]> git.ipfire.org Git - thirdparty/qemu.git/blame - target-sparc/op_helper.c
Use initial CPU definition structure for some CPU fields instead of copying
[thirdparty/qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
0828b448
BS
4#if !defined(CONFIG_USER_ONLY)
5#include "softmmu_exec.h"
6#endif /* !defined(CONFIG_USER_ONLY) */
e8af50a3 7
e80cfcfc 8//#define DEBUG_MMU
952a328f 9//#define DEBUG_MXCC
94554550 10//#define DEBUG_UNALIGNED
6c36d3fa 11//#define DEBUG_UNASSIGNED
8543e2cf 12//#define DEBUG_ASI
e80cfcfc 13
952a328f
BS
14#ifdef DEBUG_MMU
15#define DPRINTF_MMU(fmt, args...) \
16do { printf("MMU: " fmt , ##args); } while (0)
17#else
22548760 18#define DPRINTF_MMU(fmt, args...) do {} while (0)
952a328f
BS
19#endif
20
21#ifdef DEBUG_MXCC
22#define DPRINTF_MXCC(fmt, args...) \
23do { printf("MXCC: " fmt , ##args); } while (0)
24#else
22548760 25#define DPRINTF_MXCC(fmt, args...) do {} while (0)
952a328f
BS
26#endif
27
8543e2cf
BS
28#ifdef DEBUG_ASI
29#define DPRINTF_ASI(fmt, args...) \
30do { printf("ASI: " fmt , ##args); } while (0)
31#else
22548760 32#define DPRINTF_ASI(fmt, args...) do {} while (0)
8543e2cf
BS
33#endif
34
2cade6a3
BS
35#ifdef TARGET_SPARC64
36#ifndef TARGET_ABI32
37#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
c2bc0e38 38#else
2cade6a3
BS
39#define AM_CHECK(env1) (1)
40#endif
c2bc0e38
BS
41#endif
42
2cade6a3
BS
43static inline void address_mask(CPUState *env1, target_ulong *addr)
44{
45#ifdef TARGET_SPARC64
46 if (AM_CHECK(env1))
47 *addr &= 0xffffffffULL;
48#endif
49}
50
9d893301
FB
51void raise_exception(int tt)
52{
53 env->exception_index = tt;
54 cpu_loop_exit();
3b46e624 55}
9d893301 56
1a2fb1c0 57void helper_trap(target_ulong nb_trap)
417454b0 58{
1a2fb1c0
BS
59 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
60 cpu_loop_exit();
61}
62
63void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
64{
65 if (do_trap) {
66 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
67 cpu_loop_exit();
68 }
69}
70
2b29924f
BS
71void helper_check_align(target_ulong addr, uint32_t align)
72{
c2bc0e38
BS
73 if (addr & align) {
74#ifdef DEBUG_UNALIGNED
75 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
76 "\n", addr, env->pc);
77#endif
2b29924f 78 raise_exception(TT_UNALIGNED);
c2bc0e38 79 }
2b29924f
BS
80}
81
44e7757c
BS
82#define F_HELPER(name, p) void helper_f##name##p(void)
83
44e7757c
BS
84#define F_BINOP(name) \
85 F_HELPER(name, s) \
86 { \
87 FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \
88 } \
89 F_HELPER(name, d) \
90 { \
91 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
92 } \
93 F_HELPER(name, q) \
94 { \
95 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 96 }
44e7757c
BS
97
98F_BINOP(add);
99F_BINOP(sub);
100F_BINOP(mul);
101F_BINOP(div);
102#undef F_BINOP
103
104void helper_fsmuld(void)
1a2fb1c0 105{
44e7757c
BS
106 DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
107 float32_to_float64(FT1, &env->fp_status),
108 &env->fp_status);
109}
1a2fb1c0 110
4e14008f
BS
111void helper_fdmulq(void)
112{
113 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
114 float64_to_float128(DT1, &env->fp_status),
115 &env->fp_status);
116}
4e14008f 117
44e7757c
BS
118F_HELPER(neg, s)
119{
120 FT0 = float32_chs(FT1);
417454b0
BS
121}
122
44e7757c
BS
123#ifdef TARGET_SPARC64
124F_HELPER(neg, d)
7e8c2b6c 125{
44e7757c 126 DT0 = float64_chs(DT1);
7e8c2b6c 127}
4e14008f 128
4e14008f
BS
129F_HELPER(neg, q)
130{
131 QT0 = float128_chs(QT1);
132}
133#endif
44e7757c
BS
134
135/* Integer to float conversion. */
136F_HELPER(ito, s)
a0c4cb4a 137{
ec230928 138 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a
FB
139}
140
44e7757c 141F_HELPER(ito, d)
a0c4cb4a 142{
ec230928 143 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a 144}
9c2b428e 145
4e14008f
BS
146F_HELPER(ito, q)
147{
148 QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
149}
4e14008f 150
1e64e78d 151#ifdef TARGET_SPARC64
44e7757c 152F_HELPER(xto, s)
1e64e78d 153{
1e64e78d 154 FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
155}
156
44e7757c 157F_HELPER(xto, d)
1e64e78d 158{
1e64e78d 159 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 160}
64a88d5d 161
4e14008f
BS
162F_HELPER(xto, q)
163{
164 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
165}
166#endif
44e7757c
BS
167#undef F_HELPER
168
169/* floating point conversion */
170void helper_fdtos(void)
171{
172 FT0 = float64_to_float32(DT1, &env->fp_status);
173}
174
175void helper_fstod(void)
176{
177 DT0 = float32_to_float64(FT1, &env->fp_status);
178}
9c2b428e 179
4e14008f
BS
180void helper_fqtos(void)
181{
182 FT0 = float128_to_float32(QT1, &env->fp_status);
183}
184
185void helper_fstoq(void)
186{
187 QT0 = float32_to_float128(FT1, &env->fp_status);
188}
189
190void helper_fqtod(void)
191{
192 DT0 = float128_to_float64(QT1, &env->fp_status);
193}
194
195void helper_fdtoq(void)
196{
197 QT0 = float64_to_float128(DT1, &env->fp_status);
198}
4e14008f 199
44e7757c
BS
200/* Float to integer conversion. */
201void helper_fstoi(void)
202{
203 *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
204}
205
206void helper_fdtoi(void)
207{
208 *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
209}
210
4e14008f
BS
211void helper_fqtoi(void)
212{
213 *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
214}
4e14008f 215
44e7757c
BS
216#ifdef TARGET_SPARC64
217void helper_fstox(void)
218{
219 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
220}
221
222void helper_fdtox(void)
223{
224 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
225}
226
4e14008f
BS
227void helper_fqtox(void)
228{
229 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
230}
4e14008f 231
44e7757c
BS
232void helper_faligndata(void)
233{
234 uint64_t tmp;
235
236 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
06057e6f
BS
237 /* on many architectures a shift of 64 does nothing */
238 if ((env->gsr & 7) != 0) {
239 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
240 }
44e7757c
BS
241 *((uint64_t *)&DT0) = tmp;
242}
243
244void helper_movl_FT0_0(void)
245{
246 *((uint32_t *)&FT0) = 0;
247}
248
249void helper_movl_DT0_0(void)
250{
251 *((uint64_t *)&DT0) = 0;
252}
253
254void helper_movl_FT0_1(void)
255{
256 *((uint32_t *)&FT0) = 0xffffffff;
257}
258
259void helper_movl_DT0_1(void)
260{
261 *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
262}
263
264void helper_fnot(void)
265{
266 *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
267}
268
269void helper_fnots(void)
270{
271 *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
272}
273
274void helper_fnor(void)
275{
276 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
277}
278
279void helper_fnors(void)
280{
281 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
282}
283
284void helper_for(void)
285{
286 *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
287}
288
289void helper_fors(void)
290{
291 *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
292}
293
294void helper_fxor(void)
295{
296 *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
297}
298
299void helper_fxors(void)
300{
301 *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
302}
303
304void helper_fand(void)
305{
306 *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
307}
308
309void helper_fands(void)
310{
311 *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
312}
313
314void helper_fornot(void)
315{
316 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
317}
318
319void helper_fornots(void)
320{
321 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
322}
323
324void helper_fandnot(void)
325{
326 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
327}
328
329void helper_fandnots(void)
330{
331 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
332}
333
334void helper_fnand(void)
335{
336 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
337}
338
339void helper_fnands(void)
340{
341 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
342}
343
344void helper_fxnor(void)
345{
346 *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
347}
348
349void helper_fxnors(void)
350{
351 *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
352}
353
354#ifdef WORDS_BIGENDIAN
355#define VIS_B64(n) b[7 - (n)]
356#define VIS_W64(n) w[3 - (n)]
357#define VIS_SW64(n) sw[3 - (n)]
358#define VIS_L64(n) l[1 - (n)]
359#define VIS_B32(n) b[3 - (n)]
360#define VIS_W32(n) w[1 - (n)]
361#else
362#define VIS_B64(n) b[n]
363#define VIS_W64(n) w[n]
364#define VIS_SW64(n) sw[n]
365#define VIS_L64(n) l[n]
366#define VIS_B32(n) b[n]
367#define VIS_W32(n) w[n]
368#endif
369
370typedef union {
371 uint8_t b[8];
372 uint16_t w[4];
373 int16_t sw[4];
374 uint32_t l[2];
375 float64 d;
376} vis64;
377
378typedef union {
379 uint8_t b[4];
380 uint16_t w[2];
381 uint32_t l;
382 float32 f;
383} vis32;
384
385void helper_fpmerge(void)
386{
387 vis64 s, d;
388
389 s.d = DT0;
390 d.d = DT1;
391
392 // Reverse calculation order to handle overlap
393 d.VIS_B64(7) = s.VIS_B64(3);
394 d.VIS_B64(6) = d.VIS_B64(3);
395 d.VIS_B64(5) = s.VIS_B64(2);
396 d.VIS_B64(4) = d.VIS_B64(2);
397 d.VIS_B64(3) = s.VIS_B64(1);
398 d.VIS_B64(2) = d.VIS_B64(1);
399 d.VIS_B64(1) = s.VIS_B64(0);
400 //d.VIS_B64(0) = d.VIS_B64(0);
401
402 DT0 = d.d;
403}
404
405void helper_fmul8x16(void)
406{
407 vis64 s, d;
408 uint32_t tmp;
409
410 s.d = DT0;
411 d.d = DT1;
412
413#define PMUL(r) \
414 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
415 if ((tmp & 0xff) > 0x7f) \
416 tmp += 0x100; \
417 d.VIS_W64(r) = tmp >> 8;
418
419 PMUL(0);
420 PMUL(1);
421 PMUL(2);
422 PMUL(3);
423#undef PMUL
424
425 DT0 = d.d;
426}
427
428void helper_fmul8x16al(void)
429{
430 vis64 s, d;
431 uint32_t tmp;
432
433 s.d = DT0;
434 d.d = DT1;
435
436#define PMUL(r) \
437 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
438 if ((tmp & 0xff) > 0x7f) \
439 tmp += 0x100; \
440 d.VIS_W64(r) = tmp >> 8;
441
442 PMUL(0);
443 PMUL(1);
444 PMUL(2);
445 PMUL(3);
446#undef PMUL
447
448 DT0 = d.d;
449}
450
451void helper_fmul8x16au(void)
452{
453 vis64 s, d;
454 uint32_t tmp;
455
456 s.d = DT0;
457 d.d = DT1;
458
459#define PMUL(r) \
460 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
461 if ((tmp & 0xff) > 0x7f) \
462 tmp += 0x100; \
463 d.VIS_W64(r) = tmp >> 8;
464
465 PMUL(0);
466 PMUL(1);
467 PMUL(2);
468 PMUL(3);
469#undef PMUL
470
471 DT0 = d.d;
472}
473
474void helper_fmul8sux16(void)
475{
476 vis64 s, d;
477 uint32_t tmp;
478
479 s.d = DT0;
480 d.d = DT1;
481
482#define PMUL(r) \
483 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
484 if ((tmp & 0xff) > 0x7f) \
485 tmp += 0x100; \
486 d.VIS_W64(r) = tmp >> 8;
487
488 PMUL(0);
489 PMUL(1);
490 PMUL(2);
491 PMUL(3);
492#undef PMUL
493
494 DT0 = d.d;
495}
496
497void helper_fmul8ulx16(void)
498{
499 vis64 s, d;
500 uint32_t tmp;
501
502 s.d = DT0;
503 d.d = DT1;
504
505#define PMUL(r) \
506 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
507 if ((tmp & 0xff) > 0x7f) \
508 tmp += 0x100; \
509 d.VIS_W64(r) = tmp >> 8;
510
511 PMUL(0);
512 PMUL(1);
513 PMUL(2);
514 PMUL(3);
515#undef PMUL
516
517 DT0 = d.d;
518}
519
520void helper_fmuld8sux16(void)
521{
522 vis64 s, d;
523 uint32_t tmp;
524
525 s.d = DT0;
526 d.d = DT1;
527
528#define PMUL(r) \
529 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
530 if ((tmp & 0xff) > 0x7f) \
531 tmp += 0x100; \
532 d.VIS_L64(r) = tmp;
533
534 // Reverse calculation order to handle overlap
535 PMUL(1);
536 PMUL(0);
537#undef PMUL
538
539 DT0 = d.d;
540}
541
542void helper_fmuld8ulx16(void)
543{
544 vis64 s, d;
545 uint32_t tmp;
546
547 s.d = DT0;
548 d.d = DT1;
549
550#define PMUL(r) \
551 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
552 if ((tmp & 0xff) > 0x7f) \
553 tmp += 0x100; \
554 d.VIS_L64(r) = tmp;
555
556 // Reverse calculation order to handle overlap
557 PMUL(1);
558 PMUL(0);
559#undef PMUL
560
561 DT0 = d.d;
562}
563
564void helper_fexpand(void)
565{
566 vis32 s;
567 vis64 d;
568
569 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
570 d.d = DT1;
571 d.VIS_L64(0) = s.VIS_W32(0) << 4;
572 d.VIS_L64(1) = s.VIS_W32(1) << 4;
573 d.VIS_L64(2) = s.VIS_W32(2) << 4;
574 d.VIS_L64(3) = s.VIS_W32(3) << 4;
575
576 DT0 = d.d;
577}
578
579#define VIS_HELPER(name, F) \
580 void name##16(void) \
581 { \
582 vis64 s, d; \
583 \
584 s.d = DT0; \
585 d.d = DT1; \
586 \
587 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
588 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
589 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
590 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
591 \
592 DT0 = d.d; \
593 } \
594 \
595 void name##16s(void) \
596 { \
597 vis32 s, d; \
598 \
599 s.f = FT0; \
600 d.f = FT1; \
601 \
602 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
603 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
604 \
605 FT0 = d.f; \
606 } \
607 \
608 void name##32(void) \
609 { \
610 vis64 s, d; \
611 \
612 s.d = DT0; \
613 d.d = DT1; \
614 \
615 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
616 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
617 \
618 DT0 = d.d; \
619 } \
620 \
621 void name##32s(void) \
622 { \
623 vis32 s, d; \
624 \
625 s.f = FT0; \
626 d.f = FT1; \
627 \
628 d.l = F(d.l, s.l); \
629 \
630 FT0 = d.f; \
631 }
632
633#define FADD(a, b) ((a) + (b))
634#define FSUB(a, b) ((a) - (b))
635VIS_HELPER(helper_fpadd, FADD)
636VIS_HELPER(helper_fpsub, FSUB)
637
638#define VIS_CMPHELPER(name, F) \
639 void name##16(void) \
640 { \
641 vis64 s, d; \
642 \
643 s.d = DT0; \
644 d.d = DT1; \
645 \
646 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
647 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
648 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
649 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
650 \
651 DT0 = d.d; \
652 } \
653 \
654 void name##32(void) \
655 { \
656 vis64 s, d; \
657 \
658 s.d = DT0; \
659 d.d = DT1; \
660 \
661 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
662 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
663 \
664 DT0 = d.d; \
665 }
666
667#define FCMPGT(a, b) ((a) > (b))
668#define FCMPEQ(a, b) ((a) == (b))
669#define FCMPLE(a, b) ((a) <= (b))
670#define FCMPNE(a, b) ((a) != (b))
671
672VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
673VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
674VIS_CMPHELPER(helper_fcmple, FCMPLE)
675VIS_CMPHELPER(helper_fcmpne, FCMPNE)
676#endif
677
678void helper_check_ieee_exceptions(void)
679{
680 target_ulong status;
681
682 status = get_float_exception_flags(&env->fp_status);
683 if (status) {
684 /* Copy IEEE 754 flags into FSR */
685 if (status & float_flag_invalid)
686 env->fsr |= FSR_NVC;
687 if (status & float_flag_overflow)
688 env->fsr |= FSR_OFC;
689 if (status & float_flag_underflow)
690 env->fsr |= FSR_UFC;
691 if (status & float_flag_divbyzero)
692 env->fsr |= FSR_DZC;
693 if (status & float_flag_inexact)
694 env->fsr |= FSR_NXC;
695
696 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
697 /* Unmasked exception, generate a trap */
698 env->fsr |= FSR_FTT_IEEE_EXCP;
699 raise_exception(TT_FP_EXCP);
700 } else {
701 /* Accumulate exceptions */
702 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
703 }
704 }
705}
706
707void helper_clear_float_exceptions(void)
708{
709 set_float_exception_flags(0, &env->fp_status);
710}
711
7e8c2b6c 712void helper_fabss(void)
e8af50a3 713{
7a0e1f41 714 FT0 = float32_abs(FT1);
e8af50a3
FB
715}
716
3475187d 717#ifdef TARGET_SPARC64
7e8c2b6c 718void helper_fabsd(void)
3475187d
FB
719{
720 DT0 = float64_abs(DT1);
721}
4e14008f 722
4e14008f
BS
723void helper_fabsq(void)
724{
725 QT0 = float128_abs(QT1);
726}
727#endif
3475187d 728
7e8c2b6c 729void helper_fsqrts(void)
e8af50a3 730{
7a0e1f41 731 FT0 = float32_sqrt(FT1, &env->fp_status);
e8af50a3
FB
732}
733
7e8c2b6c 734void helper_fsqrtd(void)
e8af50a3 735{
7a0e1f41 736 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
737}
738
4e14008f
BS
739void helper_fsqrtq(void)
740{
741 QT0 = float128_sqrt(QT1, &env->fp_status);
742}
4e14008f 743
417454b0 744#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
7e8c2b6c 745 void glue(helper_, name) (void) \
65ce8c2f 746 { \
1a2fb1c0
BS
747 target_ulong new_fsr; \
748 \
65ce8c2f
FB
749 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
750 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
751 case float_relation_unordered: \
1a2fb1c0 752 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
417454b0 753 if ((env->fsr & FSR_NVM) || TRAP) { \
1a2fb1c0 754 env->fsr |= new_fsr; \
417454b0
BS
755 env->fsr |= FSR_NVC; \
756 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
757 raise_exception(TT_FP_EXCP); \
758 } else { \
759 env->fsr |= FSR_NVA; \
760 } \
761 break; \
762 case float_relation_less: \
1a2fb1c0 763 new_fsr = FSR_FCC0 << FS; \
65ce8c2f
FB
764 break; \
765 case float_relation_greater: \
1a2fb1c0 766 new_fsr = FSR_FCC1 << FS; \
65ce8c2f
FB
767 break; \
768 default: \
1a2fb1c0 769 new_fsr = 0; \
65ce8c2f
FB
770 break; \
771 } \
1a2fb1c0 772 env->fsr |= new_fsr; \
e8af50a3 773 }
e8af50a3 774
417454b0
BS
775GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
776GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
777
778GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
779GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 780
4e14008f
BS
781GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
782GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 783
3475187d 784#ifdef TARGET_SPARC64
417454b0
BS
785GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
786GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 787GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0
BS
788
789GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
790GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 791GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0
BS
792
793GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
794GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 795GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0
BS
796
797GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
798GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 799GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 800
417454b0
BS
801GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
802GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 803GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 804
417454b0
BS
805GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
806GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
807GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
808#endif
3475187d 809
77f193da
BS
810#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
811 defined(DEBUG_MXCC)
952a328f
BS
812static void dump_mxcc(CPUState *env)
813{
814 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
77f193da
BS
815 env->mxccdata[0], env->mxccdata[1],
816 env->mxccdata[2], env->mxccdata[3]);
952a328f
BS
817 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
818 " %016llx %016llx %016llx %016llx\n",
77f193da
BS
819 env->mxccregs[0], env->mxccregs[1],
820 env->mxccregs[2], env->mxccregs[3],
821 env->mxccregs[4], env->mxccregs[5],
822 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
823}
824#endif
825
1a2fb1c0
BS
826#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
827 && defined(DEBUG_ASI)
828static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
829 uint64_t r1)
8543e2cf
BS
830{
831 switch (size)
832 {
833 case 1:
1a2fb1c0
BS
834 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
835 addr, asi, r1 & 0xff);
8543e2cf
BS
836 break;
837 case 2:
1a2fb1c0
BS
838 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
839 addr, asi, r1 & 0xffff);
8543e2cf
BS
840 break;
841 case 4:
1a2fb1c0
BS
842 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
843 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
844 break;
845 case 8:
1a2fb1c0
BS
846 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
847 addr, asi, r1);
8543e2cf
BS
848 break;
849 }
850}
851#endif
852
1a2fb1c0
BS
853#ifndef TARGET_SPARC64
854#ifndef CONFIG_USER_ONLY
855uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 856{
1a2fb1c0 857 uint64_t ret = 0;
8543e2cf 858#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 859 uint32_t last_addr = addr;
952a328f 860#endif
e80cfcfc 861
c2bc0e38 862 helper_check_align(addr, size - 1);
e80cfcfc 863 switch (asi) {
6c36d3fa 864 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 865 switch (addr) {
952a328f 866 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
867 if (size == 8)
868 ret = env->mxccregs[3];
869 else
77f193da
BS
870 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
871 size);
952a328f
BS
872 break;
873 case 0x01c00a04: /* MXCC control register */
874 if (size == 4)
875 ret = env->mxccregs[3];
876 else
77f193da
BS
877 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
878 size);
952a328f 879 break;
295db113
BS
880 case 0x01c00c00: /* Module reset register */
881 if (size == 8) {
1a2fb1c0 882 ret = env->mxccregs[5];
295db113
BS
883 // should we do something here?
884 } else
77f193da
BS
885 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
886 size);
295db113 887 break;
952a328f 888 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
889 if (size == 8)
890 ret = env->mxccregs[7];
891 else
77f193da
BS
892 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
893 size);
952a328f
BS
894 break;
895 default:
77f193da
BS
896 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
897 size);
952a328f
BS
898 break;
899 }
77f193da
BS
900 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
901 "addr = %08x -> ret = %08x,"
1a2fb1c0 902 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
903#ifdef DEBUG_MXCC
904 dump_mxcc(env);
905#endif
6c36d3fa 906 break;
e8af50a3 907 case 3: /* MMU probe */
0f8a249a
BS
908 {
909 int mmulev;
910
1a2fb1c0 911 mmulev = (addr >> 8) & 15;
0f8a249a
BS
912 if (mmulev > 4)
913 ret = 0;
1a2fb1c0
BS
914 else
915 ret = mmu_probe(env, addr, mmulev);
916 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
917 addr, mmulev, ret);
0f8a249a
BS
918 }
919 break;
e8af50a3 920 case 4: /* read MMU regs */
0f8a249a 921 {
1a2fb1c0 922 int reg = (addr >> 8) & 0x1f;
3b46e624 923
0f8a249a
BS
924 ret = env->mmuregs[reg];
925 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
926 env->mmuregs[3] = 0;
927 else if (reg == 0x13) /* Fault status read */
928 ret = env->mmuregs[3];
929 else if (reg == 0x14) /* Fault address read */
930 ret = env->mmuregs[4];
1a2fb1c0 931 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
932 }
933 break;
045380be
BS
934 case 5: // Turbosparc ITLB Diagnostic
935 case 6: // Turbosparc DTLB Diagnostic
936 case 7: // Turbosparc IOTLB Diagnostic
937 break;
6c36d3fa
BS
938 case 9: /* Supervisor code access */
939 switch(size) {
940 case 1:
1a2fb1c0 941 ret = ldub_code(addr);
6c36d3fa
BS
942 break;
943 case 2:
a4e7dd52 944 ret = lduw_code(addr);
6c36d3fa
BS
945 break;
946 default:
947 case 4:
a4e7dd52 948 ret = ldl_code(addr);
6c36d3fa
BS
949 break;
950 case 8:
a4e7dd52 951 ret = ldq_code(addr);
6c36d3fa
BS
952 break;
953 }
954 break;
81ad8ba2
BS
955 case 0xa: /* User data access */
956 switch(size) {
957 case 1:
1a2fb1c0 958 ret = ldub_user(addr);
81ad8ba2
BS
959 break;
960 case 2:
a4e7dd52 961 ret = lduw_user(addr);
81ad8ba2
BS
962 break;
963 default:
964 case 4:
a4e7dd52 965 ret = ldl_user(addr);
81ad8ba2
BS
966 break;
967 case 8:
a4e7dd52 968 ret = ldq_user(addr);
81ad8ba2
BS
969 break;
970 }
971 break;
972 case 0xb: /* Supervisor data access */
973 switch(size) {
974 case 1:
1a2fb1c0 975 ret = ldub_kernel(addr);
81ad8ba2
BS
976 break;
977 case 2:
a4e7dd52 978 ret = lduw_kernel(addr);
81ad8ba2
BS
979 break;
980 default:
981 case 4:
a4e7dd52 982 ret = ldl_kernel(addr);
81ad8ba2
BS
983 break;
984 case 8:
a4e7dd52 985 ret = ldq_kernel(addr);
81ad8ba2
BS
986 break;
987 }
988 break;
6c36d3fa
BS
989 case 0xc: /* I-cache tag */
990 case 0xd: /* I-cache data */
991 case 0xe: /* D-cache tag */
992 case 0xf: /* D-cache data */
993 break;
994 case 0x20: /* MMU passthrough */
02aab46a
FB
995 switch(size) {
996 case 1:
1a2fb1c0 997 ret = ldub_phys(addr);
02aab46a
FB
998 break;
999 case 2:
a4e7dd52 1000 ret = lduw_phys(addr);
02aab46a
FB
1001 break;
1002 default:
1003 case 4:
a4e7dd52 1004 ret = ldl_phys(addr);
02aab46a 1005 break;
9e61bde5 1006 case 8:
a4e7dd52 1007 ret = ldq_phys(addr);
0f8a249a 1008 break;
02aab46a 1009 }
0f8a249a 1010 break;
7d85892b 1011 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
1012 switch(size) {
1013 case 1:
1a2fb1c0 1014 ret = ldub_phys((target_phys_addr_t)addr
5dcb6b91
BS
1015 | ((target_phys_addr_t)(asi & 0xf) << 32));
1016 break;
1017 case 2:
a4e7dd52 1018 ret = lduw_phys((target_phys_addr_t)addr
5dcb6b91
BS
1019 | ((target_phys_addr_t)(asi & 0xf) << 32));
1020 break;
1021 default:
1022 case 4:
a4e7dd52 1023 ret = ldl_phys((target_phys_addr_t)addr
5dcb6b91
BS
1024 | ((target_phys_addr_t)(asi & 0xf) << 32));
1025 break;
1026 case 8:
a4e7dd52 1027 ret = ldq_phys((target_phys_addr_t)addr
5dcb6b91 1028 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1029 break;
5dcb6b91 1030 }
0f8a249a 1031 break;
045380be
BS
1032 case 0x30: // Turbosparc secondary cache diagnostic
1033 case 0x31: // Turbosparc RAM snoop
1034 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa
BS
1035 case 0x39: /* data cache diagnostic register */
1036 ret = 0;
1037 break;
045380be 1038 case 8: /* User code access, XXX */
e8af50a3 1039 default:
1a2fb1c0 1040 do_unassigned_access(addr, 0, 0, asi);
0f8a249a
BS
1041 ret = 0;
1042 break;
e8af50a3 1043 }
81ad8ba2
BS
1044 if (sign) {
1045 switch(size) {
1046 case 1:
1a2fb1c0 1047 ret = (int8_t) ret;
e32664fb 1048 break;
81ad8ba2 1049 case 2:
1a2fb1c0
BS
1050 ret = (int16_t) ret;
1051 break;
1052 case 4:
1053 ret = (int32_t) ret;
e32664fb 1054 break;
81ad8ba2 1055 default:
81ad8ba2
BS
1056 break;
1057 }
1058 }
8543e2cf 1059#ifdef DEBUG_ASI
1a2fb1c0 1060 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1061#endif
1a2fb1c0 1062 return ret;
e8af50a3
FB
1063}
1064
1a2fb1c0 1065void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1066{
c2bc0e38 1067 helper_check_align(addr, size - 1);
e8af50a3 1068 switch(asi) {
6c36d3fa 1069 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1070 switch (addr) {
952a328f
BS
1071 case 0x01c00000: /* MXCC stream data register 0 */
1072 if (size == 8)
1a2fb1c0 1073 env->mxccdata[0] = val;
952a328f 1074 else
77f193da
BS
1075 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1076 size);
952a328f
BS
1077 break;
1078 case 0x01c00008: /* MXCC stream data register 1 */
1079 if (size == 8)
1a2fb1c0 1080 env->mxccdata[1] = val;
952a328f 1081 else
77f193da
BS
1082 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1083 size);
952a328f
BS
1084 break;
1085 case 0x01c00010: /* MXCC stream data register 2 */
1086 if (size == 8)
1a2fb1c0 1087 env->mxccdata[2] = val;
952a328f 1088 else
77f193da
BS
1089 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1090 size);
952a328f
BS
1091 break;
1092 case 0x01c00018: /* MXCC stream data register 3 */
1093 if (size == 8)
1a2fb1c0 1094 env->mxccdata[3] = val;
952a328f 1095 else
77f193da
BS
1096 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1097 size);
952a328f
BS
1098 break;
1099 case 0x01c00100: /* MXCC stream source */
1100 if (size == 8)
1a2fb1c0 1101 env->mxccregs[0] = val;
952a328f 1102 else
77f193da
BS
1103 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1104 size);
1105 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1106 0);
1107 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1108 8);
1109 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1110 16);
1111 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1112 24);
952a328f
BS
1113 break;
1114 case 0x01c00200: /* MXCC stream destination */
1115 if (size == 8)
1a2fb1c0 1116 env->mxccregs[1] = val;
952a328f 1117 else
77f193da
BS
1118 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1119 size);
1120 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1121 env->mxccdata[0]);
1122 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1123 env->mxccdata[1]);
1124 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1125 env->mxccdata[2]);
1126 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1127 env->mxccdata[3]);
952a328f
BS
1128 break;
1129 case 0x01c00a00: /* MXCC control register */
1130 if (size == 8)
1a2fb1c0 1131 env->mxccregs[3] = val;
952a328f 1132 else
77f193da
BS
1133 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1134 size);
952a328f
BS
1135 break;
1136 case 0x01c00a04: /* MXCC control register */
1137 if (size == 4)
77f193da
BS
1138 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1139 | val;
952a328f 1140 else
77f193da
BS
1141 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1142 size);
952a328f
BS
1143 break;
1144 case 0x01c00e00: /* MXCC error register */
bbf7d96b 1145 // writing a 1 bit clears the error
952a328f 1146 if (size == 8)
1a2fb1c0 1147 env->mxccregs[6] &= ~val;
952a328f 1148 else
77f193da
BS
1149 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1150 size);
952a328f
BS
1151 break;
1152 case 0x01c00f00: /* MBus port address register */
1153 if (size == 8)
1a2fb1c0 1154 env->mxccregs[7] = val;
952a328f 1155 else
77f193da
BS
1156 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1157 size);
952a328f
BS
1158 break;
1159 default:
77f193da
BS
1160 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1161 size);
952a328f
BS
1162 break;
1163 }
77f193da
BS
1164 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1165 size, addr, val);
952a328f
BS
1166#ifdef DEBUG_MXCC
1167 dump_mxcc(env);
1168#endif
6c36d3fa 1169 break;
e8af50a3 1170 case 3: /* MMU flush */
0f8a249a
BS
1171 {
1172 int mmulev;
e80cfcfc 1173
1a2fb1c0 1174 mmulev = (addr >> 8) & 15;
952a328f 1175 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
1176 switch (mmulev) {
1177 case 0: // flush page
1a2fb1c0 1178 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
1179 break;
1180 case 1: // flush segment (256k)
1181 case 2: // flush region (16M)
1182 case 3: // flush context (4G)
1183 case 4: // flush entire
1184 tlb_flush(env, 1);
1185 break;
1186 default:
1187 break;
1188 }
55754d9e 1189#ifdef DEBUG_MMU
0f8a249a 1190 dump_mmu(env);
55754d9e 1191#endif
0f8a249a 1192 }
8543e2cf 1193 break;
e8af50a3 1194 case 4: /* write MMU regs */
0f8a249a 1195 {
1a2fb1c0 1196 int reg = (addr >> 8) & 0x1f;
0f8a249a 1197 uint32_t oldreg;
3b46e624 1198
0f8a249a 1199 oldreg = env->mmuregs[reg];
55754d9e 1200 switch(reg) {
3deaeab7 1201 case 0: // Control Register
3dd9a152 1202 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 1203 (val & 0x00ffffff);
0f8a249a
BS
1204 // Mappings generated during no-fault mode or MMU
1205 // disabled mode are invalid in normal mode
5578ceab
BS
1206 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1207 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
55754d9e
FB
1208 tlb_flush(env, 1);
1209 break;
3deaeab7 1210 case 1: // Context Table Pointer Register
5578ceab 1211 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
3deaeab7
BS
1212 break;
1213 case 2: // Context Register
5578ceab 1214 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
55754d9e
FB
1215 if (oldreg != env->mmuregs[reg]) {
1216 /* we flush when the MMU context changes because
1217 QEMU has no MMU context support */
1218 tlb_flush(env, 1);
1219 }
1220 break;
3deaeab7
BS
1221 case 3: // Synchronous Fault Status Register with Clear
1222 case 4: // Synchronous Fault Address Register
1223 break;
1224 case 0x10: // TLB Replacement Control Register
5578ceab 1225 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
55754d9e 1226 break;
3deaeab7 1227 case 0x13: // Synchronous Fault Status Register with Read and Clear
5578ceab 1228 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
3dd9a152 1229 break;
3deaeab7 1230 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 1231 env->mmuregs[4] = val;
3dd9a152 1232 break;
55754d9e 1233 default:
1a2fb1c0 1234 env->mmuregs[reg] = val;
55754d9e
FB
1235 break;
1236 }
55754d9e 1237 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
1238 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1239 reg, oldreg, env->mmuregs[reg]);
55754d9e 1240 }
952a328f 1241#ifdef DEBUG_MMU
0f8a249a 1242 dump_mmu(env);
55754d9e 1243#endif
0f8a249a 1244 }
8543e2cf 1245 break;
045380be
BS
1246 case 5: // Turbosparc ITLB Diagnostic
1247 case 6: // Turbosparc DTLB Diagnostic
1248 case 7: // Turbosparc IOTLB Diagnostic
1249 break;
81ad8ba2
BS
1250 case 0xa: /* User data access */
1251 switch(size) {
1252 case 1:
1a2fb1c0 1253 stb_user(addr, val);
81ad8ba2
BS
1254 break;
1255 case 2:
a4e7dd52 1256 stw_user(addr, val);
81ad8ba2
BS
1257 break;
1258 default:
1259 case 4:
a4e7dd52 1260 stl_user(addr, val);
81ad8ba2
BS
1261 break;
1262 case 8:
a4e7dd52 1263 stq_user(addr, val);
81ad8ba2
BS
1264 break;
1265 }
1266 break;
1267 case 0xb: /* Supervisor data access */
1268 switch(size) {
1269 case 1:
1a2fb1c0 1270 stb_kernel(addr, val);
81ad8ba2
BS
1271 break;
1272 case 2:
a4e7dd52 1273 stw_kernel(addr, val);
81ad8ba2
BS
1274 break;
1275 default:
1276 case 4:
a4e7dd52 1277 stl_kernel(addr, val);
81ad8ba2
BS
1278 break;
1279 case 8:
a4e7dd52 1280 stq_kernel(addr, val);
81ad8ba2
BS
1281 break;
1282 }
1283 break;
6c36d3fa
BS
1284 case 0xc: /* I-cache tag */
1285 case 0xd: /* I-cache data */
1286 case 0xe: /* D-cache tag */
1287 case 0xf: /* D-cache data */
1288 case 0x10: /* I/D-cache flush page */
1289 case 0x11: /* I/D-cache flush segment */
1290 case 0x12: /* I/D-cache flush region */
1291 case 0x13: /* I/D-cache flush context */
1292 case 0x14: /* I/D-cache flush user */
1293 break;
e80cfcfc 1294 case 0x17: /* Block copy, sta access */
0f8a249a 1295 {
1a2fb1c0
BS
1296 // val = src
1297 // addr = dst
0f8a249a 1298 // copy 32 bytes
6c36d3fa 1299 unsigned int i;
1a2fb1c0 1300 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 1301
6c36d3fa
BS
1302 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1303 temp = ldl_kernel(src);
1304 stl_kernel(dst, temp);
1305 }
0f8a249a 1306 }
8543e2cf 1307 break;
e80cfcfc 1308 case 0x1f: /* Block fill, stda access */
0f8a249a 1309 {
1a2fb1c0
BS
1310 // addr = dst
1311 // fill 32 bytes with val
6c36d3fa 1312 unsigned int i;
1a2fb1c0 1313 uint32_t dst = addr & 7;
6c36d3fa
BS
1314
1315 for (i = 0; i < 32; i += 8, dst += 8)
1316 stq_kernel(dst, val);
0f8a249a 1317 }
8543e2cf 1318 break;
6c36d3fa 1319 case 0x20: /* MMU passthrough */
0f8a249a 1320 {
02aab46a
FB
1321 switch(size) {
1322 case 1:
1a2fb1c0 1323 stb_phys(addr, val);
02aab46a
FB
1324 break;
1325 case 2:
a4e7dd52 1326 stw_phys(addr, val);
02aab46a
FB
1327 break;
1328 case 4:
1329 default:
a4e7dd52 1330 stl_phys(addr, val);
02aab46a 1331 break;
9e61bde5 1332 case 8:
a4e7dd52 1333 stq_phys(addr, val);
9e61bde5 1334 break;
02aab46a 1335 }
0f8a249a 1336 }
8543e2cf 1337 break;
045380be 1338 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 1339 {
5dcb6b91
BS
1340 switch(size) {
1341 case 1:
1a2fb1c0
BS
1342 stb_phys((target_phys_addr_t)addr
1343 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1344 break;
1345 case 2:
a4e7dd52 1346 stw_phys((target_phys_addr_t)addr
1a2fb1c0 1347 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1348 break;
1349 case 4:
1350 default:
a4e7dd52 1351 stl_phys((target_phys_addr_t)addr
1a2fb1c0 1352 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1353 break;
1354 case 8:
a4e7dd52 1355 stq_phys((target_phys_addr_t)addr
1a2fb1c0 1356 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1357 break;
1358 }
0f8a249a 1359 }
8543e2cf 1360 break;
045380be
BS
1361 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1362 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1363 // Turbosparc snoop RAM
77f193da
BS
1364 case 0x32: // store buffer control or Turbosparc page table
1365 // descriptor diagnostic
6c36d3fa
BS
1366 case 0x36: /* I-cache flash clear */
1367 case 0x37: /* D-cache flash clear */
666c87aa
BS
1368 case 0x38: /* breakpoint diagnostics */
1369 case 0x4c: /* breakpoint action */
6c36d3fa 1370 break;
045380be 1371 case 8: /* User code access, XXX */
6c36d3fa 1372 case 9: /* Supervisor code access, XXX */
e8af50a3 1373 default:
1a2fb1c0 1374 do_unassigned_access(addr, 1, 0, asi);
8543e2cf 1375 break;
e8af50a3 1376 }
8543e2cf 1377#ifdef DEBUG_ASI
1a2fb1c0 1378 dump_asi("write", addr, asi, size, val);
8543e2cf 1379#endif
e8af50a3
FB
1380}
1381
81ad8ba2
BS
1382#endif /* CONFIG_USER_ONLY */
1383#else /* TARGET_SPARC64 */
1384
1385#ifdef CONFIG_USER_ONLY
1a2fb1c0 1386uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
1387{
1388 uint64_t ret = 0;
1a2fb1c0
BS
1389#if defined(DEBUG_ASI)
1390 target_ulong last_addr = addr;
1391#endif
81ad8ba2
BS
1392
1393 if (asi < 0x80)
1394 raise_exception(TT_PRIV_ACT);
1395
c2bc0e38 1396 helper_check_align(addr, size - 1);
2cade6a3 1397 address_mask(env, &addr);
c2bc0e38 1398
81ad8ba2
BS
1399 switch (asi) {
1400 case 0x80: // Primary
1401 case 0x82: // Primary no-fault
1402 case 0x88: // Primary LE
1403 case 0x8a: // Primary no-fault LE
1404 {
1405 switch(size) {
1406 case 1:
1a2fb1c0 1407 ret = ldub_raw(addr);
81ad8ba2
BS
1408 break;
1409 case 2:
a4e7dd52 1410 ret = lduw_raw(addr);
81ad8ba2
BS
1411 break;
1412 case 4:
a4e7dd52 1413 ret = ldl_raw(addr);
81ad8ba2
BS
1414 break;
1415 default:
1416 case 8:
a4e7dd52 1417 ret = ldq_raw(addr);
81ad8ba2
BS
1418 break;
1419 }
1420 }
1421 break;
1422 case 0x81: // Secondary
1423 case 0x83: // Secondary no-fault
1424 case 0x89: // Secondary LE
1425 case 0x8b: // Secondary no-fault LE
1426 // XXX
1427 break;
1428 default:
1429 break;
1430 }
1431
1432 /* Convert from little endian */
1433 switch (asi) {
1434 case 0x88: // Primary LE
1435 case 0x89: // Secondary LE
1436 case 0x8a: // Primary no-fault LE
1437 case 0x8b: // Secondary no-fault LE
1438 switch(size) {
1439 case 2:
1440 ret = bswap16(ret);
e32664fb 1441 break;
81ad8ba2
BS
1442 case 4:
1443 ret = bswap32(ret);
e32664fb 1444 break;
81ad8ba2
BS
1445 case 8:
1446 ret = bswap64(ret);
e32664fb 1447 break;
81ad8ba2
BS
1448 default:
1449 break;
1450 }
1451 default:
1452 break;
1453 }
1454
1455 /* Convert to signed number */
1456 if (sign) {
1457 switch(size) {
1458 case 1:
1459 ret = (int8_t) ret;
e32664fb 1460 break;
81ad8ba2
BS
1461 case 2:
1462 ret = (int16_t) ret;
e32664fb 1463 break;
81ad8ba2
BS
1464 case 4:
1465 ret = (int32_t) ret;
e32664fb 1466 break;
81ad8ba2
BS
1467 default:
1468 break;
1469 }
1470 }
1a2fb1c0
BS
1471#ifdef DEBUG_ASI
1472 dump_asi("read ", last_addr, asi, size, ret);
1473#endif
1474 return ret;
81ad8ba2
BS
1475}
1476
1a2fb1c0 1477void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 1478{
1a2fb1c0
BS
1479#ifdef DEBUG_ASI
1480 dump_asi("write", addr, asi, size, val);
1481#endif
81ad8ba2
BS
1482 if (asi < 0x80)
1483 raise_exception(TT_PRIV_ACT);
1484
c2bc0e38 1485 helper_check_align(addr, size - 1);
2cade6a3 1486 address_mask(env, &addr);
c2bc0e38 1487
81ad8ba2
BS
1488 /* Convert to little endian */
1489 switch (asi) {
1490 case 0x88: // Primary LE
1491 case 0x89: // Secondary LE
1492 switch(size) {
1493 case 2:
1a2fb1c0 1494 addr = bswap16(addr);
e32664fb 1495 break;
81ad8ba2 1496 case 4:
1a2fb1c0 1497 addr = bswap32(addr);
e32664fb 1498 break;
81ad8ba2 1499 case 8:
1a2fb1c0 1500 addr = bswap64(addr);
e32664fb 1501 break;
81ad8ba2
BS
1502 default:
1503 break;
1504 }
1505 default:
1506 break;
1507 }
1508
1509 switch(asi) {
1510 case 0x80: // Primary
1511 case 0x88: // Primary LE
1512 {
1513 switch(size) {
1514 case 1:
1a2fb1c0 1515 stb_raw(addr, val);
81ad8ba2
BS
1516 break;
1517 case 2:
a4e7dd52 1518 stw_raw(addr, val);
81ad8ba2
BS
1519 break;
1520 case 4:
a4e7dd52 1521 stl_raw(addr, val);
81ad8ba2
BS
1522 break;
1523 case 8:
1524 default:
a4e7dd52 1525 stq_raw(addr, val);
81ad8ba2
BS
1526 break;
1527 }
1528 }
1529 break;
1530 case 0x81: // Secondary
1531 case 0x89: // Secondary LE
1532 // XXX
1533 return;
1534
1535 case 0x82: // Primary no-fault, RO
1536 case 0x83: // Secondary no-fault, RO
1537 case 0x8a: // Primary no-fault LE, RO
1538 case 0x8b: // Secondary no-fault LE, RO
1539 default:
1a2fb1c0 1540 do_unassigned_access(addr, 1, 0, 1);
81ad8ba2
BS
1541 return;
1542 }
1543}
1544
1545#else /* CONFIG_USER_ONLY */
3475187d 1546
1a2fb1c0 1547uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 1548{
83469015 1549 uint64_t ret = 0;
1a2fb1c0
BS
1550#if defined(DEBUG_ASI)
1551 target_ulong last_addr = addr;
1552#endif
3475187d 1553
6f27aba6 1554 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
1555 || ((env->def->features & CPU_FEATURE_HYPV)
1556 && asi >= 0x30 && asi < 0x80
fb79ceb9 1557 && !(env->hpstate & HS_PRIV)))
0f8a249a 1558 raise_exception(TT_PRIV_ACT);
3475187d 1559
c2bc0e38 1560 helper_check_align(addr, size - 1);
3475187d 1561 switch (asi) {
81ad8ba2
BS
1562 case 0x10: // As if user primary
1563 case 0x18: // As if user primary LE
1564 case 0x80: // Primary
1565 case 0x82: // Primary no-fault
1566 case 0x88: // Primary LE
1567 case 0x8a: // Primary no-fault LE
1568 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
1569 if ((env->def->features & CPU_FEATURE_HYPV)
1570 && env->hpstate & HS_PRIV) {
6f27aba6
BS
1571 switch(size) {
1572 case 1:
1a2fb1c0 1573 ret = ldub_hypv(addr);
6f27aba6
BS
1574 break;
1575 case 2:
a4e7dd52 1576 ret = lduw_hypv(addr);
6f27aba6
BS
1577 break;
1578 case 4:
a4e7dd52 1579 ret = ldl_hypv(addr);
6f27aba6
BS
1580 break;
1581 default:
1582 case 8:
a4e7dd52 1583 ret = ldq_hypv(addr);
6f27aba6
BS
1584 break;
1585 }
1586 } else {
1587 switch(size) {
1588 case 1:
1a2fb1c0 1589 ret = ldub_kernel(addr);
6f27aba6
BS
1590 break;
1591 case 2:
a4e7dd52 1592 ret = lduw_kernel(addr);
6f27aba6
BS
1593 break;
1594 case 4:
a4e7dd52 1595 ret = ldl_kernel(addr);
6f27aba6
BS
1596 break;
1597 default:
1598 case 8:
a4e7dd52 1599 ret = ldq_kernel(addr);
6f27aba6
BS
1600 break;
1601 }
81ad8ba2
BS
1602 }
1603 } else {
1604 switch(size) {
1605 case 1:
1a2fb1c0 1606 ret = ldub_user(addr);
81ad8ba2
BS
1607 break;
1608 case 2:
a4e7dd52 1609 ret = lduw_user(addr);
81ad8ba2
BS
1610 break;
1611 case 4:
a4e7dd52 1612 ret = ldl_user(addr);
81ad8ba2
BS
1613 break;
1614 default:
1615 case 8:
a4e7dd52 1616 ret = ldq_user(addr);
81ad8ba2
BS
1617 break;
1618 }
1619 }
1620 break;
3475187d
FB
1621 case 0x14: // Bypass
1622 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1623 case 0x1c: // Bypass LE
1624 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1625 {
02aab46a
FB
1626 switch(size) {
1627 case 1:
1a2fb1c0 1628 ret = ldub_phys(addr);
02aab46a
FB
1629 break;
1630 case 2:
a4e7dd52 1631 ret = lduw_phys(addr);
02aab46a
FB
1632 break;
1633 case 4:
a4e7dd52 1634 ret = ldl_phys(addr);
02aab46a
FB
1635 break;
1636 default:
1637 case 8:
a4e7dd52 1638 ret = ldq_phys(addr);
02aab46a
FB
1639 break;
1640 }
0f8a249a
BS
1641 break;
1642 }
db166940
BS
1643 case 0x24: // Nucleus quad LDD 128 bit atomic
1644 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1645 // Only ldda allowed
1646 raise_exception(TT_ILL_INSN);
1647 return 0;
83469015
FB
1648 case 0x04: // Nucleus
1649 case 0x0c: // Nucleus Little Endian (LE)
83469015 1650 case 0x11: // As if user secondary
83469015 1651 case 0x19: // As if user secondary LE
83469015 1652 case 0x4a: // UPA config
81ad8ba2 1653 case 0x81: // Secondary
83469015 1654 case 0x83: // Secondary no-fault
83469015 1655 case 0x89: // Secondary LE
83469015 1656 case 0x8b: // Secondary no-fault LE
0f8a249a
BS
1657 // XXX
1658 break;
3475187d 1659 case 0x45: // LSU
0f8a249a
BS
1660 ret = env->lsu;
1661 break;
3475187d 1662 case 0x50: // I-MMU regs
0f8a249a 1663 {
1a2fb1c0 1664 int reg = (addr >> 3) & 0xf;
3475187d 1665
0f8a249a
BS
1666 ret = env->immuregs[reg];
1667 break;
1668 }
3475187d
FB
1669 case 0x51: // I-MMU 8k TSB pointer
1670 case 0x52: // I-MMU 64k TSB pointer
0f8a249a
BS
1671 // XXX
1672 break;
a5a52cf2
BS
1673 case 0x55: // I-MMU data access
1674 {
1675 int reg = (addr >> 3) & 0x3f;
1676
1677 ret = env->itlb_tte[reg];
1678 break;
1679 }
83469015 1680 case 0x56: // I-MMU tag read
0f8a249a 1681 {
43e9e742 1682 int reg = (addr >> 3) & 0x3f;
0f8a249a 1683
43e9e742 1684 ret = env->itlb_tag[reg];
0f8a249a
BS
1685 break;
1686 }
3475187d 1687 case 0x58: // D-MMU regs
0f8a249a 1688 {
1a2fb1c0 1689 int reg = (addr >> 3) & 0xf;
3475187d 1690
0f8a249a
BS
1691 ret = env->dmmuregs[reg];
1692 break;
1693 }
a5a52cf2
BS
1694 case 0x5d: // D-MMU data access
1695 {
1696 int reg = (addr >> 3) & 0x3f;
1697
1698 ret = env->dtlb_tte[reg];
1699 break;
1700 }
83469015 1701 case 0x5e: // D-MMU tag read
0f8a249a 1702 {
43e9e742 1703 int reg = (addr >> 3) & 0x3f;
0f8a249a 1704
43e9e742 1705 ret = env->dtlb_tag[reg];
0f8a249a
BS
1706 break;
1707 }
f7350b47
BS
1708 case 0x46: // D-cache data
1709 case 0x47: // D-cache tag access
a5a52cf2
BS
1710 case 0x4b: // E-cache error enable
1711 case 0x4c: // E-cache asynchronous fault status
1712 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
1713 case 0x4e: // E-cache tag data
1714 case 0x66: // I-cache instruction access
1715 case 0x67: // I-cache tag access
1716 case 0x6e: // I-cache predecode
1717 case 0x6f: // I-cache LRU etc.
1718 case 0x76: // E-cache tag
1719 case 0x7e: // E-cache tag
1720 break;
3475187d
FB
1721 case 0x59: // D-MMU 8k TSB pointer
1722 case 0x5a: // D-MMU 64k TSB pointer
1723 case 0x5b: // D-MMU data pointer
83469015
FB
1724 case 0x48: // Interrupt dispatch, RO
1725 case 0x49: // Interrupt data receive
1726 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
1727 // XXX
1728 break;
3475187d
FB
1729 case 0x54: // I-MMU data in, WO
1730 case 0x57: // I-MMU demap, WO
1731 case 0x5c: // D-MMU data in, WO
1732 case 0x5f: // D-MMU demap, WO
83469015 1733 case 0x77: // Interrupt vector, WO
3475187d 1734 default:
1a2fb1c0 1735 do_unassigned_access(addr, 0, 0, 1);
0f8a249a
BS
1736 ret = 0;
1737 break;
3475187d 1738 }
81ad8ba2
BS
1739
1740 /* Convert from little endian */
1741 switch (asi) {
1742 case 0x0c: // Nucleus Little Endian (LE)
1743 case 0x18: // As if user primary LE
1744 case 0x19: // As if user secondary LE
1745 case 0x1c: // Bypass LE
1746 case 0x1d: // Bypass, non-cacheable LE
1747 case 0x88: // Primary LE
1748 case 0x89: // Secondary LE
1749 case 0x8a: // Primary no-fault LE
1750 case 0x8b: // Secondary no-fault LE
1751 switch(size) {
1752 case 2:
1753 ret = bswap16(ret);
e32664fb 1754 break;
81ad8ba2
BS
1755 case 4:
1756 ret = bswap32(ret);
e32664fb 1757 break;
81ad8ba2
BS
1758 case 8:
1759 ret = bswap64(ret);
e32664fb 1760 break;
81ad8ba2
BS
1761 default:
1762 break;
1763 }
1764 default:
1765 break;
1766 }
1767
1768 /* Convert to signed number */
1769 if (sign) {
1770 switch(size) {
1771 case 1:
1772 ret = (int8_t) ret;
e32664fb 1773 break;
81ad8ba2
BS
1774 case 2:
1775 ret = (int16_t) ret;
e32664fb 1776 break;
81ad8ba2
BS
1777 case 4:
1778 ret = (int32_t) ret;
e32664fb 1779 break;
81ad8ba2
BS
1780 default:
1781 break;
1782 }
1783 }
1a2fb1c0
BS
1784#ifdef DEBUG_ASI
1785 dump_asi("read ", last_addr, asi, size, ret);
1786#endif
1787 return ret;
3475187d
FB
1788}
1789
1a2fb1c0 1790void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 1791{
1a2fb1c0
BS
1792#ifdef DEBUG_ASI
1793 dump_asi("write", addr, asi, size, val);
1794#endif
6f27aba6 1795 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
1796 || ((env->def->features & CPU_FEATURE_HYPV)
1797 && asi >= 0x30 && asi < 0x80
fb79ceb9 1798 && !(env->hpstate & HS_PRIV)))
0f8a249a 1799 raise_exception(TT_PRIV_ACT);
3475187d 1800
c2bc0e38 1801 helper_check_align(addr, size - 1);
81ad8ba2
BS
1802 /* Convert to little endian */
1803 switch (asi) {
1804 case 0x0c: // Nucleus Little Endian (LE)
1805 case 0x18: // As if user primary LE
1806 case 0x19: // As if user secondary LE
1807 case 0x1c: // Bypass LE
1808 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
1809 case 0x88: // Primary LE
1810 case 0x89: // Secondary LE
1811 switch(size) {
1812 case 2:
1a2fb1c0 1813 addr = bswap16(addr);
e32664fb 1814 break;
81ad8ba2 1815 case 4:
1a2fb1c0 1816 addr = bswap32(addr);
e32664fb 1817 break;
81ad8ba2 1818 case 8:
1a2fb1c0 1819 addr = bswap64(addr);
e32664fb 1820 break;
81ad8ba2
BS
1821 default:
1822 break;
1823 }
1824 default:
1825 break;
1826 }
1827
3475187d 1828 switch(asi) {
81ad8ba2
BS
1829 case 0x10: // As if user primary
1830 case 0x18: // As if user primary LE
1831 case 0x80: // Primary
1832 case 0x88: // Primary LE
1833 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
1834 if ((env->def->features & CPU_FEATURE_HYPV)
1835 && env->hpstate & HS_PRIV) {
6f27aba6
BS
1836 switch(size) {
1837 case 1:
1a2fb1c0 1838 stb_hypv(addr, val);
6f27aba6
BS
1839 break;
1840 case 2:
a4e7dd52 1841 stw_hypv(addr, val);
6f27aba6
BS
1842 break;
1843 case 4:
a4e7dd52 1844 stl_hypv(addr, val);
6f27aba6
BS
1845 break;
1846 case 8:
1847 default:
a4e7dd52 1848 stq_hypv(addr, val);
6f27aba6
BS
1849 break;
1850 }
1851 } else {
1852 switch(size) {
1853 case 1:
1a2fb1c0 1854 stb_kernel(addr, val);
6f27aba6
BS
1855 break;
1856 case 2:
a4e7dd52 1857 stw_kernel(addr, val);
6f27aba6
BS
1858 break;
1859 case 4:
a4e7dd52 1860 stl_kernel(addr, val);
6f27aba6
BS
1861 break;
1862 case 8:
1863 default:
a4e7dd52 1864 stq_kernel(addr, val);
6f27aba6
BS
1865 break;
1866 }
81ad8ba2
BS
1867 }
1868 } else {
1869 switch(size) {
1870 case 1:
1a2fb1c0 1871 stb_user(addr, val);
81ad8ba2
BS
1872 break;
1873 case 2:
a4e7dd52 1874 stw_user(addr, val);
81ad8ba2
BS
1875 break;
1876 case 4:
a4e7dd52 1877 stl_user(addr, val);
81ad8ba2
BS
1878 break;
1879 case 8:
1880 default:
a4e7dd52 1881 stq_user(addr, val);
81ad8ba2
BS
1882 break;
1883 }
1884 }
1885 break;
3475187d
FB
1886 case 0x14: // Bypass
1887 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1888 case 0x1c: // Bypass LE
1889 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1890 {
02aab46a
FB
1891 switch(size) {
1892 case 1:
1a2fb1c0 1893 stb_phys(addr, val);
02aab46a
FB
1894 break;
1895 case 2:
a4e7dd52 1896 stw_phys(addr, val);
02aab46a
FB
1897 break;
1898 case 4:
a4e7dd52 1899 stl_phys(addr, val);
02aab46a
FB
1900 break;
1901 case 8:
1902 default:
a4e7dd52 1903 stq_phys(addr, val);
02aab46a
FB
1904 break;
1905 }
0f8a249a
BS
1906 }
1907 return;
db166940
BS
1908 case 0x24: // Nucleus quad LDD 128 bit atomic
1909 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1910 // Only ldda allowed
1911 raise_exception(TT_ILL_INSN);
1912 return;
83469015
FB
1913 case 0x04: // Nucleus
1914 case 0x0c: // Nucleus Little Endian (LE)
83469015 1915 case 0x11: // As if user secondary
83469015 1916 case 0x19: // As if user secondary LE
83469015 1917 case 0x4a: // UPA config
51996525 1918 case 0x81: // Secondary
83469015 1919 case 0x89: // Secondary LE
0f8a249a
BS
1920 // XXX
1921 return;
3475187d 1922 case 0x45: // LSU
0f8a249a
BS
1923 {
1924 uint64_t oldreg;
1925
1926 oldreg = env->lsu;
1a2fb1c0 1927 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
1928 // Mappings generated during D/I MMU disabled mode are
1929 // invalid in normal mode
1930 if (oldreg != env->lsu) {
77f193da
BS
1931 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1932 oldreg, env->lsu);
83469015 1933#ifdef DEBUG_MMU
0f8a249a 1934 dump_mmu(env);
83469015 1935#endif
0f8a249a
BS
1936 tlb_flush(env, 1);
1937 }
1938 return;
1939 }
3475187d 1940 case 0x50: // I-MMU regs
0f8a249a 1941 {
1a2fb1c0 1942 int reg = (addr >> 3) & 0xf;
0f8a249a 1943 uint64_t oldreg;
3b46e624 1944
0f8a249a 1945 oldreg = env->immuregs[reg];
3475187d
FB
1946 switch(reg) {
1947 case 0: // RO
1948 case 4:
1949 return;
1950 case 1: // Not in I-MMU
1951 case 2:
1952 case 7:
1953 case 8:
1954 return;
1955 case 3: // SFSR
1a2fb1c0
BS
1956 if ((val & 1) == 0)
1957 val = 0; // Clear SFSR
3475187d
FB
1958 break;
1959 case 5: // TSB access
1960 case 6: // Tag access
1961 default:
1962 break;
1963 }
1a2fb1c0 1964 env->immuregs[reg] = val;
3475187d 1965 if (oldreg != env->immuregs[reg]) {
77f193da
BS
1966 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1967 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 1968 }
952a328f 1969#ifdef DEBUG_MMU
0f8a249a 1970 dump_mmu(env);
3475187d 1971#endif
0f8a249a
BS
1972 return;
1973 }
3475187d 1974 case 0x54: // I-MMU data in
0f8a249a
BS
1975 {
1976 unsigned int i;
1977
1978 // Try finding an invalid entry
1979 for (i = 0; i < 64; i++) {
1980 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1981 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1982 env->itlb_tte[i] = val;
0f8a249a
BS
1983 return;
1984 }
1985 }
1986 // Try finding an unlocked entry
1987 for (i = 0; i < 64; i++) {
1988 if ((env->itlb_tte[i] & 0x40) == 0) {
1989 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1990 env->itlb_tte[i] = val;
0f8a249a
BS
1991 return;
1992 }
1993 }
1994 // error state?
1995 return;
1996 }
3475187d 1997 case 0x55: // I-MMU data access
0f8a249a 1998 {
1a2fb1c0 1999 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2000
0f8a249a 2001 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 2002 env->itlb_tte[i] = val;
0f8a249a
BS
2003 return;
2004 }
3475187d 2005 case 0x57: // I-MMU demap
0f8a249a
BS
2006 // XXX
2007 return;
3475187d 2008 case 0x58: // D-MMU regs
0f8a249a 2009 {
1a2fb1c0 2010 int reg = (addr >> 3) & 0xf;
0f8a249a 2011 uint64_t oldreg;
3b46e624 2012
0f8a249a 2013 oldreg = env->dmmuregs[reg];
3475187d
FB
2014 switch(reg) {
2015 case 0: // RO
2016 case 4:
2017 return;
2018 case 3: // SFSR
1a2fb1c0
BS
2019 if ((val & 1) == 0) {
2020 val = 0; // Clear SFSR, Fault address
0f8a249a
BS
2021 env->dmmuregs[4] = 0;
2022 }
1a2fb1c0 2023 env->dmmuregs[reg] = val;
3475187d
FB
2024 break;
2025 case 1: // Primary context
2026 case 2: // Secondary context
2027 case 5: // TSB access
2028 case 6: // Tag access
2029 case 7: // Virtual Watchpoint
2030 case 8: // Physical Watchpoint
2031 default:
2032 break;
2033 }
1a2fb1c0 2034 env->dmmuregs[reg] = val;
3475187d 2035 if (oldreg != env->dmmuregs[reg]) {
77f193da
BS
2036 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2037 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 2038 }
952a328f 2039#ifdef DEBUG_MMU
0f8a249a 2040 dump_mmu(env);
3475187d 2041#endif
0f8a249a
BS
2042 return;
2043 }
3475187d 2044 case 0x5c: // D-MMU data in
0f8a249a
BS
2045 {
2046 unsigned int i;
2047
2048 // Try finding an invalid entry
2049 for (i = 0; i < 64; i++) {
2050 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2051 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2052 env->dtlb_tte[i] = val;
0f8a249a
BS
2053 return;
2054 }
2055 }
2056 // Try finding an unlocked entry
2057 for (i = 0; i < 64; i++) {
2058 if ((env->dtlb_tte[i] & 0x40) == 0) {
2059 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2060 env->dtlb_tte[i] = val;
0f8a249a
BS
2061 return;
2062 }
2063 }
2064 // error state?
2065 return;
2066 }
3475187d 2067 case 0x5d: // D-MMU data access
0f8a249a 2068 {
1a2fb1c0 2069 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2070
0f8a249a 2071 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2072 env->dtlb_tte[i] = val;
0f8a249a
BS
2073 return;
2074 }
3475187d 2075 case 0x5f: // D-MMU demap
83469015 2076 case 0x49: // Interrupt data receive
0f8a249a
BS
2077 // XXX
2078 return;
f7350b47
BS
2079 case 0x46: // D-cache data
2080 case 0x47: // D-cache tag access
a5a52cf2
BS
2081 case 0x4b: // E-cache error enable
2082 case 0x4c: // E-cache asynchronous fault status
2083 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2084 case 0x4e: // E-cache tag data
2085 case 0x66: // I-cache instruction access
2086 case 0x67: // I-cache tag access
2087 case 0x6e: // I-cache predecode
2088 case 0x6f: // I-cache LRU etc.
2089 case 0x76: // E-cache tag
2090 case 0x7e: // E-cache tag
2091 return;
3475187d
FB
2092 case 0x51: // I-MMU 8k TSB pointer, RO
2093 case 0x52: // I-MMU 64k TSB pointer, RO
2094 case 0x56: // I-MMU tag read, RO
2095 case 0x59: // D-MMU 8k TSB pointer, RO
2096 case 0x5a: // D-MMU 64k TSB pointer, RO
2097 case 0x5b: // D-MMU data pointer, RO
2098 case 0x5e: // D-MMU tag read, RO
83469015
FB
2099 case 0x48: // Interrupt dispatch, RO
2100 case 0x7f: // Incoming interrupt vector, RO
2101 case 0x82: // Primary no-fault, RO
2102 case 0x83: // Secondary no-fault, RO
2103 case 0x8a: // Primary no-fault LE, RO
2104 case 0x8b: // Secondary no-fault LE, RO
3475187d 2105 default:
1a2fb1c0 2106 do_unassigned_access(addr, 1, 0, 1);
0f8a249a 2107 return;
3475187d
FB
2108 }
2109}
81ad8ba2 2110#endif /* CONFIG_USER_ONLY */
3391c818 2111
db166940
BS
2112void helper_ldda_asi(target_ulong addr, int asi, int rd)
2113{
db166940 2114 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2115 || ((env->def->features & CPU_FEATURE_HYPV)
2116 && asi >= 0x30 && asi < 0x80
fb79ceb9 2117 && !(env->hpstate & HS_PRIV)))
db166940
BS
2118 raise_exception(TT_PRIV_ACT);
2119
2120 switch (asi) {
2121 case 0x24: // Nucleus quad LDD 128 bit atomic
2122 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2123 helper_check_align(addr, 0xf);
2124 if (rd == 0) {
2125 env->gregs[1] = ldq_kernel(addr + 8);
2126 if (asi == 0x2c)
2127 bswap64s(&env->gregs[1]);
2128 } else if (rd < 8) {
2129 env->gregs[rd] = ldq_kernel(addr);
2130 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2131 if (asi == 0x2c) {
2132 bswap64s(&env->gregs[rd]);
2133 bswap64s(&env->gregs[rd + 1]);
2134 }
2135 } else {
2136 env->regwptr[rd] = ldq_kernel(addr);
2137 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2138 if (asi == 0x2c) {
2139 bswap64s(&env->regwptr[rd]);
2140 bswap64s(&env->regwptr[rd + 1]);
2141 }
2142 }
2143 break;
2144 default:
2145 helper_check_align(addr, 0x3);
2146 if (rd == 0)
2147 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2148 else if (rd < 8) {
2149 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2150 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2151 } else {
2152 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2153 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2154 }
2155 break;
2156 }
2157}
2158
1a2fb1c0 2159void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2160{
3391c818 2161 unsigned int i;
1a2fb1c0 2162 target_ulong val;
3391c818 2163
c2bc0e38 2164 helper_check_align(addr, 3);
3391c818
BS
2165 switch (asi) {
2166 case 0xf0: // Block load primary
2167 case 0xf1: // Block load secondary
2168 case 0xf8: // Block load primary LE
2169 case 0xf9: // Block load secondary LE
51996525
BS
2170 if (rd & 7) {
2171 raise_exception(TT_ILL_INSN);
2172 return;
2173 }
c2bc0e38 2174 helper_check_align(addr, 0x3f);
51996525 2175 for (i = 0; i < 16; i++) {
77f193da
BS
2176 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2177 0);
1a2fb1c0 2178 addr += 4;
3391c818 2179 }
3391c818
BS
2180
2181 return;
2182 default:
2183 break;
2184 }
2185
1a2fb1c0 2186 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
2187 switch(size) {
2188 default:
2189 case 4:
1a2fb1c0 2190 *((uint32_t *)&FT0) = val;
3391c818
BS
2191 break;
2192 case 8:
1a2fb1c0 2193 *((int64_t *)&DT0) = val;
3391c818 2194 break;
1f587329
BS
2195 case 16:
2196 // XXX
2197 break;
3391c818 2198 }
3391c818
BS
2199}
2200
1a2fb1c0 2201void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2202{
3391c818 2203 unsigned int i;
1a2fb1c0 2204 target_ulong val = 0;
3391c818 2205
c2bc0e38 2206 helper_check_align(addr, 3);
3391c818
BS
2207 switch (asi) {
2208 case 0xf0: // Block store primary
2209 case 0xf1: // Block store secondary
2210 case 0xf8: // Block store primary LE
2211 case 0xf9: // Block store secondary LE
51996525
BS
2212 if (rd & 7) {
2213 raise_exception(TT_ILL_INSN);
2214 return;
2215 }
c2bc0e38 2216 helper_check_align(addr, 0x3f);
51996525 2217 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
2218 val = *(uint32_t *)&env->fpr[rd++];
2219 helper_st_asi(addr, val, asi & 0x8f, 4);
2220 addr += 4;
3391c818 2221 }
3391c818
BS
2222
2223 return;
2224 default:
2225 break;
2226 }
2227
2228 switch(size) {
2229 default:
2230 case 4:
1a2fb1c0 2231 val = *((uint32_t *)&FT0);
3391c818
BS
2232 break;
2233 case 8:
1a2fb1c0 2234 val = *((int64_t *)&DT0);
3391c818 2235 break;
1f587329
BS
2236 case 16:
2237 // XXX
2238 break;
3391c818 2239 }
1a2fb1c0
BS
2240 helper_st_asi(addr, val, asi, size);
2241}
2242
2243target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2244 target_ulong val2, uint32_t asi)
2245{
2246 target_ulong ret;
2247
2248 val1 &= 0xffffffffUL;
2249 ret = helper_ld_asi(addr, asi, 4, 0);
2250 ret &= 0xffffffffUL;
2251 if (val1 == ret)
2252 helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2253 return ret;
3391c818
BS
2254}
2255
1a2fb1c0
BS
2256target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2257 target_ulong val2, uint32_t asi)
2258{
2259 target_ulong ret;
2260
2261 ret = helper_ld_asi(addr, asi, 8, 0);
2262 if (val1 == ret)
2263 helper_st_asi(addr, val2, asi, 8);
2264 return ret;
2265}
81ad8ba2 2266#endif /* TARGET_SPARC64 */
3475187d
FB
2267
2268#ifndef TARGET_SPARC64
1a2fb1c0 2269void helper_rett(void)
e8af50a3 2270{
af7bf89b
FB
2271 unsigned int cwp;
2272
d4218d99
BS
2273 if (env->psret == 1)
2274 raise_exception(TT_ILL_INSN);
2275
e8af50a3 2276 env->psret = 1;
1a14026e 2277 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
e8af50a3
FB
2278 if (env->wim & (1 << cwp)) {
2279 raise_exception(TT_WIN_UNF);
2280 }
2281 set_cwp(cwp);
2282 env->psrs = env->psrps;
2283}
3475187d 2284#endif
e8af50a3 2285
3b89f26c
BS
2286target_ulong helper_udiv(target_ulong a, target_ulong b)
2287{
2288 uint64_t x0;
2289 uint32_t x1;
2290
2291 x0 = a | ((uint64_t) (env->y) << 32);
2292 x1 = b;
2293
2294 if (x1 == 0) {
2295 raise_exception(TT_DIV_ZERO);
2296 }
2297
2298 x0 = x0 / x1;
2299 if (x0 > 0xffffffff) {
2300 env->cc_src2 = 1;
2301 return 0xffffffff;
2302 } else {
2303 env->cc_src2 = 0;
2304 return x0;
2305 }
2306}
2307
2308target_ulong helper_sdiv(target_ulong a, target_ulong b)
2309{
2310 int64_t x0;
2311 int32_t x1;
2312
2313 x0 = a | ((int64_t) (env->y) << 32);
2314 x1 = b;
2315
2316 if (x1 == 0) {
2317 raise_exception(TT_DIV_ZERO);
2318 }
2319
2320 x0 = x0 / x1;
2321 if ((int32_t) x0 != x0) {
2322 env->cc_src2 = 1;
2323 return x0 < 0? 0x80000000: 0x7fffffff;
2324 } else {
2325 env->cc_src2 = 0;
2326 return x0;
2327 }
2328}
2329
1a2fb1c0
BS
2330uint64_t helper_pack64(target_ulong high, target_ulong low)
2331{
2332 return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2333}
2334
7fa76c0b
BS
2335void helper_stdf(target_ulong addr, int mem_idx)
2336{
c2bc0e38 2337 helper_check_align(addr, 7);
7fa76c0b
BS
2338#if !defined(CONFIG_USER_ONLY)
2339 switch (mem_idx) {
2340 case 0:
c2bc0e38 2341 stfq_user(addr, DT0);
7fa76c0b
BS
2342 break;
2343 case 1:
c2bc0e38 2344 stfq_kernel(addr, DT0);
7fa76c0b
BS
2345 break;
2346#ifdef TARGET_SPARC64
2347 case 2:
c2bc0e38 2348 stfq_hypv(addr, DT0);
7fa76c0b
BS
2349 break;
2350#endif
2351 default:
2352 break;
2353 }
2354#else
2cade6a3 2355 address_mask(env, &addr);
c2bc0e38 2356 stfq_raw(addr, DT0);
7fa76c0b
BS
2357#endif
2358}
2359
2360void helper_lddf(target_ulong addr, int mem_idx)
2361{
c2bc0e38 2362 helper_check_align(addr, 7);
7fa76c0b
BS
2363#if !defined(CONFIG_USER_ONLY)
2364 switch (mem_idx) {
2365 case 0:
c2bc0e38 2366 DT0 = ldfq_user(addr);
7fa76c0b
BS
2367 break;
2368 case 1:
c2bc0e38 2369 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
2370 break;
2371#ifdef TARGET_SPARC64
2372 case 2:
c2bc0e38 2373 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
2374 break;
2375#endif
2376 default:
2377 break;
2378 }
2379#else
2cade6a3 2380 address_mask(env, &addr);
c2bc0e38 2381 DT0 = ldfq_raw(addr);
7fa76c0b
BS
2382#endif
2383}
2384
64a88d5d 2385void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2386{
2387 // XXX add 128 bit load
2388 CPU_QuadU u;
2389
c2bc0e38 2390 helper_check_align(addr, 7);
64a88d5d
BS
2391#if !defined(CONFIG_USER_ONLY)
2392 switch (mem_idx) {
2393 case 0:
c2bc0e38
BS
2394 u.ll.upper = ldq_user(addr);
2395 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
2396 QT0 = u.q;
2397 break;
2398 case 1:
c2bc0e38
BS
2399 u.ll.upper = ldq_kernel(addr);
2400 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
2401 QT0 = u.q;
2402 break;
2403#ifdef TARGET_SPARC64
2404 case 2:
c2bc0e38
BS
2405 u.ll.upper = ldq_hypv(addr);
2406 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
2407 QT0 = u.q;
2408 break;
2409#endif
2410 default:
2411 break;
2412 }
2413#else
2cade6a3 2414 address_mask(env, &addr);
c2bc0e38
BS
2415 u.ll.upper = ldq_raw(addr);
2416 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
7fa76c0b 2417 QT0 = u.q;
64a88d5d 2418#endif
7fa76c0b
BS
2419}
2420
64a88d5d 2421void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2422{
2423 // XXX add 128 bit store
2424 CPU_QuadU u;
2425
c2bc0e38 2426 helper_check_align(addr, 7);
64a88d5d
BS
2427#if !defined(CONFIG_USER_ONLY)
2428 switch (mem_idx) {
2429 case 0:
2430 u.q = QT0;
c2bc0e38
BS
2431 stq_user(addr, u.ll.upper);
2432 stq_user(addr + 8, u.ll.lower);
64a88d5d
BS
2433 break;
2434 case 1:
2435 u.q = QT0;
c2bc0e38
BS
2436 stq_kernel(addr, u.ll.upper);
2437 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
2438 break;
2439#ifdef TARGET_SPARC64
2440 case 2:
2441 u.q = QT0;
c2bc0e38
BS
2442 stq_hypv(addr, u.ll.upper);
2443 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
2444 break;
2445#endif
2446 default:
2447 break;
2448 }
2449#else
7fa76c0b 2450 u.q = QT0;
2cade6a3 2451 address_mask(env, &addr);
c2bc0e38
BS
2452 stq_raw(addr, u.ll.upper);
2453 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
7fa76c0b 2454#endif
64a88d5d 2455}
7fa76c0b 2456
8d5f07fa 2457void helper_ldfsr(void)
e8af50a3 2458{
7a0e1f41 2459 int rnd_mode;
bb5529bb
BS
2460
2461 PUT_FSR32(env, *((uint32_t *) &FT0));
e8af50a3
FB
2462 switch (env->fsr & FSR_RD_MASK) {
2463 case FSR_RD_NEAREST:
7a0e1f41 2464 rnd_mode = float_round_nearest_even;
0f8a249a 2465 break;
ed910241 2466 default:
e8af50a3 2467 case FSR_RD_ZERO:
7a0e1f41 2468 rnd_mode = float_round_to_zero;
0f8a249a 2469 break;
e8af50a3 2470 case FSR_RD_POS:
7a0e1f41 2471 rnd_mode = float_round_up;
0f8a249a 2472 break;
e8af50a3 2473 case FSR_RD_NEG:
7a0e1f41 2474 rnd_mode = float_round_down;
0f8a249a 2475 break;
e8af50a3 2476 }
7a0e1f41 2477 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 2478}
e80cfcfc 2479
bb5529bb
BS
2480void helper_stfsr(void)
2481{
2482 *((uint32_t *) &FT0) = GET_FSR32(env);
2483}
2484
2485void helper_debug(void)
e80cfcfc
FB
2486{
2487 env->exception_index = EXCP_DEBUG;
2488 cpu_loop_exit();
2489}
af7bf89b 2490
3475187d 2491#ifndef TARGET_SPARC64
72a9747b
BS
2492/* XXX: use another pointer for %iN registers to avoid slow wrapping
2493 handling ? */
2494void helper_save(void)
2495{
2496 uint32_t cwp;
2497
1a14026e 2498 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2499 if (env->wim & (1 << cwp)) {
2500 raise_exception(TT_WIN_OVF);
2501 }
2502 set_cwp(cwp);
2503}
2504
2505void helper_restore(void)
2506{
2507 uint32_t cwp;
2508
1a14026e 2509 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2510 if (env->wim & (1 << cwp)) {
2511 raise_exception(TT_WIN_UNF);
2512 }
2513 set_cwp(cwp);
2514}
2515
1a2fb1c0 2516void helper_wrpsr(target_ulong new_psr)
af7bf89b 2517{
1a14026e 2518 if ((new_psr & PSR_CWP) >= env->nwindows)
d4218d99
BS
2519 raise_exception(TT_ILL_INSN);
2520 else
1a2fb1c0 2521 PUT_PSR(env, new_psr);
af7bf89b
FB
2522}
2523
1a2fb1c0 2524target_ulong helper_rdpsr(void)
af7bf89b 2525{
1a2fb1c0 2526 return GET_PSR(env);
af7bf89b 2527}
3475187d
FB
2528
2529#else
72a9747b
BS
2530/* XXX: use another pointer for %iN registers to avoid slow wrapping
2531 handling ? */
2532void helper_save(void)
2533{
2534 uint32_t cwp;
2535
1a14026e 2536 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2537 if (env->cansave == 0) {
2538 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2539 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2540 ((env->wstate & 0x7) << 2)));
2541 } else {
2542 if (env->cleanwin - env->canrestore == 0) {
2543 // XXX Clean windows without trap
2544 raise_exception(TT_CLRWIN);
2545 } else {
2546 env->cansave--;
2547 env->canrestore++;
2548 set_cwp(cwp);
2549 }
2550 }
2551}
2552
2553void helper_restore(void)
2554{
2555 uint32_t cwp;
2556
1a14026e 2557 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2558 if (env->canrestore == 0) {
2559 raise_exception(TT_FILL | (env->otherwin != 0 ?
2560 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2561 ((env->wstate & 0x7) << 2)));
2562 } else {
2563 env->cansave++;
2564 env->canrestore--;
2565 set_cwp(cwp);
2566 }
2567}
2568
2569void helper_flushw(void)
2570{
1a14026e 2571 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
2572 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2573 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2574 ((env->wstate & 0x7) << 2)));
2575 }
2576}
2577
2578void helper_saved(void)
2579{
2580 env->cansave++;
2581 if (env->otherwin == 0)
2582 env->canrestore--;
2583 else
2584 env->otherwin--;
2585}
2586
2587void helper_restored(void)
2588{
2589 env->canrestore++;
1a14026e 2590 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
2591 env->cleanwin++;
2592 if (env->otherwin == 0)
2593 env->cansave--;
2594 else
2595 env->otherwin--;
2596}
2597
d35527d9
BS
2598target_ulong helper_rdccr(void)
2599{
2600 return GET_CCR(env);
2601}
2602
2603void helper_wrccr(target_ulong new_ccr)
2604{
2605 PUT_CCR(env, new_ccr);
2606}
2607
2608// CWP handling is reversed in V9, but we still use the V8 register
2609// order.
2610target_ulong helper_rdcwp(void)
2611{
2612 return GET_CWP64(env);
2613}
2614
2615void helper_wrcwp(target_ulong new_cwp)
2616{
2617 PUT_CWP64(env, new_cwp);
2618}
3475187d 2619
1f5063fb
BS
2620// This function uses non-native bit order
2621#define GET_FIELD(X, FROM, TO) \
2622 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2623
2624// This function uses the order in the manuals, i.e. bit 0 is 2^0
2625#define GET_FIELD_SP(X, FROM, TO) \
2626 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2627
2628target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2629{
2630 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2631 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2632 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2633 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2634 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2635 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2636 (((pixel_addr >> 55) & 1) << 4) |
2637 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2638 GET_FIELD_SP(pixel_addr, 11, 12);
2639}
2640
2641target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2642{
2643 uint64_t tmp;
2644
2645 tmp = addr + offset;
2646 env->gsr &= ~7ULL;
2647 env->gsr |= tmp & 7ULL;
2648 return tmp & ~7ULL;
2649}
2650
1a2fb1c0 2651target_ulong helper_popc(target_ulong val)
3475187d 2652{
1a2fb1c0 2653 return ctpop64(val);
3475187d 2654}
83469015
FB
2655
2656static inline uint64_t *get_gregset(uint64_t pstate)
2657{
2658 switch (pstate) {
2659 default:
2660 case 0:
0f8a249a 2661 return env->bgregs;
83469015 2662 case PS_AG:
0f8a249a 2663 return env->agregs;
83469015 2664 case PS_MG:
0f8a249a 2665 return env->mgregs;
83469015 2666 case PS_IG:
0f8a249a 2667 return env->igregs;
83469015
FB
2668 }
2669}
2670
f2bc7e7f 2671void change_pstate(uint64_t new_pstate)
83469015 2672{
8f1f22f6 2673 uint64_t pstate_regs, new_pstate_regs;
83469015
FB
2674 uint64_t *src, *dst;
2675
83469015
FB
2676 pstate_regs = env->pstate & 0xc01;
2677 new_pstate_regs = new_pstate & 0xc01;
2678 if (new_pstate_regs != pstate_regs) {
0f8a249a
BS
2679 // Switch global register bank
2680 src = get_gregset(new_pstate_regs);
2681 dst = get_gregset(pstate_regs);
2682 memcpy32(dst, env->gregs);
2683 memcpy32(env->gregs, src);
83469015
FB
2684 }
2685 env->pstate = new_pstate;
2686}
2687
1a2fb1c0 2688void helper_wrpstate(target_ulong new_state)
8f1f22f6 2689{
5578ceab 2690 if (!(env->def->features & CPU_FEATURE_GL))
fb79ceb9 2691 change_pstate(new_state & 0xf3f);
8f1f22f6
BS
2692}
2693
1a2fb1c0 2694void helper_done(void)
83469015 2695{
375ee38b
BS
2696 env->pc = env->tsptr->tpc;
2697 env->npc = env->tsptr->tnpc + 4;
2698 PUT_CCR(env, env->tsptr->tstate >> 32);
2699 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2700 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2701 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 2702 env->tl--;
c19148bd 2703 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015
FB
2704}
2705
1a2fb1c0 2706void helper_retry(void)
83469015 2707{
375ee38b
BS
2708 env->pc = env->tsptr->tpc;
2709 env->npc = env->tsptr->tnpc;
2710 PUT_CCR(env, env->tsptr->tstate >> 32);
2711 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2712 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2713 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 2714 env->tl--;
c19148bd 2715 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015 2716}
3475187d 2717#endif
ee5bbe38 2718
f2bc7e7f 2719void cpu_set_cwp(CPUState *env1, int new_cwp)
ee5bbe38
FB
2720{
2721 /* put the modified wrap registers at their proper location */
9fac3a3a
BS
2722 if (env1->cwp == env1->nwindows - 1)
2723 memcpy32(env1->regbase, env1->regbase + env1->nwindows * 16);
f2bc7e7f 2724 env1->cwp = new_cwp;
ee5bbe38 2725 /* put the wrap registers at their temporary location */
9fac3a3a
BS
2726 if (new_cwp == env1->nwindows - 1)
2727 memcpy32(env1->regbase + env1->nwindows * 16, env1->regbase);
f2bc7e7f 2728 env1->regwptr = env1->regbase + (new_cwp * 16);
ee5bbe38
FB
2729}
2730
f2bc7e7f 2731void set_cwp(int new_cwp)
ee5bbe38 2732{
f2bc7e7f 2733 cpu_set_cwp(env, new_cwp);
ee5bbe38
FB
2734}
2735
f2bc7e7f 2736void helper_flush(target_ulong addr)
ee5bbe38 2737{
f2bc7e7f
BS
2738 addr &= ~7;
2739 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38 2740}
ee5bbe38 2741
5fafdf24 2742#if !defined(CONFIG_USER_ONLY)
ee5bbe38 2743
d2889a3e
BS
2744static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2745 void *retaddr);
2746
ee5bbe38 2747#define MMUSUFFIX _mmu
d2889a3e 2748#define ALIGNED_ONLY
ee5bbe38
FB
2749
2750#define SHIFT 0
2751#include "softmmu_template.h"
2752
2753#define SHIFT 1
2754#include "softmmu_template.h"
2755
2756#define SHIFT 2
2757#include "softmmu_template.h"
2758
2759#define SHIFT 3
2760#include "softmmu_template.h"
2761
c2bc0e38
BS
2762/* XXX: make it generic ? */
2763static void cpu_restore_state2(void *retaddr)
2764{
2765 TranslationBlock *tb;
2766 unsigned long pc;
2767
2768 if (retaddr) {
2769 /* now we have a real cpu fault */
2770 pc = (unsigned long)retaddr;
2771 tb = tb_find_pc(pc);
2772 if (tb) {
2773 /* the PC is inside the translated code. It means that we have
2774 a virtual CPU fault */
2775 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2776 }
2777 }
2778}
2779
d2889a3e
BS
2780static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2781 void *retaddr)
2782{
94554550 2783#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
2784 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2785 "\n", addr, env->pc);
94554550 2786#endif
c2bc0e38 2787 cpu_restore_state2(retaddr);
94554550 2788 raise_exception(TT_UNALIGNED);
d2889a3e 2789}
ee5bbe38
FB
2790
2791/* try to fill the TLB and return an exception if error. If retaddr is
2792 NULL, it means that the function was called in C code (i.e. not
2793 from generated code or from helper.c) */
2794/* XXX: fix it to restore all registers */
6ebbf390 2795void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 2796{
ee5bbe38 2797 int ret;
ee5bbe38
FB
2798 CPUState *saved_env;
2799
2800 /* XXX: hack to restore env in all cases, even if not called from
2801 generated code */
2802 saved_env = env;
2803 env = cpu_single_env;
2804
6ebbf390 2805 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 2806 if (ret) {
c2bc0e38 2807 cpu_restore_state2(retaddr);
ee5bbe38
FB
2808 cpu_loop_exit();
2809 }
2810 env = saved_env;
2811}
2812
2813#endif
6c36d3fa
BS
2814
2815#ifndef TARGET_SPARC64
5dcb6b91 2816void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
2817 int is_asi)
2818{
2819 CPUState *saved_env;
2820
2821 /* XXX: hack to restore env in all cases, even if not called from
2822 generated code */
2823 saved_env = env;
2824 env = cpu_single_env;
8543e2cf
BS
2825#ifdef DEBUG_UNASSIGNED
2826 if (is_asi)
77f193da
BS
2827 printf("Unassigned mem %s access to " TARGET_FMT_plx
2828 " asi 0x%02x from " TARGET_FMT_lx "\n",
8543e2cf
BS
2829 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2830 env->pc);
2831 else
2832 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2833 TARGET_FMT_lx "\n",
2834 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2835#endif
6c36d3fa 2836 if (env->mmuregs[3]) /* Fault status register */
0f8a249a 2837 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
6c36d3fa
BS
2838 if (is_asi)
2839 env->mmuregs[3] |= 1 << 16;
2840 if (env->psrs)
2841 env->mmuregs[3] |= 1 << 5;
2842 if (is_exec)
2843 env->mmuregs[3] |= 1 << 6;
2844 if (is_write)
2845 env->mmuregs[3] |= 1 << 7;
2846 env->mmuregs[3] |= (5 << 2) | 2;
2847 env->mmuregs[4] = addr; /* Fault address register */
2848 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
2849 if (is_exec)
2850 raise_exception(TT_CODE_ACCESS);
2851 else
2852 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
2853 }
2854 env = saved_env;
2855}
2856#else
5dcb6b91 2857void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
2858 int is_asi)
2859{
2860#ifdef DEBUG_UNASSIGNED
2861 CPUState *saved_env;
2862
2863 /* XXX: hack to restore env in all cases, even if not called from
2864 generated code */
2865 saved_env = env;
2866 env = cpu_single_env;
77f193da
BS
2867 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2868 "\n", addr, env->pc);
6c36d3fa
BS
2869 env = saved_env;
2870#endif
1b2e93c1
BS
2871 if (is_exec)
2872 raise_exception(TT_CODE_ACCESS);
2873 else
2874 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
2875}
2876#endif
20c9f095 2877