]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/core/cgroup.c
cgroup: append \n to static strings we write to cgroup attributes
[thirdparty/systemd.git] / src / core / cgroup.c
CommitLineData
53e1b683 1/* SPDX-License-Identifier: LGPL-2.1+ */
8e274523 2
c6c18be3 3#include <fcntl.h>
e41969e3 4#include <fnmatch.h>
8c6db833 5
b5efdb8a 6#include "alloc-util.h"
18c528e9 7#include "blockdev-util.h"
906c06f6 8#include "bpf-firewall.h"
45c2e068 9#include "btrfs-util.h"
084c7007 10#include "bpf-devices.h"
6592b975 11#include "bus-error.h"
03a7b521 12#include "cgroup-util.h"
3ffd4af2
LP
13#include "cgroup.h"
14#include "fd-util.h"
0d39fa9c 15#include "fileio.h"
77601719 16#include "fs-util.h"
6bedfcbb 17#include "parse-util.h"
9eb977db 18#include "path-util.h"
03a7b521 19#include "process-util.h"
c36a69f4 20#include "procfs-util.h"
9444b1f2 21#include "special.h"
906c06f6 22#include "stdio-util.h"
8b43440b 23#include "string-table.h"
07630cea 24#include "string-util.h"
cc6271f1 25#include "virt.h"
8e274523 26
9a054909
LP
27#define CGROUP_CPU_QUOTA_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
28
39b9fefb
LP
29/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
30 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
31 * out specific attributes from us. */
32#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
33
611c4f8a 34bool manager_owns_host_root_cgroup(Manager *m) {
cc6271f1
LP
35 assert(m);
36
37 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
38 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
39 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
40 * we run in any kind of container virtualization. */
41
28cfdc5a
LP
42 if (MANAGER_IS_USER(m))
43 return false;
44
cc6271f1
LP
45 if (detect_container() > 0)
46 return false;
47
57ea45e1 48 return empty_or_root(m->cgroup_root);
cc6271f1
LP
49}
50
611c4f8a 51bool unit_has_host_root_cgroup(Unit *u) {
f3725e64
LP
52 assert(u);
53
cc6271f1
LP
54 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
55 * the manager manages the root cgroup. */
f3725e64 56
611c4f8a 57 if (!manager_owns_host_root_cgroup(u->manager))
f3725e64
LP
58 return false;
59
cc6271f1 60 return unit_has_name(u, SPECIAL_ROOT_SLICE);
f3725e64
LP
61}
62
293d32df
LP
63static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
64 int r;
65
66 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
67 if (r < 0)
68 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
69 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
70
71 return r;
72}
73
2b40998d 74static void cgroup_compat_warn(void) {
128fadc9
TH
75 static bool cgroup_compat_warned = false;
76
77 if (cgroup_compat_warned)
78 return;
79
cc6271f1
LP
80 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
81 "See cgroup-compat debug messages for details.");
82
128fadc9
TH
83 cgroup_compat_warned = true;
84}
85
86#define log_cgroup_compat(unit, fmt, ...) do { \
87 cgroup_compat_warn(); \
88 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
2b40998d 89 } while (false)
128fadc9 90
4ad49000
LP
91void cgroup_context_init(CGroupContext *c) {
92 assert(c);
93
de8a711a 94 /* Initialize everything to the kernel defaults. */
4ad49000 95
de8a711a
LP
96 *c = (CGroupContext) {
97 .cpu_weight = CGROUP_WEIGHT_INVALID,
98 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
99 .cpu_quota_per_sec_usec = USEC_INFINITY,
66ebf6c0 100
de8a711a
LP
101 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
102 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
d53d9474 103
de8a711a
LP
104 .memory_high = CGROUP_LIMIT_MAX,
105 .memory_max = CGROUP_LIMIT_MAX,
106 .memory_swap_max = CGROUP_LIMIT_MAX,
da4d897e 107
de8a711a 108 .memory_limit = CGROUP_LIMIT_MAX,
b2f8b02e 109
de8a711a
LP
110 .io_weight = CGROUP_WEIGHT_INVALID,
111 .startup_io_weight = CGROUP_WEIGHT_INVALID,
13c31542 112
de8a711a
LP
113 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
114 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
d53d9474 115
de8a711a
LP
116 .tasks_max = CGROUP_LIMIT_MAX,
117 };
4ad49000 118}
8e274523 119
4ad49000
LP
120void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
121 assert(c);
122 assert(a);
123
71fda00f 124 LIST_REMOVE(device_allow, c->device_allow, a);
4ad49000
LP
125 free(a->path);
126 free(a);
127}
128
13c31542
TH
129void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
130 assert(c);
131 assert(w);
132
133 LIST_REMOVE(device_weights, c->io_device_weights, w);
134 free(w->path);
135 free(w);
136}
137
6ae4283c
TH
138void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
139 assert(c);
140 assert(l);
141
142 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
143 free(l->path);
144 free(l);
145}
146
13c31542
TH
147void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
148 assert(c);
149 assert(l);
150
151 LIST_REMOVE(device_limits, c->io_device_limits, l);
152 free(l->path);
153 free(l);
154}
155
4ad49000
LP
156void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
157 assert(c);
158 assert(w);
159
71fda00f 160 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
4ad49000
LP
161 free(w->path);
162 free(w);
163}
164
165void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
166 assert(c);
8e274523 167 assert(b);
8e274523 168
71fda00f 169 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
4ad49000
LP
170 free(b->path);
171 free(b);
172}
173
174void cgroup_context_done(CGroupContext *c) {
175 assert(c);
176
13c31542
TH
177 while (c->io_device_weights)
178 cgroup_context_free_io_device_weight(c, c->io_device_weights);
179
6ae4283c
TH
180 while (c->io_device_latencies)
181 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
182
13c31542
TH
183 while (c->io_device_limits)
184 cgroup_context_free_io_device_limit(c, c->io_device_limits);
185
4ad49000
LP
186 while (c->blockio_device_weights)
187 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
188
189 while (c->blockio_device_bandwidths)
190 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
191
192 while (c->device_allow)
193 cgroup_context_free_device_allow(c, c->device_allow);
6a48d82f
DM
194
195 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
196 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
4ad49000
LP
197}
198
199void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
13c31542
TH
200 CGroupIODeviceLimit *il;
201 CGroupIODeviceWeight *iw;
6ae4283c 202 CGroupIODeviceLatency *l;
4ad49000
LP
203 CGroupBlockIODeviceBandwidth *b;
204 CGroupBlockIODeviceWeight *w;
205 CGroupDeviceAllow *a;
c21c9906 206 IPAddressAccessItem *iaai;
9a054909 207 char u[FORMAT_TIMESPAN_MAX];
4ad49000
LP
208
209 assert(c);
210 assert(f);
211
212 prefix = strempty(prefix);
213
214 fprintf(f,
215 "%sCPUAccounting=%s\n"
13c31542 216 "%sIOAccounting=%s\n"
4ad49000
LP
217 "%sBlockIOAccounting=%s\n"
218 "%sMemoryAccounting=%s\n"
d53d9474 219 "%sTasksAccounting=%s\n"
c21c9906 220 "%sIPAccounting=%s\n"
66ebf6c0
TH
221 "%sCPUWeight=%" PRIu64 "\n"
222 "%sStartupCPUWeight=%" PRIu64 "\n"
d53d9474
LP
223 "%sCPUShares=%" PRIu64 "\n"
224 "%sStartupCPUShares=%" PRIu64 "\n"
b2f8b02e 225 "%sCPUQuotaPerSecSec=%s\n"
13c31542
TH
226 "%sIOWeight=%" PRIu64 "\n"
227 "%sStartupIOWeight=%" PRIu64 "\n"
d53d9474
LP
228 "%sBlockIOWeight=%" PRIu64 "\n"
229 "%sStartupBlockIOWeight=%" PRIu64 "\n"
48422635 230 "%sMemoryMin=%" PRIu64 "\n"
da4d897e
TH
231 "%sMemoryLow=%" PRIu64 "\n"
232 "%sMemoryHigh=%" PRIu64 "\n"
233 "%sMemoryMax=%" PRIu64 "\n"
96e131ea 234 "%sMemorySwapMax=%" PRIu64 "\n"
4ad49000 235 "%sMemoryLimit=%" PRIu64 "\n"
03a7b521 236 "%sTasksMax=%" PRIu64 "\n"
a931ad47
LP
237 "%sDevicePolicy=%s\n"
238 "%sDelegate=%s\n",
4ad49000 239 prefix, yes_no(c->cpu_accounting),
13c31542 240 prefix, yes_no(c->io_accounting),
4ad49000
LP
241 prefix, yes_no(c->blockio_accounting),
242 prefix, yes_no(c->memory_accounting),
d53d9474 243 prefix, yes_no(c->tasks_accounting),
c21c9906 244 prefix, yes_no(c->ip_accounting),
66ebf6c0
TH
245 prefix, c->cpu_weight,
246 prefix, c->startup_cpu_weight,
4ad49000 247 prefix, c->cpu_shares,
95ae05c0 248 prefix, c->startup_cpu_shares,
b1d6dcf5 249 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
13c31542
TH
250 prefix, c->io_weight,
251 prefix, c->startup_io_weight,
4ad49000 252 prefix, c->blockio_weight,
95ae05c0 253 prefix, c->startup_blockio_weight,
48422635 254 prefix, c->memory_min,
da4d897e
TH
255 prefix, c->memory_low,
256 prefix, c->memory_high,
257 prefix, c->memory_max,
96e131ea 258 prefix, c->memory_swap_max,
4ad49000 259 prefix, c->memory_limit,
03a7b521 260 prefix, c->tasks_max,
a931ad47
LP
261 prefix, cgroup_device_policy_to_string(c->device_policy),
262 prefix, yes_no(c->delegate));
4ad49000 263
02638280
LP
264 if (c->delegate) {
265 _cleanup_free_ char *t = NULL;
266
267 (void) cg_mask_to_string(c->delegate_controllers, &t);
268
47a78d41 269 fprintf(f, "%sDelegateControllers=%s\n",
02638280
LP
270 prefix,
271 strempty(t));
272 }
273
4ad49000
LP
274 LIST_FOREACH(device_allow, a, c->device_allow)
275 fprintf(f,
276 "%sDeviceAllow=%s %s%s%s\n",
277 prefix,
278 a->path,
279 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
280
13c31542
TH
281 LIST_FOREACH(device_weights, iw, c->io_device_weights)
282 fprintf(f,
6ae4283c 283 "%sIODeviceWeight=%s %" PRIu64 "\n",
13c31542
TH
284 prefix,
285 iw->path,
286 iw->weight);
287
6ae4283c
TH
288 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
289 fprintf(f,
290 "%sIODeviceLatencyTargetSec=%s %s\n",
291 prefix,
292 l->path,
293 format_timespan(u, sizeof(u), l->target_usec, 1));
294
13c31542
TH
295 LIST_FOREACH(device_limits, il, c->io_device_limits) {
296 char buf[FORMAT_BYTES_MAX];
9be57249
TH
297 CGroupIOLimitType type;
298
299 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
300 if (il->limits[type] != cgroup_io_limit_defaults[type])
301 fprintf(f,
302 "%s%s=%s %s\n",
303 prefix,
304 cgroup_io_limit_type_to_string(type),
305 il->path,
306 format_bytes(buf, sizeof(buf), il->limits[type]));
13c31542
TH
307 }
308
4ad49000
LP
309 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
310 fprintf(f,
d53d9474 311 "%sBlockIODeviceWeight=%s %" PRIu64,
4ad49000
LP
312 prefix,
313 w->path,
314 w->weight);
315
316 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
317 char buf[FORMAT_BYTES_MAX];
318
979d0311
TH
319 if (b->rbps != CGROUP_LIMIT_MAX)
320 fprintf(f,
321 "%sBlockIOReadBandwidth=%s %s\n",
322 prefix,
323 b->path,
324 format_bytes(buf, sizeof(buf), b->rbps));
325 if (b->wbps != CGROUP_LIMIT_MAX)
326 fprintf(f,
327 "%sBlockIOWriteBandwidth=%s %s\n",
328 prefix,
329 b->path,
330 format_bytes(buf, sizeof(buf), b->wbps));
4ad49000 331 }
c21c9906
LP
332
333 LIST_FOREACH(items, iaai, c->ip_address_allow) {
334 _cleanup_free_ char *k = NULL;
335
336 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
337 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
338 }
339
340 LIST_FOREACH(items, iaai, c->ip_address_deny) {
341 _cleanup_free_ char *k = NULL;
342
343 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
344 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
345 }
4ad49000
LP
346}
347
fd870bac
YW
348int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
349 _cleanup_free_ CGroupDeviceAllow *a = NULL;
350 _cleanup_free_ char *d = NULL;
351
352 assert(c);
353 assert(dev);
354 assert(isempty(mode) || in_charset(mode, "rwm"));
355
356 a = new(CGroupDeviceAllow, 1);
357 if (!a)
358 return -ENOMEM;
359
360 d = strdup(dev);
361 if (!d)
362 return -ENOMEM;
363
364 *a = (CGroupDeviceAllow) {
365 .path = TAKE_PTR(d),
490c5a37
LP
366 .r = isempty(mode) || strchr(mode, 'r'),
367 .w = isempty(mode) || strchr(mode, 'w'),
368 .m = isempty(mode) || strchr(mode, 'm'),
fd870bac
YW
369 };
370
371 LIST_PREPEND(device_allow, c->device_allow, a);
372 TAKE_PTR(a);
373
374 return 0;
375}
376
45c2e068 377static int lookup_block_device(const char *p, dev_t *ret) {
4ad49000 378 struct stat st;
45c2e068 379 int r;
4ad49000
LP
380
381 assert(p);
45c2e068 382 assert(ret);
4ad49000 383
b1c05b98 384 if (stat(p, &st) < 0)
45c2e068 385 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
8e274523 386
4ad49000 387 if (S_ISBLK(st.st_mode))
45c2e068
LP
388 *ret = st.st_rdev;
389 else if (major(st.st_dev) != 0)
390 *ret = st.st_dev; /* If this is not a device node then use the block device this file is stored on */
391 else {
392 /* If this is btrfs, getting the backing block device is a bit harder */
393 r = btrfs_get_block_device(p, ret);
394 if (r < 0 && r != -ENOTTY)
395 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
396 if (r == -ENOTTY) {
397 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
398 return -ENODEV;
399 }
4ad49000 400 }
8e274523 401
45c2e068
LP
402 /* If this is a LUKS device, try to get the originating block device */
403 (void) block_get_originating(*ret, ret);
404
405 /* If this is a partition, try to get the originating block device */
406 (void) block_get_whole_disk(*ret, ret);
8e274523 407 return 0;
8e274523
LP
408}
409
084c7007 410static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
4ad49000 411 struct stat st;
b200489b 412 bool ignore_notfound;
8c6db833 413 int r;
8e274523 414
4ad49000
LP
415 assert(path);
416 assert(acc);
8e274523 417
b200489b
DR
418 if (node[0] == '-') {
419 /* Non-existent paths starting with "-" must be silently ignored */
420 node++;
421 ignore_notfound = true;
422 } else
423 ignore_notfound = false;
424
4ad49000 425 if (stat(node, &st) < 0) {
b200489b 426 if (errno == ENOENT && ignore_notfound)
e7330dfe
DP
427 return 0;
428
429 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
4ad49000
LP
430 }
431
432 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
433 log_warning("%s is not a device.", node);
434 return -ENODEV;
435 }
436
084c7007
RG
437 if (cg_all_unified() > 0) {
438 if (!prog)
439 return 0;
4ad49000 440
b9839ac9
LP
441 return cgroup_bpf_whitelist_device(prog, S_ISCHR(st.st_mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
442 major(st.st_rdev), minor(st.st_rdev), acc);
443
084c7007
RG
444 } else {
445 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
446
447 sprintf(buf,
448 "%c %u:%u %s",
449 S_ISCHR(st.st_mode) ? 'c' : 'b',
450 major(st.st_rdev), minor(st.st_rdev),
451 acc);
452
8c838407
LP
453 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
454
084c7007
RG
455 r = cg_set_attribute("devices", path, "devices.allow", buf);
456 if (r < 0)
2c74e12b 457 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
b9839ac9 458 r, "Failed to set devices.allow on %s: %m", path);
4ad49000 459
b9839ac9
LP
460 return 0;
461 }
8e274523
LP
462}
463
084c7007 464static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
90060676 465 _cleanup_fclose_ FILE *f = NULL;
084c7007 466 char *p, *w;
90060676
LP
467 bool good = false;
468 int r;
469
470 assert(path);
471 assert(acc);
4c701096 472 assert(IN_SET(type, 'b', 'c'));
90060676
LP
473
474 f = fopen("/proc/devices", "re");
4a62c710
MS
475 if (!f)
476 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
90060676 477
c66e60a8
LP
478 for (;;) {
479 _cleanup_free_ char *line = NULL;
90060676
LP
480 unsigned maj;
481
c66e60a8
LP
482 r = read_line(f, LONG_LINE_MAX, &line);
483 if (r < 0)
484 return log_warning_errno(r, "Failed to read /proc/devices: %m");
485 if (r == 0)
486 break;
90060676
LP
487
488 if (type == 'c' && streq(line, "Character devices:")) {
489 good = true;
490 continue;
491 }
492
493 if (type == 'b' && streq(line, "Block devices:")) {
494 good = true;
495 continue;
496 }
497
498 if (isempty(line)) {
499 good = false;
500 continue;
501 }
502
503 if (!good)
504 continue;
505
506 p = strstrip(line);
507
508 w = strpbrk(p, WHITESPACE);
509 if (!w)
510 continue;
511 *w = 0;
512
513 r = safe_atou(p, &maj);
514 if (r < 0)
515 continue;
516 if (maj <= 0)
517 continue;
518
519 w++;
520 w += strspn(w, WHITESPACE);
e41969e3
LP
521
522 if (fnmatch(name, w, 0) != 0)
90060676
LP
523 continue;
524
084c7007
RG
525 if (cg_all_unified() > 0) {
526 if (!prog)
527 continue;
90060676 528
913c898c
LP
529 (void) cgroup_bpf_whitelist_major(prog,
530 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
531 maj, acc);
084c7007
RG
532 } else {
533 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
534
535 sprintf(buf,
536 "%c %u:* %s",
537 type,
538 maj,
539 acc);
540
8c838407
LP
541 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
542 * here. */
543
084c7007
RG
544 r = cg_set_attribute("devices", path, "devices.allow", buf);
545 if (r < 0)
2c74e12b 546 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
084c7007
RG
547 r, "Failed to set devices.allow on %s: %m", path);
548 }
90060676
LP
549 }
550
551 return 0;
90060676
LP
552}
553
66ebf6c0
TH
554static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
555 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
556 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
557}
558
559static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
560 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
561 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
562}
563
564static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
565 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
566 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
567 return c->startup_cpu_weight;
568 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
569 return c->cpu_weight;
570 else
571 return CGROUP_WEIGHT_DEFAULT;
572}
573
574static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
575 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
576 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
577 return c->startup_cpu_shares;
578 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
579 return c->cpu_shares;
580 else
581 return CGROUP_CPU_SHARES_DEFAULT;
582}
583
584static void cgroup_apply_unified_cpu_config(Unit *u, uint64_t weight, uint64_t quota) {
585 char buf[MAX(DECIMAL_STR_MAX(uint64_t) + 1, (DECIMAL_STR_MAX(usec_t) + 1) * 2)];
66ebf6c0
TH
586
587 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 588 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
66ebf6c0
TH
589
590 if (quota != USEC_INFINITY)
591 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
592 quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC, CGROUP_CPU_QUOTA_PERIOD_USEC);
593 else
594 xsprintf(buf, "max " USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
595
293d32df 596 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
66ebf6c0
TH
597}
598
599static void cgroup_apply_legacy_cpu_config(Unit *u, uint64_t shares, uint64_t quota) {
600 char buf[MAX(DECIMAL_STR_MAX(uint64_t), DECIMAL_STR_MAX(usec_t)) + 1];
66ebf6c0
TH
601
602 xsprintf(buf, "%" PRIu64 "\n", shares);
293d32df 603 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
66ebf6c0
TH
604
605 xsprintf(buf, USEC_FMT "\n", CGROUP_CPU_QUOTA_PERIOD_USEC);
293d32df 606 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
66ebf6c0
TH
607
608 if (quota != USEC_INFINITY) {
609 xsprintf(buf, USEC_FMT "\n", quota * CGROUP_CPU_QUOTA_PERIOD_USEC / USEC_PER_SEC);
293d32df 610 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
66ebf6c0 611 } else
589a5f7a 612 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
66ebf6c0
TH
613}
614
615static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
616 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
617 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
618}
619
620static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
621 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
622 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
623}
624
508c45da 625static bool cgroup_context_has_io_config(CGroupContext *c) {
538b4852
TH
626 return c->io_accounting ||
627 c->io_weight != CGROUP_WEIGHT_INVALID ||
628 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
629 c->io_device_weights ||
6ae4283c 630 c->io_device_latencies ||
538b4852
TH
631 c->io_device_limits;
632}
633
508c45da 634static bool cgroup_context_has_blockio_config(CGroupContext *c) {
538b4852
TH
635 return c->blockio_accounting ||
636 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
637 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
638 c->blockio_device_weights ||
639 c->blockio_device_bandwidths;
640}
641
508c45da 642static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
643 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
644 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
645 return c->startup_io_weight;
646 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
647 return c->io_weight;
648 else
649 return CGROUP_WEIGHT_DEFAULT;
650}
651
508c45da 652static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
653 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
654 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
655 return c->startup_blockio_weight;
656 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
657 return c->blockio_weight;
658 else
659 return CGROUP_BLKIO_WEIGHT_DEFAULT;
660}
661
508c45da 662static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
538b4852
TH
663 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
664 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
665}
666
508c45da 667static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
538b4852
TH
668 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
669 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
670}
671
f29ff115 672static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
64faf04c
TH
673 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
674 dev_t dev;
675 int r;
676
677 r = lookup_block_device(dev_path, &dev);
678 if (r < 0)
679 return;
680
681 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
293d32df 682 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
64faf04c
TH
683}
684
f29ff115 685static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
64faf04c
TH
686 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
687 dev_t dev;
688 int r;
689
690 r = lookup_block_device(dev_path, &dev);
691 if (r < 0)
692 return;
693
694 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
293d32df 695 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
64faf04c
TH
696}
697
6ae4283c
TH
698static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
699 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
700 dev_t dev;
701 int r;
702
703 r = lookup_block_device(dev_path, &dev);
704 if (r < 0)
705 return;
706
707 if (target != USEC_INFINITY)
708 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
709 else
710 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
711
293d32df 712 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
6ae4283c
TH
713}
714
17ae2780 715static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
64faf04c
TH
716 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
717 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
718 CGroupIOLimitType type;
719 dev_t dev;
64faf04c
TH
720 int r;
721
722 r = lookup_block_device(dev_path, &dev);
723 if (r < 0)
17ae2780 724 return;
64faf04c 725
17ae2780
LP
726 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
727 if (limits[type] != cgroup_io_limit_defaults[type])
64faf04c 728 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
17ae2780 729 else
64faf04c 730 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
64faf04c
TH
731
732 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
733 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
734 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
293d32df 735 (void) set_attribute_and_warn(u, "io", "io.max", buf);
64faf04c
TH
736}
737
17ae2780 738static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
64faf04c
TH
739 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
740 dev_t dev;
64faf04c
TH
741 int r;
742
743 r = lookup_block_device(dev_path, &dev);
744 if (r < 0)
17ae2780 745 return;
64faf04c 746
64faf04c 747 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
293d32df 748 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
64faf04c 749
64faf04c 750 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
293d32df 751 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
64faf04c
TH
752}
753
da4d897e 754static bool cgroup_context_has_unified_memory_config(CGroupContext *c) {
48422635 755 return c->memory_min > 0 || c->memory_low > 0 || c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX || c->memory_swap_max != CGROUP_LIMIT_MAX;
da4d897e
TH
756}
757
f29ff115 758static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
589a5f7a 759 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
da4d897e
TH
760
761 if (v != CGROUP_LIMIT_MAX)
762 xsprintf(buf, "%" PRIu64 "\n", v);
763
293d32df 764 (void) set_attribute_and_warn(u, "memory", file, buf);
da4d897e
TH
765}
766
0f2d84d2 767static void cgroup_apply_firewall(Unit *u) {
0f2d84d2
LP
768 assert(u);
769
acf7f253 770 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
906c06f6 771
acf7f253 772 if (bpf_firewall_compile(u) < 0)
906c06f6
DM
773 return;
774
775 (void) bpf_firewall_install(u);
906c06f6
DM
776}
777
778static void cgroup_context_apply(
779 Unit *u,
780 CGroupMask apply_mask,
906c06f6
DM
781 ManagerState state) {
782
f29ff115
TH
783 const char *path;
784 CGroupContext *c;
01efdf13 785 bool is_root;
4ad49000
LP
786 int r;
787
f29ff115
TH
788 assert(u);
789
906c06f6 790 /* Nothing to do? Exit early! */
17f14955 791 if (apply_mask == 0)
4ad49000 792 return;
8e274523 793
f3725e64 794 /* Some cgroup attributes are not supported on the root cgroup, hence silently ignore */
611c4f8a 795 is_root = unit_has_host_root_cgroup(u);
f3725e64
LP
796
797 assert_se(c = unit_get_cgroup_context(u));
798 assert_se(path = u->cgroup_path);
799
800 if (is_root) /* Make sure we don't try to display messages with an empty path. */
6da13913 801 path = "/";
01efdf13 802
714e2e1d
LP
803 /* We generally ignore errors caused by read-only mounted
804 * cgroup trees (assuming we are running in a container then),
805 * and missing cgroups, i.e. EROFS and ENOENT. */
806
906c06f6
DM
807 if ((apply_mask & CGROUP_MASK_CPU) && !is_root) {
808 bool has_weight, has_shares;
809
810 has_weight = cgroup_context_has_cpu_weight(c);
811 has_shares = cgroup_context_has_cpu_shares(c);
8e274523 812
b4cccbc1 813 if (cg_all_unified() > 0) {
66ebf6c0 814 uint64_t weight;
b2f8b02e 815
66ebf6c0
TH
816 if (has_weight)
817 weight = cgroup_context_cpu_weight(c, state);
818 else if (has_shares) {
819 uint64_t shares = cgroup_context_cpu_shares(c, state);
b2f8b02e 820
66ebf6c0
TH
821 weight = cgroup_cpu_shares_to_weight(shares);
822
8d33dca2 823 log_cgroup_compat(u, "Applying [Startup]CPUShares %" PRIu64 " as [Startup]CPUWeight %" PRIu64 " on %s",
66ebf6c0
TH
824 shares, weight, path);
825 } else
826 weight = CGROUP_WEIGHT_DEFAULT;
827
828 cgroup_apply_unified_cpu_config(u, weight, c->cpu_quota_per_sec_usec);
829 } else {
830 uint64_t shares;
831
7d862ab8 832 if (has_weight) {
66ebf6c0
TH
833 uint64_t weight = cgroup_context_cpu_weight(c, state);
834
835 shares = cgroup_cpu_weight_to_shares(weight);
836
8d33dca2 837 log_cgroup_compat(u, "Applying [Startup]CPUWeight %" PRIu64 " as [Startup]CPUShares %" PRIu64 " on %s",
66ebf6c0 838 weight, shares, path);
7d862ab8
TH
839 } else if (has_shares)
840 shares = cgroup_context_cpu_shares(c, state);
841 else
66ebf6c0
TH
842 shares = CGROUP_CPU_SHARES_DEFAULT;
843
844 cgroup_apply_legacy_cpu_config(u, shares, c->cpu_quota_per_sec_usec);
845 }
4ad49000
LP
846 }
847
906c06f6 848 if (apply_mask & CGROUP_MASK_IO) {
538b4852
TH
849 bool has_io = cgroup_context_has_io_config(c);
850 bool has_blockio = cgroup_context_has_blockio_config(c);
13c31542
TH
851
852 if (!is_root) {
64faf04c
TH
853 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
854 uint64_t weight;
13c31542 855
538b4852
TH
856 if (has_io)
857 weight = cgroup_context_io_weight(c, state);
128fadc9
TH
858 else if (has_blockio) {
859 uint64_t blkio_weight = cgroup_context_blkio_weight(c, state);
860
861 weight = cgroup_weight_blkio_to_io(blkio_weight);
862
863 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight %" PRIu64 " as [Startup]IOWeight %" PRIu64,
864 blkio_weight, weight);
865 } else
538b4852 866 weight = CGROUP_WEIGHT_DEFAULT;
13c31542
TH
867
868 xsprintf(buf, "default %" PRIu64 "\n", weight);
293d32df 869 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
13c31542 870
538b4852
TH
871 if (has_io) {
872 CGroupIODeviceWeight *w;
873
538b4852 874 LIST_FOREACH(device_weights, w, c->io_device_weights)
f29ff115 875 cgroup_apply_io_device_weight(u, w->path, w->weight);
538b4852
TH
876 } else if (has_blockio) {
877 CGroupBlockIODeviceWeight *w;
878
128fadc9
TH
879 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
880 weight = cgroup_weight_blkio_to_io(w->weight);
881
882 log_cgroup_compat(u, "Applying BlockIODeviceWeight %" PRIu64 " as IODeviceWeight %" PRIu64 " for %s",
883 w->weight, weight, w->path);
884
885 cgroup_apply_io_device_weight(u, w->path, weight);
886 }
538b4852 887 }
6ae4283c
TH
888
889 if (has_io) {
890 CGroupIODeviceLatency *l;
891
892 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
893 cgroup_apply_io_device_latency(u, l->path, l->target_usec);
894 }
13c31542
TH
895 }
896
538b4852 897 if (has_io) {
17ae2780
LP
898 CGroupIODeviceLimit *l;
899
900 LIST_FOREACH(device_limits, l, c->io_device_limits)
901 cgroup_apply_io_device_limit(u, l->path, l->limits);
538b4852 902
538b4852 903 } else if (has_blockio) {
17ae2780 904 CGroupBlockIODeviceBandwidth *b;
538b4852 905
17ae2780 906 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
538b4852
TH
907 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
908 CGroupIOLimitType type;
909
910 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
911 limits[type] = cgroup_io_limit_defaults[type];
912
913 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
914 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
915
128fadc9
TH
916 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax for %s",
917 b->rbps, b->wbps, b->path);
918
17ae2780 919 cgroup_apply_io_device_limit(u, b->path, limits);
538b4852 920 }
13c31542
TH
921 }
922 }
923
906c06f6 924 if (apply_mask & CGROUP_MASK_BLKIO) {
538b4852
TH
925 bool has_io = cgroup_context_has_io_config(c);
926 bool has_blockio = cgroup_context_has_blockio_config(c);
4ad49000 927
01efdf13 928 if (!is_root) {
64faf04c
TH
929 char buf[DECIMAL_STR_MAX(uint64_t)+1];
930 uint64_t weight;
64faf04c 931
7d862ab8 932 if (has_io) {
128fadc9
TH
933 uint64_t io_weight = cgroup_context_io_weight(c, state);
934
538b4852 935 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
128fadc9
TH
936
937 log_cgroup_compat(u, "Applying [Startup]IOWeight %" PRIu64 " as [Startup]BlockIOWeight %" PRIu64,
938 io_weight, weight);
7d862ab8
TH
939 } else if (has_blockio)
940 weight = cgroup_context_blkio_weight(c, state);
941 else
538b4852 942 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
64faf04c
TH
943
944 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 945 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
4ad49000 946
7d862ab8 947 if (has_io) {
538b4852
TH
948 CGroupIODeviceWeight *w;
949
128fadc9
TH
950 LIST_FOREACH(device_weights, w, c->io_device_weights) {
951 weight = cgroup_weight_io_to_blkio(w->weight);
952
953 log_cgroup_compat(u, "Applying IODeviceWeight %" PRIu64 " as BlockIODeviceWeight %" PRIu64 " for %s",
954 w->weight, weight, w->path);
955
956 cgroup_apply_blkio_device_weight(u, w->path, weight);
957 }
7d862ab8
TH
958 } else if (has_blockio) {
959 CGroupBlockIODeviceWeight *w;
960
7d862ab8
TH
961 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
962 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
538b4852 963 }
4ad49000
LP
964 }
965
7d862ab8 966 if (has_io) {
17ae2780 967 CGroupIODeviceLimit *l;
538b4852 968
17ae2780 969 LIST_FOREACH(device_limits, l, c->io_device_limits) {
128fadc9
TH
970 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth %" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax for %s",
971 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
972
17ae2780 973 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
538b4852 974 }
7d862ab8 975 } else if (has_blockio) {
17ae2780 976 CGroupBlockIODeviceBandwidth *b;
7d862ab8 977
17ae2780
LP
978 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
979 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
d686d8a9 980 }
8e274523
LP
981 }
982
906c06f6 983 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_root) {
b4cccbc1
LP
984 if (cg_all_unified() > 0) {
985 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
efdb0237 986
96e131ea 987 if (cgroup_context_has_unified_memory_config(c)) {
da4d897e 988 max = c->memory_max;
96e131ea
WC
989 swap_max = c->memory_swap_max;
990 } else {
da4d897e 991 max = c->memory_limit;
efdb0237 992
128fadc9 993 if (max != CGROUP_LIMIT_MAX)
73fe5314 994 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
128fadc9
TH
995 }
996
48422635 997 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
f29ff115
TH
998 cgroup_apply_unified_memory_limit(u, "memory.low", c->memory_low);
999 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1000 cgroup_apply_unified_memory_limit(u, "memory.max", max);
96e131ea 1001 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
efdb0237 1002 } else {
da4d897e 1003 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
7d862ab8 1004 uint64_t val;
da4d897e 1005
7d862ab8 1006 if (cgroup_context_has_unified_memory_config(c)) {
78a4ee59 1007 val = c->memory_max;
73fe5314 1008 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
7d862ab8
TH
1009 } else
1010 val = c->memory_limit;
128fadc9 1011
78a4ee59
DM
1012 if (val == CGROUP_LIMIT_MAX)
1013 strncpy(buf, "-1\n", sizeof(buf));
1014 else
1015 xsprintf(buf, "%" PRIu64 "\n", val);
1016
293d32df 1017 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
da4d897e 1018 }
4ad49000 1019 }
8e274523 1020
084c7007
RG
1021 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) && !is_root) {
1022 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
4ad49000 1023 CGroupDeviceAllow *a;
8e274523 1024
084c7007
RG
1025 if (cg_all_unified() > 0) {
1026 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1027 if (r < 0)
1028 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1029 } else {
8c838407 1030 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
084c7007 1031 * here. */
714e2e1d 1032
084c7007
RG
1033 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1034 r = cg_set_attribute("devices", path, "devices.deny", "a");
1035 else
1036 r = cg_set_attribute("devices", path, "devices.allow", "a");
1037 if (r < 0)
2c74e12b
LP
1038 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1039 "Failed to reset devices.allow/devices.deny: %m");
084c7007 1040 }
fb385181 1041
4ad49000
LP
1042 if (c->device_policy == CGROUP_CLOSED ||
1043 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1044 static const char auto_devices[] =
7d711efb
LP
1045 "/dev/null\0" "rwm\0"
1046 "/dev/zero\0" "rwm\0"
1047 "/dev/full\0" "rwm\0"
1048 "/dev/random\0" "rwm\0"
1049 "/dev/urandom\0" "rwm\0"
1050 "/dev/tty\0" "rwm\0"
5a7f87a9 1051 "/dev/ptmx\0" "rwm\0"
0d9e7991 1052 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
e7330dfe
DP
1053 "-/run/systemd/inaccessible/chr\0" "rwm\0"
1054 "-/run/systemd/inaccessible/blk\0" "rwm\0";
4ad49000
LP
1055
1056 const char *x, *y;
1057
1058 NULSTR_FOREACH_PAIR(x, y, auto_devices)
913c898c 1059 (void) whitelist_device(prog, path, x, y);
7d711efb 1060
5a7f87a9 1061 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
913c898c 1062 (void) whitelist_major(prog, path, "pts", 'c', "rw");
4ad49000
LP
1063 }
1064
1065 LIST_FOREACH(device_allow, a, c->device_allow) {
fb4650aa 1066 char acc[4], *val;
4ad49000
LP
1067 unsigned k = 0;
1068
1069 if (a->r)
1070 acc[k++] = 'r';
1071 if (a->w)
1072 acc[k++] = 'w';
1073 if (a->m)
1074 acc[k++] = 'm';
fb385181 1075
4ad49000
LP
1076 if (k == 0)
1077 continue;
fb385181 1078
4ad49000 1079 acc[k++] = 0;
90060676 1080
27458ed6 1081 if (path_startswith(a->path, "/dev/"))
913c898c 1082 (void) whitelist_device(prog, path, a->path, acc);
fb4650aa 1083 else if ((val = startswith(a->path, "block-")))
913c898c 1084 (void) whitelist_major(prog, path, val, 'b', acc);
fb4650aa 1085 else if ((val = startswith(a->path, "char-")))
913c898c 1086 (void) whitelist_major(prog, path, val, 'c', acc);
90060676 1087 else
f29ff115 1088 log_unit_debug(u, "Ignoring device %s while writing cgroup attribute.", a->path);
4ad49000 1089 }
084c7007
RG
1090
1091 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1092 if (r < 0) {
1093 static bool warned = false;
1094
1095 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1096 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1097 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1098 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1099
1100 warned = true;
1101 }
4ad49000 1102 }
03a7b521 1103
00b5974f
LP
1104 if (apply_mask & CGROUP_MASK_PIDS) {
1105
1106 if (is_root) {
1107 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1108 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1109 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1110 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1111 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1112 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1113 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1114 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1115 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1116 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1117 * which is desirable so that there's an offical way to release control of the sysctl from
1118 * systemd: set the limit to unbounded and reload. */
1119
1120 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1121 u->manager->sysctl_pid_max_changed = true;
1122 r = procfs_tasks_set_limit(c->tasks_max);
1123 } else if (u->manager->sysctl_pid_max_changed)
1124 r = procfs_tasks_set_limit(TASKS_MAX);
1125 else
1126 r = 0;
03a7b521 1127
00b5974f 1128 if (r < 0)
39b9fefb 1129 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
00b5974f 1130 "Failed to write to tasks limit sysctls: %m");
03a7b521 1131
00b5974f
LP
1132 } else {
1133 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1134 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
03a7b521 1135
00b5974f 1136 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
293d32df 1137 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
00b5974f 1138 } else
589a5f7a 1139 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
00b5974f 1140 }
03a7b521 1141 }
906c06f6 1142
17f14955 1143 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
0f2d84d2 1144 cgroup_apply_firewall(u);
fb385181
LP
1145}
1146
efdb0237
LP
1147CGroupMask cgroup_context_get_mask(CGroupContext *c) {
1148 CGroupMask mask = 0;
8e274523 1149
fae9bc29 1150 /* Figure out which controllers we need, based on the cgroup context object */
8e274523 1151
fae9bc29 1152 if (c->cpu_accounting)
f98c2585 1153 mask |= get_cpu_accounting_mask();
fae9bc29
LP
1154
1155 if (cgroup_context_has_cpu_weight(c) ||
66ebf6c0 1156 cgroup_context_has_cpu_shares(c) ||
3a43da28 1157 c->cpu_quota_per_sec_usec != USEC_INFINITY)
fae9bc29 1158 mask |= CGROUP_MASK_CPU;
ecedd90f 1159
538b4852
TH
1160 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1161 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
ecedd90f 1162
4ad49000 1163 if (c->memory_accounting ||
da4d897e
TH
1164 c->memory_limit != CGROUP_LIMIT_MAX ||
1165 cgroup_context_has_unified_memory_config(c))
efdb0237 1166 mask |= CGROUP_MASK_MEMORY;
8e274523 1167
a931ad47
LP
1168 if (c->device_allow ||
1169 c->device_policy != CGROUP_AUTO)
084c7007 1170 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
4ad49000 1171
03a7b521 1172 if (c->tasks_accounting ||
8793fa25 1173 c->tasks_max != CGROUP_LIMIT_MAX)
03a7b521
LP
1174 mask |= CGROUP_MASK_PIDS;
1175
fae9bc29 1176 return CGROUP_MASK_EXTEND_JOINED(mask);
8e274523
LP
1177}
1178
17f14955
RG
1179CGroupMask unit_get_bpf_mask(Unit *u) {
1180 CGroupMask mask = 0;
1181
fae9bc29
LP
1182 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1183 * too. */
1184
17f14955
RG
1185 if (unit_get_needs_bpf_firewall(u))
1186 mask |= CGROUP_MASK_BPF_FIREWALL;
1187
1188 return mask;
1189}
1190
efdb0237 1191CGroupMask unit_get_own_mask(Unit *u) {
4ad49000 1192 CGroupContext *c;
8e274523 1193
efdb0237
LP
1194 /* Returns the mask of controllers the unit needs for itself */
1195
4ad49000
LP
1196 c = unit_get_cgroup_context(u);
1197 if (!c)
1198 return 0;
8e274523 1199
17f14955 1200 return cgroup_context_get_mask(c) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
02638280
LP
1201}
1202
1203CGroupMask unit_get_delegate_mask(Unit *u) {
1204 CGroupContext *c;
1205
1206 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1207 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
19af675e 1208 *
02638280 1209 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
a931ad47 1210
1d9cc876 1211 if (!unit_cgroup_delegate(u))
02638280
LP
1212 return 0;
1213
1214 if (cg_all_unified() <= 0) {
a931ad47
LP
1215 ExecContext *e;
1216
1217 e = unit_get_exec_context(u);
02638280
LP
1218 if (e && !exec_context_maintains_privileges(e))
1219 return 0;
a931ad47
LP
1220 }
1221
1d9cc876 1222 assert_se(c = unit_get_cgroup_context(u));
fae9bc29 1223 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
8e274523
LP
1224}
1225
efdb0237 1226CGroupMask unit_get_members_mask(Unit *u) {
4ad49000 1227 assert(u);
bc432dc7 1228
02638280 1229 /* Returns the mask of controllers all of the unit's children require, merged */
efdb0237 1230
bc432dc7
LP
1231 if (u->cgroup_members_mask_valid)
1232 return u->cgroup_members_mask;
1233
64e844e5 1234 u->cgroup_members_mask = 0;
bc432dc7
LP
1235
1236 if (u->type == UNIT_SLICE) {
eef85c4a 1237 void *v;
bc432dc7
LP
1238 Unit *member;
1239 Iterator i;
1240
eef85c4a 1241 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
bc432dc7
LP
1242
1243 if (member == u)
1244 continue;
1245
d4fdc205 1246 if (UNIT_DEREF(member->slice) != u)
bc432dc7
LP
1247 continue;
1248
31604970 1249 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
bc432dc7
LP
1250 }
1251 }
1252
1253 u->cgroup_members_mask_valid = true;
6414b7c9 1254 return u->cgroup_members_mask;
246aa6dd
LP
1255}
1256
efdb0237 1257CGroupMask unit_get_siblings_mask(Unit *u) {
4ad49000 1258 assert(u);
246aa6dd 1259
efdb0237
LP
1260 /* Returns the mask of controllers all of the unit's siblings
1261 * require, i.e. the members mask of the unit's parent slice
1262 * if there is one. */
1263
bc432dc7 1264 if (UNIT_ISSET(u->slice))
637f421e 1265 return unit_get_members_mask(UNIT_DEREF(u->slice));
4ad49000 1266
64e844e5 1267 return unit_get_subtree_mask(u); /* we are the top-level slice */
246aa6dd
LP
1268}
1269
efdb0237
LP
1270CGroupMask unit_get_subtree_mask(Unit *u) {
1271
1272 /* Returns the mask of this subtree, meaning of the group
1273 * itself and its children. */
1274
1275 return unit_get_own_mask(u) | unit_get_members_mask(u);
1276}
1277
1278CGroupMask unit_get_target_mask(Unit *u) {
1279 CGroupMask mask;
1280
1281 /* This returns the cgroup mask of all controllers to enable
1282 * for a specific cgroup, i.e. everything it needs itself,
1283 * plus all that its children need, plus all that its siblings
1284 * need. This is primarily useful on the legacy cgroup
1285 * hierarchy, where we need to duplicate each cgroup in each
1286 * hierarchy that shall be enabled for it. */
6414b7c9 1287
efdb0237
LP
1288 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1289 mask &= u->manager->cgroup_supported;
1290
1291 return mask;
1292}
1293
1294CGroupMask unit_get_enable_mask(Unit *u) {
1295 CGroupMask mask;
1296
1297 /* This returns the cgroup mask of all controllers to enable
1298 * for the children of a specific cgroup. This is primarily
1299 * useful for the unified cgroup hierarchy, where each cgroup
1300 * controls which controllers are enabled for its children. */
1301
1302 mask = unit_get_members_mask(u);
6414b7c9
DS
1303 mask &= u->manager->cgroup_supported;
1304
1305 return mask;
1306}
1307
17f14955 1308bool unit_get_needs_bpf_firewall(Unit *u) {
906c06f6
DM
1309 CGroupContext *c;
1310 Unit *p;
1311 assert(u);
1312
906c06f6
DM
1313 c = unit_get_cgroup_context(u);
1314 if (!c)
1315 return false;
1316
1317 if (c->ip_accounting ||
1318 c->ip_address_allow ||
1319 c->ip_address_deny)
1320 return true;
1321
1322 /* If any parent slice has an IP access list defined, it applies too */
1323 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1324 c = unit_get_cgroup_context(p);
1325 if (!c)
1326 return false;
1327
1328 if (c->ip_address_allow ||
1329 c->ip_address_deny)
1330 return true;
1331 }
1332
1333 return false;
1334}
1335
6414b7c9
DS
1336/* Recurse from a unit up through its containing slices, propagating
1337 * mask bits upward. A unit is also member of itself. */
bc432dc7 1338void unit_update_cgroup_members_masks(Unit *u) {
efdb0237 1339 CGroupMask m;
bc432dc7
LP
1340 bool more;
1341
1342 assert(u);
1343
1344 /* Calculate subtree mask */
efdb0237 1345 m = unit_get_subtree_mask(u);
bc432dc7
LP
1346
1347 /* See if anything changed from the previous invocation. If
1348 * not, we're done. */
1349 if (u->cgroup_subtree_mask_valid && m == u->cgroup_subtree_mask)
1350 return;
1351
1352 more =
1353 u->cgroup_subtree_mask_valid &&
1354 ((m & ~u->cgroup_subtree_mask) != 0) &&
1355 ((~m & u->cgroup_subtree_mask) == 0);
1356
1357 u->cgroup_subtree_mask = m;
1358 u->cgroup_subtree_mask_valid = true;
1359
6414b7c9
DS
1360 if (UNIT_ISSET(u->slice)) {
1361 Unit *s = UNIT_DEREF(u->slice);
bc432dc7
LP
1362
1363 if (more)
1364 /* There's more set now than before. We
1365 * propagate the new mask to the parent's mask
1366 * (not caring if it actually was valid or
1367 * not). */
1368
1369 s->cgroup_members_mask |= m;
1370
1371 else
1372 /* There's less set now than before (or we
1373 * don't know), we need to recalculate
1374 * everything, so let's invalidate the
1375 * parent's members mask */
1376
1377 s->cgroup_members_mask_valid = false;
1378
1379 /* And now make sure that this change also hits our
1380 * grandparents */
1381 unit_update_cgroup_members_masks(s);
6414b7c9
DS
1382 }
1383}
1384
6592b975 1385const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
03b90d4b 1386
6592b975 1387 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
03b90d4b
LP
1388
1389 while (u) {
6592b975 1390
03b90d4b
LP
1391 if (u->cgroup_path &&
1392 u->cgroup_realized &&
d94a24ca 1393 FLAGS_SET(u->cgroup_realized_mask, mask))
03b90d4b
LP
1394 return u->cgroup_path;
1395
1396 u = UNIT_DEREF(u->slice);
1397 }
1398
1399 return NULL;
1400}
1401
6592b975
LP
1402static const char *migrate_callback(CGroupMask mask, void *userdata) {
1403 return unit_get_realized_cgroup_path(userdata, mask);
1404}
1405
efdb0237
LP
1406char *unit_default_cgroup_path(Unit *u) {
1407 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1408 int r;
1409
1410 assert(u);
1411
1412 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1413 return strdup(u->manager->cgroup_root);
1414
1415 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1416 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1417 if (r < 0)
1418 return NULL;
1419 }
1420
1421 escaped = cg_escape(u->id);
1422 if (!escaped)
1423 return NULL;
1424
1425 if (slice)
605405c6
ZJS
1426 return strjoin(u->manager->cgroup_root, "/", slice, "/",
1427 escaped);
efdb0237 1428 else
605405c6 1429 return strjoin(u->manager->cgroup_root, "/", escaped);
efdb0237
LP
1430}
1431
1432int unit_set_cgroup_path(Unit *u, const char *path) {
1433 _cleanup_free_ char *p = NULL;
1434 int r;
1435
1436 assert(u);
1437
1438 if (path) {
1439 p = strdup(path);
1440 if (!p)
1441 return -ENOMEM;
1442 } else
1443 p = NULL;
1444
1445 if (streq_ptr(u->cgroup_path, p))
1446 return 0;
1447
1448 if (p) {
1449 r = hashmap_put(u->manager->cgroup_unit, p, u);
1450 if (r < 0)
1451 return r;
1452 }
1453
1454 unit_release_cgroup(u);
1455
ae2a15bc 1456 u->cgroup_path = TAKE_PTR(p);
efdb0237
LP
1457
1458 return 1;
1459}
1460
1461int unit_watch_cgroup(Unit *u) {
ab2c3861 1462 _cleanup_free_ char *events = NULL;
efdb0237
LP
1463 int r;
1464
1465 assert(u);
1466
1467 if (!u->cgroup_path)
1468 return 0;
1469
1470 if (u->cgroup_inotify_wd >= 0)
1471 return 0;
1472
1473 /* Only applies to the unified hierarchy */
c22800e4 1474 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
1475 if (r < 0)
1476 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1477 if (r == 0)
efdb0237
LP
1478 return 0;
1479
1480 /* Don't watch the root slice, it's pointless. */
1481 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1482 return 0;
1483
1484 r = hashmap_ensure_allocated(&u->manager->cgroup_inotify_wd_unit, &trivial_hash_ops);
1485 if (r < 0)
1486 return log_oom();
1487
ab2c3861 1488 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
efdb0237
LP
1489 if (r < 0)
1490 return log_oom();
1491
ab2c3861 1492 u->cgroup_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
efdb0237
LP
1493 if (u->cgroup_inotify_wd < 0) {
1494
1495 if (errno == ENOENT) /* If the directory is already
1496 * gone we don't need to track
1497 * it, so this is not an error */
1498 return 0;
1499
1500 return log_unit_error_errno(u, errno, "Failed to add inotify watch descriptor for control group %s: %m", u->cgroup_path);
1501 }
1502
1503 r = hashmap_put(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd), u);
1504 if (r < 0)
1505 return log_unit_error_errno(u, r, "Failed to add inotify watch descriptor to hash map: %m");
1506
1507 return 0;
1508}
1509
a4634b21
LP
1510int unit_pick_cgroup_path(Unit *u) {
1511 _cleanup_free_ char *path = NULL;
1512 int r;
1513
1514 assert(u);
1515
1516 if (u->cgroup_path)
1517 return 0;
1518
1519 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1520 return -EINVAL;
1521
1522 path = unit_default_cgroup_path(u);
1523 if (!path)
1524 return log_oom();
1525
1526 r = unit_set_cgroup_path(u, path);
1527 if (r == -EEXIST)
1528 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1529 if (r < 0)
1530 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1531
1532 return 0;
1533}
1534
efdb0237
LP
1535static int unit_create_cgroup(
1536 Unit *u,
1537 CGroupMask target_mask,
17f14955 1538 CGroupMask enable_mask) {
efdb0237 1539
0cd385d3 1540 CGroupContext *c;
bc432dc7 1541 int r;
65be7e06 1542 bool created;
64747e2d 1543
4ad49000 1544 assert(u);
64747e2d 1545
0cd385d3
LP
1546 c = unit_get_cgroup_context(u);
1547 if (!c)
1548 return 0;
1549
a4634b21
LP
1550 /* Figure out our cgroup path */
1551 r = unit_pick_cgroup_path(u);
1552 if (r < 0)
1553 return r;
b58b8e11 1554
03b90d4b 1555 /* First, create our own group */
efdb0237 1556 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
23bbb0de 1557 if (r < 0)
efdb0237 1558 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
490c5a37 1559 created = r;
efdb0237
LP
1560
1561 /* Start watching it */
1562 (void) unit_watch_cgroup(u);
1563
65be7e06
ZJS
1564 /* Preserve enabled controllers in delegated units, adjust others. */
1565 if (created || !unit_cgroup_delegate(u)) {
1566
1567 /* Enable all controllers we need */
1568 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path);
1569 if (r < 0)
1570 log_unit_warning_errno(u, r, "Failed to enable controllers on cgroup %s, ignoring: %m",
1571 u->cgroup_path);
1572 }
03b90d4b
LP
1573
1574 /* Keep track that this is now realized */
4ad49000 1575 u->cgroup_realized = true;
efdb0237 1576 u->cgroup_realized_mask = target_mask;
ccf78df1 1577 u->cgroup_enabled_mask = enable_mask;
4ad49000 1578
1d9cc876 1579 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
0cd385d3
LP
1580
1581 /* Then, possibly move things over, but not if
1582 * subgroups may contain processes, which is the case
1583 * for slice and delegation units. */
1584 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1585 if (r < 0)
efdb0237 1586 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
0cd385d3 1587 }
03b90d4b 1588
64747e2d
LP
1589 return 0;
1590}
1591
6592b975
LP
1592static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1593 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1594 char *pp;
7b3fd631 1595 int r;
6592b975 1596
7b3fd631
LP
1597 assert(u);
1598
6592b975
LP
1599 if (MANAGER_IS_SYSTEM(u->manager))
1600 return -EINVAL;
1601
1602 if (!u->manager->system_bus)
1603 return -EIO;
1604
1605 if (!u->cgroup_path)
1606 return -EINVAL;
1607
1608 /* Determine this unit's cgroup path relative to our cgroup root */
1609 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1610 if (!pp)
1611 return -EINVAL;
1612
1613 pp = strjoina("/", pp, suffix_path);
858d36c1 1614 path_simplify(pp, false);
6592b975
LP
1615
1616 r = sd_bus_call_method(u->manager->system_bus,
1617 "org.freedesktop.systemd1",
1618 "/org/freedesktop/systemd1",
1619 "org.freedesktop.systemd1.Manager",
1620 "AttachProcessesToUnit",
1621 &error, NULL,
1622 "ssau",
1623 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
7b3fd631 1624 if (r < 0)
6592b975
LP
1625 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1626
1627 return 0;
1628}
1629
1630int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1631 CGroupMask delegated_mask;
1632 const char *p;
1633 Iterator i;
1634 void *pidp;
1635 int r, q;
1636
1637 assert(u);
1638
1639 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1640 return -EINVAL;
1641
1642 if (set_isempty(pids))
1643 return 0;
7b3fd631 1644
6592b975 1645 r = unit_realize_cgroup(u);
7b3fd631
LP
1646 if (r < 0)
1647 return r;
1648
6592b975
LP
1649 if (isempty(suffix_path))
1650 p = u->cgroup_path;
1651 else
1652 p = strjoina(u->cgroup_path, "/", suffix_path);
1653
1654 delegated_mask = unit_get_delegate_mask(u);
1655
1656 r = 0;
1657 SET_FOREACH(pidp, pids, i) {
1658 pid_t pid = PTR_TO_PID(pidp);
1659 CGroupController c;
1660
1661 /* First, attach the PID to the main cgroup hierarchy */
1662 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1663 if (q < 0) {
1664 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1665
1666 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1667 int z;
1668
1669 /* If we are in a user instance, and we can't move the process ourselves due to
1670 * permission problems, let's ask the system instance about it instead. Since it's more
1671 * privileged it might be able to move the process across the leaves of a subtree who's
1672 * top node is not owned by us. */
1673
1674 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1675 if (z < 0)
1676 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1677 else
1678 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1679 }
1680
1681 if (r >= 0)
1682 r = q; /* Remember first error */
1683
1684 continue;
1685 }
1686
1687 q = cg_all_unified();
1688 if (q < 0)
1689 return q;
1690 if (q > 0)
1691 continue;
1692
1693 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1694 * innermost realized one */
1695
1696 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1697 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1698 const char *realized;
1699
1700 if (!(u->manager->cgroup_supported & bit))
1701 continue;
1702
1703 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
1704 if (delegated_mask & u->cgroup_realized_mask & bit) {
1705 q = cg_attach(cgroup_controller_to_string(c), p, pid);
1706 if (q >= 0)
1707 continue; /* Success! */
1708
1709 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
1710 pid, p, cgroup_controller_to_string(c));
1711 }
1712
1713 /* So this controller is either not delegate or realized, or something else weird happened. In
1714 * that case let's attach the PID at least to the closest cgroup up the tree that is
1715 * realized. */
1716 realized = unit_get_realized_cgroup_path(u, bit);
1717 if (!realized)
1718 continue; /* Not even realized in the root slice? Then let's not bother */
1719
1720 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
1721 if (q < 0)
1722 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
1723 pid, realized, cgroup_controller_to_string(c));
1724 }
1725 }
1726
1727 return r;
7b3fd631
LP
1728}
1729
4b58153d
LP
1730static void cgroup_xattr_apply(Unit *u) {
1731 char ids[SD_ID128_STRING_MAX];
1732 int r;
1733
1734 assert(u);
1735
1736 if (!MANAGER_IS_SYSTEM(u->manager))
1737 return;
1738
1739 if (sd_id128_is_null(u->invocation_id))
1740 return;
1741
1742 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
1743 "trusted.invocation_id",
1744 sd_id128_to_string(u->invocation_id, ids), 32,
1745 0);
1746 if (r < 0)
0fb84499 1747 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
4b58153d
LP
1748}
1749
906c06f6
DM
1750static bool unit_has_mask_realized(
1751 Unit *u,
1752 CGroupMask target_mask,
17f14955 1753 CGroupMask enable_mask) {
906c06f6 1754
bc432dc7
LP
1755 assert(u);
1756
906c06f6
DM
1757 return u->cgroup_realized &&
1758 u->cgroup_realized_mask == target_mask &&
1759 u->cgroup_enabled_mask == enable_mask &&
17f14955 1760 u->cgroup_invalidated_mask == 0;
6414b7c9
DS
1761}
1762
2aa57a65
LP
1763static void unit_add_to_cgroup_realize_queue(Unit *u) {
1764 assert(u);
1765
1766 if (u->in_cgroup_realize_queue)
1767 return;
1768
1769 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1770 u->in_cgroup_realize_queue = true;
1771}
1772
1773static void unit_remove_from_cgroup_realize_queue(Unit *u) {
1774 assert(u);
1775
1776 if (!u->in_cgroup_realize_queue)
1777 return;
1778
1779 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
1780 u->in_cgroup_realize_queue = false;
1781}
1782
6414b7c9
DS
1783/* Check if necessary controllers and attributes for a unit are in place.
1784 *
1785 * If so, do nothing.
1786 * If not, create paths, move processes over, and set attributes.
1787 *
1788 * Returns 0 on success and < 0 on failure. */
db785129 1789static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
efdb0237 1790 CGroupMask target_mask, enable_mask;
6414b7c9 1791 int r;
64747e2d 1792
4ad49000 1793 assert(u);
64747e2d 1794
2aa57a65 1795 unit_remove_from_cgroup_realize_queue(u);
64747e2d 1796
efdb0237 1797 target_mask = unit_get_target_mask(u);
ccf78df1
TH
1798 enable_mask = unit_get_enable_mask(u);
1799
17f14955 1800 if (unit_has_mask_realized(u, target_mask, enable_mask))
0a1eb06d 1801 return 0;
64747e2d 1802
4ad49000 1803 /* First, realize parents */
6414b7c9 1804 if (UNIT_ISSET(u->slice)) {
db785129 1805 r = unit_realize_cgroup_now(UNIT_DEREF(u->slice), state);
6414b7c9
DS
1806 if (r < 0)
1807 return r;
1808 }
4ad49000
LP
1809
1810 /* And then do the real work */
17f14955 1811 r = unit_create_cgroup(u, target_mask, enable_mask);
6414b7c9
DS
1812 if (r < 0)
1813 return r;
1814
1815 /* Finally, apply the necessary attributes. */
17f14955 1816 cgroup_context_apply(u, target_mask, state);
4b58153d 1817 cgroup_xattr_apply(u);
6414b7c9 1818
c2baf11c
LP
1819 /* Now, reset the invalidation mask */
1820 u->cgroup_invalidated_mask = 0;
6414b7c9 1821 return 0;
64747e2d
LP
1822}
1823
91a6073e 1824unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
db785129 1825 ManagerState state;
4ad49000 1826 unsigned n = 0;
db785129 1827 Unit *i;
6414b7c9 1828 int r;
ecedd90f 1829
91a6073e
LP
1830 assert(m);
1831
db785129
LP
1832 state = manager_state(m);
1833
91a6073e
LP
1834 while ((i = m->cgroup_realize_queue)) {
1835 assert(i->in_cgroup_realize_queue);
ecedd90f 1836
2aa57a65
LP
1837 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
1838 /* Maybe things changed, and the unit is not actually active anymore? */
1839 unit_remove_from_cgroup_realize_queue(i);
1840 continue;
1841 }
1842
db785129 1843 r = unit_realize_cgroup_now(i, state);
6414b7c9 1844 if (r < 0)
efdb0237 1845 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
0a1eb06d 1846
4ad49000
LP
1847 n++;
1848 }
ecedd90f 1849
4ad49000 1850 return n;
8e274523
LP
1851}
1852
91a6073e 1853static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
4ad49000 1854 Unit *slice;
ca949c9d 1855
4ad49000
LP
1856 /* This adds the siblings of the specified unit and the
1857 * siblings of all parent units to the cgroup queue. (But
1858 * neither the specified unit itself nor the parents.) */
1859
1860 while ((slice = UNIT_DEREF(u->slice))) {
1861 Iterator i;
1862 Unit *m;
eef85c4a 1863 void *v;
8f53a7b8 1864
eef85c4a 1865 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
4ad49000
LP
1866 if (m == u)
1867 continue;
8e274523 1868
6414b7c9
DS
1869 /* Skip units that have a dependency on the slice
1870 * but aren't actually in it. */
4ad49000 1871 if (UNIT_DEREF(m->slice) != slice)
50159e6a 1872 continue;
8e274523 1873
6414b7c9
DS
1874 /* No point in doing cgroup application for units
1875 * without active processes. */
1876 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
1877 continue;
1878
1879 /* If the unit doesn't need any new controllers
1880 * and has current ones realized, it doesn't need
1881 * any changes. */
906c06f6
DM
1882 if (unit_has_mask_realized(m,
1883 unit_get_target_mask(m),
17f14955 1884 unit_get_enable_mask(m)))
6414b7c9
DS
1885 continue;
1886
91a6073e 1887 unit_add_to_cgroup_realize_queue(m);
50159e6a
LP
1888 }
1889
4ad49000 1890 u = slice;
8e274523 1891 }
4ad49000
LP
1892}
1893
0a1eb06d 1894int unit_realize_cgroup(Unit *u) {
4ad49000
LP
1895 assert(u);
1896
35b7ff80 1897 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0a1eb06d 1898 return 0;
8e274523 1899
4ad49000
LP
1900 /* So, here's the deal: when realizing the cgroups for this
1901 * unit, we need to first create all parents, but there's more
1902 * actually: for the weight-based controllers we also need to
1903 * make sure that all our siblings (i.e. units that are in the
73e231ab 1904 * same slice as we are) have cgroups, too. Otherwise, things
4ad49000
LP
1905 * would become very uneven as each of their processes would
1906 * get as much resources as all our group together. This call
1907 * will synchronously create the parent cgroups, but will
1908 * defer work on the siblings to the next event loop
1909 * iteration. */
ca949c9d 1910
4ad49000 1911 /* Add all sibling slices to the cgroup queue. */
91a6073e 1912 unit_add_siblings_to_cgroup_realize_queue(u);
4ad49000 1913
6414b7c9 1914 /* And realize this one now (and apply the values) */
db785129 1915 return unit_realize_cgroup_now(u, manager_state(u->manager));
8e274523
LP
1916}
1917
efdb0237
LP
1918void unit_release_cgroup(Unit *u) {
1919 assert(u);
1920
1921 /* Forgets all cgroup details for this cgroup */
1922
1923 if (u->cgroup_path) {
1924 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
1925 u->cgroup_path = mfree(u->cgroup_path);
1926 }
1927
1928 if (u->cgroup_inotify_wd >= 0) {
1929 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_inotify_wd) < 0)
5e1ee764 1930 log_unit_debug_errno(u, errno, "Failed to remove cgroup inotify watch %i for %s, ignoring: %m", u->cgroup_inotify_wd, u->id);
efdb0237
LP
1931
1932 (void) hashmap_remove(u->manager->cgroup_inotify_wd_unit, INT_TO_PTR(u->cgroup_inotify_wd));
1933 u->cgroup_inotify_wd = -1;
1934 }
1935}
1936
1937void unit_prune_cgroup(Unit *u) {
8e274523 1938 int r;
efdb0237 1939 bool is_root_slice;
8e274523 1940
4ad49000 1941 assert(u);
8e274523 1942
efdb0237
LP
1943 /* Removes the cgroup, if empty and possible, and stops watching it. */
1944
4ad49000
LP
1945 if (!u->cgroup_path)
1946 return;
8e274523 1947
fe700f46
LP
1948 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
1949
efdb0237
LP
1950 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
1951
1952 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
dab5bf85 1953 if (r < 0) {
f29ff115 1954 log_unit_debug_errno(u, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
dab5bf85
RL
1955 return;
1956 }
8e274523 1957
efdb0237
LP
1958 if (is_root_slice)
1959 return;
1960
1961 unit_release_cgroup(u);
0a1eb06d 1962
4ad49000 1963 u->cgroup_realized = false;
bc432dc7 1964 u->cgroup_realized_mask = 0;
ccf78df1 1965 u->cgroup_enabled_mask = 0;
084c7007
RG
1966
1967 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
8e274523
LP
1968}
1969
efdb0237 1970int unit_search_main_pid(Unit *u, pid_t *ret) {
4ad49000
LP
1971 _cleanup_fclose_ FILE *f = NULL;
1972 pid_t pid = 0, npid, mypid;
efdb0237 1973 int r;
4ad49000
LP
1974
1975 assert(u);
efdb0237 1976 assert(ret);
4ad49000
LP
1977
1978 if (!u->cgroup_path)
efdb0237 1979 return -ENXIO;
4ad49000 1980
efdb0237
LP
1981 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
1982 if (r < 0)
1983 return r;
4ad49000 1984
df0ff127 1985 mypid = getpid_cached();
4ad49000
LP
1986 while (cg_read_pid(f, &npid) > 0) {
1987 pid_t ppid;
1988
1989 if (npid == pid)
1990 continue;
8e274523 1991
4ad49000 1992 /* Ignore processes that aren't our kids */
6bc73acb 1993 if (get_process_ppid(npid, &ppid) >= 0 && ppid != mypid)
4ad49000 1994 continue;
8e274523 1995
efdb0237 1996 if (pid != 0)
4ad49000
LP
1997 /* Dang, there's more than one daemonized PID
1998 in this group, so we don't know what process
1999 is the main process. */
efdb0237
LP
2000
2001 return -ENODATA;
8e274523 2002
4ad49000 2003 pid = npid;
8e274523
LP
2004 }
2005
efdb0237
LP
2006 *ret = pid;
2007 return 0;
2008}
2009
2010static int unit_watch_pids_in_path(Unit *u, const char *path) {
b3c5bad3 2011 _cleanup_closedir_ DIR *d = NULL;
efdb0237
LP
2012 _cleanup_fclose_ FILE *f = NULL;
2013 int ret = 0, r;
2014
2015 assert(u);
2016 assert(path);
2017
2018 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2019 if (r < 0)
2020 ret = r;
2021 else {
2022 pid_t pid;
2023
2024 while ((r = cg_read_pid(f, &pid)) > 0) {
2025 r = unit_watch_pid(u, pid);
2026 if (r < 0 && ret >= 0)
2027 ret = r;
2028 }
2029
2030 if (r < 0 && ret >= 0)
2031 ret = r;
2032 }
2033
2034 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2035 if (r < 0) {
2036 if (ret >= 0)
2037 ret = r;
2038 } else {
2039 char *fn;
2040
2041 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2042 _cleanup_free_ char *p = NULL;
2043
605405c6 2044 p = strjoin(path, "/", fn);
efdb0237
LP
2045 free(fn);
2046
2047 if (!p)
2048 return -ENOMEM;
2049
2050 r = unit_watch_pids_in_path(u, p);
2051 if (r < 0 && ret >= 0)
2052 ret = r;
2053 }
2054
2055 if (r < 0 && ret >= 0)
2056 ret = r;
2057 }
2058
2059 return ret;
2060}
2061
11aef522
LP
2062int unit_synthesize_cgroup_empty_event(Unit *u) {
2063 int r;
2064
2065 assert(u);
2066
2067 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2068 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2069 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2070
2071 if (!u->cgroup_path)
2072 return -ENOENT;
2073
2074 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2075 if (r < 0)
2076 return r;
2077 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2078 return 0;
2079
2080 if (!set_isempty(u->pids))
2081 return 0;
2082
2083 unit_add_to_cgroup_empty_queue(u);
2084 return 0;
2085}
2086
efdb0237 2087int unit_watch_all_pids(Unit *u) {
b4cccbc1
LP
2088 int r;
2089
efdb0237
LP
2090 assert(u);
2091
2092 /* Adds all PIDs from our cgroup to the set of PIDs we
2093 * watch. This is a fallback logic for cases where we do not
2094 * get reliable cgroup empty notifications: we try to use
2095 * SIGCHLD as replacement. */
2096
2097 if (!u->cgroup_path)
2098 return -ENOENT;
2099
c22800e4 2100 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2101 if (r < 0)
2102 return r;
2103 if (r > 0) /* On unified we can use proper notifications */
efdb0237
LP
2104 return 0;
2105
2106 return unit_watch_pids_in_path(u, u->cgroup_path);
2107}
2108
09e24654
LP
2109static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2110 Manager *m = userdata;
2111 Unit *u;
efdb0237
LP
2112 int r;
2113
09e24654
LP
2114 assert(s);
2115 assert(m);
efdb0237 2116
09e24654
LP
2117 u = m->cgroup_empty_queue;
2118 if (!u)
efdb0237
LP
2119 return 0;
2120
09e24654
LP
2121 assert(u->in_cgroup_empty_queue);
2122 u->in_cgroup_empty_queue = false;
2123 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2124
2125 if (m->cgroup_empty_queue) {
2126 /* More stuff queued, let's make sure we remain enabled */
2127 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2128 if (r < 0)
19a691a9 2129 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
09e24654 2130 }
efdb0237
LP
2131
2132 unit_add_to_gc_queue(u);
2133
2134 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2135 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2136
2137 return 0;
2138}
2139
09e24654
LP
2140void unit_add_to_cgroup_empty_queue(Unit *u) {
2141 int r;
2142
2143 assert(u);
2144
2145 /* Note that there are four different ways how cgroup empty events reach us:
2146 *
2147 * 1. On the unified hierarchy we get an inotify event on the cgroup
2148 *
2149 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2150 *
2151 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2152 *
2153 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2154 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2155 *
2156 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2157 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2158 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2159 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2160 * case for scope units). */
2161
2162 if (u->in_cgroup_empty_queue)
2163 return;
2164
2165 /* Let's verify that the cgroup is really empty */
2166 if (!u->cgroup_path)
2167 return;
2168 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2169 if (r < 0) {
2170 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2171 return;
2172 }
2173 if (r == 0)
2174 return;
2175
2176 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2177 u->in_cgroup_empty_queue = true;
2178
2179 /* Trigger the defer event */
2180 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2181 if (r < 0)
2182 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2183}
2184
efdb0237
LP
2185static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2186 Manager *m = userdata;
2187
2188 assert(s);
2189 assert(fd >= 0);
2190 assert(m);
2191
2192 for (;;) {
2193 union inotify_event_buffer buffer;
2194 struct inotify_event *e;
2195 ssize_t l;
2196
2197 l = read(fd, &buffer, sizeof(buffer));
2198 if (l < 0) {
47249640 2199 if (IN_SET(errno, EINTR, EAGAIN))
efdb0237
LP
2200 return 0;
2201
2202 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2203 }
2204
2205 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2206 Unit *u;
2207
2208 if (e->wd < 0)
2209 /* Queue overflow has no watch descriptor */
2210 continue;
2211
2212 if (e->mask & IN_IGNORED)
2213 /* The watch was just removed */
2214 continue;
2215
2216 u = hashmap_get(m->cgroup_inotify_wd_unit, INT_TO_PTR(e->wd));
2217 if (!u) /* Not that inotify might deliver
2218 * events for a watch even after it
2219 * was removed, because it was queued
2220 * before the removal. Let's ignore
2221 * this here safely. */
2222 continue;
2223
09e24654 2224 unit_add_to_cgroup_empty_queue(u);
efdb0237
LP
2225 }
2226 }
8e274523
LP
2227}
2228
17f14955
RG
2229static int cg_bpf_mask_supported(CGroupMask *ret) {
2230 CGroupMask mask = 0;
2231 int r;
2232
2233 /* BPF-based firewall */
2234 r = bpf_firewall_supported();
2235 if (r > 0)
2236 mask |= CGROUP_MASK_BPF_FIREWALL;
2237
084c7007
RG
2238 /* BPF-based device access control */
2239 r = bpf_devices_supported();
2240 if (r > 0)
2241 mask |= CGROUP_MASK_BPF_DEVICES;
2242
17f14955
RG
2243 *ret = mask;
2244 return 0;
2245}
2246
8e274523 2247int manager_setup_cgroup(Manager *m) {
9444b1f2 2248 _cleanup_free_ char *path = NULL;
10bd3e2e 2249 const char *scope_path;
efdb0237 2250 CGroupController c;
b4cccbc1 2251 int r, all_unified;
17f14955 2252 CGroupMask mask;
efdb0237 2253 char *e;
8e274523
LP
2254
2255 assert(m);
2256
35d2e7ec 2257 /* 1. Determine hierarchy */
efdb0237 2258 m->cgroup_root = mfree(m->cgroup_root);
9444b1f2 2259 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
23bbb0de
MS
2260 if (r < 0)
2261 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
8e274523 2262
efdb0237
LP
2263 /* Chop off the init scope, if we are already located in it */
2264 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
0d8c31ff 2265
efdb0237
LP
2266 /* LEGACY: Also chop off the system slice if we are in
2267 * it. This is to support live upgrades from older systemd
2268 * versions where PID 1 was moved there. Also see
2269 * cg_get_root_path(). */
463d0d15 2270 if (!e && MANAGER_IS_SYSTEM(m)) {
9444b1f2 2271 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
15c60e99 2272 if (!e)
efdb0237 2273 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
0baf24dd 2274 }
efdb0237
LP
2275 if (e)
2276 *e = 0;
7ccfb64a 2277
7546145e
LP
2278 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2279 * easily prepend it everywhere. */
2280 delete_trailing_chars(m->cgroup_root, "/");
8e274523 2281
35d2e7ec 2282 /* 2. Show data */
9444b1f2 2283 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
23bbb0de
MS
2284 if (r < 0)
2285 return log_error_errno(r, "Cannot find cgroup mount point: %m");
8e274523 2286
415fc41c
TH
2287 r = cg_unified_flush();
2288 if (r < 0)
2289 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
5da38d07 2290
b4cccbc1 2291 all_unified = cg_all_unified();
d4c819ed
ZJS
2292 if (all_unified < 0)
2293 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2294 if (all_unified > 0)
efdb0237 2295 log_debug("Unified cgroup hierarchy is located at %s.", path);
b4cccbc1 2296 else {
c22800e4 2297 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2298 if (r < 0)
2299 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2300 if (r > 0)
2301 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2302 else
2303 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2304 }
efdb0237 2305
09e24654
LP
2306 /* 3. Allocate cgroup empty defer event source */
2307 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2308 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2309 if (r < 0)
2310 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2311
2312 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2313 if (r < 0)
2314 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2315
2316 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2317 if (r < 0)
2318 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2319
2320 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2321
2322 /* 4. Install notifier inotify object, or agent */
10bd3e2e 2323 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
c6c18be3 2324
09e24654 2325 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
efdb0237 2326
10bd3e2e
LP
2327 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2328 safe_close(m->cgroup_inotify_fd);
efdb0237 2329
10bd3e2e
LP
2330 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2331 if (m->cgroup_inotify_fd < 0)
2332 return log_error_errno(errno, "Failed to create control group inotify object: %m");
efdb0237 2333
10bd3e2e
LP
2334 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2335 if (r < 0)
2336 return log_error_errno(r, "Failed to watch control group inotify object: %m");
efdb0237 2337
10bd3e2e
LP
2338 /* Process cgroup empty notifications early, but after service notifications and SIGCHLD. Also
2339 * see handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
09e24654 2340 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-4);
10bd3e2e
LP
2341 if (r < 0)
2342 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
efdb0237 2343
10bd3e2e 2344 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
efdb0237 2345
611c4f8a 2346 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
efdb0237 2347
10bd3e2e
LP
2348 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2349 * since it does not generate events when control groups with children run empty. */
8e274523 2350
10bd3e2e 2351 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
23bbb0de 2352 if (r < 0)
10bd3e2e
LP
2353 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2354 else if (r > 0)
2355 log_debug("Installed release agent.");
2356 else if (r == 0)
2357 log_debug("Release agent already installed.");
2358 }
efdb0237 2359
09e24654 2360 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
10bd3e2e
LP
2361 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2362 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
aa77e234
MS
2363 if (r >= 0) {
2364 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2365 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2366 if (r < 0)
2367 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
c6c18be3 2368
aa77e234
MS
2369 /* 6. And pin it, so that it cannot be unmounted */
2370 safe_close(m->pin_cgroupfs_fd);
2371 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2372 if (m->pin_cgroupfs_fd < 0)
2373 return log_error_errno(errno, "Failed to open pin file: %m");
0d8c31ff 2374
638cece4 2375 } else if (!MANAGER_IS_TEST_RUN(m))
aa77e234 2376 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
10bd3e2e 2377
09e24654 2378 /* 7. Always enable hierarchical support if it exists... */
638cece4 2379 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
10bd3e2e 2380 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
c6c18be3 2381
17f14955 2382 /* 8. Figure out which controllers are supported */
efdb0237
LP
2383 r = cg_mask_supported(&m->cgroup_supported);
2384 if (r < 0)
2385 return log_error_errno(r, "Failed to determine supported controllers: %m");
17f14955
RG
2386
2387 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2388 r = cg_bpf_mask_supported(&mask);
2389 if (r < 0)
2390 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2391 m->cgroup_supported |= mask;
2392
2393 /* 10. Log which controllers are supported */
efdb0237 2394 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
eee0a1e4 2395 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
9156e799 2396
a32360f1 2397 return 0;
8e274523
LP
2398}
2399
c6c18be3 2400void manager_shutdown_cgroup(Manager *m, bool delete) {
8e274523
LP
2401 assert(m);
2402
9444b1f2
LP
2403 /* We can't really delete the group, since we are in it. But
2404 * let's trim it. */
f6c63f6f 2405 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
efdb0237
LP
2406 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2407
09e24654
LP
2408 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2409
efdb0237
LP
2410 m->cgroup_inotify_wd_unit = hashmap_free(m->cgroup_inotify_wd_unit);
2411
2412 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2413 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
8e274523 2414
03e334a1 2415 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
c6c18be3 2416
efdb0237 2417 m->cgroup_root = mfree(m->cgroup_root);
8e274523
LP
2418}
2419
4ad49000 2420Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
acb14d31 2421 char *p;
4ad49000 2422 Unit *u;
acb14d31
LP
2423
2424 assert(m);
2425 assert(cgroup);
acb14d31 2426
4ad49000
LP
2427 u = hashmap_get(m->cgroup_unit, cgroup);
2428 if (u)
2429 return u;
acb14d31 2430
8e70580b 2431 p = strdupa(cgroup);
acb14d31
LP
2432 for (;;) {
2433 char *e;
2434
2435 e = strrchr(p, '/');
efdb0237
LP
2436 if (!e || e == p)
2437 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
acb14d31
LP
2438
2439 *e = 0;
2440
4ad49000
LP
2441 u = hashmap_get(m->cgroup_unit, p);
2442 if (u)
2443 return u;
acb14d31
LP
2444 }
2445}
2446
b3ac818b 2447Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
4ad49000 2448 _cleanup_free_ char *cgroup = NULL;
8e274523 2449
8c47c732
LP
2450 assert(m);
2451
62a76913 2452 if (!pid_is_valid(pid))
b3ac818b
LP
2453 return NULL;
2454
62a76913 2455 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
b3ac818b
LP
2456 return NULL;
2457
2458 return manager_get_unit_by_cgroup(m, cgroup);
2459}
2460
2461Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
62a76913 2462 Unit *u, **array;
b3ac818b
LP
2463
2464 assert(m);
2465
62a76913
LP
2466 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
2467 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
2468 * relevant one as children of the process will be assigned to that one, too, before all else. */
2469
2470 if (!pid_is_valid(pid))
8c47c732
LP
2471 return NULL;
2472
2ca9d979 2473 if (pid == getpid_cached())
efdb0237
LP
2474 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
2475
62a76913 2476 u = manager_get_unit_by_pid_cgroup(m, pid);
5fe8876b
LP
2477 if (u)
2478 return u;
2479
62a76913 2480 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
5fe8876b
LP
2481 if (u)
2482 return u;
2483
62a76913
LP
2484 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
2485 if (array)
2486 return array[0];
2487
2488 return NULL;
6dde1f33 2489}
4fbf50b3 2490
4ad49000
LP
2491int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
2492 Unit *u;
4fbf50b3 2493
4ad49000
LP
2494 assert(m);
2495 assert(cgroup);
4fbf50b3 2496
09e24654
LP
2497 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
2498 * or from the --system instance */
2499
d8fdc620
LP
2500 log_debug("Got cgroup empty notification for: %s", cgroup);
2501
4ad49000 2502 u = manager_get_unit_by_cgroup(m, cgroup);
5ad096b3
LP
2503 if (!u)
2504 return 0;
b56c28c3 2505
09e24654
LP
2506 unit_add_to_cgroup_empty_queue(u);
2507 return 1;
5ad096b3
LP
2508}
2509
2510int unit_get_memory_current(Unit *u, uint64_t *ret) {
2511 _cleanup_free_ char *v = NULL;
2512 int r;
2513
2514 assert(u);
2515 assert(ret);
2516
2e4025c0 2517 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
cf3b4be1
LP
2518 return -ENODATA;
2519
5ad096b3
LP
2520 if (!u->cgroup_path)
2521 return -ENODATA;
2522
1f73aa00 2523 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 2524 if (unit_has_host_root_cgroup(u))
1f73aa00
LP
2525 return procfs_memory_get_current(ret);
2526
efdb0237 2527 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
5ad096b3
LP
2528 return -ENODATA;
2529
b4cccbc1
LP
2530 r = cg_all_unified();
2531 if (r < 0)
2532 return r;
2533 if (r > 0)
efdb0237 2534 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
b4cccbc1
LP
2535 else
2536 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
5ad096b3
LP
2537 if (r == -ENOENT)
2538 return -ENODATA;
2539 if (r < 0)
2540 return r;
2541
2542 return safe_atou64(v, ret);
2543}
2544
03a7b521
LP
2545int unit_get_tasks_current(Unit *u, uint64_t *ret) {
2546 _cleanup_free_ char *v = NULL;
2547 int r;
2548
2549 assert(u);
2550 assert(ret);
2551
2e4025c0 2552 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
cf3b4be1
LP
2553 return -ENODATA;
2554
03a7b521
LP
2555 if (!u->cgroup_path)
2556 return -ENODATA;
2557
c36a69f4 2558 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 2559 if (unit_has_host_root_cgroup(u))
c36a69f4
LP
2560 return procfs_tasks_get_current(ret);
2561
1f73aa00
LP
2562 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
2563 return -ENODATA;
2564
03a7b521
LP
2565 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
2566 if (r == -ENOENT)
2567 return -ENODATA;
2568 if (r < 0)
2569 return r;
2570
2571 return safe_atou64(v, ret);
2572}
2573
5ad096b3
LP
2574static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
2575 _cleanup_free_ char *v = NULL;
2576 uint64_t ns;
2577 int r;
2578
2579 assert(u);
2580 assert(ret);
2581
2582 if (!u->cgroup_path)
2583 return -ENODATA;
2584
1f73aa00 2585 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 2586 if (unit_has_host_root_cgroup(u))
1f73aa00
LP
2587 return procfs_cpu_get_usage(ret);
2588
b4cccbc1
LP
2589 r = cg_all_unified();
2590 if (r < 0)
2591 return r;
f98c2585
CD
2592
2593 /* Requisite controllers for CPU accounting are not enabled */
2594 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
2595 return -ENODATA;
2596
b4cccbc1 2597 if (r > 0) {
66ebf6c0
TH
2598 _cleanup_free_ char *val = NULL;
2599 uint64_t us;
5ad096b3 2600
b734a4ff 2601 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
66ebf6c0
TH
2602 if (r < 0)
2603 return r;
b734a4ff
LP
2604 if (IN_SET(r, -ENOENT, -ENXIO))
2605 return -ENODATA;
66ebf6c0
TH
2606
2607 r = safe_atou64(val, &us);
2608 if (r < 0)
2609 return r;
2610
2611 ns = us * NSEC_PER_USEC;
2612 } else {
66ebf6c0
TH
2613 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
2614 if (r == -ENOENT)
2615 return -ENODATA;
2616 if (r < 0)
2617 return r;
2618
2619 r = safe_atou64(v, &ns);
2620 if (r < 0)
2621 return r;
2622 }
5ad096b3
LP
2623
2624 *ret = ns;
2625 return 0;
2626}
2627
2628int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
2629 nsec_t ns;
2630 int r;
2631
fe700f46
LP
2632 assert(u);
2633
2634 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
2635 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
2636 * call this function with a NULL return value. */
2637
2e4025c0 2638 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
cf3b4be1
LP
2639 return -ENODATA;
2640
5ad096b3 2641 r = unit_get_cpu_usage_raw(u, &ns);
fe700f46
LP
2642 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
2643 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
2644 * cached value. */
2645
2646 if (ret)
2647 *ret = u->cpu_usage_last;
2648 return 0;
2649 }
5ad096b3
LP
2650 if (r < 0)
2651 return r;
2652
66ebf6c0
TH
2653 if (ns > u->cpu_usage_base)
2654 ns -= u->cpu_usage_base;
5ad096b3
LP
2655 else
2656 ns = 0;
2657
fe700f46
LP
2658 u->cpu_usage_last = ns;
2659 if (ret)
2660 *ret = ns;
2661
5ad096b3
LP
2662 return 0;
2663}
2664
906c06f6
DM
2665int unit_get_ip_accounting(
2666 Unit *u,
2667 CGroupIPAccountingMetric metric,
2668 uint64_t *ret) {
2669
6b659ed8 2670 uint64_t value;
906c06f6
DM
2671 int fd, r;
2672
2673 assert(u);
2674 assert(metric >= 0);
2675 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
2676 assert(ret);
2677
2e4025c0 2678 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
cf3b4be1
LP
2679 return -ENODATA;
2680
906c06f6
DM
2681 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
2682 u->ip_accounting_ingress_map_fd :
2683 u->ip_accounting_egress_map_fd;
906c06f6
DM
2684 if (fd < 0)
2685 return -ENODATA;
2686
2687 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
6b659ed8 2688 r = bpf_firewall_read_accounting(fd, &value, NULL);
906c06f6 2689 else
6b659ed8
LP
2690 r = bpf_firewall_read_accounting(fd, NULL, &value);
2691 if (r < 0)
2692 return r;
2693
2694 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
2695 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
2696 * ip_accounting_extra[] field, and add them in here transparently. */
2697
2698 *ret = value + u->ip_accounting_extra[metric];
906c06f6
DM
2699
2700 return r;
2701}
2702
2703int unit_reset_cpu_accounting(Unit *u) {
5ad096b3
LP
2704 nsec_t ns;
2705 int r;
2706
2707 assert(u);
2708
fe700f46
LP
2709 u->cpu_usage_last = NSEC_INFINITY;
2710
5ad096b3
LP
2711 r = unit_get_cpu_usage_raw(u, &ns);
2712 if (r < 0) {
66ebf6c0 2713 u->cpu_usage_base = 0;
5ad096b3 2714 return r;
b56c28c3 2715 }
2633eb83 2716
66ebf6c0 2717 u->cpu_usage_base = ns;
4ad49000 2718 return 0;
4fbf50b3
LP
2719}
2720
906c06f6
DM
2721int unit_reset_ip_accounting(Unit *u) {
2722 int r = 0, q = 0;
2723
2724 assert(u);
2725
2726 if (u->ip_accounting_ingress_map_fd >= 0)
2727 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
2728
2729 if (u->ip_accounting_egress_map_fd >= 0)
2730 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
2731
6b659ed8
LP
2732 zero(u->ip_accounting_extra);
2733
906c06f6
DM
2734 return r < 0 ? r : q;
2735}
2736
e7ab4d1a
LP
2737void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
2738 assert(u);
2739
2740 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2741 return;
2742
2743 if (m == 0)
2744 return;
2745
538b4852
TH
2746 /* always invalidate compat pairs together */
2747 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
2748 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
2749
7cce4fb7
LP
2750 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
2751 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
2752
60c728ad 2753 if ((u->cgroup_realized_mask & m) == 0) /* NOP? */
e7ab4d1a
LP
2754 return;
2755
2756 u->cgroup_realized_mask &= ~m;
91a6073e 2757 unit_add_to_cgroup_realize_queue(u);
e7ab4d1a
LP
2758}
2759
906c06f6
DM
2760void unit_invalidate_cgroup_bpf(Unit *u) {
2761 assert(u);
2762
2763 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2764 return;
2765
17f14955 2766 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
906c06f6
DM
2767 return;
2768
17f14955 2769 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
91a6073e 2770 unit_add_to_cgroup_realize_queue(u);
906c06f6
DM
2771
2772 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
2773 * list of our children includes our own. */
2774 if (u->type == UNIT_SLICE) {
2775 Unit *member;
2776 Iterator i;
eef85c4a 2777 void *v;
906c06f6 2778
eef85c4a 2779 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
906c06f6
DM
2780 if (member == u)
2781 continue;
2782
2783 if (UNIT_DEREF(member->slice) != u)
2784 continue;
2785
2786 unit_invalidate_cgroup_bpf(member);
2787 }
2788 }
2789}
2790
1d9cc876
LP
2791bool unit_cgroup_delegate(Unit *u) {
2792 CGroupContext *c;
2793
2794 assert(u);
2795
2796 if (!UNIT_VTABLE(u)->can_delegate)
2797 return false;
2798
2799 c = unit_get_cgroup_context(u);
2800 if (!c)
2801 return false;
2802
2803 return c->delegate;
2804}
2805
e7ab4d1a
LP
2806void manager_invalidate_startup_units(Manager *m) {
2807 Iterator i;
2808 Unit *u;
2809
2810 assert(m);
2811
2812 SET_FOREACH(u, m->startup_units, i)
13c31542 2813 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
e7ab4d1a
LP
2814}
2815
4ad49000
LP
2816static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
2817 [CGROUP_AUTO] = "auto",
2818 [CGROUP_CLOSED] = "closed",
2819 [CGROUP_STRICT] = "strict",
2820};
4fbf50b3 2821
4ad49000 2822DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);