]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/frame.c
[gdb] Fix segfault in for_each_block, part 1
[thirdparty/binutils-gdb.git] / gdb / frame.c
... / ...
CommitLineData
1/* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "frame.h"
22#include "target.h"
23#include "value.h"
24#include "inferior.h"
25#include "regcache.h"
26#include "user-regs.h"
27#include "gdbsupport/gdb_obstack.h"
28#include "dummy-frame.h"
29#include "sentinel-frame.h"
30#include "gdbcore.h"
31#include "annotate.h"
32#include "language.h"
33#include "frame-unwind.h"
34#include "frame-base.h"
35#include "command.h"
36#include "gdbcmd.h"
37#include "observable.h"
38#include "objfiles.h"
39#include "gdbthread.h"
40#include "block.h"
41#include "inline-frame.h"
42#include "tracepoint.h"
43#include "hashtab.h"
44#include "valprint.h"
45#include "cli/cli-option.h"
46#include "dwarf2/loc.h"
47
48/* The sentinel frame terminates the innermost end of the frame chain.
49 If unwound, it returns the information needed to construct an
50 innermost frame.
51
52 The current frame, which is the innermost frame, can be found at
53 sentinel_frame->prev.
54
55 This is an optimization to be able to find the sentinel frame quickly,
56 it could otherwise be found in the frame cache. */
57
58static frame_info *sentinel_frame;
59
60/* Number of calls to reinit_frame_cache. */
61static unsigned int frame_cache_generation = 0;
62
63/* See frame.h. */
64
65unsigned int
66get_frame_cache_generation ()
67{
68 return frame_cache_generation;
69}
70
71/* The values behind the global "set backtrace ..." settings. */
72set_backtrace_options user_set_backtrace_options;
73
74static frame_info_ptr get_prev_frame_raw (frame_info_ptr this_frame);
75static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
76static frame_info_ptr create_new_frame (frame_id id);
77
78/* Status of some values cached in the frame_info object. */
79
80enum cached_copy_status
81{
82 /* Value is unknown. */
83 CC_UNKNOWN,
84
85 /* We have a value. */
86 CC_VALUE,
87
88 /* Value was not saved. */
89 CC_NOT_SAVED,
90
91 /* Value is unavailable. */
92 CC_UNAVAILABLE
93};
94
95enum class frame_id_status
96{
97 /* Frame id is not computed. */
98 NOT_COMPUTED = 0,
99
100 /* Frame id is being computed (compute_frame_id is active). */
101 COMPUTING,
102
103 /* Frame id has been computed. */
104 COMPUTED,
105};
106
107/* We keep a cache of stack frames, each of which is a "struct
108 frame_info". The innermost one gets allocated (in
109 wait_for_inferior) each time the inferior stops; sentinel_frame
110 points to it. Additional frames get allocated (in get_prev_frame)
111 as needed, and are chained through the next and prev fields. Any
112 time that the frame cache becomes invalid (most notably when we
113 execute something, but also if we change how we interpret the
114 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
115 which reads new symbols)), we should call reinit_frame_cache. */
116
117struct frame_info
118{
119 /* Return a string representation of this frame. */
120 std::string to_string () const;
121
122 /* Level of this frame. The inner-most (youngest) frame is at level
123 0. As you move towards the outer-most (oldest) frame, the level
124 increases. This is a cached value. It could just as easily be
125 computed by counting back from the selected frame to the inner
126 most frame. */
127 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
128 reserved to indicate a bogus frame - one that has been created
129 just to keep GDB happy (GDB always needs a frame). For the
130 moment leave this as speculation. */
131 int level;
132
133 /* The frame's program space. */
134 struct program_space *pspace;
135
136 /* The frame's address space. */
137 const address_space *aspace;
138
139 /* The frame's low-level unwinder and corresponding cache. The
140 low-level unwinder is responsible for unwinding register values
141 for the previous frame. The low-level unwind methods are
142 selected based on the presence, or otherwise, of register unwind
143 information such as CFI. */
144 void *prologue_cache;
145 const struct frame_unwind *unwind;
146
147 /* Cached copy of the previous frame's architecture. */
148 struct
149 {
150 bool p;
151 struct gdbarch *arch;
152 } prev_arch;
153
154 /* Cached copy of the previous frame's resume address. */
155 struct {
156 cached_copy_status status;
157 /* Did VALUE require unmasking when being read. */
158 bool masked;
159 CORE_ADDR value;
160 } prev_pc;
161
162 /* Cached copy of the previous frame's function address. */
163 struct
164 {
165 CORE_ADDR addr;
166 cached_copy_status status;
167 } prev_func;
168
169 /* This frame's ID. */
170 struct
171 {
172 frame_id_status p;
173 struct frame_id value;
174 } this_id;
175
176 /* The frame's high-level base methods, and corresponding cache.
177 The high level base methods are selected based on the frame's
178 debug info. */
179 const struct frame_base *base;
180 void *base_cache;
181
182 /* Pointers to the next (down, inner, younger) and previous (up,
183 outer, older) frame_info's in the frame cache. */
184 struct frame_info *next; /* down, inner, younger */
185 bool prev_p;
186 struct frame_info *prev; /* up, outer, older */
187
188 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
189 could. Only valid when PREV_P is set. */
190 enum unwind_stop_reason stop_reason;
191
192 /* A frame specific string describing the STOP_REASON in more detail.
193 Only valid when PREV_P is set, but even then may still be NULL. */
194 const char *stop_string;
195};
196
197/* See frame.h. */
198
199void
200set_frame_previous_pc_masked (frame_info_ptr frame)
201{
202 frame->prev_pc.masked = true;
203}
204
205/* See frame.h. */
206
207bool
208get_frame_pc_masked (frame_info_ptr frame)
209{
210 gdb_assert (frame->next != nullptr);
211 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
212
213 return frame->next->prev_pc.masked;
214}
215
216/* A frame stash used to speed up frame lookups. Create a hash table
217 to stash frames previously accessed from the frame cache for
218 quicker subsequent retrieval. The hash table is emptied whenever
219 the frame cache is invalidated. */
220
221static htab_t frame_stash;
222
223/* Internal function to calculate a hash from the frame_id addresses,
224 using as many valid addresses as possible. Frames below level 0
225 are not stored in the hash table. */
226
227static hashval_t
228frame_addr_hash (const void *ap)
229{
230 const frame_info *frame = (const frame_info *) ap;
231 const struct frame_id f_id = frame->this_id.value;
232 hashval_t hash = 0;
233
234 gdb_assert (f_id.stack_status != FID_STACK_INVALID
235 || f_id.code_addr_p
236 || f_id.special_addr_p);
237
238 if (f_id.stack_status == FID_STACK_VALID)
239 hash = iterative_hash (&f_id.stack_addr,
240 sizeof (f_id.stack_addr), hash);
241 if (f_id.code_addr_p)
242 hash = iterative_hash (&f_id.code_addr,
243 sizeof (f_id.code_addr), hash);
244 if (f_id.special_addr_p)
245 hash = iterative_hash (&f_id.special_addr,
246 sizeof (f_id.special_addr), hash);
247
248 char user_created_p = f_id.user_created_p;
249 hash = iterative_hash (&user_created_p, sizeof (user_created_p), hash);
250
251 return hash;
252}
253
254/* Internal equality function for the hash table. This function
255 defers equality operations to frame_id::operator==. */
256
257static int
258frame_addr_hash_eq (const void *a, const void *b)
259{
260 const frame_info *f_entry = (const frame_info *) a;
261 const frame_info *f_element = (const frame_info *) b;
262
263 return f_entry->this_id.value == f_element->this_id.value;
264}
265
266/* Deletion function for the frame cache hash table. */
267
268static void
269frame_info_del (frame_info *frame)
270{
271 if (frame->prologue_cache != nullptr
272 && frame->unwind->dealloc_cache != nullptr)
273 frame->unwind->dealloc_cache (frame, frame->prologue_cache);
274
275 if (frame->base_cache != nullptr
276 && frame->base->unwind->dealloc_cache != nullptr)
277 frame->base->unwind->dealloc_cache (frame, frame->base_cache);
278}
279
280/* Internal function to create the frame_stash hash table. 100 seems
281 to be a good compromise to start the hash table at. */
282
283static void
284frame_stash_create (void)
285{
286 frame_stash = htab_create
287 (100, frame_addr_hash, frame_addr_hash_eq,
288 [] (void *p)
289 {
290 auto frame = static_cast<frame_info *> (p);
291 frame_info_del (frame);
292 });
293}
294
295/* Internal function to add a frame to the frame_stash hash table.
296 Returns false if a frame with the same ID was already stashed, true
297 otherwise. */
298
299static bool
300frame_stash_add (frame_info *frame)
301{
302 /* Valid frame levels are -1 (sentinel frames) and above. */
303 gdb_assert (frame->level >= -1);
304
305 frame_info **slot = (frame_info **) htab_find_slot (frame_stash,
306 frame, INSERT);
307
308 /* If we already have a frame in the stack with the same id, we
309 either have a stack cycle (corrupted stack?), or some bug
310 elsewhere in GDB. In any case, ignore the duplicate and return
311 an indication to the caller. */
312 if (*slot != nullptr)
313 return false;
314
315 *slot = frame;
316 return true;
317}
318
319/* Internal function to search the frame stash for an entry with the
320 given frame ID. If found, return that frame. Otherwise return
321 NULL. */
322
323static frame_info_ptr
324frame_stash_find (struct frame_id id)
325{
326 struct frame_info dummy;
327 frame_info *frame;
328
329 dummy.this_id.value = id;
330 frame = (frame_info *) htab_find (frame_stash, &dummy);
331 return frame_info_ptr (frame);
332}
333
334/* Internal function to invalidate the frame stash by removing all
335 entries in it. This only occurs when the frame cache is
336 invalidated. */
337
338static void
339frame_stash_invalidate (void)
340{
341 htab_empty (frame_stash);
342}
343
344/* See frame.h */
345scoped_restore_selected_frame::scoped_restore_selected_frame ()
346{
347 m_lang = current_language->la_language;
348 save_selected_frame (&m_fid, &m_level);
349}
350
351/* See frame.h */
352scoped_restore_selected_frame::~scoped_restore_selected_frame ()
353{
354 restore_selected_frame (m_fid, m_level);
355 set_language (m_lang);
356}
357
358/* Flag to control debugging. */
359
360bool frame_debug;
361
362static void
363show_frame_debug (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c, const char *value)
365{
366 gdb_printf (file, _("Frame debugging is %s.\n"), value);
367}
368
369/* Implementation of "show backtrace past-main". */
370
371static void
372show_backtrace_past_main (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 gdb_printf (file,
376 _("Whether backtraces should "
377 "continue past \"main\" is %s.\n"),
378 value);
379}
380
381/* Implementation of "show backtrace past-entry". */
382
383static void
384show_backtrace_past_entry (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 gdb_printf (file, _("Whether backtraces should continue past the "
388 "entry point of a program is %s.\n"),
389 value);
390}
391
392/* Implementation of "show backtrace limit". */
393
394static void
395show_backtrace_limit (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
398 gdb_printf (file,
399 _("An upper bound on the number "
400 "of backtrace levels is %s.\n"),
401 value);
402}
403
404/* See frame.h. */
405
406std::string
407frame_id::to_string () const
408{
409 const struct frame_id &id = *this;
410
411 std::string res = "{";
412
413 if (id.stack_status == FID_STACK_INVALID)
414 res += "!stack";
415 else if (id.stack_status == FID_STACK_UNAVAILABLE)
416 res += "stack=<unavailable>";
417 else if (id.stack_status == FID_STACK_SENTINEL)
418 res += "stack=<sentinel>";
419 else if (id.stack_status == FID_STACK_OUTER)
420 res += "stack=<outer>";
421 else
422 res += std::string ("stack=") + hex_string (id.stack_addr);
423
424 /* Helper function to format 'N=A' if P is true, otherwise '!N'. */
425 auto field_to_string = [] (const char *n, bool p, CORE_ADDR a) -> std::string
426 {
427 if (p)
428 return std::string (n) + "=" + core_addr_to_string (a);
429 else
430 return std::string ("!") + std::string (n);
431 };
432
433 res += (std::string (",")
434 + field_to_string ("code", id.code_addr_p, id.code_addr)
435 + std::string (",")
436 + field_to_string ("special", id.special_addr_p, id.special_addr));
437
438 if (id.artificial_depth)
439 res += ",artificial=" + std::to_string (id.artificial_depth);
440 res += "}";
441 return res;
442}
443
444/* See frame.h. */
445
446const char *
447frame_type_str (frame_type type)
448{
449 switch (type)
450 {
451 case NORMAL_FRAME:
452 return "NORMAL_FRAME";
453
454 case DUMMY_FRAME:
455 return "DUMMY_FRAME";
456
457 case INLINE_FRAME:
458 return "INLINE_FRAME";
459
460 case TAILCALL_FRAME:
461 return "TAILCALL_FRAME";
462
463 case SIGTRAMP_FRAME:
464 return "SIGTRAMP_FRAME";
465
466 case ARCH_FRAME:
467 return "ARCH_FRAME";
468
469 case SENTINEL_FRAME:
470 return "SENTINEL_FRAME";
471
472 default:
473 return "<unknown type>";
474 };
475}
476
477 /* See struct frame_info. */
478
479std::string
480frame_info::to_string () const
481{
482 const frame_info *fi = this;
483
484 std::string res;
485
486 res += string_printf ("{level=%d,", fi->level);
487
488 if (fi->unwind != NULL)
489 res += string_printf ("type=%s,", frame_type_str (fi->unwind->type));
490 else
491 res += "type=<unknown>,";
492
493 if (fi->unwind != NULL)
494 res += string_printf ("unwinder=\"%s\",", fi->unwind->name);
495 else
496 res += "unwinder=<unknown>,";
497
498 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
499 res += "pc=<unknown>,";
500 else if (fi->next->prev_pc.status == CC_VALUE)
501 res += string_printf ("pc=%s%s,", hex_string (fi->next->prev_pc.value),
502 fi->next->prev_pc.masked ? "[PAC]" : "");
503 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
504 res += "pc=<not saved>,";
505 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
506 res += "pc=<unavailable>,";
507
508 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
509 res += "id=<not computed>,";
510 else if (fi->this_id.p == frame_id_status::COMPUTING)
511 res += "id=<computing>,";
512 else
513 res += string_printf ("id=%s,", fi->this_id.value.to_string ().c_str ());
514
515 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
516 res += string_printf ("func=%s", hex_string (fi->next->prev_func.addr));
517 else
518 res += "func=<unknown>";
519
520 res += "}";
521
522 return res;
523}
524
525/* Given FRAME, return the enclosing frame as found in real frames read-in from
526 inferior memory. Skip any previous frames which were made up by GDB.
527 Return FRAME if FRAME is a non-artificial frame.
528 Return NULL if FRAME is the start of an artificial-only chain. */
529
530static frame_info_ptr
531skip_artificial_frames (frame_info_ptr frame)
532{
533 /* Note we use get_prev_frame_always, and not get_prev_frame. The
534 latter will truncate the frame chain, leading to this function
535 unintentionally returning a null_frame_id (e.g., when the user
536 sets a backtrace limit).
537
538 Note that for record targets we may get a frame chain that consists
539 of artificial frames only. */
540 while (get_frame_type (frame) == INLINE_FRAME
541 || get_frame_type (frame) == TAILCALL_FRAME)
542 {
543 frame = get_prev_frame_always (frame);
544 if (frame == NULL)
545 break;
546 }
547
548 return frame;
549}
550
551frame_info_ptr
552skip_unwritable_frames (frame_info_ptr frame)
553{
554 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
555 {
556 frame = get_prev_frame (frame);
557 if (frame == NULL)
558 break;
559 }
560
561 return frame;
562}
563
564/* See frame.h. */
565
566frame_info_ptr
567skip_tailcall_frames (frame_info_ptr frame)
568{
569 while (get_frame_type (frame) == TAILCALL_FRAME)
570 {
571 /* Note that for record targets we may get a frame chain that consists of
572 tailcall frames only. */
573 frame = get_prev_frame (frame);
574 if (frame == NULL)
575 break;
576 }
577
578 return frame;
579}
580
581/* Compute the frame's uniq ID that can be used to, later, re-find the
582 frame. */
583
584static void
585compute_frame_id (frame_info_ptr fi)
586{
587 FRAME_SCOPED_DEBUG_ENTER_EXIT;
588
589 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
590
591 unsigned int entry_generation = get_frame_cache_generation ();
592
593 try
594 {
595 /* Mark this frame's id as "being computed. */
596 fi->this_id.p = frame_id_status::COMPUTING;
597
598 frame_debug_printf ("fi=%d", fi->level);
599
600 /* Find the unwinder. */
601 if (fi->unwind == NULL)
602 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
603
604 /* Find THIS frame's ID. */
605 /* Default to outermost if no ID is found. */
606 fi->this_id.value = outer_frame_id;
607 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
608 gdb_assert (frame_id_p (fi->this_id.value));
609
610 /* Mark this frame's id as "computed". */
611 fi->this_id.p = frame_id_status::COMPUTED;
612
613 frame_debug_printf (" -> %s", fi->this_id.value.to_string ().c_str ());
614 }
615 catch (const gdb_exception &ex)
616 {
617 /* On error, revert the frame id status to not computed. If the frame
618 cache generation changed, the frame object doesn't exist anymore, so
619 don't touch it. */
620 if (get_frame_cache_generation () == entry_generation)
621 fi->this_id.p = frame_id_status::NOT_COMPUTED;
622
623 throw;
624 }
625}
626
627/* Return a frame uniq ID that can be used to, later, re-find the
628 frame. */
629
630struct frame_id
631get_frame_id (frame_info_ptr fi)
632{
633 if (fi == NULL)
634 return null_frame_id;
635
636 /* It's always invalid to try to get a frame's id while it is being
637 computed. */
638 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
639
640 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
641 {
642 /* If we haven't computed the frame id yet, then it must be that
643 this is the current frame. Compute it now, and stash the
644 result. The IDs of other frames are computed as soon as
645 they're created, in order to detect cycles. See
646 get_prev_frame_if_no_cycle. */
647 gdb_assert (fi->level == 0);
648
649 /* Compute. */
650 compute_frame_id (fi);
651
652 /* Since this is the first frame in the chain, this should
653 always succeed. */
654 bool stashed = frame_stash_add (fi.get ());
655 gdb_assert (stashed);
656 }
657
658 return fi->this_id.value;
659}
660
661struct frame_id
662get_stack_frame_id (frame_info_ptr next_frame)
663{
664 return get_frame_id (skip_artificial_frames (next_frame));
665}
666
667struct frame_id
668frame_unwind_caller_id (frame_info_ptr next_frame)
669{
670 frame_info_ptr this_frame;
671
672 /* Use get_prev_frame_always, and not get_prev_frame. The latter
673 will truncate the frame chain, leading to this function
674 unintentionally returning a null_frame_id (e.g., when a caller
675 requests the frame ID of "main()"s caller. */
676
677 next_frame = skip_artificial_frames (next_frame);
678 if (next_frame == NULL)
679 return null_frame_id;
680
681 this_frame = get_prev_frame_always (next_frame);
682 if (this_frame)
683 return get_frame_id (skip_artificial_frames (this_frame));
684 else
685 return null_frame_id;
686}
687
688const struct frame_id null_frame_id = { 0 }; /* All zeros. */
689const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
690
691struct frame_id
692frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
693 CORE_ADDR special_addr)
694{
695 struct frame_id id = null_frame_id;
696
697 id.stack_addr = stack_addr;
698 id.stack_status = FID_STACK_VALID;
699 id.code_addr = code_addr;
700 id.code_addr_p = true;
701 id.special_addr = special_addr;
702 id.special_addr_p = true;
703 return id;
704}
705
706/* See frame.h. */
707
708struct frame_id
709frame_id_build_unavailable_stack (CORE_ADDR code_addr)
710{
711 struct frame_id id = null_frame_id;
712
713 id.stack_status = FID_STACK_UNAVAILABLE;
714 id.code_addr = code_addr;
715 id.code_addr_p = true;
716 return id;
717}
718
719/* See frame.h. */
720
721struct frame_id
722frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
723 CORE_ADDR special_addr)
724{
725 struct frame_id id = null_frame_id;
726
727 id.stack_status = FID_STACK_UNAVAILABLE;
728 id.code_addr = code_addr;
729 id.code_addr_p = true;
730 id.special_addr = special_addr;
731 id.special_addr_p = true;
732 return id;
733}
734
735struct frame_id
736frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
737{
738 struct frame_id id = null_frame_id;
739
740 id.stack_addr = stack_addr;
741 id.stack_status = FID_STACK_VALID;
742 id.code_addr = code_addr;
743 id.code_addr_p = true;
744 return id;
745}
746
747struct frame_id
748frame_id_build_wild (CORE_ADDR stack_addr)
749{
750 struct frame_id id = null_frame_id;
751
752 id.stack_addr = stack_addr;
753 id.stack_status = FID_STACK_VALID;
754 return id;
755}
756
757/* See frame.h. */
758
759frame_id
760frame_id_build_sentinel (CORE_ADDR stack_addr, CORE_ADDR code_addr)
761{
762 frame_id id = null_frame_id;
763
764 id.stack_status = FID_STACK_SENTINEL;
765 id.special_addr_p = 1;
766
767 if (stack_addr != 0 || code_addr != 0)
768 {
769 /* The purpose of saving these in the sentinel frame ID is to be able to
770 differentiate the IDs of several sentinel frames that could exist
771 simultaneously in the frame cache. */
772 id.stack_addr = stack_addr;
773 id.code_addr = code_addr;
774 id.code_addr_p = 1;
775 }
776
777 return id;
778}
779
780bool
781frame_id_p (frame_id l)
782{
783 /* The frame is valid iff it has a valid stack address. */
784 bool p = l.stack_status != FID_STACK_INVALID;
785
786 frame_debug_printf ("l=%s -> %d", l.to_string ().c_str (), p);
787
788 return p;
789}
790
791bool
792frame_id_artificial_p (frame_id l)
793{
794 if (!frame_id_p (l))
795 return false;
796
797 return l.artificial_depth != 0;
798}
799
800bool
801frame_id::operator== (const frame_id &r) const
802{
803 bool eq;
804
805 if (stack_status == FID_STACK_INVALID
806 || r.stack_status == FID_STACK_INVALID)
807 /* Like a NaN, if either ID is invalid, the result is false.
808 Note that a frame ID is invalid iff it is the null frame ID. */
809 eq = false;
810 else if (stack_status != r.stack_status || stack_addr != r.stack_addr)
811 /* If .stack addresses are different, the frames are different. */
812 eq = false;
813 else if (code_addr_p && r.code_addr_p && code_addr != r.code_addr)
814 /* An invalid code addr is a wild card. If .code addresses are
815 different, the frames are different. */
816 eq = false;
817 else if (special_addr_p && r.special_addr_p
818 && special_addr != r.special_addr)
819 /* An invalid special addr is a wild card (or unused). Otherwise
820 if special addresses are different, the frames are different. */
821 eq = false;
822 else if (artificial_depth != r.artificial_depth)
823 /* If artificial depths are different, the frames must be different. */
824 eq = false;
825 else if (user_created_p != r.user_created_p)
826 eq = false;
827 else
828 /* Frames are equal. */
829 eq = true;
830
831 frame_debug_printf ("l=%s, r=%s -> %d",
832 to_string ().c_str (), r.to_string ().c_str (), eq);
833
834 return eq;
835}
836
837/* Safety net to check whether frame ID L should be inner to
838 frame ID R, according to their stack addresses.
839
840 This method cannot be used to compare arbitrary frames, as the
841 ranges of valid stack addresses may be discontiguous (e.g. due
842 to sigaltstack).
843
844 However, it can be used as safety net to discover invalid frame
845 IDs in certain circumstances. Assuming that NEXT is the immediate
846 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
847
848 * The stack address of NEXT must be inner-than-or-equal to the stack
849 address of THIS.
850
851 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
852 error has occurred.
853
854 * If NEXT and THIS have different stack addresses, no other frame
855 in the frame chain may have a stack address in between.
856
857 Therefore, if frame_id_inner (TEST, THIS) holds, but
858 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
859 to a valid frame in the frame chain.
860
861 The sanity checks above cannot be performed when a SIGTRAMP frame
862 is involved, because signal handlers might be executed on a different
863 stack than the stack used by the routine that caused the signal
864 to be raised. This can happen for instance when a thread exceeds
865 its maximum stack size. In this case, certain compilers implement
866 a stack overflow strategy that cause the handler to be run on a
867 different stack. */
868
869static bool
870frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
871{
872 bool inner;
873
874 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
875 /* Like NaN, any operation involving an invalid ID always fails.
876 Likewise if either ID has an unavailable stack address. */
877 inner = false;
878 else if (l.artificial_depth > r.artificial_depth
879 && l.stack_addr == r.stack_addr
880 && l.code_addr_p == r.code_addr_p
881 && l.special_addr_p == r.special_addr_p
882 && l.special_addr == r.special_addr)
883 {
884 /* Same function, different inlined functions. */
885 const struct block *lb, *rb;
886
887 gdb_assert (l.code_addr_p && r.code_addr_p);
888
889 lb = block_for_pc (l.code_addr);
890 rb = block_for_pc (r.code_addr);
891
892 if (lb == NULL || rb == NULL)
893 /* Something's gone wrong. */
894 inner = false;
895 else
896 /* This will return true if LB and RB are the same block, or
897 if the block with the smaller depth lexically encloses the
898 block with the greater depth. */
899 inner = rb->contains (lb);
900 }
901 else
902 /* Only return non-zero when strictly inner than. Note that, per
903 comment in "frame.h", there is some fuzz here. Frameless
904 functions are not strictly inner than (same .stack but
905 different .code and/or .special address). */
906 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
907
908 frame_debug_printf ("is l=%s inner than r=%s? %d",
909 l.to_string ().c_str (), r.to_string ().c_str (),
910 inner);
911
912 return inner;
913}
914
915frame_info_ptr
916frame_find_by_id (struct frame_id id)
917{
918 frame_info_ptr frame, prev_frame;
919
920 /* ZERO denotes the null frame, let the caller decide what to do
921 about it. Should it instead return get_current_frame()? */
922 if (!frame_id_p (id))
923 return NULL;
924
925 /* Check for the sentinel frame. */
926 if (id == frame_id_build_sentinel (0, 0))
927 return frame_info_ptr (sentinel_frame);
928
929 /* Try using the frame stash first. Finding it there removes the need
930 to perform the search by looping over all frames, which can be very
931 CPU-intensive if the number of frames is very high (the loop is O(n)
932 and get_prev_frame performs a series of checks that are relatively
933 expensive). This optimization is particularly useful when this function
934 is called from another function (such as value_fetch_lazy, case
935 val->lval () == lval_register) which already loops over all frames,
936 making the overall behavior O(n^2). */
937 frame = frame_stash_find (id);
938 if (frame)
939 return frame;
940
941 for (frame = get_current_frame (); ; frame = prev_frame)
942 {
943 struct frame_id self = get_frame_id (frame);
944
945 if (id == self)
946 /* An exact match. */
947 return frame;
948
949 prev_frame = get_prev_frame (frame);
950 if (!prev_frame)
951 return NULL;
952
953 /* As a safety net to avoid unnecessary backtracing while trying
954 to find an invalid ID, we check for a common situation where
955 we can detect from comparing stack addresses that no other
956 frame in the current frame chain can have this ID. See the
957 comment at frame_id_inner for details. */
958 if (get_frame_type (frame) == NORMAL_FRAME
959 && !frame_id_inner (get_frame_arch (frame), id, self)
960 && frame_id_inner (get_frame_arch (prev_frame), id,
961 get_frame_id (prev_frame)))
962 return NULL;
963 }
964 return NULL;
965}
966
967static CORE_ADDR
968frame_unwind_pc (frame_info_ptr this_frame)
969{
970 if (this_frame->prev_pc.status == CC_UNKNOWN)
971 {
972 struct gdbarch *prev_gdbarch;
973 CORE_ADDR pc = 0;
974 bool pc_p = false;
975
976 /* The right way. The `pure' way. The one true way. This
977 method depends solely on the register-unwind code to
978 determine the value of registers in THIS frame, and hence
979 the value of this frame's PC (resume address). A typical
980 implementation is no more than:
981
982 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
983 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
984
985 Note: this method is very heavily dependent on a correct
986 register-unwind implementation, it pays to fix that
987 method first; this method is frame type agnostic, since
988 it only deals with register values, it works with any
989 frame. This is all in stark contrast to the old
990 FRAME_SAVED_PC which would try to directly handle all the
991 different ways that a PC could be unwound. */
992 prev_gdbarch = frame_unwind_arch (this_frame);
993
994 try
995 {
996 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
997 pc_p = true;
998 }
999 catch (const gdb_exception_error &ex)
1000 {
1001 if (ex.error == NOT_AVAILABLE_ERROR)
1002 {
1003 this_frame->prev_pc.status = CC_UNAVAILABLE;
1004
1005 frame_debug_printf ("this_frame=%d -> <unavailable>",
1006 this_frame->level);
1007 }
1008 else if (ex.error == OPTIMIZED_OUT_ERROR)
1009 {
1010 this_frame->prev_pc.status = CC_NOT_SAVED;
1011
1012 frame_debug_printf ("this_frame=%d -> <not saved>",
1013 this_frame->level);
1014 }
1015 else
1016 throw;
1017 }
1018
1019 if (pc_p)
1020 {
1021 this_frame->prev_pc.value = pc;
1022 this_frame->prev_pc.status = CC_VALUE;
1023
1024 frame_debug_printf ("this_frame=%d -> %s",
1025 this_frame->level,
1026 hex_string (this_frame->prev_pc.value));
1027 }
1028 }
1029
1030 if (this_frame->prev_pc.status == CC_VALUE)
1031 return this_frame->prev_pc.value;
1032 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1033 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1034 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1035 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1036 else
1037 internal_error ("unexpected prev_pc status: %d",
1038 (int) this_frame->prev_pc.status);
1039}
1040
1041CORE_ADDR
1042frame_unwind_caller_pc (frame_info_ptr this_frame)
1043{
1044 this_frame = skip_artificial_frames (this_frame);
1045
1046 /* We must have a non-artificial frame. The caller is supposed to check
1047 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1048 in this case. */
1049 gdb_assert (this_frame != NULL);
1050
1051 return frame_unwind_pc (this_frame);
1052}
1053
1054bool
1055get_frame_func_if_available (frame_info_ptr this_frame, CORE_ADDR *pc)
1056{
1057 frame_info *next_frame = this_frame->next;
1058
1059 if (next_frame->prev_func.status == CC_UNKNOWN)
1060 {
1061 CORE_ADDR addr_in_block;
1062
1063 /* Make certain that this, and not the adjacent, function is
1064 found. */
1065 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1066 {
1067 next_frame->prev_func.status = CC_UNAVAILABLE;
1068
1069 frame_debug_printf ("this_frame=%d -> unavailable",
1070 this_frame->level);
1071 }
1072 else
1073 {
1074 next_frame->prev_func.status = CC_VALUE;
1075 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1076
1077 frame_debug_printf ("this_frame=%d -> %s",
1078 this_frame->level,
1079 hex_string (next_frame->prev_func.addr));
1080 }
1081 }
1082
1083 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1084 {
1085 *pc = -1;
1086 return false;
1087 }
1088 else
1089 {
1090 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1091
1092 *pc = next_frame->prev_func.addr;
1093 return true;
1094 }
1095}
1096
1097CORE_ADDR
1098get_frame_func (frame_info_ptr this_frame)
1099{
1100 CORE_ADDR pc;
1101
1102 if (!get_frame_func_if_available (this_frame, &pc))
1103 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1104
1105 return pc;
1106}
1107
1108std::unique_ptr<readonly_detached_regcache>
1109frame_save_as_regcache (frame_info_ptr this_frame)
1110{
1111 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1112 {
1113 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1114 return REG_UNAVAILABLE;
1115 else
1116 return REG_VALID;
1117 };
1118
1119 std::unique_ptr<readonly_detached_regcache> regcache
1120 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1121
1122 return regcache;
1123}
1124
1125void
1126frame_pop (frame_info_ptr this_frame)
1127{
1128 frame_info_ptr prev_frame;
1129
1130 if (get_frame_type (this_frame) == DUMMY_FRAME)
1131 {
1132 /* Popping a dummy frame involves restoring more than just registers.
1133 dummy_frame_pop does all the work. */
1134 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1135 return;
1136 }
1137
1138 /* Ensure that we have a frame to pop to. */
1139 prev_frame = get_prev_frame_always (this_frame);
1140
1141 if (!prev_frame)
1142 error (_("Cannot pop the initial frame."));
1143
1144 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1145 entering THISFRAME. */
1146 prev_frame = skip_tailcall_frames (prev_frame);
1147
1148 if (prev_frame == NULL)
1149 error (_("Cannot find the caller frame."));
1150
1151 /* Make a copy of all the register values unwound from this frame.
1152 Save them in a scratch buffer so that there isn't a race between
1153 trying to extract the old values from the current regcache while
1154 at the same time writing new values into that same cache. */
1155 std::unique_ptr<readonly_detached_regcache> scratch
1156 = frame_save_as_regcache (prev_frame);
1157
1158 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1159 target's register cache that it is about to be hit with a burst
1160 register transfer and that the sequence of register writes should
1161 be batched. The pair target_prepare_to_store() and
1162 target_store_registers() kind of suggest this functionality.
1163 Unfortunately, they don't implement it. Their lack of a formal
1164 definition can lead to targets writing back bogus values
1165 (arguably a bug in the target code mind). */
1166 /* Now copy those saved registers into the current regcache. */
1167 get_thread_regcache (inferior_thread ())->restore (scratch.get ());
1168
1169 /* We've made right mess of GDB's local state, just discard
1170 everything. */
1171 reinit_frame_cache ();
1172}
1173
1174void
1175frame_register_unwind (frame_info_ptr next_frame, int regnum,
1176 int *optimizedp, int *unavailablep,
1177 enum lval_type *lvalp, CORE_ADDR *addrp,
1178 int *realnump, gdb_byte *bufferp)
1179{
1180 struct value *value;
1181
1182 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1183 that the value proper does not need to be fetched. */
1184 gdb_assert (optimizedp != NULL);
1185 gdb_assert (lvalp != NULL);
1186 gdb_assert (addrp != NULL);
1187 gdb_assert (realnump != NULL);
1188 /* gdb_assert (bufferp != NULL); */
1189
1190 value = frame_unwind_register_value (next_frame, regnum);
1191
1192 gdb_assert (value != NULL);
1193
1194 *optimizedp = value->optimized_out ();
1195 *unavailablep = !value->entirely_available ();
1196 *lvalp = value->lval ();
1197 *addrp = value->address ();
1198 if (*lvalp == lval_register)
1199 *realnump = VALUE_REGNUM (value);
1200 else
1201 *realnump = -1;
1202
1203 if (bufferp)
1204 {
1205 if (!*optimizedp && !*unavailablep)
1206 memcpy (bufferp, value->contents_all ().data (),
1207 value->type ()->length ());
1208 else
1209 memset (bufferp, 0, value->type ()->length ());
1210 }
1211
1212 /* Dispose of the new value. This prevents watchpoints from
1213 trying to watch the saved frame pointer. */
1214 release_value (value);
1215}
1216
1217/* Get the value of the register that belongs to this FRAME. This
1218 function is a wrapper to the call sequence ``frame_register_unwind
1219 (get_next_frame (FRAME))''. As per frame_register_unwind(), if
1220 VALUEP is NULL, the registers value is not fetched/computed. */
1221
1222static void
1223frame_register (frame_info_ptr frame, int regnum,
1224 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1225 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1226{
1227 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1228 that the value proper does not need to be fetched. */
1229 gdb_assert (optimizedp != NULL);
1230 gdb_assert (lvalp != NULL);
1231 gdb_assert (addrp != NULL);
1232 gdb_assert (realnump != NULL);
1233 /* gdb_assert (bufferp != NULL); */
1234
1235 /* Obtain the register value by unwinding the register from the next
1236 (more inner frame). */
1237 gdb_assert (frame != NULL && frame->next != NULL);
1238 frame_register_unwind (frame_info_ptr (frame->next), regnum, optimizedp,
1239 unavailablep, lvalp, addrp, realnump, bufferp);
1240}
1241
1242void
1243frame_unwind_register (frame_info_ptr next_frame, int regnum, gdb_byte *buf)
1244{
1245 int optimized;
1246 int unavailable;
1247 CORE_ADDR addr;
1248 int realnum;
1249 enum lval_type lval;
1250
1251 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1252 &lval, &addr, &realnum, buf);
1253
1254 if (optimized)
1255 throw_error (OPTIMIZED_OUT_ERROR,
1256 _("Register %d was not saved"), regnum);
1257 if (unavailable)
1258 throw_error (NOT_AVAILABLE_ERROR,
1259 _("Register %d is not available"), regnum);
1260}
1261
1262void
1263get_frame_register (frame_info_ptr frame,
1264 int regnum, gdb_byte *buf)
1265{
1266 frame_unwind_register (frame_info_ptr (frame->next), regnum, buf);
1267}
1268
1269struct value *
1270frame_unwind_register_value (frame_info_ptr next_frame, int regnum)
1271{
1272 FRAME_SCOPED_DEBUG_ENTER_EXIT;
1273
1274 gdb_assert (next_frame != NULL);
1275 gdbarch *gdbarch = frame_unwind_arch (next_frame);
1276 frame_debug_printf ("frame=%d, regnum=%d(%s)",
1277 next_frame->level, regnum,
1278 user_reg_map_regnum_to_name (gdbarch, regnum));
1279
1280 /* Find the unwinder. */
1281 if (next_frame->unwind == NULL)
1282 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1283
1284 /* Ask this frame to unwind its register. */
1285 value *value = next_frame->unwind->prev_register (next_frame,
1286 &next_frame->prologue_cache,
1287 regnum);
1288
1289 if (frame_debug)
1290 {
1291 string_file debug_file;
1292
1293 gdb_printf (&debug_file, " ->");
1294 if (value->optimized_out ())
1295 {
1296 gdb_printf (&debug_file, " ");
1297 val_print_not_saved (&debug_file);
1298 }
1299 else
1300 {
1301 if (value->lval () == lval_register)
1302 gdb_printf (&debug_file, " register=%d",
1303 VALUE_REGNUM (value));
1304 else if (value->lval () == lval_memory)
1305 gdb_printf (&debug_file, " address=%s",
1306 paddress (gdbarch,
1307 value->address ()));
1308 else
1309 gdb_printf (&debug_file, " computed");
1310
1311 if (value->lazy ())
1312 gdb_printf (&debug_file, " lazy");
1313 else
1314 {
1315 int i;
1316 gdb::array_view<const gdb_byte> buf = value->contents ();
1317
1318 gdb_printf (&debug_file, " bytes=");
1319 gdb_printf (&debug_file, "[");
1320 for (i = 0; i < register_size (gdbarch, regnum); i++)
1321 gdb_printf (&debug_file, "%02x", buf[i]);
1322 gdb_printf (&debug_file, "]");
1323 }
1324 }
1325
1326 frame_debug_printf ("%s", debug_file.c_str ());
1327 }
1328
1329 return value;
1330}
1331
1332struct value *
1333get_frame_register_value (frame_info_ptr frame, int regnum)
1334{
1335 return frame_unwind_register_value (frame_info_ptr (frame->next), regnum);
1336}
1337
1338LONGEST
1339frame_unwind_register_signed (frame_info_ptr next_frame, int regnum)
1340{
1341 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1343 struct value *value = frame_unwind_register_value (next_frame, regnum);
1344
1345 gdb_assert (value != NULL);
1346
1347 if (value->optimized_out ())
1348 {
1349 throw_error (OPTIMIZED_OUT_ERROR,
1350 _("Register %d was not saved"), regnum);
1351 }
1352 if (!value->entirely_available ())
1353 {
1354 throw_error (NOT_AVAILABLE_ERROR,
1355 _("Register %d is not available"), regnum);
1356 }
1357
1358 LONGEST r = extract_signed_integer (value->contents_all (), byte_order);
1359
1360 release_value (value);
1361 return r;
1362}
1363
1364LONGEST
1365get_frame_register_signed (frame_info_ptr frame, int regnum)
1366{
1367 return frame_unwind_register_signed (frame_info_ptr (frame->next), regnum);
1368}
1369
1370ULONGEST
1371frame_unwind_register_unsigned (frame_info_ptr next_frame, int regnum)
1372{
1373 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1374 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1375 int size = register_size (gdbarch, regnum);
1376 struct value *value = frame_unwind_register_value (next_frame, regnum);
1377
1378 gdb_assert (value != NULL);
1379
1380 if (value->optimized_out ())
1381 {
1382 throw_error (OPTIMIZED_OUT_ERROR,
1383 _("Register %d was not saved"), regnum);
1384 }
1385 if (!value->entirely_available ())
1386 {
1387 throw_error (NOT_AVAILABLE_ERROR,
1388 _("Register %d is not available"), regnum);
1389 }
1390
1391 ULONGEST r = extract_unsigned_integer (value->contents_all ().data (),
1392 size, byte_order);
1393
1394 release_value (value);
1395 return r;
1396}
1397
1398ULONGEST
1399get_frame_register_unsigned (frame_info_ptr frame, int regnum)
1400{
1401 return frame_unwind_register_unsigned (frame_info_ptr (frame->next), regnum);
1402}
1403
1404bool
1405read_frame_register_unsigned (frame_info_ptr frame, int regnum,
1406 ULONGEST *val)
1407{
1408 struct value *regval = get_frame_register_value (frame, regnum);
1409
1410 if (!regval->optimized_out ()
1411 && regval->entirely_available ())
1412 {
1413 struct gdbarch *gdbarch = get_frame_arch (frame);
1414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1415 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1416
1417 *val = extract_unsigned_integer (regval->contents ().data (), size,
1418 byte_order);
1419 return true;
1420 }
1421
1422 return false;
1423}
1424
1425void
1426put_frame_register (frame_info_ptr frame, int regnum,
1427 const gdb_byte *buf)
1428{
1429 struct gdbarch *gdbarch = get_frame_arch (frame);
1430 int realnum;
1431 int optim;
1432 int unavail;
1433 enum lval_type lval;
1434 CORE_ADDR addr;
1435
1436 frame_register (frame, regnum, &optim, &unavail,
1437 &lval, &addr, &realnum, NULL);
1438 if (optim)
1439 error (_("Attempt to assign to a register that was not saved."));
1440 switch (lval)
1441 {
1442 case lval_memory:
1443 {
1444 write_memory (addr, buf, register_size (gdbarch, regnum));
1445 break;
1446 }
1447 case lval_register:
1448 get_thread_regcache (inferior_thread ())->cooked_write (realnum, buf);
1449 break;
1450 default:
1451 error (_("Attempt to assign to an unmodifiable value."));
1452 }
1453}
1454
1455/* This function is deprecated. Use get_frame_register_value instead,
1456 which provides more accurate information.
1457
1458 Find and return the value of REGNUM for the specified stack frame.
1459 The number of bytes copied is REGISTER_SIZE (REGNUM).
1460
1461 Returns 0 if the register value could not be found. */
1462
1463bool
1464deprecated_frame_register_read (frame_info_ptr frame, int regnum,
1465 gdb_byte *myaddr)
1466{
1467 int optimized;
1468 int unavailable;
1469 enum lval_type lval;
1470 CORE_ADDR addr;
1471 int realnum;
1472
1473 frame_register (frame, regnum, &optimized, &unavailable,
1474 &lval, &addr, &realnum, myaddr);
1475
1476 return !optimized && !unavailable;
1477}
1478
1479bool
1480get_frame_register_bytes (frame_info_ptr frame, int regnum,
1481 CORE_ADDR offset,
1482 gdb::array_view<gdb_byte> buffer,
1483 int *optimizedp, int *unavailablep)
1484{
1485 struct gdbarch *gdbarch = get_frame_arch (frame);
1486 int i;
1487 int maxsize;
1488 int numregs;
1489
1490 /* Skip registers wholly inside of OFFSET. */
1491 while (offset >= register_size (gdbarch, regnum))
1492 {
1493 offset -= register_size (gdbarch, regnum);
1494 regnum++;
1495 }
1496
1497 /* Ensure that we will not read beyond the end of the register file.
1498 This can only ever happen if the debug information is bad. */
1499 maxsize = -offset;
1500 numregs = gdbarch_num_cooked_regs (gdbarch);
1501 for (i = regnum; i < numregs; i++)
1502 {
1503 int thissize = register_size (gdbarch, i);
1504
1505 if (thissize == 0)
1506 break; /* This register is not available on this architecture. */
1507 maxsize += thissize;
1508 }
1509
1510 int len = buffer.size ();
1511 if (len > maxsize)
1512 error (_("Bad debug information detected: "
1513 "Attempt to read %d bytes from registers."), len);
1514
1515 /* Copy the data. */
1516 while (len > 0)
1517 {
1518 int curr_len = register_size (gdbarch, regnum) - offset;
1519
1520 if (curr_len > len)
1521 curr_len = len;
1522
1523 gdb_byte *myaddr = buffer.data ();
1524
1525 if (curr_len == register_size (gdbarch, regnum))
1526 {
1527 enum lval_type lval;
1528 CORE_ADDR addr;
1529 int realnum;
1530
1531 frame_register (frame, regnum, optimizedp, unavailablep,
1532 &lval, &addr, &realnum, myaddr);
1533 if (*optimizedp || *unavailablep)
1534 return false;
1535 }
1536 else
1537 {
1538 struct value *value
1539 = frame_unwind_register_value (frame_info_ptr (frame->next),
1540 regnum);
1541 gdb_assert (value != NULL);
1542 *optimizedp = value->optimized_out ();
1543 *unavailablep = !value->entirely_available ();
1544
1545 if (*optimizedp || *unavailablep)
1546 {
1547 release_value (value);
1548 return false;
1549 }
1550
1551 memcpy (myaddr, value->contents_all ().data () + offset,
1552 curr_len);
1553 release_value (value);
1554 }
1555
1556 myaddr += curr_len;
1557 len -= curr_len;
1558 offset = 0;
1559 regnum++;
1560 }
1561
1562 *optimizedp = 0;
1563 *unavailablep = 0;
1564
1565 return true;
1566}
1567
1568void
1569put_frame_register_bytes (frame_info_ptr frame, int regnum,
1570 CORE_ADDR offset,
1571 gdb::array_view<const gdb_byte> buffer)
1572{
1573 struct gdbarch *gdbarch = get_frame_arch (frame);
1574
1575 /* Skip registers wholly inside of OFFSET. */
1576 while (offset >= register_size (gdbarch, regnum))
1577 {
1578 offset -= register_size (gdbarch, regnum);
1579 regnum++;
1580 }
1581
1582 int len = buffer.size ();
1583 /* Copy the data. */
1584 while (len > 0)
1585 {
1586 int curr_len = register_size (gdbarch, regnum) - offset;
1587
1588 if (curr_len > len)
1589 curr_len = len;
1590
1591 const gdb_byte *myaddr = buffer.data ();
1592 if (curr_len == register_size (gdbarch, regnum))
1593 {
1594 put_frame_register (frame, regnum, myaddr);
1595 }
1596 else
1597 {
1598 struct value *value
1599 = frame_unwind_register_value (frame_info_ptr (frame->next),
1600 regnum);
1601 gdb_assert (value != NULL);
1602
1603 memcpy ((char *) value->contents_writeable ().data () + offset,
1604 myaddr, curr_len);
1605 put_frame_register (frame, regnum,
1606 value->contents_raw ().data ());
1607 release_value (value);
1608 }
1609
1610 myaddr += curr_len;
1611 len -= curr_len;
1612 offset = 0;
1613 regnum++;
1614 }
1615}
1616
1617/* Create a sentinel frame.
1618
1619 See frame_id_build_sentinel for the description of STACK_ADDR and
1620 CODE_ADDR. */
1621
1622static frame_info_ptr
1623create_sentinel_frame (program_space *pspace, address_space *aspace,
1624 regcache *regcache, CORE_ADDR stack_addr,
1625 CORE_ADDR code_addr)
1626{
1627 frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1628
1629 frame->level = -1;
1630 frame->pspace = pspace;
1631 frame->aspace = aspace;
1632 /* Explicitly initialize the sentinel frame's cache. Provide it
1633 with the underlying regcache. In the future additional
1634 information, such as the frame's thread will be added. */
1635 frame->prologue_cache = sentinel_frame_cache (regcache);
1636 /* For the moment there is only one sentinel frame implementation. */
1637 frame->unwind = &sentinel_frame_unwind;
1638 /* Link this frame back to itself. The frame is self referential
1639 (the unwound PC is the same as the pc), so make it so. */
1640 frame->next = frame;
1641 /* The sentinel frame has a special ID. */
1642 frame->this_id.p = frame_id_status::COMPUTED;
1643 frame->this_id.value = frame_id_build_sentinel (stack_addr, code_addr);
1644
1645 bool added = frame_stash_add (frame);
1646 gdb_assert (added);
1647
1648 frame_debug_printf (" -> %s", frame->to_string ().c_str ());
1649
1650 return frame_info_ptr (frame);
1651}
1652
1653/* Cache for frame addresses already read by gdb. Valid only while
1654 inferior is stopped. Control variables for the frame cache should
1655 be local to this module. */
1656
1657static struct obstack frame_cache_obstack;
1658
1659void *
1660frame_obstack_zalloc (unsigned long size)
1661{
1662 void *data = obstack_alloc (&frame_cache_obstack, size);
1663
1664 memset (data, 0, size);
1665 return data;
1666}
1667
1668static frame_info_ptr get_prev_frame_always_1 (frame_info_ptr this_frame);
1669
1670frame_info_ptr
1671get_current_frame (void)
1672{
1673 frame_info_ptr current_frame;
1674
1675 /* First check, and report, the lack of registers. Having GDB
1676 report "No stack!" or "No memory" when the target doesn't even
1677 have registers is very confusing. Besides, "printcmd.exp"
1678 explicitly checks that ``print $pc'' with no registers prints "No
1679 registers". */
1680 if (!target_has_registers ())
1681 error (_("No registers."));
1682 if (!target_has_stack ())
1683 error (_("No stack."));
1684 if (!target_has_memory ())
1685 error (_("No memory."));
1686 /* Traceframes are effectively a substitute for the live inferior. */
1687 if (get_traceframe_number () < 0)
1688 validate_registers_access ();
1689
1690 if (sentinel_frame == NULL)
1691 sentinel_frame =
1692 create_sentinel_frame (current_program_space,
1693 current_inferior ()->aspace.get (),
1694 get_thread_regcache (inferior_thread ()),
1695 0, 0).get ();
1696
1697 /* Set the current frame before computing the frame id, to avoid
1698 recursion inside compute_frame_id, in case the frame's
1699 unwinder decides to do a symbol lookup (which depends on the
1700 selected frame's block).
1701
1702 This call must always succeed. In particular, nothing inside
1703 get_prev_frame_always_1 should try to unwind from the
1704 sentinel frame, because that could fail/throw, and we always
1705 want to leave with the current frame created and linked in --
1706 we should never end up with the sentinel frame as outermost
1707 frame. */
1708 current_frame = get_prev_frame_always_1 (frame_info_ptr (sentinel_frame));
1709 gdb_assert (current_frame != NULL);
1710
1711 return current_frame;
1712}
1713
1714/* The "selected" stack frame is used by default for local and arg
1715 access.
1716
1717 The "single source of truth" for the selected frame is the
1718 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1719
1720 Frame IDs can be saved/restored across reinitializing the frame
1721 cache, while frame_info pointers can't (frame_info objects are
1722 invalidated). If we know the corresponding frame_info object, it
1723 is cached in SELECTED_FRAME.
1724
1725 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1726 and the target has stack and is stopped, the selected frame is the
1727 current (innermost) target frame. SELECTED_FRAME_ID is never the ID
1728 of the current (innermost) target frame. SELECTED_FRAME_LEVEL may
1729 only be 0 if the selected frame is a user-created one (created and
1730 selected through the "select-frame view" command), in which case
1731 SELECTED_FRAME_ID is the frame id derived from the user-provided
1732 addresses.
1733
1734 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1735 and the target has no stack or is executing, then there's no
1736 selected frame. */
1737static frame_id selected_frame_id = null_frame_id;
1738static int selected_frame_level = -1;
1739
1740/* See frame.h. This definition should come before any definition of a static
1741 frame_info_ptr, to ensure that frame_list is destroyed after any static
1742 frame_info_ptr. This is necessary because the destructor of frame_info_ptr
1743 uses frame_list. */
1744
1745intrusive_list<frame_info_ptr> frame_info_ptr::frame_list;
1746
1747/* The cached frame_info object pointing to the selected frame.
1748 Looked up on demand by get_selected_frame. */
1749static frame_info_ptr selected_frame;
1750
1751/* See frame.h. */
1752
1753void
1754save_selected_frame (frame_id *frame_id, int *frame_level)
1755 noexcept
1756{
1757 *frame_id = selected_frame_id;
1758 *frame_level = selected_frame_level;
1759}
1760
1761/* See frame.h. */
1762
1763void
1764restore_selected_frame (frame_id frame_id, int frame_level)
1765 noexcept
1766{
1767 /* Unless it is a user-created frame, save_selected_frame never returns
1768 level == 0, so we shouldn't see it here either. */
1769 gdb_assert (frame_level != 0 || frame_id.user_created_p);
1770
1771 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1772 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1773 || (frame_level != -1 && frame_id_p (frame_id)));
1774
1775 selected_frame_id = frame_id;
1776 selected_frame_level = frame_level;
1777
1778 /* Will be looked up later by get_selected_frame. */
1779 selected_frame = nullptr;
1780}
1781
1782/* Lookup the frame_info object for the selected frame FRAME_ID /
1783 FRAME_LEVEL and cache the result.
1784
1785 If FRAME_LEVEL > 0 and the originally selected frame isn't found,
1786 warn and select the innermost (current) frame. */
1787
1788static void
1789lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1790{
1791 frame_info_ptr frame = NULL;
1792 int count;
1793
1794 /* This either means there was no selected frame, or the selected
1795 frame was the current frame. In either case, select the current
1796 frame. */
1797 if (frame_level == -1)
1798 {
1799 select_frame (get_current_frame ());
1800 return;
1801 }
1802
1803 /* This means the selected frame was a user-created one. Create a new one
1804 using the user-provided addresses, which happen to be in the frame id. */
1805 if (frame_level == 0)
1806 {
1807 gdb_assert (a_frame_id.user_created_p);
1808 select_frame (create_new_frame (a_frame_id));
1809 return;
1810 }
1811
1812 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1813 shouldn't see it here. */
1814 gdb_assert (frame_level > 0);
1815
1816 /* Restore by level first, check if the frame id is the same as
1817 expected. If that fails, try restoring by frame id. If that
1818 fails, nothing to do, just warn the user. */
1819
1820 count = frame_level;
1821 frame = find_relative_frame (get_current_frame (), &count);
1822 if (count == 0
1823 && frame != NULL
1824 /* The frame ids must match - either both valid or both
1825 outer_frame_id. The latter case is not failsafe, but since
1826 it's highly unlikely the search by level finds the wrong
1827 frame, it's 99.9(9)% of the time (for all practical purposes)
1828 safe. */
1829 && get_frame_id (frame) == a_frame_id)
1830 {
1831 /* Cool, all is fine. */
1832 select_frame (frame);
1833 return;
1834 }
1835
1836 frame = frame_find_by_id (a_frame_id);
1837 if (frame != NULL)
1838 {
1839 /* Cool, refound it. */
1840 select_frame (frame);
1841 return;
1842 }
1843
1844 /* Nothing else to do, the frame layout really changed. Select the
1845 innermost stack frame. */
1846 select_frame (get_current_frame ());
1847
1848 /* Warn the user. */
1849 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1850 {
1851 warning (_("Couldn't restore frame #%d in "
1852 "current thread. Bottom (innermost) frame selected:"),
1853 frame_level);
1854 /* For MI, we should probably have a notification about current
1855 frame change. But this error is not very likely, so don't
1856 bother for now. */
1857 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1858 }
1859}
1860
1861bool
1862has_stack_frames ()
1863{
1864 if (!target_has_registers () || !target_has_stack ()
1865 || !target_has_memory ())
1866 return false;
1867
1868 /* Traceframes are effectively a substitute for the live inferior. */
1869 if (get_traceframe_number () < 0)
1870 {
1871 /* No current inferior, no frame. */
1872 if (inferior_ptid == null_ptid)
1873 return false;
1874
1875 thread_info *tp = inferior_thread ();
1876 /* Don't try to read from a dead thread. */
1877 if (tp->state == THREAD_EXITED)
1878 return false;
1879
1880 /* ... or from a spinning thread. */
1881 if (tp->executing ())
1882 return false;
1883 }
1884
1885 return true;
1886}
1887
1888/* See frame.h. */
1889
1890frame_info_ptr
1891get_selected_frame (const char *message)
1892{
1893 if (selected_frame == NULL)
1894 {
1895 if (message != NULL && !has_stack_frames ())
1896 error (("%s"), message);
1897
1898 lookup_selected_frame (selected_frame_id, selected_frame_level);
1899 }
1900 /* There is always a frame. */
1901 gdb_assert (selected_frame != NULL);
1902 return selected_frame;
1903}
1904
1905/* This is a variant of get_selected_frame() which can be called when
1906 the inferior does not have a frame; in that case it will return
1907 NULL instead of calling error(). */
1908
1909frame_info_ptr
1910deprecated_safe_get_selected_frame (void)
1911{
1912 if (!has_stack_frames ())
1913 return NULL;
1914 return get_selected_frame (NULL);
1915}
1916
1917/* Invalidate the selected frame. */
1918
1919static void
1920invalidate_selected_frame ()
1921{
1922 selected_frame = nullptr;
1923 selected_frame_level = -1;
1924 selected_frame_id = null_frame_id;
1925}
1926
1927/* See frame.h. */
1928
1929void
1930select_frame (frame_info_ptr fi)
1931{
1932 gdb_assert (fi != nullptr);
1933
1934 selected_frame = fi;
1935 selected_frame_level = frame_relative_level (fi);
1936
1937 /* If the frame is a user-created one, save its level and frame id just like
1938 any other non-level-0 frame. */
1939 if (selected_frame_level == 0 && !fi->this_id.value.user_created_p)
1940 {
1941 /* Treat the current frame especially -- we want to always
1942 save/restore it without warning, even if the frame ID changes
1943 (see lookup_selected_frame). E.g.:
1944
1945 // The current frame is selected, the target had just stopped.
1946 {
1947 scoped_restore_selected_frame restore_frame;
1948 some_operation_that_changes_the_stack ();
1949 }
1950 // scoped_restore_selected_frame's dtor runs, but the
1951 // original frame_id can't be found. No matter whether it
1952 // is found or not, we still end up with the now-current
1953 // frame selected. Warning in lookup_selected_frame in this
1954 // case seems pointless.
1955
1956 Also get_frame_id may access the target's registers/memory,
1957 and thus skipping get_frame_id optimizes the common case.
1958
1959 Saving the selected frame this way makes get_selected_frame
1960 and restore_current_frame return/re-select whatever frame is
1961 the innermost (current) then. */
1962 selected_frame_level = -1;
1963 selected_frame_id = null_frame_id;
1964 }
1965 else
1966 selected_frame_id = get_frame_id (fi);
1967
1968 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1969 frame is being invalidated. */
1970
1971 /* FIXME: kseitz/2002-08-28: It would be nice to call
1972 selected_frame_level_changed_event() right here, but due to limitations
1973 in the current interfaces, we would end up flooding UIs with events
1974 because select_frame() is used extensively internally.
1975
1976 Once we have frame-parameterized frame (and frame-related) commands,
1977 the event notification can be moved here, since this function will only
1978 be called when the user's selected frame is being changed. */
1979
1980 /* Ensure that symbols for this frame are read in. Also, determine the
1981 source language of this frame, and switch to it if desired. */
1982 if (fi)
1983 {
1984 CORE_ADDR pc;
1985
1986 /* We retrieve the frame's symtab by using the frame PC.
1987 However we cannot use the frame PC as-is, because it usually
1988 points to the instruction following the "call", which is
1989 sometimes the first instruction of another function. So we
1990 rely on get_frame_address_in_block() which provides us with a
1991 PC which is guaranteed to be inside the frame's code
1992 block. */
1993 if (get_frame_address_in_block_if_available (fi, &pc))
1994 {
1995 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1996
1997 if (cust != NULL
1998 && cust->language () != current_language->la_language
1999 && cust->language () != language_unknown
2000 && language_mode == language_mode_auto)
2001 set_language (cust->language ());
2002 }
2003 }
2004}
2005
2006/* Create an arbitrary (i.e. address specified by user) or innermost frame.
2007 Always returns a non-NULL value. */
2008
2009static frame_info_ptr
2010create_new_frame (frame_id id)
2011{
2012 gdb_assert (id.user_created_p);
2013 gdb_assert (id.stack_status == frame_id_stack_status::FID_STACK_VALID);
2014 gdb_assert (id.code_addr_p);
2015
2016 frame_debug_printf ("stack_addr=%s, core_addr=%s",
2017 hex_string (id.stack_addr), hex_string (id.code_addr));
2018
2019 /* Avoid creating duplicate frames, search for an existing frame with that id
2020 in the stash. */
2021 frame_info_ptr frame = frame_stash_find (id);
2022 if (frame != nullptr)
2023 return frame;
2024
2025 frame_info *fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
2026
2027 fi->next = create_sentinel_frame (current_program_space,
2028 current_inferior ()->aspace.get (),
2029 get_thread_regcache (inferior_thread ()),
2030 id.stack_addr, id.code_addr).get ();
2031
2032 /* Set/update this frame's cached PC value, found in the next frame.
2033 Do this before looking for this frame's unwinder. A sniffer is
2034 very likely to read this, and the corresponding unwinder is
2035 entitled to rely that the PC doesn't magically change. */
2036 fi->next->prev_pc.value = id.code_addr;
2037 fi->next->prev_pc.status = CC_VALUE;
2038
2039 /* We currently assume that frame chain's can't cross spaces. */
2040 fi->pspace = fi->next->pspace;
2041 fi->aspace = fi->next->aspace;
2042
2043 /* Select/initialize both the unwind function and the frame's type
2044 based on the PC. */
2045 frame_unwind_find_by_frame (frame_info_ptr (fi), &fi->prologue_cache);
2046
2047 fi->this_id.p = frame_id_status::COMPUTED;
2048 fi->this_id.value = id;
2049
2050 bool added = frame_stash_add (fi);
2051 gdb_assert (added);
2052
2053 frame_debug_printf (" -> %s", fi->to_string ().c_str ());
2054
2055 return frame_info_ptr (fi);
2056}
2057
2058frame_info_ptr
2059create_new_frame (CORE_ADDR stack, CORE_ADDR pc)
2060{
2061 frame_id id = frame_id_build (stack, pc);
2062 id.user_created_p = 1;
2063
2064 return create_new_frame (id);
2065}
2066
2067/* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
2068 innermost frame). Be careful to not fall off the bottom of the
2069 frame chain and onto the sentinel frame. */
2070
2071frame_info_ptr
2072get_next_frame (frame_info_ptr this_frame)
2073{
2074 if (this_frame->level > 0)
2075 return frame_info_ptr (this_frame->next);
2076 else
2077 return NULL;
2078}
2079
2080/* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
2081 innermost (i.e. current) frame, return the sentinel frame. Thus,
2082 unlike get_next_frame(), NULL will never be returned. */
2083
2084frame_info_ptr
2085get_next_frame_sentinel_okay (frame_info_ptr this_frame)
2086{
2087 gdb_assert (this_frame != NULL);
2088
2089 /* Note that, due to the manner in which the sentinel frame is
2090 constructed, this_frame->next still works even when this_frame
2091 is the sentinel frame. But we disallow it here anyway because
2092 calling get_next_frame_sentinel_okay() on the sentinel frame
2093 is likely a coding error. */
2094 if (this_frame->this_id.p == frame_id_status::COMPUTED)
2095 gdb_assert (!is_sentinel_frame_id (this_frame->this_id.value));
2096
2097 return frame_info_ptr (this_frame->next);
2098}
2099
2100/* Observer for the target_changed event. */
2101
2102static void
2103frame_observer_target_changed (struct target_ops *target)
2104{
2105 reinit_frame_cache ();
2106}
2107
2108/* Flush the entire frame cache. */
2109
2110void
2111reinit_frame_cache (void)
2112{
2113 ++frame_cache_generation;
2114
2115 if (htab_elements (frame_stash) > 0)
2116 annotate_frames_invalid ();
2117
2118 invalidate_selected_frame ();
2119
2120 /* Invalidate cache. */
2121 if (sentinel_frame != nullptr)
2122 {
2123 /* If frame 0's id is not computed, it is not in the frame stash, so its
2124 dealloc functions will not be called when emptying the frame stash.
2125 Call frame_info_del manually in that case. */
2126 frame_info *current_frame = sentinel_frame->prev;
2127 if (current_frame != nullptr
2128 && current_frame->this_id.p == frame_id_status::NOT_COMPUTED)
2129 frame_info_del (current_frame);
2130
2131 sentinel_frame = nullptr;
2132 }
2133
2134 frame_stash_invalidate ();
2135
2136 /* Since we can't really be sure what the first object allocated was. */
2137 obstack_free (&frame_cache_obstack, 0);
2138 obstack_init (&frame_cache_obstack);
2139
2140 for (frame_info_ptr &iter : frame_info_ptr::frame_list)
2141 iter.invalidate ();
2142
2143 frame_debug_printf ("generation=%d", frame_cache_generation);
2144}
2145
2146/* Find where a register is saved (in memory or another register).
2147 The result of frame_register_unwind is just where it is saved
2148 relative to this particular frame. */
2149
2150static void
2151frame_register_unwind_location (frame_info_ptr this_frame, int regnum,
2152 int *optimizedp, enum lval_type *lvalp,
2153 CORE_ADDR *addrp, int *realnump)
2154{
2155 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2156
2157 while (this_frame != NULL)
2158 {
2159 int unavailable;
2160
2161 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2162 lvalp, addrp, realnump, NULL);
2163
2164 if (*optimizedp)
2165 break;
2166
2167 if (*lvalp != lval_register)
2168 break;
2169
2170 regnum = *realnump;
2171 this_frame = get_next_frame (this_frame);
2172 }
2173}
2174
2175/* Get the previous raw frame, and check that it is not identical to
2176 same other frame frame already in the chain. If it is, there is
2177 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2178 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2179 validity tests, that compare THIS_FRAME and the next frame, we do
2180 this right after creating the previous frame, to avoid ever ending
2181 up with two frames with the same id in the frame chain.
2182
2183 There is however, one case where this cycle detection is not desirable,
2184 when asking for the previous frame of an inline frame, in this case, if
2185 the previous frame is a duplicate and we return nullptr then we will be
2186 unable to calculate the frame_id of the inline frame, this in turn
2187 causes inline_frame_this_id() to fail. So for inline frames (and only
2188 for inline frames), the previous frame will always be returned, even when it
2189 has a duplicate frame_id. We're not worried about cycles in the frame
2190 chain as, if the previous frame returned here has a duplicate frame_id,
2191 then the frame_id of the inline frame, calculated based off the frame_id
2192 of the previous frame, should also be a duplicate. */
2193
2194static frame_info_ptr
2195get_prev_frame_maybe_check_cycle (frame_info_ptr this_frame)
2196{
2197 frame_info_ptr prev_frame = get_prev_frame_raw (this_frame);
2198
2199 /* Don't compute the frame id of the current frame yet. Unwinding
2200 the sentinel frame can fail (e.g., if the thread is gone and we
2201 can't thus read its registers). If we let the cycle detection
2202 code below try to compute a frame ID, then an error thrown from
2203 within the frame ID computation would result in the sentinel
2204 frame as outermost frame, which is bogus. Instead, we'll compute
2205 the current frame's ID lazily in get_frame_id. Note that there's
2206 no point in doing cycle detection when there's only one frame, so
2207 nothing is lost here. */
2208 if (prev_frame->level == 0)
2209 return prev_frame;
2210
2211 unsigned int entry_generation = get_frame_cache_generation ();
2212
2213 try
2214 {
2215 compute_frame_id (prev_frame);
2216
2217 bool cycle_detection_p = get_frame_type (this_frame) != INLINE_FRAME;
2218
2219 /* This assert checks GDB's state with respect to calculating the
2220 frame-id of THIS_FRAME, in the case where THIS_FRAME is an inline
2221 frame.
2222
2223 If THIS_FRAME is frame #0, and is an inline frame, then we put off
2224 calculating the frame_id until we specifically make a call to
2225 get_frame_id(). As a result we can enter this function in two
2226 possible states. If GDB asked for the previous frame of frame #0
2227 then THIS_FRAME will be frame #0 (an inline frame), and the
2228 frame_id will be in the NOT_COMPUTED state. However, if GDB asked
2229 for the frame_id of frame #0, then, as getting the frame_id of an
2230 inline frame requires us to get the frame_id of the previous
2231 frame, we will still end up in here, and the frame_id status will
2232 be COMPUTING.
2233
2234 If, instead, THIS_FRAME is at a level greater than #0 then things
2235 are simpler. For these frames we immediately compute the frame_id
2236 when the frame is initially created, and so, for those frames, we
2237 will always enter this function with the frame_id status of
2238 COMPUTING. */
2239 gdb_assert (cycle_detection_p
2240 || (this_frame->level > 0
2241 && (this_frame->this_id.p
2242 == frame_id_status::COMPUTING))
2243 || (this_frame->level == 0
2244 && (this_frame->this_id.p
2245 != frame_id_status::COMPUTED)));
2246
2247 /* We must do the CYCLE_DETECTION_P check after attempting to add
2248 PREV_FRAME into the cache; if PREV_FRAME is unique then we do want
2249 it in the cache, but if it is a duplicate and CYCLE_DETECTION_P is
2250 false, then we don't want to unlink it. */
2251 if (!frame_stash_add (prev_frame.get ()) && cycle_detection_p)
2252 {
2253 /* Another frame with the same id was already in the stash. We just
2254 detected a cycle. */
2255 frame_debug_printf (" -> nullptr // this frame has same ID");
2256
2257 this_frame->stop_reason = UNWIND_SAME_ID;
2258 /* Unlink. */
2259 prev_frame->next = NULL;
2260 this_frame->prev = NULL;
2261 prev_frame = NULL;
2262 }
2263 }
2264 catch (const gdb_exception &ex)
2265 {
2266 if (get_frame_cache_generation () == entry_generation)
2267 {
2268 prev_frame->next = NULL;
2269 this_frame->prev = NULL;
2270 }
2271
2272 throw;
2273 }
2274
2275 return prev_frame;
2276}
2277
2278/* Helper function for get_prev_frame_always, this is called inside a
2279 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2280 there is no such frame. This may throw an exception. */
2281
2282static frame_info_ptr
2283get_prev_frame_always_1 (frame_info_ptr this_frame)
2284{
2285 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2286
2287 gdb_assert (this_frame != NULL);
2288
2289 if (frame_debug)
2290 {
2291 if (this_frame != NULL)
2292 frame_debug_printf ("this_frame=%d", this_frame->level);
2293 else
2294 frame_debug_printf ("this_frame=nullptr");
2295 }
2296
2297 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2298
2299 /* Only try to do the unwind once. */
2300 if (this_frame->prev_p)
2301 {
2302 if (this_frame->prev != nullptr)
2303 frame_debug_printf (" -> %s // cached",
2304 this_frame->prev->to_string ().c_str ());
2305 else
2306 frame_debug_printf
2307 (" -> nullptr // %s // cached",
2308 frame_stop_reason_symbol_string (this_frame->stop_reason));
2309 return frame_info_ptr (this_frame->prev);
2310 }
2311
2312 /* If the frame unwinder hasn't been selected yet, we must do so
2313 before setting prev_p; otherwise the check for misbehaved
2314 sniffers will think that this frame's sniffer tried to unwind
2315 further (see frame_cleanup_after_sniffer). */
2316 if (this_frame->unwind == NULL)
2317 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2318
2319 this_frame->prev_p = true;
2320 this_frame->stop_reason = UNWIND_NO_REASON;
2321
2322 /* If we are unwinding from an inline frame, all of the below tests
2323 were already performed when we unwound from the next non-inline
2324 frame. We must skip them, since we can not get THIS_FRAME's ID
2325 until we have unwound all the way down to the previous non-inline
2326 frame. */
2327 if (get_frame_type (this_frame) == INLINE_FRAME)
2328 return get_prev_frame_maybe_check_cycle (this_frame);
2329
2330 /* If this_frame is the current frame, then compute and stash its
2331 frame id prior to fetching and computing the frame id of the
2332 previous frame. Otherwise, the cycle detection code in
2333 get_prev_frame_if_no_cycle() will not work correctly. When
2334 get_frame_id() is called later on, an assertion error will be
2335 triggered in the event of a cycle between the current frame and
2336 its previous frame.
2337
2338 Note we do this after the INLINE_FRAME check above. That is
2339 because the inline frame's frame id computation needs to fetch
2340 the frame id of its previous real stack frame. I.e., we need to
2341 avoid recursion in that case. This is OK since we're sure the
2342 inline frame won't create a cycle with the real stack frame. See
2343 inline_frame_this_id. */
2344 if (this_frame->level == 0)
2345 get_frame_id (this_frame);
2346
2347 /* Check that this frame is unwindable. If it isn't, don't try to
2348 unwind to the prev frame. */
2349 this_frame->stop_reason
2350 = this_frame->unwind->stop_reason (this_frame,
2351 &this_frame->prologue_cache);
2352
2353 if (this_frame->stop_reason != UNWIND_NO_REASON)
2354 {
2355 frame_debug_printf
2356 (" -> nullptr // %s",
2357 frame_stop_reason_symbol_string (this_frame->stop_reason));
2358 return NULL;
2359 }
2360
2361 /* Check that this frame's ID isn't inner to (younger, below, next)
2362 the next frame. This happens when a frame unwind goes backwards.
2363 This check is valid only if this frame and the next frame are NORMAL.
2364 See the comment at frame_id_inner for details. */
2365 if (get_frame_type (this_frame) == NORMAL_FRAME
2366 && this_frame->next->unwind->type == NORMAL_FRAME
2367 && frame_id_inner (get_frame_arch (frame_info_ptr (this_frame->next)),
2368 get_frame_id (this_frame),
2369 get_frame_id (frame_info_ptr (this_frame->next))))
2370 {
2371 CORE_ADDR this_pc_in_block;
2372 struct minimal_symbol *morestack_msym;
2373 const char *morestack_name = NULL;
2374
2375 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2376 this_pc_in_block = get_frame_address_in_block (this_frame);
2377 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2378 if (morestack_msym)
2379 morestack_name = morestack_msym->linkage_name ();
2380 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2381 {
2382 frame_debug_printf (" -> nullptr // this frame ID is inner");
2383 this_frame->stop_reason = UNWIND_INNER_ID;
2384 return NULL;
2385 }
2386 }
2387
2388 /* Check that this and the next frame do not unwind the PC register
2389 to the same memory location. If they do, then even though they
2390 have different frame IDs, the new frame will be bogus; two
2391 functions can't share a register save slot for the PC. This can
2392 happen when the prologue analyzer finds a stack adjustment, but
2393 no PC save.
2394
2395 This check does assume that the "PC register" is roughly a
2396 traditional PC, even if the gdbarch_unwind_pc method adjusts
2397 it (we do not rely on the value, only on the unwound PC being
2398 dependent on this value). A potential improvement would be
2399 to have the frame prev_pc method and the gdbarch unwind_pc
2400 method set the same lval and location information as
2401 frame_register_unwind. */
2402 if (this_frame->level > 0
2403 && gdbarch_pc_regnum (gdbarch) >= 0
2404 && get_frame_type (this_frame) == NORMAL_FRAME
2405 && (get_frame_type (frame_info_ptr (this_frame->next)) == NORMAL_FRAME
2406 || get_frame_type (frame_info_ptr (this_frame->next)) == INLINE_FRAME))
2407 {
2408 int optimized, realnum, nrealnum;
2409 enum lval_type lval, nlval;
2410 CORE_ADDR addr, naddr;
2411
2412 frame_register_unwind_location (this_frame,
2413 gdbarch_pc_regnum (gdbarch),
2414 &optimized, &lval, &addr, &realnum);
2415 frame_register_unwind_location (get_next_frame (this_frame),
2416 gdbarch_pc_regnum (gdbarch),
2417 &optimized, &nlval, &naddr, &nrealnum);
2418
2419 if ((lval == lval_memory && lval == nlval && addr == naddr)
2420 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2421 {
2422 frame_debug_printf (" -> nullptr // no saved PC");
2423 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2424 this_frame->prev = NULL;
2425 return NULL;
2426 }
2427 }
2428
2429 return get_prev_frame_maybe_check_cycle (this_frame);
2430}
2431
2432/* Return a "struct frame_info" corresponding to the frame that called
2433 THIS_FRAME. Returns NULL if there is no such frame.
2434
2435 Unlike get_prev_frame, this function always tries to unwind the
2436 frame. */
2437
2438frame_info_ptr
2439get_prev_frame_always (frame_info_ptr this_frame)
2440{
2441 frame_info_ptr prev_frame = NULL;
2442
2443 try
2444 {
2445 prev_frame = get_prev_frame_always_1 (this_frame);
2446 }
2447 catch (const gdb_exception_error &ex)
2448 {
2449 if (ex.error == MEMORY_ERROR)
2450 {
2451 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2452 if (ex.message != NULL)
2453 {
2454 char *stop_string;
2455 size_t size;
2456
2457 /* The error needs to live as long as the frame does.
2458 Allocate using stack local STOP_STRING then assign the
2459 pointer to the frame, this allows the STOP_STRING on the
2460 frame to be of type 'const char *'. */
2461 size = ex.message->size () + 1;
2462 stop_string = (char *) frame_obstack_zalloc (size);
2463 memcpy (stop_string, ex.what (), size);
2464 this_frame->stop_string = stop_string;
2465 }
2466 prev_frame = NULL;
2467 }
2468 else
2469 throw;
2470 }
2471
2472 return prev_frame;
2473}
2474
2475/* Construct a new "struct frame_info" and link it previous to
2476 this_frame. */
2477
2478static frame_info_ptr
2479get_prev_frame_raw (frame_info_ptr this_frame)
2480{
2481 frame_info *prev_frame;
2482
2483 /* Allocate the new frame but do not wire it in to the frame chain.
2484 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2485 frame->next to pull some fancy tricks (of course such code is, by
2486 definition, recursive). Try to prevent it.
2487
2488 There is no reason to worry about memory leaks, should the
2489 remainder of the function fail. The allocated memory will be
2490 quickly reclaimed when the frame cache is flushed, and the `we've
2491 been here before' check above will stop repeated memory
2492 allocation calls. */
2493 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2494 prev_frame->level = this_frame->level + 1;
2495
2496 /* For now, assume we don't have frame chains crossing address
2497 spaces. */
2498 prev_frame->pspace = this_frame->pspace;
2499 prev_frame->aspace = this_frame->aspace;
2500
2501 /* Don't yet compute ->unwind (and hence ->type). It is computed
2502 on-demand in get_frame_type, frame_register_unwind, and
2503 get_frame_id. */
2504
2505 /* Don't yet compute the frame's ID. It is computed on-demand by
2506 get_frame_id(). */
2507
2508 /* The unwound frame ID is validate at the start of this function,
2509 as part of the logic to decide if that frame should be further
2510 unwound, and not here while the prev frame is being created.
2511 Doing this makes it possible for the user to examine a frame that
2512 has an invalid frame ID.
2513
2514 Some very old VAX code noted: [...] For the sake of argument,
2515 suppose that the stack is somewhat trashed (which is one reason
2516 that "info frame" exists). So, return 0 (indicating we don't
2517 know the address of the arglist) if we don't know what frame this
2518 frame calls. */
2519
2520 /* Link it in. */
2521 this_frame->prev = prev_frame;
2522 prev_frame->next = this_frame.get ();
2523
2524 frame_debug_printf (" -> %s", prev_frame->to_string ().c_str ());
2525
2526 return frame_info_ptr (prev_frame);
2527}
2528
2529/* Debug routine to print a NULL frame being returned. */
2530
2531static void
2532frame_debug_got_null_frame (frame_info_ptr this_frame,
2533 const char *reason)
2534{
2535 if (frame_debug)
2536 {
2537 if (this_frame != NULL)
2538 frame_debug_printf ("this_frame=%d -> %s", this_frame->level, reason);
2539 else
2540 frame_debug_printf ("this_frame=nullptr -> %s", reason);
2541 }
2542}
2543
2544/* Is this (non-sentinel) frame in the "main"() function? */
2545
2546static bool
2547inside_main_func (frame_info_ptr this_frame)
2548{
2549 if (current_program_space->symfile_object_file == nullptr)
2550 return false;
2551
2552 CORE_ADDR sym_addr = 0;
2553 const char *name = main_name ();
2554 bound_minimal_symbol msymbol
2555 = lookup_minimal_symbol (name, NULL,
2556 current_program_space->symfile_object_file);
2557
2558 if (msymbol.minsym != nullptr)
2559 sym_addr = msymbol.value_address ();
2560
2561 /* Favor a full symbol in Fortran, for the case where the Fortran main
2562 is also called "main". */
2563 if (msymbol.minsym == nullptr
2564 || get_frame_language (this_frame) == language_fortran)
2565 {
2566 /* In some language (for example Fortran) there will be no minimal
2567 symbol with the name of the main function. In this case we should
2568 search the full symbols to see if we can find a match. */
2569 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2570
2571 /* We might have found some unrelated symbol. For example, the
2572 Rust compiler can emit both a subprogram and a namespace with
2573 the same name in the same scope; and due to how gdb's symbol
2574 tables currently work, we can't request the one we'd
2575 prefer. */
2576 if (bs.symbol != nullptr && bs.symbol->aclass () == LOC_BLOCK)
2577 {
2578 const struct block *block = bs.symbol->value_block ();
2579 gdb_assert (block != nullptr);
2580 sym_addr = block->start ();
2581 }
2582 else if (msymbol.minsym == nullptr)
2583 return false;
2584 }
2585
2586 /* Convert any function descriptor addresses into the actual function
2587 code address. */
2588 sym_addr = (gdbarch_convert_from_func_ptr_addr
2589 (get_frame_arch (this_frame), sym_addr,
2590 current_inferior ()->top_target ()));
2591
2592 return sym_addr == get_frame_func (this_frame);
2593}
2594
2595/* Test whether THIS_FRAME is inside the process entry point function. */
2596
2597static bool
2598inside_entry_func (frame_info_ptr this_frame)
2599{
2600 CORE_ADDR entry_point;
2601
2602 if (!entry_point_address_query (&entry_point))
2603 return false;
2604
2605 return get_frame_func (this_frame) == entry_point;
2606}
2607
2608/* Return a structure containing various interesting information about
2609 the frame that called THIS_FRAME. Returns NULL if there is either
2610 no such frame or the frame fails any of a set of target-independent
2611 condition that should terminate the frame chain (e.g., as unwinding
2612 past main()).
2613
2614 This function should not contain target-dependent tests, such as
2615 checking whether the program-counter is zero. */
2616
2617frame_info_ptr
2618get_prev_frame (frame_info_ptr this_frame)
2619{
2620 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2621
2622 CORE_ADDR frame_pc;
2623 int frame_pc_p;
2624
2625 /* There is always a frame. If this assertion fails, suspect that
2626 something should be calling get_selected_frame() or
2627 get_current_frame(). */
2628 gdb_assert (this_frame != NULL);
2629
2630 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2631
2632 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2633 sense to stop unwinding at a dummy frame. One place where a dummy
2634 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2635 pcsqh register (space register for the instruction at the head of the
2636 instruction queue) cannot be written directly; the only way to set it
2637 is to branch to code that is in the target space. In order to implement
2638 frame dummies on HPUX, the called function is made to jump back to where
2639 the inferior was when the user function was called. If gdb was inside
2640 the main function when we created the dummy frame, the dummy frame will
2641 point inside the main function. */
2642 if (this_frame->level >= 0
2643 && get_frame_type (this_frame) == NORMAL_FRAME
2644 && !user_set_backtrace_options.backtrace_past_main
2645 && frame_pc_p
2646 && inside_main_func (this_frame))
2647 /* Don't unwind past main(). Note, this is done _before_ the
2648 frame has been marked as previously unwound. That way if the
2649 user later decides to enable unwinds past main(), that will
2650 automatically happen. */
2651 {
2652 frame_debug_got_null_frame (this_frame, "inside main func");
2653 return NULL;
2654 }
2655
2656 /* If the user's backtrace limit has been exceeded, stop. We must
2657 add two to the current level; one of those accounts for backtrace_limit
2658 being 1-based and the level being 0-based, and the other accounts for
2659 the level of the new frame instead of the level of the current
2660 frame. */
2661 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2662 {
2663 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2664 return NULL;
2665 }
2666
2667 /* If we're already inside the entry function for the main objfile,
2668 then it isn't valid. Don't apply this test to a dummy frame -
2669 dummy frame PCs typically land in the entry func. Don't apply
2670 this test to the sentinel frame. Sentinel frames should always
2671 be allowed to unwind. */
2672 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2673 wasn't checking for "main" in the minimal symbols. With that
2674 fixed asm-source tests now stop in "main" instead of halting the
2675 backtrace in weird and wonderful ways somewhere inside the entry
2676 file. Suspect that tests for inside the entry file/func were
2677 added to work around that (now fixed) case. */
2678 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2679 suggested having the inside_entry_func test use the
2680 inside_main_func() msymbol trick (along with entry_point_address()
2681 I guess) to determine the address range of the start function.
2682 That should provide a far better stopper than the current
2683 heuristics. */
2684 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2685 applied tail-call optimizations to main so that a function called
2686 from main returns directly to the caller of main. Since we don't
2687 stop at main, we should at least stop at the entry point of the
2688 application. */
2689 if (this_frame->level >= 0
2690 && get_frame_type (this_frame) == NORMAL_FRAME
2691 && !user_set_backtrace_options.backtrace_past_entry
2692 && frame_pc_p
2693 && inside_entry_func (this_frame))
2694 {
2695 frame_debug_got_null_frame (this_frame, "inside entry func");
2696 return NULL;
2697 }
2698
2699 /* Assume that the only way to get a zero PC is through something
2700 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2701 will never unwind a zero PC. */
2702 if (this_frame->level > 0
2703 && (get_frame_type (this_frame) == NORMAL_FRAME
2704 || get_frame_type (this_frame) == INLINE_FRAME)
2705 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2706 && frame_pc_p && frame_pc == 0)
2707 {
2708 frame_debug_got_null_frame (this_frame, "zero PC");
2709 return NULL;
2710 }
2711
2712 return get_prev_frame_always (this_frame);
2713}
2714
2715CORE_ADDR
2716get_frame_pc (frame_info_ptr frame)
2717{
2718 gdb_assert (frame->next != NULL);
2719 return frame_unwind_pc (frame_info_ptr (frame->next));
2720}
2721
2722bool
2723get_frame_pc_if_available (frame_info_ptr frame, CORE_ADDR *pc)
2724{
2725
2726 gdb_assert (frame->next != NULL);
2727
2728 try
2729 {
2730 *pc = frame_unwind_pc (frame_info_ptr (frame->next));
2731 }
2732 catch (const gdb_exception_error &ex)
2733 {
2734 if (ex.error == NOT_AVAILABLE_ERROR)
2735 return false;
2736 else
2737 throw;
2738 }
2739
2740 return true;
2741}
2742
2743/* Return an address that falls within THIS_FRAME's code block. */
2744
2745CORE_ADDR
2746get_frame_address_in_block (frame_info_ptr this_frame)
2747{
2748 /* A draft address. */
2749 CORE_ADDR pc = get_frame_pc (this_frame);
2750
2751 frame_info_ptr next_frame (this_frame->next);
2752
2753 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2754 Normally the resume address is inside the body of the function
2755 associated with THIS_FRAME, but there is a special case: when
2756 calling a function which the compiler knows will never return
2757 (for instance abort), the call may be the very last instruction
2758 in the calling function. The resume address will point after the
2759 call and may be at the beginning of a different function
2760 entirely.
2761
2762 If THIS_FRAME is a signal frame or dummy frame, then we should
2763 not adjust the unwound PC. For a dummy frame, GDB pushed the
2764 resume address manually onto the stack. For a signal frame, the
2765 OS may have pushed the resume address manually and invoked the
2766 handler (e.g. GNU/Linux), or invoked the trampoline which called
2767 the signal handler - but in either case the signal handler is
2768 expected to return to the trampoline. So in both of these
2769 cases we know that the resume address is executable and
2770 related. So we only need to adjust the PC if THIS_FRAME
2771 is a normal function.
2772
2773 If the program has been interrupted while THIS_FRAME is current,
2774 then clearly the resume address is inside the associated
2775 function. There are three kinds of interruption: debugger stop
2776 (next frame will be SENTINEL_FRAME), operating system
2777 signal or exception (next frame will be SIGTRAMP_FRAME),
2778 or debugger-induced function call (next frame will be
2779 DUMMY_FRAME). So we only need to adjust the PC if
2780 NEXT_FRAME is a normal function.
2781
2782 We check the type of NEXT_FRAME first, since it is already
2783 known; frame type is determined by the unwinder, and since
2784 we have THIS_FRAME we've already selected an unwinder for
2785 NEXT_FRAME.
2786
2787 If the next frame is inlined, we need to keep going until we find
2788 the real function - for instance, if a signal handler is invoked
2789 while in an inlined function, then the code address of the
2790 "calling" normal function should not be adjusted either. */
2791
2792 while (get_frame_type (next_frame) == INLINE_FRAME)
2793 next_frame = frame_info_ptr (next_frame->next);
2794
2795 if ((get_frame_type (next_frame) == NORMAL_FRAME
2796 || get_frame_type (next_frame) == TAILCALL_FRAME)
2797 && (get_frame_type (this_frame) == NORMAL_FRAME
2798 || get_frame_type (this_frame) == TAILCALL_FRAME
2799 || get_frame_type (this_frame) == INLINE_FRAME))
2800 return pc - 1;
2801
2802 return pc;
2803}
2804
2805bool
2806get_frame_address_in_block_if_available (frame_info_ptr this_frame,
2807 CORE_ADDR *pc)
2808{
2809
2810 try
2811 {
2812 *pc = get_frame_address_in_block (this_frame);
2813 }
2814 catch (const gdb_exception_error &ex)
2815 {
2816 if (ex.error == NOT_AVAILABLE_ERROR)
2817 return false;
2818 throw;
2819 }
2820
2821 return true;
2822}
2823
2824symtab_and_line
2825find_frame_sal (frame_info_ptr frame)
2826{
2827 frame_info_ptr next_frame;
2828 int notcurrent;
2829 CORE_ADDR pc;
2830
2831 if (frame_inlined_callees (frame) > 0)
2832 {
2833 struct symbol *sym;
2834
2835 /* If the current frame has some inlined callees, and we have a next
2836 frame, then that frame must be an inlined frame. In this case
2837 this frame's sal is the "call site" of the next frame's inlined
2838 function, which can not be inferred from get_frame_pc. */
2839 next_frame = get_next_frame (frame);
2840 if (next_frame)
2841 sym = get_frame_function (next_frame);
2842 else
2843 sym = inline_skipped_symbol (inferior_thread ());
2844
2845 /* If frame is inline, it certainly has symbols. */
2846 gdb_assert (sym);
2847
2848 symtab_and_line sal;
2849 if (sym->line () != 0)
2850 {
2851 sal.symtab = sym->symtab ();
2852 sal.line = sym->line ();
2853 }
2854 else
2855 /* If the symbol does not have a location, we don't know where
2856 the call site is. Do not pretend to. This is jarring, but
2857 we can't do much better. */
2858 sal.pc = get_frame_pc (frame);
2859
2860 sal.pspace = get_frame_program_space (frame);
2861 return sal;
2862 }
2863
2864 /* If FRAME is not the innermost frame, that normally means that
2865 FRAME->pc points at the return instruction (which is *after* the
2866 call instruction), and we want to get the line containing the
2867 call (because the call is where the user thinks the program is).
2868 However, if the next frame is either a SIGTRAMP_FRAME or a
2869 DUMMY_FRAME, then the next frame will contain a saved interrupt
2870 PC and such a PC indicates the current (rather than next)
2871 instruction/line, consequently, for such cases, want to get the
2872 line containing fi->pc. */
2873 if (!get_frame_pc_if_available (frame, &pc))
2874 return {};
2875
2876 notcurrent = (pc != get_frame_address_in_block (frame));
2877 return find_pc_line (pc, notcurrent);
2878}
2879
2880/* Per "frame.h", return the ``address'' of the frame. Code should
2881 really be using get_frame_id(). */
2882CORE_ADDR
2883get_frame_base (frame_info_ptr fi)
2884{
2885 return get_frame_id (fi).stack_addr;
2886}
2887
2888/* High-level offsets into the frame. Used by the debug info. */
2889
2890CORE_ADDR
2891get_frame_base_address (frame_info_ptr fi)
2892{
2893 if (get_frame_type (fi) != NORMAL_FRAME)
2894 return 0;
2895 if (fi->base == NULL)
2896 fi->base = frame_base_find_by_frame (fi);
2897 /* Sneaky: If the low-level unwind and high-level base code share a
2898 common unwinder, let them share the prologue cache. */
2899 if (fi->base->unwind == fi->unwind)
2900 return fi->base->this_base (fi, &fi->prologue_cache);
2901 return fi->base->this_base (fi, &fi->base_cache);
2902}
2903
2904CORE_ADDR
2905get_frame_locals_address (frame_info_ptr fi)
2906{
2907 if (get_frame_type (fi) != NORMAL_FRAME)
2908 return 0;
2909 /* If there isn't a frame address method, find it. */
2910 if (fi->base == NULL)
2911 fi->base = frame_base_find_by_frame (fi);
2912 /* Sneaky: If the low-level unwind and high-level base code share a
2913 common unwinder, let them share the prologue cache. */
2914 if (fi->base->unwind == fi->unwind)
2915 return fi->base->this_locals (fi, &fi->prologue_cache);
2916 return fi->base->this_locals (fi, &fi->base_cache);
2917}
2918
2919CORE_ADDR
2920get_frame_args_address (frame_info_ptr fi)
2921{
2922 if (get_frame_type (fi) != NORMAL_FRAME)
2923 return 0;
2924 /* If there isn't a frame address method, find it. */
2925 if (fi->base == NULL)
2926 fi->base = frame_base_find_by_frame (fi);
2927 /* Sneaky: If the low-level unwind and high-level base code share a
2928 common unwinder, let them share the prologue cache. */
2929 if (fi->base->unwind == fi->unwind)
2930 return fi->base->this_args (fi, &fi->prologue_cache);
2931 return fi->base->this_args (fi, &fi->base_cache);
2932}
2933
2934/* Return true if the frame unwinder for frame FI is UNWINDER; false
2935 otherwise. */
2936
2937bool
2938frame_unwinder_is (frame_info_ptr fi, const frame_unwind *unwinder)
2939{
2940 if (fi->unwind == nullptr)
2941 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2942
2943 return fi->unwind == unwinder;
2944}
2945
2946/* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2947 or -1 for a NULL frame. */
2948
2949int
2950frame_relative_level (frame_info_ptr fi)
2951{
2952 if (fi == NULL)
2953 return -1;
2954 else
2955 return fi->level;
2956}
2957
2958enum frame_type
2959get_frame_type (frame_info_ptr frame)
2960{
2961 if (frame->unwind == NULL)
2962 /* Initialize the frame's unwinder because that's what
2963 provides the frame's type. */
2964 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2965 return frame->unwind->type;
2966}
2967
2968struct program_space *
2969get_frame_program_space (frame_info_ptr frame)
2970{
2971 return frame->pspace;
2972}
2973
2974struct program_space *
2975frame_unwind_program_space (frame_info_ptr this_frame)
2976{
2977 gdb_assert (this_frame);
2978
2979 /* This is really a placeholder to keep the API consistent --- we
2980 assume for now that we don't have frame chains crossing
2981 spaces. */
2982 return this_frame->pspace;
2983}
2984
2985const address_space *
2986get_frame_address_space (frame_info_ptr frame)
2987{
2988 return frame->aspace;
2989}
2990
2991/* Memory access methods. */
2992
2993void
2994get_frame_memory (frame_info_ptr this_frame, CORE_ADDR addr,
2995 gdb::array_view<gdb_byte> buffer)
2996{
2997 read_memory (addr, buffer.data (), buffer.size ());
2998}
2999
3000LONGEST
3001get_frame_memory_signed (frame_info_ptr this_frame, CORE_ADDR addr,
3002 int len)
3003{
3004 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3006
3007 return read_memory_integer (addr, len, byte_order);
3008}
3009
3010ULONGEST
3011get_frame_memory_unsigned (frame_info_ptr this_frame, CORE_ADDR addr,
3012 int len)
3013{
3014 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3015 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3016
3017 return read_memory_unsigned_integer (addr, len, byte_order);
3018}
3019
3020bool
3021safe_frame_unwind_memory (frame_info_ptr this_frame,
3022 CORE_ADDR addr, gdb::array_view<gdb_byte> buffer)
3023{
3024 /* NOTE: target_read_memory returns zero on success! */
3025 return target_read_memory (addr, buffer.data (), buffer.size ()) == 0;
3026}
3027
3028/* Architecture methods. */
3029
3030struct gdbarch *
3031get_frame_arch (frame_info_ptr this_frame)
3032{
3033 return frame_unwind_arch (frame_info_ptr (this_frame->next));
3034}
3035
3036struct gdbarch *
3037frame_unwind_arch (frame_info_ptr next_frame)
3038{
3039 if (!next_frame->prev_arch.p)
3040 {
3041 struct gdbarch *arch;
3042
3043 if (next_frame->unwind == NULL)
3044 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
3045
3046 if (next_frame->unwind->prev_arch != NULL)
3047 arch = next_frame->unwind->prev_arch (next_frame,
3048 &next_frame->prologue_cache);
3049 else
3050 arch = get_frame_arch (next_frame);
3051
3052 next_frame->prev_arch.arch = arch;
3053 next_frame->prev_arch.p = true;
3054 frame_debug_printf ("next_frame=%d -> %s",
3055 next_frame->level,
3056 gdbarch_bfd_arch_info (arch)->printable_name);
3057 }
3058
3059 return next_frame->prev_arch.arch;
3060}
3061
3062struct gdbarch *
3063frame_unwind_caller_arch (frame_info_ptr next_frame)
3064{
3065 next_frame = skip_artificial_frames (next_frame);
3066
3067 /* We must have a non-artificial frame. The caller is supposed to check
3068 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
3069 in this case. */
3070 gdb_assert (next_frame != NULL);
3071
3072 return frame_unwind_arch (next_frame);
3073}
3074
3075/* Gets the language of FRAME. */
3076
3077enum language
3078get_frame_language (frame_info_ptr frame)
3079{
3080 CORE_ADDR pc = 0;
3081 bool pc_p = false;
3082
3083 gdb_assert (frame!= NULL);
3084
3085 /* We determine the current frame language by looking up its
3086 associated symtab. To retrieve this symtab, we use the frame
3087 PC. However we cannot use the frame PC as is, because it
3088 usually points to the instruction following the "call", which
3089 is sometimes the first instruction of another function. So
3090 we rely on get_frame_address_in_block(), it provides us with
3091 a PC that is guaranteed to be inside the frame's code
3092 block. */
3093
3094 try
3095 {
3096 pc = get_frame_address_in_block (frame);
3097 pc_p = true;
3098 }
3099 catch (const gdb_exception_error &ex)
3100 {
3101 if (ex.error != NOT_AVAILABLE_ERROR)
3102 throw;
3103 }
3104
3105 if (pc_p)
3106 {
3107 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
3108
3109 if (cust != NULL)
3110 return cust->language ();
3111 }
3112
3113 return language_unknown;
3114}
3115
3116/* Stack pointer methods. */
3117
3118CORE_ADDR
3119get_frame_sp (frame_info_ptr this_frame)
3120{
3121 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3122
3123 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
3124 operate on THIS_FRAME now. */
3125 return gdbarch_unwind_sp (gdbarch, frame_info_ptr (this_frame->next));
3126}
3127
3128/* See frame.h. */
3129
3130frame_info_ptr
3131frame_follow_static_link (frame_info_ptr frame)
3132{
3133 const block *frame_block = get_frame_block (frame, nullptr);
3134 frame_block = frame_block->function_block ();
3135
3136 const struct dynamic_prop *static_link = frame_block->static_link ();
3137 if (static_link == nullptr)
3138 return {};
3139
3140 CORE_ADDR upper_frame_base;
3141
3142 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
3143 return {};
3144
3145 /* Now climb up the stack frame until we reach the frame we are interested
3146 in. */
3147 for (; frame != nullptr; frame = get_prev_frame (frame))
3148 {
3149 struct symbol *framefunc = get_frame_function (frame);
3150
3151 /* Stacks can be quite deep: give the user a chance to stop this. */
3152 QUIT;
3153
3154 /* If we don't know how to compute FRAME's base address, don't give up:
3155 maybe the frame we are looking for is upper in the stack frame. */
3156 if (framefunc != NULL
3157 && SYMBOL_BLOCK_OPS (framefunc) != NULL
3158 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
3159 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
3160 == upper_frame_base))
3161 break;
3162 }
3163
3164 return frame;
3165}
3166
3167/* Return the reason why we can't unwind past FRAME. */
3168
3169enum unwind_stop_reason
3170get_frame_unwind_stop_reason (frame_info_ptr frame)
3171{
3172 /* Fill-in STOP_REASON. */
3173 get_prev_frame_always (frame);
3174 gdb_assert (frame->prev_p);
3175
3176 return frame->stop_reason;
3177}
3178
3179/* Return a string explaining REASON. */
3180
3181const char *
3182unwind_stop_reason_to_string (enum unwind_stop_reason reason)
3183{
3184 switch (reason)
3185 {
3186#define SET(name, description) \
3187 case name: return _(description);
3188#include "unwind_stop_reasons.def"
3189#undef SET
3190
3191 default:
3192 internal_error ("Invalid frame stop reason");
3193 }
3194}
3195
3196const char *
3197frame_stop_reason_string (frame_info_ptr fi)
3198{
3199 gdb_assert (fi->prev_p);
3200 gdb_assert (fi->prev == NULL);
3201
3202 /* Return the specific string if we have one. */
3203 if (fi->stop_string != NULL)
3204 return fi->stop_string;
3205
3206 /* Return the generic string if we have nothing better. */
3207 return unwind_stop_reason_to_string (fi->stop_reason);
3208}
3209
3210/* Return the enum symbol name of REASON as a string, to use in debug
3211 output. */
3212
3213static const char *
3214frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3215{
3216 switch (reason)
3217 {
3218#define SET(name, description) \
3219 case name: return #name;
3220#include "unwind_stop_reasons.def"
3221#undef SET
3222
3223 default:
3224 internal_error ("Invalid frame stop reason");
3225 }
3226}
3227
3228/* Clean up after a failed (wrong unwinder) attempt to unwind past
3229 FRAME. */
3230
3231void
3232frame_cleanup_after_sniffer (frame_info_ptr frame)
3233{
3234 /* The sniffer should not allocate a prologue cache if it did not
3235 match this frame. */
3236 gdb_assert (frame->prologue_cache == NULL);
3237
3238 /* No sniffer should extend the frame chain; sniff based on what is
3239 already certain. */
3240 gdb_assert (!frame->prev_p);
3241
3242 /* The sniffer should not check the frame's ID; that's circular. */
3243 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3244
3245 /* Clear cached fields dependent on the unwinder.
3246
3247 The previous PC is independent of the unwinder, but the previous
3248 function is not (see get_frame_address_in_block). */
3249 frame->prev_func.status = CC_UNKNOWN;
3250 frame->prev_func.addr = 0;
3251
3252 /* Discard the unwinder last, so that we can easily find it if an assertion
3253 in this function triggers. */
3254 frame->unwind = NULL;
3255}
3256
3257/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3258 If sniffing fails, the caller should be sure to call
3259 frame_cleanup_after_sniffer. */
3260
3261void
3262frame_prepare_for_sniffer (frame_info_ptr frame,
3263 const struct frame_unwind *unwind)
3264{
3265 gdb_assert (frame->unwind == NULL);
3266 frame->unwind = unwind;
3267}
3268
3269static struct cmd_list_element *set_backtrace_cmdlist;
3270static struct cmd_list_element *show_backtrace_cmdlist;
3271
3272/* Definition of the "set backtrace" settings that are exposed as
3273 "backtrace" command options. */
3274
3275using boolean_option_def
3276 = gdb::option::boolean_option_def<set_backtrace_options>;
3277
3278const gdb::option::option_def set_backtrace_option_defs[] = {
3279
3280 boolean_option_def {
3281 "past-main",
3282 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3283 show_backtrace_past_main, /* show_cmd_cb */
3284 N_("Set whether backtraces should continue past \"main\"."),
3285 N_("Show whether backtraces should continue past \"main\"."),
3286 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3287the backtrace at \"main\". Set this if you need to see the rest\n\
3288of the stack trace."),
3289 },
3290
3291 boolean_option_def {
3292 "past-entry",
3293 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3294 show_backtrace_past_entry, /* show_cmd_cb */
3295 N_("Set whether backtraces should continue past the entry point of a program."),
3296 N_("Show whether backtraces should continue past the entry point of a program."),
3297 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3298will terminate the backtrace there. Set this if you need to see\n\
3299the rest of the stack trace."),
3300 },
3301};
3302
3303/* Implement the 'maintenance print frame-id' command. */
3304
3305static void
3306maintenance_print_frame_id (const char *args, int from_tty)
3307{
3308 frame_info_ptr frame;
3309
3310 /* Use the currently selected frame, or select a frame based on the level
3311 number passed by the user. */
3312 if (args == nullptr)
3313 frame = get_selected_frame ("No frame selected");
3314 else
3315 {
3316 int level = value_as_long (parse_and_eval (args));
3317 frame = find_relative_frame (get_current_frame (), &level);
3318 }
3319
3320 /* Print the frame-id. */
3321 gdb_assert (frame != nullptr);
3322 gdb_printf ("frame-id for frame #%d: %s\n",
3323 frame_relative_level (frame),
3324 get_frame_id (frame).to_string ().c_str ());
3325}
3326
3327/* See frame-info-ptr.h. */
3328
3329frame_info_ptr::frame_info_ptr (struct frame_info *ptr)
3330 : m_ptr (ptr)
3331{
3332 frame_list.push_back (*this);
3333
3334 if (m_ptr == nullptr)
3335 return;
3336
3337 m_cached_level = ptr->level;
3338
3339 if (m_cached_level != 0 || m_ptr->this_id.value.user_created_p)
3340 m_cached_id = m_ptr->this_id.value;
3341}
3342
3343/* See frame-info-ptr.h. */
3344
3345frame_info *
3346frame_info_ptr::reinflate () const
3347{
3348 /* Ensure we have a valid frame level (sentinel frame or above). */
3349 gdb_assert (m_cached_level >= -1);
3350
3351 if (m_ptr != nullptr)
3352 {
3353 /* The frame_info wasn't invalidated, no need to reinflate. */
3354 return m_ptr;
3355 }
3356
3357 if (m_cached_id.user_created_p)
3358 m_ptr = create_new_frame (m_cached_id).get ();
3359 else
3360 {
3361 /* Frame #0 needs special handling, see comment in select_frame. */
3362 if (m_cached_level == 0)
3363 m_ptr = get_current_frame ().get ();
3364 else
3365 {
3366 /* If we reach here without a valid frame id, it means we are trying
3367 to reinflate a frame whose id was not know at construction time.
3368 We're probably trying to reinflate a frame while computing its id
3369 which is not possible, and would indicate a problem with GDB. */
3370 gdb_assert (frame_id_p (m_cached_id));
3371 m_ptr = frame_find_by_id (m_cached_id).get ();
3372 }
3373 }
3374
3375 gdb_assert (m_ptr != nullptr);
3376 return m_ptr;
3377}
3378
3379void _initialize_frame ();
3380void
3381_initialize_frame ()
3382{
3383 obstack_init (&frame_cache_obstack);
3384
3385 frame_stash_create ();
3386
3387 gdb::observers::target_changed.attach (frame_observer_target_changed,
3388 "frame");
3389
3390 add_setshow_prefix_cmd ("backtrace", class_maintenance,
3391 _("\
3392Set backtrace specific variables.\n\
3393Configure backtrace variables such as the backtrace limit"),
3394 _("\
3395Show backtrace specific variables.\n\
3396Show backtrace variables such as the backtrace limit."),
3397 &set_backtrace_cmdlist, &show_backtrace_cmdlist,
3398 &setlist, &showlist);
3399
3400 add_setshow_uinteger_cmd ("limit", class_obscure,
3401 &user_set_backtrace_options.backtrace_limit, _("\
3402Set an upper bound on the number of backtrace levels."), _("\
3403Show the upper bound on the number of backtrace levels."), _("\
3404No more than the specified number of frames can be displayed or examined.\n\
3405Literal \"unlimited\" or zero means no limit."),
3406 NULL,
3407 show_backtrace_limit,
3408 &set_backtrace_cmdlist,
3409 &show_backtrace_cmdlist);
3410
3411 gdb::option::add_setshow_cmds_for_options
3412 (class_stack, &user_set_backtrace_options,
3413 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3414
3415 /* Debug this files internals. */
3416 add_setshow_boolean_cmd ("frame", class_maintenance, &frame_debug, _("\
3417Set frame debugging."), _("\
3418Show frame debugging."), _("\
3419When non-zero, frame specific internal debugging is enabled."),
3420 NULL,
3421 show_frame_debug,
3422 &setdebuglist, &showdebuglist);
3423
3424 add_cmd ("frame-id", class_maintenance, maintenance_print_frame_id,
3425 _("Print the current frame-id."),
3426 &maintenanceprintlist);
3427}