3582 int r;
3583
3584 assert(u);
3585 assert(ret);
3586
3587 /* If data from cgroups can be accessed, try to find out how much more memory a unit can
3588 * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
3589 * and MemoryMax, and also any slice the unit might be nested below. */
3590
3591 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3592 return -ENODATA;
3593
3594 if (!u->cgroup_path)
3595 return -ENODATA;
3596
3597 /* The root cgroup doesn't expose this information */
3598 if (unit_has_host_root_cgroup(u))
3599 return -ENODATA;
3600
3601 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3602 return -ENODATA;
3603
3604 r = cg_all_unified();
3605 if (r < 0)
3606 return r;
3607 memory_file = r > 0 ? "memory.current" : "memory.usage_in_bytes";
3608
3609 r = cg_get_attribute_as_uint64("memory", u->cgroup_path, memory_file, &unit_current);
3610 if (r < 0)
3611 return r;
3612
3613 assert_se(unit_context = unit_get_cgroup_context(u));
3614
3615 if (unit_context->memory_max != UINT64_MAX || unit_context->memory_high != UINT64_MAX)
3616 available = LESS_BY(MIN(unit_context->memory_max, unit_context->memory_high), unit_current);
3617
3618 for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice)) {
3619 uint64_t slice_current, slice_available = UINT64_MAX;
3620 CGroupContext *slice_context;
3621
3622 /* No point in continuing if we can't go any lower */
3623 if (available == 0)
3624 break;
3625
3626 if (!slice->cgroup_path)
3627 continue;
3628
3629 slice_context = unit_get_cgroup_context(slice);
3630 if (!slice_context)
3631 continue;
3632
3633 if (slice_context->memory_max == UINT64_MAX && slice_context->memory_high == UINT64_MAX)
3634 continue;
3635
3636 r = cg_get_attribute_as_uint64("memory", slice->cgroup_path, memory_file, &slice_current);
3637 if (r < 0)
3638 continue;
3639
3640 slice_available = LESS_BY(MIN(slice_context->memory_max, slice_context->memory_high), slice_current);
3641 available = MIN(slice_available, available);
3642 }
3643
3644 *ret = available;
3645
3646 return 0;
3647}
3648
5ad096b3 3649int unit_get_memory_current(Unit *u, uint64_t *ret) {
5ad096b3
LP
3650 int r;
3651
3652 assert(u);
3653 assert(ret);
3654
2e4025c0 3655 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
cf3b4be1
LP
3656 return -ENODATA;
3657
5ad096b3
LP
3658 if (!u->cgroup_path)
3659 return -ENODATA;
3660
1f73aa00 3661 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3662 if (unit_has_host_root_cgroup(u))
c482724a 3663 return procfs_memory_get_used(ret);
1f73aa00 3664
efdb0237 3665 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
5ad096b3
LP
3666 return -ENODATA;
3667
b4cccbc1
LP
3668 r = cg_all_unified();
3669 if (r < 0)
3670 return r;
5ad096b3 3671
613328c3 3672 return cg_get_attribute_as_uint64("memory", u->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
5ad096b3
LP
3673}
3674
03a7b521 3675int unit_get_tasks_current(Unit *u, uint64_t *ret) {
03a7b521
LP
3676 assert(u);
3677 assert(ret);
3678
2e4025c0 3679 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
cf3b4be1
LP
3680 return -ENODATA;
3681
03a7b521
LP
3682 if (!u->cgroup_path)
3683 return -ENODATA;
3684
c36a69f4 3685 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3686 if (unit_has_host_root_cgroup(u))
c36a69f4
LP
3687 return procfs_tasks_get_current(ret);
3688
1f73aa00
LP
3689 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3690 return -ENODATA;
3691
613328c3 3692 return cg_get_attribute_as_uint64("pids", u->cgroup_path, "pids.current", ret);
03a7b521
LP
3693}
3694
5ad096b3 3695static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
5ad096b3
LP
3696 uint64_t ns;
3697 int r;
3698
3699 assert(u);
3700 assert(ret);
3701
3702 if (!u->cgroup_path)
3703 return -ENODATA;
3704
1f73aa00 3705 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3706 if (unit_has_host_root_cgroup(u))
1f73aa00
LP
3707 return procfs_cpu_get_usage(ret);
3708
f98c2585
CD
3709 /* Requisite controllers for CPU accounting are not enabled */
3710 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3711 return -ENODATA;
3712
92a99304
LP
3713 r = cg_all_unified();
3714 if (r < 0)
3715 return r;
b4cccbc1 3716 if (r > 0) {
66ebf6c0
TH
3717 _cleanup_free_ char *val = NULL;
3718 uint64_t us;
5ad096b3 3719
b734a4ff 3720 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
b734a4ff
LP
3721 if (IN_SET(r, -ENOENT, -ENXIO))
3722 return -ENODATA;
d742f4b5
LP
3723 if (r < 0)
3724 return r;
66ebf6c0
TH
3725
3726 r = safe_atou64(val, &us);
3727 if (r < 0)
3728 return r;
3729
3730 ns = us * NSEC_PER_USEC;
613328c3
AZ
3731 } else
3732 return cg_get_attribute_as_uint64("cpuacct", u->cgroup_path, "cpuacct.usage", ret);
5ad096b3
LP
3733
3734 *ret = ns;
3735 return 0;
3736}
3737
3738int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3739 nsec_t ns;
3740 int r;
3741
fe700f46
LP
3742 assert(u);
3743
3744 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3745 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3746 * call this function with a NULL return value. */
3747
2e4025c0 3748 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
cf3b4be1
LP
3749 return -ENODATA;
3750
5ad096b3 3751 r = unit_get_cpu_usage_raw(u, &ns);
fe700f46
LP
3752 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3753 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3754 * cached value. */
3755
3756 if (ret)
3757 *ret = u->cpu_usage_last;
3758 return 0;
3759 }
5ad096b3
LP
3760 if (r < 0)
3761 return r;
3762
66ebf6c0
TH
3763 if (ns > u->cpu_usage_base)
3764 ns -= u->cpu_usage_base;
5ad096b3
LP
3765 else
3766 ns = 0;
3767
fe700f46
LP
3768 u->cpu_usage_last = ns;
3769 if (ret)
3770 *ret = ns;
3771
5ad096b3
LP
3772 return 0;
3773}
3774
906c06f6
DM
3775int unit_get_ip_accounting(
3776 Unit *u,
3777 CGroupIPAccountingMetric metric,
3778 uint64_t *ret) {
3779
6b659ed8 3780 uint64_t value;
906c06f6
DM
3781 int fd, r;
3782
3783 assert(u);
3784 assert(metric >= 0);
3785 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3786 assert(ret);
3787
2e4025c0 3788 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
cf3b4be1
LP
3789 return -ENODATA;
3790
906c06f6
DM
3791 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3792 u->ip_accounting_ingress_map_fd :
3793 u->ip_accounting_egress_map_fd;
906c06f6
DM
3794 if (fd < 0)
3795 return -ENODATA;
3796
3797 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
6b659ed8 3798 r = bpf_firewall_read_accounting(fd, &value, NULL);
906c06f6 3799 else
6b659ed8
LP
3800 r = bpf_firewall_read_accounting(fd, NULL, &value);
3801 if (r < 0)
3802 return r;
3803
3804 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3805 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3806 * ip_accounting_extra[] field, and add them in here transparently. */
3807
3808 *ret = value + u->ip_accounting_extra[metric];
906c06f6
DM
3809
3810 return r;
3811}
3812
fbe14fc9
LP
3813static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3814 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3815 [CGROUP_IO_READ_BYTES] = "rbytes=",
3816 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
3817 [CGROUP_IO_READ_OPERATIONS] = "rios=",
3818 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3819 };
3820 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3821 _cleanup_free_ char *path = NULL;
3822 _cleanup_fclose_ FILE *f = NULL;
3823 int r;
3824
3825 assert(u);
3826
3827 if (!u->cgroup_path)
3828 return -ENODATA;
3829
3830 if (unit_has_host_root_cgroup(u))
3831 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3832
3833 r = cg_all_unified();
3834 if (r < 0)
3835 return r;
3836 if (r == 0) /* TODO: support cgroupv1 */
3837 return -ENODATA;
3838
3839 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3840 return -ENODATA;
3841
3842 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3843 if (r < 0)
3844 return r;
3845
3846 f = fopen(path, "re");
3847 if (!f)
3848 return -errno;
3849
3850 for (;;) {
3851 _cleanup_free_ char *line = NULL;
3852 const char *p;
3853
3854 r = read_line(f, LONG_LINE_MAX, &line);
3855 if (r < 0)
3856 return r;
3857 if (r == 0)
3858 break;
3859
3860 p = line;
3861 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3862 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
3863
3864 for (;;) {
3865 _cleanup_free_ char *word = NULL;
3866
3867 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3868 if (r < 0)
3869 return r;
3870 if (r == 0)
3871 break;
3872
3873 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3874 const char *x;
3875
3876 x = startswith(word, field_names[i]);
3877 if (x) {
3878 uint64_t w;
3879
3880 r = safe_atou64(x, &w);
3881 if (r < 0)
3882 return r;
3883
3884 /* Sum up the stats of all devices */
3885 acc[i] += w;
3886 break;
3887 }
3888 }
3889 }
3890 }
3891
3892 memcpy(ret, acc, sizeof(acc));
3893 return 0;
3894}
3895
3896int unit_get_io_accounting(
3897 Unit *u,
3898 CGroupIOAccountingMetric metric,
3899 bool allow_cache,
3900 uint64_t *ret) {
3901
3902 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3903 int r;
3904
3905 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3906
3907 if (!UNIT_CGROUP_BOOL(u, io_accounting))
3908 return -ENODATA;
3909
3910 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3911 goto done;
3912
3913 r = unit_get_io_accounting_raw(u, raw);
3914 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3915 goto done;
3916 if (r < 0)
3917 return r;
3918
3919 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3920 /* Saturated subtraction */
3921 if (raw[i] > u->io_accounting_base[i])
3922 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3923 else
3924 u->io_accounting_last[i] = 0;
3925 }
3926
3927done:
3928 if (ret)
3929 *ret = u->io_accounting_last[metric];
3930
3931 return 0;
3932}
3933
906c06f6 3934int unit_reset_cpu_accounting(Unit *u) {
5ad096b3
LP
3935 int r;
3936
3937 assert(u);
3938
fe700f46
LP
3939 u->cpu_usage_last = NSEC_INFINITY;
3940
0bbff7d6 3941 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
5ad096b3 3942 if (r < 0) {
66ebf6c0 3943 u->cpu_usage_base = 0;
5ad096b3 3944 return r;
b56c28c3 3945 }
2633eb83 3946
4ad49000 3947 return 0;
4fbf50b3
LP
3948}
3949
906c06f6
DM
3950int unit_reset_ip_accounting(Unit *u) {
3951 int r = 0, q = 0;
3952
3953 assert(u);
3954
3955 if (u->ip_accounting_ingress_map_fd >= 0)
3956 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3957
3958 if (u->ip_accounting_egress_map_fd >= 0)
3959 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3960
6b659ed8
LP
3961 zero(u->ip_accounting_extra);
3962
906c06f6
DM
3963 return r < 0 ? r : q;
3964}
3965
fbe14fc9
LP
3966int unit_reset_io_accounting(Unit *u) {
3967 int r;
3968
3969 assert(u);
3970
3971 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
3972 u->io_accounting_last[i] = UINT64_MAX;
3973
3974 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
3975 if (r < 0) {
3976 zero(u->io_accounting_base);
3977 return r;
3978 }
3979
3980 return 0;
3981}
3982
9b2559a1 3983int unit_reset_accounting(Unit *u) {
fbe14fc9 3984 int r, q, v;
9b2559a1
LP
3985
3986 assert(u);
3987
3988 r = unit_reset_cpu_accounting(u);
fbe14fc9
LP
3989 q = unit_reset_io_accounting(u);
3990 v = unit_reset_ip_accounting(u);
9b2559a1 3991
fbe14fc9 3992 return r < 0 ? r : q < 0 ? q : v;
9b2559a1
LP
3993}
3994
e7ab4d1a
LP
3995void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
3996 assert(u);
3997
3998 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3999 return;
4000
4001 if (m == 0)
4002 return;
4003
538b4852
TH
4004 /* always invalidate compat pairs together */
4005 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
4006 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
4007
7cce4fb7
LP
4008 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
4009 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
4010
e00068e7 4011 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
e7ab4d1a
LP
4012 return;
4013
e00068e7 4014 u->cgroup_invalidated_mask |= m;
91a6073e 4015 unit_add_to_cgroup_realize_queue(u);
e7ab4d1a
LP
4016}
4017
906c06f6
DM
4018void unit_invalidate_cgroup_bpf(Unit *u) {
4019 assert(u);
4020
4021 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4022 return;
4023
17f14955 4024 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
906c06f6
DM
4025 return;
4026
17f14955 4027 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
91a6073e 4028 unit_add_to_cgroup_realize_queue(u);
906c06f6
DM
4029
4030 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
4031 * list of our children includes our own. */
4032 if (u->type == UNIT_SLICE) {
4033 Unit *member;
906c06f6 4034
d219a2b0 4035 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
15ed3c3a 4036 unit_invalidate_cgroup_bpf(member);
906c06f6
DM
4037 }
4038}
4039
869f52f2
DS
4040void unit_cgroup_catchup(Unit *u) {
4041 assert(u);
4042
4043 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4044 return;
4045
4046 /* We dropped the inotify watch during reexec/reload, so we need to
4047 * check these as they may have changed.
4048 * Note that (currently) the kernel doesn't actually update cgroup
4049 * file modification times, so we can't just serialize and then check
4050 * the mtime for file(s) we are interested in. */
4051 (void) unit_check_cgroup_events(u);
4052 unit_add_to_cgroup_oom_queue(u);
4053}
4054
1d9cc876
LP
4055bool unit_cgroup_delegate(Unit *u) {
4056 CGroupContext *c;
4057
4058 assert(u);
4059
4060 if (!UNIT_VTABLE(u)->can_delegate)
4061 return false;
4062
4063 c = unit_get_cgroup_context(u);
4064 if (!c)
4065 return false;
4066
4067 return c->delegate;
4068}
4069
e7ab4d1a 4070void manager_invalidate_startup_units(Manager *m) {
e7ab4d1a
LP
4071 Unit *u;
4072
4073 assert(m);
4074
90e74a66 4075 SET_FOREACH(u, m->startup_units)
9dfb6a3a 4076 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
e7ab4d1a
LP
4077}
4078
da8e1782
MO
4079static int unit_get_nice(Unit *u) {
4080 ExecContext *ec;
4081
4082 ec = unit_get_exec_context(u);
4083 return ec ? ec->nice : 0;
4084}
4085
4086static uint64_t unit_get_cpu_weight(Unit *u) {
4087 ManagerState state = manager_state(u->manager);
4088 CGroupContext *cc;
4089
4090 cc = unit_get_cgroup_context(u);
4091 return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
4092}
4093
4094int compare_job_priority(const void *a, const void *b) {
4095 const Job *x = a, *y = b;
4096 int nice_x, nice_y;
4097 uint64_t weight_x, weight_y;
4098 int ret;
4099
217b7b33
ZJS
4100 if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
4101 return -ret;
4102
da8e1782
MO
4103 weight_x = unit_get_cpu_weight(x->unit);
4104 weight_y = unit_get_cpu_weight(y->unit);
4105
217b7b33
ZJS
4106 if ((ret = CMP(weight_x, weight_y)) != 0)
4107 return -ret;
da8e1782
MO
4108
4109 nice_x = unit_get_nice(x->unit);
4110 nice_y = unit_get_nice(y->unit);
4111
4112 if ((ret = CMP(nice_x, nice_y)) != 0)
4113 return ret;
4114
da8e1782
MO
4115 return strcmp(x->unit->id, y->unit->id);
4116}
4117
d9e45bc3
MS
4118int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
4119 _cleanup_free_ char *path = NULL;
4120 FreezerState target, kernel = _FREEZER_STATE_INVALID;
4121 int r;
4122
4123 assert(u);
4124 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
4125
9a1e90ae
MS
4126 if (!cg_freezer_supported())
4127 return 0;
4128
d9e45bc3
MS
4129 if (!u->cgroup_realized)
4130 return -EBUSY;
4131
4132 target = action == FREEZER_FREEZE ? FREEZER_FROZEN : FREEZER_RUNNING;
4133
4134 r = unit_freezer_state_kernel(u, &kernel);
4135 if (r < 0)
4136 log_unit_debug_errno(u, r, "Failed to obtain cgroup freezer state: %m");
4137
4138 if (target == kernel) {
4139 u->freezer_state = target;
4140 return 0;
4141 }
4142
4143 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.freeze", &path);
4144 if (r < 0)
4145 return r;
4146
4147 log_unit_debug(u, "%s unit.", action == FREEZER_FREEZE ? "Freezing" : "Thawing");
4148
4149 if (action == FREEZER_FREEZE)
4150 u->freezer_state = FREEZER_FREEZING;
4151 else
4152 u->freezer_state = FREEZER_THAWING;
4153
4154 r = write_string_file(path, one_zero(action == FREEZER_FREEZE), WRITE_STRING_FILE_DISABLE_BUFFER);
4155 if (r < 0)
4156 return r;
4157
d910f4c2 4158 return 1;
d9e45bc3
MS
4159}
4160
047f5d63
PH
4161int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
4162 _cleanup_free_ char *v = NULL;
4163 int r;
4164
4165 assert(u);
4166 assert(cpus);
4167
4168 if (!u->cgroup_path)
4169 return -ENODATA;
4170
4171 if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
4172 return -ENODATA;
4173
4174 r = cg_all_unified();
4175 if (r < 0)
4176 return r;
4177 if (r == 0)
4178 return -ENODATA;
48fd01e5
LP
4179
4180 r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
047f5d63
PH
4181 if (r == -ENOENT)
4182 return -ENODATA;
4183 if (r < 0)
4184 return r;
4185
4186 return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
4187}
4188
4e806bfa
AZ
4189static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
4190 [CGROUP_DEVICE_POLICY_AUTO] = "auto",
4191 [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
4192 [CGROUP_DEVICE_POLICY_STRICT] = "strict",
4193};
4194
4ad49000 4195DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
d9e45bc3
MS
4196
4197static const char* const freezer_action_table[_FREEZER_ACTION_MAX] = {
4198 [FREEZER_FREEZE] = "freeze",
4199 [FREEZER_THAW] = "thaw",
4200};
4201
4202DEFINE_STRING_TABLE_LOOKUP(freezer_action, FreezerAction);