]> git.ipfire.org Git - thirdparty/hostap.git/blame - src/eap_peer/eap.c
Fixed a typo in a comment
[thirdparty/hostap.git] / src / eap_peer / eap.c
CommitLineData
6fc6879b
JM
1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
11 *
12 * See README and COPYING for more details.
13 *
14 * This file implements the Peer State Machine as defined in RFC 4137. The used
15 * states and state transitions match mostly with the RFC. However, there are
16 * couple of additional transitions for working around small issues noticed
17 * during testing. These exceptions are explained in comments within the
18 * functions in this file. The method functions, m.func(), are similar to the
19 * ones used in RFC 4137, but some small changes have used here to optimize
20 * operations and to add functionality needed for fast re-authentication
21 * (session resumption).
22 */
23
24#include "includes.h"
25
26#include "common.h"
27#include "eap_i.h"
28#include "eap_config.h"
29#include "tls.h"
30#include "crypto.h"
31#include "pcsc_funcs.h"
32#include "wpa_ctrl.h"
33#include "state_machine.h"
ad08c363 34#include "eap_common/eap_wsc_common.h"
6fc6879b
JM
35
36#define STATE_MACHINE_DATA struct eap_sm
37#define STATE_MACHINE_DEBUG_PREFIX "EAP"
38
39#define EAP_MAX_AUTH_ROUNDS 50
40
41
42static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
43 EapType method);
44static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
45static void eap_sm_processIdentity(struct eap_sm *sm,
46 const struct wpabuf *req);
47static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
48static struct wpabuf * eap_sm_buildNotify(int id);
49static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
50#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
51static const char * eap_sm_method_state_txt(EapMethodState state);
52static const char * eap_sm_decision_txt(EapDecision decision);
53#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
54
55
56
57static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
58{
59 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
60}
61
62
63static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
64 Boolean value)
65{
66 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
67}
68
69
70static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
71{
72 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
73}
74
75
76static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
77 unsigned int value)
78{
79 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
80}
81
82
83static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
84{
85 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
86}
87
88
89static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
90{
91 if (sm->m == NULL || sm->eap_method_priv == NULL)
92 return;
93
94 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
95 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
96 sm->m->deinit(sm, sm->eap_method_priv);
97 sm->eap_method_priv = NULL;
98 sm->m = NULL;
99}
100
101
102/**
103 * eap_allowed_method - Check whether EAP method is allowed
104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
105 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
106 * @method: EAP type
107 * Returns: 1 = allowed EAP method, 0 = not allowed
108 */
109static int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
110{
111 struct eap_peer_config *config = eap_get_config(sm);
112 int i;
113 struct eap_method_type *m;
114
115 if (config == NULL || config->eap_methods == NULL)
116 return 1;
117
118 m = config->eap_methods;
119 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
120 m[i].method != EAP_TYPE_NONE; i++) {
121 if (m[i].vendor == vendor && m[i].method == method)
122 return 1;
123 }
124 return 0;
125}
126
127
128/*
129 * This state initializes state machine variables when the machine is
130 * activated (portEnabled = TRUE). This is also used when re-starting
131 * authentication (eapRestart == TRUE).
132 */
133SM_STATE(EAP, INITIALIZE)
134{
135 SM_ENTRY(EAP, INITIALIZE);
136 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
137 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
138 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
139 "fast reauthentication");
140 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
141 } else {
142 eap_deinit_prev_method(sm, "INITIALIZE");
143 }
144 sm->selectedMethod = EAP_TYPE_NONE;
145 sm->methodState = METHOD_NONE;
146 sm->allowNotifications = TRUE;
147 sm->decision = DECISION_FAIL;
148 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
149 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
150 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
151 os_free(sm->eapKeyData);
152 sm->eapKeyData = NULL;
153 sm->eapKeyAvailable = FALSE;
154 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
155 sm->lastId = -1; /* new session - make sure this does not match with
156 * the first EAP-Packet */
157 /*
158 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
159 * seemed to be able to trigger cases where both were set and if EAPOL
160 * state machine uses eapNoResp first, it may end up not sending a real
161 * reply correctly. This occurred when the workaround in FAIL state set
162 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
163 * something else(?)
164 */
165 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
166 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
167 sm->num_rounds = 0;
168}
169
170
171/*
172 * This state is reached whenever service from the lower layer is interrupted
173 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
174 * occurs when the port becomes enabled.
175 */
176SM_STATE(EAP, DISABLED)
177{
178 SM_ENTRY(EAP, DISABLED);
179 sm->num_rounds = 0;
180}
181
182
183/*
184 * The state machine spends most of its time here, waiting for something to
185 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
186 * SEND_RESPONSE states.
187 */
188SM_STATE(EAP, IDLE)
189{
190 SM_ENTRY(EAP, IDLE);
191}
192
193
194/*
195 * This state is entered when an EAP packet is received (eapReq == TRUE) to
196 * parse the packet header.
197 */
198SM_STATE(EAP, RECEIVED)
199{
200 const struct wpabuf *eapReqData;
201
202 SM_ENTRY(EAP, RECEIVED);
203 eapReqData = eapol_get_eapReqData(sm);
204 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
205 eap_sm_parseEapReq(sm, eapReqData);
206 sm->num_rounds++;
207}
208
209
210/*
211 * This state is entered when a request for a new type comes in. Either the
212 * correct method is started, or a Nak response is built.
213 */
214SM_STATE(EAP, GET_METHOD)
215{
216 int reinit;
217 EapType method;
218
219 SM_ENTRY(EAP, GET_METHOD);
220
221 if (sm->reqMethod == EAP_TYPE_EXPANDED)
222 method = sm->reqVendorMethod;
223 else
224 method = sm->reqMethod;
225
226 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
227 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
228 sm->reqVendor, method);
229 goto nak;
230 }
231
232 /*
233 * RFC 4137 does not define specific operation for fast
234 * re-authentication (session resumption). The design here is to allow
235 * the previously used method data to be maintained for
236 * re-authentication if the method support session resumption.
237 * Otherwise, the previously used method data is freed and a new method
238 * is allocated here.
239 */
240 if (sm->fast_reauth &&
241 sm->m && sm->m->vendor == sm->reqVendor &&
242 sm->m->method == method &&
243 sm->m->has_reauth_data &&
244 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
245 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
246 " for fast re-authentication");
247 reinit = 1;
248 } else {
249 eap_deinit_prev_method(sm, "GET_METHOD");
250 reinit = 0;
251 }
252
253 sm->selectedMethod = sm->reqMethod;
254 if (sm->m == NULL)
255 sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
256 if (!sm->m) {
257 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
258 "vendor %d method %d",
259 sm->reqVendor, method);
260 goto nak;
261 }
262
263 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
264 "vendor %u method %u (%s)",
265 sm->reqVendor, method, sm->m->name);
266 if (reinit)
267 sm->eap_method_priv = sm->m->init_for_reauth(
268 sm, sm->eap_method_priv);
269 else
270 sm->eap_method_priv = sm->m->init(sm);
271
272 if (sm->eap_method_priv == NULL) {
273 struct eap_peer_config *config = eap_get_config(sm);
274 wpa_msg(sm->msg_ctx, MSG_INFO,
275 "EAP: Failed to initialize EAP method: vendor %u "
276 "method %u (%s)",
277 sm->reqVendor, method, sm->m->name);
278 sm->m = NULL;
279 sm->methodState = METHOD_NONE;
280 sm->selectedMethod = EAP_TYPE_NONE;
281 if (sm->reqMethod == EAP_TYPE_TLS && config &&
282 (config->pending_req_pin ||
283 config->pending_req_passphrase)) {
284 /*
285 * Return without generating Nak in order to allow
286 * entering of PIN code or passphrase to retry the
287 * current EAP packet.
288 */
289 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
290 "request - skip Nak");
291 return;
292 }
293
294 goto nak;
295 }
296
297 sm->methodState = METHOD_INIT;
298 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
299 "EAP vendor %u method %u (%s) selected",
300 sm->reqVendor, method, sm->m->name);
301 return;
302
303nak:
304 wpabuf_free(sm->eapRespData);
305 sm->eapRespData = NULL;
306 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
307}
308
309
310/*
311 * The method processing happens here. The request from the authenticator is
312 * processed, and an appropriate response packet is built.
313 */
314SM_STATE(EAP, METHOD)
315{
316 struct wpabuf *eapReqData;
317 struct eap_method_ret ret;
318
319 SM_ENTRY(EAP, METHOD);
320 if (sm->m == NULL) {
321 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
322 return;
323 }
324
325 eapReqData = eapol_get_eapReqData(sm);
326
327 /*
328 * Get ignore, methodState, decision, allowNotifications, and
329 * eapRespData. RFC 4137 uses three separate method procedure (check,
330 * process, and buildResp) in this state. These have been combined into
331 * a single function call to m->process() in order to optimize EAP
332 * method implementation interface a bit. These procedures are only
333 * used from within this METHOD state, so there is no need to keep
334 * these as separate C functions.
335 *
336 * The RFC 4137 procedures return values as follows:
337 * ignore = m.check(eapReqData)
338 * (methodState, decision, allowNotifications) = m.process(eapReqData)
339 * eapRespData = m.buildResp(reqId)
340 */
341 os_memset(&ret, 0, sizeof(ret));
342 ret.ignore = sm->ignore;
343 ret.methodState = sm->methodState;
344 ret.decision = sm->decision;
345 ret.allowNotifications = sm->allowNotifications;
346 wpabuf_free(sm->eapRespData);
347 sm->eapRespData = NULL;
348 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
349 eapReqData);
350 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
351 "methodState=%s decision=%s",
352 ret.ignore ? "TRUE" : "FALSE",
353 eap_sm_method_state_txt(ret.methodState),
354 eap_sm_decision_txt(ret.decision));
355
356 sm->ignore = ret.ignore;
357 if (sm->ignore)
358 return;
359 sm->methodState = ret.methodState;
360 sm->decision = ret.decision;
361 sm->allowNotifications = ret.allowNotifications;
362
363 if (sm->m->isKeyAvailable && sm->m->getKey &&
364 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
365 os_free(sm->eapKeyData);
366 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
367 &sm->eapKeyDataLen);
368 }
369}
370
371
372/*
373 * This state signals the lower layer that a response packet is ready to be
374 * sent.
375 */
376SM_STATE(EAP, SEND_RESPONSE)
377{
378 SM_ENTRY(EAP, SEND_RESPONSE);
379 wpabuf_free(sm->lastRespData);
380 if (sm->eapRespData) {
381 if (sm->workaround)
382 os_memcpy(sm->last_md5, sm->req_md5, 16);
383 sm->lastId = sm->reqId;
384 sm->lastRespData = wpabuf_dup(sm->eapRespData);
385 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
386 } else
387 sm->lastRespData = NULL;
388 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
389 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
390}
391
392
393/*
394 * This state signals the lower layer that the request was discarded, and no
395 * response packet will be sent at this time.
396 */
397SM_STATE(EAP, DISCARD)
398{
399 SM_ENTRY(EAP, DISCARD);
400 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
401 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
402}
403
404
405/*
406 * Handles requests for Identity method and builds a response.
407 */
408SM_STATE(EAP, IDENTITY)
409{
410 const struct wpabuf *eapReqData;
411
412 SM_ENTRY(EAP, IDENTITY);
413 eapReqData = eapol_get_eapReqData(sm);
414 eap_sm_processIdentity(sm, eapReqData);
415 wpabuf_free(sm->eapRespData);
416 sm->eapRespData = NULL;
417 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
418}
419
420
421/*
422 * Handles requests for Notification method and builds a response.
423 */
424SM_STATE(EAP, NOTIFICATION)
425{
426 const struct wpabuf *eapReqData;
427
428 SM_ENTRY(EAP, NOTIFICATION);
429 eapReqData = eapol_get_eapReqData(sm);
430 eap_sm_processNotify(sm, eapReqData);
431 wpabuf_free(sm->eapRespData);
432 sm->eapRespData = NULL;
433 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
434}
435
436
437/*
438 * This state retransmits the previous response packet.
439 */
440SM_STATE(EAP, RETRANSMIT)
441{
442 SM_ENTRY(EAP, RETRANSMIT);
443 wpabuf_free(sm->eapRespData);
444 if (sm->lastRespData)
445 sm->eapRespData = wpabuf_dup(sm->lastRespData);
446 else
447 sm->eapRespData = NULL;
448}
449
450
451/*
452 * This state is entered in case of a successful completion of authentication
453 * and state machine waits here until port is disabled or EAP authentication is
454 * restarted.
455 */
456SM_STATE(EAP, SUCCESS)
457{
458 SM_ENTRY(EAP, SUCCESS);
459 if (sm->eapKeyData != NULL)
460 sm->eapKeyAvailable = TRUE;
461 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
462
463 /*
464 * RFC 4137 does not clear eapReq here, but this seems to be required
465 * to avoid processing the same request twice when state machine is
466 * initialized.
467 */
468 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
469
470 /*
471 * RFC 4137 does not set eapNoResp here, but this seems to be required
472 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
473 * addition, either eapResp or eapNoResp is required to be set after
474 * processing the received EAP frame.
475 */
476 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
477
478 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
479 "EAP authentication completed successfully");
480}
481
482
483/*
484 * This state is entered in case of a failure and state machine waits here
485 * until port is disabled or EAP authentication is restarted.
486 */
487SM_STATE(EAP, FAILURE)
488{
489 SM_ENTRY(EAP, FAILURE);
490 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
491
492 /*
493 * RFC 4137 does not clear eapReq here, but this seems to be required
494 * to avoid processing the same request twice when state machine is
495 * initialized.
496 */
497 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
498
499 /*
500 * RFC 4137 does not set eapNoResp here. However, either eapResp or
501 * eapNoResp is required to be set after processing the received EAP
502 * frame.
503 */
504 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
505
506 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
507 "EAP authentication failed");
508}
509
510
511static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
512{
513 /*
514 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
515 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
516 * RFC 4137 require that reqId == lastId. In addition, it looks like
517 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
518 *
519 * Accept this kind of Id if EAP workarounds are enabled. These are
520 * unauthenticated plaintext messages, so this should have minimal
521 * security implications (bit easier to fake EAP-Success/Failure).
522 */
523 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
524 reqId == ((lastId + 2) & 0xff))) {
525 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
526 "identifier field in EAP Success: "
527 "reqId=%d lastId=%d (these are supposed to be "
528 "same)", reqId, lastId);
529 return 1;
530 }
531 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
532 "lastId=%d", reqId, lastId);
533 return 0;
534}
535
536
537/*
538 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
539 */
540
541static void eap_peer_sm_step_idle(struct eap_sm *sm)
542{
543 /*
544 * The first three transitions are from RFC 4137. The last two are
545 * local additions to handle special cases with LEAP and PEAP server
546 * not sending EAP-Success in some cases.
547 */
548 if (eapol_get_bool(sm, EAPOL_eapReq))
549 SM_ENTER(EAP, RECEIVED);
550 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
551 sm->decision != DECISION_FAIL) ||
552 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
553 sm->decision == DECISION_UNCOND_SUCC))
554 SM_ENTER(EAP, SUCCESS);
555 else if (eapol_get_bool(sm, EAPOL_altReject) ||
556 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
557 sm->decision != DECISION_UNCOND_SUCC) ||
558 (eapol_get_bool(sm, EAPOL_altAccept) &&
559 sm->methodState != METHOD_CONT &&
560 sm->decision == DECISION_FAIL))
561 SM_ENTER(EAP, FAILURE);
562 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
563 sm->leap_done && sm->decision != DECISION_FAIL &&
564 sm->methodState == METHOD_DONE)
565 SM_ENTER(EAP, SUCCESS);
566 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
567 sm->peap_done && sm->decision != DECISION_FAIL &&
568 sm->methodState == METHOD_DONE)
569 SM_ENTER(EAP, SUCCESS);
570}
571
572
573static int eap_peer_req_is_duplicate(struct eap_sm *sm)
574{
575 int duplicate;
576
577 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
578 if (sm->workaround && duplicate &&
579 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
580 /*
581 * RFC 4137 uses (reqId == lastId) as the only verification for
582 * duplicate EAP requests. However, this misses cases where the
583 * AS is incorrectly using the same id again; and
584 * unfortunately, such implementations exist. Use MD5 hash as
585 * an extra verification for the packets being duplicate to
586 * workaround these issues.
587 */
588 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
589 "EAP packets were not identical");
590 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
591 "duplicate packet");
592 duplicate = 0;
593 }
594
595 return duplicate;
596}
597
598
599static void eap_peer_sm_step_received(struct eap_sm *sm)
600{
601 int duplicate = eap_peer_req_is_duplicate(sm);
602
603 /*
604 * Two special cases below for LEAP are local additions to work around
605 * odd LEAP behavior (EAP-Success in the middle of authentication and
606 * then swapped roles). Other transitions are based on RFC 4137.
607 */
608 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
609 (sm->reqId == sm->lastId ||
610 eap_success_workaround(sm, sm->reqId, sm->lastId)))
611 SM_ENTER(EAP, SUCCESS);
612 else if (sm->methodState != METHOD_CONT &&
613 ((sm->rxFailure &&
614 sm->decision != DECISION_UNCOND_SUCC) ||
615 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
616 (sm->selectedMethod != EAP_TYPE_LEAP ||
617 sm->methodState != METHOD_MAY_CONT))) &&
618 (sm->reqId == sm->lastId ||
619 eap_success_workaround(sm, sm->reqId, sm->lastId)))
620 SM_ENTER(EAP, FAILURE);
621 else if (sm->rxReq && duplicate)
622 SM_ENTER(EAP, RETRANSMIT);
623 else if (sm->rxReq && !duplicate &&
624 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
625 sm->allowNotifications)
626 SM_ENTER(EAP, NOTIFICATION);
627 else if (sm->rxReq && !duplicate &&
628 sm->selectedMethod == EAP_TYPE_NONE &&
629 sm->reqMethod == EAP_TYPE_IDENTITY)
630 SM_ENTER(EAP, IDENTITY);
631 else if (sm->rxReq && !duplicate &&
632 sm->selectedMethod == EAP_TYPE_NONE &&
633 sm->reqMethod != EAP_TYPE_IDENTITY &&
634 sm->reqMethod != EAP_TYPE_NOTIFICATION)
635 SM_ENTER(EAP, GET_METHOD);
636 else if (sm->rxReq && !duplicate &&
637 sm->reqMethod == sm->selectedMethod &&
638 sm->methodState != METHOD_DONE)
639 SM_ENTER(EAP, METHOD);
640 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
641 (sm->rxSuccess || sm->rxResp))
642 SM_ENTER(EAP, METHOD);
643 else
644 SM_ENTER(EAP, DISCARD);
645}
646
647
648static void eap_peer_sm_step_local(struct eap_sm *sm)
649{
650 switch (sm->EAP_state) {
651 case EAP_INITIALIZE:
652 SM_ENTER(EAP, IDLE);
653 break;
654 case EAP_DISABLED:
655 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
656 !sm->force_disabled)
657 SM_ENTER(EAP, INITIALIZE);
658 break;
659 case EAP_IDLE:
660 eap_peer_sm_step_idle(sm);
661 break;
662 case EAP_RECEIVED:
663 eap_peer_sm_step_received(sm);
664 break;
665 case EAP_GET_METHOD:
666 if (sm->selectedMethod == sm->reqMethod)
667 SM_ENTER(EAP, METHOD);
668 else
669 SM_ENTER(EAP, SEND_RESPONSE);
670 break;
671 case EAP_METHOD:
672 if (sm->ignore)
673 SM_ENTER(EAP, DISCARD);
674 else
675 SM_ENTER(EAP, SEND_RESPONSE);
676 break;
677 case EAP_SEND_RESPONSE:
678 SM_ENTER(EAP, IDLE);
679 break;
680 case EAP_DISCARD:
681 SM_ENTER(EAP, IDLE);
682 break;
683 case EAP_IDENTITY:
684 SM_ENTER(EAP, SEND_RESPONSE);
685 break;
686 case EAP_NOTIFICATION:
687 SM_ENTER(EAP, SEND_RESPONSE);
688 break;
689 case EAP_RETRANSMIT:
690 SM_ENTER(EAP, SEND_RESPONSE);
691 break;
692 case EAP_SUCCESS:
693 break;
694 case EAP_FAILURE:
695 break;
696 }
697}
698
699
700SM_STEP(EAP)
701{
702 /* Global transitions */
703 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
704 eapol_get_bool(sm, EAPOL_portEnabled))
705 SM_ENTER_GLOBAL(EAP, INITIALIZE);
706 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
707 SM_ENTER_GLOBAL(EAP, DISABLED);
708 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
709 /* RFC 4137 does not place any limit on number of EAP messages
710 * in an authentication session. However, some error cases have
711 * ended up in a state were EAP messages were sent between the
712 * peer and server in a loop (e.g., TLS ACK frame in both
713 * direction). Since this is quite undesired outcome, limit the
714 * total number of EAP round-trips and abort authentication if
715 * this limit is exceeded.
716 */
717 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
718 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
719 "authentication rounds - abort",
720 EAP_MAX_AUTH_ROUNDS);
721 sm->num_rounds++;
722 SM_ENTER_GLOBAL(EAP, FAILURE);
723 }
724 } else {
725 /* Local transitions */
726 eap_peer_sm_step_local(sm);
727 }
728}
729
730
731static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
732 EapType method)
733{
734 if (!eap_allowed_method(sm, vendor, method)) {
735 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
736 "vendor %u method %u", vendor, method);
737 return FALSE;
738 }
739 if (eap_peer_get_eap_method(vendor, method))
740 return TRUE;
741 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
742 "vendor %u method %u", vendor, method);
743 return FALSE;
744}
745
746
747static struct wpabuf * eap_sm_build_expanded_nak(
748 struct eap_sm *sm, int id, const struct eap_method *methods,
749 size_t count)
750{
751 struct wpabuf *resp;
752 int found = 0;
753 const struct eap_method *m;
754
755 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
756
757 /* RFC 3748 - 5.3.2: Expanded Nak */
758 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
759 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
760 if (resp == NULL)
761 return NULL;
762
763 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
764 wpabuf_put_be32(resp, EAP_TYPE_NAK);
765
766 for (m = methods; m; m = m->next) {
767 if (sm->reqVendor == m->vendor &&
768 sm->reqVendorMethod == m->method)
769 continue; /* do not allow the current method again */
770 if (eap_allowed_method(sm, m->vendor, m->method)) {
771 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
772 "vendor=%u method=%u",
773 m->vendor, m->method);
774 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
775 wpabuf_put_be24(resp, m->vendor);
776 wpabuf_put_be32(resp, m->method);
777
778 found++;
779 }
780 }
781 if (!found) {
782 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
783 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
784 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
785 wpabuf_put_be32(resp, EAP_TYPE_NONE);
786 }
787
788 eap_update_len(resp);
789
790 return resp;
791}
792
793
794static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
795{
796 struct wpabuf *resp;
797 u8 *start;
798 int found = 0, expanded_found = 0;
799 size_t count;
800 const struct eap_method *methods, *m;
801
802 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
803 "vendor=%u method=%u not allowed)", sm->reqMethod,
804 sm->reqVendor, sm->reqVendorMethod);
805 methods = eap_peer_get_methods(&count);
806 if (methods == NULL)
807 return NULL;
808 if (sm->reqMethod == EAP_TYPE_EXPANDED)
809 return eap_sm_build_expanded_nak(sm, id, methods, count);
810
811 /* RFC 3748 - 5.3.1: Legacy Nak */
812 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
813 sizeof(struct eap_hdr) + 1 + count + 1,
814 EAP_CODE_RESPONSE, id);
815 if (resp == NULL)
816 return NULL;
817
818 start = wpabuf_put(resp, 0);
819 for (m = methods; m; m = m->next) {
820 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
821 continue; /* do not allow the current method again */
822 if (eap_allowed_method(sm, m->vendor, m->method)) {
823 if (m->vendor != EAP_VENDOR_IETF) {
824 if (expanded_found)
825 continue;
826 expanded_found = 1;
827 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
828 } else
829 wpabuf_put_u8(resp, m->method);
830 found++;
831 }
832 }
833 if (!found)
834 wpabuf_put_u8(resp, EAP_TYPE_NONE);
835 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
836
837 eap_update_len(resp);
838
839 return resp;
840}
841
842
843static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
844{
845 const struct eap_hdr *hdr = wpabuf_head(req);
846 const u8 *pos = (const u8 *) (hdr + 1);
847 pos++;
848
849 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
850 "EAP authentication started");
851
852 /*
853 * RFC 3748 - 5.1: Identity
854 * Data field may contain a displayable message in UTF-8. If this
855 * includes NUL-character, only the data before that should be
856 * displayed. Some EAP implementasitons may piggy-back additional
857 * options after the NUL.
858 */
859 /* TODO: could save displayable message so that it can be shown to the
860 * user in case of interaction is required */
861 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
862 pos, be_to_host16(hdr->length) - 5);
863}
864
865
866#ifdef PCSC_FUNCS
867static int eap_sm_imsi_identity(struct eap_sm *sm,
868 struct eap_peer_config *conf)
869{
870 int aka = 0;
871 char imsi[100];
872 size_t imsi_len;
873 struct eap_method_type *m = conf->eap_methods;
874 int i;
875
876 imsi_len = sizeof(imsi);
877 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
878 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
879 return -1;
880 }
881
882 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
883
884 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
885 m[i].method != EAP_TYPE_NONE); i++) {
886 if (m[i].vendor == EAP_VENDOR_IETF &&
887 m[i].method == EAP_TYPE_AKA) {
888 aka = 1;
889 break;
890 }
891 }
892
893 os_free(conf->identity);
894 conf->identity = os_malloc(1 + imsi_len);
895 if (conf->identity == NULL) {
896 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
897 "IMSI-based identity");
898 return -1;
899 }
900
901 conf->identity[0] = aka ? '0' : '1';
902 os_memcpy(conf->identity + 1, imsi, imsi_len);
903 conf->identity_len = 1 + imsi_len;
904
905 return 0;
906}
907#endif /* PCSC_FUNCS */
908
909
6982784e
JM
910static int eap_sm_set_scard_pin(struct eap_sm *sm,
911 struct eap_peer_config *conf)
6fc6879b
JM
912{
913#ifdef PCSC_FUNCS
914 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
915 /*
916 * Make sure the same PIN is not tried again in order to avoid
917 * blocking SIM.
918 */
919 os_free(conf->pin);
920 conf->pin = NULL;
921
922 wpa_printf(MSG_WARNING, "PIN validation failed");
923 eap_sm_request_pin(sm);
924 return -1;
925 }
6982784e
JM
926 return 0;
927#else /* PCSC_FUNCS */
928 return -1;
929#endif /* PCSC_FUNCS */
930}
931
932static int eap_sm_get_scard_identity(struct eap_sm *sm,
933 struct eap_peer_config *conf)
934{
935#ifdef PCSC_FUNCS
936 if (eap_sm_set_scard_pin(sm, conf))
937 return -1;
6fc6879b
JM
938
939 return eap_sm_imsi_identity(sm, conf);
940#else /* PCSC_FUNCS */
941 return -1;
942#endif /* PCSC_FUNCS */
943}
944
945
946/**
947 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
948 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
949 * @id: EAP identifier for the packet
950 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
951 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
952 * failure
953 *
954 * This function allocates and builds an EAP-Identity/Response packet for the
955 * current network. The caller is responsible for freeing the returned data.
956 */
957struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
958{
959 struct eap_peer_config *config = eap_get_config(sm);
960 struct wpabuf *resp;
961 const u8 *identity;
962 size_t identity_len;
963
964 if (config == NULL) {
965 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
966 "was not available");
967 return NULL;
968 }
969
970 if (sm->m && sm->m->get_identity &&
971 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
972 &identity_len)) != NULL) {
973 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
974 "identity", identity, identity_len);
975 } else if (!encrypted && config->anonymous_identity) {
976 identity = config->anonymous_identity;
977 identity_len = config->anonymous_identity_len;
978 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
979 identity, identity_len);
980 } else {
981 identity = config->identity;
982 identity_len = config->identity_len;
983 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
984 identity, identity_len);
985 }
986
987 if (identity == NULL) {
988 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
989 "configuration was not available");
990 if (config->pcsc) {
991 if (eap_sm_get_scard_identity(sm, config) < 0)
992 return NULL;
993 identity = config->identity;
994 identity_len = config->identity_len;
995 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
996 "IMSI", identity, identity_len);
997 } else {
998 eap_sm_request_identity(sm);
999 return NULL;
1000 }
6982784e
JM
1001 } else if (config->pcsc) {
1002 if (eap_sm_set_scard_pin(sm, config) < 0)
1003 return NULL;
6fc6879b
JM
1004 }
1005
1006 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1007 EAP_CODE_RESPONSE, id);
1008 if (resp == NULL)
1009 return NULL;
1010
1011 wpabuf_put_data(resp, identity, identity_len);
1012
1013 return resp;
1014}
1015
1016
1017static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1018{
1019 const u8 *pos;
1020 char *msg;
1021 size_t i, msg_len;
1022
1023 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1024 &msg_len);
1025 if (pos == NULL)
1026 return;
1027 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1028 pos, msg_len);
1029
1030 msg = os_malloc(msg_len + 1);
1031 if (msg == NULL)
1032 return;
1033 for (i = 0; i < msg_len; i++)
1034 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1035 msg[msg_len] = '\0';
1036 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1037 WPA_EVENT_EAP_NOTIFICATION, msg);
1038 os_free(msg);
1039}
1040
1041
1042static struct wpabuf * eap_sm_buildNotify(int id)
1043{
1044 struct wpabuf *resp;
1045
1046 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1047 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1048 EAP_CODE_RESPONSE, id);
1049 if (resp == NULL)
1050 return NULL;
1051
1052 return resp;
1053}
1054
1055
1056static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1057{
1058 const struct eap_hdr *hdr;
1059 size_t plen;
1060 const u8 *pos;
1061
1062 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1063 sm->reqId = 0;
1064 sm->reqMethod = EAP_TYPE_NONE;
1065 sm->reqVendor = EAP_VENDOR_IETF;
1066 sm->reqVendorMethod = EAP_TYPE_NONE;
1067
1068 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1069 return;
1070
1071 hdr = wpabuf_head(req);
1072 plen = be_to_host16(hdr->length);
1073 if (plen > wpabuf_len(req)) {
1074 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1075 "(len=%lu plen=%lu)",
1076 (unsigned long) wpabuf_len(req),
1077 (unsigned long) plen);
1078 return;
1079 }
1080
1081 sm->reqId = hdr->identifier;
1082
1083 if (sm->workaround) {
1084 const u8 *addr[1];
1085 addr[0] = wpabuf_head(req);
1086 md5_vector(1, addr, &plen, sm->req_md5);
1087 }
1088
1089 switch (hdr->code) {
1090 case EAP_CODE_REQUEST:
1091 if (plen < sizeof(*hdr) + 1) {
1092 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1093 "no Type field");
1094 return;
1095 }
1096 sm->rxReq = TRUE;
1097 pos = (const u8 *) (hdr + 1);
1098 sm->reqMethod = *pos++;
1099 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1100 if (plen < sizeof(*hdr) + 8) {
1101 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1102 "expanded EAP-Packet (plen=%lu)",
1103 (unsigned long) plen);
1104 return;
1105 }
1106 sm->reqVendor = WPA_GET_BE24(pos);
1107 pos += 3;
1108 sm->reqVendorMethod = WPA_GET_BE32(pos);
1109 }
1110 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1111 "method=%u vendor=%u vendorMethod=%u",
1112 sm->reqId, sm->reqMethod, sm->reqVendor,
1113 sm->reqVendorMethod);
1114 break;
1115 case EAP_CODE_RESPONSE:
1116 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1117 /*
1118 * LEAP differs from RFC 4137 by using reversed roles
1119 * for mutual authentication and because of this, we
1120 * need to accept EAP-Response frames if LEAP is used.
1121 */
1122 if (plen < sizeof(*hdr) + 1) {
1123 wpa_printf(MSG_DEBUG, "EAP: Too short "
1124 "EAP-Response - no Type field");
1125 return;
1126 }
1127 sm->rxResp = TRUE;
1128 pos = (const u8 *) (hdr + 1);
1129 sm->reqMethod = *pos;
1130 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1131 "LEAP method=%d id=%d",
1132 sm->reqMethod, sm->reqId);
1133 break;
1134 }
1135 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1136 break;
1137 case EAP_CODE_SUCCESS:
1138 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1139 sm->rxSuccess = TRUE;
1140 break;
1141 case EAP_CODE_FAILURE:
1142 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1143 sm->rxFailure = TRUE;
1144 break;
1145 default:
1146 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1147 "code %d", hdr->code);
1148 break;
1149 }
1150}
1151
1152
1153/**
1154 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1155 * @eapol_ctx: Context data to be used with eapol_cb calls
1156 * @eapol_cb: Pointer to EAPOL callback functions
1157 * @msg_ctx: Context data for wpa_msg() calls
1158 * @conf: EAP configuration
1159 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1160 *
1161 * This function allocates and initializes an EAP state machine. In addition,
1162 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1163 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1164 * state machine. Consequently, the caller must make sure that this data
1165 * structure remains alive while the EAP state machine is active.
1166 */
1167struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1168 struct eapol_callbacks *eapol_cb,
1169 void *msg_ctx, struct eap_config *conf)
1170{
1171 struct eap_sm *sm;
1172 struct tls_config tlsconf;
1173
1174 sm = os_zalloc(sizeof(*sm));
1175 if (sm == NULL)
1176 return NULL;
1177 sm->eapol_ctx = eapol_ctx;
1178 sm->eapol_cb = eapol_cb;
1179 sm->msg_ctx = msg_ctx;
1180 sm->ClientTimeout = 60;
116654ce 1181 sm->wps = conf->wps;
6fc6879b
JM
1182
1183 os_memset(&tlsconf, 0, sizeof(tlsconf));
1184 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1185 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1186 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1187 sm->ssl_ctx = tls_init(&tlsconf);
1188 if (sm->ssl_ctx == NULL) {
1189 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1190 "context.");
1191 os_free(sm);
1192 return NULL;
1193 }
1194
1195 return sm;
1196}
1197
1198
1199/**
1200 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1201 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1202 *
1203 * This function deinitializes EAP state machine and frees all allocated
1204 * resources.
1205 */
1206void eap_peer_sm_deinit(struct eap_sm *sm)
1207{
1208 if (sm == NULL)
1209 return;
1210 eap_deinit_prev_method(sm, "EAP deinit");
1211 eap_sm_abort(sm);
1212 tls_deinit(sm->ssl_ctx);
1213 os_free(sm);
1214}
1215
1216
1217/**
1218 * eap_peer_sm_step - Step EAP peer state machine
1219 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1220 * Returns: 1 if EAP state was changed or 0 if not
1221 *
1222 * This function advances EAP state machine to a new state to match with the
1223 * current variables. This should be called whenever variables used by the EAP
1224 * state machine have changed.
1225 */
1226int eap_peer_sm_step(struct eap_sm *sm)
1227{
1228 int res = 0;
1229 do {
1230 sm->changed = FALSE;
1231 SM_STEP_RUN(EAP);
1232 if (sm->changed)
1233 res = 1;
1234 } while (sm->changed);
1235 return res;
1236}
1237
1238
1239/**
1240 * eap_sm_abort - Abort EAP authentication
1241 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1242 *
1243 * Release system resources that have been allocated for the authentication
1244 * session without fully deinitializing the EAP state machine.
1245 */
1246void eap_sm_abort(struct eap_sm *sm)
1247{
1248 wpabuf_free(sm->lastRespData);
1249 sm->lastRespData = NULL;
1250 wpabuf_free(sm->eapRespData);
1251 sm->eapRespData = NULL;
1252 os_free(sm->eapKeyData);
1253 sm->eapKeyData = NULL;
1254
1255 /* This is not clearly specified in the EAP statemachines draft, but
1256 * it seems necessary to make sure that some of the EAPOL variables get
1257 * cleared for the next authentication. */
1258 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1259}
1260
1261
1262#ifdef CONFIG_CTRL_IFACE
1263static const char * eap_sm_state_txt(int state)
1264{
1265 switch (state) {
1266 case EAP_INITIALIZE:
1267 return "INITIALIZE";
1268 case EAP_DISABLED:
1269 return "DISABLED";
1270 case EAP_IDLE:
1271 return "IDLE";
1272 case EAP_RECEIVED:
1273 return "RECEIVED";
1274 case EAP_GET_METHOD:
1275 return "GET_METHOD";
1276 case EAP_METHOD:
1277 return "METHOD";
1278 case EAP_SEND_RESPONSE:
1279 return "SEND_RESPONSE";
1280 case EAP_DISCARD:
1281 return "DISCARD";
1282 case EAP_IDENTITY:
1283 return "IDENTITY";
1284 case EAP_NOTIFICATION:
1285 return "NOTIFICATION";
1286 case EAP_RETRANSMIT:
1287 return "RETRANSMIT";
1288 case EAP_SUCCESS:
1289 return "SUCCESS";
1290 case EAP_FAILURE:
1291 return "FAILURE";
1292 default:
1293 return "UNKNOWN";
1294 }
1295}
1296#endif /* CONFIG_CTRL_IFACE */
1297
1298
1299#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1300static const char * eap_sm_method_state_txt(EapMethodState state)
1301{
1302 switch (state) {
1303 case METHOD_NONE:
1304 return "NONE";
1305 case METHOD_INIT:
1306 return "INIT";
1307 case METHOD_CONT:
1308 return "CONT";
1309 case METHOD_MAY_CONT:
1310 return "MAY_CONT";
1311 case METHOD_DONE:
1312 return "DONE";
1313 default:
1314 return "UNKNOWN";
1315 }
1316}
1317
1318
1319static const char * eap_sm_decision_txt(EapDecision decision)
1320{
1321 switch (decision) {
1322 case DECISION_FAIL:
1323 return "FAIL";
1324 case DECISION_COND_SUCC:
1325 return "COND_SUCC";
1326 case DECISION_UNCOND_SUCC:
1327 return "UNCOND_SUCC";
1328 default:
1329 return "UNKNOWN";
1330 }
1331}
1332#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1333
1334
1335#ifdef CONFIG_CTRL_IFACE
1336
1337/**
1338 * eap_sm_get_status - Get EAP state machine status
1339 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1340 * @buf: Buffer for status information
1341 * @buflen: Maximum buffer length
1342 * @verbose: Whether to include verbose status information
1343 * Returns: Number of bytes written to buf.
1344 *
1345 * Query EAP state machine for status information. This function fills in a
1346 * text area with current status information from the EAPOL state machine. If
1347 * the buffer (buf) is not large enough, status information will be truncated
1348 * to fit the buffer.
1349 */
1350int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1351{
1352 int len, ret;
1353
1354 if (sm == NULL)
1355 return 0;
1356
1357 len = os_snprintf(buf, buflen,
1358 "EAP state=%s\n",
1359 eap_sm_state_txt(sm->EAP_state));
1360 if (len < 0 || (size_t) len >= buflen)
1361 return 0;
1362
1363 if (sm->selectedMethod != EAP_TYPE_NONE) {
1364 const char *name;
1365 if (sm->m) {
1366 name = sm->m->name;
1367 } else {
1368 const struct eap_method *m =
1369 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1370 sm->selectedMethod);
1371 if (m)
1372 name = m->name;
1373 else
1374 name = "?";
1375 }
1376 ret = os_snprintf(buf + len, buflen - len,
1377 "selectedMethod=%d (EAP-%s)\n",
1378 sm->selectedMethod, name);
1379 if (ret < 0 || (size_t) ret >= buflen - len)
1380 return len;
1381 len += ret;
1382
1383 if (sm->m && sm->m->get_status) {
1384 len += sm->m->get_status(sm, sm->eap_method_priv,
1385 buf + len, buflen - len,
1386 verbose);
1387 }
1388 }
1389
1390 if (verbose) {
1391 ret = os_snprintf(buf + len, buflen - len,
1392 "reqMethod=%d\n"
1393 "methodState=%s\n"
1394 "decision=%s\n"
1395 "ClientTimeout=%d\n",
1396 sm->reqMethod,
1397 eap_sm_method_state_txt(sm->methodState),
1398 eap_sm_decision_txt(sm->decision),
1399 sm->ClientTimeout);
1400 if (ret < 0 || (size_t) ret >= buflen - len)
1401 return len;
1402 len += ret;
1403 }
1404
1405 return len;
1406}
1407#endif /* CONFIG_CTRL_IFACE */
1408
1409
1410#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1411typedef enum {
1412 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1413 TYPE_PASSPHRASE
1414} eap_ctrl_req_type;
1415
1416static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1417 const char *msg, size_t msglen)
1418{
1419 struct eap_peer_config *config;
1420 char *field, *txt, *tmp;
1421
1422 if (sm == NULL)
1423 return;
1424 config = eap_get_config(sm);
1425 if (config == NULL)
1426 return;
1427
1428 switch (type) {
1429 case TYPE_IDENTITY:
1430 field = "IDENTITY";
1431 txt = "Identity";
1432 config->pending_req_identity++;
1433 break;
1434 case TYPE_PASSWORD:
1435 field = "PASSWORD";
1436 txt = "Password";
1437 config->pending_req_password++;
1438 break;
1439 case TYPE_NEW_PASSWORD:
1440 field = "NEW_PASSWORD";
1441 txt = "New Password";
1442 config->pending_req_new_password++;
1443 break;
1444 case TYPE_PIN:
1445 field = "PIN";
1446 txt = "PIN";
1447 config->pending_req_pin++;
1448 break;
1449 case TYPE_OTP:
1450 field = "OTP";
1451 if (msg) {
1452 tmp = os_malloc(msglen + 3);
1453 if (tmp == NULL)
1454 return;
1455 tmp[0] = '[';
1456 os_memcpy(tmp + 1, msg, msglen);
1457 tmp[msglen + 1] = ']';
1458 tmp[msglen + 2] = '\0';
1459 txt = tmp;
1460 os_free(config->pending_req_otp);
1461 config->pending_req_otp = tmp;
1462 config->pending_req_otp_len = msglen + 3;
1463 } else {
1464 if (config->pending_req_otp == NULL)
1465 return;
1466 txt = config->pending_req_otp;
1467 }
1468 break;
1469 case TYPE_PASSPHRASE:
1470 field = "PASSPHRASE";
1471 txt = "Private key passphrase";
1472 config->pending_req_passphrase++;
1473 break;
1474 default:
1475 return;
1476 }
1477
1478 if (sm->eapol_cb->eap_param_needed)
1479 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1480}
1481#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1482#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1483#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1484
1485
1486/**
1487 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1488 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1489 *
1490 * EAP methods can call this function to request identity information for the
1491 * current network. This is normally called when the identity is not included
1492 * in the network configuration. The request will be sent to monitor programs
1493 * through the control interface.
1494 */
1495void eap_sm_request_identity(struct eap_sm *sm)
1496{
1497 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1498}
1499
1500
1501/**
1502 * eap_sm_request_password - Request password from user (ctrl_iface)
1503 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1504 *
1505 * EAP methods can call this function to request password information for the
1506 * current network. This is normally called when the password is not included
1507 * in the network configuration. The request will be sent to monitor programs
1508 * through the control interface.
1509 */
1510void eap_sm_request_password(struct eap_sm *sm)
1511{
1512 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1513}
1514
1515
1516/**
1517 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1518 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1519 *
1520 * EAP methods can call this function to request new password information for
1521 * the current network. This is normally called when the EAP method indicates
1522 * that the current password has expired and password change is required. The
1523 * request will be sent to monitor programs through the control interface.
1524 */
1525void eap_sm_request_new_password(struct eap_sm *sm)
1526{
1527 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1528}
1529
1530
1531/**
1532 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1533 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1534 *
1535 * EAP methods can call this function to request SIM or smart card PIN
1536 * information for the current network. This is normally called when the PIN is
1537 * not included in the network configuration. The request will be sent to
1538 * monitor programs through the control interface.
1539 */
1540void eap_sm_request_pin(struct eap_sm *sm)
1541{
1542 eap_sm_request(sm, TYPE_PIN, NULL, 0);
1543}
1544
1545
1546/**
1547 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1548 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1549 * @msg: Message to be displayed to the user when asking for OTP
1550 * @msg_len: Length of the user displayable message
1551 *
1552 * EAP methods can call this function to request open time password (OTP) for
1553 * the current network. The request will be sent to monitor programs through
1554 * the control interface.
1555 */
1556void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1557{
1558 eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1559}
1560
1561
1562/**
1563 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1564 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1565 *
1566 * EAP methods can call this function to request passphrase for a private key
1567 * for the current network. This is normally called when the passphrase is not
1568 * included in the network configuration. The request will be sent to monitor
1569 * programs through the control interface.
1570 */
1571void eap_sm_request_passphrase(struct eap_sm *sm)
1572{
1573 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1574}
1575
1576
1577/**
1578 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1579 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1580 *
1581 * Notify EAP state machines that a monitor was attached to the control
1582 * interface to trigger re-sending of pending requests for user input.
1583 */
1584void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1585{
1586 struct eap_peer_config *config = eap_get_config(sm);
1587
1588 if (config == NULL)
1589 return;
1590
1591 /* Re-send any pending requests for user data since a new control
1592 * interface was added. This handles cases where the EAP authentication
1593 * starts immediately after system startup when the user interface is
1594 * not yet running. */
1595 if (config->pending_req_identity)
1596 eap_sm_request_identity(sm);
1597 if (config->pending_req_password)
1598 eap_sm_request_password(sm);
1599 if (config->pending_req_new_password)
1600 eap_sm_request_new_password(sm);
1601 if (config->pending_req_otp)
1602 eap_sm_request_otp(sm, NULL, 0);
1603 if (config->pending_req_pin)
1604 eap_sm_request_pin(sm);
1605 if (config->pending_req_passphrase)
1606 eap_sm_request_passphrase(sm);
1607}
1608
1609
1610static int eap_allowed_phase2_type(int vendor, int type)
1611{
1612 if (vendor != EAP_VENDOR_IETF)
1613 return 0;
1614 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1615 type != EAP_TYPE_FAST;
1616}
1617
1618
1619/**
1620 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1621 * @name: EAP method name, e.g., MD5
1622 * @vendor: Buffer for returning EAP Vendor-Id
1623 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1624 *
1625 * This function maps EAP type names into EAP type numbers that are allowed for
1626 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1627 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1628 */
1629u32 eap_get_phase2_type(const char *name, int *vendor)
1630{
1631 int v;
1632 u8 type = eap_peer_get_type(name, &v);
1633 if (eap_allowed_phase2_type(v, type)) {
1634 *vendor = v;
1635 return type;
1636 }
1637 *vendor = EAP_VENDOR_IETF;
1638 return EAP_TYPE_NONE;
1639}
1640
1641
1642/**
1643 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1644 * @config: Pointer to a network configuration
1645 * @count: Pointer to a variable to be filled with number of returned EAP types
1646 * Returns: Pointer to allocated type list or %NULL on failure
1647 *
1648 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1649 * the given network configuration.
1650 */
1651struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1652 size_t *count)
1653{
1654 struct eap_method_type *buf;
1655 u32 method;
1656 int vendor;
1657 size_t mcount;
1658 const struct eap_method *methods, *m;
1659
1660 methods = eap_peer_get_methods(&mcount);
1661 if (methods == NULL)
1662 return NULL;
1663 *count = 0;
1664 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1665 if (buf == NULL)
1666 return NULL;
1667
1668 for (m = methods; m; m = m->next) {
1669 vendor = m->vendor;
1670 method = m->method;
1671 if (eap_allowed_phase2_type(vendor, method)) {
1672 if (vendor == EAP_VENDOR_IETF &&
1673 method == EAP_TYPE_TLS && config &&
1674 config->private_key2 == NULL)
1675 continue;
1676 buf[*count].vendor = vendor;
1677 buf[*count].method = method;
1678 (*count)++;
1679 }
1680 }
1681
1682 return buf;
1683}
1684
1685
1686/**
1687 * eap_set_fast_reauth - Update fast_reauth setting
1688 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1689 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1690 */
1691void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1692{
1693 sm->fast_reauth = enabled;
1694}
1695
1696
1697/**
1698 * eap_set_workaround - Update EAP workarounds setting
1699 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1700 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1701 */
1702void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1703{
1704 sm->workaround = workaround;
1705}
1706
1707
1708/**
1709 * eap_get_config - Get current network configuration
1710 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1711 * Returns: Pointer to the current network configuration or %NULL if not found
1712 *
1713 * EAP peer methods should avoid using this function if they can use other
1714 * access functions, like eap_get_config_identity() and
1715 * eap_get_config_password(), that do not require direct access to
1716 * struct eap_peer_config.
1717 */
1718struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1719{
1720 return sm->eapol_cb->get_config(sm->eapol_ctx);
1721}
1722
1723
1724/**
1725 * eap_get_config_identity - Get identity from the network configuration
1726 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1727 * @len: Buffer for the length of the identity
1728 * Returns: Pointer to the identity or %NULL if not found
1729 */
1730const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1731{
1732 struct eap_peer_config *config = eap_get_config(sm);
1733 if (config == NULL)
1734 return NULL;
1735 *len = config->identity_len;
1736 return config->identity;
1737}
1738
1739
1740/**
1741 * eap_get_config_password - Get password from the network configuration
1742 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1743 * @len: Buffer for the length of the password
1744 * Returns: Pointer to the password or %NULL if not found
1745 */
1746const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1747{
1748 struct eap_peer_config *config = eap_get_config(sm);
1749 if (config == NULL)
1750 return NULL;
1751 *len = config->password_len;
1752 return config->password;
1753}
1754
1755
1756/**
1757 * eap_get_config_password2 - Get password from the network configuration
1758 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1759 * @len: Buffer for the length of the password
1760 * @hash: Buffer for returning whether the password is stored as a
1761 * NtPasswordHash instead of plaintext password; can be %NULL if this
1762 * information is not needed
1763 * Returns: Pointer to the password or %NULL if not found
1764 */
1765const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1766{
1767 struct eap_peer_config *config = eap_get_config(sm);
1768 if (config == NULL)
1769 return NULL;
1770 *len = config->password_len;
1771 if (hash)
1772 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1773 return config->password;
1774}
1775
1776
1777/**
1778 * eap_get_config_new_password - Get new password from network configuration
1779 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1780 * @len: Buffer for the length of the new password
1781 * Returns: Pointer to the new password or %NULL if not found
1782 */
1783const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1784{
1785 struct eap_peer_config *config = eap_get_config(sm);
1786 if (config == NULL)
1787 return NULL;
1788 *len = config->new_password_len;
1789 return config->new_password;
1790}
1791
1792
1793/**
1794 * eap_get_config_otp - Get one-time password from the network configuration
1795 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1796 * @len: Buffer for the length of the one-time password
1797 * Returns: Pointer to the one-time password or %NULL if not found
1798 */
1799const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1800{
1801 struct eap_peer_config *config = eap_get_config(sm);
1802 if (config == NULL)
1803 return NULL;
1804 *len = config->otp_len;
1805 return config->otp;
1806}
1807
1808
1809/**
1810 * eap_clear_config_otp - Clear used one-time password
1811 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1812 *
1813 * This function clears a used one-time password (OTP) from the current network
1814 * configuration. This should be called when the OTP has been used and is not
1815 * needed anymore.
1816 */
1817void eap_clear_config_otp(struct eap_sm *sm)
1818{
1819 struct eap_peer_config *config = eap_get_config(sm);
1820 if (config == NULL)
1821 return;
1822 os_memset(config->otp, 0, config->otp_len);
1823 os_free(config->otp);
1824 config->otp = NULL;
1825 config->otp_len = 0;
1826}
1827
1828
1829/**
1830 * eap_get_config_phase1 - Get phase1 data from the network configuration
1831 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1832 * Returns: Pointer to the phase1 data or %NULL if not found
1833 */
1834const char * eap_get_config_phase1(struct eap_sm *sm)
1835{
1836 struct eap_peer_config *config = eap_get_config(sm);
1837 if (config == NULL)
1838 return NULL;
1839 return config->phase1;
1840}
1841
1842
1843/**
1844 * eap_get_config_phase2 - Get phase2 data from the network configuration
1845 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1846 * Returns: Pointer to the phase1 data or %NULL if not found
1847 */
1848const char * eap_get_config_phase2(struct eap_sm *sm)
1849{
1850 struct eap_peer_config *config = eap_get_config(sm);
1851 if (config == NULL)
1852 return NULL;
1853 return config->phase2;
1854}
1855
1856
1857/**
1858 * eap_key_available - Get key availability (eapKeyAvailable variable)
1859 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1860 * Returns: 1 if EAP keying material is available, 0 if not
1861 */
1862int eap_key_available(struct eap_sm *sm)
1863{
1864 return sm ? sm->eapKeyAvailable : 0;
1865}
1866
1867
1868/**
1869 * eap_notify_success - Notify EAP state machine about external success trigger
1870 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1871 *
1872 * This function is called when external event, e.g., successful completion of
1873 * WPA-PSK key handshake, is indicating that EAP state machine should move to
1874 * success state. This is mainly used with security modes that do not use EAP
1875 * state machine (e.g., WPA-PSK).
1876 */
1877void eap_notify_success(struct eap_sm *sm)
1878{
1879 if (sm) {
1880 sm->decision = DECISION_COND_SUCC;
1881 sm->EAP_state = EAP_SUCCESS;
1882 }
1883}
1884
1885
1886/**
1887 * eap_notify_lower_layer_success - Notification of lower layer success
1888 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1889 *
1890 * Notify EAP state machines that a lower layer has detected a successful
1891 * authentication. This is used to recover from dropped EAP-Success messages.
1892 */
1893void eap_notify_lower_layer_success(struct eap_sm *sm)
1894{
1895 if (sm == NULL)
1896 return;
1897
1898 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1899 sm->decision == DECISION_FAIL ||
1900 (sm->methodState != METHOD_MAY_CONT &&
1901 sm->methodState != METHOD_DONE))
1902 return;
1903
1904 if (sm->eapKeyData != NULL)
1905 sm->eapKeyAvailable = TRUE;
1906 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1907 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1908 "EAP authentication completed successfully (based on lower "
1909 "layer success)");
1910}
1911
1912
1913/**
1914 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1915 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1916 * @len: Pointer to variable that will be set to number of bytes in the key
1917 * Returns: Pointer to the EAP keying data or %NULL on failure
1918 *
1919 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1920 * key is available only after a successful authentication. EAP state machine
1921 * continues to manage the key data and the caller must not change or free the
1922 * returned data.
1923 */
1924const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
1925{
1926 if (sm == NULL || sm->eapKeyData == NULL) {
1927 *len = 0;
1928 return NULL;
1929 }
1930
1931 *len = sm->eapKeyDataLen;
1932 return sm->eapKeyData;
1933}
1934
1935
1936/**
1937 * eap_get_eapKeyData - Get EAP response data
1938 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1939 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
1940 *
1941 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
1942 * available when EAP state machine has processed an incoming EAP request. The
1943 * EAP state machine does not maintain a reference to the response after this
1944 * function is called and the caller is responsible for freeing the data.
1945 */
1946struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
1947{
1948 struct wpabuf *resp;
1949
1950 if (sm == NULL || sm->eapRespData == NULL)
1951 return NULL;
1952
1953 resp = sm->eapRespData;
1954 sm->eapRespData = NULL;
1955
1956 return resp;
1957}
1958
1959
1960/**
1961 * eap_sm_register_scard_ctx - Notification of smart card context
1962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1963 * @ctx: Context data for smart card operations
1964 *
1965 * Notify EAP state machines of context data for smart card operations. This
1966 * context data will be used as a parameter for scard_*() functions.
1967 */
1968void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
1969{
1970 if (sm)
1971 sm->scard_ctx = ctx;
1972}
1973
1974
1975/**
1976 * eap_set_config_blob - Set or add a named configuration blob
1977 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1978 * @blob: New value for the blob
1979 *
1980 * Adds a new configuration blob or replaces the current value of an existing
1981 * blob.
1982 */
1983void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
1984{
1985#ifndef CONFIG_NO_CONFIG_BLOBS
1986 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
1987#endif /* CONFIG_NO_CONFIG_BLOBS */
1988}
1989
1990
1991/**
1992 * eap_get_config_blob - Get a named configuration blob
1993 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1994 * @name: Name of the blob
1995 * Returns: Pointer to blob data or %NULL if not found
1996 */
1997const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
1998 const char *name)
1999{
2000#ifndef CONFIG_NO_CONFIG_BLOBS
2001 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2002#else /* CONFIG_NO_CONFIG_BLOBS */
2003 return NULL;
2004#endif /* CONFIG_NO_CONFIG_BLOBS */
2005}
2006
2007
2008/**
2009 * eap_set_force_disabled - Set force_disabled flag
2010 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2011 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2012 *
2013 * This function is used to force EAP state machine to be disabled when it is
2014 * not in use (e.g., with WPA-PSK or plaintext connections).
2015 */
2016void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2017{
2018 sm->force_disabled = disabled;
2019}
2020
2021
2022 /**
2023 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2024 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2025 *
2026 * An EAP method can perform a pending operation (e.g., to get a response from
2027 * an external process). Once the response is available, this function can be
2028 * used to request EAPOL state machine to retry delivering the previously
2029 * received (and still unanswered) EAP request to EAP state machine.
2030 */
2031void eap_notify_pending(struct eap_sm *sm)
2032{
2033 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2034}
2035
2036
2037/**
2038 * eap_invalidate_cached_session - Mark cached session data invalid
2039 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2040 */
2041void eap_invalidate_cached_session(struct eap_sm *sm)
2042{
2043 if (sm)
2044 eap_deinit_prev_method(sm, "invalidate");
2045}
ad08c363
JM
2046
2047
2048int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2049{
2050 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2051 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2052 return 0; /* Not a WPS Enrollee */
2053
2054 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2055 return 0; /* Not using PBC */
2056
2057 return 1;
2058}
2059
2060
2061int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2062{
2063 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2064 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2065 return 0; /* Not a WPS Enrollee */
2066
2067 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2068 return 0; /* Not using PIN */
2069
2070 return 1;
2071}