]> git.ipfire.org Git - people/ms/linux.git/blame_incremental - fs/btrfs/disk-io.c
btrfs: fix hang during unmount when stopping block group reclaim worker
[people/ms/linux.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34#include "dev-replace.h"
35#include "raid56.h"
36#include "sysfs.h"
37#include "qgroup.h"
38#include "compression.h"
39#include "tree-checker.h"
40#include "ref-verify.h"
41#include "block-group.h"
42#include "discard.h"
43#include "space-info.h"
44#include "zoned.h"
45#include "subpage.h"
46
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
53
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
77struct async_submit_bio {
78 struct inode *inode;
79 struct bio *bio;
80 extent_submit_bio_start_t *submit_bio_start;
81 int mirror_num;
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
85 struct btrfs_work work;
86 blk_status_t status;
87};
88
89/*
90 * Compute the csum of a btree block and store the result to provided buffer.
91 */
92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93{
94 struct btrfs_fs_info *fs_info = buf->fs_info;
95 const int num_pages = num_extent_pages(buf);
96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 char *kaddr;
99 int i;
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 first_page_part - BTRFS_CSUM_SIZE);
106
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 }
111 memset(result, 0, BTRFS_CSUM_SIZE);
112 crypto_shash_final(shash, result);
113}
114
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
121static int verify_parent_transid(struct extent_io_tree *io_tree,
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
124{
125 struct extent_state *cached_state = NULL;
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
131 if (atomic)
132 return -EAGAIN;
133
134 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
135 &cached_state);
136 if (extent_buffer_uptodate(eb) &&
137 btrfs_header_generation(eb) == parent_transid) {
138 ret = 0;
139 goto out;
140 }
141 btrfs_err_rl(eb->fs_info,
142"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
143 eb->start, eb->read_mirror,
144 parent_transid, btrfs_header_generation(eb));
145 ret = 1;
146 clear_extent_buffer_uptodate(eb);
147out:
148 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
149 &cached_state);
150 return ret;
151}
152
153static bool btrfs_supported_super_csum(u16 csum_type)
154{
155 switch (csum_type) {
156 case BTRFS_CSUM_TYPE_CRC32:
157 case BTRFS_CSUM_TYPE_XXHASH:
158 case BTRFS_CSUM_TYPE_SHA256:
159 case BTRFS_CSUM_TYPE_BLAKE2:
160 return true;
161 default:
162 return false;
163 }
164}
165
166/*
167 * Return 0 if the superblock checksum type matches the checksum value of that
168 * algorithm. Pass the raw disk superblock data.
169 */
170static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
171 char *raw_disk_sb)
172{
173 struct btrfs_super_block *disk_sb =
174 (struct btrfs_super_block *)raw_disk_sb;
175 char result[BTRFS_CSUM_SIZE];
176 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
177
178 shash->tfm = fs_info->csum_shash;
179
180 /*
181 * The super_block structure does not span the whole
182 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
183 * filled with zeros and is included in the checksum.
184 */
185 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
186 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
187
188 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
189 return 1;
190
191 return 0;
192}
193
194int btrfs_verify_level_key(struct extent_buffer *eb, int level,
195 struct btrfs_key *first_key, u64 parent_transid)
196{
197 struct btrfs_fs_info *fs_info = eb->fs_info;
198 int found_level;
199 struct btrfs_key found_key;
200 int ret;
201
202 found_level = btrfs_header_level(eb);
203 if (found_level != level) {
204 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
205 KERN_ERR "BTRFS: tree level check failed\n");
206 btrfs_err(fs_info,
207"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
208 eb->start, level, found_level);
209 return -EIO;
210 }
211
212 if (!first_key)
213 return 0;
214
215 /*
216 * For live tree block (new tree blocks in current transaction),
217 * we need proper lock context to avoid race, which is impossible here.
218 * So we only checks tree blocks which is read from disk, whose
219 * generation <= fs_info->last_trans_committed.
220 */
221 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
222 return 0;
223
224 /* We have @first_key, so this @eb must have at least one item */
225 if (btrfs_header_nritems(eb) == 0) {
226 btrfs_err(fs_info,
227 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
228 eb->start);
229 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
230 return -EUCLEAN;
231 }
232
233 if (found_level)
234 btrfs_node_key_to_cpu(eb, &found_key, 0);
235 else
236 btrfs_item_key_to_cpu(eb, &found_key, 0);
237 ret = btrfs_comp_cpu_keys(first_key, &found_key);
238
239 if (ret) {
240 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
241 KERN_ERR "BTRFS: tree first key check failed\n");
242 btrfs_err(fs_info,
243"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
244 eb->start, parent_transid, first_key->objectid,
245 first_key->type, first_key->offset,
246 found_key.objectid, found_key.type,
247 found_key.offset);
248 }
249 return ret;
250}
251
252/*
253 * helper to read a given tree block, doing retries as required when
254 * the checksums don't match and we have alternate mirrors to try.
255 *
256 * @parent_transid: expected transid, skip check if 0
257 * @level: expected level, mandatory check
258 * @first_key: expected key of first slot, skip check if NULL
259 */
260int btrfs_read_extent_buffer(struct extent_buffer *eb,
261 u64 parent_transid, int level,
262 struct btrfs_key *first_key)
263{
264 struct btrfs_fs_info *fs_info = eb->fs_info;
265 struct extent_io_tree *io_tree;
266 int failed = 0;
267 int ret;
268 int num_copies = 0;
269 int mirror_num = 0;
270 int failed_mirror = 0;
271
272 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
273 while (1) {
274 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
275 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
276 if (!ret) {
277 if (verify_parent_transid(io_tree, eb,
278 parent_transid, 0))
279 ret = -EIO;
280 else if (btrfs_verify_level_key(eb, level,
281 first_key, parent_transid))
282 ret = -EUCLEAN;
283 else
284 break;
285 }
286
287 num_copies = btrfs_num_copies(fs_info,
288 eb->start, eb->len);
289 if (num_copies == 1)
290 break;
291
292 if (!failed_mirror) {
293 failed = 1;
294 failed_mirror = eb->read_mirror;
295 }
296
297 mirror_num++;
298 if (mirror_num == failed_mirror)
299 mirror_num++;
300
301 if (mirror_num > num_copies)
302 break;
303 }
304
305 if (failed && !ret && failed_mirror)
306 btrfs_repair_eb_io_failure(eb, failed_mirror);
307
308 return ret;
309}
310
311static int csum_one_extent_buffer(struct extent_buffer *eb)
312{
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 u8 result[BTRFS_CSUM_SIZE];
315 int ret;
316
317 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
318 offsetof(struct btrfs_header, fsid),
319 BTRFS_FSID_SIZE) == 0);
320 csum_tree_block(eb, result);
321
322 if (btrfs_header_level(eb))
323 ret = btrfs_check_node(eb);
324 else
325 ret = btrfs_check_leaf_full(eb);
326
327 if (ret < 0)
328 goto error;
329
330 /*
331 * Also check the generation, the eb reached here must be newer than
332 * last committed. Or something seriously wrong happened.
333 */
334 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
335 ret = -EUCLEAN;
336 btrfs_err(fs_info,
337 "block=%llu bad generation, have %llu expect > %llu",
338 eb->start, btrfs_header_generation(eb),
339 fs_info->last_trans_committed);
340 goto error;
341 }
342 write_extent_buffer(eb, result, 0, fs_info->csum_size);
343
344 return 0;
345
346error:
347 btrfs_print_tree(eb, 0);
348 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
349 eb->start);
350 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
351 return ret;
352}
353
354/* Checksum all dirty extent buffers in one bio_vec */
355static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
356 struct bio_vec *bvec)
357{
358 struct page *page = bvec->bv_page;
359 u64 bvec_start = page_offset(page) + bvec->bv_offset;
360 u64 cur;
361 int ret = 0;
362
363 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
364 cur += fs_info->nodesize) {
365 struct extent_buffer *eb;
366 bool uptodate;
367
368 eb = find_extent_buffer(fs_info, cur);
369 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
370 fs_info->nodesize);
371
372 /* A dirty eb shouldn't disappear from buffer_radix */
373 if (WARN_ON(!eb))
374 return -EUCLEAN;
375
376 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
377 free_extent_buffer(eb);
378 return -EUCLEAN;
379 }
380 if (WARN_ON(!uptodate)) {
381 free_extent_buffer(eb);
382 return -EUCLEAN;
383 }
384
385 ret = csum_one_extent_buffer(eb);
386 free_extent_buffer(eb);
387 if (ret < 0)
388 return ret;
389 }
390 return ret;
391}
392
393/*
394 * Checksum a dirty tree block before IO. This has extra checks to make sure
395 * we only fill in the checksum field in the first page of a multi-page block.
396 * For subpage extent buffers we need bvec to also read the offset in the page.
397 */
398static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
399{
400 struct page *page = bvec->bv_page;
401 u64 start = page_offset(page);
402 u64 found_start;
403 struct extent_buffer *eb;
404
405 if (fs_info->nodesize < PAGE_SIZE)
406 return csum_dirty_subpage_buffers(fs_info, bvec);
407
408 eb = (struct extent_buffer *)page->private;
409 if (page != eb->pages[0])
410 return 0;
411
412 found_start = btrfs_header_bytenr(eb);
413
414 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
415 WARN_ON(found_start != 0);
416 return 0;
417 }
418
419 /*
420 * Please do not consolidate these warnings into a single if.
421 * It is useful to know what went wrong.
422 */
423 if (WARN_ON(found_start != start))
424 return -EUCLEAN;
425 if (WARN_ON(!PageUptodate(page)))
426 return -EUCLEAN;
427
428 return csum_one_extent_buffer(eb);
429}
430
431static int check_tree_block_fsid(struct extent_buffer *eb)
432{
433 struct btrfs_fs_info *fs_info = eb->fs_info;
434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
435 u8 fsid[BTRFS_FSID_SIZE];
436 u8 *metadata_uuid;
437
438 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
439 BTRFS_FSID_SIZE);
440 /*
441 * Checking the incompat flag is only valid for the current fs. For
442 * seed devices it's forbidden to have their uuid changed so reading
443 * ->fsid in this case is fine
444 */
445 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
446 metadata_uuid = fs_devices->metadata_uuid;
447 else
448 metadata_uuid = fs_devices->fsid;
449
450 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
451 return 0;
452
453 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
454 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
455 return 0;
456
457 return 1;
458}
459
460/* Do basic extent buffer checks at read time */
461static int validate_extent_buffer(struct extent_buffer *eb)
462{
463 struct btrfs_fs_info *fs_info = eb->fs_info;
464 u64 found_start;
465 const u32 csum_size = fs_info->csum_size;
466 u8 found_level;
467 u8 result[BTRFS_CSUM_SIZE];
468 const u8 *header_csum;
469 int ret = 0;
470
471 found_start = btrfs_header_bytenr(eb);
472 if (found_start != eb->start) {
473 btrfs_err_rl(fs_info,
474 "bad tree block start, mirror %u want %llu have %llu",
475 eb->read_mirror, eb->start, found_start);
476 ret = -EIO;
477 goto out;
478 }
479 if (check_tree_block_fsid(eb)) {
480 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
481 eb->start, eb->read_mirror);
482 ret = -EIO;
483 goto out;
484 }
485 found_level = btrfs_header_level(eb);
486 if (found_level >= BTRFS_MAX_LEVEL) {
487 btrfs_err(fs_info,
488 "bad tree block level, mirror %u level %d on logical %llu",
489 eb->read_mirror, btrfs_header_level(eb), eb->start);
490 ret = -EIO;
491 goto out;
492 }
493
494 csum_tree_block(eb, result);
495 header_csum = page_address(eb->pages[0]) +
496 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
497
498 if (memcmp(result, header_csum, csum_size) != 0) {
499 btrfs_warn_rl(fs_info,
500"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
501 eb->start, eb->read_mirror,
502 CSUM_FMT_VALUE(csum_size, header_csum),
503 CSUM_FMT_VALUE(csum_size, result),
504 btrfs_header_level(eb));
505 ret = -EUCLEAN;
506 goto out;
507 }
508
509 /*
510 * If this is a leaf block and it is corrupt, set the corrupt bit so
511 * that we don't try and read the other copies of this block, just
512 * return -EIO.
513 */
514 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
515 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
516 ret = -EIO;
517 }
518
519 if (found_level > 0 && btrfs_check_node(eb))
520 ret = -EIO;
521
522 if (!ret)
523 set_extent_buffer_uptodate(eb);
524 else
525 btrfs_err(fs_info,
526 "read time tree block corruption detected on logical %llu mirror %u",
527 eb->start, eb->read_mirror);
528out:
529 return ret;
530}
531
532static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
533 int mirror)
534{
535 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
536 struct extent_buffer *eb;
537 bool reads_done;
538 int ret = 0;
539
540 /*
541 * We don't allow bio merge for subpage metadata read, so we should
542 * only get one eb for each endio hook.
543 */
544 ASSERT(end == start + fs_info->nodesize - 1);
545 ASSERT(PagePrivate(page));
546
547 eb = find_extent_buffer(fs_info, start);
548 /*
549 * When we are reading one tree block, eb must have been inserted into
550 * the radix tree. If not, something is wrong.
551 */
552 ASSERT(eb);
553
554 reads_done = atomic_dec_and_test(&eb->io_pages);
555 /* Subpage read must finish in page read */
556 ASSERT(reads_done);
557
558 eb->read_mirror = mirror;
559 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
560 ret = -EIO;
561 goto err;
562 }
563 ret = validate_extent_buffer(eb);
564 if (ret < 0)
565 goto err;
566
567 set_extent_buffer_uptodate(eb);
568
569 free_extent_buffer(eb);
570 return ret;
571err:
572 /*
573 * end_bio_extent_readpage decrements io_pages in case of error,
574 * make sure it has something to decrement.
575 */
576 atomic_inc(&eb->io_pages);
577 clear_extent_buffer_uptodate(eb);
578 free_extent_buffer(eb);
579 return ret;
580}
581
582int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
583 struct page *page, u64 start, u64 end,
584 int mirror)
585{
586 struct extent_buffer *eb;
587 int ret = 0;
588 int reads_done;
589
590 ASSERT(page->private);
591
592 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
593 return validate_subpage_buffer(page, start, end, mirror);
594
595 eb = (struct extent_buffer *)page->private;
596
597 /*
598 * The pending IO might have been the only thing that kept this buffer
599 * in memory. Make sure we have a ref for all this other checks
600 */
601 atomic_inc(&eb->refs);
602
603 reads_done = atomic_dec_and_test(&eb->io_pages);
604 if (!reads_done)
605 goto err;
606
607 eb->read_mirror = mirror;
608 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
609 ret = -EIO;
610 goto err;
611 }
612 ret = validate_extent_buffer(eb);
613err:
614 if (ret) {
615 /*
616 * our io error hook is going to dec the io pages
617 * again, we have to make sure it has something
618 * to decrement
619 */
620 atomic_inc(&eb->io_pages);
621 clear_extent_buffer_uptodate(eb);
622 }
623 free_extent_buffer(eb);
624
625 return ret;
626}
627
628static void run_one_async_start(struct btrfs_work *work)
629{
630 struct async_submit_bio *async;
631 blk_status_t ret;
632
633 async = container_of(work, struct async_submit_bio, work);
634 ret = async->submit_bio_start(async->inode, async->bio,
635 async->dio_file_offset);
636 if (ret)
637 async->status = ret;
638}
639
640/*
641 * In order to insert checksums into the metadata in large chunks, we wait
642 * until bio submission time. All the pages in the bio are checksummed and
643 * sums are attached onto the ordered extent record.
644 *
645 * At IO completion time the csums attached on the ordered extent record are
646 * inserted into the tree.
647 */
648static void run_one_async_done(struct btrfs_work *work)
649{
650 struct async_submit_bio *async;
651 struct inode *inode;
652
653 async = container_of(work, struct async_submit_bio, work);
654 inode = async->inode;
655
656 /* If an error occurred we just want to clean up the bio and move on */
657 if (async->status) {
658 async->bio->bi_status = async->status;
659 bio_endio(async->bio);
660 return;
661 }
662
663 /*
664 * All of the bios that pass through here are from async helpers.
665 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
666 * This changes nothing when cgroups aren't in use.
667 */
668 async->bio->bi_opf |= REQ_CGROUP_PUNT;
669 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
670}
671
672static void run_one_async_free(struct btrfs_work *work)
673{
674 struct async_submit_bio *async;
675
676 async = container_of(work, struct async_submit_bio, work);
677 kfree(async);
678}
679
680/*
681 * Submit bio to an async queue.
682 *
683 * Retrun:
684 * - true if the work has been succesfuly submitted
685 * - false in case of error
686 */
687bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
688 u64 dio_file_offset,
689 extent_submit_bio_start_t *submit_bio_start)
690{
691 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
692 struct async_submit_bio *async;
693
694 async = kmalloc(sizeof(*async), GFP_NOFS);
695 if (!async)
696 return false;
697
698 async->inode = inode;
699 async->bio = bio;
700 async->mirror_num = mirror_num;
701 async->submit_bio_start = submit_bio_start;
702
703 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
704 run_one_async_free);
705
706 async->dio_file_offset = dio_file_offset;
707
708 async->status = 0;
709
710 if (op_is_sync(bio->bi_opf))
711 btrfs_queue_work(fs_info->hipri_workers, &async->work);
712 else
713 btrfs_queue_work(fs_info->workers, &async->work);
714 return true;
715}
716
717static blk_status_t btree_csum_one_bio(struct bio *bio)
718{
719 struct bio_vec *bvec;
720 struct btrfs_root *root;
721 int ret = 0;
722 struct bvec_iter_all iter_all;
723
724 ASSERT(!bio_flagged(bio, BIO_CLONED));
725 bio_for_each_segment_all(bvec, bio, iter_all) {
726 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
727 ret = csum_dirty_buffer(root->fs_info, bvec);
728 if (ret)
729 break;
730 }
731
732 return errno_to_blk_status(ret);
733}
734
735static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
736 u64 dio_file_offset)
737{
738 /*
739 * when we're called for a write, we're already in the async
740 * submission context. Just jump into btrfs_submit_bio.
741 */
742 return btree_csum_one_bio(bio);
743}
744
745static bool should_async_write(struct btrfs_fs_info *fs_info,
746 struct btrfs_inode *bi)
747{
748 if (btrfs_is_zoned(fs_info))
749 return false;
750 if (atomic_read(&bi->sync_writers))
751 return false;
752 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
753 return false;
754 return true;
755}
756
757void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
758{
759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
760 blk_status_t ret;
761
762 bio->bi_opf |= REQ_META;
763
764 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
765 btrfs_submit_bio(fs_info, bio, mirror_num);
766 return;
767 }
768
769 /*
770 * Kthread helpers are used to submit writes so that checksumming can
771 * happen in parallel across all CPUs.
772 */
773 if (should_async_write(fs_info, BTRFS_I(inode)) &&
774 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
775 return;
776
777 ret = btree_csum_one_bio(bio);
778 if (ret) {
779 bio->bi_status = ret;
780 bio_endio(bio);
781 return;
782 }
783
784 btrfs_submit_bio(fs_info, bio, mirror_num);
785}
786
787#ifdef CONFIG_MIGRATION
788static int btree_migratepage(struct address_space *mapping,
789 struct page *newpage, struct page *page,
790 enum migrate_mode mode)
791{
792 /*
793 * we can't safely write a btree page from here,
794 * we haven't done the locking hook
795 */
796 if (PageDirty(page))
797 return -EAGAIN;
798 /*
799 * Buffers may be managed in a filesystem specific way.
800 * We must have no buffers or drop them.
801 */
802 if (page_has_private(page) &&
803 !try_to_release_page(page, GFP_KERNEL))
804 return -EAGAIN;
805 return migrate_page(mapping, newpage, page, mode);
806}
807#endif
808
809
810static int btree_writepages(struct address_space *mapping,
811 struct writeback_control *wbc)
812{
813 struct btrfs_fs_info *fs_info;
814 int ret;
815
816 if (wbc->sync_mode == WB_SYNC_NONE) {
817
818 if (wbc->for_kupdate)
819 return 0;
820
821 fs_info = BTRFS_I(mapping->host)->root->fs_info;
822 /* this is a bit racy, but that's ok */
823 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
824 BTRFS_DIRTY_METADATA_THRESH,
825 fs_info->dirty_metadata_batch);
826 if (ret < 0)
827 return 0;
828 }
829 return btree_write_cache_pages(mapping, wbc);
830}
831
832static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
833{
834 if (folio_test_writeback(folio) || folio_test_dirty(folio))
835 return false;
836
837 return try_release_extent_buffer(&folio->page);
838}
839
840static void btree_invalidate_folio(struct folio *folio, size_t offset,
841 size_t length)
842{
843 struct extent_io_tree *tree;
844 tree = &BTRFS_I(folio->mapping->host)->io_tree;
845 extent_invalidate_folio(tree, folio, offset);
846 btree_release_folio(folio, GFP_NOFS);
847 if (folio_get_private(folio)) {
848 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
849 "folio private not zero on folio %llu",
850 (unsigned long long)folio_pos(folio));
851 folio_detach_private(folio);
852 }
853}
854
855#ifdef DEBUG
856static bool btree_dirty_folio(struct address_space *mapping,
857 struct folio *folio)
858{
859 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
860 struct btrfs_subpage *subpage;
861 struct extent_buffer *eb;
862 int cur_bit = 0;
863 u64 page_start = folio_pos(folio);
864
865 if (fs_info->sectorsize == PAGE_SIZE) {
866 eb = folio_get_private(folio);
867 BUG_ON(!eb);
868 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
869 BUG_ON(!atomic_read(&eb->refs));
870 btrfs_assert_tree_write_locked(eb);
871 return filemap_dirty_folio(mapping, folio);
872 }
873 subpage = folio_get_private(folio);
874
875 ASSERT(subpage->dirty_bitmap);
876 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
877 unsigned long flags;
878 u64 cur;
879 u16 tmp = (1 << cur_bit);
880
881 spin_lock_irqsave(&subpage->lock, flags);
882 if (!(tmp & subpage->dirty_bitmap)) {
883 spin_unlock_irqrestore(&subpage->lock, flags);
884 cur_bit++;
885 continue;
886 }
887 spin_unlock_irqrestore(&subpage->lock, flags);
888 cur = page_start + cur_bit * fs_info->sectorsize;
889
890 eb = find_extent_buffer(fs_info, cur);
891 ASSERT(eb);
892 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
893 ASSERT(atomic_read(&eb->refs));
894 btrfs_assert_tree_write_locked(eb);
895 free_extent_buffer(eb);
896
897 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
898 }
899 return filemap_dirty_folio(mapping, folio);
900}
901#else
902#define btree_dirty_folio filemap_dirty_folio
903#endif
904
905static const struct address_space_operations btree_aops = {
906 .writepages = btree_writepages,
907 .release_folio = btree_release_folio,
908 .invalidate_folio = btree_invalidate_folio,
909#ifdef CONFIG_MIGRATION
910 .migratepage = btree_migratepage,
911#endif
912 .dirty_folio = btree_dirty_folio,
913};
914
915struct extent_buffer *btrfs_find_create_tree_block(
916 struct btrfs_fs_info *fs_info,
917 u64 bytenr, u64 owner_root,
918 int level)
919{
920 if (btrfs_is_testing(fs_info))
921 return alloc_test_extent_buffer(fs_info, bytenr);
922 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
923}
924
925/*
926 * Read tree block at logical address @bytenr and do variant basic but critical
927 * verification.
928 *
929 * @owner_root: the objectid of the root owner for this block.
930 * @parent_transid: expected transid of this tree block, skip check if 0
931 * @level: expected level, mandatory check
932 * @first_key: expected key in slot 0, skip check if NULL
933 */
934struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
935 u64 owner_root, u64 parent_transid,
936 int level, struct btrfs_key *first_key)
937{
938 struct extent_buffer *buf = NULL;
939 int ret;
940
941 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
942 if (IS_ERR(buf))
943 return buf;
944
945 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
946 if (ret) {
947 free_extent_buffer_stale(buf);
948 return ERR_PTR(ret);
949 }
950 if (btrfs_check_eb_owner(buf, owner_root)) {
951 free_extent_buffer_stale(buf);
952 return ERR_PTR(-EUCLEAN);
953 }
954 return buf;
955
956}
957
958void btrfs_clean_tree_block(struct extent_buffer *buf)
959{
960 struct btrfs_fs_info *fs_info = buf->fs_info;
961 if (btrfs_header_generation(buf) ==
962 fs_info->running_transaction->transid) {
963 btrfs_assert_tree_write_locked(buf);
964
965 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
966 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
967 -buf->len,
968 fs_info->dirty_metadata_batch);
969 clear_extent_buffer_dirty(buf);
970 }
971 }
972}
973
974static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
975 u64 objectid)
976{
977 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
978
979 memset(&root->root_key, 0, sizeof(root->root_key));
980 memset(&root->root_item, 0, sizeof(root->root_item));
981 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
982 root->fs_info = fs_info;
983 root->root_key.objectid = objectid;
984 root->node = NULL;
985 root->commit_root = NULL;
986 root->state = 0;
987 RB_CLEAR_NODE(&root->rb_node);
988
989 root->last_trans = 0;
990 root->free_objectid = 0;
991 root->nr_delalloc_inodes = 0;
992 root->nr_ordered_extents = 0;
993 root->inode_tree = RB_ROOT;
994 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
995
996 btrfs_init_root_block_rsv(root);
997
998 INIT_LIST_HEAD(&root->dirty_list);
999 INIT_LIST_HEAD(&root->root_list);
1000 INIT_LIST_HEAD(&root->delalloc_inodes);
1001 INIT_LIST_HEAD(&root->delalloc_root);
1002 INIT_LIST_HEAD(&root->ordered_extents);
1003 INIT_LIST_HEAD(&root->ordered_root);
1004 INIT_LIST_HEAD(&root->reloc_dirty_list);
1005 INIT_LIST_HEAD(&root->logged_list[0]);
1006 INIT_LIST_HEAD(&root->logged_list[1]);
1007 spin_lock_init(&root->inode_lock);
1008 spin_lock_init(&root->delalloc_lock);
1009 spin_lock_init(&root->ordered_extent_lock);
1010 spin_lock_init(&root->accounting_lock);
1011 spin_lock_init(&root->log_extents_lock[0]);
1012 spin_lock_init(&root->log_extents_lock[1]);
1013 spin_lock_init(&root->qgroup_meta_rsv_lock);
1014 mutex_init(&root->objectid_mutex);
1015 mutex_init(&root->log_mutex);
1016 mutex_init(&root->ordered_extent_mutex);
1017 mutex_init(&root->delalloc_mutex);
1018 init_waitqueue_head(&root->qgroup_flush_wait);
1019 init_waitqueue_head(&root->log_writer_wait);
1020 init_waitqueue_head(&root->log_commit_wait[0]);
1021 init_waitqueue_head(&root->log_commit_wait[1]);
1022 INIT_LIST_HEAD(&root->log_ctxs[0]);
1023 INIT_LIST_HEAD(&root->log_ctxs[1]);
1024 atomic_set(&root->log_commit[0], 0);
1025 atomic_set(&root->log_commit[1], 0);
1026 atomic_set(&root->log_writers, 0);
1027 atomic_set(&root->log_batch, 0);
1028 refcount_set(&root->refs, 1);
1029 atomic_set(&root->snapshot_force_cow, 0);
1030 atomic_set(&root->nr_swapfiles, 0);
1031 root->log_transid = 0;
1032 root->log_transid_committed = -1;
1033 root->last_log_commit = 0;
1034 root->anon_dev = 0;
1035 if (!dummy) {
1036 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1037 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1038 extent_io_tree_init(fs_info, &root->log_csum_range,
1039 IO_TREE_LOG_CSUM_RANGE, NULL);
1040 }
1041
1042 spin_lock_init(&root->root_item_lock);
1043 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1044#ifdef CONFIG_BTRFS_DEBUG
1045 INIT_LIST_HEAD(&root->leak_list);
1046 spin_lock(&fs_info->fs_roots_radix_lock);
1047 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1048 spin_unlock(&fs_info->fs_roots_radix_lock);
1049#endif
1050}
1051
1052static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1053 u64 objectid, gfp_t flags)
1054{
1055 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1056 if (root)
1057 __setup_root(root, fs_info, objectid);
1058 return root;
1059}
1060
1061#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1062/* Should only be used by the testing infrastructure */
1063struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1064{
1065 struct btrfs_root *root;
1066
1067 if (!fs_info)
1068 return ERR_PTR(-EINVAL);
1069
1070 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1071 if (!root)
1072 return ERR_PTR(-ENOMEM);
1073
1074 /* We don't use the stripesize in selftest, set it as sectorsize */
1075 root->alloc_bytenr = 0;
1076
1077 return root;
1078}
1079#endif
1080
1081static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1082{
1083 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1084 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1085
1086 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1087}
1088
1089static int global_root_key_cmp(const void *k, const struct rb_node *node)
1090{
1091 const struct btrfs_key *key = k;
1092 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1093
1094 return btrfs_comp_cpu_keys(key, &root->root_key);
1095}
1096
1097int btrfs_global_root_insert(struct btrfs_root *root)
1098{
1099 struct btrfs_fs_info *fs_info = root->fs_info;
1100 struct rb_node *tmp;
1101
1102 write_lock(&fs_info->global_root_lock);
1103 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1104 write_unlock(&fs_info->global_root_lock);
1105 ASSERT(!tmp);
1106
1107 return tmp ? -EEXIST : 0;
1108}
1109
1110void btrfs_global_root_delete(struct btrfs_root *root)
1111{
1112 struct btrfs_fs_info *fs_info = root->fs_info;
1113
1114 write_lock(&fs_info->global_root_lock);
1115 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1116 write_unlock(&fs_info->global_root_lock);
1117}
1118
1119struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1120 struct btrfs_key *key)
1121{
1122 struct rb_node *node;
1123 struct btrfs_root *root = NULL;
1124
1125 read_lock(&fs_info->global_root_lock);
1126 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1127 if (node)
1128 root = container_of(node, struct btrfs_root, rb_node);
1129 read_unlock(&fs_info->global_root_lock);
1130
1131 return root;
1132}
1133
1134static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1135{
1136 struct btrfs_block_group *block_group;
1137 u64 ret;
1138
1139 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1140 return 0;
1141
1142 if (bytenr)
1143 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1144 else
1145 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1146 ASSERT(block_group);
1147 if (!block_group)
1148 return 0;
1149 ret = block_group->global_root_id;
1150 btrfs_put_block_group(block_group);
1151
1152 return ret;
1153}
1154
1155struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1156{
1157 struct btrfs_key key = {
1158 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = btrfs_global_root_id(fs_info, bytenr),
1161 };
1162
1163 return btrfs_global_root(fs_info, &key);
1164}
1165
1166struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1167{
1168 struct btrfs_key key = {
1169 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1170 .type = BTRFS_ROOT_ITEM_KEY,
1171 .offset = btrfs_global_root_id(fs_info, bytenr),
1172 };
1173
1174 return btrfs_global_root(fs_info, &key);
1175}
1176
1177struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1178 u64 objectid)
1179{
1180 struct btrfs_fs_info *fs_info = trans->fs_info;
1181 struct extent_buffer *leaf;
1182 struct btrfs_root *tree_root = fs_info->tree_root;
1183 struct btrfs_root *root;
1184 struct btrfs_key key;
1185 unsigned int nofs_flag;
1186 int ret = 0;
1187
1188 /*
1189 * We're holding a transaction handle, so use a NOFS memory allocation
1190 * context to avoid deadlock if reclaim happens.
1191 */
1192 nofs_flag = memalloc_nofs_save();
1193 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1194 memalloc_nofs_restore(nofs_flag);
1195 if (!root)
1196 return ERR_PTR(-ENOMEM);
1197
1198 root->root_key.objectid = objectid;
1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 root->root_key.offset = 0;
1201
1202 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1203 BTRFS_NESTING_NORMAL);
1204 if (IS_ERR(leaf)) {
1205 ret = PTR_ERR(leaf);
1206 leaf = NULL;
1207 goto fail_unlock;
1208 }
1209
1210 root->node = leaf;
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 root->commit_root = btrfs_root_node(root);
1214 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1215
1216 btrfs_set_root_flags(&root->root_item, 0);
1217 btrfs_set_root_limit(&root->root_item, 0);
1218 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1219 btrfs_set_root_generation(&root->root_item, trans->transid);
1220 btrfs_set_root_level(&root->root_item, 0);
1221 btrfs_set_root_refs(&root->root_item, 1);
1222 btrfs_set_root_used(&root->root_item, leaf->len);
1223 btrfs_set_root_last_snapshot(&root->root_item, 0);
1224 btrfs_set_root_dirid(&root->root_item, 0);
1225 if (is_fstree(objectid))
1226 generate_random_guid(root->root_item.uuid);
1227 else
1228 export_guid(root->root_item.uuid, &guid_null);
1229 btrfs_set_root_drop_level(&root->root_item, 0);
1230
1231 btrfs_tree_unlock(leaf);
1232
1233 key.objectid = objectid;
1234 key.type = BTRFS_ROOT_ITEM_KEY;
1235 key.offset = 0;
1236 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1237 if (ret)
1238 goto fail;
1239
1240 return root;
1241
1242fail_unlock:
1243 if (leaf)
1244 btrfs_tree_unlock(leaf);
1245fail:
1246 btrfs_put_root(root);
1247
1248 return ERR_PTR(ret);
1249}
1250
1251static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info)
1253{
1254 struct btrfs_root *root;
1255
1256 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1257 if (!root)
1258 return ERR_PTR(-ENOMEM);
1259
1260 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1261 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1263
1264 return root;
1265}
1266
1267int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root)
1269{
1270 struct extent_buffer *leaf;
1271
1272 /*
1273 * DON'T set SHAREABLE bit for log trees.
1274 *
1275 * Log trees are not exposed to user space thus can't be snapshotted,
1276 * and they go away before a real commit is actually done.
1277 *
1278 * They do store pointers to file data extents, and those reference
1279 * counts still get updated (along with back refs to the log tree).
1280 */
1281
1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1284 if (IS_ERR(leaf))
1285 return PTR_ERR(leaf);
1286
1287 root->node = leaf;
1288
1289 btrfs_mark_buffer_dirty(root->node);
1290 btrfs_tree_unlock(root->node);
1291
1292 return 0;
1293}
1294
1295int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1296 struct btrfs_fs_info *fs_info)
1297{
1298 struct btrfs_root *log_root;
1299
1300 log_root = alloc_log_tree(trans, fs_info);
1301 if (IS_ERR(log_root))
1302 return PTR_ERR(log_root);
1303
1304 if (!btrfs_is_zoned(fs_info)) {
1305 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1306
1307 if (ret) {
1308 btrfs_put_root(log_root);
1309 return ret;
1310 }
1311 }
1312
1313 WARN_ON(fs_info->log_root_tree);
1314 fs_info->log_root_tree = log_root;
1315 return 0;
1316}
1317
1318int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1319 struct btrfs_root *root)
1320{
1321 struct btrfs_fs_info *fs_info = root->fs_info;
1322 struct btrfs_root *log_root;
1323 struct btrfs_inode_item *inode_item;
1324 int ret;
1325
1326 log_root = alloc_log_tree(trans, fs_info);
1327 if (IS_ERR(log_root))
1328 return PTR_ERR(log_root);
1329
1330 ret = btrfs_alloc_log_tree_node(trans, log_root);
1331 if (ret) {
1332 btrfs_put_root(log_root);
1333 return ret;
1334 }
1335
1336 log_root->last_trans = trans->transid;
1337 log_root->root_key.offset = root->root_key.objectid;
1338
1339 inode_item = &log_root->root_item.inode;
1340 btrfs_set_stack_inode_generation(inode_item, 1);
1341 btrfs_set_stack_inode_size(inode_item, 3);
1342 btrfs_set_stack_inode_nlink(inode_item, 1);
1343 btrfs_set_stack_inode_nbytes(inode_item,
1344 fs_info->nodesize);
1345 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1346
1347 btrfs_set_root_node(&log_root->root_item, log_root->node);
1348
1349 WARN_ON(root->log_root);
1350 root->log_root = log_root;
1351 root->log_transid = 0;
1352 root->log_transid_committed = -1;
1353 root->last_log_commit = 0;
1354 return 0;
1355}
1356
1357static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1358 struct btrfs_path *path,
1359 struct btrfs_key *key)
1360{
1361 struct btrfs_root *root;
1362 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1363 u64 generation;
1364 int ret;
1365 int level;
1366
1367 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1368 if (!root)
1369 return ERR_PTR(-ENOMEM);
1370
1371 ret = btrfs_find_root(tree_root, key, path,
1372 &root->root_item, &root->root_key);
1373 if (ret) {
1374 if (ret > 0)
1375 ret = -ENOENT;
1376 goto fail;
1377 }
1378
1379 generation = btrfs_root_generation(&root->root_item);
1380 level = btrfs_root_level(&root->root_item);
1381 root->node = read_tree_block(fs_info,
1382 btrfs_root_bytenr(&root->root_item),
1383 key->objectid, generation, level, NULL);
1384 if (IS_ERR(root->node)) {
1385 ret = PTR_ERR(root->node);
1386 root->node = NULL;
1387 goto fail;
1388 }
1389 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1390 ret = -EIO;
1391 goto fail;
1392 }
1393
1394 /*
1395 * For real fs, and not log/reloc trees, root owner must
1396 * match its root node owner
1397 */
1398 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1399 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1400 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401 root->root_key.objectid != btrfs_header_owner(root->node)) {
1402 btrfs_crit(fs_info,
1403"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1404 root->root_key.objectid, root->node->start,
1405 btrfs_header_owner(root->node),
1406 root->root_key.objectid);
1407 ret = -EUCLEAN;
1408 goto fail;
1409 }
1410 root->commit_root = btrfs_root_node(root);
1411 return root;
1412fail:
1413 btrfs_put_root(root);
1414 return ERR_PTR(ret);
1415}
1416
1417struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1418 struct btrfs_key *key)
1419{
1420 struct btrfs_root *root;
1421 struct btrfs_path *path;
1422
1423 path = btrfs_alloc_path();
1424 if (!path)
1425 return ERR_PTR(-ENOMEM);
1426 root = read_tree_root_path(tree_root, path, key);
1427 btrfs_free_path(path);
1428
1429 return root;
1430}
1431
1432/*
1433 * Initialize subvolume root in-memory structure
1434 *
1435 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1436 */
1437static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1438{
1439 int ret;
1440 unsigned int nofs_flag;
1441
1442 /*
1443 * We might be called under a transaction (e.g. indirect backref
1444 * resolution) which could deadlock if it triggers memory reclaim
1445 */
1446 nofs_flag = memalloc_nofs_save();
1447 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1448 memalloc_nofs_restore(nofs_flag);
1449 if (ret)
1450 goto fail;
1451
1452 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1453 !btrfs_is_data_reloc_root(root)) {
1454 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1455 btrfs_check_and_init_root_item(&root->root_item);
1456 }
1457
1458 /*
1459 * Don't assign anonymous block device to roots that are not exposed to
1460 * userspace, the id pool is limited to 1M
1461 */
1462 if (is_fstree(root->root_key.objectid) &&
1463 btrfs_root_refs(&root->root_item) > 0) {
1464 if (!anon_dev) {
1465 ret = get_anon_bdev(&root->anon_dev);
1466 if (ret)
1467 goto fail;
1468 } else {
1469 root->anon_dev = anon_dev;
1470 }
1471 }
1472
1473 mutex_lock(&root->objectid_mutex);
1474 ret = btrfs_init_root_free_objectid(root);
1475 if (ret) {
1476 mutex_unlock(&root->objectid_mutex);
1477 goto fail;
1478 }
1479
1480 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1481
1482 mutex_unlock(&root->objectid_mutex);
1483
1484 return 0;
1485fail:
1486 /* The caller is responsible to call btrfs_free_fs_root */
1487 return ret;
1488}
1489
1490static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1491 u64 root_id)
1492{
1493 struct btrfs_root *root;
1494
1495 spin_lock(&fs_info->fs_roots_radix_lock);
1496 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1497 (unsigned long)root_id);
1498 if (root)
1499 root = btrfs_grab_root(root);
1500 spin_unlock(&fs_info->fs_roots_radix_lock);
1501 return root;
1502}
1503
1504static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1505 u64 objectid)
1506{
1507 struct btrfs_key key = {
1508 .objectid = objectid,
1509 .type = BTRFS_ROOT_ITEM_KEY,
1510 .offset = 0,
1511 };
1512
1513 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1514 return btrfs_grab_root(fs_info->tree_root);
1515 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1516 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1517 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1518 return btrfs_grab_root(fs_info->chunk_root);
1519 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->dev_root);
1521 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1522 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1523 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1524 return btrfs_grab_root(fs_info->quota_root) ?
1525 fs_info->quota_root : ERR_PTR(-ENOENT);
1526 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1527 return btrfs_grab_root(fs_info->uuid_root) ?
1528 fs_info->uuid_root : ERR_PTR(-ENOENT);
1529 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1530 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1531
1532 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1533 }
1534 return NULL;
1535}
1536
1537int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_root *root)
1539{
1540 int ret;
1541
1542 ret = radix_tree_preload(GFP_NOFS);
1543 if (ret)
1544 return ret;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
1550 if (ret == 0) {
1551 btrfs_grab_root(root);
1552 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1553 }
1554 spin_unlock(&fs_info->fs_roots_radix_lock);
1555 radix_tree_preload_end();
1556
1557 return ret;
1558}
1559
1560void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1561{
1562#ifdef CONFIG_BTRFS_DEBUG
1563 struct btrfs_root *root;
1564
1565 while (!list_empty(&fs_info->allocated_roots)) {
1566 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1567
1568 root = list_first_entry(&fs_info->allocated_roots,
1569 struct btrfs_root, leak_list);
1570 btrfs_err(fs_info, "leaked root %s refcount %d",
1571 btrfs_root_name(&root->root_key, buf),
1572 refcount_read(&root->refs));
1573 while (refcount_read(&root->refs) > 1)
1574 btrfs_put_root(root);
1575 btrfs_put_root(root);
1576 }
1577#endif
1578}
1579
1580static void free_global_roots(struct btrfs_fs_info *fs_info)
1581{
1582 struct btrfs_root *root;
1583 struct rb_node *node;
1584
1585 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1586 root = rb_entry(node, struct btrfs_root, rb_node);
1587 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1588 btrfs_put_root(root);
1589 }
1590}
1591
1592void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1593{
1594 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1595 percpu_counter_destroy(&fs_info->delalloc_bytes);
1596 percpu_counter_destroy(&fs_info->ordered_bytes);
1597 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1598 btrfs_free_csum_hash(fs_info);
1599 btrfs_free_stripe_hash_table(fs_info);
1600 btrfs_free_ref_cache(fs_info);
1601 kfree(fs_info->balance_ctl);
1602 kfree(fs_info->delayed_root);
1603 free_global_roots(fs_info);
1604 btrfs_put_root(fs_info->tree_root);
1605 btrfs_put_root(fs_info->chunk_root);
1606 btrfs_put_root(fs_info->dev_root);
1607 btrfs_put_root(fs_info->quota_root);
1608 btrfs_put_root(fs_info->uuid_root);
1609 btrfs_put_root(fs_info->fs_root);
1610 btrfs_put_root(fs_info->data_reloc_root);
1611 btrfs_put_root(fs_info->block_group_root);
1612 btrfs_check_leaked_roots(fs_info);
1613 btrfs_extent_buffer_leak_debug_check(fs_info);
1614 kfree(fs_info->super_copy);
1615 kfree(fs_info->super_for_commit);
1616 kfree(fs_info->subpage_info);
1617 kvfree(fs_info);
1618}
1619
1620
1621/*
1622 * Get an in-memory reference of a root structure.
1623 *
1624 * For essential trees like root/extent tree, we grab it from fs_info directly.
1625 * For subvolume trees, we check the cached filesystem roots first. If not
1626 * found, then read it from disk and add it to cached fs roots.
1627 *
1628 * Caller should release the root by calling btrfs_put_root() after the usage.
1629 *
1630 * NOTE: Reloc and log trees can't be read by this function as they share the
1631 * same root objectid.
1632 *
1633 * @objectid: root id
1634 * @anon_dev: preallocated anonymous block device number for new roots,
1635 * pass 0 for new allocation.
1636 * @check_ref: whether to check root item references, If true, return -ENOENT
1637 * for orphan roots
1638 */
1639static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1640 u64 objectid, dev_t anon_dev,
1641 bool check_ref)
1642{
1643 struct btrfs_root *root;
1644 struct btrfs_path *path;
1645 struct btrfs_key key;
1646 int ret;
1647
1648 root = btrfs_get_global_root(fs_info, objectid);
1649 if (root)
1650 return root;
1651again:
1652 root = btrfs_lookup_fs_root(fs_info, objectid);
1653 if (root) {
1654 /* Shouldn't get preallocated anon_dev for cached roots */
1655 ASSERT(!anon_dev);
1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657 btrfs_put_root(root);
1658 return ERR_PTR(-ENOENT);
1659 }
1660 return root;
1661 }
1662
1663 key.objectid = objectid;
1664 key.type = BTRFS_ROOT_ITEM_KEY;
1665 key.offset = (u64)-1;
1666 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1667 if (IS_ERR(root))
1668 return root;
1669
1670 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1671 ret = -ENOENT;
1672 goto fail;
1673 }
1674
1675 ret = btrfs_init_fs_root(root, anon_dev);
1676 if (ret)
1677 goto fail;
1678
1679 path = btrfs_alloc_path();
1680 if (!path) {
1681 ret = -ENOMEM;
1682 goto fail;
1683 }
1684 key.objectid = BTRFS_ORPHAN_OBJECTID;
1685 key.type = BTRFS_ORPHAN_ITEM_KEY;
1686 key.offset = objectid;
1687
1688 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1689 btrfs_free_path(path);
1690 if (ret < 0)
1691 goto fail;
1692 if (ret == 0)
1693 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1694
1695 ret = btrfs_insert_fs_root(fs_info, root);
1696 if (ret) {
1697 if (ret == -EEXIST) {
1698 btrfs_put_root(root);
1699 goto again;
1700 }
1701 goto fail;
1702 }
1703 return root;
1704fail:
1705 /*
1706 * If our caller provided us an anonymous device, then it's his
1707 * responsibility to free it in case we fail. So we have to set our
1708 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1709 * and once again by our caller.
1710 */
1711 if (anon_dev)
1712 root->anon_dev = 0;
1713 btrfs_put_root(root);
1714 return ERR_PTR(ret);
1715}
1716
1717/*
1718 * Get in-memory reference of a root structure
1719 *
1720 * @objectid: tree objectid
1721 * @check_ref: if set, verify that the tree exists and the item has at least
1722 * one reference
1723 */
1724struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1725 u64 objectid, bool check_ref)
1726{
1727 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1728}
1729
1730/*
1731 * Get in-memory reference of a root structure, created as new, optionally pass
1732 * the anonymous block device id
1733 *
1734 * @objectid: tree objectid
1735 * @anon_dev: if zero, allocate a new anonymous block device or use the
1736 * parameter value
1737 */
1738struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1739 u64 objectid, dev_t anon_dev)
1740{
1741 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1742}
1743
1744/*
1745 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1746 * @fs_info: the fs_info
1747 * @objectid: the objectid we need to lookup
1748 *
1749 * This is exclusively used for backref walking, and exists specifically because
1750 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1751 * creation time, which means we may have to read the tree_root in order to look
1752 * up a fs root that is not in memory. If the root is not in memory we will
1753 * read the tree root commit root and look up the fs root from there. This is a
1754 * temporary root, it will not be inserted into the radix tree as it doesn't
1755 * have the most uptodate information, it'll simply be discarded once the
1756 * backref code is finished using the root.
1757 */
1758struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1759 struct btrfs_path *path,
1760 u64 objectid)
1761{
1762 struct btrfs_root *root;
1763 struct btrfs_key key;
1764
1765 ASSERT(path->search_commit_root && path->skip_locking);
1766
1767 /*
1768 * This can return -ENOENT if we ask for a root that doesn't exist, but
1769 * since this is called via the backref walking code we won't be looking
1770 * up a root that doesn't exist, unless there's corruption. So if root
1771 * != NULL just return it.
1772 */
1773 root = btrfs_get_global_root(fs_info, objectid);
1774 if (root)
1775 return root;
1776
1777 root = btrfs_lookup_fs_root(fs_info, objectid);
1778 if (root)
1779 return root;
1780
1781 key.objectid = objectid;
1782 key.type = BTRFS_ROOT_ITEM_KEY;
1783 key.offset = (u64)-1;
1784 root = read_tree_root_path(fs_info->tree_root, path, &key);
1785 btrfs_release_path(path);
1786
1787 return root;
1788}
1789
1790static int cleaner_kthread(void *arg)
1791{
1792 struct btrfs_fs_info *fs_info = arg;
1793 int again;
1794
1795 while (1) {
1796 again = 0;
1797
1798 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1799
1800 /* Make the cleaner go to sleep early. */
1801 if (btrfs_need_cleaner_sleep(fs_info))
1802 goto sleep;
1803
1804 /*
1805 * Do not do anything if we might cause open_ctree() to block
1806 * before we have finished mounting the filesystem.
1807 */
1808 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1809 goto sleep;
1810
1811 if (!mutex_trylock(&fs_info->cleaner_mutex))
1812 goto sleep;
1813
1814 /*
1815 * Avoid the problem that we change the status of the fs
1816 * during the above check and trylock.
1817 */
1818 if (btrfs_need_cleaner_sleep(fs_info)) {
1819 mutex_unlock(&fs_info->cleaner_mutex);
1820 goto sleep;
1821 }
1822
1823 btrfs_run_delayed_iputs(fs_info);
1824
1825 again = btrfs_clean_one_deleted_snapshot(fs_info);
1826 mutex_unlock(&fs_info->cleaner_mutex);
1827
1828 /*
1829 * The defragger has dealt with the R/O remount and umount,
1830 * needn't do anything special here.
1831 */
1832 btrfs_run_defrag_inodes(fs_info);
1833
1834 /*
1835 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1836 * with relocation (btrfs_relocate_chunk) and relocation
1837 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1838 * after acquiring fs_info->reclaim_bgs_lock. So we
1839 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1840 * unused block groups.
1841 */
1842 btrfs_delete_unused_bgs(fs_info);
1843
1844 /*
1845 * Reclaim block groups in the reclaim_bgs list after we deleted
1846 * all unused block_groups. This possibly gives us some more free
1847 * space.
1848 */
1849 btrfs_reclaim_bgs(fs_info);
1850sleep:
1851 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1852 if (kthread_should_park())
1853 kthread_parkme();
1854 if (kthread_should_stop())
1855 return 0;
1856 if (!again) {
1857 set_current_state(TASK_INTERRUPTIBLE);
1858 schedule();
1859 __set_current_state(TASK_RUNNING);
1860 }
1861 }
1862}
1863
1864static int transaction_kthread(void *arg)
1865{
1866 struct btrfs_root *root = arg;
1867 struct btrfs_fs_info *fs_info = root->fs_info;
1868 struct btrfs_trans_handle *trans;
1869 struct btrfs_transaction *cur;
1870 u64 transid;
1871 time64_t delta;
1872 unsigned long delay;
1873 bool cannot_commit;
1874
1875 do {
1876 cannot_commit = false;
1877 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1878 mutex_lock(&fs_info->transaction_kthread_mutex);
1879
1880 spin_lock(&fs_info->trans_lock);
1881 cur = fs_info->running_transaction;
1882 if (!cur) {
1883 spin_unlock(&fs_info->trans_lock);
1884 goto sleep;
1885 }
1886
1887 delta = ktime_get_seconds() - cur->start_time;
1888 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1889 cur->state < TRANS_STATE_COMMIT_START &&
1890 delta < fs_info->commit_interval) {
1891 spin_unlock(&fs_info->trans_lock);
1892 delay -= msecs_to_jiffies((delta - 1) * 1000);
1893 delay = min(delay,
1894 msecs_to_jiffies(fs_info->commit_interval * 1000));
1895 goto sleep;
1896 }
1897 transid = cur->transid;
1898 spin_unlock(&fs_info->trans_lock);
1899
1900 /* If the file system is aborted, this will always fail. */
1901 trans = btrfs_attach_transaction(root);
1902 if (IS_ERR(trans)) {
1903 if (PTR_ERR(trans) != -ENOENT)
1904 cannot_commit = true;
1905 goto sleep;
1906 }
1907 if (transid == trans->transid) {
1908 btrfs_commit_transaction(trans);
1909 } else {
1910 btrfs_end_transaction(trans);
1911 }
1912sleep:
1913 wake_up_process(fs_info->cleaner_kthread);
1914 mutex_unlock(&fs_info->transaction_kthread_mutex);
1915
1916 if (BTRFS_FS_ERROR(fs_info))
1917 btrfs_cleanup_transaction(fs_info);
1918 if (!kthread_should_stop() &&
1919 (!btrfs_transaction_blocked(fs_info) ||
1920 cannot_commit))
1921 schedule_timeout_interruptible(delay);
1922 } while (!kthread_should_stop());
1923 return 0;
1924}
1925
1926/*
1927 * This will find the highest generation in the array of root backups. The
1928 * index of the highest array is returned, or -EINVAL if we can't find
1929 * anything.
1930 *
1931 * We check to make sure the array is valid by comparing the
1932 * generation of the latest root in the array with the generation
1933 * in the super block. If they don't match we pitch it.
1934 */
1935static int find_newest_super_backup(struct btrfs_fs_info *info)
1936{
1937 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1938 u64 cur;
1939 struct btrfs_root_backup *root_backup;
1940 int i;
1941
1942 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1943 root_backup = info->super_copy->super_roots + i;
1944 cur = btrfs_backup_tree_root_gen(root_backup);
1945 if (cur == newest_gen)
1946 return i;
1947 }
1948
1949 return -EINVAL;
1950}
1951
1952/*
1953 * copy all the root pointers into the super backup array.
1954 * this will bump the backup pointer by one when it is
1955 * done
1956 */
1957static void backup_super_roots(struct btrfs_fs_info *info)
1958{
1959 const int next_backup = info->backup_root_index;
1960 struct btrfs_root_backup *root_backup;
1961
1962 root_backup = info->super_for_commit->super_roots + next_backup;
1963
1964 /*
1965 * make sure all of our padding and empty slots get zero filled
1966 * regardless of which ones we use today
1967 */
1968 memset(root_backup, 0, sizeof(*root_backup));
1969
1970 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1971
1972 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1973 btrfs_set_backup_tree_root_gen(root_backup,
1974 btrfs_header_generation(info->tree_root->node));
1975
1976 btrfs_set_backup_tree_root_level(root_backup,
1977 btrfs_header_level(info->tree_root->node));
1978
1979 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1980 btrfs_set_backup_chunk_root_gen(root_backup,
1981 btrfs_header_generation(info->chunk_root->node));
1982 btrfs_set_backup_chunk_root_level(root_backup,
1983 btrfs_header_level(info->chunk_root->node));
1984
1985 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1986 btrfs_set_backup_block_group_root(root_backup,
1987 info->block_group_root->node->start);
1988 btrfs_set_backup_block_group_root_gen(root_backup,
1989 btrfs_header_generation(info->block_group_root->node));
1990 btrfs_set_backup_block_group_root_level(root_backup,
1991 btrfs_header_level(info->block_group_root->node));
1992 } else {
1993 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1994 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1995
1996 btrfs_set_backup_extent_root(root_backup,
1997 extent_root->node->start);
1998 btrfs_set_backup_extent_root_gen(root_backup,
1999 btrfs_header_generation(extent_root->node));
2000 btrfs_set_backup_extent_root_level(root_backup,
2001 btrfs_header_level(extent_root->node));
2002
2003 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2004 btrfs_set_backup_csum_root_gen(root_backup,
2005 btrfs_header_generation(csum_root->node));
2006 btrfs_set_backup_csum_root_level(root_backup,
2007 btrfs_header_level(csum_root->node));
2008 }
2009
2010 /*
2011 * we might commit during log recovery, which happens before we set
2012 * the fs_root. Make sure it is valid before we fill it in.
2013 */
2014 if (info->fs_root && info->fs_root->node) {
2015 btrfs_set_backup_fs_root(root_backup,
2016 info->fs_root->node->start);
2017 btrfs_set_backup_fs_root_gen(root_backup,
2018 btrfs_header_generation(info->fs_root->node));
2019 btrfs_set_backup_fs_root_level(root_backup,
2020 btrfs_header_level(info->fs_root->node));
2021 }
2022
2023 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2024 btrfs_set_backup_dev_root_gen(root_backup,
2025 btrfs_header_generation(info->dev_root->node));
2026 btrfs_set_backup_dev_root_level(root_backup,
2027 btrfs_header_level(info->dev_root->node));
2028
2029 btrfs_set_backup_total_bytes(root_backup,
2030 btrfs_super_total_bytes(info->super_copy));
2031 btrfs_set_backup_bytes_used(root_backup,
2032 btrfs_super_bytes_used(info->super_copy));
2033 btrfs_set_backup_num_devices(root_backup,
2034 btrfs_super_num_devices(info->super_copy));
2035
2036 /*
2037 * if we don't copy this out to the super_copy, it won't get remembered
2038 * for the next commit
2039 */
2040 memcpy(&info->super_copy->super_roots,
2041 &info->super_for_commit->super_roots,
2042 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2043}
2044
2045/*
2046 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2047 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2048 *
2049 * fs_info - filesystem whose backup roots need to be read
2050 * priority - priority of backup root required
2051 *
2052 * Returns backup root index on success and -EINVAL otherwise.
2053 */
2054static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2055{
2056 int backup_index = find_newest_super_backup(fs_info);
2057 struct btrfs_super_block *super = fs_info->super_copy;
2058 struct btrfs_root_backup *root_backup;
2059
2060 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2061 if (priority == 0)
2062 return backup_index;
2063
2064 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2065 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2066 } else {
2067 return -EINVAL;
2068 }
2069
2070 root_backup = super->super_roots + backup_index;
2071
2072 btrfs_set_super_generation(super,
2073 btrfs_backup_tree_root_gen(root_backup));
2074 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2075 btrfs_set_super_root_level(super,
2076 btrfs_backup_tree_root_level(root_backup));
2077 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2078
2079 /*
2080 * Fixme: the total bytes and num_devices need to match or we should
2081 * need a fsck
2082 */
2083 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2084 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2085
2086 return backup_index;
2087}
2088
2089/* helper to cleanup workers */
2090static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2091{
2092 btrfs_destroy_workqueue(fs_info->fixup_workers);
2093 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2094 btrfs_destroy_workqueue(fs_info->hipri_workers);
2095 btrfs_destroy_workqueue(fs_info->workers);
2096 if (fs_info->endio_workers)
2097 destroy_workqueue(fs_info->endio_workers);
2098 if (fs_info->endio_raid56_workers)
2099 destroy_workqueue(fs_info->endio_raid56_workers);
2100 if (fs_info->rmw_workers)
2101 destroy_workqueue(fs_info->rmw_workers);
2102 if (fs_info->compressed_write_workers)
2103 destroy_workqueue(fs_info->compressed_write_workers);
2104 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2105 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2106 btrfs_destroy_workqueue(fs_info->delayed_workers);
2107 btrfs_destroy_workqueue(fs_info->caching_workers);
2108 btrfs_destroy_workqueue(fs_info->flush_workers);
2109 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2110 if (fs_info->discard_ctl.discard_workers)
2111 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2112 /*
2113 * Now that all other work queues are destroyed, we can safely destroy
2114 * the queues used for metadata I/O, since tasks from those other work
2115 * queues can do metadata I/O operations.
2116 */
2117 if (fs_info->endio_meta_workers)
2118 destroy_workqueue(fs_info->endio_meta_workers);
2119}
2120
2121static void free_root_extent_buffers(struct btrfs_root *root)
2122{
2123 if (root) {
2124 free_extent_buffer(root->node);
2125 free_extent_buffer(root->commit_root);
2126 root->node = NULL;
2127 root->commit_root = NULL;
2128 }
2129}
2130
2131static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2132{
2133 struct btrfs_root *root, *tmp;
2134
2135 rbtree_postorder_for_each_entry_safe(root, tmp,
2136 &fs_info->global_root_tree,
2137 rb_node)
2138 free_root_extent_buffers(root);
2139}
2140
2141/* helper to cleanup tree roots */
2142static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2143{
2144 free_root_extent_buffers(info->tree_root);
2145
2146 free_global_root_pointers(info);
2147 free_root_extent_buffers(info->dev_root);
2148 free_root_extent_buffers(info->quota_root);
2149 free_root_extent_buffers(info->uuid_root);
2150 free_root_extent_buffers(info->fs_root);
2151 free_root_extent_buffers(info->data_reloc_root);
2152 free_root_extent_buffers(info->block_group_root);
2153 if (free_chunk_root)
2154 free_root_extent_buffers(info->chunk_root);
2155}
2156
2157void btrfs_put_root(struct btrfs_root *root)
2158{
2159 if (!root)
2160 return;
2161
2162 if (refcount_dec_and_test(&root->refs)) {
2163 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2164 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2165 if (root->anon_dev)
2166 free_anon_bdev(root->anon_dev);
2167 btrfs_drew_lock_destroy(&root->snapshot_lock);
2168 free_root_extent_buffers(root);
2169#ifdef CONFIG_BTRFS_DEBUG
2170 spin_lock(&root->fs_info->fs_roots_radix_lock);
2171 list_del_init(&root->leak_list);
2172 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2173#endif
2174 kfree(root);
2175 }
2176}
2177
2178void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2179{
2180 int ret;
2181 struct btrfs_root *gang[8];
2182 int i;
2183
2184 while (!list_empty(&fs_info->dead_roots)) {
2185 gang[0] = list_entry(fs_info->dead_roots.next,
2186 struct btrfs_root, root_list);
2187 list_del(&gang[0]->root_list);
2188
2189 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2190 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2191 btrfs_put_root(gang[0]);
2192 }
2193
2194 while (1) {
2195 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2196 (void **)gang, 0,
2197 ARRAY_SIZE(gang));
2198 if (!ret)
2199 break;
2200 for (i = 0; i < ret; i++)
2201 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2202 }
2203}
2204
2205static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2206{
2207 mutex_init(&fs_info->scrub_lock);
2208 atomic_set(&fs_info->scrubs_running, 0);
2209 atomic_set(&fs_info->scrub_pause_req, 0);
2210 atomic_set(&fs_info->scrubs_paused, 0);
2211 atomic_set(&fs_info->scrub_cancel_req, 0);
2212 init_waitqueue_head(&fs_info->scrub_pause_wait);
2213 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2214}
2215
2216static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2217{
2218 spin_lock_init(&fs_info->balance_lock);
2219 mutex_init(&fs_info->balance_mutex);
2220 atomic_set(&fs_info->balance_pause_req, 0);
2221 atomic_set(&fs_info->balance_cancel_req, 0);
2222 fs_info->balance_ctl = NULL;
2223 init_waitqueue_head(&fs_info->balance_wait_q);
2224 atomic_set(&fs_info->reloc_cancel_req, 0);
2225}
2226
2227static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2228{
2229 struct inode *inode = fs_info->btree_inode;
2230
2231 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2232 set_nlink(inode, 1);
2233 /*
2234 * we set the i_size on the btree inode to the max possible int.
2235 * the real end of the address space is determined by all of
2236 * the devices in the system
2237 */
2238 inode->i_size = OFFSET_MAX;
2239 inode->i_mapping->a_ops = &btree_aops;
2240
2241 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2242 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2243 IO_TREE_BTREE_INODE_IO, inode);
2244 BTRFS_I(inode)->io_tree.track_uptodate = false;
2245 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2246
2247 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2248 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2249 BTRFS_I(inode)->location.type = 0;
2250 BTRFS_I(inode)->location.offset = 0;
2251 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2252 btrfs_insert_inode_hash(inode);
2253}
2254
2255static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2256{
2257 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2258 init_rwsem(&fs_info->dev_replace.rwsem);
2259 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2260}
2261
2262static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2263{
2264 spin_lock_init(&fs_info->qgroup_lock);
2265 mutex_init(&fs_info->qgroup_ioctl_lock);
2266 fs_info->qgroup_tree = RB_ROOT;
2267 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2268 fs_info->qgroup_seq = 1;
2269 fs_info->qgroup_ulist = NULL;
2270 fs_info->qgroup_rescan_running = false;
2271 mutex_init(&fs_info->qgroup_rescan_lock);
2272}
2273
2274static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2275{
2276 u32 max_active = fs_info->thread_pool_size;
2277 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2278
2279 fs_info->workers =
2280 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2281 fs_info->hipri_workers =
2282 btrfs_alloc_workqueue(fs_info, "worker-high",
2283 flags | WQ_HIGHPRI, max_active, 16);
2284
2285 fs_info->delalloc_workers =
2286 btrfs_alloc_workqueue(fs_info, "delalloc",
2287 flags, max_active, 2);
2288
2289 fs_info->flush_workers =
2290 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2291 flags, max_active, 0);
2292
2293 fs_info->caching_workers =
2294 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2295
2296 fs_info->fixup_workers =
2297 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2298
2299 fs_info->endio_workers =
2300 alloc_workqueue("btrfs-endio", flags, max_active);
2301 fs_info->endio_meta_workers =
2302 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2303 fs_info->endio_raid56_workers =
2304 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2305 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2306 fs_info->endio_write_workers =
2307 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2308 max_active, 2);
2309 fs_info->compressed_write_workers =
2310 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2311 fs_info->endio_freespace_worker =
2312 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2313 max_active, 0);
2314 fs_info->delayed_workers =
2315 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2316 max_active, 0);
2317 fs_info->qgroup_rescan_workers =
2318 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2319 fs_info->discard_ctl.discard_workers =
2320 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2321
2322 if (!(fs_info->workers && fs_info->hipri_workers &&
2323 fs_info->delalloc_workers && fs_info->flush_workers &&
2324 fs_info->endio_workers && fs_info->endio_meta_workers &&
2325 fs_info->compressed_write_workers &&
2326 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2327 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2328 fs_info->caching_workers && fs_info->fixup_workers &&
2329 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2330 fs_info->discard_ctl.discard_workers)) {
2331 return -ENOMEM;
2332 }
2333
2334 return 0;
2335}
2336
2337static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2338{
2339 struct crypto_shash *csum_shash;
2340 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2341
2342 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2343
2344 if (IS_ERR(csum_shash)) {
2345 btrfs_err(fs_info, "error allocating %s hash for checksum",
2346 csum_driver);
2347 return PTR_ERR(csum_shash);
2348 }
2349
2350 fs_info->csum_shash = csum_shash;
2351
2352 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2353 btrfs_super_csum_name(csum_type),
2354 crypto_shash_driver_name(csum_shash));
2355 return 0;
2356}
2357
2358static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2359 struct btrfs_fs_devices *fs_devices)
2360{
2361 int ret;
2362 struct btrfs_root *log_tree_root;
2363 struct btrfs_super_block *disk_super = fs_info->super_copy;
2364 u64 bytenr = btrfs_super_log_root(disk_super);
2365 int level = btrfs_super_log_root_level(disk_super);
2366
2367 if (fs_devices->rw_devices == 0) {
2368 btrfs_warn(fs_info, "log replay required on RO media");
2369 return -EIO;
2370 }
2371
2372 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2373 GFP_KERNEL);
2374 if (!log_tree_root)
2375 return -ENOMEM;
2376
2377 log_tree_root->node = read_tree_block(fs_info, bytenr,
2378 BTRFS_TREE_LOG_OBJECTID,
2379 fs_info->generation + 1, level,
2380 NULL);
2381 if (IS_ERR(log_tree_root->node)) {
2382 btrfs_warn(fs_info, "failed to read log tree");
2383 ret = PTR_ERR(log_tree_root->node);
2384 log_tree_root->node = NULL;
2385 btrfs_put_root(log_tree_root);
2386 return ret;
2387 }
2388 if (!extent_buffer_uptodate(log_tree_root->node)) {
2389 btrfs_err(fs_info, "failed to read log tree");
2390 btrfs_put_root(log_tree_root);
2391 return -EIO;
2392 }
2393
2394 /* returns with log_tree_root freed on success */
2395 ret = btrfs_recover_log_trees(log_tree_root);
2396 if (ret) {
2397 btrfs_handle_fs_error(fs_info, ret,
2398 "Failed to recover log tree");
2399 btrfs_put_root(log_tree_root);
2400 return ret;
2401 }
2402
2403 if (sb_rdonly(fs_info->sb)) {
2404 ret = btrfs_commit_super(fs_info);
2405 if (ret)
2406 return ret;
2407 }
2408
2409 return 0;
2410}
2411
2412static int load_global_roots_objectid(struct btrfs_root *tree_root,
2413 struct btrfs_path *path, u64 objectid,
2414 const char *name)
2415{
2416 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2417 struct btrfs_root *root;
2418 u64 max_global_id = 0;
2419 int ret;
2420 struct btrfs_key key = {
2421 .objectid = objectid,
2422 .type = BTRFS_ROOT_ITEM_KEY,
2423 .offset = 0,
2424 };
2425 bool found = false;
2426
2427 /* If we have IGNOREDATACSUMS skip loading these roots. */
2428 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2429 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2430 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2431 return 0;
2432 }
2433
2434 while (1) {
2435 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2436 if (ret < 0)
2437 break;
2438
2439 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2440 ret = btrfs_next_leaf(tree_root, path);
2441 if (ret) {
2442 if (ret > 0)
2443 ret = 0;
2444 break;
2445 }
2446 }
2447 ret = 0;
2448
2449 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2450 if (key.objectid != objectid)
2451 break;
2452 btrfs_release_path(path);
2453
2454 /*
2455 * Just worry about this for extent tree, it'll be the same for
2456 * everybody.
2457 */
2458 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2459 max_global_id = max(max_global_id, key.offset);
2460
2461 found = true;
2462 root = read_tree_root_path(tree_root, path, &key);
2463 if (IS_ERR(root)) {
2464 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2465 ret = PTR_ERR(root);
2466 break;
2467 }
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 ret = btrfs_global_root_insert(root);
2470 if (ret) {
2471 btrfs_put_root(root);
2472 break;
2473 }
2474 key.offset++;
2475 }
2476 btrfs_release_path(path);
2477
2478 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2479 fs_info->nr_global_roots = max_global_id + 1;
2480
2481 if (!found || ret) {
2482 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2483 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2484
2485 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2486 ret = ret ? ret : -ENOENT;
2487 else
2488 ret = 0;
2489 btrfs_err(fs_info, "failed to load root %s", name);
2490 }
2491 return ret;
2492}
2493
2494static int load_global_roots(struct btrfs_root *tree_root)
2495{
2496 struct btrfs_path *path;
2497 int ret = 0;
2498
2499 path = btrfs_alloc_path();
2500 if (!path)
2501 return -ENOMEM;
2502
2503 ret = load_global_roots_objectid(tree_root, path,
2504 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2505 if (ret)
2506 goto out;
2507 ret = load_global_roots_objectid(tree_root, path,
2508 BTRFS_CSUM_TREE_OBJECTID, "csum");
2509 if (ret)
2510 goto out;
2511 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2512 goto out;
2513 ret = load_global_roots_objectid(tree_root, path,
2514 BTRFS_FREE_SPACE_TREE_OBJECTID,
2515 "free space");
2516out:
2517 btrfs_free_path(path);
2518 return ret;
2519}
2520
2521static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2522{
2523 struct btrfs_root *tree_root = fs_info->tree_root;
2524 struct btrfs_root *root;
2525 struct btrfs_key location;
2526 int ret;
2527
2528 BUG_ON(!fs_info->tree_root);
2529
2530 ret = load_global_roots(tree_root);
2531 if (ret)
2532 return ret;
2533
2534 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2535 location.type = BTRFS_ROOT_ITEM_KEY;
2536 location.offset = 0;
2537
2538 root = btrfs_read_tree_root(tree_root, &location);
2539 if (IS_ERR(root)) {
2540 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2541 ret = PTR_ERR(root);
2542 goto out;
2543 }
2544 } else {
2545 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2546 fs_info->dev_root = root;
2547 }
2548 /* Initialize fs_info for all devices in any case */
2549 btrfs_init_devices_late(fs_info);
2550
2551 /*
2552 * This tree can share blocks with some other fs tree during relocation
2553 * and we need a proper setup by btrfs_get_fs_root
2554 */
2555 root = btrfs_get_fs_root(tree_root->fs_info,
2556 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2557 if (IS_ERR(root)) {
2558 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2559 ret = PTR_ERR(root);
2560 goto out;
2561 }
2562 } else {
2563 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2564 fs_info->data_reloc_root = root;
2565 }
2566
2567 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2568 root = btrfs_read_tree_root(tree_root, &location);
2569 if (!IS_ERR(root)) {
2570 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2571 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2572 fs_info->quota_root = root;
2573 }
2574
2575 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2576 root = btrfs_read_tree_root(tree_root, &location);
2577 if (IS_ERR(root)) {
2578 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2579 ret = PTR_ERR(root);
2580 if (ret != -ENOENT)
2581 goto out;
2582 }
2583 } else {
2584 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2585 fs_info->uuid_root = root;
2586 }
2587
2588 return 0;
2589out:
2590 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2591 location.objectid, ret);
2592 return ret;
2593}
2594
2595/*
2596 * Real super block validation
2597 * NOTE: super csum type and incompat features will not be checked here.
2598 *
2599 * @sb: super block to check
2600 * @mirror_num: the super block number to check its bytenr:
2601 * 0 the primary (1st) sb
2602 * 1, 2 2nd and 3rd backup copy
2603 * -1 skip bytenr check
2604 */
2605static int validate_super(struct btrfs_fs_info *fs_info,
2606 struct btrfs_super_block *sb, int mirror_num)
2607{
2608 u64 nodesize = btrfs_super_nodesize(sb);
2609 u64 sectorsize = btrfs_super_sectorsize(sb);
2610 int ret = 0;
2611
2612 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2613 btrfs_err(fs_info, "no valid FS found");
2614 ret = -EINVAL;
2615 }
2616 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2617 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2618 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2619 ret = -EINVAL;
2620 }
2621 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2622 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2623 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2624 ret = -EINVAL;
2625 }
2626 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2627 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2628 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2629 ret = -EINVAL;
2630 }
2631 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2632 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2633 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2634 ret = -EINVAL;
2635 }
2636
2637 /*
2638 * Check sectorsize and nodesize first, other check will need it.
2639 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2640 */
2641 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2642 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2643 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2644 ret = -EINVAL;
2645 }
2646
2647 /*
2648 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2649 *
2650 * We can support 16K sectorsize with 64K page size without problem,
2651 * but such sectorsize/pagesize combination doesn't make much sense.
2652 * 4K will be our future standard, PAGE_SIZE is supported from the very
2653 * beginning.
2654 */
2655 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2656 btrfs_err(fs_info,
2657 "sectorsize %llu not yet supported for page size %lu",
2658 sectorsize, PAGE_SIZE);
2659 ret = -EINVAL;
2660 }
2661
2662 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2663 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2664 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2665 ret = -EINVAL;
2666 }
2667 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2668 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2669 le32_to_cpu(sb->__unused_leafsize), nodesize);
2670 ret = -EINVAL;
2671 }
2672
2673 /* Root alignment check */
2674 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2675 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2676 btrfs_super_root(sb));
2677 ret = -EINVAL;
2678 }
2679 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2680 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2681 btrfs_super_chunk_root(sb));
2682 ret = -EINVAL;
2683 }
2684 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2685 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2686 btrfs_super_log_root(sb));
2687 ret = -EINVAL;
2688 }
2689
2690 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2691 BTRFS_FSID_SIZE)) {
2692 btrfs_err(fs_info,
2693 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2694 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2695 ret = -EINVAL;
2696 }
2697
2698 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2699 memcmp(fs_info->fs_devices->metadata_uuid,
2700 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2701 btrfs_err(fs_info,
2702"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2703 fs_info->super_copy->metadata_uuid,
2704 fs_info->fs_devices->metadata_uuid);
2705 ret = -EINVAL;
2706 }
2707
2708 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2709 BTRFS_FSID_SIZE) != 0) {
2710 btrfs_err(fs_info,
2711 "dev_item UUID does not match metadata fsid: %pU != %pU",
2712 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2713 ret = -EINVAL;
2714 }
2715
2716 /*
2717 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2718 * done later
2719 */
2720 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2721 btrfs_err(fs_info, "bytes_used is too small %llu",
2722 btrfs_super_bytes_used(sb));
2723 ret = -EINVAL;
2724 }
2725 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2726 btrfs_err(fs_info, "invalid stripesize %u",
2727 btrfs_super_stripesize(sb));
2728 ret = -EINVAL;
2729 }
2730 if (btrfs_super_num_devices(sb) > (1UL << 31))
2731 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2732 btrfs_super_num_devices(sb));
2733 if (btrfs_super_num_devices(sb) == 0) {
2734 btrfs_err(fs_info, "number of devices is 0");
2735 ret = -EINVAL;
2736 }
2737
2738 if (mirror_num >= 0 &&
2739 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2740 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2741 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2742 ret = -EINVAL;
2743 }
2744
2745 /*
2746 * Obvious sys_chunk_array corruptions, it must hold at least one key
2747 * and one chunk
2748 */
2749 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2750 btrfs_err(fs_info, "system chunk array too big %u > %u",
2751 btrfs_super_sys_array_size(sb),
2752 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2753 ret = -EINVAL;
2754 }
2755 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2756 + sizeof(struct btrfs_chunk)) {
2757 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2758 btrfs_super_sys_array_size(sb),
2759 sizeof(struct btrfs_disk_key)
2760 + sizeof(struct btrfs_chunk));
2761 ret = -EINVAL;
2762 }
2763
2764 /*
2765 * The generation is a global counter, we'll trust it more than the others
2766 * but it's still possible that it's the one that's wrong.
2767 */
2768 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2769 btrfs_warn(fs_info,
2770 "suspicious: generation < chunk_root_generation: %llu < %llu",
2771 btrfs_super_generation(sb),
2772 btrfs_super_chunk_root_generation(sb));
2773 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2774 && btrfs_super_cache_generation(sb) != (u64)-1)
2775 btrfs_warn(fs_info,
2776 "suspicious: generation < cache_generation: %llu < %llu",
2777 btrfs_super_generation(sb),
2778 btrfs_super_cache_generation(sb));
2779
2780 return ret;
2781}
2782
2783/*
2784 * Validation of super block at mount time.
2785 * Some checks already done early at mount time, like csum type and incompat
2786 * flags will be skipped.
2787 */
2788static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2789{
2790 return validate_super(fs_info, fs_info->super_copy, 0);
2791}
2792
2793/*
2794 * Validation of super block at write time.
2795 * Some checks like bytenr check will be skipped as their values will be
2796 * overwritten soon.
2797 * Extra checks like csum type and incompat flags will be done here.
2798 */
2799static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2800 struct btrfs_super_block *sb)
2801{
2802 int ret;
2803
2804 ret = validate_super(fs_info, sb, -1);
2805 if (ret < 0)
2806 goto out;
2807 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2808 ret = -EUCLEAN;
2809 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2810 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2811 goto out;
2812 }
2813 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2814 ret = -EUCLEAN;
2815 btrfs_err(fs_info,
2816 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2817 btrfs_super_incompat_flags(sb),
2818 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2819 goto out;
2820 }
2821out:
2822 if (ret < 0)
2823 btrfs_err(fs_info,
2824 "super block corruption detected before writing it to disk");
2825 return ret;
2826}
2827
2828static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2829{
2830 int ret = 0;
2831
2832 root->node = read_tree_block(root->fs_info, bytenr,
2833 root->root_key.objectid, gen, level, NULL);
2834 if (IS_ERR(root->node)) {
2835 ret = PTR_ERR(root->node);
2836 root->node = NULL;
2837 return ret;
2838 }
2839 if (!extent_buffer_uptodate(root->node)) {
2840 free_extent_buffer(root->node);
2841 root->node = NULL;
2842 return -EIO;
2843 }
2844
2845 btrfs_set_root_node(&root->root_item, root->node);
2846 root->commit_root = btrfs_root_node(root);
2847 btrfs_set_root_refs(&root->root_item, 1);
2848 return ret;
2849}
2850
2851static int load_important_roots(struct btrfs_fs_info *fs_info)
2852{
2853 struct btrfs_super_block *sb = fs_info->super_copy;
2854 u64 gen, bytenr;
2855 int level, ret;
2856
2857 bytenr = btrfs_super_root(sb);
2858 gen = btrfs_super_generation(sb);
2859 level = btrfs_super_root_level(sb);
2860 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2861 if (ret) {
2862 btrfs_warn(fs_info, "couldn't read tree root");
2863 return ret;
2864 }
2865
2866 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2867 return 0;
2868
2869 bytenr = btrfs_super_block_group_root(sb);
2870 gen = btrfs_super_block_group_root_generation(sb);
2871 level = btrfs_super_block_group_root_level(sb);
2872 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2873 if (ret)
2874 btrfs_warn(fs_info, "couldn't read block group root");
2875 return ret;
2876}
2877
2878static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2879{
2880 int backup_index = find_newest_super_backup(fs_info);
2881 struct btrfs_super_block *sb = fs_info->super_copy;
2882 struct btrfs_root *tree_root = fs_info->tree_root;
2883 bool handle_error = false;
2884 int ret = 0;
2885 int i;
2886
2887 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2888 struct btrfs_root *root;
2889
2890 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2891 GFP_KERNEL);
2892 if (!root)
2893 return -ENOMEM;
2894 fs_info->block_group_root = root;
2895 }
2896
2897 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2898 if (handle_error) {
2899 if (!IS_ERR(tree_root->node))
2900 free_extent_buffer(tree_root->node);
2901 tree_root->node = NULL;
2902
2903 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2904 break;
2905
2906 free_root_pointers(fs_info, 0);
2907
2908 /*
2909 * Don't use the log in recovery mode, it won't be
2910 * valid
2911 */
2912 btrfs_set_super_log_root(sb, 0);
2913
2914 /* We can't trust the free space cache either */
2915 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2916
2917 ret = read_backup_root(fs_info, i);
2918 backup_index = ret;
2919 if (ret < 0)
2920 return ret;
2921 }
2922
2923 ret = load_important_roots(fs_info);
2924 if (ret) {
2925 handle_error = true;
2926 continue;
2927 }
2928
2929 /*
2930 * No need to hold btrfs_root::objectid_mutex since the fs
2931 * hasn't been fully initialised and we are the only user
2932 */
2933 ret = btrfs_init_root_free_objectid(tree_root);
2934 if (ret < 0) {
2935 handle_error = true;
2936 continue;
2937 }
2938
2939 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2940
2941 ret = btrfs_read_roots(fs_info);
2942 if (ret < 0) {
2943 handle_error = true;
2944 continue;
2945 }
2946
2947 /* All successful */
2948 fs_info->generation = btrfs_header_generation(tree_root->node);
2949 fs_info->last_trans_committed = fs_info->generation;
2950 fs_info->last_reloc_trans = 0;
2951
2952 /* Always begin writing backup roots after the one being used */
2953 if (backup_index < 0) {
2954 fs_info->backup_root_index = 0;
2955 } else {
2956 fs_info->backup_root_index = backup_index + 1;
2957 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2958 }
2959 break;
2960 }
2961
2962 return ret;
2963}
2964
2965void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2966{
2967 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2968 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2969 INIT_LIST_HEAD(&fs_info->trans_list);
2970 INIT_LIST_HEAD(&fs_info->dead_roots);
2971 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2972 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2973 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2974 spin_lock_init(&fs_info->delalloc_root_lock);
2975 spin_lock_init(&fs_info->trans_lock);
2976 spin_lock_init(&fs_info->fs_roots_radix_lock);
2977 spin_lock_init(&fs_info->delayed_iput_lock);
2978 spin_lock_init(&fs_info->defrag_inodes_lock);
2979 spin_lock_init(&fs_info->super_lock);
2980 spin_lock_init(&fs_info->buffer_lock);
2981 spin_lock_init(&fs_info->unused_bgs_lock);
2982 spin_lock_init(&fs_info->treelog_bg_lock);
2983 spin_lock_init(&fs_info->zone_active_bgs_lock);
2984 spin_lock_init(&fs_info->relocation_bg_lock);
2985 rwlock_init(&fs_info->tree_mod_log_lock);
2986 rwlock_init(&fs_info->global_root_lock);
2987 mutex_init(&fs_info->unused_bg_unpin_mutex);
2988 mutex_init(&fs_info->reclaim_bgs_lock);
2989 mutex_init(&fs_info->reloc_mutex);
2990 mutex_init(&fs_info->delalloc_root_mutex);
2991 mutex_init(&fs_info->zoned_meta_io_lock);
2992 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2993 seqlock_init(&fs_info->profiles_lock);
2994
2995 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2996 INIT_LIST_HEAD(&fs_info->space_info);
2997 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2998 INIT_LIST_HEAD(&fs_info->unused_bgs);
2999 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3000 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3001#ifdef CONFIG_BTRFS_DEBUG
3002 INIT_LIST_HEAD(&fs_info->allocated_roots);
3003 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3004 spin_lock_init(&fs_info->eb_leak_lock);
3005#endif
3006 extent_map_tree_init(&fs_info->mapping_tree);
3007 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3008 BTRFS_BLOCK_RSV_GLOBAL);
3009 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3010 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3011 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3012 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3013 BTRFS_BLOCK_RSV_DELOPS);
3014 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3015 BTRFS_BLOCK_RSV_DELREFS);
3016
3017 atomic_set(&fs_info->async_delalloc_pages, 0);
3018 atomic_set(&fs_info->defrag_running, 0);
3019 atomic_set(&fs_info->nr_delayed_iputs, 0);
3020 atomic64_set(&fs_info->tree_mod_seq, 0);
3021 fs_info->global_root_tree = RB_ROOT;
3022 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3023 fs_info->metadata_ratio = 0;
3024 fs_info->defrag_inodes = RB_ROOT;
3025 atomic64_set(&fs_info->free_chunk_space, 0);
3026 fs_info->tree_mod_log = RB_ROOT;
3027 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3028 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3029 btrfs_init_ref_verify(fs_info);
3030
3031 fs_info->thread_pool_size = min_t(unsigned long,
3032 num_online_cpus() + 2, 8);
3033
3034 INIT_LIST_HEAD(&fs_info->ordered_roots);
3035 spin_lock_init(&fs_info->ordered_root_lock);
3036
3037 btrfs_init_scrub(fs_info);
3038#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3039 fs_info->check_integrity_print_mask = 0;
3040#endif
3041 btrfs_init_balance(fs_info);
3042 btrfs_init_async_reclaim_work(fs_info);
3043
3044 rwlock_init(&fs_info->block_group_cache_lock);
3045 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3046
3047 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3048 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3049
3050 mutex_init(&fs_info->ordered_operations_mutex);
3051 mutex_init(&fs_info->tree_log_mutex);
3052 mutex_init(&fs_info->chunk_mutex);
3053 mutex_init(&fs_info->transaction_kthread_mutex);
3054 mutex_init(&fs_info->cleaner_mutex);
3055 mutex_init(&fs_info->ro_block_group_mutex);
3056 init_rwsem(&fs_info->commit_root_sem);
3057 init_rwsem(&fs_info->cleanup_work_sem);
3058 init_rwsem(&fs_info->subvol_sem);
3059 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3060
3061 btrfs_init_dev_replace_locks(fs_info);
3062 btrfs_init_qgroup(fs_info);
3063 btrfs_discard_init(fs_info);
3064
3065 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3066 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3067
3068 init_waitqueue_head(&fs_info->transaction_throttle);
3069 init_waitqueue_head(&fs_info->transaction_wait);
3070 init_waitqueue_head(&fs_info->transaction_blocked_wait);
3071 init_waitqueue_head(&fs_info->async_submit_wait);
3072 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3073
3074 /* Usable values until the real ones are cached from the superblock */
3075 fs_info->nodesize = 4096;
3076 fs_info->sectorsize = 4096;
3077 fs_info->sectorsize_bits = ilog2(4096);
3078 fs_info->stripesize = 4096;
3079
3080 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3081
3082 spin_lock_init(&fs_info->swapfile_pins_lock);
3083 fs_info->swapfile_pins = RB_ROOT;
3084
3085 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3086 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3087}
3088
3089static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3090{
3091 int ret;
3092
3093 fs_info->sb = sb;
3094 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3095 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3096
3097 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3098 if (ret)
3099 return ret;
3100
3101 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3102 if (ret)
3103 return ret;
3104
3105 fs_info->dirty_metadata_batch = PAGE_SIZE *
3106 (1 + ilog2(nr_cpu_ids));
3107
3108 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3109 if (ret)
3110 return ret;
3111
3112 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3113 GFP_KERNEL);
3114 if (ret)
3115 return ret;
3116
3117 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3118 GFP_KERNEL);
3119 if (!fs_info->delayed_root)
3120 return -ENOMEM;
3121 btrfs_init_delayed_root(fs_info->delayed_root);
3122
3123 if (sb_rdonly(sb))
3124 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3125
3126 return btrfs_alloc_stripe_hash_table(fs_info);
3127}
3128
3129static int btrfs_uuid_rescan_kthread(void *data)
3130{
3131 struct btrfs_fs_info *fs_info = data;
3132 int ret;
3133
3134 /*
3135 * 1st step is to iterate through the existing UUID tree and
3136 * to delete all entries that contain outdated data.
3137 * 2nd step is to add all missing entries to the UUID tree.
3138 */
3139 ret = btrfs_uuid_tree_iterate(fs_info);
3140 if (ret < 0) {
3141 if (ret != -EINTR)
3142 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3143 ret);
3144 up(&fs_info->uuid_tree_rescan_sem);
3145 return ret;
3146 }
3147 return btrfs_uuid_scan_kthread(data);
3148}
3149
3150static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3151{
3152 struct task_struct *task;
3153
3154 down(&fs_info->uuid_tree_rescan_sem);
3155 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3156 if (IS_ERR(task)) {
3157 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3158 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3159 up(&fs_info->uuid_tree_rescan_sem);
3160 return PTR_ERR(task);
3161 }
3162
3163 return 0;
3164}
3165
3166/*
3167 * Some options only have meaning at mount time and shouldn't persist across
3168 * remounts, or be displayed. Clear these at the end of mount and remount
3169 * code paths.
3170 */
3171void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3172{
3173 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3174 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3175}
3176
3177/*
3178 * Mounting logic specific to read-write file systems. Shared by open_ctree
3179 * and btrfs_remount when remounting from read-only to read-write.
3180 */
3181int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3182{
3183 int ret;
3184 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3185 bool clear_free_space_tree = false;
3186
3187 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3188 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3189 clear_free_space_tree = true;
3190 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3191 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3192 btrfs_warn(fs_info, "free space tree is invalid");
3193 clear_free_space_tree = true;
3194 }
3195
3196 if (clear_free_space_tree) {
3197 btrfs_info(fs_info, "clearing free space tree");
3198 ret = btrfs_clear_free_space_tree(fs_info);
3199 if (ret) {
3200 btrfs_warn(fs_info,
3201 "failed to clear free space tree: %d", ret);
3202 goto out;
3203 }
3204 }
3205
3206 /*
3207 * btrfs_find_orphan_roots() is responsible for finding all the dead
3208 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3209 * them into the fs_info->fs_roots_radix tree. This must be done before
3210 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3211 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3212 * item before the root's tree is deleted - this means that if we unmount
3213 * or crash before the deletion completes, on the next mount we will not
3214 * delete what remains of the tree because the orphan item does not
3215 * exists anymore, which is what tells us we have a pending deletion.
3216 */
3217 ret = btrfs_find_orphan_roots(fs_info);
3218 if (ret)
3219 goto out;
3220
3221 ret = btrfs_cleanup_fs_roots(fs_info);
3222 if (ret)
3223 goto out;
3224
3225 down_read(&fs_info->cleanup_work_sem);
3226 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3227 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3228 up_read(&fs_info->cleanup_work_sem);
3229 goto out;
3230 }
3231 up_read(&fs_info->cleanup_work_sem);
3232
3233 mutex_lock(&fs_info->cleaner_mutex);
3234 ret = btrfs_recover_relocation(fs_info);
3235 mutex_unlock(&fs_info->cleaner_mutex);
3236 if (ret < 0) {
3237 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3238 goto out;
3239 }
3240
3241 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3242 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3243 btrfs_info(fs_info, "creating free space tree");
3244 ret = btrfs_create_free_space_tree(fs_info);
3245 if (ret) {
3246 btrfs_warn(fs_info,
3247 "failed to create free space tree: %d", ret);
3248 goto out;
3249 }
3250 }
3251
3252 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3253 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3254 if (ret)
3255 goto out;
3256 }
3257
3258 ret = btrfs_resume_balance_async(fs_info);
3259 if (ret)
3260 goto out;
3261
3262 ret = btrfs_resume_dev_replace_async(fs_info);
3263 if (ret) {
3264 btrfs_warn(fs_info, "failed to resume dev_replace");
3265 goto out;
3266 }
3267
3268 btrfs_qgroup_rescan_resume(fs_info);
3269
3270 if (!fs_info->uuid_root) {
3271 btrfs_info(fs_info, "creating UUID tree");
3272 ret = btrfs_create_uuid_tree(fs_info);
3273 if (ret) {
3274 btrfs_warn(fs_info,
3275 "failed to create the UUID tree %d", ret);
3276 goto out;
3277 }
3278 }
3279
3280out:
3281 return ret;
3282}
3283
3284int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3285 char *options)
3286{
3287 u32 sectorsize;
3288 u32 nodesize;
3289 u32 stripesize;
3290 u64 generation;
3291 u64 features;
3292 u16 csum_type;
3293 struct btrfs_super_block *disk_super;
3294 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3295 struct btrfs_root *tree_root;
3296 struct btrfs_root *chunk_root;
3297 int ret;
3298 int err = -EINVAL;
3299 int level;
3300
3301 ret = init_mount_fs_info(fs_info, sb);
3302 if (ret) {
3303 err = ret;
3304 goto fail;
3305 }
3306
3307 /* These need to be init'ed before we start creating inodes and such. */
3308 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3309 GFP_KERNEL);
3310 fs_info->tree_root = tree_root;
3311 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3312 GFP_KERNEL);
3313 fs_info->chunk_root = chunk_root;
3314 if (!tree_root || !chunk_root) {
3315 err = -ENOMEM;
3316 goto fail;
3317 }
3318
3319 fs_info->btree_inode = new_inode(sb);
3320 if (!fs_info->btree_inode) {
3321 err = -ENOMEM;
3322 goto fail;
3323 }
3324 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3325 btrfs_init_btree_inode(fs_info);
3326
3327 invalidate_bdev(fs_devices->latest_dev->bdev);
3328
3329 /*
3330 * Read super block and check the signature bytes only
3331 */
3332 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3333 if (IS_ERR(disk_super)) {
3334 err = PTR_ERR(disk_super);
3335 goto fail_alloc;
3336 }
3337
3338 /*
3339 * Verify the type first, if that or the checksum value are
3340 * corrupted, we'll find out
3341 */
3342 csum_type = btrfs_super_csum_type(disk_super);
3343 if (!btrfs_supported_super_csum(csum_type)) {
3344 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3345 csum_type);
3346 err = -EINVAL;
3347 btrfs_release_disk_super(disk_super);
3348 goto fail_alloc;
3349 }
3350
3351 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3352
3353 ret = btrfs_init_csum_hash(fs_info, csum_type);
3354 if (ret) {
3355 err = ret;
3356 btrfs_release_disk_super(disk_super);
3357 goto fail_alloc;
3358 }
3359
3360 /*
3361 * We want to check superblock checksum, the type is stored inside.
3362 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3363 */
3364 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3365 btrfs_err(fs_info, "superblock checksum mismatch");
3366 err = -EINVAL;
3367 btrfs_release_disk_super(disk_super);
3368 goto fail_alloc;
3369 }
3370
3371 /*
3372 * super_copy is zeroed at allocation time and we never touch the
3373 * following bytes up to INFO_SIZE, the checksum is calculated from
3374 * the whole block of INFO_SIZE
3375 */
3376 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3377 btrfs_release_disk_super(disk_super);
3378
3379 disk_super = fs_info->super_copy;
3380
3381
3382 features = btrfs_super_flags(disk_super);
3383 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3384 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3385 btrfs_set_super_flags(disk_super, features);
3386 btrfs_info(fs_info,
3387 "found metadata UUID change in progress flag, clearing");
3388 }
3389
3390 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3391 sizeof(*fs_info->super_for_commit));
3392
3393 ret = btrfs_validate_mount_super(fs_info);
3394 if (ret) {
3395 btrfs_err(fs_info, "superblock contains fatal errors");
3396 err = -EINVAL;
3397 goto fail_alloc;
3398 }
3399
3400 if (!btrfs_super_root(disk_super))
3401 goto fail_alloc;
3402
3403 /* check FS state, whether FS is broken. */
3404 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3405 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3406
3407 /*
3408 * In the long term, we'll store the compression type in the super
3409 * block, and it'll be used for per file compression control.
3410 */
3411 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3412
3413
3414 /* Set up fs_info before parsing mount options */
3415 nodesize = btrfs_super_nodesize(disk_super);
3416 sectorsize = btrfs_super_sectorsize(disk_super);
3417 stripesize = sectorsize;
3418 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3419 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3420
3421 fs_info->nodesize = nodesize;
3422 fs_info->sectorsize = sectorsize;
3423 fs_info->sectorsize_bits = ilog2(sectorsize);
3424 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3425 fs_info->stripesize = stripesize;
3426
3427 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3428 if (ret) {
3429 err = ret;
3430 goto fail_alloc;
3431 }
3432
3433 features = btrfs_super_incompat_flags(disk_super) &
3434 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3435 if (features) {
3436 btrfs_err(fs_info,
3437 "cannot mount because of unsupported optional features (0x%llx)",
3438 features);
3439 err = -EINVAL;
3440 goto fail_alloc;
3441 }
3442
3443 features = btrfs_super_incompat_flags(disk_super);
3444 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3445 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3446 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3447 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3448 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3449
3450 /*
3451 * Flag our filesystem as having big metadata blocks if they are bigger
3452 * than the page size.
3453 */
3454 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3455 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3456
3457 /*
3458 * mixed block groups end up with duplicate but slightly offset
3459 * extent buffers for the same range. It leads to corruptions
3460 */
3461 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3462 (sectorsize != nodesize)) {
3463 btrfs_err(fs_info,
3464"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3465 nodesize, sectorsize);
3466 goto fail_alloc;
3467 }
3468
3469 /*
3470 * Needn't use the lock because there is no other task which will
3471 * update the flag.
3472 */
3473 btrfs_set_super_incompat_flags(disk_super, features);
3474
3475 features = btrfs_super_compat_ro_flags(disk_super) &
3476 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3477 if (!sb_rdonly(sb) && features) {
3478 btrfs_err(fs_info,
3479 "cannot mount read-write because of unsupported optional features (0x%llx)",
3480 features);
3481 err = -EINVAL;
3482 goto fail_alloc;
3483 }
3484 /*
3485 * We have unsupported RO compat features, although RO mounted, we
3486 * should not cause any metadata write, including log replay.
3487 * Or we could screw up whatever the new feature requires.
3488 */
3489 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3490 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3491 btrfs_err(fs_info,
3492"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3493 features);
3494 err = -EINVAL;
3495 goto fail_alloc;
3496 }
3497
3498
3499 if (sectorsize < PAGE_SIZE) {
3500 struct btrfs_subpage_info *subpage_info;
3501
3502 /*
3503 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3504 * going to be deprecated.
3505 *
3506 * Force to use v2 cache for subpage case.
3507 */
3508 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3509 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3510 "forcing free space tree for sector size %u with page size %lu",
3511 sectorsize, PAGE_SIZE);
3512
3513 btrfs_warn(fs_info,
3514 "read-write for sector size %u with page size %lu is experimental",
3515 sectorsize, PAGE_SIZE);
3516 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3517 if (!subpage_info)
3518 goto fail_alloc;
3519 btrfs_init_subpage_info(subpage_info, sectorsize);
3520 fs_info->subpage_info = subpage_info;
3521 }
3522
3523 ret = btrfs_init_workqueues(fs_info);
3524 if (ret) {
3525 err = ret;
3526 goto fail_sb_buffer;
3527 }
3528
3529 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3530 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3531
3532 sb->s_blocksize = sectorsize;
3533 sb->s_blocksize_bits = blksize_bits(sectorsize);
3534 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3535
3536 mutex_lock(&fs_info->chunk_mutex);
3537 ret = btrfs_read_sys_array(fs_info);
3538 mutex_unlock(&fs_info->chunk_mutex);
3539 if (ret) {
3540 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3541 goto fail_sb_buffer;
3542 }
3543
3544 generation = btrfs_super_chunk_root_generation(disk_super);
3545 level = btrfs_super_chunk_root_level(disk_super);
3546 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3547 generation, level);
3548 if (ret) {
3549 btrfs_err(fs_info, "failed to read chunk root");
3550 goto fail_tree_roots;
3551 }
3552
3553 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3554 offsetof(struct btrfs_header, chunk_tree_uuid),
3555 BTRFS_UUID_SIZE);
3556
3557 ret = btrfs_read_chunk_tree(fs_info);
3558 if (ret) {
3559 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3560 goto fail_tree_roots;
3561 }
3562
3563 /*
3564 * At this point we know all the devices that make this filesystem,
3565 * including the seed devices but we don't know yet if the replace
3566 * target is required. So free devices that are not part of this
3567 * filesystem but skip the replace target device which is checked
3568 * below in btrfs_init_dev_replace().
3569 */
3570 btrfs_free_extra_devids(fs_devices);
3571 if (!fs_devices->latest_dev->bdev) {
3572 btrfs_err(fs_info, "failed to read devices");
3573 goto fail_tree_roots;
3574 }
3575
3576 ret = init_tree_roots(fs_info);
3577 if (ret)
3578 goto fail_tree_roots;
3579
3580 /*
3581 * Get zone type information of zoned block devices. This will also
3582 * handle emulation of a zoned filesystem if a regular device has the
3583 * zoned incompat feature flag set.
3584 */
3585 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3586 if (ret) {
3587 btrfs_err(fs_info,
3588 "zoned: failed to read device zone info: %d",
3589 ret);
3590 goto fail_block_groups;
3591 }
3592
3593 /*
3594 * If we have a uuid root and we're not being told to rescan we need to
3595 * check the generation here so we can set the
3596 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3597 * transaction during a balance or the log replay without updating the
3598 * uuid generation, and then if we crash we would rescan the uuid tree,
3599 * even though it was perfectly fine.
3600 */
3601 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3602 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3603 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3604
3605 ret = btrfs_verify_dev_extents(fs_info);
3606 if (ret) {
3607 btrfs_err(fs_info,
3608 "failed to verify dev extents against chunks: %d",
3609 ret);
3610 goto fail_block_groups;
3611 }
3612 ret = btrfs_recover_balance(fs_info);
3613 if (ret) {
3614 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3615 goto fail_block_groups;
3616 }
3617
3618 ret = btrfs_init_dev_stats(fs_info);
3619 if (ret) {
3620 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3621 goto fail_block_groups;
3622 }
3623
3624 ret = btrfs_init_dev_replace(fs_info);
3625 if (ret) {
3626 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3627 goto fail_block_groups;
3628 }
3629
3630 ret = btrfs_check_zoned_mode(fs_info);
3631 if (ret) {
3632 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3633 ret);
3634 goto fail_block_groups;
3635 }
3636
3637 ret = btrfs_sysfs_add_fsid(fs_devices);
3638 if (ret) {
3639 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3640 ret);
3641 goto fail_block_groups;
3642 }
3643
3644 ret = btrfs_sysfs_add_mounted(fs_info);
3645 if (ret) {
3646 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3647 goto fail_fsdev_sysfs;
3648 }
3649
3650 ret = btrfs_init_space_info(fs_info);
3651 if (ret) {
3652 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3653 goto fail_sysfs;
3654 }
3655
3656 ret = btrfs_read_block_groups(fs_info);
3657 if (ret) {
3658 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3659 goto fail_sysfs;
3660 }
3661
3662 btrfs_free_zone_cache(fs_info);
3663
3664 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3665 !btrfs_check_rw_degradable(fs_info, NULL)) {
3666 btrfs_warn(fs_info,
3667 "writable mount is not allowed due to too many missing devices");
3668 goto fail_sysfs;
3669 }
3670
3671 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3672 "btrfs-cleaner");
3673 if (IS_ERR(fs_info->cleaner_kthread))
3674 goto fail_sysfs;
3675
3676 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3677 tree_root,
3678 "btrfs-transaction");
3679 if (IS_ERR(fs_info->transaction_kthread))
3680 goto fail_cleaner;
3681
3682 if (!btrfs_test_opt(fs_info, NOSSD) &&
3683 !fs_info->fs_devices->rotating) {
3684 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3685 }
3686
3687 /*
3688 * Mount does not set all options immediately, we can do it now and do
3689 * not have to wait for transaction commit
3690 */
3691 btrfs_apply_pending_changes(fs_info);
3692
3693#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3694 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3695 ret = btrfsic_mount(fs_info, fs_devices,
3696 btrfs_test_opt(fs_info,
3697 CHECK_INTEGRITY_DATA) ? 1 : 0,
3698 fs_info->check_integrity_print_mask);
3699 if (ret)
3700 btrfs_warn(fs_info,
3701 "failed to initialize integrity check module: %d",
3702 ret);
3703 }
3704#endif
3705 ret = btrfs_read_qgroup_config(fs_info);
3706 if (ret)
3707 goto fail_trans_kthread;
3708
3709 if (btrfs_build_ref_tree(fs_info))
3710 btrfs_err(fs_info, "couldn't build ref tree");
3711
3712 /* do not make disk changes in broken FS or nologreplay is given */
3713 if (btrfs_super_log_root(disk_super) != 0 &&
3714 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3715 btrfs_info(fs_info, "start tree-log replay");
3716 ret = btrfs_replay_log(fs_info, fs_devices);
3717 if (ret) {
3718 err = ret;
3719 goto fail_qgroup;
3720 }
3721 }
3722
3723 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3724 if (IS_ERR(fs_info->fs_root)) {
3725 err = PTR_ERR(fs_info->fs_root);
3726 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3727 fs_info->fs_root = NULL;
3728 goto fail_qgroup;
3729 }
3730
3731 if (sb_rdonly(sb))
3732 goto clear_oneshot;
3733
3734 ret = btrfs_start_pre_rw_mount(fs_info);
3735 if (ret) {
3736 close_ctree(fs_info);
3737 return ret;
3738 }
3739 btrfs_discard_resume(fs_info);
3740
3741 if (fs_info->uuid_root &&
3742 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3743 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3744 btrfs_info(fs_info, "checking UUID tree");
3745 ret = btrfs_check_uuid_tree(fs_info);
3746 if (ret) {
3747 btrfs_warn(fs_info,
3748 "failed to check the UUID tree: %d", ret);
3749 close_ctree(fs_info);
3750 return ret;
3751 }
3752 }
3753
3754 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3755
3756 /* Kick the cleaner thread so it'll start deleting snapshots. */
3757 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3758 wake_up_process(fs_info->cleaner_kthread);
3759
3760clear_oneshot:
3761 btrfs_clear_oneshot_options(fs_info);
3762 return 0;
3763
3764fail_qgroup:
3765 btrfs_free_qgroup_config(fs_info);
3766fail_trans_kthread:
3767 kthread_stop(fs_info->transaction_kthread);
3768 btrfs_cleanup_transaction(fs_info);
3769 btrfs_free_fs_roots(fs_info);
3770fail_cleaner:
3771 kthread_stop(fs_info->cleaner_kthread);
3772
3773 /*
3774 * make sure we're done with the btree inode before we stop our
3775 * kthreads
3776 */
3777 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3778
3779fail_sysfs:
3780 btrfs_sysfs_remove_mounted(fs_info);
3781
3782fail_fsdev_sysfs:
3783 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3784
3785fail_block_groups:
3786 btrfs_put_block_group_cache(fs_info);
3787
3788fail_tree_roots:
3789 if (fs_info->data_reloc_root)
3790 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3791 free_root_pointers(fs_info, true);
3792 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3793
3794fail_sb_buffer:
3795 btrfs_stop_all_workers(fs_info);
3796 btrfs_free_block_groups(fs_info);
3797fail_alloc:
3798 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3799
3800 iput(fs_info->btree_inode);
3801fail:
3802 btrfs_close_devices(fs_info->fs_devices);
3803 return err;
3804}
3805ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3806
3807static void btrfs_end_super_write(struct bio *bio)
3808{
3809 struct btrfs_device *device = bio->bi_private;
3810 struct bio_vec *bvec;
3811 struct bvec_iter_all iter_all;
3812 struct page *page;
3813
3814 bio_for_each_segment_all(bvec, bio, iter_all) {
3815 page = bvec->bv_page;
3816
3817 if (bio->bi_status) {
3818 btrfs_warn_rl_in_rcu(device->fs_info,
3819 "lost page write due to IO error on %s (%d)",
3820 rcu_str_deref(device->name),
3821 blk_status_to_errno(bio->bi_status));
3822 ClearPageUptodate(page);
3823 SetPageError(page);
3824 btrfs_dev_stat_inc_and_print(device,
3825 BTRFS_DEV_STAT_WRITE_ERRS);
3826 } else {
3827 SetPageUptodate(page);
3828 }
3829
3830 put_page(page);
3831 unlock_page(page);
3832 }
3833
3834 bio_put(bio);
3835}
3836
3837struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3838 int copy_num)
3839{
3840 struct btrfs_super_block *super;
3841 struct page *page;
3842 u64 bytenr, bytenr_orig;
3843 struct address_space *mapping = bdev->bd_inode->i_mapping;
3844 int ret;
3845
3846 bytenr_orig = btrfs_sb_offset(copy_num);
3847 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3848 if (ret == -ENOENT)
3849 return ERR_PTR(-EINVAL);
3850 else if (ret)
3851 return ERR_PTR(ret);
3852
3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3854 return ERR_PTR(-EINVAL);
3855
3856 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3857 if (IS_ERR(page))
3858 return ERR_CAST(page);
3859
3860 super = page_address(page);
3861 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3862 btrfs_release_disk_super(super);
3863 return ERR_PTR(-ENODATA);
3864 }
3865
3866 if (btrfs_super_bytenr(super) != bytenr_orig) {
3867 btrfs_release_disk_super(super);
3868 return ERR_PTR(-EINVAL);
3869 }
3870
3871 return super;
3872}
3873
3874
3875struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3876{
3877 struct btrfs_super_block *super, *latest = NULL;
3878 int i;
3879 u64 transid = 0;
3880
3881 /* we would like to check all the supers, but that would make
3882 * a btrfs mount succeed after a mkfs from a different FS.
3883 * So, we need to add a special mount option to scan for
3884 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3885 */
3886 for (i = 0; i < 1; i++) {
3887 super = btrfs_read_dev_one_super(bdev, i);
3888 if (IS_ERR(super))
3889 continue;
3890
3891 if (!latest || btrfs_super_generation(super) > transid) {
3892 if (latest)
3893 btrfs_release_disk_super(super);
3894
3895 latest = super;
3896 transid = btrfs_super_generation(super);
3897 }
3898 }
3899
3900 return super;
3901}
3902
3903/*
3904 * Write superblock @sb to the @device. Do not wait for completion, all the
3905 * pages we use for writing are locked.
3906 *
3907 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3908 * the expected device size at commit time. Note that max_mirrors must be
3909 * same for write and wait phases.
3910 *
3911 * Return number of errors when page is not found or submission fails.
3912 */
3913static int write_dev_supers(struct btrfs_device *device,
3914 struct btrfs_super_block *sb, int max_mirrors)
3915{
3916 struct btrfs_fs_info *fs_info = device->fs_info;
3917 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3918 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3919 int i;
3920 int errors = 0;
3921 int ret;
3922 u64 bytenr, bytenr_orig;
3923
3924 if (max_mirrors == 0)
3925 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3926
3927 shash->tfm = fs_info->csum_shash;
3928
3929 for (i = 0; i < max_mirrors; i++) {
3930 struct page *page;
3931 struct bio *bio;
3932 struct btrfs_super_block *disk_super;
3933
3934 bytenr_orig = btrfs_sb_offset(i);
3935 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3936 if (ret == -ENOENT) {
3937 continue;
3938 } else if (ret < 0) {
3939 btrfs_err(device->fs_info,
3940 "couldn't get super block location for mirror %d",
3941 i);
3942 errors++;
3943 continue;
3944 }
3945 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3946 device->commit_total_bytes)
3947 break;
3948
3949 btrfs_set_super_bytenr(sb, bytenr_orig);
3950
3951 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3952 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3953 sb->csum);
3954
3955 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3956 GFP_NOFS);
3957 if (!page) {
3958 btrfs_err(device->fs_info,
3959 "couldn't get super block page for bytenr %llu",
3960 bytenr);
3961 errors++;
3962 continue;
3963 }
3964
3965 /* Bump the refcount for wait_dev_supers() */
3966 get_page(page);
3967
3968 disk_super = page_address(page);
3969 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3970
3971 /*
3972 * Directly use bios here instead of relying on the page cache
3973 * to do I/O, so we don't lose the ability to do integrity
3974 * checking.
3975 */
3976 bio = bio_alloc(device->bdev, 1,
3977 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3978 GFP_NOFS);
3979 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3980 bio->bi_private = device;
3981 bio->bi_end_io = btrfs_end_super_write;
3982 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3983 offset_in_page(bytenr));
3984
3985 /*
3986 * We FUA only the first super block. The others we allow to
3987 * go down lazy and there's a short window where the on-disk
3988 * copies might still contain the older version.
3989 */
3990 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3991 bio->bi_opf |= REQ_FUA;
3992
3993 btrfsic_check_bio(bio);
3994 submit_bio(bio);
3995
3996 if (btrfs_advance_sb_log(device, i))
3997 errors++;
3998 }
3999 return errors < i ? 0 : -1;
4000}
4001
4002/*
4003 * Wait for write completion of superblocks done by write_dev_supers,
4004 * @max_mirrors same for write and wait phases.
4005 *
4006 * Return number of errors when page is not found or not marked up to
4007 * date.
4008 */
4009static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4010{
4011 int i;
4012 int errors = 0;
4013 bool primary_failed = false;
4014 int ret;
4015 u64 bytenr;
4016
4017 if (max_mirrors == 0)
4018 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4019
4020 for (i = 0; i < max_mirrors; i++) {
4021 struct page *page;
4022
4023 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4024 if (ret == -ENOENT) {
4025 break;
4026 } else if (ret < 0) {
4027 errors++;
4028 if (i == 0)
4029 primary_failed = true;
4030 continue;
4031 }
4032 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4033 device->commit_total_bytes)
4034 break;
4035
4036 page = find_get_page(device->bdev->bd_inode->i_mapping,
4037 bytenr >> PAGE_SHIFT);
4038 if (!page) {
4039 errors++;
4040 if (i == 0)
4041 primary_failed = true;
4042 continue;
4043 }
4044 /* Page is submitted locked and unlocked once the IO completes */
4045 wait_on_page_locked(page);
4046 if (PageError(page)) {
4047 errors++;
4048 if (i == 0)
4049 primary_failed = true;
4050 }
4051
4052 /* Drop our reference */
4053 put_page(page);
4054
4055 /* Drop the reference from the writing run */
4056 put_page(page);
4057 }
4058
4059 /* log error, force error return */
4060 if (primary_failed) {
4061 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4062 device->devid);
4063 return -1;
4064 }
4065
4066 return errors < i ? 0 : -1;
4067}
4068
4069/*
4070 * endio for the write_dev_flush, this will wake anyone waiting
4071 * for the barrier when it is done
4072 */
4073static void btrfs_end_empty_barrier(struct bio *bio)
4074{
4075 bio_uninit(bio);
4076 complete(bio->bi_private);
4077}
4078
4079/*
4080 * Submit a flush request to the device if it supports it. Error handling is
4081 * done in the waiting counterpart.
4082 */
4083static void write_dev_flush(struct btrfs_device *device)
4084{
4085 struct bio *bio = &device->flush_bio;
4086
4087#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4088 /*
4089 * When a disk has write caching disabled, we skip submission of a bio
4090 * with flush and sync requests before writing the superblock, since
4091 * it's not needed. However when the integrity checker is enabled, this
4092 * results in reports that there are metadata blocks referred by a
4093 * superblock that were not properly flushed. So don't skip the bio
4094 * submission only when the integrity checker is enabled for the sake
4095 * of simplicity, since this is a debug tool and not meant for use in
4096 * non-debug builds.
4097 */
4098 if (!bdev_write_cache(device->bdev))
4099 return;
4100#endif
4101
4102 bio_init(bio, device->bdev, NULL, 0,
4103 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4104 bio->bi_end_io = btrfs_end_empty_barrier;
4105 init_completion(&device->flush_wait);
4106 bio->bi_private = &device->flush_wait;
4107
4108 btrfsic_check_bio(bio);
4109 submit_bio(bio);
4110 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4111}
4112
4113/*
4114 * If the flush bio has been submitted by write_dev_flush, wait for it.
4115 */
4116static blk_status_t wait_dev_flush(struct btrfs_device *device)
4117{
4118 struct bio *bio = &device->flush_bio;
4119
4120 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4121 return BLK_STS_OK;
4122
4123 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4124 wait_for_completion_io(&device->flush_wait);
4125
4126 return bio->bi_status;
4127}
4128
4129static int check_barrier_error(struct btrfs_fs_info *fs_info)
4130{
4131 if (!btrfs_check_rw_degradable(fs_info, NULL))
4132 return -EIO;
4133 return 0;
4134}
4135
4136/*
4137 * send an empty flush down to each device in parallel,
4138 * then wait for them
4139 */
4140static int barrier_all_devices(struct btrfs_fs_info *info)
4141{
4142 struct list_head *head;
4143 struct btrfs_device *dev;
4144 int errors_wait = 0;
4145 blk_status_t ret;
4146
4147 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4148 /* send down all the barriers */
4149 head = &info->fs_devices->devices;
4150 list_for_each_entry(dev, head, dev_list) {
4151 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4152 continue;
4153 if (!dev->bdev)
4154 continue;
4155 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4156 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4157 continue;
4158
4159 write_dev_flush(dev);
4160 dev->last_flush_error = BLK_STS_OK;
4161 }
4162
4163 /* wait for all the barriers */
4164 list_for_each_entry(dev, head, dev_list) {
4165 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4166 continue;
4167 if (!dev->bdev) {
4168 errors_wait++;
4169 continue;
4170 }
4171 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4172 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4173 continue;
4174
4175 ret = wait_dev_flush(dev);
4176 if (ret) {
4177 dev->last_flush_error = ret;
4178 btrfs_dev_stat_inc_and_print(dev,
4179 BTRFS_DEV_STAT_FLUSH_ERRS);
4180 errors_wait++;
4181 }
4182 }
4183
4184 if (errors_wait) {
4185 /*
4186 * At some point we need the status of all disks
4187 * to arrive at the volume status. So error checking
4188 * is being pushed to a separate loop.
4189 */
4190 return check_barrier_error(info);
4191 }
4192 return 0;
4193}
4194
4195int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4196{
4197 int raid_type;
4198 int min_tolerated = INT_MAX;
4199
4200 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4201 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4202 min_tolerated = min_t(int, min_tolerated,
4203 btrfs_raid_array[BTRFS_RAID_SINGLE].
4204 tolerated_failures);
4205
4206 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4207 if (raid_type == BTRFS_RAID_SINGLE)
4208 continue;
4209 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4210 continue;
4211 min_tolerated = min_t(int, min_tolerated,
4212 btrfs_raid_array[raid_type].
4213 tolerated_failures);
4214 }
4215
4216 if (min_tolerated == INT_MAX) {
4217 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4218 min_tolerated = 0;
4219 }
4220
4221 return min_tolerated;
4222}
4223
4224int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4225{
4226 struct list_head *head;
4227 struct btrfs_device *dev;
4228 struct btrfs_super_block *sb;
4229 struct btrfs_dev_item *dev_item;
4230 int ret;
4231 int do_barriers;
4232 int max_errors;
4233 int total_errors = 0;
4234 u64 flags;
4235
4236 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4237
4238 /*
4239 * max_mirrors == 0 indicates we're from commit_transaction,
4240 * not from fsync where the tree roots in fs_info have not
4241 * been consistent on disk.
4242 */
4243 if (max_mirrors == 0)
4244 backup_super_roots(fs_info);
4245
4246 sb = fs_info->super_for_commit;
4247 dev_item = &sb->dev_item;
4248
4249 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4250 head = &fs_info->fs_devices->devices;
4251 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4252
4253 if (do_barriers) {
4254 ret = barrier_all_devices(fs_info);
4255 if (ret) {
4256 mutex_unlock(
4257 &fs_info->fs_devices->device_list_mutex);
4258 btrfs_handle_fs_error(fs_info, ret,
4259 "errors while submitting device barriers.");
4260 return ret;
4261 }
4262 }
4263
4264 list_for_each_entry(dev, head, dev_list) {
4265 if (!dev->bdev) {
4266 total_errors++;
4267 continue;
4268 }
4269 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4270 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4271 continue;
4272
4273 btrfs_set_stack_device_generation(dev_item, 0);
4274 btrfs_set_stack_device_type(dev_item, dev->type);
4275 btrfs_set_stack_device_id(dev_item, dev->devid);
4276 btrfs_set_stack_device_total_bytes(dev_item,
4277 dev->commit_total_bytes);
4278 btrfs_set_stack_device_bytes_used(dev_item,
4279 dev->commit_bytes_used);
4280 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4281 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4282 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4283 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4284 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4285 BTRFS_FSID_SIZE);
4286
4287 flags = btrfs_super_flags(sb);
4288 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4289
4290 ret = btrfs_validate_write_super(fs_info, sb);
4291 if (ret < 0) {
4292 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4293 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4294 "unexpected superblock corruption detected");
4295 return -EUCLEAN;
4296 }
4297
4298 ret = write_dev_supers(dev, sb, max_mirrors);
4299 if (ret)
4300 total_errors++;
4301 }
4302 if (total_errors > max_errors) {
4303 btrfs_err(fs_info, "%d errors while writing supers",
4304 total_errors);
4305 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4306
4307 /* FUA is masked off if unsupported and can't be the reason */
4308 btrfs_handle_fs_error(fs_info, -EIO,
4309 "%d errors while writing supers",
4310 total_errors);
4311 return -EIO;
4312 }
4313
4314 total_errors = 0;
4315 list_for_each_entry(dev, head, dev_list) {
4316 if (!dev->bdev)
4317 continue;
4318 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4319 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4320 continue;
4321
4322 ret = wait_dev_supers(dev, max_mirrors);
4323 if (ret)
4324 total_errors++;
4325 }
4326 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4327 if (total_errors > max_errors) {
4328 btrfs_handle_fs_error(fs_info, -EIO,
4329 "%d errors while writing supers",
4330 total_errors);
4331 return -EIO;
4332 }
4333 return 0;
4334}
4335
4336/* Drop a fs root from the radix tree and free it. */
4337void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4338 struct btrfs_root *root)
4339{
4340 bool drop_ref = false;
4341
4342 spin_lock(&fs_info->fs_roots_radix_lock);
4343 radix_tree_delete(&fs_info->fs_roots_radix,
4344 (unsigned long)root->root_key.objectid);
4345 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4346 drop_ref = true;
4347 spin_unlock(&fs_info->fs_roots_radix_lock);
4348
4349 if (BTRFS_FS_ERROR(fs_info)) {
4350 ASSERT(root->log_root == NULL);
4351 if (root->reloc_root) {
4352 btrfs_put_root(root->reloc_root);
4353 root->reloc_root = NULL;
4354 }
4355 }
4356
4357 if (drop_ref)
4358 btrfs_put_root(root);
4359}
4360
4361int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4362{
4363 u64 root_objectid = 0;
4364 struct btrfs_root *gang[8];
4365 int i = 0;
4366 int err = 0;
4367 unsigned int ret = 0;
4368
4369 while (1) {
4370 spin_lock(&fs_info->fs_roots_radix_lock);
4371 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372 (void **)gang, root_objectid,
4373 ARRAY_SIZE(gang));
4374 if (!ret) {
4375 spin_unlock(&fs_info->fs_roots_radix_lock);
4376 break;
4377 }
4378 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4379
4380 for (i = 0; i < ret; i++) {
4381 /* Avoid to grab roots in dead_roots */
4382 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4383 gang[i] = NULL;
4384 continue;
4385 }
4386 /* grab all the search result for later use */
4387 gang[i] = btrfs_grab_root(gang[i]);
4388 }
4389 spin_unlock(&fs_info->fs_roots_radix_lock);
4390
4391 for (i = 0; i < ret; i++) {
4392 if (!gang[i])
4393 continue;
4394 root_objectid = gang[i]->root_key.objectid;
4395 err = btrfs_orphan_cleanup(gang[i]);
4396 if (err)
4397 break;
4398 btrfs_put_root(gang[i]);
4399 }
4400 root_objectid++;
4401 }
4402
4403 /* release the uncleaned roots due to error */
4404 for (; i < ret; i++) {
4405 if (gang[i])
4406 btrfs_put_root(gang[i]);
4407 }
4408 return err;
4409}
4410
4411int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4412{
4413 struct btrfs_root *root = fs_info->tree_root;
4414 struct btrfs_trans_handle *trans;
4415
4416 mutex_lock(&fs_info->cleaner_mutex);
4417 btrfs_run_delayed_iputs(fs_info);
4418 mutex_unlock(&fs_info->cleaner_mutex);
4419 wake_up_process(fs_info->cleaner_kthread);
4420
4421 /* wait until ongoing cleanup work done */
4422 down_write(&fs_info->cleanup_work_sem);
4423 up_write(&fs_info->cleanup_work_sem);
4424
4425 trans = btrfs_join_transaction(root);
4426 if (IS_ERR(trans))
4427 return PTR_ERR(trans);
4428 return btrfs_commit_transaction(trans);
4429}
4430
4431static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4432{
4433 struct btrfs_transaction *trans;
4434 struct btrfs_transaction *tmp;
4435 bool found = false;
4436
4437 if (list_empty(&fs_info->trans_list))
4438 return;
4439
4440 /*
4441 * This function is only called at the very end of close_ctree(),
4442 * thus no other running transaction, no need to take trans_lock.
4443 */
4444 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4445 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4446 struct extent_state *cached = NULL;
4447 u64 dirty_bytes = 0;
4448 u64 cur = 0;
4449 u64 found_start;
4450 u64 found_end;
4451
4452 found = true;
4453 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4454 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4455 dirty_bytes += found_end + 1 - found_start;
4456 cur = found_end + 1;
4457 }
4458 btrfs_warn(fs_info,
4459 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4460 trans->transid, dirty_bytes);
4461 btrfs_cleanup_one_transaction(trans, fs_info);
4462
4463 if (trans == fs_info->running_transaction)
4464 fs_info->running_transaction = NULL;
4465 list_del_init(&trans->list);
4466
4467 btrfs_put_transaction(trans);
4468 trace_btrfs_transaction_commit(fs_info);
4469 }
4470 ASSERT(!found);
4471}
4472
4473void __cold close_ctree(struct btrfs_fs_info *fs_info)
4474{
4475 int ret;
4476
4477 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4478
4479 /*
4480 * If we had UNFINISHED_DROPS we could still be processing them, so
4481 * clear that bit and wake up relocation so it can stop.
4482 * We must do this before stopping the block group reclaim task, because
4483 * at btrfs_relocate_block_group() we wait for this bit, and after the
4484 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4485 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4486 * return 1.
4487 */
4488 btrfs_wake_unfinished_drop(fs_info);
4489
4490 /*
4491 * We may have the reclaim task running and relocating a data block group,
4492 * in which case it may create delayed iputs. So stop it before we park
4493 * the cleaner kthread otherwise we can get new delayed iputs after
4494 * parking the cleaner, and that can make the async reclaim task to hang
4495 * if it's waiting for delayed iputs to complete, since the cleaner is
4496 * parked and can not run delayed iputs - this will make us hang when
4497 * trying to stop the async reclaim task.
4498 */
4499 cancel_work_sync(&fs_info->reclaim_bgs_work);
4500 /*
4501 * We don't want the cleaner to start new transactions, add more delayed
4502 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4503 * because that frees the task_struct, and the transaction kthread might
4504 * still try to wake up the cleaner.
4505 */
4506 kthread_park(fs_info->cleaner_kthread);
4507
4508 /* wait for the qgroup rescan worker to stop */
4509 btrfs_qgroup_wait_for_completion(fs_info, false);
4510
4511 /* wait for the uuid_scan task to finish */
4512 down(&fs_info->uuid_tree_rescan_sem);
4513 /* avoid complains from lockdep et al., set sem back to initial state */
4514 up(&fs_info->uuid_tree_rescan_sem);
4515
4516 /* pause restriper - we want to resume on mount */
4517 btrfs_pause_balance(fs_info);
4518
4519 btrfs_dev_replace_suspend_for_unmount(fs_info);
4520
4521 btrfs_scrub_cancel(fs_info);
4522
4523 /* wait for any defraggers to finish */
4524 wait_event(fs_info->transaction_wait,
4525 (atomic_read(&fs_info->defrag_running) == 0));
4526
4527 /* clear out the rbtree of defraggable inodes */
4528 btrfs_cleanup_defrag_inodes(fs_info);
4529
4530 cancel_work_sync(&fs_info->async_reclaim_work);
4531 cancel_work_sync(&fs_info->async_data_reclaim_work);
4532 cancel_work_sync(&fs_info->preempt_reclaim_work);
4533
4534 /* Cancel or finish ongoing discard work */
4535 btrfs_discard_cleanup(fs_info);
4536
4537 if (!sb_rdonly(fs_info->sb)) {
4538 /*
4539 * The cleaner kthread is stopped, so do one final pass over
4540 * unused block groups.
4541 */
4542 btrfs_delete_unused_bgs(fs_info);
4543
4544 /*
4545 * There might be existing delayed inode workers still running
4546 * and holding an empty delayed inode item. We must wait for
4547 * them to complete first because they can create a transaction.
4548 * This happens when someone calls btrfs_balance_delayed_items()
4549 * and then a transaction commit runs the same delayed nodes
4550 * before any delayed worker has done something with the nodes.
4551 * We must wait for any worker here and not at transaction
4552 * commit time since that could cause a deadlock.
4553 * This is a very rare case.
4554 */
4555 btrfs_flush_workqueue(fs_info->delayed_workers);
4556
4557 ret = btrfs_commit_super(fs_info);
4558 if (ret)
4559 btrfs_err(fs_info, "commit super ret %d", ret);
4560 }
4561
4562 if (BTRFS_FS_ERROR(fs_info))
4563 btrfs_error_commit_super(fs_info);
4564
4565 kthread_stop(fs_info->transaction_kthread);
4566 kthread_stop(fs_info->cleaner_kthread);
4567
4568 ASSERT(list_empty(&fs_info->delayed_iputs));
4569 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4570
4571 if (btrfs_check_quota_leak(fs_info)) {
4572 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4573 btrfs_err(fs_info, "qgroup reserved space leaked");
4574 }
4575
4576 btrfs_free_qgroup_config(fs_info);
4577 ASSERT(list_empty(&fs_info->delalloc_roots));
4578
4579 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4580 btrfs_info(fs_info, "at unmount delalloc count %lld",
4581 percpu_counter_sum(&fs_info->delalloc_bytes));
4582 }
4583
4584 if (percpu_counter_sum(&fs_info->ordered_bytes))
4585 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4586 percpu_counter_sum(&fs_info->ordered_bytes));
4587
4588 btrfs_sysfs_remove_mounted(fs_info);
4589 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4590
4591 btrfs_put_block_group_cache(fs_info);
4592
4593 /*
4594 * we must make sure there is not any read request to
4595 * submit after we stopping all workers.
4596 */
4597 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4598 btrfs_stop_all_workers(fs_info);
4599
4600 /* We shouldn't have any transaction open at this point */
4601 warn_about_uncommitted_trans(fs_info);
4602
4603 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4604 free_root_pointers(fs_info, true);
4605 btrfs_free_fs_roots(fs_info);
4606
4607 /*
4608 * We must free the block groups after dropping the fs_roots as we could
4609 * have had an IO error and have left over tree log blocks that aren't
4610 * cleaned up until the fs roots are freed. This makes the block group
4611 * accounting appear to be wrong because there's pending reserved bytes,
4612 * so make sure we do the block group cleanup afterwards.
4613 */
4614 btrfs_free_block_groups(fs_info);
4615
4616 iput(fs_info->btree_inode);
4617
4618#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4619 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4620 btrfsic_unmount(fs_info->fs_devices);
4621#endif
4622
4623 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4624 btrfs_close_devices(fs_info->fs_devices);
4625}
4626
4627int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4628 int atomic)
4629{
4630 int ret;
4631 struct inode *btree_inode = buf->pages[0]->mapping->host;
4632
4633 ret = extent_buffer_uptodate(buf);
4634 if (!ret)
4635 return ret;
4636
4637 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4638 parent_transid, atomic);
4639 if (ret == -EAGAIN)
4640 return ret;
4641 return !ret;
4642}
4643
4644void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4645{
4646 struct btrfs_fs_info *fs_info = buf->fs_info;
4647 u64 transid = btrfs_header_generation(buf);
4648 int was_dirty;
4649
4650#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4651 /*
4652 * This is a fast path so only do this check if we have sanity tests
4653 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4654 * outside of the sanity tests.
4655 */
4656 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4657 return;
4658#endif
4659 btrfs_assert_tree_write_locked(buf);
4660 if (transid != fs_info->generation)
4661 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4662 buf->start, transid, fs_info->generation);
4663 was_dirty = set_extent_buffer_dirty(buf);
4664 if (!was_dirty)
4665 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4666 buf->len,
4667 fs_info->dirty_metadata_batch);
4668#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4669 /*
4670 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4671 * but item data not updated.
4672 * So here we should only check item pointers, not item data.
4673 */
4674 if (btrfs_header_level(buf) == 0 &&
4675 btrfs_check_leaf_relaxed(buf)) {
4676 btrfs_print_leaf(buf);
4677 ASSERT(0);
4678 }
4679#endif
4680}
4681
4682static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4683 int flush_delayed)
4684{
4685 /*
4686 * looks as though older kernels can get into trouble with
4687 * this code, they end up stuck in balance_dirty_pages forever
4688 */
4689 int ret;
4690
4691 if (current->flags & PF_MEMALLOC)
4692 return;
4693
4694 if (flush_delayed)
4695 btrfs_balance_delayed_items(fs_info);
4696
4697 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4698 BTRFS_DIRTY_METADATA_THRESH,
4699 fs_info->dirty_metadata_batch);
4700 if (ret > 0) {
4701 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4702 }
4703}
4704
4705void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4706{
4707 __btrfs_btree_balance_dirty(fs_info, 1);
4708}
4709
4710void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4711{
4712 __btrfs_btree_balance_dirty(fs_info, 0);
4713}
4714
4715static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4716{
4717 /* cleanup FS via transaction */
4718 btrfs_cleanup_transaction(fs_info);
4719
4720 mutex_lock(&fs_info->cleaner_mutex);
4721 btrfs_run_delayed_iputs(fs_info);
4722 mutex_unlock(&fs_info->cleaner_mutex);
4723
4724 down_write(&fs_info->cleanup_work_sem);
4725 up_write(&fs_info->cleanup_work_sem);
4726}
4727
4728static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4729{
4730 struct btrfs_root *gang[8];
4731 u64 root_objectid = 0;
4732 int ret;
4733
4734 spin_lock(&fs_info->fs_roots_radix_lock);
4735 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4736 (void **)gang, root_objectid,
4737 ARRAY_SIZE(gang))) != 0) {
4738 int i;
4739
4740 for (i = 0; i < ret; i++)
4741 gang[i] = btrfs_grab_root(gang[i]);
4742 spin_unlock(&fs_info->fs_roots_radix_lock);
4743
4744 for (i = 0; i < ret; i++) {
4745 if (!gang[i])
4746 continue;
4747 root_objectid = gang[i]->root_key.objectid;
4748 btrfs_free_log(NULL, gang[i]);
4749 btrfs_put_root(gang[i]);
4750 }
4751 root_objectid++;
4752 spin_lock(&fs_info->fs_roots_radix_lock);
4753 }
4754 spin_unlock(&fs_info->fs_roots_radix_lock);
4755 btrfs_free_log_root_tree(NULL, fs_info);
4756}
4757
4758static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4759{
4760 struct btrfs_ordered_extent *ordered;
4761
4762 spin_lock(&root->ordered_extent_lock);
4763 /*
4764 * This will just short circuit the ordered completion stuff which will
4765 * make sure the ordered extent gets properly cleaned up.
4766 */
4767 list_for_each_entry(ordered, &root->ordered_extents,
4768 root_extent_list)
4769 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4770 spin_unlock(&root->ordered_extent_lock);
4771}
4772
4773static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4774{
4775 struct btrfs_root *root;
4776 struct list_head splice;
4777
4778 INIT_LIST_HEAD(&splice);
4779
4780 spin_lock(&fs_info->ordered_root_lock);
4781 list_splice_init(&fs_info->ordered_roots, &splice);
4782 while (!list_empty(&splice)) {
4783 root = list_first_entry(&splice, struct btrfs_root,
4784 ordered_root);
4785 list_move_tail(&root->ordered_root,
4786 &fs_info->ordered_roots);
4787
4788 spin_unlock(&fs_info->ordered_root_lock);
4789 btrfs_destroy_ordered_extents(root);
4790
4791 cond_resched();
4792 spin_lock(&fs_info->ordered_root_lock);
4793 }
4794 spin_unlock(&fs_info->ordered_root_lock);
4795
4796 /*
4797 * We need this here because if we've been flipped read-only we won't
4798 * get sync() from the umount, so we need to make sure any ordered
4799 * extents that haven't had their dirty pages IO start writeout yet
4800 * actually get run and error out properly.
4801 */
4802 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4803}
4804
4805static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4806 struct btrfs_fs_info *fs_info)
4807{
4808 struct rb_node *node;
4809 struct btrfs_delayed_ref_root *delayed_refs;
4810 struct btrfs_delayed_ref_node *ref;
4811 int ret = 0;
4812
4813 delayed_refs = &trans->delayed_refs;
4814
4815 spin_lock(&delayed_refs->lock);
4816 if (atomic_read(&delayed_refs->num_entries) == 0) {
4817 spin_unlock(&delayed_refs->lock);
4818 btrfs_debug(fs_info, "delayed_refs has NO entry");
4819 return ret;
4820 }
4821
4822 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4823 struct btrfs_delayed_ref_head *head;
4824 struct rb_node *n;
4825 bool pin_bytes = false;
4826
4827 head = rb_entry(node, struct btrfs_delayed_ref_head,
4828 href_node);
4829 if (btrfs_delayed_ref_lock(delayed_refs, head))
4830 continue;
4831
4832 spin_lock(&head->lock);
4833 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4834 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4835 ref_node);
4836 ref->in_tree = 0;
4837 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4838 RB_CLEAR_NODE(&ref->ref_node);
4839 if (!list_empty(&ref->add_list))
4840 list_del(&ref->add_list);
4841 atomic_dec(&delayed_refs->num_entries);
4842 btrfs_put_delayed_ref(ref);
4843 }
4844 if (head->must_insert_reserved)
4845 pin_bytes = true;
4846 btrfs_free_delayed_extent_op(head->extent_op);
4847 btrfs_delete_ref_head(delayed_refs, head);
4848 spin_unlock(&head->lock);
4849 spin_unlock(&delayed_refs->lock);
4850 mutex_unlock(&head->mutex);
4851
4852 if (pin_bytes) {
4853 struct btrfs_block_group *cache;
4854
4855 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4856 BUG_ON(!cache);
4857
4858 spin_lock(&cache->space_info->lock);
4859 spin_lock(&cache->lock);
4860 cache->pinned += head->num_bytes;
4861 btrfs_space_info_update_bytes_pinned(fs_info,
4862 cache->space_info, head->num_bytes);
4863 cache->reserved -= head->num_bytes;
4864 cache->space_info->bytes_reserved -= head->num_bytes;
4865 spin_unlock(&cache->lock);
4866 spin_unlock(&cache->space_info->lock);
4867
4868 btrfs_put_block_group(cache);
4869
4870 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4871 head->bytenr + head->num_bytes - 1);
4872 }
4873 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4874 btrfs_put_delayed_ref_head(head);
4875 cond_resched();
4876 spin_lock(&delayed_refs->lock);
4877 }
4878 btrfs_qgroup_destroy_extent_records(trans);
4879
4880 spin_unlock(&delayed_refs->lock);
4881
4882 return ret;
4883}
4884
4885static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4886{
4887 struct btrfs_inode *btrfs_inode;
4888 struct list_head splice;
4889
4890 INIT_LIST_HEAD(&splice);
4891
4892 spin_lock(&root->delalloc_lock);
4893 list_splice_init(&root->delalloc_inodes, &splice);
4894
4895 while (!list_empty(&splice)) {
4896 struct inode *inode = NULL;
4897 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4898 delalloc_inodes);
4899 __btrfs_del_delalloc_inode(root, btrfs_inode);
4900 spin_unlock(&root->delalloc_lock);
4901
4902 /*
4903 * Make sure we get a live inode and that it'll not disappear
4904 * meanwhile.
4905 */
4906 inode = igrab(&btrfs_inode->vfs_inode);
4907 if (inode) {
4908 invalidate_inode_pages2(inode->i_mapping);
4909 iput(inode);
4910 }
4911 spin_lock(&root->delalloc_lock);
4912 }
4913 spin_unlock(&root->delalloc_lock);
4914}
4915
4916static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4917{
4918 struct btrfs_root *root;
4919 struct list_head splice;
4920
4921 INIT_LIST_HEAD(&splice);
4922
4923 spin_lock(&fs_info->delalloc_root_lock);
4924 list_splice_init(&fs_info->delalloc_roots, &splice);
4925 while (!list_empty(&splice)) {
4926 root = list_first_entry(&splice, struct btrfs_root,
4927 delalloc_root);
4928 root = btrfs_grab_root(root);
4929 BUG_ON(!root);
4930 spin_unlock(&fs_info->delalloc_root_lock);
4931
4932 btrfs_destroy_delalloc_inodes(root);
4933 btrfs_put_root(root);
4934
4935 spin_lock(&fs_info->delalloc_root_lock);
4936 }
4937 spin_unlock(&fs_info->delalloc_root_lock);
4938}
4939
4940static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4941 struct extent_io_tree *dirty_pages,
4942 int mark)
4943{
4944 int ret;
4945 struct extent_buffer *eb;
4946 u64 start = 0;
4947 u64 end;
4948
4949 while (1) {
4950 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4951 mark, NULL);
4952 if (ret)
4953 break;
4954
4955 clear_extent_bits(dirty_pages, start, end, mark);
4956 while (start <= end) {
4957 eb = find_extent_buffer(fs_info, start);
4958 start += fs_info->nodesize;
4959 if (!eb)
4960 continue;
4961 wait_on_extent_buffer_writeback(eb);
4962
4963 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4964 &eb->bflags))
4965 clear_extent_buffer_dirty(eb);
4966 free_extent_buffer_stale(eb);
4967 }
4968 }
4969
4970 return ret;
4971}
4972
4973static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4974 struct extent_io_tree *unpin)
4975{
4976 u64 start;
4977 u64 end;
4978 int ret;
4979
4980 while (1) {
4981 struct extent_state *cached_state = NULL;
4982
4983 /*
4984 * The btrfs_finish_extent_commit() may get the same range as
4985 * ours between find_first_extent_bit and clear_extent_dirty.
4986 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4987 * the same extent range.
4988 */
4989 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4990 ret = find_first_extent_bit(unpin, 0, &start, &end,
4991 EXTENT_DIRTY, &cached_state);
4992 if (ret) {
4993 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4994 break;
4995 }
4996
4997 clear_extent_dirty(unpin, start, end, &cached_state);
4998 free_extent_state(cached_state);
4999 btrfs_error_unpin_extent_range(fs_info, start, end);
5000 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5001 cond_resched();
5002 }
5003
5004 return 0;
5005}
5006
5007static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5008{
5009 struct inode *inode;
5010
5011 inode = cache->io_ctl.inode;
5012 if (inode) {
5013 invalidate_inode_pages2(inode->i_mapping);
5014 BTRFS_I(inode)->generation = 0;
5015 cache->io_ctl.inode = NULL;
5016 iput(inode);
5017 }
5018 ASSERT(cache->io_ctl.pages == NULL);
5019 btrfs_put_block_group(cache);
5020}
5021
5022void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5023 struct btrfs_fs_info *fs_info)
5024{
5025 struct btrfs_block_group *cache;
5026
5027 spin_lock(&cur_trans->dirty_bgs_lock);
5028 while (!list_empty(&cur_trans->dirty_bgs)) {
5029 cache = list_first_entry(&cur_trans->dirty_bgs,
5030 struct btrfs_block_group,
5031 dirty_list);
5032
5033 if (!list_empty(&cache->io_list)) {
5034 spin_unlock(&cur_trans->dirty_bgs_lock);
5035 list_del_init(&cache->io_list);
5036 btrfs_cleanup_bg_io(cache);
5037 spin_lock(&cur_trans->dirty_bgs_lock);
5038 }
5039
5040 list_del_init(&cache->dirty_list);
5041 spin_lock(&cache->lock);
5042 cache->disk_cache_state = BTRFS_DC_ERROR;
5043 spin_unlock(&cache->lock);
5044
5045 spin_unlock(&cur_trans->dirty_bgs_lock);
5046 btrfs_put_block_group(cache);
5047 btrfs_delayed_refs_rsv_release(fs_info, 1);
5048 spin_lock(&cur_trans->dirty_bgs_lock);
5049 }
5050 spin_unlock(&cur_trans->dirty_bgs_lock);
5051
5052 /*
5053 * Refer to the definition of io_bgs member for details why it's safe
5054 * to use it without any locking
5055 */
5056 while (!list_empty(&cur_trans->io_bgs)) {
5057 cache = list_first_entry(&cur_trans->io_bgs,
5058 struct btrfs_block_group,
5059 io_list);
5060
5061 list_del_init(&cache->io_list);
5062 spin_lock(&cache->lock);
5063 cache->disk_cache_state = BTRFS_DC_ERROR;
5064 spin_unlock(&cache->lock);
5065 btrfs_cleanup_bg_io(cache);
5066 }
5067}
5068
5069void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5070 struct btrfs_fs_info *fs_info)
5071{
5072 struct btrfs_device *dev, *tmp;
5073
5074 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5075 ASSERT(list_empty(&cur_trans->dirty_bgs));
5076 ASSERT(list_empty(&cur_trans->io_bgs));
5077
5078 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5079 post_commit_list) {
5080 list_del_init(&dev->post_commit_list);
5081 }
5082
5083 btrfs_destroy_delayed_refs(cur_trans, fs_info);
5084
5085 cur_trans->state = TRANS_STATE_COMMIT_START;
5086 wake_up(&fs_info->transaction_blocked_wait);
5087
5088 cur_trans->state = TRANS_STATE_UNBLOCKED;
5089 wake_up(&fs_info->transaction_wait);
5090
5091 btrfs_destroy_delayed_inodes(fs_info);
5092
5093 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5094 EXTENT_DIRTY);
5095 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5096
5097 btrfs_free_redirty_list(cur_trans);
5098
5099 cur_trans->state =TRANS_STATE_COMPLETED;
5100 wake_up(&cur_trans->commit_wait);
5101}
5102
5103static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5104{
5105 struct btrfs_transaction *t;
5106
5107 mutex_lock(&fs_info->transaction_kthread_mutex);
5108
5109 spin_lock(&fs_info->trans_lock);
5110 while (!list_empty(&fs_info->trans_list)) {
5111 t = list_first_entry(&fs_info->trans_list,
5112 struct btrfs_transaction, list);
5113 if (t->state >= TRANS_STATE_COMMIT_START) {
5114 refcount_inc(&t->use_count);
5115 spin_unlock(&fs_info->trans_lock);
5116 btrfs_wait_for_commit(fs_info, t->transid);
5117 btrfs_put_transaction(t);
5118 spin_lock(&fs_info->trans_lock);
5119 continue;
5120 }
5121 if (t == fs_info->running_transaction) {
5122 t->state = TRANS_STATE_COMMIT_DOING;
5123 spin_unlock(&fs_info->trans_lock);
5124 /*
5125 * We wait for 0 num_writers since we don't hold a trans
5126 * handle open currently for this transaction.
5127 */
5128 wait_event(t->writer_wait,
5129 atomic_read(&t->num_writers) == 0);
5130 } else {
5131 spin_unlock(&fs_info->trans_lock);
5132 }
5133 btrfs_cleanup_one_transaction(t, fs_info);
5134
5135 spin_lock(&fs_info->trans_lock);
5136 if (t == fs_info->running_transaction)
5137 fs_info->running_transaction = NULL;
5138 list_del_init(&t->list);
5139 spin_unlock(&fs_info->trans_lock);
5140
5141 btrfs_put_transaction(t);
5142 trace_btrfs_transaction_commit(fs_info);
5143 spin_lock(&fs_info->trans_lock);
5144 }
5145 spin_unlock(&fs_info->trans_lock);
5146 btrfs_destroy_all_ordered_extents(fs_info);
5147 btrfs_destroy_delayed_inodes(fs_info);
5148 btrfs_assert_delayed_root_empty(fs_info);
5149 btrfs_destroy_all_delalloc_inodes(fs_info);
5150 btrfs_drop_all_logs(fs_info);
5151 mutex_unlock(&fs_info->transaction_kthread_mutex);
5152
5153 return 0;
5154}
5155
5156int btrfs_init_root_free_objectid(struct btrfs_root *root)
5157{
5158 struct btrfs_path *path;
5159 int ret;
5160 struct extent_buffer *l;
5161 struct btrfs_key search_key;
5162 struct btrfs_key found_key;
5163 int slot;
5164
5165 path = btrfs_alloc_path();
5166 if (!path)
5167 return -ENOMEM;
5168
5169 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5170 search_key.type = -1;
5171 search_key.offset = (u64)-1;
5172 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5173 if (ret < 0)
5174 goto error;
5175 BUG_ON(ret == 0); /* Corruption */
5176 if (path->slots[0] > 0) {
5177 slot = path->slots[0] - 1;
5178 l = path->nodes[0];
5179 btrfs_item_key_to_cpu(l, &found_key, slot);
5180 root->free_objectid = max_t(u64, found_key.objectid + 1,
5181 BTRFS_FIRST_FREE_OBJECTID);
5182 } else {
5183 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5184 }
5185 ret = 0;
5186error:
5187 btrfs_free_path(path);
5188 return ret;
5189}
5190
5191int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5192{
5193 int ret;
5194 mutex_lock(&root->objectid_mutex);
5195
5196 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5197 btrfs_warn(root->fs_info,
5198 "the objectid of root %llu reaches its highest value",
5199 root->root_key.objectid);
5200 ret = -ENOSPC;
5201 goto out;
5202 }
5203
5204 *objectid = root->free_objectid++;
5205 ret = 0;
5206out:
5207 mutex_unlock(&root->objectid_mutex);
5208 return ret;
5209}