]> git.ipfire.org Git - thirdparty/hostap.git/blame - src/eap_peer/eap.c
EAP-TTLS peer: Fix user input during implicit identity request
[thirdparty/hostap.git] / src / eap_peer / eap.c
CommitLineData
6fc6879b
JM
1/*
2 * EAP peer state machines (RFC 4137)
00468b46 3 * Copyright (c) 2004-2010, Jouni Malinen <j@w1.fi>
6fc6879b
JM
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
11 *
12 * See README and COPYING for more details.
13 *
14 * This file implements the Peer State Machine as defined in RFC 4137. The used
15 * states and state transitions match mostly with the RFC. However, there are
16 * couple of additional transitions for working around small issues noticed
17 * during testing. These exceptions are explained in comments within the
18 * functions in this file. The method functions, m.func(), are similar to the
19 * ones used in RFC 4137, but some small changes have used here to optimize
20 * operations and to add functionality needed for fast re-authentication
21 * (session resumption).
22 */
23
24#include "includes.h"
25
26#include "common.h"
6fc6879b 27#include "pcsc_funcs.h"
6fc6879b 28#include "state_machine.h"
03da66bd
JM
29#include "crypto/crypto.h"
30#include "crypto/tls.h"
31#include "common/wpa_ctrl.h"
ad08c363 32#include "eap_common/eap_wsc_common.h"
03da66bd
JM
33#include "eap_i.h"
34#include "eap_config.h"
6fc6879b
JM
35
36#define STATE_MACHINE_DATA struct eap_sm
37#define STATE_MACHINE_DEBUG_PREFIX "EAP"
38
39#define EAP_MAX_AUTH_ROUNDS 50
d3e01b9d 40#define EAP_CLIENT_TIMEOUT_DEFAULT 60
6fc6879b
JM
41
42
43static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
44 EapType method);
45static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
46static void eap_sm_processIdentity(struct eap_sm *sm,
47 const struct wpabuf *req);
48static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
49static struct wpabuf * eap_sm_buildNotify(int id);
50static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
51#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
52static const char * eap_sm_method_state_txt(EapMethodState state);
53static const char * eap_sm_decision_txt(EapDecision decision);
54#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
55
56
57
58static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
59{
60 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
61}
62
63
64static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
65 Boolean value)
66{
67 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
68}
69
70
71static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
72{
73 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
74}
75
76
77static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
78 unsigned int value)
79{
80 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
81}
82
83
84static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
85{
86 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
87}
88
89
90static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
91{
92 if (sm->m == NULL || sm->eap_method_priv == NULL)
93 return;
94
95 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
96 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
97 sm->m->deinit(sm, sm->eap_method_priv);
98 sm->eap_method_priv = NULL;
99 sm->m = NULL;
100}
101
102
103/**
104 * eap_allowed_method - Check whether EAP method is allowed
105 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
106 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
107 * @method: EAP type
108 * Returns: 1 = allowed EAP method, 0 = not allowed
109 */
01b05694 110int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
6fc6879b
JM
111{
112 struct eap_peer_config *config = eap_get_config(sm);
113 int i;
114 struct eap_method_type *m;
115
116 if (config == NULL || config->eap_methods == NULL)
117 return 1;
118
119 m = config->eap_methods;
120 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
121 m[i].method != EAP_TYPE_NONE; i++) {
122 if (m[i].vendor == vendor && m[i].method == method)
123 return 1;
124 }
125 return 0;
126}
127
128
129/*
130 * This state initializes state machine variables when the machine is
131 * activated (portEnabled = TRUE). This is also used when re-starting
132 * authentication (eapRestart == TRUE).
133 */
134SM_STATE(EAP, INITIALIZE)
135{
136 SM_ENTRY(EAP, INITIALIZE);
137 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
f2d8fc3d
JM
138 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
139 !sm->prev_failure) {
6fc6879b
JM
140 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
141 "fast reauthentication");
142 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
143 } else {
144 eap_deinit_prev_method(sm, "INITIALIZE");
145 }
146 sm->selectedMethod = EAP_TYPE_NONE;
147 sm->methodState = METHOD_NONE;
148 sm->allowNotifications = TRUE;
149 sm->decision = DECISION_FAIL;
54e9c5fc 150 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
6fc6879b
JM
151 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
152 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
153 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
154 os_free(sm->eapKeyData);
155 sm->eapKeyData = NULL;
156 sm->eapKeyAvailable = FALSE;
157 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
158 sm->lastId = -1; /* new session - make sure this does not match with
159 * the first EAP-Packet */
160 /*
161 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
162 * seemed to be able to trigger cases where both were set and if EAPOL
163 * state machine uses eapNoResp first, it may end up not sending a real
164 * reply correctly. This occurred when the workaround in FAIL state set
165 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
166 * something else(?)
167 */
168 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
169 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
170 sm->num_rounds = 0;
f2d8fc3d 171 sm->prev_failure = 0;
6fc6879b
JM
172}
173
174
175/*
176 * This state is reached whenever service from the lower layer is interrupted
177 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
178 * occurs when the port becomes enabled.
179 */
180SM_STATE(EAP, DISABLED)
181{
182 SM_ENTRY(EAP, DISABLED);
183 sm->num_rounds = 0;
184}
185
186
187/*
188 * The state machine spends most of its time here, waiting for something to
189 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
190 * SEND_RESPONSE states.
191 */
192SM_STATE(EAP, IDLE)
193{
194 SM_ENTRY(EAP, IDLE);
195}
196
197
198/*
199 * This state is entered when an EAP packet is received (eapReq == TRUE) to
200 * parse the packet header.
201 */
202SM_STATE(EAP, RECEIVED)
203{
204 const struct wpabuf *eapReqData;
205
206 SM_ENTRY(EAP, RECEIVED);
207 eapReqData = eapol_get_eapReqData(sm);
208 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
209 eap_sm_parseEapReq(sm, eapReqData);
210 sm->num_rounds++;
211}
212
213
214/*
215 * This state is entered when a request for a new type comes in. Either the
216 * correct method is started, or a Nak response is built.
217 */
218SM_STATE(EAP, GET_METHOD)
219{
220 int reinit;
221 EapType method;
222
223 SM_ENTRY(EAP, GET_METHOD);
224
225 if (sm->reqMethod == EAP_TYPE_EXPANDED)
226 method = sm->reqVendorMethod;
227 else
228 method = sm->reqMethod;
229
230 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
231 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
232 sm->reqVendor, method);
7796f20e
JM
233 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
234 "vendor=%u method=%u -> NAK",
235 sm->reqVendor, method);
6fc6879b
JM
236 goto nak;
237 }
238
7796f20e
JM
239 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
240 "vendor=%u method=%u", sm->reqVendor, method);
241
6fc6879b
JM
242 /*
243 * RFC 4137 does not define specific operation for fast
244 * re-authentication (session resumption). The design here is to allow
245 * the previously used method data to be maintained for
246 * re-authentication if the method support session resumption.
247 * Otherwise, the previously used method data is freed and a new method
248 * is allocated here.
249 */
250 if (sm->fast_reauth &&
251 sm->m && sm->m->vendor == sm->reqVendor &&
252 sm->m->method == method &&
253 sm->m->has_reauth_data &&
254 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
255 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
256 " for fast re-authentication");
257 reinit = 1;
258 } else {
259 eap_deinit_prev_method(sm, "GET_METHOD");
260 reinit = 0;
261 }
262
263 sm->selectedMethod = sm->reqMethod;
264 if (sm->m == NULL)
265 sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
266 if (!sm->m) {
267 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
268 "vendor %d method %d",
269 sm->reqVendor, method);
270 goto nak;
271 }
272
d3e01b9d
JM
273 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
274
6fc6879b
JM
275 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
276 "vendor %u method %u (%s)",
277 sm->reqVendor, method, sm->m->name);
278 if (reinit)
279 sm->eap_method_priv = sm->m->init_for_reauth(
280 sm, sm->eap_method_priv);
281 else
282 sm->eap_method_priv = sm->m->init(sm);
283
284 if (sm->eap_method_priv == NULL) {
285 struct eap_peer_config *config = eap_get_config(sm);
286 wpa_msg(sm->msg_ctx, MSG_INFO,
287 "EAP: Failed to initialize EAP method: vendor %u "
288 "method %u (%s)",
289 sm->reqVendor, method, sm->m->name);
290 sm->m = NULL;
291 sm->methodState = METHOD_NONE;
292 sm->selectedMethod = EAP_TYPE_NONE;
293 if (sm->reqMethod == EAP_TYPE_TLS && config &&
294 (config->pending_req_pin ||
295 config->pending_req_passphrase)) {
296 /*
297 * Return without generating Nak in order to allow
298 * entering of PIN code or passphrase to retry the
299 * current EAP packet.
300 */
301 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
302 "request - skip Nak");
303 return;
304 }
305
306 goto nak;
307 }
308
309 sm->methodState = METHOD_INIT;
310 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
311 "EAP vendor %u method %u (%s) selected",
312 sm->reqVendor, method, sm->m->name);
313 return;
314
315nak:
316 wpabuf_free(sm->eapRespData);
317 sm->eapRespData = NULL;
318 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
319}
320
321
322/*
323 * The method processing happens here. The request from the authenticator is
324 * processed, and an appropriate response packet is built.
325 */
326SM_STATE(EAP, METHOD)
327{
328 struct wpabuf *eapReqData;
329 struct eap_method_ret ret;
330
331 SM_ENTRY(EAP, METHOD);
332 if (sm->m == NULL) {
333 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
334 return;
335 }
336
337 eapReqData = eapol_get_eapReqData(sm);
338
339 /*
340 * Get ignore, methodState, decision, allowNotifications, and
341 * eapRespData. RFC 4137 uses three separate method procedure (check,
342 * process, and buildResp) in this state. These have been combined into
343 * a single function call to m->process() in order to optimize EAP
344 * method implementation interface a bit. These procedures are only
345 * used from within this METHOD state, so there is no need to keep
346 * these as separate C functions.
347 *
348 * The RFC 4137 procedures return values as follows:
349 * ignore = m.check(eapReqData)
350 * (methodState, decision, allowNotifications) = m.process(eapReqData)
351 * eapRespData = m.buildResp(reqId)
352 */
353 os_memset(&ret, 0, sizeof(ret));
354 ret.ignore = sm->ignore;
355 ret.methodState = sm->methodState;
356 ret.decision = sm->decision;
357 ret.allowNotifications = sm->allowNotifications;
358 wpabuf_free(sm->eapRespData);
359 sm->eapRespData = NULL;
360 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
361 eapReqData);
362 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
363 "methodState=%s decision=%s",
364 ret.ignore ? "TRUE" : "FALSE",
365 eap_sm_method_state_txt(ret.methodState),
366 eap_sm_decision_txt(ret.decision));
367
368 sm->ignore = ret.ignore;
369 if (sm->ignore)
370 return;
371 sm->methodState = ret.methodState;
372 sm->decision = ret.decision;
373 sm->allowNotifications = ret.allowNotifications;
374
375 if (sm->m->isKeyAvailable && sm->m->getKey &&
376 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
377 os_free(sm->eapKeyData);
378 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
379 &sm->eapKeyDataLen);
380 }
381}
382
383
384/*
385 * This state signals the lower layer that a response packet is ready to be
386 * sent.
387 */
388SM_STATE(EAP, SEND_RESPONSE)
389{
390 SM_ENTRY(EAP, SEND_RESPONSE);
391 wpabuf_free(sm->lastRespData);
392 if (sm->eapRespData) {
393 if (sm->workaround)
394 os_memcpy(sm->last_md5, sm->req_md5, 16);
395 sm->lastId = sm->reqId;
396 sm->lastRespData = wpabuf_dup(sm->eapRespData);
397 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
398 } else
399 sm->lastRespData = NULL;
400 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
401 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
402}
403
404
405/*
406 * This state signals the lower layer that the request was discarded, and no
407 * response packet will be sent at this time.
408 */
409SM_STATE(EAP, DISCARD)
410{
411 SM_ENTRY(EAP, DISCARD);
412 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
413 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
414}
415
416
417/*
418 * Handles requests for Identity method and builds a response.
419 */
420SM_STATE(EAP, IDENTITY)
421{
422 const struct wpabuf *eapReqData;
423
424 SM_ENTRY(EAP, IDENTITY);
425 eapReqData = eapol_get_eapReqData(sm);
426 eap_sm_processIdentity(sm, eapReqData);
427 wpabuf_free(sm->eapRespData);
428 sm->eapRespData = NULL;
429 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
430}
431
432
433/*
434 * Handles requests for Notification method and builds a response.
435 */
436SM_STATE(EAP, NOTIFICATION)
437{
438 const struct wpabuf *eapReqData;
439
440 SM_ENTRY(EAP, NOTIFICATION);
441 eapReqData = eapol_get_eapReqData(sm);
442 eap_sm_processNotify(sm, eapReqData);
443 wpabuf_free(sm->eapRespData);
444 sm->eapRespData = NULL;
445 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
446}
447
448
449/*
450 * This state retransmits the previous response packet.
451 */
452SM_STATE(EAP, RETRANSMIT)
453{
454 SM_ENTRY(EAP, RETRANSMIT);
455 wpabuf_free(sm->eapRespData);
456 if (sm->lastRespData)
457 sm->eapRespData = wpabuf_dup(sm->lastRespData);
458 else
459 sm->eapRespData = NULL;
460}
461
462
463/*
464 * This state is entered in case of a successful completion of authentication
465 * and state machine waits here until port is disabled or EAP authentication is
466 * restarted.
467 */
468SM_STATE(EAP, SUCCESS)
469{
470 SM_ENTRY(EAP, SUCCESS);
471 if (sm->eapKeyData != NULL)
472 sm->eapKeyAvailable = TRUE;
473 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
474
475 /*
476 * RFC 4137 does not clear eapReq here, but this seems to be required
477 * to avoid processing the same request twice when state machine is
478 * initialized.
479 */
480 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
481
482 /*
483 * RFC 4137 does not set eapNoResp here, but this seems to be required
484 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
485 * addition, either eapResp or eapNoResp is required to be set after
486 * processing the received EAP frame.
487 */
488 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
489
490 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
491 "EAP authentication completed successfully");
492}
493
494
495/*
496 * This state is entered in case of a failure and state machine waits here
497 * until port is disabled or EAP authentication is restarted.
498 */
499SM_STATE(EAP, FAILURE)
500{
501 SM_ENTRY(EAP, FAILURE);
502 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
503
504 /*
505 * RFC 4137 does not clear eapReq here, but this seems to be required
506 * to avoid processing the same request twice when state machine is
507 * initialized.
508 */
509 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
510
511 /*
512 * RFC 4137 does not set eapNoResp here. However, either eapResp or
513 * eapNoResp is required to be set after processing the received EAP
514 * frame.
515 */
516 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
517
518 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
519 "EAP authentication failed");
f2d8fc3d
JM
520
521 sm->prev_failure = 1;
6fc6879b
JM
522}
523
524
525static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
526{
527 /*
528 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
529 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
530 * RFC 4137 require that reqId == lastId. In addition, it looks like
531 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
532 *
533 * Accept this kind of Id if EAP workarounds are enabled. These are
534 * unauthenticated plaintext messages, so this should have minimal
535 * security implications (bit easier to fake EAP-Success/Failure).
536 */
537 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
538 reqId == ((lastId + 2) & 0xff))) {
539 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
540 "identifier field in EAP Success: "
541 "reqId=%d lastId=%d (these are supposed to be "
542 "same)", reqId, lastId);
543 return 1;
544 }
545 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
546 "lastId=%d", reqId, lastId);
547 return 0;
548}
549
550
551/*
552 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
553 */
554
555static void eap_peer_sm_step_idle(struct eap_sm *sm)
556{
557 /*
558 * The first three transitions are from RFC 4137. The last two are
559 * local additions to handle special cases with LEAP and PEAP server
560 * not sending EAP-Success in some cases.
561 */
562 if (eapol_get_bool(sm, EAPOL_eapReq))
563 SM_ENTER(EAP, RECEIVED);
564 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
565 sm->decision != DECISION_FAIL) ||
566 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
567 sm->decision == DECISION_UNCOND_SUCC))
568 SM_ENTER(EAP, SUCCESS);
569 else if (eapol_get_bool(sm, EAPOL_altReject) ||
570 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
571 sm->decision != DECISION_UNCOND_SUCC) ||
572 (eapol_get_bool(sm, EAPOL_altAccept) &&
573 sm->methodState != METHOD_CONT &&
574 sm->decision == DECISION_FAIL))
575 SM_ENTER(EAP, FAILURE);
576 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
577 sm->leap_done && sm->decision != DECISION_FAIL &&
578 sm->methodState == METHOD_DONE)
579 SM_ENTER(EAP, SUCCESS);
580 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
581 sm->peap_done && sm->decision != DECISION_FAIL &&
582 sm->methodState == METHOD_DONE)
583 SM_ENTER(EAP, SUCCESS);
584}
585
586
587static int eap_peer_req_is_duplicate(struct eap_sm *sm)
588{
589 int duplicate;
590
591 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
592 if (sm->workaround && duplicate &&
593 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
594 /*
595 * RFC 4137 uses (reqId == lastId) as the only verification for
596 * duplicate EAP requests. However, this misses cases where the
597 * AS is incorrectly using the same id again; and
598 * unfortunately, such implementations exist. Use MD5 hash as
599 * an extra verification for the packets being duplicate to
600 * workaround these issues.
601 */
602 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
603 "EAP packets were not identical");
604 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
605 "duplicate packet");
606 duplicate = 0;
607 }
608
609 return duplicate;
610}
611
612
613static void eap_peer_sm_step_received(struct eap_sm *sm)
614{
615 int duplicate = eap_peer_req_is_duplicate(sm);
616
617 /*
618 * Two special cases below for LEAP are local additions to work around
619 * odd LEAP behavior (EAP-Success in the middle of authentication and
620 * then swapped roles). Other transitions are based on RFC 4137.
621 */
622 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
623 (sm->reqId == sm->lastId ||
624 eap_success_workaround(sm, sm->reqId, sm->lastId)))
625 SM_ENTER(EAP, SUCCESS);
626 else if (sm->methodState != METHOD_CONT &&
627 ((sm->rxFailure &&
628 sm->decision != DECISION_UNCOND_SUCC) ||
629 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
630 (sm->selectedMethod != EAP_TYPE_LEAP ||
631 sm->methodState != METHOD_MAY_CONT))) &&
632 (sm->reqId == sm->lastId ||
633 eap_success_workaround(sm, sm->reqId, sm->lastId)))
634 SM_ENTER(EAP, FAILURE);
635 else if (sm->rxReq && duplicate)
636 SM_ENTER(EAP, RETRANSMIT);
637 else if (sm->rxReq && !duplicate &&
638 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
639 sm->allowNotifications)
640 SM_ENTER(EAP, NOTIFICATION);
641 else if (sm->rxReq && !duplicate &&
642 sm->selectedMethod == EAP_TYPE_NONE &&
643 sm->reqMethod == EAP_TYPE_IDENTITY)
644 SM_ENTER(EAP, IDENTITY);
645 else if (sm->rxReq && !duplicate &&
646 sm->selectedMethod == EAP_TYPE_NONE &&
647 sm->reqMethod != EAP_TYPE_IDENTITY &&
648 sm->reqMethod != EAP_TYPE_NOTIFICATION)
649 SM_ENTER(EAP, GET_METHOD);
650 else if (sm->rxReq && !duplicate &&
651 sm->reqMethod == sm->selectedMethod &&
652 sm->methodState != METHOD_DONE)
653 SM_ENTER(EAP, METHOD);
654 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
655 (sm->rxSuccess || sm->rxResp))
656 SM_ENTER(EAP, METHOD);
657 else
658 SM_ENTER(EAP, DISCARD);
659}
660
661
662static void eap_peer_sm_step_local(struct eap_sm *sm)
663{
664 switch (sm->EAP_state) {
665 case EAP_INITIALIZE:
666 SM_ENTER(EAP, IDLE);
667 break;
668 case EAP_DISABLED:
669 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
670 !sm->force_disabled)
671 SM_ENTER(EAP, INITIALIZE);
672 break;
673 case EAP_IDLE:
674 eap_peer_sm_step_idle(sm);
675 break;
676 case EAP_RECEIVED:
677 eap_peer_sm_step_received(sm);
678 break;
679 case EAP_GET_METHOD:
680 if (sm->selectedMethod == sm->reqMethod)
681 SM_ENTER(EAP, METHOD);
682 else
683 SM_ENTER(EAP, SEND_RESPONSE);
684 break;
685 case EAP_METHOD:
686 if (sm->ignore)
687 SM_ENTER(EAP, DISCARD);
688 else
689 SM_ENTER(EAP, SEND_RESPONSE);
690 break;
691 case EAP_SEND_RESPONSE:
692 SM_ENTER(EAP, IDLE);
693 break;
694 case EAP_DISCARD:
695 SM_ENTER(EAP, IDLE);
696 break;
697 case EAP_IDENTITY:
698 SM_ENTER(EAP, SEND_RESPONSE);
699 break;
700 case EAP_NOTIFICATION:
701 SM_ENTER(EAP, SEND_RESPONSE);
702 break;
703 case EAP_RETRANSMIT:
704 SM_ENTER(EAP, SEND_RESPONSE);
705 break;
706 case EAP_SUCCESS:
707 break;
708 case EAP_FAILURE:
709 break;
710 }
711}
712
713
714SM_STEP(EAP)
715{
716 /* Global transitions */
717 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
718 eapol_get_bool(sm, EAPOL_portEnabled))
719 SM_ENTER_GLOBAL(EAP, INITIALIZE);
720 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
721 SM_ENTER_GLOBAL(EAP, DISABLED);
722 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
723 /* RFC 4137 does not place any limit on number of EAP messages
724 * in an authentication session. However, some error cases have
725 * ended up in a state were EAP messages were sent between the
726 * peer and server in a loop (e.g., TLS ACK frame in both
727 * direction). Since this is quite undesired outcome, limit the
728 * total number of EAP round-trips and abort authentication if
729 * this limit is exceeded.
730 */
731 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
732 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
733 "authentication rounds - abort",
734 EAP_MAX_AUTH_ROUNDS);
735 sm->num_rounds++;
736 SM_ENTER_GLOBAL(EAP, FAILURE);
737 }
738 } else {
739 /* Local transitions */
740 eap_peer_sm_step_local(sm);
741 }
742}
743
744
745static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
746 EapType method)
747{
748 if (!eap_allowed_method(sm, vendor, method)) {
749 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
750 "vendor %u method %u", vendor, method);
751 return FALSE;
752 }
753 if (eap_peer_get_eap_method(vendor, method))
754 return TRUE;
755 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
756 "vendor %u method %u", vendor, method);
757 return FALSE;
758}
759
760
761static struct wpabuf * eap_sm_build_expanded_nak(
762 struct eap_sm *sm, int id, const struct eap_method *methods,
763 size_t count)
764{
765 struct wpabuf *resp;
766 int found = 0;
767 const struct eap_method *m;
768
769 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
770
771 /* RFC 3748 - 5.3.2: Expanded Nak */
772 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
773 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
774 if (resp == NULL)
775 return NULL;
776
777 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
778 wpabuf_put_be32(resp, EAP_TYPE_NAK);
779
780 for (m = methods; m; m = m->next) {
781 if (sm->reqVendor == m->vendor &&
782 sm->reqVendorMethod == m->method)
783 continue; /* do not allow the current method again */
784 if (eap_allowed_method(sm, m->vendor, m->method)) {
785 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
786 "vendor=%u method=%u",
787 m->vendor, m->method);
788 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
789 wpabuf_put_be24(resp, m->vendor);
790 wpabuf_put_be32(resp, m->method);
791
792 found++;
793 }
794 }
795 if (!found) {
796 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
797 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
798 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
799 wpabuf_put_be32(resp, EAP_TYPE_NONE);
800 }
801
802 eap_update_len(resp);
803
804 return resp;
805}
806
807
808static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
809{
810 struct wpabuf *resp;
811 u8 *start;
812 int found = 0, expanded_found = 0;
813 size_t count;
814 const struct eap_method *methods, *m;
815
816 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
817 "vendor=%u method=%u not allowed)", sm->reqMethod,
818 sm->reqVendor, sm->reqVendorMethod);
819 methods = eap_peer_get_methods(&count);
820 if (methods == NULL)
821 return NULL;
822 if (sm->reqMethod == EAP_TYPE_EXPANDED)
823 return eap_sm_build_expanded_nak(sm, id, methods, count);
824
825 /* RFC 3748 - 5.3.1: Legacy Nak */
826 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
827 sizeof(struct eap_hdr) + 1 + count + 1,
828 EAP_CODE_RESPONSE, id);
829 if (resp == NULL)
830 return NULL;
831
832 start = wpabuf_put(resp, 0);
833 for (m = methods; m; m = m->next) {
834 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
835 continue; /* do not allow the current method again */
836 if (eap_allowed_method(sm, m->vendor, m->method)) {
837 if (m->vendor != EAP_VENDOR_IETF) {
838 if (expanded_found)
839 continue;
840 expanded_found = 1;
841 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
842 } else
843 wpabuf_put_u8(resp, m->method);
844 found++;
845 }
846 }
847 if (!found)
848 wpabuf_put_u8(resp, EAP_TYPE_NONE);
849 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
850
851 eap_update_len(resp);
852
853 return resp;
854}
855
856
857static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
858{
859 const struct eap_hdr *hdr = wpabuf_head(req);
860 const u8 *pos = (const u8 *) (hdr + 1);
861 pos++;
862
863 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
864 "EAP authentication started");
865
866 /*
867 * RFC 3748 - 5.1: Identity
868 * Data field may contain a displayable message in UTF-8. If this
869 * includes NUL-character, only the data before that should be
870 * displayed. Some EAP implementasitons may piggy-back additional
871 * options after the NUL.
872 */
873 /* TODO: could save displayable message so that it can be shown to the
874 * user in case of interaction is required */
875 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
876 pos, be_to_host16(hdr->length) - 5);
877}
878
879
880#ifdef PCSC_FUNCS
881static int eap_sm_imsi_identity(struct eap_sm *sm,
882 struct eap_peer_config *conf)
883{
884 int aka = 0;
885 char imsi[100];
886 size_t imsi_len;
887 struct eap_method_type *m = conf->eap_methods;
888 int i;
889
890 imsi_len = sizeof(imsi);
891 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
892 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
893 return -1;
894 }
895
896 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
897
898 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
899 m[i].method != EAP_TYPE_NONE); i++) {
900 if (m[i].vendor == EAP_VENDOR_IETF &&
901 m[i].method == EAP_TYPE_AKA) {
902 aka = 1;
903 break;
904 }
905 }
906
907 os_free(conf->identity);
908 conf->identity = os_malloc(1 + imsi_len);
909 if (conf->identity == NULL) {
910 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
911 "IMSI-based identity");
912 return -1;
913 }
914
915 conf->identity[0] = aka ? '0' : '1';
916 os_memcpy(conf->identity + 1, imsi, imsi_len);
917 conf->identity_len = 1 + imsi_len;
918
919 return 0;
920}
921#endif /* PCSC_FUNCS */
922
923
6982784e
JM
924static int eap_sm_set_scard_pin(struct eap_sm *sm,
925 struct eap_peer_config *conf)
6fc6879b
JM
926{
927#ifdef PCSC_FUNCS
928 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
929 /*
930 * Make sure the same PIN is not tried again in order to avoid
931 * blocking SIM.
932 */
933 os_free(conf->pin);
934 conf->pin = NULL;
935
936 wpa_printf(MSG_WARNING, "PIN validation failed");
937 eap_sm_request_pin(sm);
938 return -1;
939 }
6982784e
JM
940 return 0;
941#else /* PCSC_FUNCS */
942 return -1;
943#endif /* PCSC_FUNCS */
944}
945
946static int eap_sm_get_scard_identity(struct eap_sm *sm,
947 struct eap_peer_config *conf)
948{
949#ifdef PCSC_FUNCS
950 if (eap_sm_set_scard_pin(sm, conf))
951 return -1;
6fc6879b
JM
952
953 return eap_sm_imsi_identity(sm, conf);
954#else /* PCSC_FUNCS */
955 return -1;
956#endif /* PCSC_FUNCS */
957}
958
959
960/**
961 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
963 * @id: EAP identifier for the packet
964 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
965 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
966 * failure
967 *
968 * This function allocates and builds an EAP-Identity/Response packet for the
969 * current network. The caller is responsible for freeing the returned data.
970 */
971struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
972{
973 struct eap_peer_config *config = eap_get_config(sm);
974 struct wpabuf *resp;
975 const u8 *identity;
976 size_t identity_len;
977
978 if (config == NULL) {
979 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
980 "was not available");
981 return NULL;
982 }
983
984 if (sm->m && sm->m->get_identity &&
985 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
986 &identity_len)) != NULL) {
987 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
988 "identity", identity, identity_len);
989 } else if (!encrypted && config->anonymous_identity) {
990 identity = config->anonymous_identity;
991 identity_len = config->anonymous_identity_len;
992 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
993 identity, identity_len);
994 } else {
995 identity = config->identity;
996 identity_len = config->identity_len;
997 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
998 identity, identity_len);
999 }
1000
1001 if (identity == NULL) {
1002 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1003 "configuration was not available");
1004 if (config->pcsc) {
1005 if (eap_sm_get_scard_identity(sm, config) < 0)
1006 return NULL;
1007 identity = config->identity;
1008 identity_len = config->identity_len;
1009 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1010 "IMSI", identity, identity_len);
1011 } else {
1012 eap_sm_request_identity(sm);
1013 return NULL;
1014 }
6982784e
JM
1015 } else if (config->pcsc) {
1016 if (eap_sm_set_scard_pin(sm, config) < 0)
1017 return NULL;
6fc6879b
JM
1018 }
1019
1020 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1021 EAP_CODE_RESPONSE, id);
1022 if (resp == NULL)
1023 return NULL;
1024
1025 wpabuf_put_data(resp, identity, identity_len);
1026
1027 return resp;
1028}
1029
1030
1031static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1032{
1033 const u8 *pos;
1034 char *msg;
1035 size_t i, msg_len;
1036
1037 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1038 &msg_len);
1039 if (pos == NULL)
1040 return;
1041 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1042 pos, msg_len);
1043
1044 msg = os_malloc(msg_len + 1);
1045 if (msg == NULL)
1046 return;
1047 for (i = 0; i < msg_len; i++)
1048 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1049 msg[msg_len] = '\0';
1050 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1051 WPA_EVENT_EAP_NOTIFICATION, msg);
1052 os_free(msg);
1053}
1054
1055
1056static struct wpabuf * eap_sm_buildNotify(int id)
1057{
1058 struct wpabuf *resp;
1059
1060 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1061 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1062 EAP_CODE_RESPONSE, id);
1063 if (resp == NULL)
1064 return NULL;
1065
1066 return resp;
1067}
1068
1069
1070static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1071{
1072 const struct eap_hdr *hdr;
1073 size_t plen;
1074 const u8 *pos;
1075
1076 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1077 sm->reqId = 0;
1078 sm->reqMethod = EAP_TYPE_NONE;
1079 sm->reqVendor = EAP_VENDOR_IETF;
1080 sm->reqVendorMethod = EAP_TYPE_NONE;
1081
1082 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1083 return;
1084
1085 hdr = wpabuf_head(req);
1086 plen = be_to_host16(hdr->length);
1087 if (plen > wpabuf_len(req)) {
1088 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1089 "(len=%lu plen=%lu)",
1090 (unsigned long) wpabuf_len(req),
1091 (unsigned long) plen);
1092 return;
1093 }
1094
1095 sm->reqId = hdr->identifier;
1096
1097 if (sm->workaround) {
1098 const u8 *addr[1];
1099 addr[0] = wpabuf_head(req);
1100 md5_vector(1, addr, &plen, sm->req_md5);
1101 }
1102
1103 switch (hdr->code) {
1104 case EAP_CODE_REQUEST:
1105 if (plen < sizeof(*hdr) + 1) {
1106 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1107 "no Type field");
1108 return;
1109 }
1110 sm->rxReq = TRUE;
1111 pos = (const u8 *) (hdr + 1);
1112 sm->reqMethod = *pos++;
1113 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1114 if (plen < sizeof(*hdr) + 8) {
1115 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1116 "expanded EAP-Packet (plen=%lu)",
1117 (unsigned long) plen);
1118 return;
1119 }
1120 sm->reqVendor = WPA_GET_BE24(pos);
1121 pos += 3;
1122 sm->reqVendorMethod = WPA_GET_BE32(pos);
1123 }
1124 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1125 "method=%u vendor=%u vendorMethod=%u",
1126 sm->reqId, sm->reqMethod, sm->reqVendor,
1127 sm->reqVendorMethod);
1128 break;
1129 case EAP_CODE_RESPONSE:
1130 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1131 /*
1132 * LEAP differs from RFC 4137 by using reversed roles
1133 * for mutual authentication and because of this, we
1134 * need to accept EAP-Response frames if LEAP is used.
1135 */
1136 if (plen < sizeof(*hdr) + 1) {
1137 wpa_printf(MSG_DEBUG, "EAP: Too short "
1138 "EAP-Response - no Type field");
1139 return;
1140 }
1141 sm->rxResp = TRUE;
1142 pos = (const u8 *) (hdr + 1);
1143 sm->reqMethod = *pos;
1144 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1145 "LEAP method=%d id=%d",
1146 sm->reqMethod, sm->reqId);
1147 break;
1148 }
1149 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1150 break;
1151 case EAP_CODE_SUCCESS:
1152 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1153 sm->rxSuccess = TRUE;
1154 break;
1155 case EAP_CODE_FAILURE:
1156 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1157 sm->rxFailure = TRUE;
1158 break;
1159 default:
1160 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1161 "code %d", hdr->code);
1162 break;
1163 }
1164}
1165
1166
00468b46
JM
1167static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1168 union tls_event_data *data)
1169{
1170 struct eap_sm *sm = ctx;
1171 char *hash_hex = NULL;
00468b46
JM
1172
1173 switch (ev) {
1174 case TLS_CERT_CHAIN_FAILURE:
1175 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1176 "reason=%d depth=%d subject='%s' err='%s'",
1177 data->cert_fail.reason,
1178 data->cert_fail.depth,
1179 data->cert_fail.subject,
1180 data->cert_fail.reason_txt);
1181 break;
1182 case TLS_PEER_CERTIFICATE:
4f525d8e
JM
1183 if (!sm->eapol_cb->notify_cert)
1184 break;
1185
00468b46
JM
1186 if (data->peer_cert.hash) {
1187 size_t len = data->peer_cert.hash_len * 2 + 1;
1188 hash_hex = os_malloc(len);
1189 if (hash_hex) {
1190 wpa_snprintf_hex(hash_hex, len,
1191 data->peer_cert.hash,
1192 data->peer_cert.hash_len);
1193 }
1194 }
4f525d8e
JM
1195
1196 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1197 data->peer_cert.depth,
1198 data->peer_cert.subject,
1199 hash_hex, data->peer_cert.cert);
00468b46
JM
1200 break;
1201 }
1202
1203 os_free(hash_hex);
00468b46
JM
1204}
1205
1206
6fc6879b
JM
1207/**
1208 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1209 * @eapol_ctx: Context data to be used with eapol_cb calls
1210 * @eapol_cb: Pointer to EAPOL callback functions
1211 * @msg_ctx: Context data for wpa_msg() calls
1212 * @conf: EAP configuration
1213 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1214 *
1215 * This function allocates and initializes an EAP state machine. In addition,
1216 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1217 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1218 * state machine. Consequently, the caller must make sure that this data
1219 * structure remains alive while the EAP state machine is active.
1220 */
1221struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1222 struct eapol_callbacks *eapol_cb,
1223 void *msg_ctx, struct eap_config *conf)
1224{
1225 struct eap_sm *sm;
1226 struct tls_config tlsconf;
1227
1228 sm = os_zalloc(sizeof(*sm));
1229 if (sm == NULL)
1230 return NULL;
1231 sm->eapol_ctx = eapol_ctx;
1232 sm->eapol_cb = eapol_cb;
1233 sm->msg_ctx = msg_ctx;
d3e01b9d 1234 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
116654ce 1235 sm->wps = conf->wps;
6fc6879b
JM
1236
1237 os_memset(&tlsconf, 0, sizeof(tlsconf));
1238 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1239 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1240 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
76f04b38
JM
1241#ifdef CONFIG_FIPS
1242 tlsconf.fips_mode = 1;
1243#endif /* CONFIG_FIPS */
00468b46
JM
1244 tlsconf.event_cb = eap_peer_sm_tls_event;
1245 tlsconf.cb_ctx = sm;
1b414f59 1246 tlsconf.cert_in_cb = conf->cert_in_cb;
6fc6879b
JM
1247 sm->ssl_ctx = tls_init(&tlsconf);
1248 if (sm->ssl_ctx == NULL) {
1249 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1250 "context.");
1251 os_free(sm);
1252 return NULL;
1253 }
1254
1255 return sm;
1256}
1257
1258
1259/**
1260 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1261 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1262 *
1263 * This function deinitializes EAP state machine and frees all allocated
1264 * resources.
1265 */
1266void eap_peer_sm_deinit(struct eap_sm *sm)
1267{
1268 if (sm == NULL)
1269 return;
1270 eap_deinit_prev_method(sm, "EAP deinit");
1271 eap_sm_abort(sm);
1272 tls_deinit(sm->ssl_ctx);
1273 os_free(sm);
1274}
1275
1276
1277/**
1278 * eap_peer_sm_step - Step EAP peer state machine
1279 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1280 * Returns: 1 if EAP state was changed or 0 if not
1281 *
1282 * This function advances EAP state machine to a new state to match with the
1283 * current variables. This should be called whenever variables used by the EAP
1284 * state machine have changed.
1285 */
1286int eap_peer_sm_step(struct eap_sm *sm)
1287{
1288 int res = 0;
1289 do {
1290 sm->changed = FALSE;
1291 SM_STEP_RUN(EAP);
1292 if (sm->changed)
1293 res = 1;
1294 } while (sm->changed);
1295 return res;
1296}
1297
1298
1299/**
1300 * eap_sm_abort - Abort EAP authentication
1301 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1302 *
1303 * Release system resources that have been allocated for the authentication
1304 * session without fully deinitializing the EAP state machine.
1305 */
1306void eap_sm_abort(struct eap_sm *sm)
1307{
1308 wpabuf_free(sm->lastRespData);
1309 sm->lastRespData = NULL;
1310 wpabuf_free(sm->eapRespData);
1311 sm->eapRespData = NULL;
1312 os_free(sm->eapKeyData);
1313 sm->eapKeyData = NULL;
1314
1315 /* This is not clearly specified in the EAP statemachines draft, but
1316 * it seems necessary to make sure that some of the EAPOL variables get
1317 * cleared for the next authentication. */
1318 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1319}
1320
1321
1322#ifdef CONFIG_CTRL_IFACE
1323static const char * eap_sm_state_txt(int state)
1324{
1325 switch (state) {
1326 case EAP_INITIALIZE:
1327 return "INITIALIZE";
1328 case EAP_DISABLED:
1329 return "DISABLED";
1330 case EAP_IDLE:
1331 return "IDLE";
1332 case EAP_RECEIVED:
1333 return "RECEIVED";
1334 case EAP_GET_METHOD:
1335 return "GET_METHOD";
1336 case EAP_METHOD:
1337 return "METHOD";
1338 case EAP_SEND_RESPONSE:
1339 return "SEND_RESPONSE";
1340 case EAP_DISCARD:
1341 return "DISCARD";
1342 case EAP_IDENTITY:
1343 return "IDENTITY";
1344 case EAP_NOTIFICATION:
1345 return "NOTIFICATION";
1346 case EAP_RETRANSMIT:
1347 return "RETRANSMIT";
1348 case EAP_SUCCESS:
1349 return "SUCCESS";
1350 case EAP_FAILURE:
1351 return "FAILURE";
1352 default:
1353 return "UNKNOWN";
1354 }
1355}
1356#endif /* CONFIG_CTRL_IFACE */
1357
1358
1359#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1360static const char * eap_sm_method_state_txt(EapMethodState state)
1361{
1362 switch (state) {
1363 case METHOD_NONE:
1364 return "NONE";
1365 case METHOD_INIT:
1366 return "INIT";
1367 case METHOD_CONT:
1368 return "CONT";
1369 case METHOD_MAY_CONT:
1370 return "MAY_CONT";
1371 case METHOD_DONE:
1372 return "DONE";
1373 default:
1374 return "UNKNOWN";
1375 }
1376}
1377
1378
1379static const char * eap_sm_decision_txt(EapDecision decision)
1380{
1381 switch (decision) {
1382 case DECISION_FAIL:
1383 return "FAIL";
1384 case DECISION_COND_SUCC:
1385 return "COND_SUCC";
1386 case DECISION_UNCOND_SUCC:
1387 return "UNCOND_SUCC";
1388 default:
1389 return "UNKNOWN";
1390 }
1391}
1392#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1393
1394
1395#ifdef CONFIG_CTRL_IFACE
1396
1397/**
1398 * eap_sm_get_status - Get EAP state machine status
1399 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1400 * @buf: Buffer for status information
1401 * @buflen: Maximum buffer length
1402 * @verbose: Whether to include verbose status information
1403 * Returns: Number of bytes written to buf.
1404 *
1405 * Query EAP state machine for status information. This function fills in a
1406 * text area with current status information from the EAPOL state machine. If
1407 * the buffer (buf) is not large enough, status information will be truncated
1408 * to fit the buffer.
1409 */
1410int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1411{
1412 int len, ret;
1413
1414 if (sm == NULL)
1415 return 0;
1416
1417 len = os_snprintf(buf, buflen,
1418 "EAP state=%s\n",
1419 eap_sm_state_txt(sm->EAP_state));
1420 if (len < 0 || (size_t) len >= buflen)
1421 return 0;
1422
1423 if (sm->selectedMethod != EAP_TYPE_NONE) {
1424 const char *name;
1425 if (sm->m) {
1426 name = sm->m->name;
1427 } else {
1428 const struct eap_method *m =
1429 eap_peer_get_eap_method(EAP_VENDOR_IETF,
1430 sm->selectedMethod);
1431 if (m)
1432 name = m->name;
1433 else
1434 name = "?";
1435 }
1436 ret = os_snprintf(buf + len, buflen - len,
1437 "selectedMethod=%d (EAP-%s)\n",
1438 sm->selectedMethod, name);
1439 if (ret < 0 || (size_t) ret >= buflen - len)
1440 return len;
1441 len += ret;
1442
1443 if (sm->m && sm->m->get_status) {
1444 len += sm->m->get_status(sm, sm->eap_method_priv,
1445 buf + len, buflen - len,
1446 verbose);
1447 }
1448 }
1449
1450 if (verbose) {
1451 ret = os_snprintf(buf + len, buflen - len,
1452 "reqMethod=%d\n"
1453 "methodState=%s\n"
1454 "decision=%s\n"
1455 "ClientTimeout=%d\n",
1456 sm->reqMethod,
1457 eap_sm_method_state_txt(sm->methodState),
1458 eap_sm_decision_txt(sm->decision),
1459 sm->ClientTimeout);
1460 if (ret < 0 || (size_t) ret >= buflen - len)
1461 return len;
1462 len += ret;
1463 }
1464
1465 return len;
1466}
1467#endif /* CONFIG_CTRL_IFACE */
1468
1469
1470#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1471typedef enum {
1472 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1473 TYPE_PASSPHRASE
1474} eap_ctrl_req_type;
1475
1476static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1477 const char *msg, size_t msglen)
1478{
1479 struct eap_peer_config *config;
1480 char *field, *txt, *tmp;
1481
1482 if (sm == NULL)
1483 return;
1484 config = eap_get_config(sm);
1485 if (config == NULL)
1486 return;
1487
1488 switch (type) {
1489 case TYPE_IDENTITY:
1490 field = "IDENTITY";
1491 txt = "Identity";
1492 config->pending_req_identity++;
1493 break;
1494 case TYPE_PASSWORD:
1495 field = "PASSWORD";
1496 txt = "Password";
1497 config->pending_req_password++;
1498 break;
1499 case TYPE_NEW_PASSWORD:
1500 field = "NEW_PASSWORD";
1501 txt = "New Password";
1502 config->pending_req_new_password++;
1503 break;
1504 case TYPE_PIN:
1505 field = "PIN";
1506 txt = "PIN";
1507 config->pending_req_pin++;
1508 break;
1509 case TYPE_OTP:
1510 field = "OTP";
1511 if (msg) {
1512 tmp = os_malloc(msglen + 3);
1513 if (tmp == NULL)
1514 return;
1515 tmp[0] = '[';
1516 os_memcpy(tmp + 1, msg, msglen);
1517 tmp[msglen + 1] = ']';
1518 tmp[msglen + 2] = '\0';
1519 txt = tmp;
1520 os_free(config->pending_req_otp);
1521 config->pending_req_otp = tmp;
1522 config->pending_req_otp_len = msglen + 3;
1523 } else {
1524 if (config->pending_req_otp == NULL)
1525 return;
1526 txt = config->pending_req_otp;
1527 }
1528 break;
1529 case TYPE_PASSPHRASE:
1530 field = "PASSPHRASE";
1531 txt = "Private key passphrase";
1532 config->pending_req_passphrase++;
1533 break;
1534 default:
1535 return;
1536 }
1537
1538 if (sm->eapol_cb->eap_param_needed)
1539 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1540}
1541#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1542#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1543#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1544
8813e4d5
PS
1545const char * eap_sm_get_method_name(struct eap_sm *sm)
1546{
1547 if (sm->m == NULL)
1548 return "UNKNOWN";
1549 return sm->m->name;
1550}
1551
6fc6879b
JM
1552
1553/**
1554 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1555 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1556 *
1557 * EAP methods can call this function to request identity information for the
1558 * current network. This is normally called when the identity is not included
1559 * in the network configuration. The request will be sent to monitor programs
1560 * through the control interface.
1561 */
1562void eap_sm_request_identity(struct eap_sm *sm)
1563{
1564 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1565}
1566
1567
1568/**
1569 * eap_sm_request_password - Request password from user (ctrl_iface)
1570 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1571 *
1572 * EAP methods can call this function to request password information for the
1573 * current network. This is normally called when the password is not included
1574 * in the network configuration. The request will be sent to monitor programs
1575 * through the control interface.
1576 */
1577void eap_sm_request_password(struct eap_sm *sm)
1578{
1579 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1580}
1581
1582
1583/**
1584 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1585 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1586 *
1587 * EAP methods can call this function to request new password information for
1588 * the current network. This is normally called when the EAP method indicates
1589 * that the current password has expired and password change is required. The
1590 * request will be sent to monitor programs through the control interface.
1591 */
1592void eap_sm_request_new_password(struct eap_sm *sm)
1593{
1594 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1595}
1596
1597
1598/**
1599 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1600 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1601 *
1602 * EAP methods can call this function to request SIM or smart card PIN
1603 * information for the current network. This is normally called when the PIN is
1604 * not included in the network configuration. The request will be sent to
1605 * monitor programs through the control interface.
1606 */
1607void eap_sm_request_pin(struct eap_sm *sm)
1608{
1609 eap_sm_request(sm, TYPE_PIN, NULL, 0);
1610}
1611
1612
1613/**
1614 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1615 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1616 * @msg: Message to be displayed to the user when asking for OTP
1617 * @msg_len: Length of the user displayable message
1618 *
1619 * EAP methods can call this function to request open time password (OTP) for
1620 * the current network. The request will be sent to monitor programs through
1621 * the control interface.
1622 */
1623void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1624{
1625 eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1626}
1627
1628
1629/**
1630 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1631 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1632 *
1633 * EAP methods can call this function to request passphrase for a private key
1634 * for the current network. This is normally called when the passphrase is not
1635 * included in the network configuration. The request will be sent to monitor
1636 * programs through the control interface.
1637 */
1638void eap_sm_request_passphrase(struct eap_sm *sm)
1639{
1640 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1641}
1642
1643
1644/**
1645 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1646 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1647 *
1648 * Notify EAP state machines that a monitor was attached to the control
1649 * interface to trigger re-sending of pending requests for user input.
1650 */
1651void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1652{
1653 struct eap_peer_config *config = eap_get_config(sm);
1654
1655 if (config == NULL)
1656 return;
1657
1658 /* Re-send any pending requests for user data since a new control
1659 * interface was added. This handles cases where the EAP authentication
1660 * starts immediately after system startup when the user interface is
1661 * not yet running. */
1662 if (config->pending_req_identity)
1663 eap_sm_request_identity(sm);
1664 if (config->pending_req_password)
1665 eap_sm_request_password(sm);
1666 if (config->pending_req_new_password)
1667 eap_sm_request_new_password(sm);
1668 if (config->pending_req_otp)
1669 eap_sm_request_otp(sm, NULL, 0);
1670 if (config->pending_req_pin)
1671 eap_sm_request_pin(sm);
1672 if (config->pending_req_passphrase)
1673 eap_sm_request_passphrase(sm);
1674}
1675
1676
1677static int eap_allowed_phase2_type(int vendor, int type)
1678{
1679 if (vendor != EAP_VENDOR_IETF)
1680 return 0;
1681 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1682 type != EAP_TYPE_FAST;
1683}
1684
1685
1686/**
1687 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1688 * @name: EAP method name, e.g., MD5
1689 * @vendor: Buffer for returning EAP Vendor-Id
1690 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1691 *
1692 * This function maps EAP type names into EAP type numbers that are allowed for
1693 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1694 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1695 */
1696u32 eap_get_phase2_type(const char *name, int *vendor)
1697{
1698 int v;
1699 u8 type = eap_peer_get_type(name, &v);
1700 if (eap_allowed_phase2_type(v, type)) {
1701 *vendor = v;
1702 return type;
1703 }
1704 *vendor = EAP_VENDOR_IETF;
1705 return EAP_TYPE_NONE;
1706}
1707
1708
1709/**
1710 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1711 * @config: Pointer to a network configuration
1712 * @count: Pointer to a variable to be filled with number of returned EAP types
1713 * Returns: Pointer to allocated type list or %NULL on failure
1714 *
1715 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1716 * the given network configuration.
1717 */
1718struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1719 size_t *count)
1720{
1721 struct eap_method_type *buf;
1722 u32 method;
1723 int vendor;
1724 size_t mcount;
1725 const struct eap_method *methods, *m;
1726
1727 methods = eap_peer_get_methods(&mcount);
1728 if (methods == NULL)
1729 return NULL;
1730 *count = 0;
1731 buf = os_malloc(mcount * sizeof(struct eap_method_type));
1732 if (buf == NULL)
1733 return NULL;
1734
1735 for (m = methods; m; m = m->next) {
1736 vendor = m->vendor;
1737 method = m->method;
1738 if (eap_allowed_phase2_type(vendor, method)) {
1739 if (vendor == EAP_VENDOR_IETF &&
1740 method == EAP_TYPE_TLS && config &&
1741 config->private_key2 == NULL)
1742 continue;
1743 buf[*count].vendor = vendor;
1744 buf[*count].method = method;
1745 (*count)++;
1746 }
1747 }
1748
1749 return buf;
1750}
1751
1752
1753/**
1754 * eap_set_fast_reauth - Update fast_reauth setting
1755 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1756 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1757 */
1758void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1759{
1760 sm->fast_reauth = enabled;
1761}
1762
1763
1764/**
1765 * eap_set_workaround - Update EAP workarounds setting
1766 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1767 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1768 */
1769void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1770{
1771 sm->workaround = workaround;
1772}
1773
1774
1775/**
1776 * eap_get_config - Get current network configuration
1777 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1778 * Returns: Pointer to the current network configuration or %NULL if not found
1779 *
1780 * EAP peer methods should avoid using this function if they can use other
1781 * access functions, like eap_get_config_identity() and
1782 * eap_get_config_password(), that do not require direct access to
1783 * struct eap_peer_config.
1784 */
1785struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1786{
1787 return sm->eapol_cb->get_config(sm->eapol_ctx);
1788}
1789
1790
1791/**
1792 * eap_get_config_identity - Get identity from the network configuration
1793 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1794 * @len: Buffer for the length of the identity
1795 * Returns: Pointer to the identity or %NULL if not found
1796 */
1797const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1798{
1799 struct eap_peer_config *config = eap_get_config(sm);
1800 if (config == NULL)
1801 return NULL;
1802 *len = config->identity_len;
1803 return config->identity;
1804}
1805
1806
1807/**
1808 * eap_get_config_password - Get password from the network configuration
1809 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1810 * @len: Buffer for the length of the password
1811 * Returns: Pointer to the password or %NULL if not found
1812 */
1813const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1814{
1815 struct eap_peer_config *config = eap_get_config(sm);
1816 if (config == NULL)
1817 return NULL;
1818 *len = config->password_len;
1819 return config->password;
1820}
1821
1822
1823/**
1824 * eap_get_config_password2 - Get password from the network configuration
1825 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1826 * @len: Buffer for the length of the password
1827 * @hash: Buffer for returning whether the password is stored as a
1828 * NtPasswordHash instead of plaintext password; can be %NULL if this
1829 * information is not needed
1830 * Returns: Pointer to the password or %NULL if not found
1831 */
1832const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1833{
1834 struct eap_peer_config *config = eap_get_config(sm);
1835 if (config == NULL)
1836 return NULL;
1837 *len = config->password_len;
1838 if (hash)
1839 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1840 return config->password;
1841}
1842
1843
1844/**
1845 * eap_get_config_new_password - Get new password from network configuration
1846 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1847 * @len: Buffer for the length of the new password
1848 * Returns: Pointer to the new password or %NULL if not found
1849 */
1850const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1851{
1852 struct eap_peer_config *config = eap_get_config(sm);
1853 if (config == NULL)
1854 return NULL;
1855 *len = config->new_password_len;
1856 return config->new_password;
1857}
1858
1859
1860/**
1861 * eap_get_config_otp - Get one-time password from the network configuration
1862 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1863 * @len: Buffer for the length of the one-time password
1864 * Returns: Pointer to the one-time password or %NULL if not found
1865 */
1866const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1867{
1868 struct eap_peer_config *config = eap_get_config(sm);
1869 if (config == NULL)
1870 return NULL;
1871 *len = config->otp_len;
1872 return config->otp;
1873}
1874
1875
1876/**
1877 * eap_clear_config_otp - Clear used one-time password
1878 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1879 *
1880 * This function clears a used one-time password (OTP) from the current network
1881 * configuration. This should be called when the OTP has been used and is not
1882 * needed anymore.
1883 */
1884void eap_clear_config_otp(struct eap_sm *sm)
1885{
1886 struct eap_peer_config *config = eap_get_config(sm);
1887 if (config == NULL)
1888 return;
1889 os_memset(config->otp, 0, config->otp_len);
1890 os_free(config->otp);
1891 config->otp = NULL;
1892 config->otp_len = 0;
1893}
1894
1895
1896/**
1897 * eap_get_config_phase1 - Get phase1 data from the network configuration
1898 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1899 * Returns: Pointer to the phase1 data or %NULL if not found
1900 */
1901const char * eap_get_config_phase1(struct eap_sm *sm)
1902{
1903 struct eap_peer_config *config = eap_get_config(sm);
1904 if (config == NULL)
1905 return NULL;
1906 return config->phase1;
1907}
1908
1909
1910/**
1911 * eap_get_config_phase2 - Get phase2 data from the network configuration
1912 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1913 * Returns: Pointer to the phase1 data or %NULL if not found
1914 */
1915const char * eap_get_config_phase2(struct eap_sm *sm)
1916{
1917 struct eap_peer_config *config = eap_get_config(sm);
1918 if (config == NULL)
1919 return NULL;
1920 return config->phase2;
1921}
1922
1923
f3a3e698
JM
1924int eap_get_config_fragment_size(struct eap_sm *sm)
1925{
1926 struct eap_peer_config *config = eap_get_config(sm);
1927 if (config == NULL)
1928 return -1;
1929 return config->fragment_size;
1930}
1931
1932
6fc6879b
JM
1933/**
1934 * eap_key_available - Get key availability (eapKeyAvailable variable)
1935 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1936 * Returns: 1 if EAP keying material is available, 0 if not
1937 */
1938int eap_key_available(struct eap_sm *sm)
1939{
1940 return sm ? sm->eapKeyAvailable : 0;
1941}
1942
1943
1944/**
1945 * eap_notify_success - Notify EAP state machine about external success trigger
1946 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1947 *
1948 * This function is called when external event, e.g., successful completion of
1949 * WPA-PSK key handshake, is indicating that EAP state machine should move to
1950 * success state. This is mainly used with security modes that do not use EAP
1951 * state machine (e.g., WPA-PSK).
1952 */
1953void eap_notify_success(struct eap_sm *sm)
1954{
1955 if (sm) {
1956 sm->decision = DECISION_COND_SUCC;
1957 sm->EAP_state = EAP_SUCCESS;
1958 }
1959}
1960
1961
1962/**
1963 * eap_notify_lower_layer_success - Notification of lower layer success
1964 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1965 *
1966 * Notify EAP state machines that a lower layer has detected a successful
1967 * authentication. This is used to recover from dropped EAP-Success messages.
1968 */
1969void eap_notify_lower_layer_success(struct eap_sm *sm)
1970{
1971 if (sm == NULL)
1972 return;
1973
1974 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1975 sm->decision == DECISION_FAIL ||
1976 (sm->methodState != METHOD_MAY_CONT &&
1977 sm->methodState != METHOD_DONE))
1978 return;
1979
1980 if (sm->eapKeyData != NULL)
1981 sm->eapKeyAvailable = TRUE;
1982 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1983 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1984 "EAP authentication completed successfully (based on lower "
1985 "layer success)");
1986}
1987
1988
1989/**
1990 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1991 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1992 * @len: Pointer to variable that will be set to number of bytes in the key
1993 * Returns: Pointer to the EAP keying data or %NULL on failure
1994 *
1995 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1996 * key is available only after a successful authentication. EAP state machine
1997 * continues to manage the key data and the caller must not change or free the
1998 * returned data.
1999 */
2000const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2001{
2002 if (sm == NULL || sm->eapKeyData == NULL) {
2003 *len = 0;
2004 return NULL;
2005 }
2006
2007 *len = sm->eapKeyDataLen;
2008 return sm->eapKeyData;
2009}
2010
2011
2012/**
2013 * eap_get_eapKeyData - Get EAP response data
2014 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2015 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2016 *
2017 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2018 * available when EAP state machine has processed an incoming EAP request. The
2019 * EAP state machine does not maintain a reference to the response after this
2020 * function is called and the caller is responsible for freeing the data.
2021 */
2022struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2023{
2024 struct wpabuf *resp;
2025
2026 if (sm == NULL || sm->eapRespData == NULL)
2027 return NULL;
2028
2029 resp = sm->eapRespData;
2030 sm->eapRespData = NULL;
2031
2032 return resp;
2033}
2034
2035
2036/**
2037 * eap_sm_register_scard_ctx - Notification of smart card context
2038 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2039 * @ctx: Context data for smart card operations
2040 *
2041 * Notify EAP state machines of context data for smart card operations. This
2042 * context data will be used as a parameter for scard_*() functions.
2043 */
2044void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2045{
2046 if (sm)
2047 sm->scard_ctx = ctx;
2048}
2049
2050
2051/**
2052 * eap_set_config_blob - Set or add a named configuration blob
2053 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2054 * @blob: New value for the blob
2055 *
2056 * Adds a new configuration blob or replaces the current value of an existing
2057 * blob.
2058 */
2059void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2060{
2061#ifndef CONFIG_NO_CONFIG_BLOBS
2062 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2063#endif /* CONFIG_NO_CONFIG_BLOBS */
2064}
2065
2066
2067/**
2068 * eap_get_config_blob - Get a named configuration blob
2069 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2070 * @name: Name of the blob
2071 * Returns: Pointer to blob data or %NULL if not found
2072 */
2073const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2074 const char *name)
2075{
2076#ifndef CONFIG_NO_CONFIG_BLOBS
2077 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2078#else /* CONFIG_NO_CONFIG_BLOBS */
2079 return NULL;
2080#endif /* CONFIG_NO_CONFIG_BLOBS */
2081}
2082
2083
2084/**
2085 * eap_set_force_disabled - Set force_disabled flag
2086 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2087 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2088 *
2089 * This function is used to force EAP state machine to be disabled when it is
2090 * not in use (e.g., with WPA-PSK or plaintext connections).
2091 */
2092void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2093{
2094 sm->force_disabled = disabled;
2095}
2096
2097
2098 /**
2099 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2100 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2101 *
2102 * An EAP method can perform a pending operation (e.g., to get a response from
2103 * an external process). Once the response is available, this function can be
2104 * used to request EAPOL state machine to retry delivering the previously
2105 * received (and still unanswered) EAP request to EAP state machine.
2106 */
2107void eap_notify_pending(struct eap_sm *sm)
2108{
2109 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2110}
2111
2112
2113/**
2114 * eap_invalidate_cached_session - Mark cached session data invalid
2115 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2116 */
2117void eap_invalidate_cached_session(struct eap_sm *sm)
2118{
2119 if (sm)
2120 eap_deinit_prev_method(sm, "invalidate");
2121}
ad08c363
JM
2122
2123
2124int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2125{
2126 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2127 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2128 return 0; /* Not a WPS Enrollee */
2129
2130 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2131 return 0; /* Not using PBC */
2132
2133 return 1;
2134}
2135
2136
2137int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2138{
2139 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2140 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2141 return 0; /* Not a WPS Enrollee */
2142
2143 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2144 return 0; /* Not using PIN */
2145
2146 return 1;
2147}