]> git.ipfire.org Git - people/ms/linux.git/blame_incremental - fs/btrfs/ctree.h
Merge branch 'for-6.0/dax' into libnvdimm-fixes
[people/ms/linux.git] / fs / btrfs / ctree.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include "extent-io-tree.h"
32#include "extent_io.h"
33#include "extent_map.h"
34#include "async-thread.h"
35#include "block-rsv.h"
36#include "locking.h"
37
38struct btrfs_trans_handle;
39struct btrfs_transaction;
40struct btrfs_pending_snapshot;
41struct btrfs_delayed_ref_root;
42struct btrfs_space_info;
43struct btrfs_block_group;
44extern struct kmem_cache *btrfs_trans_handle_cachep;
45extern struct kmem_cache *btrfs_bit_radix_cachep;
46extern struct kmem_cache *btrfs_path_cachep;
47extern struct kmem_cache *btrfs_free_space_cachep;
48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49struct btrfs_ordered_sum;
50struct btrfs_ref;
51struct btrfs_bio;
52struct btrfs_ioctl_encoded_io_args;
53
54#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55
56/*
57 * Maximum number of mirrors that can be available for all profiles counting
58 * the target device of dev-replace as one. During an active device replace
59 * procedure, the target device of the copy operation is a mirror for the
60 * filesystem data as well that can be used to read data in order to repair
61 * read errors on other disks.
62 *
63 * Current value is derived from RAID1C4 with 4 copies.
64 */
65#define BTRFS_MAX_MIRRORS (4 + 1)
66
67#define BTRFS_MAX_LEVEL 8
68
69#define BTRFS_OLDEST_GENERATION 0ULL
70
71/*
72 * we can actually store much bigger names, but lets not confuse the rest
73 * of linux
74 */
75#define BTRFS_NAME_LEN 255
76
77/*
78 * Theoretical limit is larger, but we keep this down to a sane
79 * value. That should limit greatly the possibility of collisions on
80 * inode ref items.
81 */
82#define BTRFS_LINK_MAX 65535U
83
84#define BTRFS_EMPTY_DIR_SIZE 0
85
86/* ioprio of readahead is set to idle */
87#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88
89#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
90
91/*
92 * Use large batch size to reduce overhead of metadata updates. On the reader
93 * side, we only read it when we are close to ENOSPC and the read overhead is
94 * mostly related to the number of CPUs, so it is OK to use arbitrary large
95 * value here.
96 */
97#define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
98
99#define BTRFS_MAX_EXTENT_SIZE SZ_128M
100
101/*
102 * Deltas are an effective way to populate global statistics. Give macro names
103 * to make it clear what we're doing. An example is discard_extents in
104 * btrfs_free_space_ctl.
105 */
106#define BTRFS_STAT_NR_ENTRIES 2
107#define BTRFS_STAT_CURR 0
108#define BTRFS_STAT_PREV 1
109
110static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111{
112 BUG_ON(num_stripes == 0);
113 return sizeof(struct btrfs_chunk) +
114 sizeof(struct btrfs_stripe) * (num_stripes - 1);
115}
116
117/*
118 * Runtime (in-memory) states of filesystem
119 */
120enum {
121 /* Global indicator of serious filesystem errors */
122 BTRFS_FS_STATE_ERROR,
123 /*
124 * Filesystem is being remounted, allow to skip some operations, like
125 * defrag
126 */
127 BTRFS_FS_STATE_REMOUNTING,
128 /* Filesystem in RO mode */
129 BTRFS_FS_STATE_RO,
130 /* Track if a transaction abort has been reported on this filesystem */
131 BTRFS_FS_STATE_TRANS_ABORTED,
132 /*
133 * Bio operations should be blocked on this filesystem because a source
134 * or target device is being destroyed as part of a device replace
135 */
136 BTRFS_FS_STATE_DEV_REPLACING,
137 /* The btrfs_fs_info created for self-tests */
138 BTRFS_FS_STATE_DUMMY_FS_INFO,
139
140 BTRFS_FS_STATE_NO_CSUMS,
141
142 /* Indicates there was an error cleaning up a log tree. */
143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144
145 BTRFS_FS_STATE_COUNT
146};
147
148#define BTRFS_BACKREF_REV_MAX 256
149#define BTRFS_BACKREF_REV_SHIFT 56
150#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 BTRFS_BACKREF_REV_SHIFT)
152
153#define BTRFS_OLD_BACKREF_REV 0
154#define BTRFS_MIXED_BACKREF_REV 1
155
156/*
157 * every tree block (leaf or node) starts with this header.
158 */
159struct btrfs_header {
160 /* these first four must match the super block */
161 u8 csum[BTRFS_CSUM_SIZE];
162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 __le64 bytenr; /* which block this node is supposed to live in */
164 __le64 flags;
165
166 /* allowed to be different from the super from here on down */
167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 __le64 generation;
169 __le64 owner;
170 __le32 nritems;
171 u8 level;
172} __attribute__ ((__packed__));
173
174/*
175 * this is a very generous portion of the super block, giving us
176 * room to translate 14 chunks with 3 stripes each.
177 */
178#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179
180/*
181 * just in case we somehow lose the roots and are not able to mount,
182 * we store an array of the roots from previous transactions
183 * in the super.
184 */
185#define BTRFS_NUM_BACKUP_ROOTS 4
186struct btrfs_root_backup {
187 __le64 tree_root;
188 __le64 tree_root_gen;
189
190 __le64 chunk_root;
191 __le64 chunk_root_gen;
192
193 __le64 extent_root;
194 __le64 extent_root_gen;
195
196 __le64 fs_root;
197 __le64 fs_root_gen;
198
199 __le64 dev_root;
200 __le64 dev_root_gen;
201
202 __le64 csum_root;
203 __le64 csum_root_gen;
204
205 __le64 total_bytes;
206 __le64 bytes_used;
207 __le64 num_devices;
208 /* future */
209 __le64 unused_64[4];
210
211 u8 tree_root_level;
212 u8 chunk_root_level;
213 u8 extent_root_level;
214 u8 fs_root_level;
215 u8 dev_root_level;
216 u8 csum_root_level;
217 /* future and to align */
218 u8 unused_8[10];
219} __attribute__ ((__packed__));
220
221#define BTRFS_SUPER_INFO_OFFSET SZ_64K
222#define BTRFS_SUPER_INFO_SIZE 4096
223
224/*
225 * The reserved space at the beginning of each device.
226 * It covers the primary super block and leaves space for potential use by other
227 * tools like bootloaders or to lower potential damage of accidental overwrite.
228 */
229#define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M)
230
231/*
232 * the super block basically lists the main trees of the FS
233 * it currently lacks any block count etc etc
234 */
235struct btrfs_super_block {
236 /* the first 4 fields must match struct btrfs_header */
237 u8 csum[BTRFS_CSUM_SIZE];
238 /* FS specific UUID, visible to user */
239 u8 fsid[BTRFS_FSID_SIZE];
240 __le64 bytenr; /* this block number */
241 __le64 flags;
242
243 /* allowed to be different from the btrfs_header from here own down */
244 __le64 magic;
245 __le64 generation;
246 __le64 root;
247 __le64 chunk_root;
248 __le64 log_root;
249
250 /*
251 * This member has never been utilized since the very beginning, thus
252 * it's always 0 regardless of kernel version. We always use
253 * generation + 1 to read log tree root. So here we mark it deprecated.
254 */
255 __le64 __unused_log_root_transid;
256 __le64 total_bytes;
257 __le64 bytes_used;
258 __le64 root_dir_objectid;
259 __le64 num_devices;
260 __le32 sectorsize;
261 __le32 nodesize;
262 __le32 __unused_leafsize;
263 __le32 stripesize;
264 __le32 sys_chunk_array_size;
265 __le64 chunk_root_generation;
266 __le64 compat_flags;
267 __le64 compat_ro_flags;
268 __le64 incompat_flags;
269 __le16 csum_type;
270 u8 root_level;
271 u8 chunk_root_level;
272 u8 log_root_level;
273 struct btrfs_dev_item dev_item;
274
275 char label[BTRFS_LABEL_SIZE];
276
277 __le64 cache_generation;
278 __le64 uuid_tree_generation;
279
280 /* the UUID written into btree blocks */
281 u8 metadata_uuid[BTRFS_FSID_SIZE];
282
283 /* Extent tree v2 */
284 __le64 block_group_root;
285 __le64 block_group_root_generation;
286 u8 block_group_root_level;
287
288 /* future expansion */
289 u8 reserved8[7];
290 __le64 reserved[25];
291 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293
294 /* Padded to 4096 bytes */
295 u8 padding[565];
296} __attribute__ ((__packed__));
297static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298
299/*
300 * Compat flags that we support. If any incompat flags are set other than the
301 * ones specified below then we will fail to mount
302 */
303#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
304#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
305#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
306
307#define BTRFS_FEATURE_COMPAT_RO_SUPP \
308 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
309 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 BTRFS_FEATURE_COMPAT_RO_VERITY)
311
312#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
313#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
314
315#ifdef CONFIG_BTRFS_DEBUG
316/*
317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318 */
319#define BTRFS_FEATURE_INCOMPAT_SUPP \
320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
326 BTRFS_FEATURE_INCOMPAT_RAID56 | \
327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
332 BTRFS_FEATURE_INCOMPAT_ZONED | \
333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334#else
335#define BTRFS_FEATURE_INCOMPAT_SUPP \
336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
342 BTRFS_FEATURE_INCOMPAT_RAID56 | \
343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
348 BTRFS_FEATURE_INCOMPAT_ZONED)
349#endif
350
351#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
354
355/*
356 * A leaf is full of items. offset and size tell us where to find
357 * the item in the leaf (relative to the start of the data area)
358 */
359struct btrfs_item {
360 struct btrfs_disk_key key;
361 __le32 offset;
362 __le32 size;
363} __attribute__ ((__packed__));
364
365/*
366 * leaves have an item area and a data area:
367 * [item0, item1....itemN] [free space] [dataN...data1, data0]
368 *
369 * The data is separate from the items to get the keys closer together
370 * during searches.
371 */
372struct btrfs_leaf {
373 struct btrfs_header header;
374 struct btrfs_item items[];
375} __attribute__ ((__packed__));
376
377/*
378 * all non-leaf blocks are nodes, they hold only keys and pointers to
379 * other blocks
380 */
381struct btrfs_key_ptr {
382 struct btrfs_disk_key key;
383 __le64 blockptr;
384 __le64 generation;
385} __attribute__ ((__packed__));
386
387struct btrfs_node {
388 struct btrfs_header header;
389 struct btrfs_key_ptr ptrs[];
390} __attribute__ ((__packed__));
391
392/* Read ahead values for struct btrfs_path.reada */
393enum {
394 READA_NONE,
395 READA_BACK,
396 READA_FORWARD,
397 /*
398 * Similar to READA_FORWARD but unlike it:
399 *
400 * 1) It will trigger readahead even for leaves that are not close to
401 * each other on disk;
402 * 2) It also triggers readahead for nodes;
403 * 3) During a search, even when a node or leaf is already in memory, it
404 * will still trigger readahead for other nodes and leaves that follow
405 * it.
406 *
407 * This is meant to be used only when we know we are iterating over the
408 * entire tree or a very large part of it.
409 */
410 READA_FORWARD_ALWAYS,
411};
412
413/*
414 * btrfs_paths remember the path taken from the root down to the leaf.
415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416 * to any other levels that are present.
417 *
418 * The slots array records the index of the item or block pointer
419 * used while walking the tree.
420 */
421struct btrfs_path {
422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 int slots[BTRFS_MAX_LEVEL];
424 /* if there is real range locking, this locks field will change */
425 u8 locks[BTRFS_MAX_LEVEL];
426 u8 reada;
427 /* keep some upper locks as we walk down */
428 u8 lowest_level;
429
430 /*
431 * set by btrfs_split_item, tells search_slot to keep all locks
432 * and to force calls to keep space in the nodes
433 */
434 unsigned int search_for_split:1;
435 unsigned int keep_locks:1;
436 unsigned int skip_locking:1;
437 unsigned int search_commit_root:1;
438 unsigned int need_commit_sem:1;
439 unsigned int skip_release_on_error:1;
440 /*
441 * Indicate that new item (btrfs_search_slot) is extending already
442 * existing item and ins_len contains only the data size and not item
443 * header (ie. sizeof(struct btrfs_item) is not included).
444 */
445 unsigned int search_for_extension:1;
446};
447#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
448 sizeof(struct btrfs_item))
449struct btrfs_dev_replace {
450 u64 replace_state; /* see #define above */
451 time64_t time_started; /* seconds since 1-Jan-1970 */
452 time64_t time_stopped; /* seconds since 1-Jan-1970 */
453 atomic64_t num_write_errors;
454 atomic64_t num_uncorrectable_read_errors;
455
456 u64 cursor_left;
457 u64 committed_cursor_left;
458 u64 cursor_left_last_write_of_item;
459 u64 cursor_right;
460
461 u64 cont_reading_from_srcdev_mode; /* see #define above */
462
463 int is_valid;
464 int item_needs_writeback;
465 struct btrfs_device *srcdev;
466 struct btrfs_device *tgtdev;
467
468 struct mutex lock_finishing_cancel_unmount;
469 struct rw_semaphore rwsem;
470
471 struct btrfs_scrub_progress scrub_progress;
472
473 struct percpu_counter bio_counter;
474 wait_queue_head_t replace_wait;
475};
476
477/*
478 * free clusters are used to claim free space in relatively large chunks,
479 * allowing us to do less seeky writes. They are used for all metadata
480 * allocations. In ssd_spread mode they are also used for data allocations.
481 */
482struct btrfs_free_cluster {
483 spinlock_t lock;
484 spinlock_t refill_lock;
485 struct rb_root root;
486
487 /* largest extent in this cluster */
488 u64 max_size;
489
490 /* first extent starting offset */
491 u64 window_start;
492
493 /* We did a full search and couldn't create a cluster */
494 bool fragmented;
495
496 struct btrfs_block_group *block_group;
497 /*
498 * when a cluster is allocated from a block group, we put the
499 * cluster onto a list in the block group so that it can
500 * be freed before the block group is freed.
501 */
502 struct list_head block_group_list;
503};
504
505enum btrfs_caching_type {
506 BTRFS_CACHE_NO,
507 BTRFS_CACHE_STARTED,
508 BTRFS_CACHE_FINISHED,
509 BTRFS_CACHE_ERROR,
510};
511
512/*
513 * Tree to record all locked full stripes of a RAID5/6 block group
514 */
515struct btrfs_full_stripe_locks_tree {
516 struct rb_root root;
517 struct mutex lock;
518};
519
520/* Discard control. */
521/*
522 * Async discard uses multiple lists to differentiate the discard filter
523 * parameters. Index 0 is for completely free block groups where we need to
524 * ensure the entire block group is trimmed without being lossy. Indices
525 * afterwards represent monotonically decreasing discard filter sizes to
526 * prioritize what should be discarded next.
527 */
528#define BTRFS_NR_DISCARD_LISTS 3
529#define BTRFS_DISCARD_INDEX_UNUSED 0
530#define BTRFS_DISCARD_INDEX_START 1
531
532struct btrfs_discard_ctl {
533 struct workqueue_struct *discard_workers;
534 struct delayed_work work;
535 spinlock_t lock;
536 struct btrfs_block_group *block_group;
537 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
538 u64 prev_discard;
539 u64 prev_discard_time;
540 atomic_t discardable_extents;
541 atomic64_t discardable_bytes;
542 u64 max_discard_size;
543 u64 delay_ms;
544 u32 iops_limit;
545 u32 kbps_limit;
546 u64 discard_extent_bytes;
547 u64 discard_bitmap_bytes;
548 atomic64_t discard_bytes_saved;
549};
550
551void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
552
553/* fs_info */
554struct reloc_control;
555struct btrfs_device;
556struct btrfs_fs_devices;
557struct btrfs_balance_control;
558struct btrfs_delayed_root;
559
560/*
561 * Block group or device which contains an active swapfile. Used for preventing
562 * unsafe operations while a swapfile is active.
563 *
564 * These are sorted on (ptr, inode) (note that a block group or device can
565 * contain more than one swapfile). We compare the pointer values because we
566 * don't actually care what the object is, we just need a quick check whether
567 * the object exists in the rbtree.
568 */
569struct btrfs_swapfile_pin {
570 struct rb_node node;
571 void *ptr;
572 struct inode *inode;
573 /*
574 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
575 * points to a struct btrfs_device.
576 */
577 bool is_block_group;
578 /*
579 * Only used when 'is_block_group' is true and it is the number of
580 * extents used by a swapfile for this block group ('ptr' field).
581 */
582 int bg_extent_count;
583};
584
585bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
586
587enum {
588 BTRFS_FS_CLOSING_START,
589 BTRFS_FS_CLOSING_DONE,
590 BTRFS_FS_LOG_RECOVERING,
591 BTRFS_FS_OPEN,
592 BTRFS_FS_QUOTA_ENABLED,
593 BTRFS_FS_UPDATE_UUID_TREE_GEN,
594 BTRFS_FS_CREATING_FREE_SPACE_TREE,
595 BTRFS_FS_BTREE_ERR,
596 BTRFS_FS_LOG1_ERR,
597 BTRFS_FS_LOG2_ERR,
598 BTRFS_FS_QUOTA_OVERRIDE,
599 /* Used to record internally whether fs has been frozen */
600 BTRFS_FS_FROZEN,
601 /*
602 * Indicate that balance has been set up from the ioctl and is in the
603 * main phase. The fs_info::balance_ctl is initialized.
604 */
605 BTRFS_FS_BALANCE_RUNNING,
606
607 /*
608 * Indicate that relocation of a chunk has started, it's set per chunk
609 * and is toggled between chunks.
610 */
611 BTRFS_FS_RELOC_RUNNING,
612
613 /* Indicate that the cleaner thread is awake and doing something. */
614 BTRFS_FS_CLEANER_RUNNING,
615
616 /*
617 * The checksumming has an optimized version and is considered fast,
618 * so we don't need to offload checksums to workqueues.
619 */
620 BTRFS_FS_CSUM_IMPL_FAST,
621
622 /* Indicate that the discard workqueue can service discards. */
623 BTRFS_FS_DISCARD_RUNNING,
624
625 /* Indicate that we need to cleanup space cache v1 */
626 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
627
628 /* Indicate that we can't trust the free space tree for caching yet */
629 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
630
631 /* Indicate whether there are any tree modification log users */
632 BTRFS_FS_TREE_MOD_LOG_USERS,
633
634 /* Indicate that we want the transaction kthread to commit right now. */
635 BTRFS_FS_COMMIT_TRANS,
636
637 /* Indicate we have half completed snapshot deletions pending. */
638 BTRFS_FS_UNFINISHED_DROPS,
639
640 /* Indicate we have to finish a zone to do next allocation. */
641 BTRFS_FS_NEED_ZONE_FINISH,
642
643#if BITS_PER_LONG == 32
644 /* Indicate if we have error/warn message printed on 32bit systems */
645 BTRFS_FS_32BIT_ERROR,
646 BTRFS_FS_32BIT_WARN,
647#endif
648};
649
650/*
651 * Exclusive operations (device replace, resize, device add/remove, balance)
652 */
653enum btrfs_exclusive_operation {
654 BTRFS_EXCLOP_NONE,
655 BTRFS_EXCLOP_BALANCE_PAUSED,
656 BTRFS_EXCLOP_BALANCE,
657 BTRFS_EXCLOP_DEV_ADD,
658 BTRFS_EXCLOP_DEV_REMOVE,
659 BTRFS_EXCLOP_DEV_REPLACE,
660 BTRFS_EXCLOP_RESIZE,
661 BTRFS_EXCLOP_SWAP_ACTIVATE,
662};
663
664/* Store data about transaction commits, exported via sysfs. */
665struct btrfs_commit_stats {
666 /* Total number of commits */
667 u64 commit_count;
668 /* The maximum commit duration so far in ns */
669 u64 max_commit_dur;
670 /* The last commit duration in ns */
671 u64 last_commit_dur;
672 /* The total commit duration in ns */
673 u64 total_commit_dur;
674};
675
676struct btrfs_fs_info {
677 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
678 unsigned long flags;
679 struct btrfs_root *tree_root;
680 struct btrfs_root *chunk_root;
681 struct btrfs_root *dev_root;
682 struct btrfs_root *fs_root;
683 struct btrfs_root *quota_root;
684 struct btrfs_root *uuid_root;
685 struct btrfs_root *data_reloc_root;
686 struct btrfs_root *block_group_root;
687
688 /* the log root tree is a directory of all the other log roots */
689 struct btrfs_root *log_root_tree;
690
691 /* The tree that holds the global roots (csum, extent, etc) */
692 rwlock_t global_root_lock;
693 struct rb_root global_root_tree;
694
695 spinlock_t fs_roots_radix_lock;
696 struct radix_tree_root fs_roots_radix;
697
698 /* block group cache stuff */
699 rwlock_t block_group_cache_lock;
700 struct rb_root_cached block_group_cache_tree;
701
702 /* keep track of unallocated space */
703 atomic64_t free_chunk_space;
704
705 /* Track ranges which are used by log trees blocks/logged data extents */
706 struct extent_io_tree excluded_extents;
707
708 /* logical->physical extent mapping */
709 struct extent_map_tree mapping_tree;
710
711 /*
712 * block reservation for extent, checksum, root tree and
713 * delayed dir index item
714 */
715 struct btrfs_block_rsv global_block_rsv;
716 /* block reservation for metadata operations */
717 struct btrfs_block_rsv trans_block_rsv;
718 /* block reservation for chunk tree */
719 struct btrfs_block_rsv chunk_block_rsv;
720 /* block reservation for delayed operations */
721 struct btrfs_block_rsv delayed_block_rsv;
722 /* block reservation for delayed refs */
723 struct btrfs_block_rsv delayed_refs_rsv;
724
725 struct btrfs_block_rsv empty_block_rsv;
726
727 u64 generation;
728 u64 last_trans_committed;
729 /*
730 * Generation of the last transaction used for block group relocation
731 * since the filesystem was last mounted (or 0 if none happened yet).
732 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
733 */
734 u64 last_reloc_trans;
735 u64 avg_delayed_ref_runtime;
736
737 /*
738 * this is updated to the current trans every time a full commit
739 * is required instead of the faster short fsync log commits
740 */
741 u64 last_trans_log_full_commit;
742 unsigned long mount_opt;
743 /*
744 * Track requests for actions that need to be done during transaction
745 * commit (like for some mount options).
746 */
747 unsigned long pending_changes;
748 unsigned long compress_type:4;
749 unsigned int compress_level;
750 u32 commit_interval;
751 /*
752 * It is a suggestive number, the read side is safe even it gets a
753 * wrong number because we will write out the data into a regular
754 * extent. The write side(mount/remount) is under ->s_umount lock,
755 * so it is also safe.
756 */
757 u64 max_inline;
758
759 struct btrfs_transaction *running_transaction;
760 wait_queue_head_t transaction_throttle;
761 wait_queue_head_t transaction_wait;
762 wait_queue_head_t transaction_blocked_wait;
763 wait_queue_head_t async_submit_wait;
764
765 /*
766 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
767 * when they are updated.
768 *
769 * Because we do not clear the flags for ever, so we needn't use
770 * the lock on the read side.
771 *
772 * We also needn't use the lock when we mount the fs, because
773 * there is no other task which will update the flag.
774 */
775 spinlock_t super_lock;
776 struct btrfs_super_block *super_copy;
777 struct btrfs_super_block *super_for_commit;
778 struct super_block *sb;
779 struct inode *btree_inode;
780 struct mutex tree_log_mutex;
781 struct mutex transaction_kthread_mutex;
782 struct mutex cleaner_mutex;
783 struct mutex chunk_mutex;
784
785 /*
786 * this is taken to make sure we don't set block groups ro after
787 * the free space cache has been allocated on them
788 */
789 struct mutex ro_block_group_mutex;
790
791 /* this is used during read/modify/write to make sure
792 * no two ios are trying to mod the same stripe at the same
793 * time
794 */
795 struct btrfs_stripe_hash_table *stripe_hash_table;
796
797 /*
798 * this protects the ordered operations list only while we are
799 * processing all of the entries on it. This way we make
800 * sure the commit code doesn't find the list temporarily empty
801 * because another function happens to be doing non-waiting preflush
802 * before jumping into the main commit.
803 */
804 struct mutex ordered_operations_mutex;
805
806 struct rw_semaphore commit_root_sem;
807
808 struct rw_semaphore cleanup_work_sem;
809
810 struct rw_semaphore subvol_sem;
811
812 spinlock_t trans_lock;
813 /*
814 * the reloc mutex goes with the trans lock, it is taken
815 * during commit to protect us from the relocation code
816 */
817 struct mutex reloc_mutex;
818
819 struct list_head trans_list;
820 struct list_head dead_roots;
821 struct list_head caching_block_groups;
822
823 spinlock_t delayed_iput_lock;
824 struct list_head delayed_iputs;
825 atomic_t nr_delayed_iputs;
826 wait_queue_head_t delayed_iputs_wait;
827
828 atomic64_t tree_mod_seq;
829
830 /* this protects tree_mod_log and tree_mod_seq_list */
831 rwlock_t tree_mod_log_lock;
832 struct rb_root tree_mod_log;
833 struct list_head tree_mod_seq_list;
834
835 atomic_t async_delalloc_pages;
836
837 /*
838 * this is used to protect the following list -- ordered_roots.
839 */
840 spinlock_t ordered_root_lock;
841
842 /*
843 * all fs/file tree roots in which there are data=ordered extents
844 * pending writeback are added into this list.
845 *
846 * these can span multiple transactions and basically include
847 * every dirty data page that isn't from nodatacow
848 */
849 struct list_head ordered_roots;
850
851 struct mutex delalloc_root_mutex;
852 spinlock_t delalloc_root_lock;
853 /* all fs/file tree roots that have delalloc inodes. */
854 struct list_head delalloc_roots;
855
856 /*
857 * there is a pool of worker threads for checksumming during writes
858 * and a pool for checksumming after reads. This is because readers
859 * can run with FS locks held, and the writers may be waiting for
860 * those locks. We don't want ordering in the pending list to cause
861 * deadlocks, and so the two are serviced separately.
862 *
863 * A third pool does submit_bio to avoid deadlocking with the other
864 * two
865 */
866 struct btrfs_workqueue *workers;
867 struct btrfs_workqueue *hipri_workers;
868 struct btrfs_workqueue *delalloc_workers;
869 struct btrfs_workqueue *flush_workers;
870 struct workqueue_struct *endio_workers;
871 struct workqueue_struct *endio_meta_workers;
872 struct workqueue_struct *endio_raid56_workers;
873 struct workqueue_struct *rmw_workers;
874 struct workqueue_struct *compressed_write_workers;
875 struct btrfs_workqueue *endio_write_workers;
876 struct btrfs_workqueue *endio_freespace_worker;
877 struct btrfs_workqueue *caching_workers;
878
879 /*
880 * fixup workers take dirty pages that didn't properly go through
881 * the cow mechanism and make them safe to write. It happens
882 * for the sys_munmap function call path
883 */
884 struct btrfs_workqueue *fixup_workers;
885 struct btrfs_workqueue *delayed_workers;
886
887 struct task_struct *transaction_kthread;
888 struct task_struct *cleaner_kthread;
889 u32 thread_pool_size;
890
891 struct kobject *space_info_kobj;
892 struct kobject *qgroups_kobj;
893
894 /* used to keep from writing metadata until there is a nice batch */
895 struct percpu_counter dirty_metadata_bytes;
896 struct percpu_counter delalloc_bytes;
897 struct percpu_counter ordered_bytes;
898 s32 dirty_metadata_batch;
899 s32 delalloc_batch;
900
901 struct list_head dirty_cowonly_roots;
902
903 struct btrfs_fs_devices *fs_devices;
904
905 /*
906 * The space_info list is effectively read only after initial
907 * setup. It is populated at mount time and cleaned up after
908 * all block groups are removed. RCU is used to protect it.
909 */
910 struct list_head space_info;
911
912 struct btrfs_space_info *data_sinfo;
913
914 struct reloc_control *reloc_ctl;
915
916 /* data_alloc_cluster is only used in ssd_spread mode */
917 struct btrfs_free_cluster data_alloc_cluster;
918
919 /* all metadata allocations go through this cluster */
920 struct btrfs_free_cluster meta_alloc_cluster;
921
922 /* auto defrag inodes go here */
923 spinlock_t defrag_inodes_lock;
924 struct rb_root defrag_inodes;
925 atomic_t defrag_running;
926
927 /* Used to protect avail_{data, metadata, system}_alloc_bits */
928 seqlock_t profiles_lock;
929 /*
930 * these three are in extended format (availability of single
931 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
932 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
933 */
934 u64 avail_data_alloc_bits;
935 u64 avail_metadata_alloc_bits;
936 u64 avail_system_alloc_bits;
937
938 /* restriper state */
939 spinlock_t balance_lock;
940 struct mutex balance_mutex;
941 atomic_t balance_pause_req;
942 atomic_t balance_cancel_req;
943 struct btrfs_balance_control *balance_ctl;
944 wait_queue_head_t balance_wait_q;
945
946 /* Cancellation requests for chunk relocation */
947 atomic_t reloc_cancel_req;
948
949 u32 data_chunk_allocations;
950 u32 metadata_ratio;
951
952 void *bdev_holder;
953
954 /* private scrub information */
955 struct mutex scrub_lock;
956 atomic_t scrubs_running;
957 atomic_t scrub_pause_req;
958 atomic_t scrubs_paused;
959 atomic_t scrub_cancel_req;
960 wait_queue_head_t scrub_pause_wait;
961 /*
962 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
963 * running.
964 */
965 refcount_t scrub_workers_refcnt;
966 struct workqueue_struct *scrub_workers;
967 struct workqueue_struct *scrub_wr_completion_workers;
968 struct workqueue_struct *scrub_parity_workers;
969 struct btrfs_subpage_info *subpage_info;
970
971 struct btrfs_discard_ctl discard_ctl;
972
973#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
974 u32 check_integrity_print_mask;
975#endif
976 /* is qgroup tracking in a consistent state? */
977 u64 qgroup_flags;
978
979 /* holds configuration and tracking. Protected by qgroup_lock */
980 struct rb_root qgroup_tree;
981 spinlock_t qgroup_lock;
982
983 /*
984 * used to avoid frequently calling ulist_alloc()/ulist_free()
985 * when doing qgroup accounting, it must be protected by qgroup_lock.
986 */
987 struct ulist *qgroup_ulist;
988
989 /*
990 * Protect user change for quota operations. If a transaction is needed,
991 * it must be started before locking this lock.
992 */
993 struct mutex qgroup_ioctl_lock;
994
995 /* list of dirty qgroups to be written at next commit */
996 struct list_head dirty_qgroups;
997
998 /* used by qgroup for an efficient tree traversal */
999 u64 qgroup_seq;
1000
1001 /* qgroup rescan items */
1002 struct mutex qgroup_rescan_lock; /* protects the progress item */
1003 struct btrfs_key qgroup_rescan_progress;
1004 struct btrfs_workqueue *qgroup_rescan_workers;
1005 struct completion qgroup_rescan_completion;
1006 struct btrfs_work qgroup_rescan_work;
1007 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
1008
1009 /* filesystem state */
1010 unsigned long fs_state;
1011
1012 struct btrfs_delayed_root *delayed_root;
1013
1014 /* Extent buffer radix tree */
1015 spinlock_t buffer_lock;
1016 /* Entries are eb->start / sectorsize */
1017 struct radix_tree_root buffer_radix;
1018
1019 /* next backup root to be overwritten */
1020 int backup_root_index;
1021
1022 /* device replace state */
1023 struct btrfs_dev_replace dev_replace;
1024
1025 struct semaphore uuid_tree_rescan_sem;
1026
1027 /* Used to reclaim the metadata space in the background. */
1028 struct work_struct async_reclaim_work;
1029 struct work_struct async_data_reclaim_work;
1030 struct work_struct preempt_reclaim_work;
1031
1032 /* Reclaim partially filled block groups in the background */
1033 struct work_struct reclaim_bgs_work;
1034 struct list_head reclaim_bgs;
1035 int bg_reclaim_threshold;
1036
1037 spinlock_t unused_bgs_lock;
1038 struct list_head unused_bgs;
1039 struct mutex unused_bg_unpin_mutex;
1040 /* Protect block groups that are going to be deleted */
1041 struct mutex reclaim_bgs_lock;
1042
1043 /* Cached block sizes */
1044 u32 nodesize;
1045 u32 sectorsize;
1046 /* ilog2 of sectorsize, use to avoid 64bit division */
1047 u32 sectorsize_bits;
1048 u32 csum_size;
1049 u32 csums_per_leaf;
1050 u32 stripesize;
1051
1052 /*
1053 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1054 * filesystem, on zoned it depends on the device constraints.
1055 */
1056 u64 max_extent_size;
1057
1058 /* Block groups and devices containing active swapfiles. */
1059 spinlock_t swapfile_pins_lock;
1060 struct rb_root swapfile_pins;
1061
1062 struct crypto_shash *csum_shash;
1063
1064 /* Type of exclusive operation running, protected by super_lock */
1065 enum btrfs_exclusive_operation exclusive_operation;
1066
1067 /*
1068 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1069 * if the mode is enabled
1070 */
1071 u64 zone_size;
1072
1073 /* Max size to emit ZONE_APPEND write command */
1074 u64 max_zone_append_size;
1075 struct mutex zoned_meta_io_lock;
1076 spinlock_t treelog_bg_lock;
1077 u64 treelog_bg;
1078
1079 /*
1080 * Start of the dedicated data relocation block group, protected by
1081 * relocation_bg_lock.
1082 */
1083 spinlock_t relocation_bg_lock;
1084 u64 data_reloc_bg;
1085 struct mutex zoned_data_reloc_io_lock;
1086
1087 u64 nr_global_roots;
1088
1089 spinlock_t zone_active_bgs_lock;
1090 struct list_head zone_active_bgs;
1091
1092 /* Updates are not protected by any lock */
1093 struct btrfs_commit_stats commit_stats;
1094
1095#ifdef CONFIG_BTRFS_FS_REF_VERIFY
1096 spinlock_t ref_verify_lock;
1097 struct rb_root block_tree;
1098#endif
1099
1100#ifdef CONFIG_BTRFS_DEBUG
1101 struct kobject *debug_kobj;
1102 struct kobject *discard_debug_kobj;
1103 struct list_head allocated_roots;
1104
1105 spinlock_t eb_leak_lock;
1106 struct list_head allocated_ebs;
1107#endif
1108};
1109
1110static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1111{
1112 return sb->s_fs_info;
1113}
1114
1115/*
1116 * The state of btrfs root
1117 */
1118enum {
1119 /*
1120 * btrfs_record_root_in_trans is a multi-step process, and it can race
1121 * with the balancing code. But the race is very small, and only the
1122 * first time the root is added to each transaction. So IN_TRANS_SETUP
1123 * is used to tell us when more checks are required
1124 */
1125 BTRFS_ROOT_IN_TRANS_SETUP,
1126
1127 /*
1128 * Set if tree blocks of this root can be shared by other roots.
1129 * Only subvolume trees and their reloc trees have this bit set.
1130 * Conflicts with TRACK_DIRTY bit.
1131 *
1132 * This affects two things:
1133 *
1134 * - How balance works
1135 * For shareable roots, we need to use reloc tree and do path
1136 * replacement for balance, and need various pre/post hooks for
1137 * snapshot creation to handle them.
1138 *
1139 * While for non-shareable trees, we just simply do a tree search
1140 * with COW.
1141 *
1142 * - How dirty roots are tracked
1143 * For shareable roots, btrfs_record_root_in_trans() is needed to
1144 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1145 * don't need to set this manually.
1146 */
1147 BTRFS_ROOT_SHAREABLE,
1148 BTRFS_ROOT_TRACK_DIRTY,
1149 BTRFS_ROOT_IN_RADIX,
1150 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1151 BTRFS_ROOT_DEFRAG_RUNNING,
1152 BTRFS_ROOT_FORCE_COW,
1153 BTRFS_ROOT_MULTI_LOG_TASKS,
1154 BTRFS_ROOT_DIRTY,
1155 BTRFS_ROOT_DELETING,
1156
1157 /*
1158 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1159 *
1160 * Set for the subvolume tree owning the reloc tree.
1161 */
1162 BTRFS_ROOT_DEAD_RELOC_TREE,
1163 /* Mark dead root stored on device whose cleanup needs to be resumed */
1164 BTRFS_ROOT_DEAD_TREE,
1165 /* The root has a log tree. Used for subvolume roots and the tree root. */
1166 BTRFS_ROOT_HAS_LOG_TREE,
1167 /* Qgroup flushing is in progress */
1168 BTRFS_ROOT_QGROUP_FLUSHING,
1169 /* We started the orphan cleanup for this root. */
1170 BTRFS_ROOT_ORPHAN_CLEANUP,
1171 /* This root has a drop operation that was started previously. */
1172 BTRFS_ROOT_UNFINISHED_DROP,
1173 /* This reloc root needs to have its buffers lockdep class reset. */
1174 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1175};
1176
1177static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1178{
1179 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1180}
1181
1182/*
1183 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1184 * code. For detail check comment in fs/btrfs/qgroup.c.
1185 */
1186struct btrfs_qgroup_swapped_blocks {
1187 spinlock_t lock;
1188 /* RM_EMPTY_ROOT() of above blocks[] */
1189 bool swapped;
1190 struct rb_root blocks[BTRFS_MAX_LEVEL];
1191};
1192
1193/*
1194 * in ram representation of the tree. extent_root is used for all allocations
1195 * and for the extent tree extent_root root.
1196 */
1197struct btrfs_root {
1198 struct rb_node rb_node;
1199
1200 struct extent_buffer *node;
1201
1202 struct extent_buffer *commit_root;
1203 struct btrfs_root *log_root;
1204 struct btrfs_root *reloc_root;
1205
1206 unsigned long state;
1207 struct btrfs_root_item root_item;
1208 struct btrfs_key root_key;
1209 struct btrfs_fs_info *fs_info;
1210 struct extent_io_tree dirty_log_pages;
1211
1212 struct mutex objectid_mutex;
1213
1214 spinlock_t accounting_lock;
1215 struct btrfs_block_rsv *block_rsv;
1216
1217 struct mutex log_mutex;
1218 wait_queue_head_t log_writer_wait;
1219 wait_queue_head_t log_commit_wait[2];
1220 struct list_head log_ctxs[2];
1221 /* Used only for log trees of subvolumes, not for the log root tree */
1222 atomic_t log_writers;
1223 atomic_t log_commit[2];
1224 /* Used only for log trees of subvolumes, not for the log root tree */
1225 atomic_t log_batch;
1226 int log_transid;
1227 /* No matter the commit succeeds or not*/
1228 int log_transid_committed;
1229 /* Just be updated when the commit succeeds. */
1230 int last_log_commit;
1231 pid_t log_start_pid;
1232
1233 u64 last_trans;
1234
1235 u32 type;
1236
1237 u64 free_objectid;
1238
1239 struct btrfs_key defrag_progress;
1240 struct btrfs_key defrag_max;
1241
1242 /* The dirty list is only used by non-shareable roots */
1243 struct list_head dirty_list;
1244
1245 struct list_head root_list;
1246
1247 spinlock_t log_extents_lock[2];
1248 struct list_head logged_list[2];
1249
1250 spinlock_t inode_lock;
1251 /* red-black tree that keeps track of in-memory inodes */
1252 struct rb_root inode_tree;
1253
1254 /*
1255 * radix tree that keeps track of delayed nodes of every inode,
1256 * protected by inode_lock
1257 */
1258 struct radix_tree_root delayed_nodes_tree;
1259 /*
1260 * right now this just gets used so that a root has its own devid
1261 * for stat. It may be used for more later
1262 */
1263 dev_t anon_dev;
1264
1265 spinlock_t root_item_lock;
1266 refcount_t refs;
1267
1268 struct mutex delalloc_mutex;
1269 spinlock_t delalloc_lock;
1270 /*
1271 * all of the inodes that have delalloc bytes. It is possible for
1272 * this list to be empty even when there is still dirty data=ordered
1273 * extents waiting to finish IO.
1274 */
1275 struct list_head delalloc_inodes;
1276 struct list_head delalloc_root;
1277 u64 nr_delalloc_inodes;
1278
1279 struct mutex ordered_extent_mutex;
1280 /*
1281 * this is used by the balancing code to wait for all the pending
1282 * ordered extents
1283 */
1284 spinlock_t ordered_extent_lock;
1285
1286 /*
1287 * all of the data=ordered extents pending writeback
1288 * these can span multiple transactions and basically include
1289 * every dirty data page that isn't from nodatacow
1290 */
1291 struct list_head ordered_extents;
1292 struct list_head ordered_root;
1293 u64 nr_ordered_extents;
1294
1295 /*
1296 * Not empty if this subvolume root has gone through tree block swap
1297 * (relocation)
1298 *
1299 * Will be used by reloc_control::dirty_subvol_roots.
1300 */
1301 struct list_head reloc_dirty_list;
1302
1303 /*
1304 * Number of currently running SEND ioctls to prevent
1305 * manipulation with the read-only status via SUBVOL_SETFLAGS
1306 */
1307 int send_in_progress;
1308 /*
1309 * Number of currently running deduplication operations that have a
1310 * destination inode belonging to this root. Protected by the lock
1311 * root_item_lock.
1312 */
1313 int dedupe_in_progress;
1314 /* For exclusion of snapshot creation and nocow writes */
1315 struct btrfs_drew_lock snapshot_lock;
1316
1317 atomic_t snapshot_force_cow;
1318
1319 /* For qgroup metadata reserved space */
1320 spinlock_t qgroup_meta_rsv_lock;
1321 u64 qgroup_meta_rsv_pertrans;
1322 u64 qgroup_meta_rsv_prealloc;
1323 wait_queue_head_t qgroup_flush_wait;
1324
1325 /* Number of active swapfiles */
1326 atomic_t nr_swapfiles;
1327
1328 /* Record pairs of swapped blocks for qgroup */
1329 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1330
1331 /* Used only by log trees, when logging csum items */
1332 struct extent_io_tree log_csum_range;
1333
1334#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1335 u64 alloc_bytenr;
1336#endif
1337
1338#ifdef CONFIG_BTRFS_DEBUG
1339 struct list_head leak_list;
1340#endif
1341};
1342
1343/*
1344 * Structure that conveys information about an extent that is going to replace
1345 * all the extents in a file range.
1346 */
1347struct btrfs_replace_extent_info {
1348 u64 disk_offset;
1349 u64 disk_len;
1350 u64 data_offset;
1351 u64 data_len;
1352 u64 file_offset;
1353 /* Pointer to a file extent item of type regular or prealloc. */
1354 char *extent_buf;
1355 /*
1356 * Set to true when attempting to replace a file range with a new extent
1357 * described by this structure, set to false when attempting to clone an
1358 * existing extent into a file range.
1359 */
1360 bool is_new_extent;
1361 /* Indicate if we should update the inode's mtime and ctime. */
1362 bool update_times;
1363 /* Meaningful only if is_new_extent is true. */
1364 int qgroup_reserved;
1365 /*
1366 * Meaningful only if is_new_extent is true.
1367 * Used to track how many extent items we have already inserted in a
1368 * subvolume tree that refer to the extent described by this structure,
1369 * so that we know when to create a new delayed ref or update an existing
1370 * one.
1371 */
1372 int insertions;
1373};
1374
1375/* Arguments for btrfs_drop_extents() */
1376struct btrfs_drop_extents_args {
1377 /* Input parameters */
1378
1379 /*
1380 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1381 * If 'replace_extent' is true, this must not be NULL. Also the path
1382 * is always released except if 'replace_extent' is true and
1383 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1384 * the path is kept locked.
1385 */
1386 struct btrfs_path *path;
1387 /* Start offset of the range to drop extents from */
1388 u64 start;
1389 /* End (exclusive, last byte + 1) of the range to drop extents from */
1390 u64 end;
1391 /* If true drop all the extent maps in the range */
1392 bool drop_cache;
1393 /*
1394 * If true it means we want to insert a new extent after dropping all
1395 * the extents in the range. If this is true, the 'extent_item_size'
1396 * parameter must be set as well and the 'extent_inserted' field will
1397 * be set to true by btrfs_drop_extents() if it could insert the new
1398 * extent.
1399 * Note: when this is set to true the path must not be NULL.
1400 */
1401 bool replace_extent;
1402 /*
1403 * Used if 'replace_extent' is true. Size of the file extent item to
1404 * insert after dropping all existing extents in the range
1405 */
1406 u32 extent_item_size;
1407
1408 /* Output parameters */
1409
1410 /*
1411 * Set to the minimum between the input parameter 'end' and the end
1412 * (exclusive, last byte + 1) of the last dropped extent. This is always
1413 * set even if btrfs_drop_extents() returns an error.
1414 */
1415 u64 drop_end;
1416 /*
1417 * The number of allocated bytes found in the range. This can be smaller
1418 * than the range's length when there are holes in the range.
1419 */
1420 u64 bytes_found;
1421 /*
1422 * Only set if 'replace_extent' is true. Set to true if we were able
1423 * to insert a replacement extent after dropping all extents in the
1424 * range, otherwise set to false by btrfs_drop_extents().
1425 * Also, if btrfs_drop_extents() has set this to true it means it
1426 * returned with the path locked, otherwise if it has set this to
1427 * false it has returned with the path released.
1428 */
1429 bool extent_inserted;
1430};
1431
1432struct btrfs_file_private {
1433 void *filldir_buf;
1434};
1435
1436
1437static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1438{
1439
1440 return info->nodesize - sizeof(struct btrfs_header);
1441}
1442
1443#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1444
1445static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1446{
1447 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1448}
1449
1450static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1451{
1452 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1453}
1454
1455#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1456 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1457static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1458{
1459 return BTRFS_MAX_ITEM_SIZE(info) -
1460 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1461}
1462
1463static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1464{
1465 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1466}
1467
1468/*
1469 * Flags for mount options.
1470 *
1471 * Note: don't forget to add new options to btrfs_show_options()
1472 */
1473enum {
1474 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1475 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1476 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1477 BTRFS_MOUNT_SSD = (1UL << 3),
1478 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1479 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1480 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1481 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1482 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1483 BTRFS_MOUNT_NOSSD = (1UL << 9),
1484 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1485 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1486 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1487 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1488 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1489 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1490 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1491 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1492 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1493 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1494 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1495 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1496 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1497 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1498 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1499 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1500 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1501 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1502 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1503 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1504 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1505};
1506
1507#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1508#define BTRFS_DEFAULT_MAX_INLINE (2048)
1509
1510#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1511#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1512#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1513#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1514 BTRFS_MOUNT_##opt)
1515
1516#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1517do { \
1518 if (!btrfs_test_opt(fs_info, opt)) \
1519 btrfs_info(fs_info, fmt, ##args); \
1520 btrfs_set_opt(fs_info->mount_opt, opt); \
1521} while (0)
1522
1523#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1524do { \
1525 if (btrfs_test_opt(fs_info, opt)) \
1526 btrfs_info(fs_info, fmt, ##args); \
1527 btrfs_clear_opt(fs_info->mount_opt, opt); \
1528} while (0)
1529
1530/*
1531 * Requests for changes that need to be done during transaction commit.
1532 *
1533 * Internal mount options that are used for special handling of the real
1534 * mount options (eg. cannot be set during remount and have to be set during
1535 * transaction commit)
1536 */
1537
1538#define BTRFS_PENDING_COMMIT (0)
1539
1540#define btrfs_test_pending(info, opt) \
1541 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1542#define btrfs_set_pending(info, opt) \
1543 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1544#define btrfs_clear_pending(info, opt) \
1545 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1546
1547/*
1548 * Helpers for setting pending mount option changes.
1549 *
1550 * Expects corresponding macros
1551 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1552 */
1553#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1554do { \
1555 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1556 btrfs_info((info), fmt, ##args); \
1557 btrfs_set_pending((info), SET_##opt); \
1558 btrfs_clear_pending((info), CLEAR_##opt); \
1559 } \
1560} while(0)
1561
1562#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1563do { \
1564 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1565 btrfs_info((info), fmt, ##args); \
1566 btrfs_set_pending((info), CLEAR_##opt); \
1567 btrfs_clear_pending((info), SET_##opt); \
1568 } \
1569} while(0)
1570
1571/*
1572 * Inode flags
1573 */
1574#define BTRFS_INODE_NODATASUM (1U << 0)
1575#define BTRFS_INODE_NODATACOW (1U << 1)
1576#define BTRFS_INODE_READONLY (1U << 2)
1577#define BTRFS_INODE_NOCOMPRESS (1U << 3)
1578#define BTRFS_INODE_PREALLOC (1U << 4)
1579#define BTRFS_INODE_SYNC (1U << 5)
1580#define BTRFS_INODE_IMMUTABLE (1U << 6)
1581#define BTRFS_INODE_APPEND (1U << 7)
1582#define BTRFS_INODE_NODUMP (1U << 8)
1583#define BTRFS_INODE_NOATIME (1U << 9)
1584#define BTRFS_INODE_DIRSYNC (1U << 10)
1585#define BTRFS_INODE_COMPRESS (1U << 11)
1586
1587#define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1588
1589#define BTRFS_INODE_FLAG_MASK \
1590 (BTRFS_INODE_NODATASUM | \
1591 BTRFS_INODE_NODATACOW | \
1592 BTRFS_INODE_READONLY | \
1593 BTRFS_INODE_NOCOMPRESS | \
1594 BTRFS_INODE_PREALLOC | \
1595 BTRFS_INODE_SYNC | \
1596 BTRFS_INODE_IMMUTABLE | \
1597 BTRFS_INODE_APPEND | \
1598 BTRFS_INODE_NODUMP | \
1599 BTRFS_INODE_NOATIME | \
1600 BTRFS_INODE_DIRSYNC | \
1601 BTRFS_INODE_COMPRESS | \
1602 BTRFS_INODE_ROOT_ITEM_INIT)
1603
1604#define BTRFS_INODE_RO_VERITY (1U << 0)
1605
1606#define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1607
1608struct btrfs_map_token {
1609 struct extent_buffer *eb;
1610 char *kaddr;
1611 unsigned long offset;
1612};
1613
1614#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1615 ((bytes) >> (fs_info)->sectorsize_bits)
1616
1617static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1618 struct extent_buffer *eb)
1619{
1620 token->eb = eb;
1621 token->kaddr = page_address(eb->pages[0]);
1622 token->offset = 0;
1623}
1624
1625/* some macros to generate set/get functions for the struct fields. This
1626 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1627 * one for u8:
1628 */
1629#define le8_to_cpu(v) (v)
1630#define cpu_to_le8(v) (v)
1631#define __le8 u8
1632
1633static inline u8 get_unaligned_le8(const void *p)
1634{
1635 return *(u8 *)p;
1636}
1637
1638static inline void put_unaligned_le8(u8 val, void *p)
1639{
1640 *(u8 *)p = val;
1641}
1642
1643#define read_eb_member(eb, ptr, type, member, result) (\
1644 read_extent_buffer(eb, (char *)(result), \
1645 ((unsigned long)(ptr)) + \
1646 offsetof(type, member), \
1647 sizeof(((type *)0)->member)))
1648
1649#define write_eb_member(eb, ptr, type, member, result) (\
1650 write_extent_buffer(eb, (char *)(result), \
1651 ((unsigned long)(ptr)) + \
1652 offsetof(type, member), \
1653 sizeof(((type *)0)->member)))
1654
1655#define DECLARE_BTRFS_SETGET_BITS(bits) \
1656u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1657 const void *ptr, unsigned long off); \
1658void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1659 const void *ptr, unsigned long off, \
1660 u##bits val); \
1661u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1662 const void *ptr, unsigned long off); \
1663void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1664 unsigned long off, u##bits val);
1665
1666DECLARE_BTRFS_SETGET_BITS(8)
1667DECLARE_BTRFS_SETGET_BITS(16)
1668DECLARE_BTRFS_SETGET_BITS(32)
1669DECLARE_BTRFS_SETGET_BITS(64)
1670
1671#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1672static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1673 const type *s) \
1674{ \
1675 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1676 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1677} \
1678static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1679 u##bits val) \
1680{ \
1681 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1682 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1683} \
1684static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1685 const type *s) \
1686{ \
1687 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1688 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1689} \
1690static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1691 type *s, u##bits val) \
1692{ \
1693 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1694 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1695}
1696
1697#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1698static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1699{ \
1700 const type *p = page_address(eb->pages[0]) + \
1701 offset_in_page(eb->start); \
1702 return get_unaligned_le##bits(&p->member); \
1703} \
1704static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1705 u##bits val) \
1706{ \
1707 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1708 put_unaligned_le##bits(val, &p->member); \
1709}
1710
1711#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1712static inline u##bits btrfs_##name(const type *s) \
1713{ \
1714 return get_unaligned_le##bits(&s->member); \
1715} \
1716static inline void btrfs_set_##name(type *s, u##bits val) \
1717{ \
1718 put_unaligned_le##bits(val, &s->member); \
1719}
1720
1721static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1722 struct btrfs_dev_item *s)
1723{
1724 static_assert(sizeof(u64) ==
1725 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1726 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1727 total_bytes));
1728}
1729static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1730 struct btrfs_dev_item *s,
1731 u64 val)
1732{
1733 static_assert(sizeof(u64) ==
1734 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1735 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1736 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1737}
1738
1739
1740BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1741BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1742BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1743BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1744BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1745 start_offset, 64);
1746BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1747BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1748BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1749BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1750BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1751BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1752
1753BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1754BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1755 total_bytes, 64);
1756BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1757 bytes_used, 64);
1758BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1759 io_align, 32);
1760BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1761 io_width, 32);
1762BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1763 sector_size, 32);
1764BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1765BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1766 dev_group, 32);
1767BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1768 seek_speed, 8);
1769BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1770 bandwidth, 8);
1771BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1772 generation, 64);
1773
1774static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1775{
1776 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1777}
1778
1779static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1780{
1781 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1782}
1783
1784BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1785BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1786BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1787BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1788BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1789BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1790BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1791BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1792BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1793BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1794BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1795
1796static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1797{
1798 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1799}
1800
1801BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1802BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1803BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1804 stripe_len, 64);
1805BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1806 io_align, 32);
1807BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1808 io_width, 32);
1809BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1810 sector_size, 32);
1811BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1812BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1813 num_stripes, 16);
1814BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1815 sub_stripes, 16);
1816BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1817BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1818
1819static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1820 int nr)
1821{
1822 unsigned long offset = (unsigned long)c;
1823 offset += offsetof(struct btrfs_chunk, stripe);
1824 offset += nr * sizeof(struct btrfs_stripe);
1825 return (struct btrfs_stripe *)offset;
1826}
1827
1828static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1829{
1830 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1831}
1832
1833static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1834 struct btrfs_chunk *c, int nr)
1835{
1836 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1837}
1838
1839static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1840 struct btrfs_chunk *c, int nr)
1841{
1842 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1843}
1844
1845/* struct btrfs_block_group_item */
1846BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1847 used, 64);
1848BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1849 used, 64);
1850BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1851 struct btrfs_block_group_item, chunk_objectid, 64);
1852
1853BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1854 struct btrfs_block_group_item, chunk_objectid, 64);
1855BTRFS_SETGET_FUNCS(block_group_flags,
1856 struct btrfs_block_group_item, flags, 64);
1857BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1858 struct btrfs_block_group_item, flags, 64);
1859
1860/* struct btrfs_free_space_info */
1861BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1862 extent_count, 32);
1863BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1864
1865/* struct btrfs_inode_ref */
1866BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1867BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1868
1869/* struct btrfs_inode_extref */
1870BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1871 parent_objectid, 64);
1872BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1873 name_len, 16);
1874BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1875
1876/* struct btrfs_inode_item */
1877BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1878BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1879BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1880BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1881BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1882BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1883BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1884BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1885BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1886BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1887BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1888BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1889BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1890 generation, 64);
1891BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1892 sequence, 64);
1893BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1894 transid, 64);
1895BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1896BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1897 nbytes, 64);
1898BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1899 block_group, 64);
1900BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1901BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1902BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1903BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1904BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1905BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1906BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1907BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1908BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1909BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1910
1911/* struct btrfs_dev_extent */
1912BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1913 chunk_tree, 64);
1914BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1915 chunk_objectid, 64);
1916BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1917 chunk_offset, 64);
1918BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1919BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1920BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1921 generation, 64);
1922BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1923
1924BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1925
1926static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1927 struct btrfs_tree_block_info *item,
1928 struct btrfs_disk_key *key)
1929{
1930 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1931}
1932
1933static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1934 struct btrfs_tree_block_info *item,
1935 struct btrfs_disk_key *key)
1936{
1937 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1938}
1939
1940BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1941 root, 64);
1942BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1943 objectid, 64);
1944BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1945 offset, 64);
1946BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1947 count, 32);
1948
1949BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1950 count, 32);
1951
1952BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1953 type, 8);
1954BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1955 offset, 64);
1956
1957static inline u32 btrfs_extent_inline_ref_size(int type)
1958{
1959 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1960 type == BTRFS_SHARED_BLOCK_REF_KEY)
1961 return sizeof(struct btrfs_extent_inline_ref);
1962 if (type == BTRFS_SHARED_DATA_REF_KEY)
1963 return sizeof(struct btrfs_shared_data_ref) +
1964 sizeof(struct btrfs_extent_inline_ref);
1965 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1966 return sizeof(struct btrfs_extent_data_ref) +
1967 offsetof(struct btrfs_extent_inline_ref, offset);
1968 return 0;
1969}
1970
1971/* struct btrfs_node */
1972BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1973BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1974BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1975 blockptr, 64);
1976BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1977 generation, 64);
1978
1979static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1980{
1981 unsigned long ptr;
1982 ptr = offsetof(struct btrfs_node, ptrs) +
1983 sizeof(struct btrfs_key_ptr) * nr;
1984 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1985}
1986
1987static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1988 int nr, u64 val)
1989{
1990 unsigned long ptr;
1991 ptr = offsetof(struct btrfs_node, ptrs) +
1992 sizeof(struct btrfs_key_ptr) * nr;
1993 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1994}
1995
1996static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1997{
1998 unsigned long ptr;
1999 ptr = offsetof(struct btrfs_node, ptrs) +
2000 sizeof(struct btrfs_key_ptr) * nr;
2001 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2002}
2003
2004static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2005 int nr, u64 val)
2006{
2007 unsigned long ptr;
2008 ptr = offsetof(struct btrfs_node, ptrs) +
2009 sizeof(struct btrfs_key_ptr) * nr;
2010 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2011}
2012
2013static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2014{
2015 return offsetof(struct btrfs_node, ptrs) +
2016 sizeof(struct btrfs_key_ptr) * nr;
2017}
2018
2019void btrfs_node_key(const struct extent_buffer *eb,
2020 struct btrfs_disk_key *disk_key, int nr);
2021
2022static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2023 struct btrfs_disk_key *disk_key, int nr)
2024{
2025 unsigned long ptr;
2026 ptr = btrfs_node_key_ptr_offset(nr);
2027 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2028 struct btrfs_key_ptr, key, disk_key);
2029}
2030
2031/* struct btrfs_item */
2032BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2033BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2034BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2035BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2036
2037static inline unsigned long btrfs_item_nr_offset(int nr)
2038{
2039 return offsetof(struct btrfs_leaf, items) +
2040 sizeof(struct btrfs_item) * nr;
2041}
2042
2043static inline struct btrfs_item *btrfs_item_nr(int nr)
2044{
2045 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2046}
2047
2048#define BTRFS_ITEM_SETGET_FUNCS(member) \
2049static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \
2050 int slot) \
2051{ \
2052 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \
2053} \
2054static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \
2055 int slot, u32 val) \
2056{ \
2057 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \
2058} \
2059static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \
2060 int slot) \
2061{ \
2062 struct btrfs_item *item = btrfs_item_nr(slot); \
2063 return btrfs_token_raw_item_##member(token, item); \
2064} \
2065static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \
2066 int slot, u32 val) \
2067{ \
2068 struct btrfs_item *item = btrfs_item_nr(slot); \
2069 btrfs_set_token_raw_item_##member(token, item, val); \
2070}
2071
2072BTRFS_ITEM_SETGET_FUNCS(offset)
2073BTRFS_ITEM_SETGET_FUNCS(size);
2074
2075static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2076{
2077 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2078}
2079
2080static inline void btrfs_item_key(const struct extent_buffer *eb,
2081 struct btrfs_disk_key *disk_key, int nr)
2082{
2083 struct btrfs_item *item = btrfs_item_nr(nr);
2084 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2085}
2086
2087static inline void btrfs_set_item_key(struct extent_buffer *eb,
2088 struct btrfs_disk_key *disk_key, int nr)
2089{
2090 struct btrfs_item *item = btrfs_item_nr(nr);
2091 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2092}
2093
2094BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2095
2096/*
2097 * struct btrfs_root_ref
2098 */
2099BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2100BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2101BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2102
2103/* struct btrfs_dir_item */
2104BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2105BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2106BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2107BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2108BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2109BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2110 data_len, 16);
2111BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2112 name_len, 16);
2113BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2114 transid, 64);
2115
2116static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2117 const struct btrfs_dir_item *item,
2118 struct btrfs_disk_key *key)
2119{
2120 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2121}
2122
2123static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2124 struct btrfs_dir_item *item,
2125 const struct btrfs_disk_key *key)
2126{
2127 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2128}
2129
2130BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2131 num_entries, 64);
2132BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2133 num_bitmaps, 64);
2134BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2135 generation, 64);
2136
2137static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2138 const struct btrfs_free_space_header *h,
2139 struct btrfs_disk_key *key)
2140{
2141 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2142}
2143
2144static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2145 struct btrfs_free_space_header *h,
2146 const struct btrfs_disk_key *key)
2147{
2148 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2149}
2150
2151/* struct btrfs_disk_key */
2152BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2153 objectid, 64);
2154BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2155BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2156
2157#ifdef __LITTLE_ENDIAN
2158
2159/*
2160 * Optimized helpers for little-endian architectures where CPU and on-disk
2161 * structures have the same endianness and we can skip conversions.
2162 */
2163
2164static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2165 const struct btrfs_disk_key *disk_key)
2166{
2167 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2168}
2169
2170static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2171 const struct btrfs_key *cpu_key)
2172{
2173 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2174}
2175
2176static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2177 struct btrfs_key *cpu_key, int nr)
2178{
2179 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2180
2181 btrfs_node_key(eb, disk_key, nr);
2182}
2183
2184static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2185 struct btrfs_key *cpu_key, int nr)
2186{
2187 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2188
2189 btrfs_item_key(eb, disk_key, nr);
2190}
2191
2192static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2193 const struct btrfs_dir_item *item,
2194 struct btrfs_key *cpu_key)
2195{
2196 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2197
2198 btrfs_dir_item_key(eb, item, disk_key);
2199}
2200
2201#else
2202
2203static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2204 const struct btrfs_disk_key *disk)
2205{
2206 cpu->offset = le64_to_cpu(disk->offset);
2207 cpu->type = disk->type;
2208 cpu->objectid = le64_to_cpu(disk->objectid);
2209}
2210
2211static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2212 const struct btrfs_key *cpu)
2213{
2214 disk->offset = cpu_to_le64(cpu->offset);
2215 disk->type = cpu->type;
2216 disk->objectid = cpu_to_le64(cpu->objectid);
2217}
2218
2219static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2220 struct btrfs_key *key, int nr)
2221{
2222 struct btrfs_disk_key disk_key;
2223 btrfs_node_key(eb, &disk_key, nr);
2224 btrfs_disk_key_to_cpu(key, &disk_key);
2225}
2226
2227static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2228 struct btrfs_key *key, int nr)
2229{
2230 struct btrfs_disk_key disk_key;
2231 btrfs_item_key(eb, &disk_key, nr);
2232 btrfs_disk_key_to_cpu(key, &disk_key);
2233}
2234
2235static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2236 const struct btrfs_dir_item *item,
2237 struct btrfs_key *key)
2238{
2239 struct btrfs_disk_key disk_key;
2240 btrfs_dir_item_key(eb, item, &disk_key);
2241 btrfs_disk_key_to_cpu(key, &disk_key);
2242}
2243
2244#endif
2245
2246/* struct btrfs_header */
2247BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2248BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2249 generation, 64);
2250BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2251BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2252BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2253BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2254BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2255 generation, 64);
2256BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2257BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2258 nritems, 32);
2259BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2260
2261static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2262{
2263 return (btrfs_header_flags(eb) & flag) == flag;
2264}
2265
2266static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2267{
2268 u64 flags = btrfs_header_flags(eb);
2269 btrfs_set_header_flags(eb, flags | flag);
2270}
2271
2272static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2273{
2274 u64 flags = btrfs_header_flags(eb);
2275 btrfs_set_header_flags(eb, flags & ~flag);
2276}
2277
2278static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2279{
2280 u64 flags = btrfs_header_flags(eb);
2281 return flags >> BTRFS_BACKREF_REV_SHIFT;
2282}
2283
2284static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2285 int rev)
2286{
2287 u64 flags = btrfs_header_flags(eb);
2288 flags &= ~BTRFS_BACKREF_REV_MASK;
2289 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2290 btrfs_set_header_flags(eb, flags);
2291}
2292
2293static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2294{
2295 return btrfs_header_level(eb) == 0;
2296}
2297
2298/* struct btrfs_root_item */
2299BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2300 generation, 64);
2301BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2302BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2303BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2304
2305BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2306 generation, 64);
2307BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2308BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2309BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2310BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2311BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2312BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2313BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2314BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2315BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2316 last_snapshot, 64);
2317BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2318 generation_v2, 64);
2319BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2320 ctransid, 64);
2321BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2322 otransid, 64);
2323BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2324 stransid, 64);
2325BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2326 rtransid, 64);
2327
2328static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2329{
2330 /* Byte-swap the constant at compile time, root_item::flags is LE */
2331 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2332}
2333
2334static inline bool btrfs_root_dead(const struct btrfs_root *root)
2335{
2336 /* Byte-swap the constant at compile time, root_item::flags is LE */
2337 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2338}
2339
2340static inline u64 btrfs_root_id(const struct btrfs_root *root)
2341{
2342 return root->root_key.objectid;
2343}
2344
2345/* struct btrfs_root_backup */
2346BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2347 tree_root, 64);
2348BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2349 tree_root_gen, 64);
2350BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2351 tree_root_level, 8);
2352
2353BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2354 chunk_root, 64);
2355BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2356 chunk_root_gen, 64);
2357BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2358 chunk_root_level, 8);
2359
2360BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2361 extent_root, 64);
2362BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2363 extent_root_gen, 64);
2364BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2365 extent_root_level, 8);
2366
2367BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2368 fs_root, 64);
2369BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2370 fs_root_gen, 64);
2371BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2372 fs_root_level, 8);
2373
2374BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2375 dev_root, 64);
2376BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2377 dev_root_gen, 64);
2378BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2379 dev_root_level, 8);
2380
2381BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2382 csum_root, 64);
2383BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2384 csum_root_gen, 64);
2385BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2386 csum_root_level, 8);
2387BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2388 total_bytes, 64);
2389BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2390 bytes_used, 64);
2391BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2392 num_devices, 64);
2393
2394/*
2395 * For extent tree v2 we overload the extent root with the block group root, as
2396 * we will have multiple extent roots.
2397 */
2398BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2399 extent_root, 64);
2400BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2401 extent_root_gen, 64);
2402BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2403 struct btrfs_root_backup, extent_root_level, 8);
2404
2405/* struct btrfs_balance_item */
2406BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2407
2408static inline void btrfs_balance_data(const struct extent_buffer *eb,
2409 const struct btrfs_balance_item *bi,
2410 struct btrfs_disk_balance_args *ba)
2411{
2412 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2413}
2414
2415static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2416 struct btrfs_balance_item *bi,
2417 const struct btrfs_disk_balance_args *ba)
2418{
2419 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2420}
2421
2422static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2423 const struct btrfs_balance_item *bi,
2424 struct btrfs_disk_balance_args *ba)
2425{
2426 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2427}
2428
2429static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2430 struct btrfs_balance_item *bi,
2431 const struct btrfs_disk_balance_args *ba)
2432{
2433 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2434}
2435
2436static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2437 const struct btrfs_balance_item *bi,
2438 struct btrfs_disk_balance_args *ba)
2439{
2440 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2441}
2442
2443static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2444 struct btrfs_balance_item *bi,
2445 const struct btrfs_disk_balance_args *ba)
2446{
2447 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2448}
2449
2450static inline void
2451btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2452 const struct btrfs_disk_balance_args *disk)
2453{
2454 memset(cpu, 0, sizeof(*cpu));
2455
2456 cpu->profiles = le64_to_cpu(disk->profiles);
2457 cpu->usage = le64_to_cpu(disk->usage);
2458 cpu->devid = le64_to_cpu(disk->devid);
2459 cpu->pstart = le64_to_cpu(disk->pstart);
2460 cpu->pend = le64_to_cpu(disk->pend);
2461 cpu->vstart = le64_to_cpu(disk->vstart);
2462 cpu->vend = le64_to_cpu(disk->vend);
2463 cpu->target = le64_to_cpu(disk->target);
2464 cpu->flags = le64_to_cpu(disk->flags);
2465 cpu->limit = le64_to_cpu(disk->limit);
2466 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2467 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2468}
2469
2470static inline void
2471btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2472 const struct btrfs_balance_args *cpu)
2473{
2474 memset(disk, 0, sizeof(*disk));
2475
2476 disk->profiles = cpu_to_le64(cpu->profiles);
2477 disk->usage = cpu_to_le64(cpu->usage);
2478 disk->devid = cpu_to_le64(cpu->devid);
2479 disk->pstart = cpu_to_le64(cpu->pstart);
2480 disk->pend = cpu_to_le64(cpu->pend);
2481 disk->vstart = cpu_to_le64(cpu->vstart);
2482 disk->vend = cpu_to_le64(cpu->vend);
2483 disk->target = cpu_to_le64(cpu->target);
2484 disk->flags = cpu_to_le64(cpu->flags);
2485 disk->limit = cpu_to_le64(cpu->limit);
2486 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2487 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2488}
2489
2490/* struct btrfs_super_block */
2491BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2492BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2493BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2494 generation, 64);
2495BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2496BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2497 struct btrfs_super_block, sys_chunk_array_size, 32);
2498BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2499 struct btrfs_super_block, chunk_root_generation, 64);
2500BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2501 root_level, 8);
2502BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2503 chunk_root, 64);
2504BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2505 chunk_root_level, 8);
2506BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2507 log_root, 64);
2508BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2509 log_root_level, 8);
2510BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2511 total_bytes, 64);
2512BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2513 bytes_used, 64);
2514BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2515 sectorsize, 32);
2516BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2517 nodesize, 32);
2518BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2519 stripesize, 32);
2520BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2521 root_dir_objectid, 64);
2522BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2523 num_devices, 64);
2524BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2525 compat_flags, 64);
2526BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2527 compat_ro_flags, 64);
2528BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2529 incompat_flags, 64);
2530BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2531 csum_type, 16);
2532BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2533 cache_generation, 64);
2534BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2535BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2536 uuid_tree_generation, 64);
2537BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2538 block_group_root, 64);
2539BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2540 struct btrfs_super_block,
2541 block_group_root_generation, 64);
2542BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2543 block_group_root_level, 8);
2544
2545int btrfs_super_csum_size(const struct btrfs_super_block *s);
2546const char *btrfs_super_csum_name(u16 csum_type);
2547const char *btrfs_super_csum_driver(u16 csum_type);
2548size_t __attribute_const__ btrfs_get_num_csums(void);
2549
2550
2551/*
2552 * The leaf data grows from end-to-front in the node.
2553 * this returns the address of the start of the last item,
2554 * which is the stop of the leaf data stack
2555 */
2556static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2557{
2558 u32 nr = btrfs_header_nritems(leaf);
2559
2560 if (nr == 0)
2561 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2562 return btrfs_item_offset(leaf, nr - 1);
2563}
2564
2565/* struct btrfs_file_extent_item */
2566BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2567 type, 8);
2568BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2569 struct btrfs_file_extent_item, disk_bytenr, 64);
2570BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2571 struct btrfs_file_extent_item, offset, 64);
2572BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2573 struct btrfs_file_extent_item, generation, 64);
2574BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2575 struct btrfs_file_extent_item, num_bytes, 64);
2576BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2577 struct btrfs_file_extent_item, ram_bytes, 64);
2578BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2579 struct btrfs_file_extent_item, disk_num_bytes, 64);
2580BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2581 struct btrfs_file_extent_item, compression, 8);
2582
2583static inline unsigned long
2584btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2585{
2586 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2587}
2588
2589static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2590{
2591 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2592}
2593
2594BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2595BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2596 disk_bytenr, 64);
2597BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2598 generation, 64);
2599BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2600 disk_num_bytes, 64);
2601BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2602 offset, 64);
2603BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2604 num_bytes, 64);
2605BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2606 ram_bytes, 64);
2607BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2608 compression, 8);
2609BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2610 encryption, 8);
2611BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2612 other_encoding, 16);
2613
2614/*
2615 * this returns the number of bytes used by the item on disk, minus the
2616 * size of any extent headers. If a file is compressed on disk, this is
2617 * the compressed size
2618 */
2619static inline u32 btrfs_file_extent_inline_item_len(
2620 const struct extent_buffer *eb,
2621 int nr)
2622{
2623 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2624}
2625
2626/* btrfs_qgroup_status_item */
2627BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2628 generation, 64);
2629BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2630 version, 64);
2631BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2632 flags, 64);
2633BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2634 rescan, 64);
2635
2636/* btrfs_qgroup_info_item */
2637BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2638 generation, 64);
2639BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2640BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2641 rfer_cmpr, 64);
2642BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2643BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2644 excl_cmpr, 64);
2645
2646BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2647 struct btrfs_qgroup_info_item, generation, 64);
2648BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2649 rfer, 64);
2650BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2651 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2652BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2653 excl, 64);
2654BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2655 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2656
2657/* btrfs_qgroup_limit_item */
2658BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2659 flags, 64);
2660BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2661 max_rfer, 64);
2662BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2663 max_excl, 64);
2664BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2665 rsv_rfer, 64);
2666BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2667 rsv_excl, 64);
2668
2669/* btrfs_dev_replace_item */
2670BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2671 struct btrfs_dev_replace_item, src_devid, 64);
2672BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2673 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2674 64);
2675BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2676 replace_state, 64);
2677BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2678 time_started, 64);
2679BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2680 time_stopped, 64);
2681BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2682 num_write_errors, 64);
2683BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2684 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2685 64);
2686BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2687 cursor_left, 64);
2688BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2689 cursor_right, 64);
2690
2691BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2692 struct btrfs_dev_replace_item, src_devid, 64);
2693BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2694 struct btrfs_dev_replace_item,
2695 cont_reading_from_srcdev_mode, 64);
2696BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2697 struct btrfs_dev_replace_item, replace_state, 64);
2698BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2699 struct btrfs_dev_replace_item, time_started, 64);
2700BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2701 struct btrfs_dev_replace_item, time_stopped, 64);
2702BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2703 struct btrfs_dev_replace_item, num_write_errors, 64);
2704BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2705 struct btrfs_dev_replace_item,
2706 num_uncorrectable_read_errors, 64);
2707BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2708 struct btrfs_dev_replace_item, cursor_left, 64);
2709BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2710 struct btrfs_dev_replace_item, cursor_right, 64);
2711
2712/* helper function to cast into the data area of the leaf. */
2713#define btrfs_item_ptr(leaf, slot, type) \
2714 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2715 btrfs_item_offset(leaf, slot)))
2716
2717#define btrfs_item_ptr_offset(leaf, slot) \
2718 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2719 btrfs_item_offset(leaf, slot)))
2720
2721static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2722{
2723 return crc32c(crc, address, length);
2724}
2725
2726static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2727{
2728 put_unaligned_le32(~crc, result);
2729}
2730
2731static inline u64 btrfs_name_hash(const char *name, int len)
2732{
2733 return crc32c((u32)~1, name, len);
2734}
2735
2736/*
2737 * Figure the key offset of an extended inode ref
2738 */
2739static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2740 int len)
2741{
2742 return (u64) crc32c(parent_objectid, name, len);
2743}
2744
2745static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2746{
2747 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2748}
2749
2750/* extent-tree.c */
2751
2752enum btrfs_inline_ref_type {
2753 BTRFS_REF_TYPE_INVALID,
2754 BTRFS_REF_TYPE_BLOCK,
2755 BTRFS_REF_TYPE_DATA,
2756 BTRFS_REF_TYPE_ANY,
2757};
2758
2759int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2760 struct btrfs_extent_inline_ref *iref,
2761 enum btrfs_inline_ref_type is_data);
2762u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2763
2764static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums,
2765 u64 offset)
2766{
2767 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
2768
2769 return csums + offset_in_sectors * fs_info->csum_size;
2770}
2771
2772/*
2773 * Take the number of bytes to be checksummed and figure out how many leaves
2774 * it would require to store the csums for that many bytes.
2775 */
2776static inline u64 btrfs_csum_bytes_to_leaves(
2777 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2778{
2779 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2780
2781 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2782}
2783
2784/*
2785 * Use this if we would be adding new items, as we could split nodes as we cow
2786 * down the tree.
2787 */
2788static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2789 unsigned num_items)
2790{
2791 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2792}
2793
2794/*
2795 * Doing a truncate or a modification won't result in new nodes or leaves, just
2796 * what we need for COW.
2797 */
2798static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2799 unsigned num_items)
2800{
2801 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2802}
2803
2804int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2805 u64 start, u64 num_bytes);
2806void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2807int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2808 unsigned long count);
2809void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2810 struct btrfs_delayed_ref_root *delayed_refs,
2811 struct btrfs_delayed_ref_head *head);
2812int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2813int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2814 struct btrfs_fs_info *fs_info, u64 bytenr,
2815 u64 offset, int metadata, u64 *refs, u64 *flags);
2816int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2817 int reserved);
2818int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2819 u64 bytenr, u64 num_bytes);
2820int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2821int btrfs_cross_ref_exist(struct btrfs_root *root,
2822 u64 objectid, u64 offset, u64 bytenr, bool strict,
2823 struct btrfs_path *path);
2824struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2825 struct btrfs_root *root,
2826 u64 parent, u64 root_objectid,
2827 const struct btrfs_disk_key *key,
2828 int level, u64 hint,
2829 u64 empty_size,
2830 enum btrfs_lock_nesting nest);
2831void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2832 u64 root_id,
2833 struct extent_buffer *buf,
2834 u64 parent, int last_ref);
2835int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2836 struct btrfs_root *root, u64 owner,
2837 u64 offset, u64 ram_bytes,
2838 struct btrfs_key *ins);
2839int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2840 u64 root_objectid, u64 owner, u64 offset,
2841 struct btrfs_key *ins);
2842int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2843 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2844 struct btrfs_key *ins, int is_data, int delalloc);
2845int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2846 struct extent_buffer *buf, int full_backref);
2847int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2848 struct extent_buffer *buf, int full_backref);
2849int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2850 struct extent_buffer *eb, u64 flags, int level);
2851int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2852
2853int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2854 u64 start, u64 len, int delalloc);
2855int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2856 u64 len);
2857int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2858int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2859 struct btrfs_ref *generic_ref);
2860
2861void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2862
2863/*
2864 * Different levels for to flush space when doing space reservations.
2865 *
2866 * The higher the level, the more methods we try to reclaim space.
2867 */
2868enum btrfs_reserve_flush_enum {
2869 /* If we are in the transaction, we can't flush anything.*/
2870 BTRFS_RESERVE_NO_FLUSH,
2871
2872 /*
2873 * Flush space by:
2874 * - Running delayed inode items
2875 * - Allocating a new chunk
2876 */
2877 BTRFS_RESERVE_FLUSH_LIMIT,
2878
2879 /*
2880 * Flush space by:
2881 * - Running delayed inode items
2882 * - Running delayed refs
2883 * - Running delalloc and waiting for ordered extents
2884 * - Allocating a new chunk
2885 */
2886 BTRFS_RESERVE_FLUSH_EVICT,
2887
2888 /*
2889 * Flush space by above mentioned methods and by:
2890 * - Running delayed iputs
2891 * - Committing transaction
2892 *
2893 * Can be interrupted by a fatal signal.
2894 */
2895 BTRFS_RESERVE_FLUSH_DATA,
2896 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2897 BTRFS_RESERVE_FLUSH_ALL,
2898
2899 /*
2900 * Pretty much the same as FLUSH_ALL, but can also steal space from
2901 * global rsv.
2902 *
2903 * Can be interrupted by a fatal signal.
2904 */
2905 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2906};
2907
2908enum btrfs_flush_state {
2909 FLUSH_DELAYED_ITEMS_NR = 1,
2910 FLUSH_DELAYED_ITEMS = 2,
2911 FLUSH_DELAYED_REFS_NR = 3,
2912 FLUSH_DELAYED_REFS = 4,
2913 FLUSH_DELALLOC = 5,
2914 FLUSH_DELALLOC_WAIT = 6,
2915 FLUSH_DELALLOC_FULL = 7,
2916 ALLOC_CHUNK = 8,
2917 ALLOC_CHUNK_FORCE = 9,
2918 RUN_DELAYED_IPUTS = 10,
2919 COMMIT_TRANS = 11,
2920};
2921
2922int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2923 struct btrfs_block_rsv *rsv,
2924 int nitems, bool use_global_rsv);
2925void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2926 struct btrfs_block_rsv *rsv);
2927void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2928
2929int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2930 u64 disk_num_bytes, bool noflush);
2931u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2932int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2933 u64 start, u64 end);
2934int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2935 u64 num_bytes, u64 *actual_bytes);
2936int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2937
2938int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2939int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2940 struct btrfs_fs_info *fs_info);
2941int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2942void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2943void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2944
2945/* ctree.c */
2946int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2947 int *slot);
2948int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2949int btrfs_previous_item(struct btrfs_root *root,
2950 struct btrfs_path *path, u64 min_objectid,
2951 int type);
2952int btrfs_previous_extent_item(struct btrfs_root *root,
2953 struct btrfs_path *path, u64 min_objectid);
2954void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2955 struct btrfs_path *path,
2956 const struct btrfs_key *new_key);
2957struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2958int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2959 struct btrfs_key *key, int lowest_level,
2960 u64 min_trans);
2961int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2962 struct btrfs_path *path,
2963 u64 min_trans);
2964struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2965 int slot);
2966
2967int btrfs_cow_block(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root, struct extent_buffer *buf,
2969 struct extent_buffer *parent, int parent_slot,
2970 struct extent_buffer **cow_ret,
2971 enum btrfs_lock_nesting nest);
2972int btrfs_copy_root(struct btrfs_trans_handle *trans,
2973 struct btrfs_root *root,
2974 struct extent_buffer *buf,
2975 struct extent_buffer **cow_ret, u64 new_root_objectid);
2976int btrfs_block_can_be_shared(struct btrfs_root *root,
2977 struct extent_buffer *buf);
2978void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2979void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2980int btrfs_split_item(struct btrfs_trans_handle *trans,
2981 struct btrfs_root *root,
2982 struct btrfs_path *path,
2983 const struct btrfs_key *new_key,
2984 unsigned long split_offset);
2985int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root,
2987 struct btrfs_path *path,
2988 const struct btrfs_key *new_key);
2989int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2990 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2991int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2992 const struct btrfs_key *key, struct btrfs_path *p,
2993 int ins_len, int cow);
2994int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2995 struct btrfs_path *p, u64 time_seq);
2996int btrfs_search_slot_for_read(struct btrfs_root *root,
2997 const struct btrfs_key *key,
2998 struct btrfs_path *p, int find_higher,
2999 int return_any);
3000int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3001 struct btrfs_root *root, struct extent_buffer *parent,
3002 int start_slot, u64 *last_ret,
3003 struct btrfs_key *progress);
3004void btrfs_release_path(struct btrfs_path *p);
3005struct btrfs_path *btrfs_alloc_path(void);
3006void btrfs_free_path(struct btrfs_path *p);
3007
3008int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3009 struct btrfs_path *path, int slot, int nr);
3010static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *root,
3012 struct btrfs_path *path)
3013{
3014 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3015}
3016
3017/*
3018 * Describes a batch of items to insert in a btree. This is used by
3019 * btrfs_insert_empty_items().
3020 */
3021struct btrfs_item_batch {
3022 /*
3023 * Pointer to an array containing the keys of the items to insert (in
3024 * sorted order).
3025 */
3026 const struct btrfs_key *keys;
3027 /* Pointer to an array containing the data size for each item to insert. */
3028 const u32 *data_sizes;
3029 /*
3030 * The sum of data sizes for all items. The caller can compute this while
3031 * setting up the data_sizes array, so it ends up being more efficient
3032 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3033 * doing it, as it would avoid an extra loop over a potentially large
3034 * array, and in the case of setup_item_for_insert(), we would be doing
3035 * it while holding a write lock on a leaf and often on upper level nodes
3036 * too, unnecessarily increasing the size of a critical section.
3037 */
3038 u32 total_data_size;
3039 /* Size of the keys and data_sizes arrays (number of items in the batch). */
3040 int nr;
3041};
3042
3043void btrfs_setup_item_for_insert(struct btrfs_root *root,
3044 struct btrfs_path *path,
3045 const struct btrfs_key *key,
3046 u32 data_size);
3047int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3048 const struct btrfs_key *key, void *data, u32 data_size);
3049int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root,
3051 struct btrfs_path *path,
3052 const struct btrfs_item_batch *batch);
3053
3054static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3055 struct btrfs_root *root,
3056 struct btrfs_path *path,
3057 const struct btrfs_key *key,
3058 u32 data_size)
3059{
3060 struct btrfs_item_batch batch;
3061
3062 batch.keys = key;
3063 batch.data_sizes = &data_size;
3064 batch.total_data_size = data_size;
3065 batch.nr = 1;
3066
3067 return btrfs_insert_empty_items(trans, root, path, &batch);
3068}
3069
3070int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3071int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3072 u64 time_seq);
3073
3074int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3075 struct btrfs_path *path);
3076
3077int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3078 struct btrfs_path *path);
3079
3080/*
3081 * Search in @root for a given @key, and store the slot found in @found_key.
3082 *
3083 * @root: The root node of the tree.
3084 * @key: The key we are looking for.
3085 * @found_key: Will hold the found item.
3086 * @path: Holds the current slot/leaf.
3087 * @iter_ret: Contains the value returned from btrfs_search_slot or
3088 * btrfs_get_next_valid_item, whichever was executed last.
3089 *
3090 * The @iter_ret is an output variable that will contain the return value of
3091 * btrfs_search_slot, if it encountered an error, or the value returned from
3092 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3093 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3094 *
3095 * It's recommended to use a separate variable for iter_ret and then use it to
3096 * set the function return value so there's no confusion of the 0/1/errno
3097 * values stemming from btrfs_search_slot.
3098 */
3099#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
3100 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
3101 (iter_ret) >= 0 && \
3102 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3103 (path)->slots[0]++ \
3104 )
3105
3106static inline int btrfs_next_old_item(struct btrfs_root *root,
3107 struct btrfs_path *p, u64 time_seq)
3108{
3109 ++p->slots[0];
3110 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3111 return btrfs_next_old_leaf(root, p, time_seq);
3112 return 0;
3113}
3114
3115/*
3116 * Search the tree again to find a leaf with greater keys.
3117 *
3118 * Returns 0 if it found something or 1 if there are no greater leaves.
3119 * Returns < 0 on error.
3120 */
3121static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3122{
3123 return btrfs_next_old_leaf(root, path, 0);
3124}
3125
3126static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3127{
3128 return btrfs_next_old_item(root, p, 0);
3129}
3130int btrfs_leaf_free_space(struct extent_buffer *leaf);
3131int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3132 int for_reloc);
3133int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3134 struct btrfs_root *root,
3135 struct extent_buffer *node,
3136 struct extent_buffer *parent);
3137static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3138{
3139 /*
3140 * Do it this way so we only ever do one test_bit in the normal case.
3141 */
3142 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3143 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3144 return 2;
3145 return 1;
3146 }
3147 return 0;
3148}
3149
3150/*
3151 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3152 * anything except sleeping. This function is used to check the status of
3153 * the fs.
3154 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3155 * since setting and checking for SB_RDONLY in the superblock's flags is not
3156 * atomic.
3157 */
3158static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3159{
3160 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3161 btrfs_fs_closing(fs_info);
3162}
3163
3164static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3165{
3166 sb->s_flags |= SB_RDONLY;
3167 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3168}
3169
3170static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3171{
3172 sb->s_flags &= ~SB_RDONLY;
3173 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3174}
3175
3176/* root-item.c */
3177int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3178 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3179 int name_len);
3180int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3181 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3182 int name_len);
3183int btrfs_del_root(struct btrfs_trans_handle *trans,
3184 const struct btrfs_key *key);
3185int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3186 const struct btrfs_key *key,
3187 struct btrfs_root_item *item);
3188int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_key *key,
3191 struct btrfs_root_item *item);
3192int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3193 struct btrfs_path *path, struct btrfs_root_item *root_item,
3194 struct btrfs_key *root_key);
3195int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3196void btrfs_set_root_node(struct btrfs_root_item *item,
3197 struct extent_buffer *node);
3198void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3199void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root);
3201
3202/* uuid-tree.c */
3203int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3204 u64 subid);
3205int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3206 u64 subid);
3207int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3208
3209/* dir-item.c */
3210int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3211 const char *name, int name_len);
3212int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3213 int name_len, struct btrfs_inode *dir,
3214 struct btrfs_key *location, u8 type, u64 index);
3215struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3216 struct btrfs_root *root,
3217 struct btrfs_path *path, u64 dir,
3218 const char *name, int name_len,
3219 int mod);
3220struct btrfs_dir_item *
3221btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3222 struct btrfs_root *root,
3223 struct btrfs_path *path, u64 dir,
3224 u64 index, const char *name, int name_len,
3225 int mod);
3226struct btrfs_dir_item *
3227btrfs_search_dir_index_item(struct btrfs_root *root,
3228 struct btrfs_path *path, u64 dirid,
3229 const char *name, int name_len);
3230int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3231 struct btrfs_root *root,
3232 struct btrfs_path *path,
3233 struct btrfs_dir_item *di);
3234int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root,
3236 struct btrfs_path *path, u64 objectid,
3237 const char *name, u16 name_len,
3238 const void *data, u16 data_len);
3239struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 struct btrfs_path *path, u64 dir,
3242 const char *name, u16 name_len,
3243 int mod);
3244struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3245 struct btrfs_path *path,
3246 const char *name,
3247 int name_len);
3248
3249/* orphan.c */
3250int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3251 struct btrfs_root *root, u64 offset);
3252int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3253 struct btrfs_root *root, u64 offset);
3254int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3255
3256/* file-item.c */
3257int btrfs_del_csums(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root, u64 bytenr, u64 len);
3259blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3260int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 u64 objectid, u64 pos,
3263 u64 disk_offset, u64 disk_num_bytes,
3264 u64 num_bytes, u64 offset, u64 ram_bytes,
3265 u8 compression, u8 encryption, u16 other_encoding);
3266int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 struct btrfs_path *path, u64 objectid,
3269 u64 bytenr, int mod);
3270int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3271 struct btrfs_root *root,
3272 struct btrfs_ordered_sum *sums);
3273blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3274 u64 offset, bool one_ordered);
3275int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3276 struct list_head *list, int search_commit);
3277void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3278 const struct btrfs_path *path,
3279 struct btrfs_file_extent_item *fi,
3280 const bool new_inline,
3281 struct extent_map *em);
3282int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3283 u64 len);
3284int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3285 u64 len);
3286void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3287u64 btrfs_file_extent_end(const struct btrfs_path *path);
3288
3289/* inode.c */
3290void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3291void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3292 int mirror_num, enum btrfs_compression_type compress_type);
3293int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3294 u32 pgoff, u8 *csum, const u8 * const csum_expected);
3295int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3296 u32 bio_offset, struct page *page, u32 pgoff);
3297unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3298 u32 bio_offset, struct page *page,
3299 u64 start, u64 end);
3300int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3301 u32 bio_offset, struct page *page, u32 pgoff);
3302struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3303 u64 start, u64 len);
3304noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3305 u64 *orig_start, u64 *orig_block_len,
3306 u64 *ram_bytes, bool strict);
3307
3308void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3309 struct btrfs_inode *inode);
3310struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3311int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3312int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3313 struct btrfs_inode *dir, struct btrfs_inode *inode,
3314 const char *name, int name_len);
3315int btrfs_add_link(struct btrfs_trans_handle *trans,
3316 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3317 const char *name, int name_len, int add_backref, u64 index);
3318int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3319int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3320 int front);
3321
3322int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3323int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3324 bool in_reclaim_context);
3325int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3326 unsigned int extra_bits,
3327 struct extent_state **cached_state);
3328struct btrfs_new_inode_args {
3329 /* Input */
3330 struct inode *dir;
3331 struct dentry *dentry;
3332 struct inode *inode;
3333 bool orphan;
3334 bool subvol;
3335
3336 /*
3337 * Output from btrfs_new_inode_prepare(), input to
3338 * btrfs_create_new_inode().
3339 */
3340 struct posix_acl *default_acl;
3341 struct posix_acl *acl;
3342};
3343int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3344 unsigned int *trans_num_items);
3345int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3346 struct btrfs_new_inode_args *args);
3347void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3348struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3349 struct inode *dir);
3350 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3351 u32 bits);
3352void btrfs_clear_delalloc_extent(struct inode *inode,
3353 struct extent_state *state, u32 bits);
3354void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3355 struct extent_state *other);
3356void btrfs_split_delalloc_extent(struct inode *inode,
3357 struct extent_state *orig, u64 split);
3358void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3359vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3360void btrfs_evict_inode(struct inode *inode);
3361int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3362struct inode *btrfs_alloc_inode(struct super_block *sb);
3363void btrfs_destroy_inode(struct inode *inode);
3364void btrfs_free_inode(struct inode *inode);
3365int btrfs_drop_inode(struct inode *inode);
3366int __init btrfs_init_cachep(void);
3367void __cold btrfs_destroy_cachep(void);
3368struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3369 struct btrfs_root *root, struct btrfs_path *path);
3370struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3371struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3372 struct page *page, size_t pg_offset,
3373 u64 start, u64 end);
3374int btrfs_update_inode(struct btrfs_trans_handle *trans,
3375 struct btrfs_root *root, struct btrfs_inode *inode);
3376int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3377 struct btrfs_root *root, struct btrfs_inode *inode);
3378int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3379 struct btrfs_inode *inode);
3380int btrfs_orphan_cleanup(struct btrfs_root *root);
3381int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3382void btrfs_add_delayed_iput(struct inode *inode);
3383void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3384int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3385int btrfs_prealloc_file_range(struct inode *inode, int mode,
3386 u64 start, u64 num_bytes, u64 min_size,
3387 loff_t actual_len, u64 *alloc_hint);
3388int btrfs_prealloc_file_range_trans(struct inode *inode,
3389 struct btrfs_trans_handle *trans, int mode,
3390 u64 start, u64 num_bytes, u64 min_size,
3391 loff_t actual_len, u64 *alloc_hint);
3392int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3393 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3394 struct writeback_control *wbc);
3395int btrfs_writepage_cow_fixup(struct page *page);
3396void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3397 struct page *page, u64 start,
3398 u64 end, bool uptodate);
3399int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3400 int compress_type);
3401int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3402 u64 file_offset, u64 disk_bytenr,
3403 u64 disk_io_size,
3404 struct page **pages);
3405ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3406 struct btrfs_ioctl_encoded_io_args *encoded);
3407ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3408 const struct btrfs_ioctl_encoded_io_args *encoded);
3409
3410ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3411
3412extern const struct dentry_operations btrfs_dentry_operations;
3413
3414/* Inode locking type flags, by default the exclusive lock is taken */
3415#define BTRFS_ILOCK_SHARED (1U << 0)
3416#define BTRFS_ILOCK_TRY (1U << 1)
3417#define BTRFS_ILOCK_MMAP (1U << 2)
3418
3419int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3420void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3421void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3422 const u64 add_bytes,
3423 const u64 del_bytes);
3424void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3425
3426/* ioctl.c */
3427long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3428long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3429int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3430int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3431 struct dentry *dentry, struct fileattr *fa);
3432int btrfs_ioctl_get_supported_features(void __user *arg);
3433void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3434int __pure btrfs_is_empty_uuid(u8 *uuid);
3435int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3436 struct btrfs_ioctl_defrag_range_args *range,
3437 u64 newer_than, unsigned long max_to_defrag);
3438void btrfs_get_block_group_info(struct list_head *groups_list,
3439 struct btrfs_ioctl_space_info *space);
3440void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3441 struct btrfs_ioctl_balance_args *bargs);
3442bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3443 enum btrfs_exclusive_operation type);
3444bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3445 enum btrfs_exclusive_operation type);
3446void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3447void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3448void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3449 enum btrfs_exclusive_operation op);
3450
3451
3452/* file.c */
3453int __init btrfs_auto_defrag_init(void);
3454void __cold btrfs_auto_defrag_exit(void);
3455int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3456 struct btrfs_inode *inode, u32 extent_thresh);
3457int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3458void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3459int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3460void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3461 int skip_pinned);
3462extern const struct file_operations btrfs_file_operations;
3463int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root, struct btrfs_inode *inode,
3465 struct btrfs_drop_extents_args *args);
3466int btrfs_replace_file_extents(struct btrfs_inode *inode,
3467 struct btrfs_path *path, const u64 start,
3468 const u64 end,
3469 struct btrfs_replace_extent_info *extent_info,
3470 struct btrfs_trans_handle **trans_out);
3471int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3472 struct btrfs_inode *inode, u64 start, u64 end);
3473ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3474 const struct btrfs_ioctl_encoded_io_args *encoded);
3475int btrfs_release_file(struct inode *inode, struct file *file);
3476int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3477 size_t num_pages, loff_t pos, size_t write_bytes,
3478 struct extent_state **cached, bool noreserve);
3479int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3480int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3481 size_t *write_bytes);
3482void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3483
3484/* tree-defrag.c */
3485int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3486 struct btrfs_root *root);
3487
3488/* super.c */
3489int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3490 unsigned long new_flags);
3491int btrfs_sync_fs(struct super_block *sb, int wait);
3492char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3493 u64 subvol_objectid);
3494
3495static inline __printf(2, 3) __cold
3496void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3497{
3498}
3499
3500#ifdef CONFIG_PRINTK_INDEX
3501
3502#define btrfs_printk(fs_info, fmt, args...) \
3503do { \
3504 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \
3505 _btrfs_printk(fs_info, fmt, ##args); \
3506} while (0)
3507
3508__printf(2, 3)
3509__cold
3510void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3511
3512#elif defined(CONFIG_PRINTK)
3513
3514#define btrfs_printk(fs_info, fmt, args...) \
3515 _btrfs_printk(fs_info, fmt, ##args)
3516
3517__printf(2, 3)
3518__cold
3519void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3520
3521#else
3522
3523#define btrfs_printk(fs_info, fmt, args...) \
3524 btrfs_no_printk(fs_info, fmt, ##args)
3525#endif
3526
3527#define btrfs_emerg(fs_info, fmt, args...) \
3528 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3529#define btrfs_alert(fs_info, fmt, args...) \
3530 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3531#define btrfs_crit(fs_info, fmt, args...) \
3532 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3533#define btrfs_err(fs_info, fmt, args...) \
3534 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3535#define btrfs_warn(fs_info, fmt, args...) \
3536 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3537#define btrfs_notice(fs_info, fmt, args...) \
3538 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3539#define btrfs_info(fs_info, fmt, args...) \
3540 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3541
3542/*
3543 * Wrappers that use printk_in_rcu
3544 */
3545#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3546 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3547#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3548 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3549#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3550 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3551#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3552 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3553#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3554 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3555#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3556 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3557#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3558 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3559
3560/*
3561 * Wrappers that use a ratelimited printk_in_rcu
3562 */
3563#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3564 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3565#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3566 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3567#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3568 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3569#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3570 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3571#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3572 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3573#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3574 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3575#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3576 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3577
3578/*
3579 * Wrappers that use a ratelimited printk
3580 */
3581#define btrfs_emerg_rl(fs_info, fmt, args...) \
3582 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3583#define btrfs_alert_rl(fs_info, fmt, args...) \
3584 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3585#define btrfs_crit_rl(fs_info, fmt, args...) \
3586 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3587#define btrfs_err_rl(fs_info, fmt, args...) \
3588 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3589#define btrfs_warn_rl(fs_info, fmt, args...) \
3590 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3591#define btrfs_notice_rl(fs_info, fmt, args...) \
3592 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3593#define btrfs_info_rl(fs_info, fmt, args...) \
3594 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3595
3596#if defined(CONFIG_DYNAMIC_DEBUG)
3597#define btrfs_debug(fs_info, fmt, args...) \
3598 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3599 fs_info, KERN_DEBUG fmt, ##args)
3600#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3601 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3602 fs_info, KERN_DEBUG fmt, ##args)
3603#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3604 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3605 fs_info, KERN_DEBUG fmt, ##args)
3606#define btrfs_debug_rl(fs_info, fmt, args...) \
3607 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3608 fs_info, KERN_DEBUG fmt, ##args)
3609#elif defined(DEBUG)
3610#define btrfs_debug(fs_info, fmt, args...) \
3611 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3612#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3613 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3614#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3615 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3616#define btrfs_debug_rl(fs_info, fmt, args...) \
3617 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3618#else
3619#define btrfs_debug(fs_info, fmt, args...) \
3620 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3621#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3622 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3623#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3624 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3625#define btrfs_debug_rl(fs_info, fmt, args...) \
3626 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3627#endif
3628
3629#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3630do { \
3631 rcu_read_lock(); \
3632 btrfs_printk(fs_info, fmt, ##args); \
3633 rcu_read_unlock(); \
3634} while (0)
3635
3636#define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3637do { \
3638 rcu_read_lock(); \
3639 btrfs_no_printk(fs_info, fmt, ##args); \
3640 rcu_read_unlock(); \
3641} while (0)
3642
3643#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3644do { \
3645 static DEFINE_RATELIMIT_STATE(_rs, \
3646 DEFAULT_RATELIMIT_INTERVAL, \
3647 DEFAULT_RATELIMIT_BURST); \
3648 if (__ratelimit(&_rs)) \
3649 btrfs_printk(fs_info, fmt, ##args); \
3650} while (0)
3651
3652#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3653do { \
3654 rcu_read_lock(); \
3655 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3656 rcu_read_unlock(); \
3657} while (0)
3658
3659#ifdef CONFIG_BTRFS_ASSERT
3660__cold __noreturn
3661static inline void assertfail(const char *expr, const char *file, int line)
3662{
3663 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3664 BUG();
3665}
3666
3667#define ASSERT(expr) \
3668 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3669
3670#else
3671static inline void assertfail(const char *expr, const char* file, int line) { }
3672#define ASSERT(expr) (void)(expr)
3673#endif
3674
3675#if BITS_PER_LONG == 32
3676#define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3677/*
3678 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3679 * addresses of extents.
3680 *
3681 * For 4K page size it's about 10T, for 64K it's 160T.
3682 */
3683#define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3684void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3685void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3686#endif
3687
3688/*
3689 * Get the correct offset inside the page of extent buffer.
3690 *
3691 * @eb: target extent buffer
3692 * @start: offset inside the extent buffer
3693 *
3694 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3695 */
3696static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3697 unsigned long offset)
3698{
3699 /*
3700 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3701 * to PAGE_SIZE, thus adding it won't cause any difference.
3702 *
3703 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3704 * to the eb, thus we have to take the eb->start into consideration.
3705 */
3706 return offset_in_page(offset + eb->start);
3707}
3708
3709static inline unsigned long get_eb_page_index(unsigned long offset)
3710{
3711 /*
3712 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3713 *
3714 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3715 * and have ensured that all tree blocks are contained in one page,
3716 * thus we always get index == 0.
3717 */
3718 return offset >> PAGE_SHIFT;
3719}
3720
3721/*
3722 * Use that for functions that are conditionally exported for sanity tests but
3723 * otherwise static
3724 */
3725#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3726#define EXPORT_FOR_TESTS static
3727#else
3728#define EXPORT_FOR_TESTS
3729#endif
3730
3731__cold
3732static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3733{
3734 btrfs_err(fs_info,
3735"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3736}
3737
3738__printf(5, 6)
3739__cold
3740void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3741 unsigned int line, int errno, const char *fmt, ...);
3742
3743const char * __attribute_const__ btrfs_decode_error(int errno);
3744
3745__cold
3746void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3747 const char *function,
3748 unsigned int line, int errno);
3749
3750/*
3751 * Call btrfs_abort_transaction as early as possible when an error condition is
3752 * detected, that way the exact line number is reported.
3753 */
3754#define btrfs_abort_transaction(trans, errno) \
3755do { \
3756 /* Report first abort since mount */ \
3757 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3758 &((trans)->fs_info->fs_state))) { \
3759 if ((errno) != -EIO && (errno) != -EROFS) { \
3760 WARN(1, KERN_DEBUG \
3761 "BTRFS: Transaction aborted (error %d)\n", \
3762 (errno)); \
3763 } else { \
3764 btrfs_debug((trans)->fs_info, \
3765 "Transaction aborted (error %d)", \
3766 (errno)); \
3767 } \
3768 } \
3769 __btrfs_abort_transaction((trans), __func__, \
3770 __LINE__, (errno)); \
3771} while (0)
3772
3773#ifdef CONFIG_PRINTK_INDEX
3774
3775#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3776do { \
3777 printk_index_subsys_emit( \
3778 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \
3779 KERN_CRIT, fmt); \
3780 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3781 (errno), fmt, ##args); \
3782} while (0)
3783
3784#else
3785
3786#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3787 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3788 (errno), fmt, ##args)
3789
3790#endif
3791
3792#define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3793 &(fs_info)->fs_state)))
3794#define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \
3795 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \
3796 &(fs_info)->fs_state)))
3797
3798__printf(5, 6)
3799__cold
3800void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3801 unsigned int line, int errno, const char *fmt, ...);
3802/*
3803 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3804 * will panic(). Otherwise we BUG() here.
3805 */
3806#define btrfs_panic(fs_info, errno, fmt, args...) \
3807do { \
3808 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3809 BUG(); \
3810} while (0)
3811
3812
3813/* compatibility and incompatibility defines */
3814
3815#define btrfs_set_fs_incompat(__fs_info, opt) \
3816 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3817 #opt)
3818
3819static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3820 u64 flag, const char* name)
3821{
3822 struct btrfs_super_block *disk_super;
3823 u64 features;
3824
3825 disk_super = fs_info->super_copy;
3826 features = btrfs_super_incompat_flags(disk_super);
3827 if (!(features & flag)) {
3828 spin_lock(&fs_info->super_lock);
3829 features = btrfs_super_incompat_flags(disk_super);
3830 if (!(features & flag)) {
3831 features |= flag;
3832 btrfs_set_super_incompat_flags(disk_super, features);
3833 btrfs_info(fs_info,
3834 "setting incompat feature flag for %s (0x%llx)",
3835 name, flag);
3836 }
3837 spin_unlock(&fs_info->super_lock);
3838 }
3839}
3840
3841#define btrfs_clear_fs_incompat(__fs_info, opt) \
3842 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3843 #opt)
3844
3845static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3846 u64 flag, const char* name)
3847{
3848 struct btrfs_super_block *disk_super;
3849 u64 features;
3850
3851 disk_super = fs_info->super_copy;
3852 features = btrfs_super_incompat_flags(disk_super);
3853 if (features & flag) {
3854 spin_lock(&fs_info->super_lock);
3855 features = btrfs_super_incompat_flags(disk_super);
3856 if (features & flag) {
3857 features &= ~flag;
3858 btrfs_set_super_incompat_flags(disk_super, features);
3859 btrfs_info(fs_info,
3860 "clearing incompat feature flag for %s (0x%llx)",
3861 name, flag);
3862 }
3863 spin_unlock(&fs_info->super_lock);
3864 }
3865}
3866
3867#define btrfs_fs_incompat(fs_info, opt) \
3868 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3869
3870static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3871{
3872 struct btrfs_super_block *disk_super;
3873 disk_super = fs_info->super_copy;
3874 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3875}
3876
3877#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3878 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3879 #opt)
3880
3881static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3882 u64 flag, const char *name)
3883{
3884 struct btrfs_super_block *disk_super;
3885 u64 features;
3886
3887 disk_super = fs_info->super_copy;
3888 features = btrfs_super_compat_ro_flags(disk_super);
3889 if (!(features & flag)) {
3890 spin_lock(&fs_info->super_lock);
3891 features = btrfs_super_compat_ro_flags(disk_super);
3892 if (!(features & flag)) {
3893 features |= flag;
3894 btrfs_set_super_compat_ro_flags(disk_super, features);
3895 btrfs_info(fs_info,
3896 "setting compat-ro feature flag for %s (0x%llx)",
3897 name, flag);
3898 }
3899 spin_unlock(&fs_info->super_lock);
3900 }
3901}
3902
3903#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3904 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3905 #opt)
3906
3907static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3908 u64 flag, const char *name)
3909{
3910 struct btrfs_super_block *disk_super;
3911 u64 features;
3912
3913 disk_super = fs_info->super_copy;
3914 features = btrfs_super_compat_ro_flags(disk_super);
3915 if (features & flag) {
3916 spin_lock(&fs_info->super_lock);
3917 features = btrfs_super_compat_ro_flags(disk_super);
3918 if (features & flag) {
3919 features &= ~flag;
3920 btrfs_set_super_compat_ro_flags(disk_super, features);
3921 btrfs_info(fs_info,
3922 "clearing compat-ro feature flag for %s (0x%llx)",
3923 name, flag);
3924 }
3925 spin_unlock(&fs_info->super_lock);
3926 }
3927}
3928
3929#define btrfs_fs_compat_ro(fs_info, opt) \
3930 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3931
3932static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3933{
3934 struct btrfs_super_block *disk_super;
3935 disk_super = fs_info->super_copy;
3936 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3937}
3938
3939/* acl.c */
3940#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3941struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3942int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3943 struct posix_acl *acl, int type);
3944int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3945 struct posix_acl *acl, int type);
3946#else
3947#define btrfs_get_acl NULL
3948#define btrfs_set_acl NULL
3949static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3950 struct inode *inode, struct posix_acl *acl,
3951 int type)
3952{
3953 return -EOPNOTSUPP;
3954}
3955#endif
3956
3957/* relocation.c */
3958int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3959int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root);
3961int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3962 struct btrfs_root *root);
3963int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3964int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3965int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3966 struct btrfs_root *root, struct extent_buffer *buf,
3967 struct extent_buffer *cow);
3968void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3969 u64 *bytes_to_reserve);
3970int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3971 struct btrfs_pending_snapshot *pending);
3972int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3973struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3974 u64 bytenr);
3975int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3976
3977/* scrub.c */
3978int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3979 u64 end, struct btrfs_scrub_progress *progress,
3980 int readonly, int is_dev_replace);
3981void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3982void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3983int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3984int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3985int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3986 struct btrfs_scrub_progress *progress);
3987static inline void btrfs_init_full_stripe_locks_tree(
3988 struct btrfs_full_stripe_locks_tree *locks_root)
3989{
3990 locks_root->root = RB_ROOT;
3991 mutex_init(&locks_root->lock);
3992}
3993
3994/* dev-replace.c */
3995void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3996void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3997void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3998
3999static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4000{
4001 btrfs_bio_counter_sub(fs_info, 1);
4002}
4003
4004static inline int is_fstree(u64 rootid)
4005{
4006 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4007 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4008 !btrfs_qgroup_level(rootid)))
4009 return 1;
4010 return 0;
4011}
4012
4013static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4014{
4015 return signal_pending(current);
4016}
4017
4018/* verity.c */
4019#ifdef CONFIG_FS_VERITY
4020
4021extern const struct fsverity_operations btrfs_verityops;
4022int btrfs_drop_verity_items(struct btrfs_inode *inode);
4023
4024BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4025 encryption, 8);
4026BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4027 size, 64);
4028BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4029 struct btrfs_verity_descriptor_item, encryption, 8);
4030BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4031 struct btrfs_verity_descriptor_item, size, 64);
4032
4033#else
4034
4035static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4036{
4037 return 0;
4038}
4039
4040#endif
4041
4042/* Sanity test specific functions */
4043#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4044void btrfs_test_destroy_inode(struct inode *inode);
4045static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4046{
4047 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4048}
4049#else
4050static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4051{
4052 return 0;
4053}
4054#endif
4055
4056static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4057{
4058 return fs_info->zone_size > 0;
4059}
4060
4061/*
4062 * Count how many fs_info->max_extent_size cover the @size
4063 */
4064static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4065{
4066#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4067 if (!fs_info)
4068 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4069#endif
4070
4071 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4072}
4073
4074static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4075{
4076 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4077}
4078
4079/*
4080 * We use page status Private2 to indicate there is an ordered extent with
4081 * unfinished IO.
4082 *
4083 * Rename the Private2 accessors to Ordered, to improve readability.
4084 */
4085#define PageOrdered(page) PagePrivate2(page)
4086#define SetPageOrdered(page) SetPagePrivate2(page)
4087#define ClearPageOrdered(page) ClearPagePrivate2(page)
4088#define folio_test_ordered(folio) folio_test_private_2(folio)
4089#define folio_set_ordered(folio) folio_set_private_2(folio)
4090#define folio_clear_ordered(folio) folio_clear_private_2(folio)
4091
4092#endif