]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/infrun.c
gdb: rename target_waitstatus_to_string to target_waitstatus::to_string
[thirdparty/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "displaced-stepping.h"
23#include "infrun.h"
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "target-connection.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include "inf-loop.h"
38#include "regcache.h"
39#include "value.h"
40#include "observable.h"
41#include "language.h"
42#include "solib.h"
43#include "main.h"
44#include "block.h"
45#include "mi/mi-common.h"
46#include "event-top.h"
47#include "record.h"
48#include "record-full.h"
49#include "inline-frame.h"
50#include "jit.h"
51#include "tracepoint.h"
52#include "skip.h"
53#include "probe.h"
54#include "objfiles.h"
55#include "completer.h"
56#include "target-descriptions.h"
57#include "target-dcache.h"
58#include "terminal.h"
59#include "solist.h"
60#include "gdbsupport/event-loop.h"
61#include "thread-fsm.h"
62#include "gdbsupport/enum-flags.h"
63#include "progspace-and-thread.h"
64#include "gdbsupport/gdb_optional.h"
65#include "arch-utils.h"
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
68#include "gdbsupport/gdb_select.h"
69#include <unordered_map>
70#include "async-event.h"
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
74#include "gdbsupport/common-debug.h"
75
76/* Prototypes for local functions */
77
78static void sig_print_info (enum gdb_signal);
79
80static void sig_print_header (void);
81
82static void follow_inferior_reset_breakpoints (void);
83
84static bool currently_stepping (struct thread_info *tp);
85
86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92static bool maybe_software_singlestep (struct gdbarch *gdbarch);
93
94static void resume (gdb_signal sig);
95
96static void wait_for_inferior (inferior *inf);
97
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135bool step_stop_if_no_debug = false;
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
142
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147static ptid_t previous_inferior_ptid;
148
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static bool detach_fork = true;
155
156bool debug_infrun = false;
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
163
164/* Support for disabling address space randomization. */
165
166bool disable_randomization = true;
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
184set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
193/* User interface for non-stop mode. */
194
195bool non_stop = false;
196static bool non_stop_1 = false;
197
198static void
199set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201{
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224static bool observer_mode = false;
225static bool observer_mode_1 = false;
226
227static void
228set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230{
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
292
293/* Tables of how to react to signals; the user sets them. */
294
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
331 target_program_signals (signal_program);
332}
333
334/* Value to pass to target_resume() to cause all threads to resume. */
335
336#define RESUME_ALL minus_one_ptid
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344int stop_on_solib_events;
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352{
353 update_solib_breakpoints ();
354}
355
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
363
364/* True after stop if current stack frame should be printed. */
365
366static bool stop_print_frame;
367
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
372static ptid_t target_last_wait_ptid;
373static struct target_waitstatus target_last_waitstatus;
374
375void init_thread_stepping_state (struct thread_info *tss);
376
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
380static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384};
385
386static const char *follow_fork_mode_string = follow_fork_mode_parent;
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395}
396\f
397
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
406{
407 target_waitkind fork_kind = inferior_thread ()->pending_follow.kind ();
408 gdb_assert (fork_kind == TARGET_WAITKIND_FORKED
409 || fork_kind == TARGET_WAITKIND_VFORKED);
410 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
411 ptid_t parent_ptid = inferior_ptid;
412 ptid_t child_ptid = inferior_thread ()->pending_follow.child_ptid ();
413
414 if (has_vforked
415 && !non_stop /* Non-stop always resumes both branches. */
416 && current_ui->prompt_state == PROMPT_BLOCKED
417 && !(follow_child || detach_fork || sched_multi))
418 {
419 /* The parent stays blocked inside the vfork syscall until the
420 child execs or exits. If we don't let the child run, then
421 the parent stays blocked. If we're telling the parent to run
422 in the foreground, the user will not be able to ctrl-c to get
423 back the terminal, effectively hanging the debug session. */
424 fprintf_filtered (gdb_stderr, _("\
425Can not resume the parent process over vfork in the foreground while\n\
426holding the child stopped. Try \"set detach-on-fork\" or \
427\"set schedule-multiple\".\n"));
428 return true;
429 }
430
431 inferior *parent_inf = current_inferior ();
432 inferior *child_inf = nullptr;
433
434 if (!follow_child)
435 {
436 /* Detach new forked process? */
437 if (detach_fork)
438 {
439 /* Before detaching from the child, remove all breakpoints
440 from it. If we forked, then this has already been taken
441 care of by infrun.c. If we vforked however, any
442 breakpoint inserted in the parent is visible in the
443 child, even those added while stopped in a vfork
444 catchpoint. This will remove the breakpoints from the
445 parent also, but they'll be reinserted below. */
446 if (has_vforked)
447 {
448 /* Keep breakpoints list in sync. */
449 remove_breakpoints_inf (current_inferior ());
450 }
451
452 if (print_inferior_events)
453 {
454 /* Ensure that we have a process ptid. */
455 ptid_t process_ptid = ptid_t (child_ptid.pid ());
456
457 target_terminal::ours_for_output ();
458 printf_filtered (_("[Detaching after %s from child %s]\n"),
459 has_vforked ? "vfork" : "fork",
460 target_pid_to_str (process_ptid).c_str ());
461 }
462 }
463 else
464 {
465 /* Add process to GDB's tables. */
466 child_inf = add_inferior (child_ptid.pid ());
467
468 child_inf->attach_flag = parent_inf->attach_flag;
469 copy_terminal_info (child_inf, parent_inf);
470 child_inf->gdbarch = parent_inf->gdbarch;
471 copy_inferior_target_desc_info (child_inf, parent_inf);
472
473 child_inf->symfile_flags = SYMFILE_NO_READ;
474
475 /* If this is a vfork child, then the address-space is
476 shared with the parent. */
477 if (has_vforked)
478 {
479 child_inf->pspace = parent_inf->pspace;
480 child_inf->aspace = parent_inf->aspace;
481
482 exec_on_vfork (child_inf);
483
484 /* The parent will be frozen until the child is done
485 with the shared region. Keep track of the
486 parent. */
487 child_inf->vfork_parent = parent_inf;
488 child_inf->pending_detach = 0;
489 parent_inf->vfork_child = child_inf;
490 parent_inf->pending_detach = 0;
491 }
492 else
493 {
494 child_inf->aspace = new_address_space ();
495 child_inf->pspace = new program_space (child_inf->aspace);
496 child_inf->removable = 1;
497 clone_program_space (child_inf->pspace, parent_inf->pspace);
498 }
499 }
500
501 if (has_vforked)
502 {
503 /* If we detached from the child, then we have to be careful
504 to not insert breakpoints in the parent until the child
505 is done with the shared memory region. However, if we're
506 staying attached to the child, then we can and should
507 insert breakpoints, so that we can debug it. A
508 subsequent child exec or exit is enough to know when does
509 the child stops using the parent's address space. */
510 parent_inf->waiting_for_vfork_done = detach_fork;
511 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
512 }
513 }
514 else
515 {
516 /* Follow the child. */
517
518 if (print_inferior_events)
519 {
520 std::string parent_pid = target_pid_to_str (parent_ptid);
521 std::string child_pid = target_pid_to_str (child_ptid);
522
523 target_terminal::ours_for_output ();
524 printf_filtered (_("[Attaching after %s %s to child %s]\n"),
525 parent_pid.c_str (),
526 has_vforked ? "vfork" : "fork",
527 child_pid.c_str ());
528 }
529
530 /* Add the new inferior first, so that the target_detach below
531 doesn't unpush the target. */
532
533 child_inf = add_inferior (child_ptid.pid ());
534
535 child_inf->attach_flag = parent_inf->attach_flag;
536 copy_terminal_info (child_inf, parent_inf);
537 child_inf->gdbarch = parent_inf->gdbarch;
538 copy_inferior_target_desc_info (child_inf, parent_inf);
539
540 if (has_vforked)
541 {
542 /* If this is a vfork child, then the address-space is shared
543 with the parent. */
544 child_inf->aspace = parent_inf->aspace;
545 child_inf->pspace = parent_inf->pspace;
546
547 exec_on_vfork (child_inf);
548 }
549 else if (detach_fork)
550 {
551 /* We follow the child and detach from the parent: move the parent's
552 program space to the child. This simplifies some things, like
553 doing "next" over fork() and landing on the expected line in the
554 child (note, that is broken with "set detach-on-fork off").
555
556 Before assigning brand new spaces for the parent, remove
557 breakpoints from it: because the new pspace won't match
558 currently inserted locations, the normal detach procedure
559 wouldn't remove them, and we would leave them inserted when
560 detaching. */
561 remove_breakpoints_inf (parent_inf);
562
563 child_inf->aspace = parent_inf->aspace;
564 child_inf->pspace = parent_inf->pspace;
565 parent_inf->aspace = new_address_space ();
566 parent_inf->pspace = new program_space (parent_inf->aspace);
567 clone_program_space (parent_inf->pspace, child_inf->pspace);
568
569 /* The parent inferior is still the current one, so keep things
570 in sync. */
571 set_current_program_space (parent_inf->pspace);
572 }
573 else
574 {
575 child_inf->aspace = new_address_space ();
576 child_inf->pspace = new program_space (child_inf->aspace);
577 child_inf->removable = 1;
578 child_inf->symfile_flags = SYMFILE_NO_READ;
579 clone_program_space (child_inf->pspace, parent_inf->pspace);
580 }
581 }
582
583 gdb_assert (current_inferior () == parent_inf);
584
585 /* If we are setting up an inferior for the child, target_follow_fork is
586 responsible for pushing the appropriate targets on the new inferior's
587 target stack and adding the initial thread (with ptid CHILD_PTID).
588
589 If we are not setting up an inferior for the child (because following
590 the parent and detach_fork is true), it is responsible for detaching
591 from CHILD_PTID. */
592 target_follow_fork (child_inf, child_ptid, fork_kind, follow_child,
593 detach_fork);
594
595 /* target_follow_fork must leave the parent as the current inferior. If we
596 want to follow the child, we make it the current one below. */
597 gdb_assert (current_inferior () == parent_inf);
598
599 /* If there is a child inferior, target_follow_fork must have created a thread
600 for it. */
601 if (child_inf != nullptr)
602 gdb_assert (!child_inf->thread_list.empty ());
603
604 /* Detach the parent if needed. */
605 if (follow_child)
606 {
607 /* If we're vforking, we want to hold on to the parent until
608 the child exits or execs. At child exec or exit time we
609 can remove the old breakpoints from the parent and detach
610 or resume debugging it. Otherwise, detach the parent now;
611 we'll want to reuse it's program/address spaces, but we
612 can't set them to the child before removing breakpoints
613 from the parent, otherwise, the breakpoints module could
614 decide to remove breakpoints from the wrong process (since
615 they'd be assigned to the same address space). */
616
617 if (has_vforked)
618 {
619 gdb_assert (child_inf->vfork_parent == NULL);
620 gdb_assert (parent_inf->vfork_child == NULL);
621 child_inf->vfork_parent = parent_inf;
622 child_inf->pending_detach = 0;
623 parent_inf->vfork_child = child_inf;
624 parent_inf->pending_detach = detach_fork;
625 parent_inf->waiting_for_vfork_done = 0;
626 }
627 else if (detach_fork)
628 {
629 if (print_inferior_events)
630 {
631 /* Ensure that we have a process ptid. */
632 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
633
634 target_terminal::ours_for_output ();
635 printf_filtered (_("[Detaching after fork from "
636 "parent %s]\n"),
637 target_pid_to_str (process_ptid).c_str ());
638 }
639
640 target_detach (parent_inf, 0);
641 }
642 }
643
644 /* If we ended up creating a new inferior, call post_create_inferior to inform
645 the various subcomponents. */
646 if (child_inf != nullptr)
647 {
648 /* If FOLLOW_CHILD, we leave CHILD_INF as the current inferior
649 (do not restore the parent as the current inferior). */
650 gdb::optional<scoped_restore_current_thread> maybe_restore;
651
652 if (!follow_child)
653 maybe_restore.emplace ();
654
655 switch_to_thread (*child_inf->threads ().begin ());
656 post_create_inferior (0);
657 }
658
659 return false;
660}
661
662/* Tell the target to follow the fork we're stopped at. Returns true
663 if the inferior should be resumed; false, if the target for some
664 reason decided it's best not to resume. */
665
666static bool
667follow_fork ()
668{
669 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
670 bool should_resume = true;
671 struct thread_info *tp;
672
673 /* Copy user stepping state to the new inferior thread. FIXME: the
674 followed fork child thread should have a copy of most of the
675 parent thread structure's run control related fields, not just these.
676 Initialized to avoid "may be used uninitialized" warnings from gcc. */
677 struct breakpoint *step_resume_breakpoint = NULL;
678 struct breakpoint *exception_resume_breakpoint = NULL;
679 CORE_ADDR step_range_start = 0;
680 CORE_ADDR step_range_end = 0;
681 int current_line = 0;
682 symtab *current_symtab = NULL;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 process_stratum_target *wait_target;
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind () != TARGET_WAITKIND_FORKED
698 && wait_status.kind () != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (wait_ptid != minus_one_ptid
704 && (current_inferior ()->process_target () != wait_target
705 || inferior_ptid != wait_ptid))
706 {
707 /* We did. Switch back to WAIT_PTID thread, to tell the
708 target to follow it (in either direction). We'll
709 afterwards refuse to resume, and inform the user what
710 happened. */
711 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
712 switch_to_thread (wait_thread);
713 should_resume = false;
714 }
715 }
716
717 tp = inferior_thread ();
718
719 /* If there were any forks/vforks that were caught and are now to be
720 followed, then do so now. */
721 switch (tp->pending_follow.kind ())
722 {
723 case TARGET_WAITKIND_FORKED:
724 case TARGET_WAITKIND_VFORKED:
725 {
726 ptid_t parent, child;
727
728 /* If the user did a next/step, etc, over a fork call,
729 preserve the stepping state in the fork child. */
730 if (follow_child && should_resume)
731 {
732 step_resume_breakpoint = clone_momentary_breakpoint
733 (tp->control.step_resume_breakpoint);
734 step_range_start = tp->control.step_range_start;
735 step_range_end = tp->control.step_range_end;
736 current_line = tp->current_line;
737 current_symtab = tp->current_symtab;
738 step_frame_id = tp->control.step_frame_id;
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
741 thread_fsm = tp->thread_fsm;
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
752 delete_exception_resume_breakpoint (tp);
753 tp->thread_fsm = NULL;
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.child_ptid ();
758
759 process_stratum_target *parent_targ = tp->inf->process_target ();
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
775 tp = find_thread_ptid (parent_targ, parent);
776 if (tp)
777 tp->pending_follow.set_spurious ();
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
783 /* If we followed the child, switch to it... */
784 if (follow_child)
785 {
786 thread_info *child_thr = find_thread_ptid (parent_targ, child);
787 switch_to_thread (child_thr);
788
789 /* ... and preserve the stepping state, in case the
790 user was stepping over the fork call. */
791 if (should_resume)
792 {
793 tp = inferior_thread ();
794 tp->control.step_resume_breakpoint
795 = step_resume_breakpoint;
796 tp->control.step_range_start = step_range_start;
797 tp->control.step_range_end = step_range_end;
798 tp->current_line = current_line;
799 tp->current_symtab = current_symtab;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind ());
830 break;
831 }
832
833 return should_resume;
834}
835
836static void
837follow_inferior_reset_breakpoints (void)
838{
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874}
875
876/* The child has exited or execed: resume THREAD, a thread of the parent,
877 if it was meant to be executing. */
878
879static void
880proceed_after_vfork_done (thread_info *thread)
881{
882 if (thread->state == THREAD_RUNNING
883 && !thread->executing ()
884 && !thread->stop_requested
885 && thread->stop_signal () == GDB_SIGNAL_0)
886 {
887 infrun_debug_printf ("resuming vfork parent thread %s",
888 thread->ptid.to_string ().c_str ());
889
890 switch_to_thread (thread);
891 clear_proceed_status (0);
892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
893 }
894}
895
896/* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899static void
900handle_vfork_child_exec_or_exit (int exec)
901{
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 inferior *resume_parent = nullptr;
907
908 /* This exec or exit marks the end of the shared memory region
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
913
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
917 {
918 struct program_space *pspace;
919 struct address_space *aspace;
920
921 /* follow-fork child, detach-on-fork on. */
922
923 vfork_parent->pending_detach = 0;
924
925 scoped_restore_current_pspace_and_thread restore_thread;
926
927 /* We're letting loose of the parent. */
928 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
929 switch_to_thread (tp);
930
931 /* We're about to detach from the parent, which implicitly
932 removes breakpoints from its address space. There's a
933 catch here: we want to reuse the spaces for the child,
934 but, parent/child are still sharing the pspace at this
935 point, although the exec in reality makes the kernel give
936 the child a fresh set of new pages. The problem here is
937 that the breakpoints module being unaware of this, would
938 likely chose the child process to write to the parent
939 address space. Swapping the child temporarily away from
940 the spaces has the desired effect. Yes, this is "sort
941 of" a hack. */
942
943 pspace = inf->pspace;
944 aspace = inf->aspace;
945 inf->aspace = NULL;
946 inf->pspace = NULL;
947
948 if (print_inferior_events)
949 {
950 std::string pidstr
951 = target_pid_to_str (ptid_t (vfork_parent->pid));
952
953 target_terminal::ours_for_output ();
954
955 if (exec)
956 {
957 printf_filtered (_("[Detaching vfork parent %s "
958 "after child exec]\n"), pidstr.c_str ());
959 }
960 else
961 {
962 printf_filtered (_("[Detaching vfork parent %s "
963 "after child exit]\n"), pidstr.c_str ());
964 }
965 }
966
967 target_detach (vfork_parent, 0);
968
969 /* Put it back. */
970 inf->pspace = pspace;
971 inf->aspace = aspace;
972 }
973 else if (exec)
974 {
975 /* We're staying attached to the parent, so, really give the
976 child a new address space. */
977 inf->pspace = new program_space (maybe_new_address_space ());
978 inf->aspace = inf->pspace->aspace;
979 inf->removable = 1;
980 set_current_program_space (inf->pspace);
981
982 resume_parent = vfork_parent;
983 }
984 else
985 {
986 /* If this is a vfork child exiting, then the pspace and
987 aspaces were shared with the parent. Since we're
988 reporting the process exit, we'll be mourning all that is
989 found in the address space, and switching to null_ptid,
990 preparing to start a new inferior. But, since we don't
991 want to clobber the parent's address/program spaces, we
992 go ahead and create a new one for this exiting
993 inferior. */
994
995 /* Switch to no-thread while running clone_program_space, so
996 that clone_program_space doesn't want to read the
997 selected frame of a dead process. */
998 scoped_restore_current_thread restore_thread;
999 switch_to_no_thread ();
1000
1001 inf->pspace = new program_space (maybe_new_address_space ());
1002 inf->aspace = inf->pspace->aspace;
1003 set_current_program_space (inf->pspace);
1004 inf->removable = 1;
1005 inf->symfile_flags = SYMFILE_NO_READ;
1006 clone_program_space (inf->pspace, vfork_parent->pspace);
1007
1008 resume_parent = vfork_parent;
1009 }
1010
1011 gdb_assert (current_program_space == inf->pspace);
1012
1013 if (non_stop && resume_parent != nullptr)
1014 {
1015 /* If the user wanted the parent to be running, let it go
1016 free now. */
1017 scoped_restore_current_thread restore_thread;
1018
1019 infrun_debug_printf ("resuming vfork parent process %d",
1020 resume_parent->pid);
1021
1022 for (thread_info *thread : resume_parent->threads ())
1023 proceed_after_vfork_done (thread);
1024 }
1025 }
1026}
1027
1028/* Enum strings for "set|show follow-exec-mode". */
1029
1030static const char follow_exec_mode_new[] = "new";
1031static const char follow_exec_mode_same[] = "same";
1032static const char *const follow_exec_mode_names[] =
1033{
1034 follow_exec_mode_new,
1035 follow_exec_mode_same,
1036 NULL,
1037};
1038
1039static const char *follow_exec_mode_string = follow_exec_mode_same;
1040static void
1041show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1042 struct cmd_list_element *c, const char *value)
1043{
1044 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1045}
1046
1047/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1048
1049static void
1050follow_exec (ptid_t ptid, const char *exec_file_target)
1051{
1052 int pid = ptid.pid ();
1053 ptid_t process_ptid;
1054
1055 /* Switch terminal for any messages produced e.g. by
1056 breakpoint_re_set. */
1057 target_terminal::ours_for_output ();
1058
1059 /* This is an exec event that we actually wish to pay attention to.
1060 Refresh our symbol table to the newly exec'd program, remove any
1061 momentary bp's, etc.
1062
1063 If there are breakpoints, they aren't really inserted now,
1064 since the exec() transformed our inferior into a fresh set
1065 of instructions.
1066
1067 We want to preserve symbolic breakpoints on the list, since
1068 we have hopes that they can be reset after the new a.out's
1069 symbol table is read.
1070
1071 However, any "raw" breakpoints must be removed from the list
1072 (e.g., the solib bp's), since their address is probably invalid
1073 now.
1074
1075 And, we DON'T want to call delete_breakpoints() here, since
1076 that may write the bp's "shadow contents" (the instruction
1077 value that was overwritten with a TRAP instruction). Since
1078 we now have a new a.out, those shadow contents aren't valid. */
1079
1080 mark_breakpoints_out ();
1081
1082 /* The target reports the exec event to the main thread, even if
1083 some other thread does the exec, and even if the main thread was
1084 stopped or already gone. We may still have non-leader threads of
1085 the process on our list. E.g., on targets that don't have thread
1086 exit events (like remote); or on native Linux in non-stop mode if
1087 there were only two threads in the inferior and the non-leader
1088 one is the one that execs (and nothing forces an update of the
1089 thread list up to here). When debugging remotely, it's best to
1090 avoid extra traffic, when possible, so avoid syncing the thread
1091 list with the target, and instead go ahead and delete all threads
1092 of the process but one that reported the event. Note this must
1093 be done before calling update_breakpoints_after_exec, as
1094 otherwise clearing the threads' resources would reference stale
1095 thread breakpoints -- it may have been one of these threads that
1096 stepped across the exec. We could just clear their stepping
1097 states, but as long as we're iterating, might as well delete
1098 them. Deleting them now rather than at the next user-visible
1099 stop provides a nicer sequence of events for user and MI
1100 notifications. */
1101 for (thread_info *th : all_threads_safe ())
1102 if (th->ptid.pid () == pid && th->ptid != ptid)
1103 delete_thread (th);
1104
1105 /* We also need to clear any left over stale state for the
1106 leader/event thread. E.g., if there was any step-resume
1107 breakpoint or similar, it's gone now. We cannot truly
1108 step-to-next statement through an exec(). */
1109 thread_info *th = inferior_thread ();
1110 th->control.step_resume_breakpoint = NULL;
1111 th->control.exception_resume_breakpoint = NULL;
1112 th->control.single_step_breakpoints = NULL;
1113 th->control.step_range_start = 0;
1114 th->control.step_range_end = 0;
1115
1116 /* The user may have had the main thread held stopped in the
1117 previous image (e.g., schedlock on, or non-stop). Release
1118 it now. */
1119 th->stop_requested = 0;
1120
1121 update_breakpoints_after_exec ();
1122
1123 /* What is this a.out's name? */
1124 process_ptid = ptid_t (pid);
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (process_ptid).c_str (),
1127 exec_file_target);
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1130 inferior has essentially been killed & reborn. */
1131
1132 breakpoint_init_inferior (inf_execd);
1133
1134 gdb::unique_xmalloc_ptr<char> exec_file_host
1135 = exec_file_find (exec_file_target, NULL);
1136
1137 /* If we were unable to map the executable target pathname onto a host
1138 pathname, tell the user that. Otherwise GDB's subsequent behavior
1139 is confusing. Maybe it would even be better to stop at this point
1140 so that the user can specify a file manually before continuing. */
1141 if (exec_file_host == NULL)
1142 warning (_("Could not load symbols for executable %s.\n"
1143 "Do you need \"set sysroot\"?"),
1144 exec_file_target);
1145
1146 /* Reset the shared library package. This ensures that we get a
1147 shlib event when the child reaches "_start", at which point the
1148 dld will have had a chance to initialize the child. */
1149 /* Also, loading a symbol file below may trigger symbol lookups, and
1150 we don't want those to be satisfied by the libraries of the
1151 previous incarnation of this process. */
1152 no_shared_libraries (NULL, 0);
1153
1154 struct inferior *inf = current_inferior ();
1155
1156 if (follow_exec_mode_string == follow_exec_mode_new)
1157 {
1158 /* The user wants to keep the old inferior and program spaces
1159 around. Create a new fresh one, and switch to it. */
1160
1161 /* Do exit processing for the original inferior before setting the new
1162 inferior's pid. Having two inferiors with the same pid would confuse
1163 find_inferior_p(t)id. Transfer the terminal state and info from the
1164 old to the new inferior. */
1165 inferior *new_inferior = add_inferior_with_spaces ();
1166
1167 swap_terminal_info (new_inferior, inf);
1168 exit_inferior_silent (inf);
1169
1170 new_inferior->pid = pid;
1171 target_follow_exec (new_inferior, ptid, exec_file_target);
1172
1173 /* We continue with the new inferior. */
1174 inf = new_inferior;
1175 }
1176 else
1177 {
1178 /* The old description may no longer be fit for the new image.
1179 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1180 old description; we'll read a new one below. No need to do
1181 this on "follow-exec-mode new", as the old inferior stays
1182 around (its description is later cleared/refetched on
1183 restart). */
1184 target_clear_description ();
1185 target_follow_exec (inf, ptid, exec_file_target);
1186 }
1187
1188 gdb_assert (current_inferior () == inf);
1189 gdb_assert (current_program_space == inf->pspace);
1190
1191 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1192 because the proper displacement for a PIE (Position Independent
1193 Executable) main symbol file will only be computed by
1194 solib_create_inferior_hook below. breakpoint_re_set would fail
1195 to insert the breakpoints with the zero displacement. */
1196 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1197
1198 /* If the target can specify a description, read it. Must do this
1199 after flipping to the new executable (because the target supplied
1200 description must be compatible with the executable's
1201 architecture, and the old executable may e.g., be 32-bit, while
1202 the new one 64-bit), and before anything involving memory or
1203 registers. */
1204 target_find_description ();
1205
1206 gdb::observers::inferior_execd.notify (inf);
1207
1208 breakpoint_re_set ();
1209
1210 /* Reinsert all breakpoints. (Those which were symbolic have
1211 been reset to the proper address in the new a.out, thanks
1212 to symbol_file_command...). */
1213 insert_breakpoints ();
1214
1215 /* The next resume of this inferior should bring it to the shlib
1216 startup breakpoints. (If the user had also set bp's on
1217 "main" from the old (parent) process, then they'll auto-
1218 matically get reset there in the new process.). */
1219}
1220
1221/* The chain of threads that need to do a step-over operation to get
1222 past e.g., a breakpoint. What technique is used to step over the
1223 breakpoint/watchpoint does not matter -- all threads end up in the
1224 same queue, to maintain rough temporal order of execution, in order
1225 to avoid starvation, otherwise, we could e.g., find ourselves
1226 constantly stepping the same couple threads past their breakpoints
1227 over and over, if the single-step finish fast enough. */
1228thread_step_over_list global_thread_step_over_list;
1229
1230/* Bit flags indicating what the thread needs to step over. */
1231
1232enum step_over_what_flag
1233 {
1234 /* Step over a breakpoint. */
1235 STEP_OVER_BREAKPOINT = 1,
1236
1237 /* Step past a non-continuable watchpoint, in order to let the
1238 instruction execute so we can evaluate the watchpoint
1239 expression. */
1240 STEP_OVER_WATCHPOINT = 2
1241 };
1242DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1243
1244/* Info about an instruction that is being stepped over. */
1245
1246struct step_over_info
1247{
1248 /* If we're stepping past a breakpoint, this is the address space
1249 and address of the instruction the breakpoint is set at. We'll
1250 skip inserting all breakpoints here. Valid iff ASPACE is
1251 non-NULL. */
1252 const address_space *aspace = nullptr;
1253 CORE_ADDR address = 0;
1254
1255 /* The instruction being stepped over triggers a nonsteppable
1256 watchpoint. If true, we'll skip inserting watchpoints. */
1257 int nonsteppable_watchpoint_p = 0;
1258
1259 /* The thread's global number. */
1260 int thread = -1;
1261};
1262
1263/* The step-over info of the location that is being stepped over.
1264
1265 Note that with async/breakpoint always-inserted mode, a user might
1266 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1267 being stepped over. As setting a new breakpoint inserts all
1268 breakpoints, we need to make sure the breakpoint being stepped over
1269 isn't inserted then. We do that by only clearing the step-over
1270 info when the step-over is actually finished (or aborted).
1271
1272 Presently GDB can only step over one breakpoint at any given time.
1273 Given threads that can't run code in the same address space as the
1274 breakpoint's can't really miss the breakpoint, GDB could be taught
1275 to step-over at most one breakpoint per address space (so this info
1276 could move to the address space object if/when GDB is extended).
1277 The set of breakpoints being stepped over will normally be much
1278 smaller than the set of all breakpoints, so a flag in the
1279 breakpoint location structure would be wasteful. A separate list
1280 also saves complexity and run-time, as otherwise we'd have to go
1281 through all breakpoint locations clearing their flag whenever we
1282 start a new sequence. Similar considerations weigh against storing
1283 this info in the thread object. Plus, not all step overs actually
1284 have breakpoint locations -- e.g., stepping past a single-step
1285 breakpoint, or stepping to complete a non-continuable
1286 watchpoint. */
1287static struct step_over_info step_over_info;
1288
1289/* Record the address of the breakpoint/instruction we're currently
1290 stepping over.
1291 N.B. We record the aspace and address now, instead of say just the thread,
1292 because when we need the info later the thread may be running. */
1293
1294static void
1295set_step_over_info (const address_space *aspace, CORE_ADDR address,
1296 int nonsteppable_watchpoint_p,
1297 int thread)
1298{
1299 step_over_info.aspace = aspace;
1300 step_over_info.address = address;
1301 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1302 step_over_info.thread = thread;
1303}
1304
1305/* Called when we're not longer stepping over a breakpoint / an
1306 instruction, so all breakpoints are free to be (re)inserted. */
1307
1308static void
1309clear_step_over_info (void)
1310{
1311 infrun_debug_printf ("clearing step over info");
1312 step_over_info.aspace = NULL;
1313 step_over_info.address = 0;
1314 step_over_info.nonsteppable_watchpoint_p = 0;
1315 step_over_info.thread = -1;
1316}
1317
1318/* See infrun.h. */
1319
1320int
1321stepping_past_instruction_at (struct address_space *aspace,
1322 CORE_ADDR address)
1323{
1324 return (step_over_info.aspace != NULL
1325 && breakpoint_address_match (aspace, address,
1326 step_over_info.aspace,
1327 step_over_info.address));
1328}
1329
1330/* See infrun.h. */
1331
1332int
1333thread_is_stepping_over_breakpoint (int thread)
1334{
1335 return (step_over_info.thread != -1
1336 && thread == step_over_info.thread);
1337}
1338
1339/* See infrun.h. */
1340
1341int
1342stepping_past_nonsteppable_watchpoint (void)
1343{
1344 return step_over_info.nonsteppable_watchpoint_p;
1345}
1346
1347/* Returns true if step-over info is valid. */
1348
1349static bool
1350step_over_info_valid_p (void)
1351{
1352 return (step_over_info.aspace != NULL
1353 || stepping_past_nonsteppable_watchpoint ());
1354}
1355
1356\f
1357/* Displaced stepping. */
1358
1359/* In non-stop debugging mode, we must take special care to manage
1360 breakpoints properly; in particular, the traditional strategy for
1361 stepping a thread past a breakpoint it has hit is unsuitable.
1362 'Displaced stepping' is a tactic for stepping one thread past a
1363 breakpoint it has hit while ensuring that other threads running
1364 concurrently will hit the breakpoint as they should.
1365
1366 The traditional way to step a thread T off a breakpoint in a
1367 multi-threaded program in all-stop mode is as follows:
1368
1369 a0) Initially, all threads are stopped, and breakpoints are not
1370 inserted.
1371 a1) We single-step T, leaving breakpoints uninserted.
1372 a2) We insert breakpoints, and resume all threads.
1373
1374 In non-stop debugging, however, this strategy is unsuitable: we
1375 don't want to have to stop all threads in the system in order to
1376 continue or step T past a breakpoint. Instead, we use displaced
1377 stepping:
1378
1379 n0) Initially, T is stopped, other threads are running, and
1380 breakpoints are inserted.
1381 n1) We copy the instruction "under" the breakpoint to a separate
1382 location, outside the main code stream, making any adjustments
1383 to the instruction, register, and memory state as directed by
1384 T's architecture.
1385 n2) We single-step T over the instruction at its new location.
1386 n3) We adjust the resulting register and memory state as directed
1387 by T's architecture. This includes resetting T's PC to point
1388 back into the main instruction stream.
1389 n4) We resume T.
1390
1391 This approach depends on the following gdbarch methods:
1392
1393 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1394 indicate where to copy the instruction, and how much space must
1395 be reserved there. We use these in step n1.
1396
1397 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1398 address, and makes any necessary adjustments to the instruction,
1399 register contents, and memory. We use this in step n1.
1400
1401 - gdbarch_displaced_step_fixup adjusts registers and memory after
1402 we have successfully single-stepped the instruction, to yield the
1403 same effect the instruction would have had if we had executed it
1404 at its original address. We use this in step n3.
1405
1406 The gdbarch_displaced_step_copy_insn and
1407 gdbarch_displaced_step_fixup functions must be written so that
1408 copying an instruction with gdbarch_displaced_step_copy_insn,
1409 single-stepping across the copied instruction, and then applying
1410 gdbarch_displaced_insn_fixup should have the same effects on the
1411 thread's memory and registers as stepping the instruction in place
1412 would have. Exactly which responsibilities fall to the copy and
1413 which fall to the fixup is up to the author of those functions.
1414
1415 See the comments in gdbarch.sh for details.
1416
1417 Note that displaced stepping and software single-step cannot
1418 currently be used in combination, although with some care I think
1419 they could be made to. Software single-step works by placing
1420 breakpoints on all possible subsequent instructions; if the
1421 displaced instruction is a PC-relative jump, those breakpoints
1422 could fall in very strange places --- on pages that aren't
1423 executable, or at addresses that are not proper instruction
1424 boundaries. (We do generally let other threads run while we wait
1425 to hit the software single-step breakpoint, and they might
1426 encounter such a corrupted instruction.) One way to work around
1427 this would be to have gdbarch_displaced_step_copy_insn fully
1428 simulate the effect of PC-relative instructions (and return NULL)
1429 on architectures that use software single-stepping.
1430
1431 In non-stop mode, we can have independent and simultaneous step
1432 requests, so more than one thread may need to simultaneously step
1433 over a breakpoint. The current implementation assumes there is
1434 only one scratch space per process. In this case, we have to
1435 serialize access to the scratch space. If thread A wants to step
1436 over a breakpoint, but we are currently waiting for some other
1437 thread to complete a displaced step, we leave thread A stopped and
1438 place it in the displaced_step_request_queue. Whenever a displaced
1439 step finishes, we pick the next thread in the queue and start a new
1440 displaced step operation on it. See displaced_step_prepare and
1441 displaced_step_finish for details. */
1442
1443/* Return true if THREAD is doing a displaced step. */
1444
1445static bool
1446displaced_step_in_progress_thread (thread_info *thread)
1447{
1448 gdb_assert (thread != NULL);
1449
1450 return thread->displaced_step_state.in_progress ();
1451}
1452
1453/* Return true if INF has a thread doing a displaced step. */
1454
1455static bool
1456displaced_step_in_progress (inferior *inf)
1457{
1458 return inf->displaced_step_state.in_progress_count > 0;
1459}
1460
1461/* Return true if any thread is doing a displaced step. */
1462
1463static bool
1464displaced_step_in_progress_any_thread ()
1465{
1466 for (inferior *inf : all_non_exited_inferiors ())
1467 {
1468 if (displaced_step_in_progress (inf))
1469 return true;
1470 }
1471
1472 return false;
1473}
1474
1475static void
1476infrun_inferior_exit (struct inferior *inf)
1477{
1478 inf->displaced_step_state.reset ();
1479}
1480
1481static void
1482infrun_inferior_execd (inferior *inf)
1483{
1484 /* If some threads where was doing a displaced step in this inferior at the
1485 moment of the exec, they no longer exist. Even if the exec'ing thread
1486 doing a displaced step, we don't want to to any fixup nor restore displaced
1487 stepping buffer bytes. */
1488 inf->displaced_step_state.reset ();
1489
1490 for (thread_info *thread : inf->threads ())
1491 thread->displaced_step_state.reset ();
1492
1493 /* Since an in-line step is done with everything else stopped, if there was
1494 one in progress at the time of the exec, it must have been the exec'ing
1495 thread. */
1496 clear_step_over_info ();
1497}
1498
1499/* If ON, and the architecture supports it, GDB will use displaced
1500 stepping to step over breakpoints. If OFF, or if the architecture
1501 doesn't support it, GDB will instead use the traditional
1502 hold-and-step approach. If AUTO (which is the default), GDB will
1503 decide which technique to use to step over breakpoints depending on
1504 whether the target works in a non-stop way (see use_displaced_stepping). */
1505
1506static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1507
1508static void
1509show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1510 struct cmd_list_element *c,
1511 const char *value)
1512{
1513 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1514 fprintf_filtered (file,
1515 _("Debugger's willingness to use displaced stepping "
1516 "to step over breakpoints is %s (currently %s).\n"),
1517 value, target_is_non_stop_p () ? "on" : "off");
1518 else
1519 fprintf_filtered (file,
1520 _("Debugger's willingness to use displaced stepping "
1521 "to step over breakpoints is %s.\n"), value);
1522}
1523
1524/* Return true if the gdbarch implements the required methods to use
1525 displaced stepping. */
1526
1527static bool
1528gdbarch_supports_displaced_stepping (gdbarch *arch)
1529{
1530 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1531 that if `prepare` is provided, so is `finish`. */
1532 return gdbarch_displaced_step_prepare_p (arch);
1533}
1534
1535/* Return non-zero if displaced stepping can/should be used to step
1536 over breakpoints of thread TP. */
1537
1538static bool
1539use_displaced_stepping (thread_info *tp)
1540{
1541 /* If the user disabled it explicitly, don't use displaced stepping. */
1542 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1543 return false;
1544
1545 /* If "auto", only use displaced stepping if the target operates in a non-stop
1546 way. */
1547 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1548 && !target_is_non_stop_p ())
1549 return false;
1550
1551 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1552
1553 /* If the architecture doesn't implement displaced stepping, don't use
1554 it. */
1555 if (!gdbarch_supports_displaced_stepping (gdbarch))
1556 return false;
1557
1558 /* If recording, don't use displaced stepping. */
1559 if (find_record_target () != nullptr)
1560 return false;
1561
1562 /* If displaced stepping failed before for this inferior, don't bother trying
1563 again. */
1564 if (tp->inf->displaced_step_state.failed_before)
1565 return false;
1566
1567 return true;
1568}
1569
1570/* Simple function wrapper around displaced_step_thread_state::reset. */
1571
1572static void
1573displaced_step_reset (displaced_step_thread_state *displaced)
1574{
1575 displaced->reset ();
1576}
1577
1578/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1579 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1580
1581using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1582
1583/* See infrun.h. */
1584
1585std::string
1586displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1587{
1588 std::string ret;
1589
1590 for (size_t i = 0; i < len; i++)
1591 {
1592 if (i == 0)
1593 ret += string_printf ("%02x", buf[i]);
1594 else
1595 ret += string_printf (" %02x", buf[i]);
1596 }
1597
1598 return ret;
1599}
1600
1601/* Prepare to single-step, using displaced stepping.
1602
1603 Note that we cannot use displaced stepping when we have a signal to
1604 deliver. If we have a signal to deliver and an instruction to step
1605 over, then after the step, there will be no indication from the
1606 target whether the thread entered a signal handler or ignored the
1607 signal and stepped over the instruction successfully --- both cases
1608 result in a simple SIGTRAP. In the first case we mustn't do a
1609 fixup, and in the second case we must --- but we can't tell which.
1610 Comments in the code for 'random signals' in handle_inferior_event
1611 explain how we handle this case instead.
1612
1613 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1614 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1615 if displaced stepping this thread got queued; or
1616 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1617 stepped. */
1618
1619static displaced_step_prepare_status
1620displaced_step_prepare_throw (thread_info *tp)
1621{
1622 regcache *regcache = get_thread_regcache (tp);
1623 struct gdbarch *gdbarch = regcache->arch ();
1624 displaced_step_thread_state &disp_step_thread_state
1625 = tp->displaced_step_state;
1626
1627 /* We should never reach this function if the architecture does not
1628 support displaced stepping. */
1629 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1630
1631 /* Nor if the thread isn't meant to step over a breakpoint. */
1632 gdb_assert (tp->control.trap_expected);
1633
1634 /* Disable range stepping while executing in the scratch pad. We
1635 want a single-step even if executing the displaced instruction in
1636 the scratch buffer lands within the stepping range (e.g., a
1637 jump/branch). */
1638 tp->control.may_range_step = 0;
1639
1640 /* We are about to start a displaced step for this thread. If one is already
1641 in progress, something's wrong. */
1642 gdb_assert (!disp_step_thread_state.in_progress ());
1643
1644 if (tp->inf->displaced_step_state.unavailable)
1645 {
1646 /* The gdbarch tells us it's not worth asking to try a prepare because
1647 it is likely that it will return unavailable, so don't bother asking. */
1648
1649 displaced_debug_printf ("deferring step of %s",
1650 tp->ptid.to_string ().c_str ());
1651
1652 global_thread_step_over_chain_enqueue (tp);
1653 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1654 }
1655
1656 displaced_debug_printf ("displaced-stepping %s now",
1657 tp->ptid.to_string ().c_str ());
1658
1659 scoped_restore_current_thread restore_thread;
1660
1661 switch_to_thread (tp);
1662
1663 CORE_ADDR original_pc = regcache_read_pc (regcache);
1664 CORE_ADDR displaced_pc;
1665
1666 displaced_step_prepare_status status
1667 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1668
1669 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1670 {
1671 displaced_debug_printf ("failed to prepare (%s)",
1672 tp->ptid.to_string ().c_str ());
1673
1674 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1675 }
1676 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1677 {
1678 /* Not enough displaced stepping resources available, defer this
1679 request by placing it the queue. */
1680
1681 displaced_debug_printf ("not enough resources available, "
1682 "deferring step of %s",
1683 tp->ptid.to_string ().c_str ());
1684
1685 global_thread_step_over_chain_enqueue (tp);
1686
1687 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1688 }
1689
1690 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1691
1692 /* Save the information we need to fix things up if the step
1693 succeeds. */
1694 disp_step_thread_state.set (gdbarch);
1695
1696 tp->inf->displaced_step_state.in_progress_count++;
1697
1698 displaced_debug_printf ("prepared successfully thread=%s, "
1699 "original_pc=%s, displaced_pc=%s",
1700 tp->ptid.to_string ().c_str (),
1701 paddress (gdbarch, original_pc),
1702 paddress (gdbarch, displaced_pc));
1703
1704 return DISPLACED_STEP_PREPARE_STATUS_OK;
1705}
1706
1707/* Wrapper for displaced_step_prepare_throw that disabled further
1708 attempts at displaced stepping if we get a memory error. */
1709
1710static displaced_step_prepare_status
1711displaced_step_prepare (thread_info *thread)
1712{
1713 displaced_step_prepare_status status
1714 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1715
1716 try
1717 {
1718 status = displaced_step_prepare_throw (thread);
1719 }
1720 catch (const gdb_exception_error &ex)
1721 {
1722 if (ex.error != MEMORY_ERROR
1723 && ex.error != NOT_SUPPORTED_ERROR)
1724 throw;
1725
1726 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1727 ex.what ());
1728
1729 /* Be verbose if "set displaced-stepping" is "on", silent if
1730 "auto". */
1731 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1732 {
1733 warning (_("disabling displaced stepping: %s"),
1734 ex.what ());
1735 }
1736
1737 /* Disable further displaced stepping attempts. */
1738 thread->inf->displaced_step_state.failed_before = 1;
1739 }
1740
1741 return status;
1742}
1743
1744/* If we displaced stepped an instruction successfully, adjust registers and
1745 memory to yield the same effect the instruction would have had if we had
1746 executed it at its original address, and return
1747 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1748 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1749
1750 If the thread wasn't displaced stepping, return
1751 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1752
1753static displaced_step_finish_status
1754displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1755{
1756 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1757
1758 /* Was this thread performing a displaced step? */
1759 if (!displaced->in_progress ())
1760 return DISPLACED_STEP_FINISH_STATUS_OK;
1761
1762 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1763 event_thread->inf->displaced_step_state.in_progress_count--;
1764
1765 /* Fixup may need to read memory/registers. Switch to the thread
1766 that we're fixing up. Also, target_stopped_by_watchpoint checks
1767 the current thread, and displaced_step_restore performs ptid-dependent
1768 memory accesses using current_inferior(). */
1769 switch_to_thread (event_thread);
1770
1771 displaced_step_reset_cleanup cleanup (displaced);
1772
1773 /* Do the fixup, and release the resources acquired to do the displaced
1774 step. */
1775 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1776 event_thread, signal);
1777}
1778
1779/* Data to be passed around while handling an event. This data is
1780 discarded between events. */
1781struct execution_control_state
1782{
1783 execution_control_state ()
1784 {
1785 this->reset ();
1786 }
1787
1788 void reset ()
1789 {
1790 this->target = nullptr;
1791 this->ptid = null_ptid;
1792 this->event_thread = nullptr;
1793 ws = target_waitstatus ();
1794 stop_func_filled_in = 0;
1795 stop_func_start = 0;
1796 stop_func_end = 0;
1797 stop_func_name = nullptr;
1798 wait_some_more = 0;
1799 hit_singlestep_breakpoint = 0;
1800 }
1801
1802 process_stratum_target *target;
1803 ptid_t ptid;
1804 /* The thread that got the event, if this was a thread event; NULL
1805 otherwise. */
1806 struct thread_info *event_thread;
1807
1808 struct target_waitstatus ws;
1809 int stop_func_filled_in;
1810 CORE_ADDR stop_func_start;
1811 CORE_ADDR stop_func_end;
1812 const char *stop_func_name;
1813 int wait_some_more;
1814
1815 /* True if the event thread hit the single-step breakpoint of
1816 another thread. Thus the event doesn't cause a stop, the thread
1817 needs to be single-stepped past the single-step breakpoint before
1818 we can switch back to the original stepping thread. */
1819 int hit_singlestep_breakpoint;
1820};
1821
1822/* Clear ECS and set it to point at TP. */
1823
1824static void
1825reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1826{
1827 ecs->reset ();
1828 ecs->event_thread = tp;
1829 ecs->ptid = tp->ptid;
1830}
1831
1832static void keep_going_pass_signal (struct execution_control_state *ecs);
1833static void prepare_to_wait (struct execution_control_state *ecs);
1834static bool keep_going_stepped_thread (struct thread_info *tp);
1835static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1836
1837/* Are there any pending step-over requests? If so, run all we can
1838 now and return true. Otherwise, return false. */
1839
1840static bool
1841start_step_over (void)
1842{
1843 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1844
1845 /* Don't start a new step-over if we already have an in-line
1846 step-over operation ongoing. */
1847 if (step_over_info_valid_p ())
1848 return false;
1849
1850 /* Steal the global thread step over chain. As we try to initiate displaced
1851 steps, threads will be enqueued in the global chain if no buffers are
1852 available. If we iterated on the global chain directly, we might iterate
1853 indefinitely. */
1854 thread_step_over_list threads_to_step
1855 = std::move (global_thread_step_over_list);
1856
1857 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1858 thread_step_over_chain_length (threads_to_step));
1859
1860 bool started = false;
1861
1862 /* On scope exit (whatever the reason, return or exception), if there are
1863 threads left in the THREADS_TO_STEP chain, put back these threads in the
1864 global list. */
1865 SCOPE_EXIT
1866 {
1867 if (threads_to_step.empty ())
1868 infrun_debug_printf ("step-over queue now empty");
1869 else
1870 {
1871 infrun_debug_printf ("putting back %d threads to step in global queue",
1872 thread_step_over_chain_length (threads_to_step));
1873
1874 global_thread_step_over_chain_enqueue_chain
1875 (std::move (threads_to_step));
1876 }
1877 };
1878
1879 thread_step_over_list_safe_range range
1880 = make_thread_step_over_list_safe_range (threads_to_step);
1881
1882 for (thread_info *tp : range)
1883 {
1884 struct execution_control_state ecss;
1885 struct execution_control_state *ecs = &ecss;
1886 step_over_what step_what;
1887 int must_be_in_line;
1888
1889 gdb_assert (!tp->stop_requested);
1890
1891 if (tp->inf->displaced_step_state.unavailable)
1892 {
1893 /* The arch told us to not even try preparing another displaced step
1894 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1895 will get moved to the global chain on scope exit. */
1896 continue;
1897 }
1898
1899 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1900 while we try to prepare the displaced step, we don't add it back to
1901 the global step over chain. This is to avoid a thread staying in the
1902 step over chain indefinitely if something goes wrong when resuming it
1903 If the error is intermittent and it still needs a step over, it will
1904 get enqueued again when we try to resume it normally. */
1905 threads_to_step.erase (threads_to_step.iterator_to (*tp));
1906
1907 step_what = thread_still_needs_step_over (tp);
1908 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1909 || ((step_what & STEP_OVER_BREAKPOINT)
1910 && !use_displaced_stepping (tp)));
1911
1912 /* We currently stop all threads of all processes to step-over
1913 in-line. If we need to start a new in-line step-over, let
1914 any pending displaced steps finish first. */
1915 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1916 {
1917 global_thread_step_over_chain_enqueue (tp);
1918 continue;
1919 }
1920
1921 if (tp->control.trap_expected
1922 || tp->resumed ()
1923 || tp->executing ())
1924 {
1925 internal_error (__FILE__, __LINE__,
1926 "[%s] has inconsistent state: "
1927 "trap_expected=%d, resumed=%d, executing=%d\n",
1928 tp->ptid.to_string ().c_str (),
1929 tp->control.trap_expected,
1930 tp->resumed (),
1931 tp->executing ());
1932 }
1933
1934 infrun_debug_printf ("resuming [%s] for step-over",
1935 tp->ptid.to_string ().c_str ());
1936
1937 /* keep_going_pass_signal skips the step-over if the breakpoint
1938 is no longer inserted. In all-stop, we want to keep looking
1939 for a thread that needs a step-over instead of resuming TP,
1940 because we wouldn't be able to resume anything else until the
1941 target stops again. In non-stop, the resume always resumes
1942 only TP, so it's OK to let the thread resume freely. */
1943 if (!target_is_non_stop_p () && !step_what)
1944 continue;
1945
1946 switch_to_thread (tp);
1947 reset_ecs (ecs, tp);
1948 keep_going_pass_signal (ecs);
1949
1950 if (!ecs->wait_some_more)
1951 error (_("Command aborted."));
1952
1953 /* If the thread's step over could not be initiated because no buffers
1954 were available, it was re-added to the global step over chain. */
1955 if (tp->resumed ())
1956 {
1957 infrun_debug_printf ("[%s] was resumed.",
1958 tp->ptid.to_string ().c_str ());
1959 gdb_assert (!thread_is_in_step_over_chain (tp));
1960 }
1961 else
1962 {
1963 infrun_debug_printf ("[%s] was NOT resumed.",
1964 tp->ptid.to_string ().c_str ());
1965 gdb_assert (thread_is_in_step_over_chain (tp));
1966 }
1967
1968 /* If we started a new in-line step-over, we're done. */
1969 if (step_over_info_valid_p ())
1970 {
1971 gdb_assert (tp->control.trap_expected);
1972 started = true;
1973 break;
1974 }
1975
1976 if (!target_is_non_stop_p ())
1977 {
1978 /* On all-stop, shouldn't have resumed unless we needed a
1979 step over. */
1980 gdb_assert (tp->control.trap_expected
1981 || tp->step_after_step_resume_breakpoint);
1982
1983 /* With remote targets (at least), in all-stop, we can't
1984 issue any further remote commands until the program stops
1985 again. */
1986 started = true;
1987 break;
1988 }
1989
1990 /* Either the thread no longer needed a step-over, or a new
1991 displaced stepping sequence started. Even in the latter
1992 case, continue looking. Maybe we can also start another
1993 displaced step on a thread of other process. */
1994 }
1995
1996 return started;
1997}
1998
1999/* Update global variables holding ptids to hold NEW_PTID if they were
2000 holding OLD_PTID. */
2001static void
2002infrun_thread_ptid_changed (process_stratum_target *target,
2003 ptid_t old_ptid, ptid_t new_ptid)
2004{
2005 if (inferior_ptid == old_ptid
2006 && current_inferior ()->process_target () == target)
2007 inferior_ptid = new_ptid;
2008}
2009
2010\f
2011
2012static const char schedlock_off[] = "off";
2013static const char schedlock_on[] = "on";
2014static const char schedlock_step[] = "step";
2015static const char schedlock_replay[] = "replay";
2016static const char *const scheduler_enums[] = {
2017 schedlock_off,
2018 schedlock_on,
2019 schedlock_step,
2020 schedlock_replay,
2021 NULL
2022};
2023static const char *scheduler_mode = schedlock_replay;
2024static void
2025show_scheduler_mode (struct ui_file *file, int from_tty,
2026 struct cmd_list_element *c, const char *value)
2027{
2028 fprintf_filtered (file,
2029 _("Mode for locking scheduler "
2030 "during execution is \"%s\".\n"),
2031 value);
2032}
2033
2034static void
2035set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2036{
2037 if (!target_can_lock_scheduler ())
2038 {
2039 scheduler_mode = schedlock_off;
2040 error (_("Target '%s' cannot support this command."),
2041 target_shortname ());
2042 }
2043}
2044
2045/* True if execution commands resume all threads of all processes by
2046 default; otherwise, resume only threads of the current inferior
2047 process. */
2048bool sched_multi = false;
2049
2050/* Try to setup for software single stepping. Return true if target_resume()
2051 should use hardware single step.
2052
2053 GDBARCH the current gdbarch. */
2054
2055static bool
2056maybe_software_singlestep (struct gdbarch *gdbarch)
2057{
2058 bool hw_step = true;
2059
2060 if (execution_direction == EXEC_FORWARD
2061 && gdbarch_software_single_step_p (gdbarch))
2062 hw_step = !insert_single_step_breakpoints (gdbarch);
2063
2064 return hw_step;
2065}
2066
2067/* See infrun.h. */
2068
2069ptid_t
2070user_visible_resume_ptid (int step)
2071{
2072 ptid_t resume_ptid;
2073
2074 if (non_stop)
2075 {
2076 /* With non-stop mode on, threads are always handled
2077 individually. */
2078 resume_ptid = inferior_ptid;
2079 }
2080 else if ((scheduler_mode == schedlock_on)
2081 || (scheduler_mode == schedlock_step && step))
2082 {
2083 /* User-settable 'scheduler' mode requires solo thread
2084 resume. */
2085 resume_ptid = inferior_ptid;
2086 }
2087 else if ((scheduler_mode == schedlock_replay)
2088 && target_record_will_replay (minus_one_ptid, execution_direction))
2089 {
2090 /* User-settable 'scheduler' mode requires solo thread resume in replay
2091 mode. */
2092 resume_ptid = inferior_ptid;
2093 }
2094 else if (!sched_multi && target_supports_multi_process ())
2095 {
2096 /* Resume all threads of the current process (and none of other
2097 processes). */
2098 resume_ptid = ptid_t (inferior_ptid.pid ());
2099 }
2100 else
2101 {
2102 /* Resume all threads of all processes. */
2103 resume_ptid = RESUME_ALL;
2104 }
2105
2106 return resume_ptid;
2107}
2108
2109/* See infrun.h. */
2110
2111process_stratum_target *
2112user_visible_resume_target (ptid_t resume_ptid)
2113{
2114 return (resume_ptid == minus_one_ptid && sched_multi
2115 ? NULL
2116 : current_inferior ()->process_target ());
2117}
2118
2119/* Return a ptid representing the set of threads that we will resume,
2120 in the perspective of the target, assuming run control handling
2121 does not require leaving some threads stopped (e.g., stepping past
2122 breakpoint). USER_STEP indicates whether we're about to start the
2123 target for a stepping command. */
2124
2125static ptid_t
2126internal_resume_ptid (int user_step)
2127{
2128 /* In non-stop, we always control threads individually. Note that
2129 the target may always work in non-stop mode even with "set
2130 non-stop off", in which case user_visible_resume_ptid could
2131 return a wildcard ptid. */
2132 if (target_is_non_stop_p ())
2133 return inferior_ptid;
2134 else
2135 return user_visible_resume_ptid (user_step);
2136}
2137
2138/* Wrapper for target_resume, that handles infrun-specific
2139 bookkeeping. */
2140
2141static void
2142do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2143{
2144 struct thread_info *tp = inferior_thread ();
2145
2146 gdb_assert (!tp->stop_requested);
2147
2148 /* Install inferior's terminal modes. */
2149 target_terminal::inferior ();
2150
2151 /* Avoid confusing the next resume, if the next stop/resume
2152 happens to apply to another thread. */
2153 tp->set_stop_signal (GDB_SIGNAL_0);
2154
2155 /* Advise target which signals may be handled silently.
2156
2157 If we have removed breakpoints because we are stepping over one
2158 in-line (in any thread), we need to receive all signals to avoid
2159 accidentally skipping a breakpoint during execution of a signal
2160 handler.
2161
2162 Likewise if we're displaced stepping, otherwise a trap for a
2163 breakpoint in a signal handler might be confused with the
2164 displaced step finishing. We don't make the displaced_step_finish
2165 step distinguish the cases instead, because:
2166
2167 - a backtrace while stopped in the signal handler would show the
2168 scratch pad as frame older than the signal handler, instead of
2169 the real mainline code.
2170
2171 - when the thread is later resumed, the signal handler would
2172 return to the scratch pad area, which would no longer be
2173 valid. */
2174 if (step_over_info_valid_p ()
2175 || displaced_step_in_progress (tp->inf))
2176 target_pass_signals ({});
2177 else
2178 target_pass_signals (signal_pass);
2179
2180 target_resume (resume_ptid, step, sig);
2181
2182 if (target_can_async_p ())
2183 target_async (1);
2184}
2185
2186/* Resume the inferior. SIG is the signal to give the inferior
2187 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2188 call 'resume', which handles exceptions. */
2189
2190static void
2191resume_1 (enum gdb_signal sig)
2192{
2193 struct regcache *regcache = get_current_regcache ();
2194 struct gdbarch *gdbarch = regcache->arch ();
2195 struct thread_info *tp = inferior_thread ();
2196 const address_space *aspace = regcache->aspace ();
2197 ptid_t resume_ptid;
2198 /* This represents the user's step vs continue request. When
2199 deciding whether "set scheduler-locking step" applies, it's the
2200 user's intention that counts. */
2201 const int user_step = tp->control.stepping_command;
2202 /* This represents what we'll actually request the target to do.
2203 This can decay from a step to a continue, if e.g., we need to
2204 implement single-stepping with breakpoints (software
2205 single-step). */
2206 bool step;
2207
2208 gdb_assert (!tp->stop_requested);
2209 gdb_assert (!thread_is_in_step_over_chain (tp));
2210
2211 if (tp->has_pending_waitstatus ())
2212 {
2213 infrun_debug_printf
2214 ("thread %s has pending wait "
2215 "status %s (currently_stepping=%d).",
2216 tp->ptid.to_string ().c_str (),
2217 tp->pending_waitstatus ().to_string ().c_str (),
2218 currently_stepping (tp));
2219
2220 tp->inf->process_target ()->threads_executing = true;
2221 tp->set_resumed (true);
2222
2223 /* FIXME: What should we do if we are supposed to resume this
2224 thread with a signal? Maybe we should maintain a queue of
2225 pending signals to deliver. */
2226 if (sig != GDB_SIGNAL_0)
2227 {
2228 warning (_("Couldn't deliver signal %s to %s."),
2229 gdb_signal_to_name (sig),
2230 tp->ptid.to_string ().c_str ());
2231 }
2232
2233 tp->set_stop_signal (GDB_SIGNAL_0);
2234
2235 if (target_can_async_p ())
2236 {
2237 target_async (1);
2238 /* Tell the event loop we have an event to process. */
2239 mark_async_event_handler (infrun_async_inferior_event_token);
2240 }
2241 return;
2242 }
2243
2244 tp->stepped_breakpoint = 0;
2245
2246 /* Depends on stepped_breakpoint. */
2247 step = currently_stepping (tp);
2248
2249 if (current_inferior ()->waiting_for_vfork_done)
2250 {
2251 /* Don't try to single-step a vfork parent that is waiting for
2252 the child to get out of the shared memory region (by exec'ing
2253 or exiting). This is particularly important on software
2254 single-step archs, as the child process would trip on the
2255 software single step breakpoint inserted for the parent
2256 process. Since the parent will not actually execute any
2257 instruction until the child is out of the shared region (such
2258 are vfork's semantics), it is safe to simply continue it.
2259 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2260 the parent, and tell it to `keep_going', which automatically
2261 re-sets it stepping. */
2262 infrun_debug_printf ("resume : clear step");
2263 step = false;
2264 }
2265
2266 CORE_ADDR pc = regcache_read_pc (regcache);
2267
2268 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2269 "current thread [%s] at %s",
2270 step, gdb_signal_to_symbol_string (sig),
2271 tp->control.trap_expected,
2272 inferior_ptid.to_string ().c_str (),
2273 paddress (gdbarch, pc));
2274
2275 /* Normally, by the time we reach `resume', the breakpoints are either
2276 removed or inserted, as appropriate. The exception is if we're sitting
2277 at a permanent breakpoint; we need to step over it, but permanent
2278 breakpoints can't be removed. So we have to test for it here. */
2279 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2280 {
2281 if (sig != GDB_SIGNAL_0)
2282 {
2283 /* We have a signal to pass to the inferior. The resume
2284 may, or may not take us to the signal handler. If this
2285 is a step, we'll need to stop in the signal handler, if
2286 there's one, (if the target supports stepping into
2287 handlers), or in the next mainline instruction, if
2288 there's no handler. If this is a continue, we need to be
2289 sure to run the handler with all breakpoints inserted.
2290 In all cases, set a breakpoint at the current address
2291 (where the handler returns to), and once that breakpoint
2292 is hit, resume skipping the permanent breakpoint. If
2293 that breakpoint isn't hit, then we've stepped into the
2294 signal handler (or hit some other event). We'll delete
2295 the step-resume breakpoint then. */
2296
2297 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2298 "deliver signal first");
2299
2300 clear_step_over_info ();
2301 tp->control.trap_expected = 0;
2302
2303 if (tp->control.step_resume_breakpoint == NULL)
2304 {
2305 /* Set a "high-priority" step-resume, as we don't want
2306 user breakpoints at PC to trigger (again) when this
2307 hits. */
2308 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2309 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2310
2311 tp->step_after_step_resume_breakpoint = step;
2312 }
2313
2314 insert_breakpoints ();
2315 }
2316 else
2317 {
2318 /* There's no signal to pass, we can go ahead and skip the
2319 permanent breakpoint manually. */
2320 infrun_debug_printf ("skipping permanent breakpoint");
2321 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2322 /* Update pc to reflect the new address from which we will
2323 execute instructions. */
2324 pc = regcache_read_pc (regcache);
2325
2326 if (step)
2327 {
2328 /* We've already advanced the PC, so the stepping part
2329 is done. Now we need to arrange for a trap to be
2330 reported to handle_inferior_event. Set a breakpoint
2331 at the current PC, and run to it. Don't update
2332 prev_pc, because if we end in
2333 switch_back_to_stepped_thread, we want the "expected
2334 thread advanced also" branch to be taken. IOW, we
2335 don't want this thread to step further from PC
2336 (overstep). */
2337 gdb_assert (!step_over_info_valid_p ());
2338 insert_single_step_breakpoint (gdbarch, aspace, pc);
2339 insert_breakpoints ();
2340
2341 resume_ptid = internal_resume_ptid (user_step);
2342 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2343 tp->set_resumed (true);
2344 return;
2345 }
2346 }
2347 }
2348
2349 /* If we have a breakpoint to step over, make sure to do a single
2350 step only. Same if we have software watchpoints. */
2351 if (tp->control.trap_expected || bpstat_should_step ())
2352 tp->control.may_range_step = 0;
2353
2354 /* If displaced stepping is enabled, step over breakpoints by executing a
2355 copy of the instruction at a different address.
2356
2357 We can't use displaced stepping when we have a signal to deliver;
2358 the comments for displaced_step_prepare explain why. The
2359 comments in the handle_inferior event for dealing with 'random
2360 signals' explain what we do instead.
2361
2362 We can't use displaced stepping when we are waiting for vfork_done
2363 event, displaced stepping breaks the vfork child similarly as single
2364 step software breakpoint. */
2365 if (tp->control.trap_expected
2366 && use_displaced_stepping (tp)
2367 && !step_over_info_valid_p ()
2368 && sig == GDB_SIGNAL_0
2369 && !current_inferior ()->waiting_for_vfork_done)
2370 {
2371 displaced_step_prepare_status prepare_status
2372 = displaced_step_prepare (tp);
2373
2374 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2375 {
2376 infrun_debug_printf ("Got placed in step-over queue");
2377
2378 tp->control.trap_expected = 0;
2379 return;
2380 }
2381 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2382 {
2383 /* Fallback to stepping over the breakpoint in-line. */
2384
2385 if (target_is_non_stop_p ())
2386 stop_all_threads ();
2387
2388 set_step_over_info (regcache->aspace (),
2389 regcache_read_pc (regcache), 0, tp->global_num);
2390
2391 step = maybe_software_singlestep (gdbarch);
2392
2393 insert_breakpoints ();
2394 }
2395 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2396 {
2397 /* Update pc to reflect the new address from which we will
2398 execute instructions due to displaced stepping. */
2399 pc = regcache_read_pc (get_thread_regcache (tp));
2400
2401 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2402 }
2403 else
2404 gdb_assert_not_reached ("Invalid displaced_step_prepare_status "
2405 "value.");
2406 }
2407
2408 /* Do we need to do it the hard way, w/temp breakpoints? */
2409 else if (step)
2410 step = maybe_software_singlestep (gdbarch);
2411
2412 /* Currently, our software single-step implementation leads to different
2413 results than hardware single-stepping in one situation: when stepping
2414 into delivering a signal which has an associated signal handler,
2415 hardware single-step will stop at the first instruction of the handler,
2416 while software single-step will simply skip execution of the handler.
2417
2418 For now, this difference in behavior is accepted since there is no
2419 easy way to actually implement single-stepping into a signal handler
2420 without kernel support.
2421
2422 However, there is one scenario where this difference leads to follow-on
2423 problems: if we're stepping off a breakpoint by removing all breakpoints
2424 and then single-stepping. In this case, the software single-step
2425 behavior means that even if there is a *breakpoint* in the signal
2426 handler, GDB still would not stop.
2427
2428 Fortunately, we can at least fix this particular issue. We detect
2429 here the case where we are about to deliver a signal while software
2430 single-stepping with breakpoints removed. In this situation, we
2431 revert the decisions to remove all breakpoints and insert single-
2432 step breakpoints, and instead we install a step-resume breakpoint
2433 at the current address, deliver the signal without stepping, and
2434 once we arrive back at the step-resume breakpoint, actually step
2435 over the breakpoint we originally wanted to step over. */
2436 if (thread_has_single_step_breakpoints_set (tp)
2437 && sig != GDB_SIGNAL_0
2438 && step_over_info_valid_p ())
2439 {
2440 /* If we have nested signals or a pending signal is delivered
2441 immediately after a handler returns, might already have
2442 a step-resume breakpoint set on the earlier handler. We cannot
2443 set another step-resume breakpoint; just continue on until the
2444 original breakpoint is hit. */
2445 if (tp->control.step_resume_breakpoint == NULL)
2446 {
2447 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2448 tp->step_after_step_resume_breakpoint = 1;
2449 }
2450
2451 delete_single_step_breakpoints (tp);
2452
2453 clear_step_over_info ();
2454 tp->control.trap_expected = 0;
2455
2456 insert_breakpoints ();
2457 }
2458
2459 /* If STEP is set, it's a request to use hardware stepping
2460 facilities. But in that case, we should never
2461 use singlestep breakpoint. */
2462 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2463
2464 /* Decide the set of threads to ask the target to resume. */
2465 if (tp->control.trap_expected)
2466 {
2467 /* We're allowing a thread to run past a breakpoint it has
2468 hit, either by single-stepping the thread with the breakpoint
2469 removed, or by displaced stepping, with the breakpoint inserted.
2470 In the former case, we need to single-step only this thread,
2471 and keep others stopped, as they can miss this breakpoint if
2472 allowed to run. That's not really a problem for displaced
2473 stepping, but, we still keep other threads stopped, in case
2474 another thread is also stopped for a breakpoint waiting for
2475 its turn in the displaced stepping queue. */
2476 resume_ptid = inferior_ptid;
2477 }
2478 else
2479 resume_ptid = internal_resume_ptid (user_step);
2480
2481 if (execution_direction != EXEC_REVERSE
2482 && step && breakpoint_inserted_here_p (aspace, pc))
2483 {
2484 /* There are two cases where we currently need to step a
2485 breakpoint instruction when we have a signal to deliver:
2486
2487 - See handle_signal_stop where we handle random signals that
2488 could take out us out of the stepping range. Normally, in
2489 that case we end up continuing (instead of stepping) over the
2490 signal handler with a breakpoint at PC, but there are cases
2491 where we should _always_ single-step, even if we have a
2492 step-resume breakpoint, like when a software watchpoint is
2493 set. Assuming single-stepping and delivering a signal at the
2494 same time would takes us to the signal handler, then we could
2495 have removed the breakpoint at PC to step over it. However,
2496 some hardware step targets (like e.g., Mac OS) can't step
2497 into signal handlers, and for those, we need to leave the
2498 breakpoint at PC inserted, as otherwise if the handler
2499 recurses and executes PC again, it'll miss the breakpoint.
2500 So we leave the breakpoint inserted anyway, but we need to
2501 record that we tried to step a breakpoint instruction, so
2502 that adjust_pc_after_break doesn't end up confused.
2503
2504 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2505 in one thread after another thread that was stepping had been
2506 momentarily paused for a step-over. When we re-resume the
2507 stepping thread, it may be resumed from that address with a
2508 breakpoint that hasn't trapped yet. Seen with
2509 gdb.threads/non-stop-fair-events.exp, on targets that don't
2510 do displaced stepping. */
2511
2512 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2513 tp->ptid.to_string ().c_str ());
2514
2515 tp->stepped_breakpoint = 1;
2516
2517 /* Most targets can step a breakpoint instruction, thus
2518 executing it normally. But if this one cannot, just
2519 continue and we will hit it anyway. */
2520 if (gdbarch_cannot_step_breakpoint (gdbarch))
2521 step = false;
2522 }
2523
2524 if (debug_displaced
2525 && tp->control.trap_expected
2526 && use_displaced_stepping (tp)
2527 && !step_over_info_valid_p ())
2528 {
2529 struct regcache *resume_regcache = get_thread_regcache (tp);
2530 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2531 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2532 gdb_byte buf[4];
2533
2534 read_memory (actual_pc, buf, sizeof (buf));
2535 displaced_debug_printf ("run %s: %s",
2536 paddress (resume_gdbarch, actual_pc),
2537 displaced_step_dump_bytes
2538 (buf, sizeof (buf)).c_str ());
2539 }
2540
2541 if (tp->control.may_range_step)
2542 {
2543 /* If we're resuming a thread with the PC out of the step
2544 range, then we're doing some nested/finer run control
2545 operation, like stepping the thread out of the dynamic
2546 linker or the displaced stepping scratch pad. We
2547 shouldn't have allowed a range step then. */
2548 gdb_assert (pc_in_thread_step_range (pc, tp));
2549 }
2550
2551 do_target_resume (resume_ptid, step, sig);
2552 tp->set_resumed (true);
2553}
2554
2555/* Resume the inferior. SIG is the signal to give the inferior
2556 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2557 rolls back state on error. */
2558
2559static void
2560resume (gdb_signal sig)
2561{
2562 try
2563 {
2564 resume_1 (sig);
2565 }
2566 catch (const gdb_exception &ex)
2567 {
2568 /* If resuming is being aborted for any reason, delete any
2569 single-step breakpoint resume_1 may have created, to avoid
2570 confusing the following resumption, and to avoid leaving
2571 single-step breakpoints perturbing other threads, in case
2572 we're running in non-stop mode. */
2573 if (inferior_ptid != null_ptid)
2574 delete_single_step_breakpoints (inferior_thread ());
2575 throw;
2576 }
2577}
2578
2579\f
2580/* Proceeding. */
2581
2582/* See infrun.h. */
2583
2584/* Counter that tracks number of user visible stops. This can be used
2585 to tell whether a command has proceeded the inferior past the
2586 current location. This allows e.g., inferior function calls in
2587 breakpoint commands to not interrupt the command list. When the
2588 call finishes successfully, the inferior is standing at the same
2589 breakpoint as if nothing happened (and so we don't call
2590 normal_stop). */
2591static ULONGEST current_stop_id;
2592
2593/* See infrun.h. */
2594
2595ULONGEST
2596get_stop_id (void)
2597{
2598 return current_stop_id;
2599}
2600
2601/* Called when we report a user visible stop. */
2602
2603static void
2604new_stop_id (void)
2605{
2606 current_stop_id++;
2607}
2608
2609/* Clear out all variables saying what to do when inferior is continued.
2610 First do this, then set the ones you want, then call `proceed'. */
2611
2612static void
2613clear_proceed_status_thread (struct thread_info *tp)
2614{
2615 infrun_debug_printf ("%s", tp->ptid.to_string ().c_str ());
2616
2617 /* If we're starting a new sequence, then the previous finished
2618 single-step is no longer relevant. */
2619 if (tp->has_pending_waitstatus ())
2620 {
2621 if (tp->stop_reason () == TARGET_STOPPED_BY_SINGLE_STEP)
2622 {
2623 infrun_debug_printf ("pending event of %s was a finished step. "
2624 "Discarding.",
2625 tp->ptid.to_string ().c_str ());
2626
2627 tp->clear_pending_waitstatus ();
2628 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
2629 }
2630 else
2631 {
2632 infrun_debug_printf
2633 ("thread %s has pending wait status %s (currently_stepping=%d).",
2634 tp->ptid.to_string ().c_str (),
2635 tp->pending_waitstatus ().to_string ().c_str (),
2636 currently_stepping (tp));
2637 }
2638 }
2639
2640 /* If this signal should not be seen by program, give it zero.
2641 Used for debugging signals. */
2642 if (!signal_pass_state (tp->stop_signal ()))
2643 tp->set_stop_signal (GDB_SIGNAL_0);
2644
2645 delete tp->thread_fsm;
2646 tp->thread_fsm = NULL;
2647
2648 tp->control.trap_expected = 0;
2649 tp->control.step_range_start = 0;
2650 tp->control.step_range_end = 0;
2651 tp->control.may_range_step = 0;
2652 tp->control.step_frame_id = null_frame_id;
2653 tp->control.step_stack_frame_id = null_frame_id;
2654 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2655 tp->control.step_start_function = NULL;
2656 tp->stop_requested = 0;
2657
2658 tp->control.stop_step = 0;
2659
2660 tp->control.proceed_to_finish = 0;
2661
2662 tp->control.stepping_command = 0;
2663
2664 /* Discard any remaining commands or status from previous stop. */
2665 bpstat_clear (&tp->control.stop_bpstat);
2666}
2667
2668void
2669clear_proceed_status (int step)
2670{
2671 /* With scheduler-locking replay, stop replaying other threads if we're
2672 not replaying the user-visible resume ptid.
2673
2674 This is a convenience feature to not require the user to explicitly
2675 stop replaying the other threads. We're assuming that the user's
2676 intent is to resume tracing the recorded process. */
2677 if (!non_stop && scheduler_mode == schedlock_replay
2678 && target_record_is_replaying (minus_one_ptid)
2679 && !target_record_will_replay (user_visible_resume_ptid (step),
2680 execution_direction))
2681 target_record_stop_replaying ();
2682
2683 if (!non_stop && inferior_ptid != null_ptid)
2684 {
2685 ptid_t resume_ptid = user_visible_resume_ptid (step);
2686 process_stratum_target *resume_target
2687 = user_visible_resume_target (resume_ptid);
2688
2689 /* In all-stop mode, delete the per-thread status of all threads
2690 we're about to resume, implicitly and explicitly. */
2691 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2692 clear_proceed_status_thread (tp);
2693 }
2694
2695 if (inferior_ptid != null_ptid)
2696 {
2697 struct inferior *inferior;
2698
2699 if (non_stop)
2700 {
2701 /* If in non-stop mode, only delete the per-thread status of
2702 the current thread. */
2703 clear_proceed_status_thread (inferior_thread ());
2704 }
2705
2706 inferior = current_inferior ();
2707 inferior->control.stop_soon = NO_STOP_QUIETLY;
2708 }
2709
2710 gdb::observers::about_to_proceed.notify ();
2711}
2712
2713/* Returns true if TP is still stopped at a breakpoint that needs
2714 stepping-over in order to make progress. If the breakpoint is gone
2715 meanwhile, we can skip the whole step-over dance. */
2716
2717static bool
2718thread_still_needs_step_over_bp (struct thread_info *tp)
2719{
2720 if (tp->stepping_over_breakpoint)
2721 {
2722 struct regcache *regcache = get_thread_regcache (tp);
2723
2724 if (breakpoint_here_p (regcache->aspace (),
2725 regcache_read_pc (regcache))
2726 == ordinary_breakpoint_here)
2727 return true;
2728
2729 tp->stepping_over_breakpoint = 0;
2730 }
2731
2732 return false;
2733}
2734
2735/* Check whether thread TP still needs to start a step-over in order
2736 to make progress when resumed. Returns an bitwise or of enum
2737 step_over_what bits, indicating what needs to be stepped over. */
2738
2739static step_over_what
2740thread_still_needs_step_over (struct thread_info *tp)
2741{
2742 step_over_what what = 0;
2743
2744 if (thread_still_needs_step_over_bp (tp))
2745 what |= STEP_OVER_BREAKPOINT;
2746
2747 if (tp->stepping_over_watchpoint
2748 && !target_have_steppable_watchpoint ())
2749 what |= STEP_OVER_WATCHPOINT;
2750
2751 return what;
2752}
2753
2754/* Returns true if scheduler locking applies. STEP indicates whether
2755 we're about to do a step/next-like command to a thread. */
2756
2757static bool
2758schedlock_applies (struct thread_info *tp)
2759{
2760 return (scheduler_mode == schedlock_on
2761 || (scheduler_mode == schedlock_step
2762 && tp->control.stepping_command)
2763 || (scheduler_mode == schedlock_replay
2764 && target_record_will_replay (minus_one_ptid,
2765 execution_direction)));
2766}
2767
2768/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2769 stacks that have threads executing and don't have threads with
2770 pending events. */
2771
2772static void
2773maybe_set_commit_resumed_all_targets ()
2774{
2775 scoped_restore_current_thread restore_thread;
2776
2777 for (inferior *inf : all_non_exited_inferiors ())
2778 {
2779 process_stratum_target *proc_target = inf->process_target ();
2780
2781 if (proc_target->commit_resumed_state)
2782 {
2783 /* We already set this in a previous iteration, via another
2784 inferior sharing the process_stratum target. */
2785 continue;
2786 }
2787
2788 /* If the target has no resumed threads, it would be useless to
2789 ask it to commit the resumed threads. */
2790 if (!proc_target->threads_executing)
2791 {
2792 infrun_debug_printf ("not requesting commit-resumed for target "
2793 "%s, no resumed threads",
2794 proc_target->shortname ());
2795 continue;
2796 }
2797
2798 /* As an optimization, if a thread from this target has some
2799 status to report, handle it before requiring the target to
2800 commit its resumed threads: handling the status might lead to
2801 resuming more threads. */
2802 if (proc_target->has_resumed_with_pending_wait_status ())
2803 {
2804 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2805 " thread has a pending waitstatus",
2806 proc_target->shortname ());
2807 continue;
2808 }
2809
2810 switch_to_inferior_no_thread (inf);
2811
2812 if (target_has_pending_events ())
2813 {
2814 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2815 "target has pending events",
2816 proc_target->shortname ());
2817 continue;
2818 }
2819
2820 infrun_debug_printf ("enabling commit-resumed for target %s",
2821 proc_target->shortname ());
2822
2823 proc_target->commit_resumed_state = true;
2824 }
2825}
2826
2827/* See infrun.h. */
2828
2829void
2830maybe_call_commit_resumed_all_targets ()
2831{
2832 scoped_restore_current_thread restore_thread;
2833
2834 for (inferior *inf : all_non_exited_inferiors ())
2835 {
2836 process_stratum_target *proc_target = inf->process_target ();
2837
2838 if (!proc_target->commit_resumed_state)
2839 continue;
2840
2841 switch_to_inferior_no_thread (inf);
2842
2843 infrun_debug_printf ("calling commit_resumed for target %s",
2844 proc_target->shortname());
2845
2846 target_commit_resumed ();
2847 }
2848}
2849
2850/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2851 that only the outermost one attempts to re-enable
2852 commit-resumed. */
2853static bool enable_commit_resumed = true;
2854
2855/* See infrun.h. */
2856
2857scoped_disable_commit_resumed::scoped_disable_commit_resumed
2858 (const char *reason)
2859 : m_reason (reason),
2860 m_prev_enable_commit_resumed (enable_commit_resumed)
2861{
2862 infrun_debug_printf ("reason=%s", m_reason);
2863
2864 enable_commit_resumed = false;
2865
2866 for (inferior *inf : all_non_exited_inferiors ())
2867 {
2868 process_stratum_target *proc_target = inf->process_target ();
2869
2870 if (m_prev_enable_commit_resumed)
2871 {
2872 /* This is the outermost instance: force all
2873 COMMIT_RESUMED_STATE to false. */
2874 proc_target->commit_resumed_state = false;
2875 }
2876 else
2877 {
2878 /* This is not the outermost instance, we expect
2879 COMMIT_RESUMED_STATE to have been cleared by the
2880 outermost instance. */
2881 gdb_assert (!proc_target->commit_resumed_state);
2882 }
2883 }
2884}
2885
2886/* See infrun.h. */
2887
2888void
2889scoped_disable_commit_resumed::reset ()
2890{
2891 if (m_reset)
2892 return;
2893 m_reset = true;
2894
2895 infrun_debug_printf ("reason=%s", m_reason);
2896
2897 gdb_assert (!enable_commit_resumed);
2898
2899 enable_commit_resumed = m_prev_enable_commit_resumed;
2900
2901 if (m_prev_enable_commit_resumed)
2902 {
2903 /* This is the outermost instance, re-enable
2904 COMMIT_RESUMED_STATE on the targets where it's possible. */
2905 maybe_set_commit_resumed_all_targets ();
2906 }
2907 else
2908 {
2909 /* This is not the outermost instance, we expect
2910 COMMIT_RESUMED_STATE to still be false. */
2911 for (inferior *inf : all_non_exited_inferiors ())
2912 {
2913 process_stratum_target *proc_target = inf->process_target ();
2914 gdb_assert (!proc_target->commit_resumed_state);
2915 }
2916 }
2917}
2918
2919/* See infrun.h. */
2920
2921scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2922{
2923 reset ();
2924}
2925
2926/* See infrun.h. */
2927
2928void
2929scoped_disable_commit_resumed::reset_and_commit ()
2930{
2931 reset ();
2932 maybe_call_commit_resumed_all_targets ();
2933}
2934
2935/* See infrun.h. */
2936
2937scoped_enable_commit_resumed::scoped_enable_commit_resumed
2938 (const char *reason)
2939 : m_reason (reason),
2940 m_prev_enable_commit_resumed (enable_commit_resumed)
2941{
2942 infrun_debug_printf ("reason=%s", m_reason);
2943
2944 if (!enable_commit_resumed)
2945 {
2946 enable_commit_resumed = true;
2947
2948 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2949 possible. */
2950 maybe_set_commit_resumed_all_targets ();
2951
2952 maybe_call_commit_resumed_all_targets ();
2953 }
2954}
2955
2956/* See infrun.h. */
2957
2958scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2959{
2960 infrun_debug_printf ("reason=%s", m_reason);
2961
2962 gdb_assert (enable_commit_resumed);
2963
2964 enable_commit_resumed = m_prev_enable_commit_resumed;
2965
2966 if (!enable_commit_resumed)
2967 {
2968 /* Force all COMMIT_RESUMED_STATE back to false. */
2969 for (inferior *inf : all_non_exited_inferiors ())
2970 {
2971 process_stratum_target *proc_target = inf->process_target ();
2972 proc_target->commit_resumed_state = false;
2973 }
2974 }
2975}
2976
2977/* Check that all the targets we're about to resume are in non-stop
2978 mode. Ideally, we'd only care whether all targets support
2979 target-async, but we're not there yet. E.g., stop_all_threads
2980 doesn't know how to handle all-stop targets. Also, the remote
2981 protocol in all-stop mode is synchronous, irrespective of
2982 target-async, which means that things like a breakpoint re-set
2983 triggered by one target would try to read memory from all targets
2984 and fail. */
2985
2986static void
2987check_multi_target_resumption (process_stratum_target *resume_target)
2988{
2989 if (!non_stop && resume_target == nullptr)
2990 {
2991 scoped_restore_current_thread restore_thread;
2992
2993 /* This is used to track whether we're resuming more than one
2994 target. */
2995 process_stratum_target *first_connection = nullptr;
2996
2997 /* The first inferior we see with a target that does not work in
2998 always-non-stop mode. */
2999 inferior *first_not_non_stop = nullptr;
3000
3001 for (inferior *inf : all_non_exited_inferiors ())
3002 {
3003 switch_to_inferior_no_thread (inf);
3004
3005 if (!target_has_execution ())
3006 continue;
3007
3008 process_stratum_target *proc_target
3009 = current_inferior ()->process_target();
3010
3011 if (!target_is_non_stop_p ())
3012 first_not_non_stop = inf;
3013
3014 if (first_connection == nullptr)
3015 first_connection = proc_target;
3016 else if (first_connection != proc_target
3017 && first_not_non_stop != nullptr)
3018 {
3019 switch_to_inferior_no_thread (first_not_non_stop);
3020
3021 proc_target = current_inferior ()->process_target();
3022
3023 error (_("Connection %d (%s) does not support "
3024 "multi-target resumption."),
3025 proc_target->connection_number,
3026 make_target_connection_string (proc_target).c_str ());
3027 }
3028 }
3029 }
3030}
3031
3032/* Basic routine for continuing the program in various fashions.
3033
3034 ADDR is the address to resume at, or -1 for resume where stopped.
3035 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3036 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3037
3038 You should call clear_proceed_status before calling proceed. */
3039
3040void
3041proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3042{
3043 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3044
3045 struct regcache *regcache;
3046 struct gdbarch *gdbarch;
3047 CORE_ADDR pc;
3048 struct execution_control_state ecss;
3049 struct execution_control_state *ecs = &ecss;
3050 bool started;
3051
3052 /* If we're stopped at a fork/vfork, follow the branch set by the
3053 "set follow-fork-mode" command; otherwise, we'll just proceed
3054 resuming the current thread. */
3055 if (!follow_fork ())
3056 {
3057 /* The target for some reason decided not to resume. */
3058 normal_stop ();
3059 if (target_can_async_p ())
3060 inferior_event_handler (INF_EXEC_COMPLETE);
3061 return;
3062 }
3063
3064 /* We'll update this if & when we switch to a new thread. */
3065 previous_inferior_ptid = inferior_ptid;
3066
3067 regcache = get_current_regcache ();
3068 gdbarch = regcache->arch ();
3069 const address_space *aspace = regcache->aspace ();
3070
3071 pc = regcache_read_pc_protected (regcache);
3072
3073 thread_info *cur_thr = inferior_thread ();
3074
3075 /* Fill in with reasonable starting values. */
3076 init_thread_stepping_state (cur_thr);
3077
3078 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3079
3080 ptid_t resume_ptid
3081 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3082 process_stratum_target *resume_target
3083 = user_visible_resume_target (resume_ptid);
3084
3085 check_multi_target_resumption (resume_target);
3086
3087 if (addr == (CORE_ADDR) -1)
3088 {
3089 if (cur_thr->stop_pc_p ()
3090 && pc == cur_thr->stop_pc ()
3091 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3092 && execution_direction != EXEC_REVERSE)
3093 /* There is a breakpoint at the address we will resume at,
3094 step one instruction before inserting breakpoints so that
3095 we do not stop right away (and report a second hit at this
3096 breakpoint).
3097
3098 Note, we don't do this in reverse, because we won't
3099 actually be executing the breakpoint insn anyway.
3100 We'll be (un-)executing the previous instruction. */
3101 cur_thr->stepping_over_breakpoint = 1;
3102 else if (gdbarch_single_step_through_delay_p (gdbarch)
3103 && gdbarch_single_step_through_delay (gdbarch,
3104 get_current_frame ()))
3105 /* We stepped onto an instruction that needs to be stepped
3106 again before re-inserting the breakpoint, do so. */
3107 cur_thr->stepping_over_breakpoint = 1;
3108 }
3109 else
3110 {
3111 regcache_write_pc (regcache, addr);
3112 }
3113
3114 if (siggnal != GDB_SIGNAL_DEFAULT)
3115 cur_thr->set_stop_signal (siggnal);
3116
3117 /* If an exception is thrown from this point on, make sure to
3118 propagate GDB's knowledge of the executing state to the
3119 frontend/user running state. */
3120 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3121
3122 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3123 threads (e.g., we might need to set threads stepping over
3124 breakpoints first), from the user/frontend's point of view, all
3125 threads in RESUME_PTID are now running. Unless we're calling an
3126 inferior function, as in that case we pretend the inferior
3127 doesn't run at all. */
3128 if (!cur_thr->control.in_infcall)
3129 set_running (resume_target, resume_ptid, true);
3130
3131 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3132 gdb_signal_to_symbol_string (siggnal));
3133
3134 annotate_starting ();
3135
3136 /* Make sure that output from GDB appears before output from the
3137 inferior. */
3138 gdb_flush (gdb_stdout);
3139
3140 /* Since we've marked the inferior running, give it the terminal. A
3141 QUIT/Ctrl-C from here on is forwarded to the target (which can
3142 still detect attempts to unblock a stuck connection with repeated
3143 Ctrl-C from within target_pass_ctrlc). */
3144 target_terminal::inferior ();
3145
3146 /* In a multi-threaded task we may select another thread and
3147 then continue or step.
3148
3149 But if a thread that we're resuming had stopped at a breakpoint,
3150 it will immediately cause another breakpoint stop without any
3151 execution (i.e. it will report a breakpoint hit incorrectly). So
3152 we must step over it first.
3153
3154 Look for threads other than the current (TP) that reported a
3155 breakpoint hit and haven't been resumed yet since. */
3156
3157 /* If scheduler locking applies, we can avoid iterating over all
3158 threads. */
3159 if (!non_stop && !schedlock_applies (cur_thr))
3160 {
3161 for (thread_info *tp : all_non_exited_threads (resume_target,
3162 resume_ptid))
3163 {
3164 switch_to_thread_no_regs (tp);
3165
3166 /* Ignore the current thread here. It's handled
3167 afterwards. */
3168 if (tp == cur_thr)
3169 continue;
3170
3171 if (!thread_still_needs_step_over (tp))
3172 continue;
3173
3174 gdb_assert (!thread_is_in_step_over_chain (tp));
3175
3176 infrun_debug_printf ("need to step-over [%s] first",
3177 tp->ptid.to_string ().c_str ());
3178
3179 global_thread_step_over_chain_enqueue (tp);
3180 }
3181
3182 switch_to_thread (cur_thr);
3183 }
3184
3185 /* Enqueue the current thread last, so that we move all other
3186 threads over their breakpoints first. */
3187 if (cur_thr->stepping_over_breakpoint)
3188 global_thread_step_over_chain_enqueue (cur_thr);
3189
3190 /* If the thread isn't started, we'll still need to set its prev_pc,
3191 so that switch_back_to_stepped_thread knows the thread hasn't
3192 advanced. Must do this before resuming any thread, as in
3193 all-stop/remote, once we resume we can't send any other packet
3194 until the target stops again. */
3195 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3196
3197 {
3198 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3199
3200 started = start_step_over ();
3201
3202 if (step_over_info_valid_p ())
3203 {
3204 /* Either this thread started a new in-line step over, or some
3205 other thread was already doing one. In either case, don't
3206 resume anything else until the step-over is finished. */
3207 }
3208 else if (started && !target_is_non_stop_p ())
3209 {
3210 /* A new displaced stepping sequence was started. In all-stop,
3211 we can't talk to the target anymore until it next stops. */
3212 }
3213 else if (!non_stop && target_is_non_stop_p ())
3214 {
3215 INFRUN_SCOPED_DEBUG_START_END
3216 ("resuming threads, all-stop-on-top-of-non-stop");
3217
3218 /* In all-stop, but the target is always in non-stop mode.
3219 Start all other threads that are implicitly resumed too. */
3220 for (thread_info *tp : all_non_exited_threads (resume_target,
3221 resume_ptid))
3222 {
3223 switch_to_thread_no_regs (tp);
3224
3225 if (!tp->inf->has_execution ())
3226 {
3227 infrun_debug_printf ("[%s] target has no execution",
3228 tp->ptid.to_string ().c_str ());
3229 continue;
3230 }
3231
3232 if (tp->resumed ())
3233 {
3234 infrun_debug_printf ("[%s] resumed",
3235 tp->ptid.to_string ().c_str ());
3236 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
3237 continue;
3238 }
3239
3240 if (thread_is_in_step_over_chain (tp))
3241 {
3242 infrun_debug_printf ("[%s] needs step-over",
3243 tp->ptid.to_string ().c_str ());
3244 continue;
3245 }
3246
3247 infrun_debug_printf ("resuming %s",
3248 tp->ptid.to_string ().c_str ());
3249
3250 reset_ecs (ecs, tp);
3251 switch_to_thread (tp);
3252 keep_going_pass_signal (ecs);
3253 if (!ecs->wait_some_more)
3254 error (_("Command aborted."));
3255 }
3256 }
3257 else if (!cur_thr->resumed () && !thread_is_in_step_over_chain (cur_thr))
3258 {
3259 /* The thread wasn't started, and isn't queued, run it now. */
3260 reset_ecs (ecs, cur_thr);
3261 switch_to_thread (cur_thr);
3262 keep_going_pass_signal (ecs);
3263 if (!ecs->wait_some_more)
3264 error (_("Command aborted."));
3265 }
3266
3267 disable_commit_resumed.reset_and_commit ();
3268 }
3269
3270 finish_state.release ();
3271
3272 /* If we've switched threads above, switch back to the previously
3273 current thread. We don't want the user to see a different
3274 selected thread. */
3275 switch_to_thread (cur_thr);
3276
3277 /* Tell the event loop to wait for it to stop. If the target
3278 supports asynchronous execution, it'll do this from within
3279 target_resume. */
3280 if (!target_can_async_p ())
3281 mark_async_event_handler (infrun_async_inferior_event_token);
3282}
3283\f
3284
3285/* Start remote-debugging of a machine over a serial link. */
3286
3287void
3288start_remote (int from_tty)
3289{
3290 inferior *inf = current_inferior ();
3291 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3292
3293 /* Always go on waiting for the target, regardless of the mode. */
3294 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3295 indicate to wait_for_inferior that a target should timeout if
3296 nothing is returned (instead of just blocking). Because of this,
3297 targets expecting an immediate response need to, internally, set
3298 things up so that the target_wait() is forced to eventually
3299 timeout. */
3300 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3301 differentiate to its caller what the state of the target is after
3302 the initial open has been performed. Here we're assuming that
3303 the target has stopped. It should be possible to eventually have
3304 target_open() return to the caller an indication that the target
3305 is currently running and GDB state should be set to the same as
3306 for an async run. */
3307 wait_for_inferior (inf);
3308
3309 /* Now that the inferior has stopped, do any bookkeeping like
3310 loading shared libraries. We want to do this before normal_stop,
3311 so that the displayed frame is up to date. */
3312 post_create_inferior (from_tty);
3313
3314 normal_stop ();
3315}
3316
3317/* Initialize static vars when a new inferior begins. */
3318
3319void
3320init_wait_for_inferior (void)
3321{
3322 /* These are meaningless until the first time through wait_for_inferior. */
3323
3324 breakpoint_init_inferior (inf_starting);
3325
3326 clear_proceed_status (0);
3327
3328 nullify_last_target_wait_ptid ();
3329
3330 previous_inferior_ptid = inferior_ptid;
3331}
3332
3333\f
3334
3335static void handle_inferior_event (struct execution_control_state *ecs);
3336
3337static void handle_step_into_function (struct gdbarch *gdbarch,
3338 struct execution_control_state *ecs);
3339static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3340 struct execution_control_state *ecs);
3341static void handle_signal_stop (struct execution_control_state *ecs);
3342static void check_exception_resume (struct execution_control_state *,
3343 struct frame_info *);
3344
3345static void end_stepping_range (struct execution_control_state *ecs);
3346static void stop_waiting (struct execution_control_state *ecs);
3347static void keep_going (struct execution_control_state *ecs);
3348static void process_event_stop_test (struct execution_control_state *ecs);
3349static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3350
3351/* This function is attached as a "thread_stop_requested" observer.
3352 Cleanup local state that assumed the PTID was to be resumed, and
3353 report the stop to the frontend. */
3354
3355static void
3356infrun_thread_stop_requested (ptid_t ptid)
3357{
3358 process_stratum_target *curr_target = current_inferior ()->process_target ();
3359
3360 /* PTID was requested to stop. If the thread was already stopped,
3361 but the user/frontend doesn't know about that yet (e.g., the
3362 thread had been temporarily paused for some step-over), set up
3363 for reporting the stop now. */
3364 for (thread_info *tp : all_threads (curr_target, ptid))
3365 {
3366 if (tp->state != THREAD_RUNNING)
3367 continue;
3368 if (tp->executing ())
3369 continue;
3370
3371 /* Remove matching threads from the step-over queue, so
3372 start_step_over doesn't try to resume them
3373 automatically. */
3374 if (thread_is_in_step_over_chain (tp))
3375 global_thread_step_over_chain_remove (tp);
3376
3377 /* If the thread is stopped, but the user/frontend doesn't
3378 know about that yet, queue a pending event, as if the
3379 thread had just stopped now. Unless the thread already had
3380 a pending event. */
3381 if (!tp->has_pending_waitstatus ())
3382 {
3383 target_waitstatus ws;
3384 ws.set_stopped (GDB_SIGNAL_0);
3385 tp->set_pending_waitstatus (ws);
3386 }
3387
3388 /* Clear the inline-frame state, since we're re-processing the
3389 stop. */
3390 clear_inline_frame_state (tp);
3391
3392 /* If this thread was paused because some other thread was
3393 doing an inline-step over, let that finish first. Once
3394 that happens, we'll restart all threads and consume pending
3395 stop events then. */
3396 if (step_over_info_valid_p ())
3397 continue;
3398
3399 /* Otherwise we can process the (new) pending event now. Set
3400 it so this pending event is considered by
3401 do_target_wait. */
3402 tp->set_resumed (true);
3403 }
3404}
3405
3406static void
3407infrun_thread_thread_exit (struct thread_info *tp, int silent)
3408{
3409 if (target_last_proc_target == tp->inf->process_target ()
3410 && target_last_wait_ptid == tp->ptid)
3411 nullify_last_target_wait_ptid ();
3412}
3413
3414/* Delete the step resume, single-step and longjmp/exception resume
3415 breakpoints of TP. */
3416
3417static void
3418delete_thread_infrun_breakpoints (struct thread_info *tp)
3419{
3420 delete_step_resume_breakpoint (tp);
3421 delete_exception_resume_breakpoint (tp);
3422 delete_single_step_breakpoints (tp);
3423}
3424
3425/* If the target still has execution, call FUNC for each thread that
3426 just stopped. In all-stop, that's all the non-exited threads; in
3427 non-stop, that's the current thread, only. */
3428
3429typedef void (*for_each_just_stopped_thread_callback_func)
3430 (struct thread_info *tp);
3431
3432static void
3433for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3434{
3435 if (!target_has_execution () || inferior_ptid == null_ptid)
3436 return;
3437
3438 if (target_is_non_stop_p ())
3439 {
3440 /* If in non-stop mode, only the current thread stopped. */
3441 func (inferior_thread ());
3442 }
3443 else
3444 {
3445 /* In all-stop mode, all threads have stopped. */
3446 for (thread_info *tp : all_non_exited_threads ())
3447 func (tp);
3448 }
3449}
3450
3451/* Delete the step resume and longjmp/exception resume breakpoints of
3452 the threads that just stopped. */
3453
3454static void
3455delete_just_stopped_threads_infrun_breakpoints (void)
3456{
3457 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3458}
3459
3460/* Delete the single-step breakpoints of the threads that just
3461 stopped. */
3462
3463static void
3464delete_just_stopped_threads_single_step_breakpoints (void)
3465{
3466 for_each_just_stopped_thread (delete_single_step_breakpoints);
3467}
3468
3469/* See infrun.h. */
3470
3471void
3472print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3473 const struct target_waitstatus *ws)
3474{
3475 infrun_debug_printf ("target_wait (%s [%s], status) =",
3476 waiton_ptid.to_string ().c_str (),
3477 target_pid_to_str (waiton_ptid).c_str ());
3478 infrun_debug_printf (" %s [%s],",
3479 result_ptid.to_string ().c_str (),
3480 target_pid_to_str (result_ptid).c_str ());
3481 infrun_debug_printf (" %s", ws->to_string ().c_str ());
3482}
3483
3484/* Select a thread at random, out of those which are resumed and have
3485 had events. */
3486
3487static struct thread_info *
3488random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3489{
3490 process_stratum_target *proc_target = inf->process_target ();
3491 thread_info *thread
3492 = proc_target->random_resumed_with_pending_wait_status (inf, waiton_ptid);
3493
3494 if (thread == nullptr)
3495 {
3496 infrun_debug_printf ("None found.");
3497 return nullptr;
3498 }
3499
3500 infrun_debug_printf ("Found %s.", thread->ptid.to_string ().c_str ());
3501 gdb_assert (thread->resumed ());
3502 gdb_assert (thread->has_pending_waitstatus ());
3503
3504 return thread;
3505}
3506
3507/* Wrapper for target_wait that first checks whether threads have
3508 pending statuses to report before actually asking the target for
3509 more events. INF is the inferior we're using to call target_wait
3510 on. */
3511
3512static ptid_t
3513do_target_wait_1 (inferior *inf, ptid_t ptid,
3514 target_waitstatus *status, target_wait_flags options)
3515{
3516 ptid_t event_ptid;
3517 struct thread_info *tp;
3518
3519 /* We know that we are looking for an event in the target of inferior
3520 INF, but we don't know which thread the event might come from. As
3521 such we want to make sure that INFERIOR_PTID is reset so that none of
3522 the wait code relies on it - doing so is always a mistake. */
3523 switch_to_inferior_no_thread (inf);
3524
3525 /* First check if there is a resumed thread with a wait status
3526 pending. */
3527 if (ptid == minus_one_ptid || ptid.is_pid ())
3528 {
3529 tp = random_pending_event_thread (inf, ptid);
3530 }
3531 else
3532 {
3533 infrun_debug_printf ("Waiting for specific thread %s.",
3534 ptid.to_string ().c_str ());
3535
3536 /* We have a specific thread to check. */
3537 tp = find_thread_ptid (inf, ptid);
3538 gdb_assert (tp != NULL);
3539 if (!tp->has_pending_waitstatus ())
3540 tp = NULL;
3541 }
3542
3543 if (tp != NULL
3544 && (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3545 || tp->stop_reason () == TARGET_STOPPED_BY_HW_BREAKPOINT))
3546 {
3547 struct regcache *regcache = get_thread_regcache (tp);
3548 struct gdbarch *gdbarch = regcache->arch ();
3549 CORE_ADDR pc;
3550 int discard = 0;
3551
3552 pc = regcache_read_pc (regcache);
3553
3554 if (pc != tp->stop_pc ())
3555 {
3556 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3557 tp->ptid.to_string ().c_str (),
3558 paddress (gdbarch, tp->stop_pc ()),
3559 paddress (gdbarch, pc));
3560 discard = 1;
3561 }
3562 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3563 {
3564 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3565 tp->ptid.to_string ().c_str (),
3566 paddress (gdbarch, pc));
3567
3568 discard = 1;
3569 }
3570
3571 if (discard)
3572 {
3573 infrun_debug_printf ("pending event of %s cancelled.",
3574 tp->ptid.to_string ().c_str ());
3575
3576 tp->clear_pending_waitstatus ();
3577 target_waitstatus ws;
3578 ws.set_spurious ();
3579 tp->set_pending_waitstatus (ws);
3580 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3581 }
3582 }
3583
3584 if (tp != NULL)
3585 {
3586 infrun_debug_printf ("Using pending wait status %s for %s.",
3587 tp->pending_waitstatus ().to_string ().c_str (),
3588 tp->ptid.to_string ().c_str ());
3589
3590 /* Now that we've selected our final event LWP, un-adjust its PC
3591 if it was a software breakpoint (and the target doesn't
3592 always adjust the PC itself). */
3593 if (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3594 && !target_supports_stopped_by_sw_breakpoint ())
3595 {
3596 struct regcache *regcache;
3597 struct gdbarch *gdbarch;
3598 int decr_pc;
3599
3600 regcache = get_thread_regcache (tp);
3601 gdbarch = regcache->arch ();
3602
3603 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3604 if (decr_pc != 0)
3605 {
3606 CORE_ADDR pc;
3607
3608 pc = regcache_read_pc (regcache);
3609 regcache_write_pc (regcache, pc + decr_pc);
3610 }
3611 }
3612
3613 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3614 *status = tp->pending_waitstatus ();
3615 tp->clear_pending_waitstatus ();
3616
3617 /* Wake up the event loop again, until all pending events are
3618 processed. */
3619 if (target_is_async_p ())
3620 mark_async_event_handler (infrun_async_inferior_event_token);
3621 return tp->ptid;
3622 }
3623
3624 /* But if we don't find one, we'll have to wait. */
3625
3626 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3627 a blocking wait. */
3628 if (!target_can_async_p ())
3629 options &= ~TARGET_WNOHANG;
3630
3631 if (deprecated_target_wait_hook)
3632 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3633 else
3634 event_ptid = target_wait (ptid, status, options);
3635
3636 return event_ptid;
3637}
3638
3639/* Wrapper for target_wait that first checks whether threads have
3640 pending statuses to report before actually asking the target for
3641 more events. Polls for events from all inferiors/targets. */
3642
3643static bool
3644do_target_wait (execution_control_state *ecs, target_wait_flags options)
3645{
3646 int num_inferiors = 0;
3647 int random_selector;
3648
3649 /* For fairness, we pick the first inferior/target to poll at random
3650 out of all inferiors that may report events, and then continue
3651 polling the rest of the inferior list starting from that one in a
3652 circular fashion until the whole list is polled once. */
3653
3654 auto inferior_matches = [] (inferior *inf)
3655 {
3656 return inf->process_target () != nullptr;
3657 };
3658
3659 /* First see how many matching inferiors we have. */
3660 for (inferior *inf : all_inferiors ())
3661 if (inferior_matches (inf))
3662 num_inferiors++;
3663
3664 if (num_inferiors == 0)
3665 {
3666 ecs->ws.set_ignore ();
3667 return false;
3668 }
3669
3670 /* Now randomly pick an inferior out of those that matched. */
3671 random_selector = (int)
3672 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3673
3674 if (num_inferiors > 1)
3675 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3676 num_inferiors, random_selector);
3677
3678 /* Select the Nth inferior that matched. */
3679
3680 inferior *selected = nullptr;
3681
3682 for (inferior *inf : all_inferiors ())
3683 if (inferior_matches (inf))
3684 if (random_selector-- == 0)
3685 {
3686 selected = inf;
3687 break;
3688 }
3689
3690 /* Now poll for events out of each of the matching inferior's
3691 targets, starting from the selected one. */
3692
3693 auto do_wait = [&] (inferior *inf)
3694 {
3695 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
3696 ecs->target = inf->process_target ();
3697 return (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
3698 };
3699
3700 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3701 here spuriously after the target is all stopped and we've already
3702 reported the stop to the user, polling for events. */
3703 scoped_restore_current_thread restore_thread;
3704
3705 intrusive_list_iterator<inferior> start
3706 = inferior_list.iterator_to (*selected);
3707
3708 for (intrusive_list_iterator<inferior> it = start;
3709 it != inferior_list.end ();
3710 ++it)
3711 {
3712 inferior *inf = &*it;
3713
3714 if (inferior_matches (inf) && do_wait (inf))
3715 return true;
3716 }
3717
3718 for (intrusive_list_iterator<inferior> it = inferior_list.begin ();
3719 it != start;
3720 ++it)
3721 {
3722 inferior *inf = &*it;
3723
3724 if (inferior_matches (inf) && do_wait (inf))
3725 return true;
3726 }
3727
3728 ecs->ws.set_ignore ();
3729 return false;
3730}
3731
3732/* An event reported by wait_one. */
3733
3734struct wait_one_event
3735{
3736 /* The target the event came out of. */
3737 process_stratum_target *target;
3738
3739 /* The PTID the event was for. */
3740 ptid_t ptid;
3741
3742 /* The waitstatus. */
3743 target_waitstatus ws;
3744};
3745
3746static bool handle_one (const wait_one_event &event);
3747static void restart_threads (struct thread_info *event_thread);
3748
3749/* Prepare and stabilize the inferior for detaching it. E.g.,
3750 detaching while a thread is displaced stepping is a recipe for
3751 crashing it, as nothing would readjust the PC out of the scratch
3752 pad. */
3753
3754void
3755prepare_for_detach (void)
3756{
3757 struct inferior *inf = current_inferior ();
3758 ptid_t pid_ptid = ptid_t (inf->pid);
3759 scoped_restore_current_thread restore_thread;
3760
3761 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3762
3763 /* Remove all threads of INF from the global step-over chain. We
3764 want to stop any ongoing step-over, not start any new one. */
3765 thread_step_over_list_safe_range range
3766 = make_thread_step_over_list_safe_range (global_thread_step_over_list);
3767
3768 for (thread_info *tp : range)
3769 if (tp->inf == inf)
3770 {
3771 infrun_debug_printf ("removing thread %s from global step over chain",
3772 tp->ptid.to_string ().c_str ());
3773 global_thread_step_over_chain_remove (tp);
3774 }
3775
3776 /* If we were already in the middle of an inline step-over, and the
3777 thread stepping belongs to the inferior we're detaching, we need
3778 to restart the threads of other inferiors. */
3779 if (step_over_info.thread != -1)
3780 {
3781 infrun_debug_printf ("inline step-over in-process while detaching");
3782
3783 thread_info *thr = find_thread_global_id (step_over_info.thread);
3784 if (thr->inf == inf)
3785 {
3786 /* Since we removed threads of INF from the step-over chain,
3787 we know this won't start a step-over for INF. */
3788 clear_step_over_info ();
3789
3790 if (target_is_non_stop_p ())
3791 {
3792 /* Start a new step-over in another thread if there's
3793 one that needs it. */
3794 start_step_over ();
3795
3796 /* Restart all other threads (except the
3797 previously-stepping thread, since that one is still
3798 running). */
3799 if (!step_over_info_valid_p ())
3800 restart_threads (thr);
3801 }
3802 }
3803 }
3804
3805 if (displaced_step_in_progress (inf))
3806 {
3807 infrun_debug_printf ("displaced-stepping in-process while detaching");
3808
3809 /* Stop threads currently displaced stepping, aborting it. */
3810
3811 for (thread_info *thr : inf->non_exited_threads ())
3812 {
3813 if (thr->displaced_step_state.in_progress ())
3814 {
3815 if (thr->executing ())
3816 {
3817 if (!thr->stop_requested)
3818 {
3819 target_stop (thr->ptid);
3820 thr->stop_requested = true;
3821 }
3822 }
3823 else
3824 thr->set_resumed (false);
3825 }
3826 }
3827
3828 while (displaced_step_in_progress (inf))
3829 {
3830 wait_one_event event;
3831
3832 event.target = inf->process_target ();
3833 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3834
3835 if (debug_infrun)
3836 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3837
3838 handle_one (event);
3839 }
3840
3841 /* It's OK to leave some of the threads of INF stopped, since
3842 they'll be detached shortly. */
3843 }
3844}
3845
3846/* Wait for control to return from inferior to debugger.
3847
3848 If inferior gets a signal, we may decide to start it up again
3849 instead of returning. That is why there is a loop in this function.
3850 When this function actually returns it means the inferior
3851 should be left stopped and GDB should read more commands. */
3852
3853static void
3854wait_for_inferior (inferior *inf)
3855{
3856 infrun_debug_printf ("wait_for_inferior ()");
3857
3858 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3859
3860 /* If an error happens while handling the event, propagate GDB's
3861 knowledge of the executing state to the frontend/user running
3862 state. */
3863 scoped_finish_thread_state finish_state
3864 (inf->process_target (), minus_one_ptid);
3865
3866 while (1)
3867 {
3868 struct execution_control_state ecss;
3869 struct execution_control_state *ecs = &ecss;
3870
3871 overlay_cache_invalid = 1;
3872
3873 /* Flush target cache before starting to handle each event.
3874 Target was running and cache could be stale. This is just a
3875 heuristic. Running threads may modify target memory, but we
3876 don't get any event. */
3877 target_dcache_invalidate ();
3878
3879 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3880 ecs->target = inf->process_target ();
3881
3882 if (debug_infrun)
3883 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3884
3885 /* Now figure out what to do with the result of the result. */
3886 handle_inferior_event (ecs);
3887
3888 if (!ecs->wait_some_more)
3889 break;
3890 }
3891
3892 /* No error, don't finish the state yet. */
3893 finish_state.release ();
3894}
3895
3896/* Cleanup that reinstalls the readline callback handler, if the
3897 target is running in the background. If while handling the target
3898 event something triggered a secondary prompt, like e.g., a
3899 pagination prompt, we'll have removed the callback handler (see
3900 gdb_readline_wrapper_line). Need to do this as we go back to the
3901 event loop, ready to process further input. Note this has no
3902 effect if the handler hasn't actually been removed, because calling
3903 rl_callback_handler_install resets the line buffer, thus losing
3904 input. */
3905
3906static void
3907reinstall_readline_callback_handler_cleanup ()
3908{
3909 struct ui *ui = current_ui;
3910
3911 if (!ui->async)
3912 {
3913 /* We're not going back to the top level event loop yet. Don't
3914 install the readline callback, as it'd prep the terminal,
3915 readline-style (raw, noecho) (e.g., --batch). We'll install
3916 it the next time the prompt is displayed, when we're ready
3917 for input. */
3918 return;
3919 }
3920
3921 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3922 gdb_rl_callback_handler_reinstall ();
3923}
3924
3925/* Clean up the FSMs of threads that are now stopped. In non-stop,
3926 that's just the event thread. In all-stop, that's all threads. */
3927
3928static void
3929clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3930{
3931 if (ecs->event_thread != NULL
3932 && ecs->event_thread->thread_fsm != NULL)
3933 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3934
3935 if (!non_stop)
3936 {
3937 for (thread_info *thr : all_non_exited_threads ())
3938 {
3939 if (thr->thread_fsm == NULL)
3940 continue;
3941 if (thr == ecs->event_thread)
3942 continue;
3943
3944 switch_to_thread (thr);
3945 thr->thread_fsm->clean_up (thr);
3946 }
3947
3948 if (ecs->event_thread != NULL)
3949 switch_to_thread (ecs->event_thread);
3950 }
3951}
3952
3953/* Helper for all_uis_check_sync_execution_done that works on the
3954 current UI. */
3955
3956static void
3957check_curr_ui_sync_execution_done (void)
3958{
3959 struct ui *ui = current_ui;
3960
3961 if (ui->prompt_state == PROMPT_NEEDED
3962 && ui->async
3963 && !gdb_in_secondary_prompt_p (ui))
3964 {
3965 target_terminal::ours ();
3966 gdb::observers::sync_execution_done.notify ();
3967 ui_register_input_event_handler (ui);
3968 }
3969}
3970
3971/* See infrun.h. */
3972
3973void
3974all_uis_check_sync_execution_done (void)
3975{
3976 SWITCH_THRU_ALL_UIS ()
3977 {
3978 check_curr_ui_sync_execution_done ();
3979 }
3980}
3981
3982/* See infrun.h. */
3983
3984void
3985all_uis_on_sync_execution_starting (void)
3986{
3987 SWITCH_THRU_ALL_UIS ()
3988 {
3989 if (current_ui->prompt_state == PROMPT_NEEDED)
3990 async_disable_stdin ();
3991 }
3992}
3993
3994/* Asynchronous version of wait_for_inferior. It is called by the
3995 event loop whenever a change of state is detected on the file
3996 descriptor corresponding to the target. It can be called more than
3997 once to complete a single execution command. In such cases we need
3998 to keep the state in a global variable ECSS. If it is the last time
3999 that this function is called for a single execution command, then
4000 report to the user that the inferior has stopped, and do the
4001 necessary cleanups. */
4002
4003void
4004fetch_inferior_event ()
4005{
4006 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4007
4008 struct execution_control_state ecss;
4009 struct execution_control_state *ecs = &ecss;
4010 int cmd_done = 0;
4011
4012 /* Events are always processed with the main UI as current UI. This
4013 way, warnings, debug output, etc. are always consistently sent to
4014 the main console. */
4015 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4016
4017 /* Temporarily disable pagination. Otherwise, the user would be
4018 given an option to press 'q' to quit, which would cause an early
4019 exit and could leave GDB in a half-baked state. */
4020 scoped_restore save_pagination
4021 = make_scoped_restore (&pagination_enabled, false);
4022
4023 /* End up with readline processing input, if necessary. */
4024 {
4025 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4026
4027 /* We're handling a live event, so make sure we're doing live
4028 debugging. If we're looking at traceframes while the target is
4029 running, we're going to need to get back to that mode after
4030 handling the event. */
4031 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4032 if (non_stop)
4033 {
4034 maybe_restore_traceframe.emplace ();
4035 set_current_traceframe (-1);
4036 }
4037
4038 /* The user/frontend should not notice a thread switch due to
4039 internal events. Make sure we revert to the user selected
4040 thread and frame after handling the event and running any
4041 breakpoint commands. */
4042 scoped_restore_current_thread restore_thread;
4043
4044 overlay_cache_invalid = 1;
4045 /* Flush target cache before starting to handle each event. Target
4046 was running and cache could be stale. This is just a heuristic.
4047 Running threads may modify target memory, but we don't get any
4048 event. */
4049 target_dcache_invalidate ();
4050
4051 scoped_restore save_exec_dir
4052 = make_scoped_restore (&execution_direction,
4053 target_execution_direction ());
4054
4055 /* Allow targets to pause their resumed threads while we handle
4056 the event. */
4057 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4058
4059 if (!do_target_wait (ecs, TARGET_WNOHANG))
4060 {
4061 infrun_debug_printf ("do_target_wait returned no event");
4062 disable_commit_resumed.reset_and_commit ();
4063 return;
4064 }
4065
4066 gdb_assert (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
4067
4068 /* Switch to the target that generated the event, so we can do
4069 target calls. */
4070 switch_to_target_no_thread (ecs->target);
4071
4072 if (debug_infrun)
4073 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4074
4075 /* If an error happens while handling the event, propagate GDB's
4076 knowledge of the executing state to the frontend/user running
4077 state. */
4078 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4079 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4080
4081 /* Get executed before scoped_restore_current_thread above to apply
4082 still for the thread which has thrown the exception. */
4083 auto defer_bpstat_clear
4084 = make_scope_exit (bpstat_clear_actions);
4085 auto defer_delete_threads
4086 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4087
4088 /* Now figure out what to do with the result of the result. */
4089 handle_inferior_event (ecs);
4090
4091 if (!ecs->wait_some_more)
4092 {
4093 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4094 bool should_stop = true;
4095 struct thread_info *thr = ecs->event_thread;
4096
4097 delete_just_stopped_threads_infrun_breakpoints ();
4098
4099 if (thr != NULL)
4100 {
4101 struct thread_fsm *thread_fsm = thr->thread_fsm;
4102
4103 if (thread_fsm != NULL)
4104 should_stop = thread_fsm->should_stop (thr);
4105 }
4106
4107 if (!should_stop)
4108 {
4109 keep_going (ecs);
4110 }
4111 else
4112 {
4113 bool should_notify_stop = true;
4114 int proceeded = 0;
4115
4116 clean_up_just_stopped_threads_fsms (ecs);
4117
4118 if (thr != NULL && thr->thread_fsm != NULL)
4119 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4120
4121 if (should_notify_stop)
4122 {
4123 /* We may not find an inferior if this was a process exit. */
4124 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4125 proceeded = normal_stop ();
4126 }
4127
4128 if (!proceeded)
4129 {
4130 inferior_event_handler (INF_EXEC_COMPLETE);
4131 cmd_done = 1;
4132 }
4133
4134 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4135 previously selected thread is gone. We have two
4136 choices - switch to no thread selected, or restore the
4137 previously selected thread (now exited). We chose the
4138 later, just because that's what GDB used to do. After
4139 this, "info threads" says "The current thread <Thread
4140 ID 2> has terminated." instead of "No thread
4141 selected.". */
4142 if (!non_stop
4143 && cmd_done
4144 && ecs->ws.kind () != TARGET_WAITKIND_NO_RESUMED)
4145 restore_thread.dont_restore ();
4146 }
4147 }
4148
4149 defer_delete_threads.release ();
4150 defer_bpstat_clear.release ();
4151
4152 /* No error, don't finish the thread states yet. */
4153 finish_state.release ();
4154
4155 disable_commit_resumed.reset_and_commit ();
4156
4157 /* This scope is used to ensure that readline callbacks are
4158 reinstalled here. */
4159 }
4160
4161 /* If a UI was in sync execution mode, and now isn't, restore its
4162 prompt (a synchronous execution command has finished, and we're
4163 ready for input). */
4164 all_uis_check_sync_execution_done ();
4165
4166 if (cmd_done
4167 && exec_done_display_p
4168 && (inferior_ptid == null_ptid
4169 || inferior_thread ()->state != THREAD_RUNNING))
4170 printf_unfiltered (_("completed.\n"));
4171}
4172
4173/* See infrun.h. */
4174
4175void
4176set_step_info (thread_info *tp, struct frame_info *frame,
4177 struct symtab_and_line sal)
4178{
4179 /* This can be removed once this function no longer implicitly relies on the
4180 inferior_ptid value. */
4181 gdb_assert (inferior_ptid == tp->ptid);
4182
4183 tp->control.step_frame_id = get_frame_id (frame);
4184 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4185
4186 tp->current_symtab = sal.symtab;
4187 tp->current_line = sal.line;
4188}
4189
4190/* Clear context switchable stepping state. */
4191
4192void
4193init_thread_stepping_state (struct thread_info *tss)
4194{
4195 tss->stepped_breakpoint = 0;
4196 tss->stepping_over_breakpoint = 0;
4197 tss->stepping_over_watchpoint = 0;
4198 tss->step_after_step_resume_breakpoint = 0;
4199}
4200
4201/* See infrun.h. */
4202
4203void
4204set_last_target_status (process_stratum_target *target, ptid_t ptid,
4205 const target_waitstatus &status)
4206{
4207 target_last_proc_target = target;
4208 target_last_wait_ptid = ptid;
4209 target_last_waitstatus = status;
4210}
4211
4212/* See infrun.h. */
4213
4214void
4215get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4216 target_waitstatus *status)
4217{
4218 if (target != nullptr)
4219 *target = target_last_proc_target;
4220 if (ptid != nullptr)
4221 *ptid = target_last_wait_ptid;
4222 if (status != nullptr)
4223 *status = target_last_waitstatus;
4224}
4225
4226/* See infrun.h. */
4227
4228void
4229nullify_last_target_wait_ptid (void)
4230{
4231 target_last_proc_target = nullptr;
4232 target_last_wait_ptid = minus_one_ptid;
4233 target_last_waitstatus = {};
4234}
4235
4236/* Switch thread contexts. */
4237
4238static void
4239context_switch (execution_control_state *ecs)
4240{
4241 if (ecs->ptid != inferior_ptid
4242 && (inferior_ptid == null_ptid
4243 || ecs->event_thread != inferior_thread ()))
4244 {
4245 infrun_debug_printf ("Switching context from %s to %s",
4246 inferior_ptid.to_string ().c_str (),
4247 ecs->ptid.to_string ().c_str ());
4248 }
4249
4250 switch_to_thread (ecs->event_thread);
4251}
4252
4253/* If the target can't tell whether we've hit breakpoints
4254 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4255 check whether that could have been caused by a breakpoint. If so,
4256 adjust the PC, per gdbarch_decr_pc_after_break. */
4257
4258static void
4259adjust_pc_after_break (struct thread_info *thread,
4260 const target_waitstatus *ws)
4261{
4262 struct regcache *regcache;
4263 struct gdbarch *gdbarch;
4264 CORE_ADDR breakpoint_pc, decr_pc;
4265
4266 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4267 we aren't, just return.
4268
4269 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4270 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4271 implemented by software breakpoints should be handled through the normal
4272 breakpoint layer.
4273
4274 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4275 different signals (SIGILL or SIGEMT for instance), but it is less
4276 clear where the PC is pointing afterwards. It may not match
4277 gdbarch_decr_pc_after_break. I don't know any specific target that
4278 generates these signals at breakpoints (the code has been in GDB since at
4279 least 1992) so I can not guess how to handle them here.
4280
4281 In earlier versions of GDB, a target with
4282 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4283 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4284 target with both of these set in GDB history, and it seems unlikely to be
4285 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4286
4287 if (ws->kind () != TARGET_WAITKIND_STOPPED)
4288 return;
4289
4290 if (ws->sig () != GDB_SIGNAL_TRAP)
4291 return;
4292
4293 /* In reverse execution, when a breakpoint is hit, the instruction
4294 under it has already been de-executed. The reported PC always
4295 points at the breakpoint address, so adjusting it further would
4296 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4297 architecture:
4298
4299 B1 0x08000000 : INSN1
4300 B2 0x08000001 : INSN2
4301 0x08000002 : INSN3
4302 PC -> 0x08000003 : INSN4
4303
4304 Say you're stopped at 0x08000003 as above. Reverse continuing
4305 from that point should hit B2 as below. Reading the PC when the
4306 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4307 been de-executed already.
4308
4309 B1 0x08000000 : INSN1
4310 B2 PC -> 0x08000001 : INSN2
4311 0x08000002 : INSN3
4312 0x08000003 : INSN4
4313
4314 We can't apply the same logic as for forward execution, because
4315 we would wrongly adjust the PC to 0x08000000, since there's a
4316 breakpoint at PC - 1. We'd then report a hit on B1, although
4317 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4318 behaviour. */
4319 if (execution_direction == EXEC_REVERSE)
4320 return;
4321
4322 /* If the target can tell whether the thread hit a SW breakpoint,
4323 trust it. Targets that can tell also adjust the PC
4324 themselves. */
4325 if (target_supports_stopped_by_sw_breakpoint ())
4326 return;
4327
4328 /* Note that relying on whether a breakpoint is planted in memory to
4329 determine this can fail. E.g,. the breakpoint could have been
4330 removed since. Or the thread could have been told to step an
4331 instruction the size of a breakpoint instruction, and only
4332 _after_ was a breakpoint inserted at its address. */
4333
4334 /* If this target does not decrement the PC after breakpoints, then
4335 we have nothing to do. */
4336 regcache = get_thread_regcache (thread);
4337 gdbarch = regcache->arch ();
4338
4339 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4340 if (decr_pc == 0)
4341 return;
4342
4343 const address_space *aspace = regcache->aspace ();
4344
4345 /* Find the location where (if we've hit a breakpoint) the
4346 breakpoint would be. */
4347 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4348
4349 /* If the target can't tell whether a software breakpoint triggered,
4350 fallback to figuring it out based on breakpoints we think were
4351 inserted in the target, and on whether the thread was stepped or
4352 continued. */
4353
4354 /* Check whether there actually is a software breakpoint inserted at
4355 that location.
4356
4357 If in non-stop mode, a race condition is possible where we've
4358 removed a breakpoint, but stop events for that breakpoint were
4359 already queued and arrive later. To suppress those spurious
4360 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4361 and retire them after a number of stop events are reported. Note
4362 this is an heuristic and can thus get confused. The real fix is
4363 to get the "stopped by SW BP and needs adjustment" info out of
4364 the target/kernel (and thus never reach here; see above). */
4365 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4366 || (target_is_non_stop_p ()
4367 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4368 {
4369 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4370
4371 if (record_full_is_used ())
4372 restore_operation_disable.emplace
4373 (record_full_gdb_operation_disable_set ());
4374
4375 /* When using hardware single-step, a SIGTRAP is reported for both
4376 a completed single-step and a software breakpoint. Need to
4377 differentiate between the two, as the latter needs adjusting
4378 but the former does not.
4379
4380 The SIGTRAP can be due to a completed hardware single-step only if
4381 - we didn't insert software single-step breakpoints
4382 - this thread is currently being stepped
4383
4384 If any of these events did not occur, we must have stopped due
4385 to hitting a software breakpoint, and have to back up to the
4386 breakpoint address.
4387
4388 As a special case, we could have hardware single-stepped a
4389 software breakpoint. In this case (prev_pc == breakpoint_pc),
4390 we also need to back up to the breakpoint address. */
4391
4392 if (thread_has_single_step_breakpoints_set (thread)
4393 || !currently_stepping (thread)
4394 || (thread->stepped_breakpoint
4395 && thread->prev_pc == breakpoint_pc))
4396 regcache_write_pc (regcache, breakpoint_pc);
4397 }
4398}
4399
4400static bool
4401stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4402{
4403 for (frame = get_prev_frame (frame);
4404 frame != NULL;
4405 frame = get_prev_frame (frame))
4406 {
4407 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4408 return true;
4409
4410 if (get_frame_type (frame) != INLINE_FRAME)
4411 break;
4412 }
4413
4414 return false;
4415}
4416
4417/* Look for an inline frame that is marked for skip.
4418 If PREV_FRAME is TRUE start at the previous frame,
4419 otherwise start at the current frame. Stop at the
4420 first non-inline frame, or at the frame where the
4421 step started. */
4422
4423static bool
4424inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4425{
4426 struct frame_info *frame = get_current_frame ();
4427
4428 if (prev_frame)
4429 frame = get_prev_frame (frame);
4430
4431 for (; frame != NULL; frame = get_prev_frame (frame))
4432 {
4433 const char *fn = NULL;
4434 symtab_and_line sal;
4435 struct symbol *sym;
4436
4437 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4438 break;
4439 if (get_frame_type (frame) != INLINE_FRAME)
4440 break;
4441
4442 sal = find_frame_sal (frame);
4443 sym = get_frame_function (frame);
4444
4445 if (sym != NULL)
4446 fn = sym->print_name ();
4447
4448 if (sal.line != 0
4449 && function_name_is_marked_for_skip (fn, sal))
4450 return true;
4451 }
4452
4453 return false;
4454}
4455
4456/* If the event thread has the stop requested flag set, pretend it
4457 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4458 target_stop). */
4459
4460static bool
4461handle_stop_requested (struct execution_control_state *ecs)
4462{
4463 if (ecs->event_thread->stop_requested)
4464 {
4465 ecs->ws.set_stopped (GDB_SIGNAL_0);
4466 handle_signal_stop (ecs);
4467 return true;
4468 }
4469 return false;
4470}
4471
4472/* Auxiliary function that handles syscall entry/return events.
4473 It returns true if the inferior should keep going (and GDB
4474 should ignore the event), or false if the event deserves to be
4475 processed. */
4476
4477static bool
4478handle_syscall_event (struct execution_control_state *ecs)
4479{
4480 struct regcache *regcache;
4481 int syscall_number;
4482
4483 context_switch (ecs);
4484
4485 regcache = get_thread_regcache (ecs->event_thread);
4486 syscall_number = ecs->ws.syscall_number ();
4487 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
4488
4489 if (catch_syscall_enabled () > 0
4490 && catching_syscall_number (syscall_number))
4491 {
4492 infrun_debug_printf ("syscall number=%d", syscall_number);
4493
4494 ecs->event_thread->control.stop_bpstat
4495 = bpstat_stop_status (regcache->aspace (),
4496 ecs->event_thread->stop_pc (),
4497 ecs->event_thread, &ecs->ws);
4498
4499 if (handle_stop_requested (ecs))
4500 return false;
4501
4502 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4503 {
4504 /* Catchpoint hit. */
4505 return false;
4506 }
4507 }
4508
4509 if (handle_stop_requested (ecs))
4510 return false;
4511
4512 /* If no catchpoint triggered for this, then keep going. */
4513 keep_going (ecs);
4514
4515 return true;
4516}
4517
4518/* Lazily fill in the execution_control_state's stop_func_* fields. */
4519
4520static void
4521fill_in_stop_func (struct gdbarch *gdbarch,
4522 struct execution_control_state *ecs)
4523{
4524 if (!ecs->stop_func_filled_in)
4525 {
4526 const block *block;
4527 const general_symbol_info *gsi;
4528
4529 /* Don't care about return value; stop_func_start and stop_func_name
4530 will both be 0 if it doesn't work. */
4531 find_pc_partial_function_sym (ecs->event_thread->stop_pc (),
4532 &gsi,
4533 &ecs->stop_func_start,
4534 &ecs->stop_func_end,
4535 &block);
4536 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4537
4538 /* The call to find_pc_partial_function, above, will set
4539 stop_func_start and stop_func_end to the start and end
4540 of the range containing the stop pc. If this range
4541 contains the entry pc for the block (which is always the
4542 case for contiguous blocks), advance stop_func_start past
4543 the function's start offset and entrypoint. Note that
4544 stop_func_start is NOT advanced when in a range of a
4545 non-contiguous block that does not contain the entry pc. */
4546 if (block != nullptr
4547 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4548 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4549 {
4550 ecs->stop_func_start
4551 += gdbarch_deprecated_function_start_offset (gdbarch);
4552
4553 if (gdbarch_skip_entrypoint_p (gdbarch))
4554 ecs->stop_func_start
4555 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4556 }
4557
4558 ecs->stop_func_filled_in = 1;
4559 }
4560}
4561
4562
4563/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4564
4565static enum stop_kind
4566get_inferior_stop_soon (execution_control_state *ecs)
4567{
4568 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4569
4570 gdb_assert (inf != NULL);
4571 return inf->control.stop_soon;
4572}
4573
4574/* Poll for one event out of the current target. Store the resulting
4575 waitstatus in WS, and return the event ptid. Does not block. */
4576
4577static ptid_t
4578poll_one_curr_target (struct target_waitstatus *ws)
4579{
4580 ptid_t event_ptid;
4581
4582 overlay_cache_invalid = 1;
4583
4584 /* Flush target cache before starting to handle each event.
4585 Target was running and cache could be stale. This is just a
4586 heuristic. Running threads may modify target memory, but we
4587 don't get any event. */
4588 target_dcache_invalidate ();
4589
4590 if (deprecated_target_wait_hook)
4591 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4592 else
4593 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4594
4595 if (debug_infrun)
4596 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4597
4598 return event_ptid;
4599}
4600
4601/* Wait for one event out of any target. */
4602
4603static wait_one_event
4604wait_one ()
4605{
4606 while (1)
4607 {
4608 for (inferior *inf : all_inferiors ())
4609 {
4610 process_stratum_target *target = inf->process_target ();
4611 if (target == NULL
4612 || !target->is_async_p ()
4613 || !target->threads_executing)
4614 continue;
4615
4616 switch_to_inferior_no_thread (inf);
4617
4618 wait_one_event event;
4619 event.target = target;
4620 event.ptid = poll_one_curr_target (&event.ws);
4621
4622 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4623 {
4624 /* If nothing is resumed, remove the target from the
4625 event loop. */
4626 target_async (0);
4627 }
4628 else if (event.ws.kind () != TARGET_WAITKIND_IGNORE)
4629 return event;
4630 }
4631
4632 /* Block waiting for some event. */
4633
4634 fd_set readfds;
4635 int nfds = 0;
4636
4637 FD_ZERO (&readfds);
4638
4639 for (inferior *inf : all_inferiors ())
4640 {
4641 process_stratum_target *target = inf->process_target ();
4642 if (target == NULL
4643 || !target->is_async_p ()
4644 || !target->threads_executing)
4645 continue;
4646
4647 int fd = target->async_wait_fd ();
4648 FD_SET (fd, &readfds);
4649 if (nfds <= fd)
4650 nfds = fd + 1;
4651 }
4652
4653 if (nfds == 0)
4654 {
4655 /* No waitable targets left. All must be stopped. */
4656 target_waitstatus ws;
4657 ws.set_no_resumed ();
4658 return {NULL, minus_one_ptid, std::move (ws)};
4659 }
4660
4661 QUIT;
4662
4663 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4664 if (numfds < 0)
4665 {
4666 if (errno == EINTR)
4667 continue;
4668 else
4669 perror_with_name ("interruptible_select");
4670 }
4671 }
4672}
4673
4674/* Save the thread's event and stop reason to process it later. */
4675
4676static void
4677save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4678{
4679 infrun_debug_printf ("saving status %s for %s",
4680 ws->to_string ().c_str (),
4681 tp->ptid.to_string ().c_str ());
4682
4683 /* Record for later. */
4684 tp->set_pending_waitstatus (*ws);
4685
4686 if (ws->kind () == TARGET_WAITKIND_STOPPED
4687 && ws->sig () == GDB_SIGNAL_TRAP)
4688 {
4689 struct regcache *regcache = get_thread_regcache (tp);
4690 const address_space *aspace = regcache->aspace ();
4691 CORE_ADDR pc = regcache_read_pc (regcache);
4692
4693 adjust_pc_after_break (tp, &tp->pending_waitstatus ());
4694
4695 scoped_restore_current_thread restore_thread;
4696 switch_to_thread (tp);
4697
4698 if (target_stopped_by_watchpoint ())
4699 tp->set_stop_reason (TARGET_STOPPED_BY_WATCHPOINT);
4700 else if (target_supports_stopped_by_sw_breakpoint ()
4701 && target_stopped_by_sw_breakpoint ())
4702 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4703 else if (target_supports_stopped_by_hw_breakpoint ()
4704 && target_stopped_by_hw_breakpoint ())
4705 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4706 else if (!target_supports_stopped_by_hw_breakpoint ()
4707 && hardware_breakpoint_inserted_here_p (aspace, pc))
4708 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4709 else if (!target_supports_stopped_by_sw_breakpoint ()
4710 && software_breakpoint_inserted_here_p (aspace, pc))
4711 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4712 else if (!thread_has_single_step_breakpoints_set (tp)
4713 && currently_stepping (tp))
4714 tp->set_stop_reason (TARGET_STOPPED_BY_SINGLE_STEP);
4715 }
4716}
4717
4718/* Mark the non-executing threads accordingly. In all-stop, all
4719 threads of all processes are stopped when we get any event
4720 reported. In non-stop mode, only the event thread stops. */
4721
4722static void
4723mark_non_executing_threads (process_stratum_target *target,
4724 ptid_t event_ptid,
4725 const target_waitstatus &ws)
4726{
4727 ptid_t mark_ptid;
4728
4729 if (!target_is_non_stop_p ())
4730 mark_ptid = minus_one_ptid;
4731 else if (ws.kind () == TARGET_WAITKIND_SIGNALLED
4732 || ws.kind () == TARGET_WAITKIND_EXITED)
4733 {
4734 /* If we're handling a process exit in non-stop mode, even
4735 though threads haven't been deleted yet, one would think
4736 that there is nothing to do, as threads of the dead process
4737 will be soon deleted, and threads of any other process were
4738 left running. However, on some targets, threads survive a
4739 process exit event. E.g., for the "checkpoint" command,
4740 when the current checkpoint/fork exits, linux-fork.c
4741 automatically switches to another fork from within
4742 target_mourn_inferior, by associating the same
4743 inferior/thread to another fork. We haven't mourned yet at
4744 this point, but we must mark any threads left in the
4745 process as not-executing so that finish_thread_state marks
4746 them stopped (in the user's perspective) if/when we present
4747 the stop to the user. */
4748 mark_ptid = ptid_t (event_ptid.pid ());
4749 }
4750 else
4751 mark_ptid = event_ptid;
4752
4753 set_executing (target, mark_ptid, false);
4754
4755 /* Likewise the resumed flag. */
4756 set_resumed (target, mark_ptid, false);
4757}
4758
4759/* Handle one event after stopping threads. If the eventing thread
4760 reports back any interesting event, we leave it pending. If the
4761 eventing thread was in the middle of a displaced step, we
4762 cancel/finish it, and unless the thread's inferior is being
4763 detached, put the thread back in the step-over chain. Returns true
4764 if there are no resumed threads left in the target (thus there's no
4765 point in waiting further), false otherwise. */
4766
4767static bool
4768handle_one (const wait_one_event &event)
4769{
4770 infrun_debug_printf
4771 ("%s %s", event.ws.to_string ().c_str (),
4772 event.ptid.to_string ().c_str ());
4773
4774 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4775 {
4776 /* All resumed threads exited. */
4777 return true;
4778 }
4779 else if (event.ws.kind () == TARGET_WAITKIND_THREAD_EXITED
4780 || event.ws.kind () == TARGET_WAITKIND_EXITED
4781 || event.ws.kind () == TARGET_WAITKIND_SIGNALLED)
4782 {
4783 /* One thread/process exited/signalled. */
4784
4785 thread_info *t = nullptr;
4786
4787 /* The target may have reported just a pid. If so, try
4788 the first non-exited thread. */
4789 if (event.ptid.is_pid ())
4790 {
4791 int pid = event.ptid.pid ();
4792 inferior *inf = find_inferior_pid (event.target, pid);
4793 for (thread_info *tp : inf->non_exited_threads ())
4794 {
4795 t = tp;
4796 break;
4797 }
4798
4799 /* If there is no available thread, the event would
4800 have to be appended to a per-inferior event list,
4801 which does not exist (and if it did, we'd have
4802 to adjust run control command to be able to
4803 resume such an inferior). We assert here instead
4804 of going into an infinite loop. */
4805 gdb_assert (t != nullptr);
4806
4807 infrun_debug_printf
4808 ("using %s", t->ptid.to_string ().c_str ());
4809 }
4810 else
4811 {
4812 t = find_thread_ptid (event.target, event.ptid);
4813 /* Check if this is the first time we see this thread.
4814 Don't bother adding if it individually exited. */
4815 if (t == nullptr
4816 && event.ws.kind () != TARGET_WAITKIND_THREAD_EXITED)
4817 t = add_thread (event.target, event.ptid);
4818 }
4819
4820 if (t != nullptr)
4821 {
4822 /* Set the threads as non-executing to avoid
4823 another stop attempt on them. */
4824 switch_to_thread_no_regs (t);
4825 mark_non_executing_threads (event.target, event.ptid,
4826 event.ws);
4827 save_waitstatus (t, &event.ws);
4828 t->stop_requested = false;
4829 }
4830 }
4831 else
4832 {
4833 thread_info *t = find_thread_ptid (event.target, event.ptid);
4834 if (t == NULL)
4835 t = add_thread (event.target, event.ptid);
4836
4837 t->stop_requested = 0;
4838 t->set_executing (false);
4839 t->set_resumed (false);
4840 t->control.may_range_step = 0;
4841
4842 /* This may be the first time we see the inferior report
4843 a stop. */
4844 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4845 if (inf->needs_setup)
4846 {
4847 switch_to_thread_no_regs (t);
4848 setup_inferior (0);
4849 }
4850
4851 if (event.ws.kind () == TARGET_WAITKIND_STOPPED
4852 && event.ws.sig () == GDB_SIGNAL_0)
4853 {
4854 /* We caught the event that we intended to catch, so
4855 there's no event to save as pending. */
4856
4857 if (displaced_step_finish (t, GDB_SIGNAL_0)
4858 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4859 {
4860 /* Add it back to the step-over queue. */
4861 infrun_debug_printf
4862 ("displaced-step of %s canceled",
4863 t->ptid.to_string ().c_str ());
4864
4865 t->control.trap_expected = 0;
4866 if (!t->inf->detaching)
4867 global_thread_step_over_chain_enqueue (t);
4868 }
4869 }
4870 else
4871 {
4872 enum gdb_signal sig;
4873 struct regcache *regcache;
4874
4875 infrun_debug_printf
4876 ("target_wait %s, saving status for %s",
4877 event.ws.to_string ().c_str (),
4878 t->ptid.to_string ().c_str ());
4879
4880 /* Record for later. */
4881 save_waitstatus (t, &event.ws);
4882
4883 sig = (event.ws.kind () == TARGET_WAITKIND_STOPPED
4884 ? event.ws.sig () : GDB_SIGNAL_0);
4885
4886 if (displaced_step_finish (t, sig)
4887 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4888 {
4889 /* Add it back to the step-over queue. */
4890 t->control.trap_expected = 0;
4891 if (!t->inf->detaching)
4892 global_thread_step_over_chain_enqueue (t);
4893 }
4894
4895 regcache = get_thread_regcache (t);
4896 t->set_stop_pc (regcache_read_pc (regcache));
4897
4898 infrun_debug_printf ("saved stop_pc=%s for %s "
4899 "(currently_stepping=%d)",
4900 paddress (target_gdbarch (), t->stop_pc ()),
4901 t->ptid.to_string ().c_str (),
4902 currently_stepping (t));
4903 }
4904 }
4905
4906 return false;
4907}
4908
4909/* See infrun.h. */
4910
4911void
4912stop_all_threads (void)
4913{
4914 /* We may need multiple passes to discover all threads. */
4915 int pass;
4916 int iterations = 0;
4917
4918 gdb_assert (exists_non_stop_target ());
4919
4920 infrun_debug_printf ("starting");
4921
4922 scoped_restore_current_thread restore_thread;
4923
4924 /* Enable thread events of all targets. */
4925 for (auto *target : all_non_exited_process_targets ())
4926 {
4927 switch_to_target_no_thread (target);
4928 target_thread_events (true);
4929 }
4930
4931 SCOPE_EXIT
4932 {
4933 /* Disable thread events of all targets. */
4934 for (auto *target : all_non_exited_process_targets ())
4935 {
4936 switch_to_target_no_thread (target);
4937 target_thread_events (false);
4938 }
4939
4940 /* Use debug_prefixed_printf directly to get a meaningful function
4941 name. */
4942 if (debug_infrun)
4943 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4944 };
4945
4946 /* Request threads to stop, and then wait for the stops. Because
4947 threads we already know about can spawn more threads while we're
4948 trying to stop them, and we only learn about new threads when we
4949 update the thread list, do this in a loop, and keep iterating
4950 until two passes find no threads that need to be stopped. */
4951 for (pass = 0; pass < 2; pass++, iterations++)
4952 {
4953 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4954 while (1)
4955 {
4956 int waits_needed = 0;
4957
4958 for (auto *target : all_non_exited_process_targets ())
4959 {
4960 switch_to_target_no_thread (target);
4961 update_thread_list ();
4962 }
4963
4964 /* Go through all threads looking for threads that we need
4965 to tell the target to stop. */
4966 for (thread_info *t : all_non_exited_threads ())
4967 {
4968 /* For a single-target setting with an all-stop target,
4969 we would not even arrive here. For a multi-target
4970 setting, until GDB is able to handle a mixture of
4971 all-stop and non-stop targets, simply skip all-stop
4972 targets' threads. This should be fine due to the
4973 protection of 'check_multi_target_resumption'. */
4974
4975 switch_to_thread_no_regs (t);
4976 if (!target_is_non_stop_p ())
4977 continue;
4978
4979 if (t->executing ())
4980 {
4981 /* If already stopping, don't request a stop again.
4982 We just haven't seen the notification yet. */
4983 if (!t->stop_requested)
4984 {
4985 infrun_debug_printf (" %s executing, need stop",
4986 t->ptid.to_string ().c_str ());
4987 target_stop (t->ptid);
4988 t->stop_requested = 1;
4989 }
4990 else
4991 {
4992 infrun_debug_printf (" %s executing, already stopping",
4993 t->ptid.to_string ().c_str ());
4994 }
4995
4996 if (t->stop_requested)
4997 waits_needed++;
4998 }
4999 else
5000 {
5001 infrun_debug_printf (" %s not executing",
5002 t->ptid.to_string ().c_str ());
5003
5004 /* The thread may be not executing, but still be
5005 resumed with a pending status to process. */
5006 t->set_resumed (false);
5007 }
5008 }
5009
5010 if (waits_needed == 0)
5011 break;
5012
5013 /* If we find new threads on the second iteration, restart
5014 over. We want to see two iterations in a row with all
5015 threads stopped. */
5016 if (pass > 0)
5017 pass = -1;
5018
5019 for (int i = 0; i < waits_needed; i++)
5020 {
5021 wait_one_event event = wait_one ();
5022 if (handle_one (event))
5023 break;
5024 }
5025 }
5026 }
5027}
5028
5029/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5030
5031static bool
5032handle_no_resumed (struct execution_control_state *ecs)
5033{
5034 if (target_can_async_p ())
5035 {
5036 bool any_sync = false;
5037
5038 for (ui *ui : all_uis ())
5039 {
5040 if (ui->prompt_state == PROMPT_BLOCKED)
5041 {
5042 any_sync = true;
5043 break;
5044 }
5045 }
5046 if (!any_sync)
5047 {
5048 /* There were no unwaited-for children left in the target, but,
5049 we're not synchronously waiting for events either. Just
5050 ignore. */
5051
5052 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5053 prepare_to_wait (ecs);
5054 return true;
5055 }
5056 }
5057
5058 /* Otherwise, if we were running a synchronous execution command, we
5059 may need to cancel it and give the user back the terminal.
5060
5061 In non-stop mode, the target can't tell whether we've already
5062 consumed previous stop events, so it can end up sending us a
5063 no-resumed event like so:
5064
5065 #0 - thread 1 is left stopped
5066
5067 #1 - thread 2 is resumed and hits breakpoint
5068 -> TARGET_WAITKIND_STOPPED
5069
5070 #2 - thread 3 is resumed and exits
5071 this is the last resumed thread, so
5072 -> TARGET_WAITKIND_NO_RESUMED
5073
5074 #3 - gdb processes stop for thread 2 and decides to re-resume
5075 it.
5076
5077 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5078 thread 2 is now resumed, so the event should be ignored.
5079
5080 IOW, if the stop for thread 2 doesn't end a foreground command,
5081 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5082 event. But it could be that the event meant that thread 2 itself
5083 (or whatever other thread was the last resumed thread) exited.
5084
5085 To address this we refresh the thread list and check whether we
5086 have resumed threads _now_. In the example above, this removes
5087 thread 3 from the thread list. If thread 2 was re-resumed, we
5088 ignore this event. If we find no thread resumed, then we cancel
5089 the synchronous command and show "no unwaited-for " to the
5090 user. */
5091
5092 inferior *curr_inf = current_inferior ();
5093
5094 scoped_restore_current_thread restore_thread;
5095
5096 for (auto *target : all_non_exited_process_targets ())
5097 {
5098 switch_to_target_no_thread (target);
5099 update_thread_list ();
5100 }
5101
5102 /* If:
5103
5104 - the current target has no thread executing, and
5105 - the current inferior is native, and
5106 - the current inferior is the one which has the terminal, and
5107 - we did nothing,
5108
5109 then a Ctrl-C from this point on would remain stuck in the
5110 kernel, until a thread resumes and dequeues it. That would
5111 result in the GDB CLI not reacting to Ctrl-C, not able to
5112 interrupt the program. To address this, if the current inferior
5113 no longer has any thread executing, we give the terminal to some
5114 other inferior that has at least one thread executing. */
5115 bool swap_terminal = true;
5116
5117 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5118 whether to report it to the user. */
5119 bool ignore_event = false;
5120
5121 for (thread_info *thread : all_non_exited_threads ())
5122 {
5123 if (swap_terminal && thread->executing ())
5124 {
5125 if (thread->inf != curr_inf)
5126 {
5127 target_terminal::ours ();
5128
5129 switch_to_thread (thread);
5130 target_terminal::inferior ();
5131 }
5132 swap_terminal = false;
5133 }
5134
5135 if (!ignore_event && thread->resumed ())
5136 {
5137 /* Either there were no unwaited-for children left in the
5138 target at some point, but there are now, or some target
5139 other than the eventing one has unwaited-for children
5140 left. Just ignore. */
5141 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5142 "(ignoring: found resumed)");
5143
5144 ignore_event = true;
5145 }
5146
5147 if (ignore_event && !swap_terminal)
5148 break;
5149 }
5150
5151 if (ignore_event)
5152 {
5153 switch_to_inferior_no_thread (curr_inf);
5154 prepare_to_wait (ecs);
5155 return true;
5156 }
5157
5158 /* Go ahead and report the event. */
5159 return false;
5160}
5161
5162/* Given an execution control state that has been freshly filled in by
5163 an event from the inferior, figure out what it means and take
5164 appropriate action.
5165
5166 The alternatives are:
5167
5168 1) stop_waiting and return; to really stop and return to the
5169 debugger.
5170
5171 2) keep_going and return; to wait for the next event (set
5172 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5173 once). */
5174
5175static void
5176handle_inferior_event (struct execution_control_state *ecs)
5177{
5178 /* Make sure that all temporary struct value objects that were
5179 created during the handling of the event get deleted at the
5180 end. */
5181 scoped_value_mark free_values;
5182
5183 infrun_debug_printf ("%s", ecs->ws.to_string ().c_str ());
5184
5185 if (ecs->ws.kind () == TARGET_WAITKIND_IGNORE)
5186 {
5187 /* We had an event in the inferior, but we are not interested in
5188 handling it at this level. The lower layers have already
5189 done what needs to be done, if anything.
5190
5191 One of the possible circumstances for this is when the
5192 inferior produces output for the console. The inferior has
5193 not stopped, and we are ignoring the event. Another possible
5194 circumstance is any event which the lower level knows will be
5195 reported multiple times without an intervening resume. */
5196 prepare_to_wait (ecs);
5197 return;
5198 }
5199
5200 if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
5201 {
5202 prepare_to_wait (ecs);
5203 return;
5204 }
5205
5206 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED
5207 && handle_no_resumed (ecs))
5208 return;
5209
5210 /* Cache the last target/ptid/waitstatus. */
5211 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5212
5213 /* Always clear state belonging to the previous time we stopped. */
5214 stop_stack_dummy = STOP_NONE;
5215
5216 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED)
5217 {
5218 /* No unwaited-for children left. IOW, all resumed children
5219 have exited. */
5220 stop_print_frame = false;
5221 stop_waiting (ecs);
5222 return;
5223 }
5224
5225 if (ecs->ws.kind () != TARGET_WAITKIND_EXITED
5226 && ecs->ws.kind () != TARGET_WAITKIND_SIGNALLED)
5227 {
5228 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5229 /* If it's a new thread, add it to the thread database. */
5230 if (ecs->event_thread == NULL)
5231 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5232
5233 /* Disable range stepping. If the next step request could use a
5234 range, this will be end up re-enabled then. */
5235 ecs->event_thread->control.may_range_step = 0;
5236 }
5237
5238 /* Dependent on valid ECS->EVENT_THREAD. */
5239 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5240
5241 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5242 reinit_frame_cache ();
5243
5244 breakpoint_retire_moribund ();
5245
5246 /* First, distinguish signals caused by the debugger from signals
5247 that have to do with the program's own actions. Note that
5248 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5249 on the operating system version. Here we detect when a SIGILL or
5250 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5251 something similar for SIGSEGV, since a SIGSEGV will be generated
5252 when we're trying to execute a breakpoint instruction on a
5253 non-executable stack. This happens for call dummy breakpoints
5254 for architectures like SPARC that place call dummies on the
5255 stack. */
5256 if (ecs->ws.kind () == TARGET_WAITKIND_STOPPED
5257 && (ecs->ws.sig () == GDB_SIGNAL_ILL
5258 || ecs->ws.sig () == GDB_SIGNAL_SEGV
5259 || ecs->ws.sig () == GDB_SIGNAL_EMT))
5260 {
5261 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5262
5263 if (breakpoint_inserted_here_p (regcache->aspace (),
5264 regcache_read_pc (regcache)))
5265 {
5266 infrun_debug_printf ("Treating signal as SIGTRAP");
5267 ecs->ws.set_stopped (GDB_SIGNAL_TRAP);
5268 }
5269 }
5270
5271 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5272
5273 switch (ecs->ws.kind ())
5274 {
5275 case TARGET_WAITKIND_LOADED:
5276 {
5277 context_switch (ecs);
5278 /* Ignore gracefully during startup of the inferior, as it might
5279 be the shell which has just loaded some objects, otherwise
5280 add the symbols for the newly loaded objects. Also ignore at
5281 the beginning of an attach or remote session; we will query
5282 the full list of libraries once the connection is
5283 established. */
5284
5285 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5286 if (stop_soon == NO_STOP_QUIETLY)
5287 {
5288 struct regcache *regcache;
5289
5290 regcache = get_thread_regcache (ecs->event_thread);
5291
5292 handle_solib_event ();
5293
5294 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
5295 ecs->event_thread->control.stop_bpstat
5296 = bpstat_stop_status (regcache->aspace (),
5297 ecs->event_thread->stop_pc (),
5298 ecs->event_thread, &ecs->ws);
5299
5300 if (handle_stop_requested (ecs))
5301 return;
5302
5303 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5304 {
5305 /* A catchpoint triggered. */
5306 process_event_stop_test (ecs);
5307 return;
5308 }
5309
5310 /* If requested, stop when the dynamic linker notifies
5311 gdb of events. This allows the user to get control
5312 and place breakpoints in initializer routines for
5313 dynamically loaded objects (among other things). */
5314 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5315 if (stop_on_solib_events)
5316 {
5317 /* Make sure we print "Stopped due to solib-event" in
5318 normal_stop. */
5319 stop_print_frame = true;
5320
5321 stop_waiting (ecs);
5322 return;
5323 }
5324 }
5325
5326 /* If we are skipping through a shell, or through shared library
5327 loading that we aren't interested in, resume the program. If
5328 we're running the program normally, also resume. */
5329 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5330 {
5331 /* Loading of shared libraries might have changed breakpoint
5332 addresses. Make sure new breakpoints are inserted. */
5333 if (stop_soon == NO_STOP_QUIETLY)
5334 insert_breakpoints ();
5335 resume (GDB_SIGNAL_0);
5336 prepare_to_wait (ecs);
5337 return;
5338 }
5339
5340 /* But stop if we're attaching or setting up a remote
5341 connection. */
5342 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5343 || stop_soon == STOP_QUIETLY_REMOTE)
5344 {
5345 infrun_debug_printf ("quietly stopped");
5346 stop_waiting (ecs);
5347 return;
5348 }
5349
5350 internal_error (__FILE__, __LINE__,
5351 _("unhandled stop_soon: %d"), (int) stop_soon);
5352 }
5353
5354 case TARGET_WAITKIND_SPURIOUS:
5355 if (handle_stop_requested (ecs))
5356 return;
5357 context_switch (ecs);
5358 resume (GDB_SIGNAL_0);
5359 prepare_to_wait (ecs);
5360 return;
5361
5362 case TARGET_WAITKIND_THREAD_CREATED:
5363 if (handle_stop_requested (ecs))
5364 return;
5365 context_switch (ecs);
5366 if (!switch_back_to_stepped_thread (ecs))
5367 keep_going (ecs);
5368 return;
5369
5370 case TARGET_WAITKIND_EXITED:
5371 case TARGET_WAITKIND_SIGNALLED:
5372 {
5373 /* Depending on the system, ecs->ptid may point to a thread or
5374 to a process. On some targets, target_mourn_inferior may
5375 need to have access to the just-exited thread. That is the
5376 case of GNU/Linux's "checkpoint" support, for example.
5377 Call the switch_to_xxx routine as appropriate. */
5378 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5379 if (thr != nullptr)
5380 switch_to_thread (thr);
5381 else
5382 {
5383 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5384 switch_to_inferior_no_thread (inf);
5385 }
5386 }
5387 handle_vfork_child_exec_or_exit (0);
5388 target_terminal::ours (); /* Must do this before mourn anyway. */
5389
5390 /* Clearing any previous state of convenience variables. */
5391 clear_exit_convenience_vars ();
5392
5393 if (ecs->ws.kind () == TARGET_WAITKIND_EXITED)
5394 {
5395 /* Record the exit code in the convenience variable $_exitcode, so
5396 that the user can inspect this again later. */
5397 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5398 (LONGEST) ecs->ws.exit_status ());
5399
5400 /* Also record this in the inferior itself. */
5401 current_inferior ()->has_exit_code = 1;
5402 current_inferior ()->exit_code = (LONGEST) ecs->ws.exit_status ();
5403
5404 /* Support the --return-child-result option. */
5405 return_child_result_value = ecs->ws.exit_status ();
5406
5407 gdb::observers::exited.notify (ecs->ws.exit_status ());
5408 }
5409 else
5410 {
5411 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5412
5413 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5414 {
5415 /* Set the value of the internal variable $_exitsignal,
5416 which holds the signal uncaught by the inferior. */
5417 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5418 gdbarch_gdb_signal_to_target (gdbarch,
5419 ecs->ws.sig ()));
5420 }
5421 else
5422 {
5423 /* We don't have access to the target's method used for
5424 converting between signal numbers (GDB's internal
5425 representation <-> target's representation).
5426 Therefore, we cannot do a good job at displaying this
5427 information to the user. It's better to just warn
5428 her about it (if infrun debugging is enabled), and
5429 give up. */
5430 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5431 "signal number.");
5432 }
5433
5434 gdb::observers::signal_exited.notify (ecs->ws.sig ());
5435 }
5436
5437 gdb_flush (gdb_stdout);
5438 target_mourn_inferior (inferior_ptid);
5439 stop_print_frame = false;
5440 stop_waiting (ecs);
5441 return;
5442
5443 case TARGET_WAITKIND_FORKED:
5444 case TARGET_WAITKIND_VFORKED:
5445 /* Check whether the inferior is displaced stepping. */
5446 {
5447 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5448 struct gdbarch *gdbarch = regcache->arch ();
5449 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5450
5451 /* If this is a fork (child gets its own address space copy)
5452 and some displaced step buffers were in use at the time of
5453 the fork, restore the displaced step buffer bytes in the
5454 child process.
5455
5456 Architectures which support displaced stepping and fork
5457 events must supply an implementation of
5458 gdbarch_displaced_step_restore_all_in_ptid. This is not
5459 enforced during gdbarch validation to support architectures
5460 which support displaced stepping but not forks. */
5461 if (ecs->ws.kind () == TARGET_WAITKIND_FORKED
5462 && gdbarch_supports_displaced_stepping (gdbarch))
5463 gdbarch_displaced_step_restore_all_in_ptid
5464 (gdbarch, parent_inf, ecs->ws.child_ptid ());
5465
5466 /* If displaced stepping is supported, and thread ecs->ptid is
5467 displaced stepping. */
5468 if (displaced_step_in_progress_thread (ecs->event_thread))
5469 {
5470 struct regcache *child_regcache;
5471 CORE_ADDR parent_pc;
5472
5473 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5474 indicating that the displaced stepping of syscall instruction
5475 has been done. Perform cleanup for parent process here. Note
5476 that this operation also cleans up the child process for vfork,
5477 because their pages are shared. */
5478 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5479 /* Start a new step-over in another thread if there's one
5480 that needs it. */
5481 start_step_over ();
5482
5483 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5484 the child's PC is also within the scratchpad. Set the child's PC
5485 to the parent's PC value, which has already been fixed up.
5486 FIXME: we use the parent's aspace here, although we're touching
5487 the child, because the child hasn't been added to the inferior
5488 list yet at this point. */
5489
5490 child_regcache
5491 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5492 ecs->ws.child_ptid (),
5493 gdbarch,
5494 parent_inf->aspace);
5495 /* Read PC value of parent process. */
5496 parent_pc = regcache_read_pc (regcache);
5497
5498 displaced_debug_printf ("write child pc from %s to %s",
5499 paddress (gdbarch,
5500 regcache_read_pc (child_regcache)),
5501 paddress (gdbarch, parent_pc));
5502
5503 regcache_write_pc (child_regcache, parent_pc);
5504 }
5505 }
5506
5507 context_switch (ecs);
5508
5509 /* Immediately detach breakpoints from the child before there's
5510 any chance of letting the user delete breakpoints from the
5511 breakpoint lists. If we don't do this early, it's easy to
5512 leave left over traps in the child, vis: "break foo; catch
5513 fork; c; <fork>; del; c; <child calls foo>". We only follow
5514 the fork on the last `continue', and by that time the
5515 breakpoint at "foo" is long gone from the breakpoint table.
5516 If we vforked, then we don't need to unpatch here, since both
5517 parent and child are sharing the same memory pages; we'll
5518 need to unpatch at follow/detach time instead to be certain
5519 that new breakpoints added between catchpoint hit time and
5520 vfork follow are detached. */
5521 if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED)
5522 {
5523 /* This won't actually modify the breakpoint list, but will
5524 physically remove the breakpoints from the child. */
5525 detach_breakpoints (ecs->ws.child_ptid ());
5526 }
5527
5528 delete_just_stopped_threads_single_step_breakpoints ();
5529
5530 /* In case the event is caught by a catchpoint, remember that
5531 the event is to be followed at the next resume of the thread,
5532 and not immediately. */
5533 ecs->event_thread->pending_follow = ecs->ws;
5534
5535 ecs->event_thread->set_stop_pc
5536 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5537
5538 ecs->event_thread->control.stop_bpstat
5539 = bpstat_stop_status (get_current_regcache ()->aspace (),
5540 ecs->event_thread->stop_pc (),
5541 ecs->event_thread, &ecs->ws);
5542
5543 if (handle_stop_requested (ecs))
5544 return;
5545
5546 /* If no catchpoint triggered for this, then keep going. Note
5547 that we're interested in knowing the bpstat actually causes a
5548 stop, not just if it may explain the signal. Software
5549 watchpoints, for example, always appear in the bpstat. */
5550 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5551 {
5552 bool follow_child
5553 = (follow_fork_mode_string == follow_fork_mode_child);
5554
5555 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5556
5557 process_stratum_target *targ
5558 = ecs->event_thread->inf->process_target ();
5559
5560 bool should_resume = follow_fork ();
5561
5562 /* Note that one of these may be an invalid pointer,
5563 depending on detach_fork. */
5564 thread_info *parent = ecs->event_thread;
5565 thread_info *child = find_thread_ptid (targ, ecs->ws.child_ptid ());
5566
5567 /* At this point, the parent is marked running, and the
5568 child is marked stopped. */
5569
5570 /* If not resuming the parent, mark it stopped. */
5571 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5572 parent->set_running (false);
5573
5574 /* If resuming the child, mark it running. */
5575 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5576 child->set_running (true);
5577
5578 /* In non-stop mode, also resume the other branch. */
5579 if (!detach_fork && (non_stop
5580 || (sched_multi && target_is_non_stop_p ())))
5581 {
5582 if (follow_child)
5583 switch_to_thread (parent);
5584 else
5585 switch_to_thread (child);
5586
5587 ecs->event_thread = inferior_thread ();
5588 ecs->ptid = inferior_ptid;
5589 keep_going (ecs);
5590 }
5591
5592 if (follow_child)
5593 switch_to_thread (child);
5594 else
5595 switch_to_thread (parent);
5596
5597 ecs->event_thread = inferior_thread ();
5598 ecs->ptid = inferior_ptid;
5599
5600 if (should_resume)
5601 keep_going (ecs);
5602 else
5603 stop_waiting (ecs);
5604 return;
5605 }
5606 process_event_stop_test (ecs);
5607 return;
5608
5609 case TARGET_WAITKIND_VFORK_DONE:
5610 /* Done with the shared memory region. Re-insert breakpoints in
5611 the parent, and keep going. */
5612
5613 context_switch (ecs);
5614
5615 current_inferior ()->waiting_for_vfork_done = 0;
5616 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5617
5618 if (handle_stop_requested (ecs))
5619 return;
5620
5621 /* This also takes care of reinserting breakpoints in the
5622 previously locked inferior. */
5623 keep_going (ecs);
5624 return;
5625
5626 case TARGET_WAITKIND_EXECD:
5627
5628 /* Note we can't read registers yet (the stop_pc), because we
5629 don't yet know the inferior's post-exec architecture.
5630 'stop_pc' is explicitly read below instead. */
5631 switch_to_thread_no_regs (ecs->event_thread);
5632
5633 /* Do whatever is necessary to the parent branch of the vfork. */
5634 handle_vfork_child_exec_or_exit (1);
5635
5636 /* This causes the eventpoints and symbol table to be reset.
5637 Must do this now, before trying to determine whether to
5638 stop. */
5639 follow_exec (inferior_ptid, ecs->ws.execd_pathname ());
5640
5641 /* In follow_exec we may have deleted the original thread and
5642 created a new one. Make sure that the event thread is the
5643 execd thread for that case (this is a nop otherwise). */
5644 ecs->event_thread = inferior_thread ();
5645
5646 ecs->event_thread->set_stop_pc
5647 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5648
5649 ecs->event_thread->control.stop_bpstat
5650 = bpstat_stop_status (get_current_regcache ()->aspace (),
5651 ecs->event_thread->stop_pc (),
5652 ecs->event_thread, &ecs->ws);
5653
5654 if (handle_stop_requested (ecs))
5655 return;
5656
5657 /* If no catchpoint triggered for this, then keep going. */
5658 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5659 {
5660 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5661 keep_going (ecs);
5662 return;
5663 }
5664 process_event_stop_test (ecs);
5665 return;
5666
5667 /* Be careful not to try to gather much state about a thread
5668 that's in a syscall. It's frequently a losing proposition. */
5669 case TARGET_WAITKIND_SYSCALL_ENTRY:
5670 /* Getting the current syscall number. */
5671 if (handle_syscall_event (ecs) == 0)
5672 process_event_stop_test (ecs);
5673 return;
5674
5675 /* Before examining the threads further, step this thread to
5676 get it entirely out of the syscall. (We get notice of the
5677 event when the thread is just on the verge of exiting a
5678 syscall. Stepping one instruction seems to get it back
5679 into user code.) */
5680 case TARGET_WAITKIND_SYSCALL_RETURN:
5681 if (handle_syscall_event (ecs) == 0)
5682 process_event_stop_test (ecs);
5683 return;
5684
5685 case TARGET_WAITKIND_STOPPED:
5686 handle_signal_stop (ecs);
5687 return;
5688
5689 case TARGET_WAITKIND_NO_HISTORY:
5690 /* Reverse execution: target ran out of history info. */
5691
5692 /* Switch to the stopped thread. */
5693 context_switch (ecs);
5694 infrun_debug_printf ("stopped");
5695
5696 delete_just_stopped_threads_single_step_breakpoints ();
5697 ecs->event_thread->set_stop_pc
5698 (regcache_read_pc (get_thread_regcache (inferior_thread ())));
5699
5700 if (handle_stop_requested (ecs))
5701 return;
5702
5703 gdb::observers::no_history.notify ();
5704 stop_waiting (ecs);
5705 return;
5706 }
5707}
5708
5709/* Restart threads back to what they were trying to do back when we
5710 paused them for an in-line step-over. The EVENT_THREAD thread is
5711 ignored. */
5712
5713static void
5714restart_threads (struct thread_info *event_thread)
5715{
5716 /* In case the instruction just stepped spawned a new thread. */
5717 update_thread_list ();
5718
5719 for (thread_info *tp : all_non_exited_threads ())
5720 {
5721 if (tp->inf->detaching)
5722 {
5723 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5724 tp->ptid.to_string ().c_str ());
5725 continue;
5726 }
5727
5728 switch_to_thread_no_regs (tp);
5729
5730 if (tp == event_thread)
5731 {
5732 infrun_debug_printf ("restart threads: [%s] is event thread",
5733 tp->ptid.to_string ().c_str ());
5734 continue;
5735 }
5736
5737 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5738 {
5739 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5740 tp->ptid.to_string ().c_str ());
5741 continue;
5742 }
5743
5744 if (tp->resumed ())
5745 {
5746 infrun_debug_printf ("restart threads: [%s] resumed",
5747 tp->ptid.to_string ().c_str ());
5748 gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
5749 continue;
5750 }
5751
5752 if (thread_is_in_step_over_chain (tp))
5753 {
5754 infrun_debug_printf ("restart threads: [%s] needs step-over",
5755 tp->ptid.to_string ().c_str ());
5756 gdb_assert (!tp->resumed ());
5757 continue;
5758 }
5759
5760
5761 if (tp->has_pending_waitstatus ())
5762 {
5763 infrun_debug_printf ("restart threads: [%s] has pending status",
5764 tp->ptid.to_string ().c_str ());
5765 tp->set_resumed (true);
5766 continue;
5767 }
5768
5769 gdb_assert (!tp->stop_requested);
5770
5771 /* If some thread needs to start a step-over at this point, it
5772 should still be in the step-over queue, and thus skipped
5773 above. */
5774 if (thread_still_needs_step_over (tp))
5775 {
5776 internal_error (__FILE__, __LINE__,
5777 "thread [%s] needs a step-over, but not in "
5778 "step-over queue\n",
5779 tp->ptid.to_string ().c_str ());
5780 }
5781
5782 if (currently_stepping (tp))
5783 {
5784 infrun_debug_printf ("restart threads: [%s] was stepping",
5785 tp->ptid.to_string ().c_str ());
5786 keep_going_stepped_thread (tp);
5787 }
5788 else
5789 {
5790 struct execution_control_state ecss;
5791 struct execution_control_state *ecs = &ecss;
5792
5793 infrun_debug_printf ("restart threads: [%s] continuing",
5794 tp->ptid.to_string ().c_str ());
5795 reset_ecs (ecs, tp);
5796 switch_to_thread (tp);
5797 keep_going_pass_signal (ecs);
5798 }
5799 }
5800}
5801
5802/* Callback for iterate_over_threads. Find a resumed thread that has
5803 a pending waitstatus. */
5804
5805static int
5806resumed_thread_with_pending_status (struct thread_info *tp,
5807 void *arg)
5808{
5809 return tp->resumed () && tp->has_pending_waitstatus ();
5810}
5811
5812/* Called when we get an event that may finish an in-line or
5813 out-of-line (displaced stepping) step-over started previously.
5814 Return true if the event is processed and we should go back to the
5815 event loop; false if the caller should continue processing the
5816 event. */
5817
5818static int
5819finish_step_over (struct execution_control_state *ecs)
5820{
5821 displaced_step_finish (ecs->event_thread, ecs->event_thread->stop_signal ());
5822
5823 bool had_step_over_info = step_over_info_valid_p ();
5824
5825 if (had_step_over_info)
5826 {
5827 /* If we're stepping over a breakpoint with all threads locked,
5828 then only the thread that was stepped should be reporting
5829 back an event. */
5830 gdb_assert (ecs->event_thread->control.trap_expected);
5831
5832 clear_step_over_info ();
5833 }
5834
5835 if (!target_is_non_stop_p ())
5836 return 0;
5837
5838 /* Start a new step-over in another thread if there's one that
5839 needs it. */
5840 start_step_over ();
5841
5842 /* If we were stepping over a breakpoint before, and haven't started
5843 a new in-line step-over sequence, then restart all other threads
5844 (except the event thread). We can't do this in all-stop, as then
5845 e.g., we wouldn't be able to issue any other remote packet until
5846 these other threads stop. */
5847 if (had_step_over_info && !step_over_info_valid_p ())
5848 {
5849 struct thread_info *pending;
5850
5851 /* If we only have threads with pending statuses, the restart
5852 below won't restart any thread and so nothing re-inserts the
5853 breakpoint we just stepped over. But we need it inserted
5854 when we later process the pending events, otherwise if
5855 another thread has a pending event for this breakpoint too,
5856 we'd discard its event (because the breakpoint that
5857 originally caused the event was no longer inserted). */
5858 context_switch (ecs);
5859 insert_breakpoints ();
5860
5861 restart_threads (ecs->event_thread);
5862
5863 /* If we have events pending, go through handle_inferior_event
5864 again, picking up a pending event at random. This avoids
5865 thread starvation. */
5866
5867 /* But not if we just stepped over a watchpoint in order to let
5868 the instruction execute so we can evaluate its expression.
5869 The set of watchpoints that triggered is recorded in the
5870 breakpoint objects themselves (see bp->watchpoint_triggered).
5871 If we processed another event first, that other event could
5872 clobber this info. */
5873 if (ecs->event_thread->stepping_over_watchpoint)
5874 return 0;
5875
5876 pending = iterate_over_threads (resumed_thread_with_pending_status,
5877 NULL);
5878 if (pending != NULL)
5879 {
5880 struct thread_info *tp = ecs->event_thread;
5881 struct regcache *regcache;
5882
5883 infrun_debug_printf ("found resumed threads with "
5884 "pending events, saving status");
5885
5886 gdb_assert (pending != tp);
5887
5888 /* Record the event thread's event for later. */
5889 save_waitstatus (tp, &ecs->ws);
5890 /* This was cleared early, by handle_inferior_event. Set it
5891 so this pending event is considered by
5892 do_target_wait. */
5893 tp->set_resumed (true);
5894
5895 gdb_assert (!tp->executing ());
5896
5897 regcache = get_thread_regcache (tp);
5898 tp->set_stop_pc (regcache_read_pc (regcache));
5899
5900 infrun_debug_printf ("saved stop_pc=%s for %s "
5901 "(currently_stepping=%d)",
5902 paddress (target_gdbarch (), tp->stop_pc ()),
5903 tp->ptid.to_string ().c_str (),
5904 currently_stepping (tp));
5905
5906 /* This in-line step-over finished; clear this so we won't
5907 start a new one. This is what handle_signal_stop would
5908 do, if we returned false. */
5909 tp->stepping_over_breakpoint = 0;
5910
5911 /* Wake up the event loop again. */
5912 mark_async_event_handler (infrun_async_inferior_event_token);
5913
5914 prepare_to_wait (ecs);
5915 return 1;
5916 }
5917 }
5918
5919 return 0;
5920}
5921
5922/* Come here when the program has stopped with a signal. */
5923
5924static void
5925handle_signal_stop (struct execution_control_state *ecs)
5926{
5927 struct frame_info *frame;
5928 struct gdbarch *gdbarch;
5929 int stopped_by_watchpoint;
5930 enum stop_kind stop_soon;
5931 int random_signal;
5932
5933 gdb_assert (ecs->ws.kind () == TARGET_WAITKIND_STOPPED);
5934
5935 ecs->event_thread->set_stop_signal (ecs->ws.sig ());
5936
5937 /* Do we need to clean up the state of a thread that has
5938 completed a displaced single-step? (Doing so usually affects
5939 the PC, so do it here, before we set stop_pc.) */
5940 if (finish_step_over (ecs))
5941 return;
5942
5943 /* If we either finished a single-step or hit a breakpoint, but
5944 the user wanted this thread to be stopped, pretend we got a
5945 SIG0 (generic unsignaled stop). */
5946 if (ecs->event_thread->stop_requested
5947 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
5948 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5949
5950 ecs->event_thread->set_stop_pc
5951 (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5952
5953 context_switch (ecs);
5954
5955 if (deprecated_context_hook)
5956 deprecated_context_hook (ecs->event_thread->global_num);
5957
5958 if (debug_infrun)
5959 {
5960 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5961 struct gdbarch *reg_gdbarch = regcache->arch ();
5962
5963 infrun_debug_printf
5964 ("stop_pc=%s", paddress (reg_gdbarch, ecs->event_thread->stop_pc ()));
5965 if (target_stopped_by_watchpoint ())
5966 {
5967 CORE_ADDR addr;
5968
5969 infrun_debug_printf ("stopped by watchpoint");
5970
5971 if (target_stopped_data_address (current_inferior ()->top_target (),
5972 &addr))
5973 infrun_debug_printf ("stopped data address=%s",
5974 paddress (reg_gdbarch, addr));
5975 else
5976 infrun_debug_printf ("(no data address available)");
5977 }
5978 }
5979
5980 /* This is originated from start_remote(), start_inferior() and
5981 shared libraries hook functions. */
5982 stop_soon = get_inferior_stop_soon (ecs);
5983 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5984 {
5985 infrun_debug_printf ("quietly stopped");
5986 stop_print_frame = true;
5987 stop_waiting (ecs);
5988 return;
5989 }
5990
5991 /* This originates from attach_command(). We need to overwrite
5992 the stop_signal here, because some kernels don't ignore a
5993 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5994 See more comments in inferior.h. On the other hand, if we
5995 get a non-SIGSTOP, report it to the user - assume the backend
5996 will handle the SIGSTOP if it should show up later.
5997
5998 Also consider that the attach is complete when we see a
5999 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6000 target extended-remote report it instead of a SIGSTOP
6001 (e.g. gdbserver). We already rely on SIGTRAP being our
6002 signal, so this is no exception.
6003
6004 Also consider that the attach is complete when we see a
6005 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6006 the target to stop all threads of the inferior, in case the
6007 low level attach operation doesn't stop them implicitly. If
6008 they weren't stopped implicitly, then the stub will report a
6009 GDB_SIGNAL_0, meaning: stopped for no particular reason
6010 other than GDB's request. */
6011 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6012 && (ecs->event_thread->stop_signal () == GDB_SIGNAL_STOP
6013 || ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6014 || ecs->event_thread->stop_signal () == GDB_SIGNAL_0))
6015 {
6016 stop_print_frame = true;
6017 stop_waiting (ecs);
6018 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6019 return;
6020 }
6021
6022 /* At this point, get hold of the now-current thread's frame. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
6025
6026 /* Pull the single step breakpoints out of the target. */
6027 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6028 {
6029 struct regcache *regcache;
6030 CORE_ADDR pc;
6031
6032 regcache = get_thread_regcache (ecs->event_thread);
6033 const address_space *aspace = regcache->aspace ();
6034
6035 pc = regcache_read_pc (regcache);
6036
6037 /* However, before doing so, if this single-step breakpoint was
6038 actually for another thread, set this thread up for moving
6039 past it. */
6040 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6041 aspace, pc))
6042 {
6043 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6044 {
6045 infrun_debug_printf ("[%s] hit another thread's single-step "
6046 "breakpoint",
6047 ecs->ptid.to_string ().c_str ());
6048 ecs->hit_singlestep_breakpoint = 1;
6049 }
6050 }
6051 else
6052 {
6053 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6054 ecs->ptid.to_string ().c_str ());
6055 }
6056 }
6057 delete_just_stopped_threads_single_step_breakpoints ();
6058
6059 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6060 && ecs->event_thread->control.trap_expected
6061 && ecs->event_thread->stepping_over_watchpoint)
6062 stopped_by_watchpoint = 0;
6063 else
6064 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6065
6066 /* If necessary, step over this watchpoint. We'll be back to display
6067 it in a moment. */
6068 if (stopped_by_watchpoint
6069 && (target_have_steppable_watchpoint ()
6070 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6071 {
6072 /* At this point, we are stopped at an instruction which has
6073 attempted to write to a piece of memory under control of
6074 a watchpoint. The instruction hasn't actually executed
6075 yet. If we were to evaluate the watchpoint expression
6076 now, we would get the old value, and therefore no change
6077 would seem to have occurred.
6078
6079 In order to make watchpoints work `right', we really need
6080 to complete the memory write, and then evaluate the
6081 watchpoint expression. We do this by single-stepping the
6082 target.
6083
6084 It may not be necessary to disable the watchpoint to step over
6085 it. For example, the PA can (with some kernel cooperation)
6086 single step over a watchpoint without disabling the watchpoint.
6087
6088 It is far more common to need to disable a watchpoint to step
6089 the inferior over it. If we have non-steppable watchpoints,
6090 we must disable the current watchpoint; it's simplest to
6091 disable all watchpoints.
6092
6093 Any breakpoint at PC must also be stepped over -- if there's
6094 one, it will have already triggered before the watchpoint
6095 triggered, and we either already reported it to the user, or
6096 it didn't cause a stop and we called keep_going. In either
6097 case, if there was a breakpoint at PC, we must be trying to
6098 step past it. */
6099 ecs->event_thread->stepping_over_watchpoint = 1;
6100 keep_going (ecs);
6101 return;
6102 }
6103
6104 ecs->event_thread->stepping_over_breakpoint = 0;
6105 ecs->event_thread->stepping_over_watchpoint = 0;
6106 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6107 ecs->event_thread->control.stop_step = 0;
6108 stop_print_frame = true;
6109 stopped_by_random_signal = 0;
6110 bpstat *stop_chain = nullptr;
6111
6112 /* Hide inlined functions starting here, unless we just performed stepi or
6113 nexti. After stepi and nexti, always show the innermost frame (not any
6114 inline function call sites). */
6115 if (ecs->event_thread->control.step_range_end != 1)
6116 {
6117 const address_space *aspace
6118 = get_thread_regcache (ecs->event_thread)->aspace ();
6119
6120 /* skip_inline_frames is expensive, so we avoid it if we can
6121 determine that the address is one where functions cannot have
6122 been inlined. This improves performance with inferiors that
6123 load a lot of shared libraries, because the solib event
6124 breakpoint is defined as the address of a function (i.e. not
6125 inline). Note that we have to check the previous PC as well
6126 as the current one to catch cases when we have just
6127 single-stepped off a breakpoint prior to reinstating it.
6128 Note that we're assuming that the code we single-step to is
6129 not inline, but that's not definitive: there's nothing
6130 preventing the event breakpoint function from containing
6131 inlined code, and the single-step ending up there. If the
6132 user had set a breakpoint on that inlined code, the missing
6133 skip_inline_frames call would break things. Fortunately
6134 that's an extremely unlikely scenario. */
6135 if (!pc_at_non_inline_function (aspace,
6136 ecs->event_thread->stop_pc (),
6137 &ecs->ws)
6138 && !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6139 && ecs->event_thread->control.trap_expected
6140 && pc_at_non_inline_function (aspace,
6141 ecs->event_thread->prev_pc,
6142 &ecs->ws)))
6143 {
6144 stop_chain = build_bpstat_chain (aspace,
6145 ecs->event_thread->stop_pc (),
6146 &ecs->ws);
6147 skip_inline_frames (ecs->event_thread, stop_chain);
6148
6149 /* Re-fetch current thread's frame in case that invalidated
6150 the frame cache. */
6151 frame = get_current_frame ();
6152 gdbarch = get_frame_arch (frame);
6153 }
6154 }
6155
6156 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6157 && ecs->event_thread->control.trap_expected
6158 && gdbarch_single_step_through_delay_p (gdbarch)
6159 && currently_stepping (ecs->event_thread))
6160 {
6161 /* We're trying to step off a breakpoint. Turns out that we're
6162 also on an instruction that needs to be stepped multiple
6163 times before it's been fully executing. E.g., architectures
6164 with a delay slot. It needs to be stepped twice, once for
6165 the instruction and once for the delay slot. */
6166 int step_through_delay
6167 = gdbarch_single_step_through_delay (gdbarch, frame);
6168
6169 if (step_through_delay)
6170 infrun_debug_printf ("step through delay");
6171
6172 if (ecs->event_thread->control.step_range_end == 0
6173 && step_through_delay)
6174 {
6175 /* The user issued a continue when stopped at a breakpoint.
6176 Set up for another trap and get out of here. */
6177 ecs->event_thread->stepping_over_breakpoint = 1;
6178 keep_going (ecs);
6179 return;
6180 }
6181 else if (step_through_delay)
6182 {
6183 /* The user issued a step when stopped at a breakpoint.
6184 Maybe we should stop, maybe we should not - the delay
6185 slot *might* correspond to a line of source. In any
6186 case, don't decide that here, just set
6187 ecs->stepping_over_breakpoint, making sure we
6188 single-step again before breakpoints are re-inserted. */
6189 ecs->event_thread->stepping_over_breakpoint = 1;
6190 }
6191 }
6192
6193 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6194 handles this event. */
6195 ecs->event_thread->control.stop_bpstat
6196 = bpstat_stop_status (get_current_regcache ()->aspace (),
6197 ecs->event_thread->stop_pc (),
6198 ecs->event_thread, &ecs->ws, stop_chain);
6199
6200 /* Following in case break condition called a
6201 function. */
6202 stop_print_frame = true;
6203
6204 /* This is where we handle "moribund" watchpoints. Unlike
6205 software breakpoints traps, hardware watchpoint traps are
6206 always distinguishable from random traps. If no high-level
6207 watchpoint is associated with the reported stop data address
6208 anymore, then the bpstat does not explain the signal ---
6209 simply make sure to ignore it if `stopped_by_watchpoint' is
6210 set. */
6211
6212 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6213 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6214 GDB_SIGNAL_TRAP)
6215 && stopped_by_watchpoint)
6216 {
6217 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6218 "ignoring");
6219 }
6220
6221 /* NOTE: cagney/2003-03-29: These checks for a random signal
6222 at one stage in the past included checks for an inferior
6223 function call's call dummy's return breakpoint. The original
6224 comment, that went with the test, read:
6225
6226 ``End of a stack dummy. Some systems (e.g. Sony news) give
6227 another signal besides SIGTRAP, so check here as well as
6228 above.''
6229
6230 If someone ever tries to get call dummys on a
6231 non-executable stack to work (where the target would stop
6232 with something like a SIGSEGV), then those tests might need
6233 to be re-instated. Given, however, that the tests were only
6234 enabled when momentary breakpoints were not being used, I
6235 suspect that it won't be the case.
6236
6237 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6238 be necessary for call dummies on a non-executable stack on
6239 SPARC. */
6240
6241 /* See if the breakpoints module can explain the signal. */
6242 random_signal
6243 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6244 ecs->event_thread->stop_signal ());
6245
6246 /* Maybe this was a trap for a software breakpoint that has since
6247 been removed. */
6248 if (random_signal && target_stopped_by_sw_breakpoint ())
6249 {
6250 if (gdbarch_program_breakpoint_here_p (gdbarch,
6251 ecs->event_thread->stop_pc ()))
6252 {
6253 struct regcache *regcache;
6254 int decr_pc;
6255
6256 /* Re-adjust PC to what the program would see if GDB was not
6257 debugging it. */
6258 regcache = get_thread_regcache (ecs->event_thread);
6259 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6260 if (decr_pc != 0)
6261 {
6262 gdb::optional<scoped_restore_tmpl<int>>
6263 restore_operation_disable;
6264
6265 if (record_full_is_used ())
6266 restore_operation_disable.emplace
6267 (record_full_gdb_operation_disable_set ());
6268
6269 regcache_write_pc (regcache,
6270 ecs->event_thread->stop_pc () + decr_pc);
6271 }
6272 }
6273 else
6274 {
6275 /* A delayed software breakpoint event. Ignore the trap. */
6276 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6277 random_signal = 0;
6278 }
6279 }
6280
6281 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6282 has since been removed. */
6283 if (random_signal && target_stopped_by_hw_breakpoint ())
6284 {
6285 /* A delayed hardware breakpoint event. Ignore the trap. */
6286 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6287 "trap, ignoring");
6288 random_signal = 0;
6289 }
6290
6291 /* If not, perhaps stepping/nexting can. */
6292 if (random_signal)
6293 random_signal = !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6294 && currently_stepping (ecs->event_thread));
6295
6296 /* Perhaps the thread hit a single-step breakpoint of _another_
6297 thread. Single-step breakpoints are transparent to the
6298 breakpoints module. */
6299 if (random_signal)
6300 random_signal = !ecs->hit_singlestep_breakpoint;
6301
6302 /* No? Perhaps we got a moribund watchpoint. */
6303 if (random_signal)
6304 random_signal = !stopped_by_watchpoint;
6305
6306 /* Always stop if the user explicitly requested this thread to
6307 remain stopped. */
6308 if (ecs->event_thread->stop_requested)
6309 {
6310 random_signal = 1;
6311 infrun_debug_printf ("user-requested stop");
6312 }
6313
6314 /* For the program's own signals, act according to
6315 the signal handling tables. */
6316
6317 if (random_signal)
6318 {
6319 /* Signal not for debugging purposes. */
6320 enum gdb_signal stop_signal = ecs->event_thread->stop_signal ();
6321
6322 infrun_debug_printf ("random signal (%s)",
6323 gdb_signal_to_symbol_string (stop_signal));
6324
6325 stopped_by_random_signal = 1;
6326
6327 /* Always stop on signals if we're either just gaining control
6328 of the program, or the user explicitly requested this thread
6329 to remain stopped. */
6330 if (stop_soon != NO_STOP_QUIETLY
6331 || ecs->event_thread->stop_requested
6332 || signal_stop_state (ecs->event_thread->stop_signal ()))
6333 {
6334 stop_waiting (ecs);
6335 return;
6336 }
6337
6338 /* Notify observers the signal has "handle print" set. Note we
6339 returned early above if stopping; normal_stop handles the
6340 printing in that case. */
6341 if (signal_print[ecs->event_thread->stop_signal ()])
6342 {
6343 /* The signal table tells us to print about this signal. */
6344 target_terminal::ours_for_output ();
6345 gdb::observers::signal_received.notify (ecs->event_thread->stop_signal ());
6346 target_terminal::inferior ();
6347 }
6348
6349 /* Clear the signal if it should not be passed. */
6350 if (signal_program[ecs->event_thread->stop_signal ()] == 0)
6351 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6352
6353 if (ecs->event_thread->prev_pc == ecs->event_thread->stop_pc ()
6354 && ecs->event_thread->control.trap_expected
6355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6356 {
6357 /* We were just starting a new sequence, attempting to
6358 single-step off of a breakpoint and expecting a SIGTRAP.
6359 Instead this signal arrives. This signal will take us out
6360 of the stepping range so GDB needs to remember to, when
6361 the signal handler returns, resume stepping off that
6362 breakpoint. */
6363 /* To simplify things, "continue" is forced to use the same
6364 code paths as single-step - set a breakpoint at the
6365 signal return address and then, once hit, step off that
6366 breakpoint. */
6367 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6368
6369 insert_hp_step_resume_breakpoint_at_frame (frame);
6370 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6371 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6372 ecs->event_thread->control.trap_expected = 0;
6373
6374 /* If we were nexting/stepping some other thread, switch to
6375 it, so that we don't continue it, losing control. */
6376 if (!switch_back_to_stepped_thread (ecs))
6377 keep_going (ecs);
6378 return;
6379 }
6380
6381 if (ecs->event_thread->stop_signal () != GDB_SIGNAL_0
6382 && (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6383 ecs->event_thread)
6384 || ecs->event_thread->control.step_range_end == 1)
6385 && frame_id_eq (get_stack_frame_id (frame),
6386 ecs->event_thread->control.step_stack_frame_id)
6387 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6388 {
6389 /* The inferior is about to take a signal that will take it
6390 out of the single step range. Set a breakpoint at the
6391 current PC (which is presumably where the signal handler
6392 will eventually return) and then allow the inferior to
6393 run free.
6394
6395 Note that this is only needed for a signal delivered
6396 while in the single-step range. Nested signals aren't a
6397 problem as they eventually all return. */
6398 infrun_debug_printf ("signal may take us out of single-step range");
6399
6400 clear_step_over_info ();
6401 insert_hp_step_resume_breakpoint_at_frame (frame);
6402 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6403 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6404 ecs->event_thread->control.trap_expected = 0;
6405 keep_going (ecs);
6406 return;
6407 }
6408
6409 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6410 when either there's a nested signal, or when there's a
6411 pending signal enabled just as the signal handler returns
6412 (leaving the inferior at the step-resume-breakpoint without
6413 actually executing it). Either way continue until the
6414 breakpoint is really hit. */
6415
6416 if (!switch_back_to_stepped_thread (ecs))
6417 {
6418 infrun_debug_printf ("random signal, keep going");
6419
6420 keep_going (ecs);
6421 }
6422 return;
6423 }
6424
6425 process_event_stop_test (ecs);
6426}
6427
6428/* Come here when we've got some debug event / signal we can explain
6429 (IOW, not a random signal), and test whether it should cause a
6430 stop, or whether we should resume the inferior (transparently).
6431 E.g., could be a breakpoint whose condition evaluates false; we
6432 could be still stepping within the line; etc. */
6433
6434static void
6435process_event_stop_test (struct execution_control_state *ecs)
6436{
6437 struct symtab_and_line stop_pc_sal;
6438 struct frame_info *frame;
6439 struct gdbarch *gdbarch;
6440 CORE_ADDR jmp_buf_pc;
6441 struct bpstat_what what;
6442
6443 /* Handle cases caused by hitting a breakpoint. */
6444
6445 frame = get_current_frame ();
6446 gdbarch = get_frame_arch (frame);
6447
6448 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6449
6450 if (what.call_dummy)
6451 {
6452 stop_stack_dummy = what.call_dummy;
6453 }
6454
6455 /* A few breakpoint types have callbacks associated (e.g.,
6456 bp_jit_event). Run them now. */
6457 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6458
6459 /* If we hit an internal event that triggers symbol changes, the
6460 current frame will be invalidated within bpstat_what (e.g., if we
6461 hit an internal solib event). Re-fetch it. */
6462 frame = get_current_frame ();
6463 gdbarch = get_frame_arch (frame);
6464
6465 switch (what.main_action)
6466 {
6467 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6468 /* If we hit the breakpoint at longjmp while stepping, we
6469 install a momentary breakpoint at the target of the
6470 jmp_buf. */
6471
6472 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6473
6474 ecs->event_thread->stepping_over_breakpoint = 1;
6475
6476 if (what.is_longjmp)
6477 {
6478 struct value *arg_value;
6479
6480 /* If we set the longjmp breakpoint via a SystemTap probe,
6481 then use it to extract the arguments. The destination PC
6482 is the third argument to the probe. */
6483 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6484 if (arg_value)
6485 {
6486 jmp_buf_pc = value_as_address (arg_value);
6487 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6488 }
6489 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6490 || !gdbarch_get_longjmp_target (gdbarch,
6491 frame, &jmp_buf_pc))
6492 {
6493 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6494 "(!gdbarch_get_longjmp_target)");
6495 keep_going (ecs);
6496 return;
6497 }
6498
6499 /* Insert a breakpoint at resume address. */
6500 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6501 }
6502 else
6503 check_exception_resume (ecs, frame);
6504 keep_going (ecs);
6505 return;
6506
6507 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6508 {
6509 struct frame_info *init_frame;
6510
6511 /* There are several cases to consider.
6512
6513 1. The initiating frame no longer exists. In this case we
6514 must stop, because the exception or longjmp has gone too
6515 far.
6516
6517 2. The initiating frame exists, and is the same as the
6518 current frame. We stop, because the exception or longjmp
6519 has been caught.
6520
6521 3. The initiating frame exists and is different from the
6522 current frame. This means the exception or longjmp has
6523 been caught beneath the initiating frame, so keep going.
6524
6525 4. longjmp breakpoint has been placed just to protect
6526 against stale dummy frames and user is not interested in
6527 stopping around longjmps. */
6528
6529 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6530
6531 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6532 != NULL);
6533 delete_exception_resume_breakpoint (ecs->event_thread);
6534
6535 if (what.is_longjmp)
6536 {
6537 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6538
6539 if (!frame_id_p (ecs->event_thread->initiating_frame))
6540 {
6541 /* Case 4. */
6542 keep_going (ecs);
6543 return;
6544 }
6545 }
6546
6547 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6548
6549 if (init_frame)
6550 {
6551 struct frame_id current_id
6552 = get_frame_id (get_current_frame ());
6553 if (frame_id_eq (current_id,
6554 ecs->event_thread->initiating_frame))
6555 {
6556 /* Case 2. Fall through. */
6557 }
6558 else
6559 {
6560 /* Case 3. */
6561 keep_going (ecs);
6562 return;
6563 }
6564 }
6565
6566 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6567 exists. */
6568 delete_step_resume_breakpoint (ecs->event_thread);
6569
6570 end_stepping_range (ecs);
6571 }
6572 return;
6573
6574 case BPSTAT_WHAT_SINGLE:
6575 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6576 ecs->event_thread->stepping_over_breakpoint = 1;
6577 /* Still need to check other stuff, at least the case where we
6578 are stepping and step out of the right range. */
6579 break;
6580
6581 case BPSTAT_WHAT_STEP_RESUME:
6582 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6583
6584 delete_step_resume_breakpoint (ecs->event_thread);
6585 if (ecs->event_thread->control.proceed_to_finish
6586 && execution_direction == EXEC_REVERSE)
6587 {
6588 struct thread_info *tp = ecs->event_thread;
6589
6590 /* We are finishing a function in reverse, and just hit the
6591 step-resume breakpoint at the start address of the
6592 function, and we're almost there -- just need to back up
6593 by one more single-step, which should take us back to the
6594 function call. */
6595 tp->control.step_range_start = tp->control.step_range_end = 1;
6596 keep_going (ecs);
6597 return;
6598 }
6599 fill_in_stop_func (gdbarch, ecs);
6600 if (ecs->event_thread->stop_pc () == ecs->stop_func_start
6601 && execution_direction == EXEC_REVERSE)
6602 {
6603 /* We are stepping over a function call in reverse, and just
6604 hit the step-resume breakpoint at the start address of
6605 the function. Go back to single-stepping, which should
6606 take us back to the function call. */
6607 ecs->event_thread->stepping_over_breakpoint = 1;
6608 keep_going (ecs);
6609 return;
6610 }
6611 break;
6612
6613 case BPSTAT_WHAT_STOP_NOISY:
6614 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6615 stop_print_frame = true;
6616
6617 /* Assume the thread stopped for a breakpoint. We'll still check
6618 whether a/the breakpoint is there when the thread is next
6619 resumed. */
6620 ecs->event_thread->stepping_over_breakpoint = 1;
6621
6622 stop_waiting (ecs);
6623 return;
6624
6625 case BPSTAT_WHAT_STOP_SILENT:
6626 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6627 stop_print_frame = false;
6628
6629 /* Assume the thread stopped for a breakpoint. We'll still check
6630 whether a/the breakpoint is there when the thread is next
6631 resumed. */
6632 ecs->event_thread->stepping_over_breakpoint = 1;
6633 stop_waiting (ecs);
6634 return;
6635
6636 case BPSTAT_WHAT_HP_STEP_RESUME:
6637 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6638
6639 delete_step_resume_breakpoint (ecs->event_thread);
6640 if (ecs->event_thread->step_after_step_resume_breakpoint)
6641 {
6642 /* Back when the step-resume breakpoint was inserted, we
6643 were trying to single-step off a breakpoint. Go back to
6644 doing that. */
6645 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6646 ecs->event_thread->stepping_over_breakpoint = 1;
6647 keep_going (ecs);
6648 return;
6649 }
6650 break;
6651
6652 case BPSTAT_WHAT_KEEP_CHECKING:
6653 break;
6654 }
6655
6656 /* If we stepped a permanent breakpoint and we had a high priority
6657 step-resume breakpoint for the address we stepped, but we didn't
6658 hit it, then we must have stepped into the signal handler. The
6659 step-resume was only necessary to catch the case of _not_
6660 stepping into the handler, so delete it, and fall through to
6661 checking whether the step finished. */
6662 if (ecs->event_thread->stepped_breakpoint)
6663 {
6664 struct breakpoint *sr_bp
6665 = ecs->event_thread->control.step_resume_breakpoint;
6666
6667 if (sr_bp != NULL
6668 && sr_bp->loc->permanent
6669 && sr_bp->type == bp_hp_step_resume
6670 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6671 {
6672 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6673 delete_step_resume_breakpoint (ecs->event_thread);
6674 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6675 }
6676 }
6677
6678 /* We come here if we hit a breakpoint but should not stop for it.
6679 Possibly we also were stepping and should stop for that. So fall
6680 through and test for stepping. But, if not stepping, do not
6681 stop. */
6682
6683 /* In all-stop mode, if we're currently stepping but have stopped in
6684 some other thread, we need to switch back to the stepped thread. */
6685 if (switch_back_to_stepped_thread (ecs))
6686 return;
6687
6688 if (ecs->event_thread->control.step_resume_breakpoint)
6689 {
6690 infrun_debug_printf ("step-resume breakpoint is inserted");
6691
6692 /* Having a step-resume breakpoint overrides anything
6693 else having to do with stepping commands until
6694 that breakpoint is reached. */
6695 keep_going (ecs);
6696 return;
6697 }
6698
6699 if (ecs->event_thread->control.step_range_end == 0)
6700 {
6701 infrun_debug_printf ("no stepping, continue");
6702 /* Likewise if we aren't even stepping. */
6703 keep_going (ecs);
6704 return;
6705 }
6706
6707 /* Re-fetch current thread's frame in case the code above caused
6708 the frame cache to be re-initialized, making our FRAME variable
6709 a dangling pointer. */
6710 frame = get_current_frame ();
6711 gdbarch = get_frame_arch (frame);
6712 fill_in_stop_func (gdbarch, ecs);
6713
6714 /* If stepping through a line, keep going if still within it.
6715
6716 Note that step_range_end is the address of the first instruction
6717 beyond the step range, and NOT the address of the last instruction
6718 within it!
6719
6720 Note also that during reverse execution, we may be stepping
6721 through a function epilogue and therefore must detect when
6722 the current-frame changes in the middle of a line. */
6723
6724 if (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6725 ecs->event_thread)
6726 && (execution_direction != EXEC_REVERSE
6727 || frame_id_eq (get_frame_id (frame),
6728 ecs->event_thread->control.step_frame_id)))
6729 {
6730 infrun_debug_printf
6731 ("stepping inside range [%s-%s]",
6732 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6733 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6734
6735 /* Tentatively re-enable range stepping; `resume' disables it if
6736 necessary (e.g., if we're stepping over a breakpoint or we
6737 have software watchpoints). */
6738 ecs->event_thread->control.may_range_step = 1;
6739
6740 /* When stepping backward, stop at beginning of line range
6741 (unless it's the function entry point, in which case
6742 keep going back to the call point). */
6743 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6744 if (stop_pc == ecs->event_thread->control.step_range_start
6745 && stop_pc != ecs->stop_func_start
6746 && execution_direction == EXEC_REVERSE)
6747 end_stepping_range (ecs);
6748 else
6749 keep_going (ecs);
6750
6751 return;
6752 }
6753
6754 /* We stepped out of the stepping range. */
6755
6756 /* If we are stepping at the source level and entered the runtime
6757 loader dynamic symbol resolution code...
6758
6759 EXEC_FORWARD: we keep on single stepping until we exit the run
6760 time loader code and reach the callee's address.
6761
6762 EXEC_REVERSE: we've already executed the callee (backward), and
6763 the runtime loader code is handled just like any other
6764 undebuggable function call. Now we need only keep stepping
6765 backward through the trampoline code, and that's handled further
6766 down, so there is nothing for us to do here. */
6767
6768 if (execution_direction != EXEC_REVERSE
6769 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6770 && in_solib_dynsym_resolve_code (ecs->event_thread->stop_pc ()))
6771 {
6772 CORE_ADDR pc_after_resolver =
6773 gdbarch_skip_solib_resolver (gdbarch, ecs->event_thread->stop_pc ());
6774
6775 infrun_debug_printf ("stepped into dynsym resolve code");
6776
6777 if (pc_after_resolver)
6778 {
6779 /* Set up a step-resume breakpoint at the address
6780 indicated by SKIP_SOLIB_RESOLVER. */
6781 symtab_and_line sr_sal;
6782 sr_sal.pc = pc_after_resolver;
6783 sr_sal.pspace = get_frame_program_space (frame);
6784
6785 insert_step_resume_breakpoint_at_sal (gdbarch,
6786 sr_sal, null_frame_id);
6787 }
6788
6789 keep_going (ecs);
6790 return;
6791 }
6792
6793 /* Step through an indirect branch thunk. */
6794 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6795 && gdbarch_in_indirect_branch_thunk (gdbarch,
6796 ecs->event_thread->stop_pc ()))
6797 {
6798 infrun_debug_printf ("stepped into indirect branch thunk");
6799 keep_going (ecs);
6800 return;
6801 }
6802
6803 if (ecs->event_thread->control.step_range_end != 1
6804 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6805 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6806 && get_frame_type (frame) == SIGTRAMP_FRAME)
6807 {
6808 infrun_debug_printf ("stepped into signal trampoline");
6809 /* The inferior, while doing a "step" or "next", has ended up in
6810 a signal trampoline (either by a signal being delivered or by
6811 the signal handler returning). Just single-step until the
6812 inferior leaves the trampoline (either by calling the handler
6813 or returning). */
6814 keep_going (ecs);
6815 return;
6816 }
6817
6818 /* If we're in the return path from a shared library trampoline,
6819 we want to proceed through the trampoline when stepping. */
6820 /* macro/2012-04-25: This needs to come before the subroutine
6821 call check below as on some targets return trampolines look
6822 like subroutine calls (MIPS16 return thunks). */
6823 if (gdbarch_in_solib_return_trampoline (gdbarch,
6824 ecs->event_thread->stop_pc (),
6825 ecs->stop_func_name)
6826 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6827 {
6828 /* Determine where this trampoline returns. */
6829 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6830 CORE_ADDR real_stop_pc
6831 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6832
6833 infrun_debug_printf ("stepped into solib return tramp");
6834
6835 /* Only proceed through if we know where it's going. */
6836 if (real_stop_pc)
6837 {
6838 /* And put the step-breakpoint there and go until there. */
6839 symtab_and_line sr_sal;
6840 sr_sal.pc = real_stop_pc;
6841 sr_sal.section = find_pc_overlay (sr_sal.pc);
6842 sr_sal.pspace = get_frame_program_space (frame);
6843
6844 /* Do not specify what the fp should be when we stop since
6845 on some machines the prologue is where the new fp value
6846 is established. */
6847 insert_step_resume_breakpoint_at_sal (gdbarch,
6848 sr_sal, null_frame_id);
6849
6850 /* Restart without fiddling with the step ranges or
6851 other state. */
6852 keep_going (ecs);
6853 return;
6854 }
6855 }
6856
6857 /* Check for subroutine calls. The check for the current frame
6858 equalling the step ID is not necessary - the check of the
6859 previous frame's ID is sufficient - but it is a common case and
6860 cheaper than checking the previous frame's ID.
6861
6862 NOTE: frame_id_eq will never report two invalid frame IDs as
6863 being equal, so to get into this block, both the current and
6864 previous frame must have valid frame IDs. */
6865 /* The outer_frame_id check is a heuristic to detect stepping
6866 through startup code. If we step over an instruction which
6867 sets the stack pointer from an invalid value to a valid value,
6868 we may detect that as a subroutine call from the mythical
6869 "outermost" function. This could be fixed by marking
6870 outermost frames as !stack_p,code_p,special_p. Then the
6871 initial outermost frame, before sp was valid, would
6872 have code_addr == &_start. See the comment in frame_id_eq
6873 for more. */
6874 if (!frame_id_eq (get_stack_frame_id (frame),
6875 ecs->event_thread->control.step_stack_frame_id)
6876 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6877 ecs->event_thread->control.step_stack_frame_id)
6878 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6879 outer_frame_id)
6880 || (ecs->event_thread->control.step_start_function
6881 != find_pc_function (ecs->event_thread->stop_pc ())))))
6882 {
6883 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6884 CORE_ADDR real_stop_pc;
6885
6886 infrun_debug_printf ("stepped into subroutine");
6887
6888 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6889 {
6890 /* I presume that step_over_calls is only 0 when we're
6891 supposed to be stepping at the assembly language level
6892 ("stepi"). Just stop. */
6893 /* And this works the same backward as frontward. MVS */
6894 end_stepping_range (ecs);
6895 return;
6896 }
6897
6898 /* Reverse stepping through solib trampolines. */
6899
6900 if (execution_direction == EXEC_REVERSE
6901 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6902 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6903 || (ecs->stop_func_start == 0
6904 && in_solib_dynsym_resolve_code (stop_pc))))
6905 {
6906 /* Any solib trampoline code can be handled in reverse
6907 by simply continuing to single-step. We have already
6908 executed the solib function (backwards), and a few
6909 steps will take us back through the trampoline to the
6910 caller. */
6911 keep_going (ecs);
6912 return;
6913 }
6914
6915 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6916 {
6917 /* We're doing a "next".
6918
6919 Normal (forward) execution: set a breakpoint at the
6920 callee's return address (the address at which the caller
6921 will resume).
6922
6923 Reverse (backward) execution. set the step-resume
6924 breakpoint at the start of the function that we just
6925 stepped into (backwards), and continue to there. When we
6926 get there, we'll need to single-step back to the caller. */
6927
6928 if (execution_direction == EXEC_REVERSE)
6929 {
6930 /* If we're already at the start of the function, we've either
6931 just stepped backward into a single instruction function,
6932 or stepped back out of a signal handler to the first instruction
6933 of the function. Just keep going, which will single-step back
6934 to the caller. */
6935 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6936 {
6937 /* Normal function call return (static or dynamic). */
6938 symtab_and_line sr_sal;
6939 sr_sal.pc = ecs->stop_func_start;
6940 sr_sal.pspace = get_frame_program_space (frame);
6941 insert_step_resume_breakpoint_at_sal (gdbarch,
6942 sr_sal, null_frame_id);
6943 }
6944 }
6945 else
6946 insert_step_resume_breakpoint_at_caller (frame);
6947
6948 keep_going (ecs);
6949 return;
6950 }
6951
6952 /* If we are in a function call trampoline (a stub between the
6953 calling routine and the real function), locate the real
6954 function. That's what tells us (a) whether we want to step
6955 into it at all, and (b) what prologue we want to run to the
6956 end of, if we do step into it. */
6957 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6958 if (real_stop_pc == 0)
6959 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6960 if (real_stop_pc != 0)
6961 ecs->stop_func_start = real_stop_pc;
6962
6963 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6964 {
6965 symtab_and_line sr_sal;
6966 sr_sal.pc = ecs->stop_func_start;
6967 sr_sal.pspace = get_frame_program_space (frame);
6968
6969 insert_step_resume_breakpoint_at_sal (gdbarch,
6970 sr_sal, null_frame_id);
6971 keep_going (ecs);
6972 return;
6973 }
6974
6975 /* If we have line number information for the function we are
6976 thinking of stepping into and the function isn't on the skip
6977 list, step into it.
6978
6979 If there are several symtabs at that PC (e.g. with include
6980 files), just want to know whether *any* of them have line
6981 numbers. find_pc_line handles this. */
6982 {
6983 struct symtab_and_line tmp_sal;
6984
6985 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6986 if (tmp_sal.line != 0
6987 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6988 tmp_sal)
6989 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6990 {
6991 if (execution_direction == EXEC_REVERSE)
6992 handle_step_into_function_backward (gdbarch, ecs);
6993 else
6994 handle_step_into_function (gdbarch, ecs);
6995 return;
6996 }
6997 }
6998
6999 /* If we have no line number and the step-stop-if-no-debug is
7000 set, we stop the step so that the user has a chance to switch
7001 in assembly mode. */
7002 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7003 && step_stop_if_no_debug)
7004 {
7005 end_stepping_range (ecs);
7006 return;
7007 }
7008
7009 if (execution_direction == EXEC_REVERSE)
7010 {
7011 /* If we're already at the start of the function, we've either just
7012 stepped backward into a single instruction function without line
7013 number info, or stepped back out of a signal handler to the first
7014 instruction of the function without line number info. Just keep
7015 going, which will single-step back to the caller. */
7016 if (ecs->stop_func_start != stop_pc)
7017 {
7018 /* Set a breakpoint at callee's start address.
7019 From there we can step once and be back in the caller. */
7020 symtab_and_line sr_sal;
7021 sr_sal.pc = ecs->stop_func_start;
7022 sr_sal.pspace = get_frame_program_space (frame);
7023 insert_step_resume_breakpoint_at_sal (gdbarch,
7024 sr_sal, null_frame_id);
7025 }
7026 }
7027 else
7028 /* Set a breakpoint at callee's return address (the address
7029 at which the caller will resume). */
7030 insert_step_resume_breakpoint_at_caller (frame);
7031
7032 keep_going (ecs);
7033 return;
7034 }
7035
7036 /* Reverse stepping through solib trampolines. */
7037
7038 if (execution_direction == EXEC_REVERSE
7039 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7040 {
7041 CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7042
7043 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7044 || (ecs->stop_func_start == 0
7045 && in_solib_dynsym_resolve_code (stop_pc)))
7046 {
7047 /* Any solib trampoline code can be handled in reverse
7048 by simply continuing to single-step. We have already
7049 executed the solib function (backwards), and a few
7050 steps will take us back through the trampoline to the
7051 caller. */
7052 keep_going (ecs);
7053 return;
7054 }
7055 else if (in_solib_dynsym_resolve_code (stop_pc))
7056 {
7057 /* Stepped backward into the solib dynsym resolver.
7058 Set a breakpoint at its start and continue, then
7059 one more step will take us out. */
7060 symtab_and_line sr_sal;
7061 sr_sal.pc = ecs->stop_func_start;
7062 sr_sal.pspace = get_frame_program_space (frame);
7063 insert_step_resume_breakpoint_at_sal (gdbarch,
7064 sr_sal, null_frame_id);
7065 keep_going (ecs);
7066 return;
7067 }
7068 }
7069
7070 /* This always returns the sal for the inner-most frame when we are in a
7071 stack of inlined frames, even if GDB actually believes that it is in a
7072 more outer frame. This is checked for below by calls to
7073 inline_skipped_frames. */
7074 stop_pc_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7075
7076 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7077 the trampoline processing logic, however, there are some trampolines
7078 that have no names, so we should do trampoline handling first. */
7079 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7080 && ecs->stop_func_name == NULL
7081 && stop_pc_sal.line == 0)
7082 {
7083 infrun_debug_printf ("stepped into undebuggable function");
7084
7085 /* The inferior just stepped into, or returned to, an
7086 undebuggable function (where there is no debugging information
7087 and no line number corresponding to the address where the
7088 inferior stopped). Since we want to skip this kind of code,
7089 we keep going until the inferior returns from this
7090 function - unless the user has asked us not to (via
7091 set step-mode) or we no longer know how to get back
7092 to the call site. */
7093 if (step_stop_if_no_debug
7094 || !frame_id_p (frame_unwind_caller_id (frame)))
7095 {
7096 /* If we have no line number and the step-stop-if-no-debug
7097 is set, we stop the step so that the user has a chance to
7098 switch in assembly mode. */
7099 end_stepping_range (ecs);
7100 return;
7101 }
7102 else
7103 {
7104 /* Set a breakpoint at callee's return address (the address
7105 at which the caller will resume). */
7106 insert_step_resume_breakpoint_at_caller (frame);
7107 keep_going (ecs);
7108 return;
7109 }
7110 }
7111
7112 if (ecs->event_thread->control.step_range_end == 1)
7113 {
7114 /* It is stepi or nexti. We always want to stop stepping after
7115 one instruction. */
7116 infrun_debug_printf ("stepi/nexti");
7117 end_stepping_range (ecs);
7118 return;
7119 }
7120
7121 if (stop_pc_sal.line == 0)
7122 {
7123 /* We have no line number information. That means to stop
7124 stepping (does this always happen right after one instruction,
7125 when we do "s" in a function with no line numbers,
7126 or can this happen as a result of a return or longjmp?). */
7127 infrun_debug_printf ("line number info");
7128 end_stepping_range (ecs);
7129 return;
7130 }
7131
7132 /* Look for "calls" to inlined functions, part one. If the inline
7133 frame machinery detected some skipped call sites, we have entered
7134 a new inline function. */
7135
7136 if (frame_id_eq (get_frame_id (get_current_frame ()),
7137 ecs->event_thread->control.step_frame_id)
7138 && inline_skipped_frames (ecs->event_thread))
7139 {
7140 infrun_debug_printf ("stepped into inlined function");
7141
7142 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7143
7144 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7145 {
7146 /* For "step", we're going to stop. But if the call site
7147 for this inlined function is on the same source line as
7148 we were previously stepping, go down into the function
7149 first. Otherwise stop at the call site. */
7150
7151 if (call_sal.line == ecs->event_thread->current_line
7152 && call_sal.symtab == ecs->event_thread->current_symtab)
7153 {
7154 step_into_inline_frame (ecs->event_thread);
7155 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7156 {
7157 keep_going (ecs);
7158 return;
7159 }
7160 }
7161
7162 end_stepping_range (ecs);
7163 return;
7164 }
7165 else
7166 {
7167 /* For "next", we should stop at the call site if it is on a
7168 different source line. Otherwise continue through the
7169 inlined function. */
7170 if (call_sal.line == ecs->event_thread->current_line
7171 && call_sal.symtab == ecs->event_thread->current_symtab)
7172 keep_going (ecs);
7173 else
7174 end_stepping_range (ecs);
7175 return;
7176 }
7177 }
7178
7179 /* Look for "calls" to inlined functions, part two. If we are still
7180 in the same real function we were stepping through, but we have
7181 to go further up to find the exact frame ID, we are stepping
7182 through a more inlined call beyond its call site. */
7183
7184 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7185 && !frame_id_eq (get_frame_id (get_current_frame ()),
7186 ecs->event_thread->control.step_frame_id)
7187 && stepped_in_from (get_current_frame (),
7188 ecs->event_thread->control.step_frame_id))
7189 {
7190 infrun_debug_printf ("stepping through inlined function");
7191
7192 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7193 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7194 keep_going (ecs);
7195 else
7196 end_stepping_range (ecs);
7197 return;
7198 }
7199
7200 bool refresh_step_info = true;
7201 if ((ecs->event_thread->stop_pc () == stop_pc_sal.pc)
7202 && (ecs->event_thread->current_line != stop_pc_sal.line
7203 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7204 {
7205 /* We are at a different line. */
7206
7207 if (stop_pc_sal.is_stmt)
7208 {
7209 /* We are at the start of a statement.
7210
7211 So stop. Note that we don't stop if we step into the middle of a
7212 statement. That is said to make things like for (;;) statements
7213 work better. */
7214 infrun_debug_printf ("stepped to a different line");
7215 end_stepping_range (ecs);
7216 return;
7217 }
7218 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7219 ecs->event_thread->control.step_frame_id))
7220 {
7221 /* We are not at the start of a statement, and we have not changed
7222 frame.
7223
7224 We ignore this line table entry, and continue stepping forward,
7225 looking for a better place to stop. */
7226 refresh_step_info = false;
7227 infrun_debug_printf ("stepped to a different line, but "
7228 "it's not the start of a statement");
7229 }
7230 else
7231 {
7232 /* We are not the start of a statement, and we have changed frame.
7233
7234 We ignore this line table entry, and continue stepping forward,
7235 looking for a better place to stop. Keep refresh_step_info at
7236 true to note that the frame has changed, but ignore the line
7237 number to make sure we don't ignore a subsequent entry with the
7238 same line number. */
7239 stop_pc_sal.line = 0;
7240 infrun_debug_printf ("stepped to a different frame, but "
7241 "it's not the start of a statement");
7242 }
7243 }
7244
7245 /* We aren't done stepping.
7246
7247 Optimize by setting the stepping range to the line.
7248 (We might not be in the original line, but if we entered a
7249 new line in mid-statement, we continue stepping. This makes
7250 things like for(;;) statements work better.)
7251
7252 If we entered a SAL that indicates a non-statement line table entry,
7253 then we update the stepping range, but we don't update the step info,
7254 which includes things like the line number we are stepping away from.
7255 This means we will stop when we find a line table entry that is marked
7256 as is-statement, even if it matches the non-statement one we just
7257 stepped into. */
7258
7259 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7260 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7261 ecs->event_thread->control.may_range_step = 1;
7262 if (refresh_step_info)
7263 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7264
7265 infrun_debug_printf ("keep going");
7266 keep_going (ecs);
7267}
7268
7269static bool restart_stepped_thread (process_stratum_target *resume_target,
7270 ptid_t resume_ptid);
7271
7272/* In all-stop mode, if we're currently stepping but have stopped in
7273 some other thread, we may need to switch back to the stepped
7274 thread. Returns true we set the inferior running, false if we left
7275 it stopped (and the event needs further processing). */
7276
7277static bool
7278switch_back_to_stepped_thread (struct execution_control_state *ecs)
7279{
7280 if (!target_is_non_stop_p ())
7281 {
7282 /* If any thread is blocked on some internal breakpoint, and we
7283 simply need to step over that breakpoint to get it going
7284 again, do that first. */
7285
7286 /* However, if we see an event for the stepping thread, then we
7287 know all other threads have been moved past their breakpoints
7288 already. Let the caller check whether the step is finished,
7289 etc., before deciding to move it past a breakpoint. */
7290 if (ecs->event_thread->control.step_range_end != 0)
7291 return false;
7292
7293 /* Check if the current thread is blocked on an incomplete
7294 step-over, interrupted by a random signal. */
7295 if (ecs->event_thread->control.trap_expected
7296 && ecs->event_thread->stop_signal () != GDB_SIGNAL_TRAP)
7297 {
7298 infrun_debug_printf
7299 ("need to finish step-over of [%s]",
7300 ecs->event_thread->ptid.to_string ().c_str ());
7301 keep_going (ecs);
7302 return true;
7303 }
7304
7305 /* Check if the current thread is blocked by a single-step
7306 breakpoint of another thread. */
7307 if (ecs->hit_singlestep_breakpoint)
7308 {
7309 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7310 ecs->ptid.to_string ().c_str ());
7311 keep_going (ecs);
7312 return true;
7313 }
7314
7315 /* If this thread needs yet another step-over (e.g., stepping
7316 through a delay slot), do it first before moving on to
7317 another thread. */
7318 if (thread_still_needs_step_over (ecs->event_thread))
7319 {
7320 infrun_debug_printf
7321 ("thread [%s] still needs step-over",
7322 ecs->event_thread->ptid.to_string ().c_str ());
7323 keep_going (ecs);
7324 return true;
7325 }
7326
7327 /* If scheduler locking applies even if not stepping, there's no
7328 need to walk over threads. Above we've checked whether the
7329 current thread is stepping. If some other thread not the
7330 event thread is stepping, then it must be that scheduler
7331 locking is not in effect. */
7332 if (schedlock_applies (ecs->event_thread))
7333 return false;
7334
7335 /* Otherwise, we no longer expect a trap in the current thread.
7336 Clear the trap_expected flag before switching back -- this is
7337 what keep_going does as well, if we call it. */
7338 ecs->event_thread->control.trap_expected = 0;
7339
7340 /* Likewise, clear the signal if it should not be passed. */
7341 if (!signal_program[ecs->event_thread->stop_signal ()])
7342 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
7343
7344 if (restart_stepped_thread (ecs->target, ecs->ptid))
7345 {
7346 prepare_to_wait (ecs);
7347 return true;
7348 }
7349
7350 switch_to_thread (ecs->event_thread);
7351 }
7352
7353 return false;
7354}
7355
7356/* Look for the thread that was stepping, and resume it.
7357 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7358 is resuming. Return true if a thread was started, false
7359 otherwise. */
7360
7361static bool
7362restart_stepped_thread (process_stratum_target *resume_target,
7363 ptid_t resume_ptid)
7364{
7365 /* Do all pending step-overs before actually proceeding with
7366 step/next/etc. */
7367 if (start_step_over ())
7368 return true;
7369
7370 for (thread_info *tp : all_threads_safe ())
7371 {
7372 if (tp->state == THREAD_EXITED)
7373 continue;
7374
7375 if (tp->has_pending_waitstatus ())
7376 continue;
7377
7378 /* Ignore threads of processes the caller is not
7379 resuming. */
7380 if (!sched_multi
7381 && (tp->inf->process_target () != resume_target
7382 || tp->inf->pid != resume_ptid.pid ()))
7383 continue;
7384
7385 if (tp->control.trap_expected)
7386 {
7387 infrun_debug_printf ("switching back to stepped thread (step-over)");
7388
7389 if (keep_going_stepped_thread (tp))
7390 return true;
7391 }
7392 }
7393
7394 for (thread_info *tp : all_threads_safe ())
7395 {
7396 if (tp->state == THREAD_EXITED)
7397 continue;
7398
7399 if (tp->has_pending_waitstatus ())
7400 continue;
7401
7402 /* Ignore threads of processes the caller is not
7403 resuming. */
7404 if (!sched_multi
7405 && (tp->inf->process_target () != resume_target
7406 || tp->inf->pid != resume_ptid.pid ()))
7407 continue;
7408
7409 /* Did we find the stepping thread? */
7410 if (tp->control.step_range_end)
7411 {
7412 infrun_debug_printf ("switching back to stepped thread (stepping)");
7413
7414 if (keep_going_stepped_thread (tp))
7415 return true;
7416 }
7417 }
7418
7419 return false;
7420}
7421
7422/* See infrun.h. */
7423
7424void
7425restart_after_all_stop_detach (process_stratum_target *proc_target)
7426{
7427 /* Note we don't check target_is_non_stop_p() here, because the
7428 current inferior may no longer have a process_stratum target
7429 pushed, as we just detached. */
7430
7431 /* See if we have a THREAD_RUNNING thread that need to be
7432 re-resumed. If we have any thread that is already executing,
7433 then we don't need to resume the target -- it is already been
7434 resumed. With the remote target (in all-stop), it's even
7435 impossible to issue another resumption if the target is already
7436 resumed, until the target reports a stop. */
7437 for (thread_info *thr : all_threads (proc_target))
7438 {
7439 if (thr->state != THREAD_RUNNING)
7440 continue;
7441
7442 /* If we have any thread that is already executing, then we
7443 don't need to resume the target -- it is already been
7444 resumed. */
7445 if (thr->executing ())
7446 return;
7447
7448 /* If we have a pending event to process, skip resuming the
7449 target and go straight to processing it. */
7450 if (thr->resumed () && thr->has_pending_waitstatus ())
7451 return;
7452 }
7453
7454 /* Alright, we need to re-resume the target. If a thread was
7455 stepping, we need to restart it stepping. */
7456 if (restart_stepped_thread (proc_target, minus_one_ptid))
7457 return;
7458
7459 /* Otherwise, find the first THREAD_RUNNING thread and resume
7460 it. */
7461 for (thread_info *thr : all_threads (proc_target))
7462 {
7463 if (thr->state != THREAD_RUNNING)
7464 continue;
7465
7466 execution_control_state ecs;
7467 reset_ecs (&ecs, thr);
7468 switch_to_thread (thr);
7469 keep_going (&ecs);
7470 return;
7471 }
7472}
7473
7474/* Set a previously stepped thread back to stepping. Returns true on
7475 success, false if the resume is not possible (e.g., the thread
7476 vanished). */
7477
7478static bool
7479keep_going_stepped_thread (struct thread_info *tp)
7480{
7481 struct frame_info *frame;
7482 struct execution_control_state ecss;
7483 struct execution_control_state *ecs = &ecss;
7484
7485 /* If the stepping thread exited, then don't try to switch back and
7486 resume it, which could fail in several different ways depending
7487 on the target. Instead, just keep going.
7488
7489 We can find a stepping dead thread in the thread list in two
7490 cases:
7491
7492 - The target supports thread exit events, and when the target
7493 tries to delete the thread from the thread list, inferior_ptid
7494 pointed at the exiting thread. In such case, calling
7495 delete_thread does not really remove the thread from the list;
7496 instead, the thread is left listed, with 'exited' state.
7497
7498 - The target's debug interface does not support thread exit
7499 events, and so we have no idea whatsoever if the previously
7500 stepping thread is still alive. For that reason, we need to
7501 synchronously query the target now. */
7502
7503 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7504 {
7505 infrun_debug_printf ("not resuming previously stepped thread, it has "
7506 "vanished");
7507
7508 delete_thread (tp);
7509 return false;
7510 }
7511
7512 infrun_debug_printf ("resuming previously stepped thread");
7513
7514 reset_ecs (ecs, tp);
7515 switch_to_thread (tp);
7516
7517 tp->set_stop_pc (regcache_read_pc (get_thread_regcache (tp)));
7518 frame = get_current_frame ();
7519
7520 /* If the PC of the thread we were trying to single-step has
7521 changed, then that thread has trapped or been signaled, but the
7522 event has not been reported to GDB yet. Re-poll the target
7523 looking for this particular thread's event (i.e. temporarily
7524 enable schedlock) by:
7525
7526 - setting a break at the current PC
7527 - resuming that particular thread, only (by setting trap
7528 expected)
7529
7530 This prevents us continuously moving the single-step breakpoint
7531 forward, one instruction at a time, overstepping. */
7532
7533 if (tp->stop_pc () != tp->prev_pc)
7534 {
7535 ptid_t resume_ptid;
7536
7537 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7538 paddress (target_gdbarch (), tp->prev_pc),
7539 paddress (target_gdbarch (), tp->stop_pc ()));
7540
7541 /* Clear the info of the previous step-over, as it's no longer
7542 valid (if the thread was trying to step over a breakpoint, it
7543 has already succeeded). It's what keep_going would do too,
7544 if we called it. Do this before trying to insert the sss
7545 breakpoint, otherwise if we were previously trying to step
7546 over this exact address in another thread, the breakpoint is
7547 skipped. */
7548 clear_step_over_info ();
7549 tp->control.trap_expected = 0;
7550
7551 insert_single_step_breakpoint (get_frame_arch (frame),
7552 get_frame_address_space (frame),
7553 tp->stop_pc ());
7554
7555 tp->set_resumed (true);
7556 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7557 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7558 }
7559 else
7560 {
7561 infrun_debug_printf ("expected thread still hasn't advanced");
7562
7563 keep_going_pass_signal (ecs);
7564 }
7565
7566 return true;
7567}
7568
7569/* Is thread TP in the middle of (software or hardware)
7570 single-stepping? (Note the result of this function must never be
7571 passed directly as target_resume's STEP parameter.) */
7572
7573static bool
7574currently_stepping (struct thread_info *tp)
7575{
7576 return ((tp->control.step_range_end
7577 && tp->control.step_resume_breakpoint == NULL)
7578 || tp->control.trap_expected
7579 || tp->stepped_breakpoint
7580 || bpstat_should_step ());
7581}
7582
7583/* Inferior has stepped into a subroutine call with source code that
7584 we should not step over. Do step to the first line of code in
7585 it. */
7586
7587static void
7588handle_step_into_function (struct gdbarch *gdbarch,
7589 struct execution_control_state *ecs)
7590{
7591 fill_in_stop_func (gdbarch, ecs);
7592
7593 compunit_symtab *cust
7594 = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7595 if (cust != NULL && compunit_language (cust) != language_asm)
7596 ecs->stop_func_start
7597 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7598
7599 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7600 /* Use the step_resume_break to step until the end of the prologue,
7601 even if that involves jumps (as it seems to on the vax under
7602 4.2). */
7603 /* If the prologue ends in the middle of a source line, continue to
7604 the end of that source line (if it is still within the function).
7605 Otherwise, just go to end of prologue. */
7606 if (stop_func_sal.end
7607 && stop_func_sal.pc != ecs->stop_func_start
7608 && stop_func_sal.end < ecs->stop_func_end)
7609 ecs->stop_func_start = stop_func_sal.end;
7610
7611 /* Architectures which require breakpoint adjustment might not be able
7612 to place a breakpoint at the computed address. If so, the test
7613 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7614 ecs->stop_func_start to an address at which a breakpoint may be
7615 legitimately placed.
7616
7617 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7618 made, GDB will enter an infinite loop when stepping through
7619 optimized code consisting of VLIW instructions which contain
7620 subinstructions corresponding to different source lines. On
7621 FR-V, it's not permitted to place a breakpoint on any but the
7622 first subinstruction of a VLIW instruction. When a breakpoint is
7623 set, GDB will adjust the breakpoint address to the beginning of
7624 the VLIW instruction. Thus, we need to make the corresponding
7625 adjustment here when computing the stop address. */
7626
7627 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7628 {
7629 ecs->stop_func_start
7630 = gdbarch_adjust_breakpoint_address (gdbarch,
7631 ecs->stop_func_start);
7632 }
7633
7634 if (ecs->stop_func_start == ecs->event_thread->stop_pc ())
7635 {
7636 /* We are already there: stop now. */
7637 end_stepping_range (ecs);
7638 return;
7639 }
7640 else
7641 {
7642 /* Put the step-breakpoint there and go until there. */
7643 symtab_and_line sr_sal;
7644 sr_sal.pc = ecs->stop_func_start;
7645 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7646 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7647
7648 /* Do not specify what the fp should be when we stop since on
7649 some machines the prologue is where the new fp value is
7650 established. */
7651 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7652
7653 /* And make sure stepping stops right away then. */
7654 ecs->event_thread->control.step_range_end
7655 = ecs->event_thread->control.step_range_start;
7656 }
7657 keep_going (ecs);
7658}
7659
7660/* Inferior has stepped backward into a subroutine call with source
7661 code that we should not step over. Do step to the beginning of the
7662 last line of code in it. */
7663
7664static void
7665handle_step_into_function_backward (struct gdbarch *gdbarch,
7666 struct execution_control_state *ecs)
7667{
7668 struct compunit_symtab *cust;
7669 struct symtab_and_line stop_func_sal;
7670
7671 fill_in_stop_func (gdbarch, ecs);
7672
7673 cust = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7674 if (cust != NULL && compunit_language (cust) != language_asm)
7675 ecs->stop_func_start
7676 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7677
7678 stop_func_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7679
7680 /* OK, we're just going to keep stepping here. */
7681 if (stop_func_sal.pc == ecs->event_thread->stop_pc ())
7682 {
7683 /* We're there already. Just stop stepping now. */
7684 end_stepping_range (ecs);
7685 }
7686 else
7687 {
7688 /* Else just reset the step range and keep going.
7689 No step-resume breakpoint, they don't work for
7690 epilogues, which can have multiple entry paths. */
7691 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7692 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7693 keep_going (ecs);
7694 }
7695 return;
7696}
7697
7698/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7699 This is used to both functions and to skip over code. */
7700
7701static void
7702insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7703 struct symtab_and_line sr_sal,
7704 struct frame_id sr_id,
7705 enum bptype sr_type)
7706{
7707 /* There should never be more than one step-resume or longjmp-resume
7708 breakpoint per thread, so we should never be setting a new
7709 step_resume_breakpoint when one is already active. */
7710 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7711 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7712
7713 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7714 paddress (gdbarch, sr_sal.pc));
7715
7716 inferior_thread ()->control.step_resume_breakpoint
7717 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7718}
7719
7720void
7721insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7722 struct symtab_and_line sr_sal,
7723 struct frame_id sr_id)
7724{
7725 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7726 sr_sal, sr_id,
7727 bp_step_resume);
7728}
7729
7730/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7731 This is used to skip a potential signal handler.
7732
7733 This is called with the interrupted function's frame. The signal
7734 handler, when it returns, will resume the interrupted function at
7735 RETURN_FRAME.pc. */
7736
7737static void
7738insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7739{
7740 gdb_assert (return_frame != NULL);
7741
7742 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7743
7744 symtab_and_line sr_sal;
7745 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7746 sr_sal.section = find_pc_overlay (sr_sal.pc);
7747 sr_sal.pspace = get_frame_program_space (return_frame);
7748
7749 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7750 get_stack_frame_id (return_frame),
7751 bp_hp_step_resume);
7752}
7753
7754/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7755 is used to skip a function after stepping into it (for "next" or if
7756 the called function has no debugging information).
7757
7758 The current function has almost always been reached by single
7759 stepping a call or return instruction. NEXT_FRAME belongs to the
7760 current function, and the breakpoint will be set at the caller's
7761 resume address.
7762
7763 This is a separate function rather than reusing
7764 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7765 get_prev_frame, which may stop prematurely (see the implementation
7766 of frame_unwind_caller_id for an example). */
7767
7768static void
7769insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7770{
7771 /* We shouldn't have gotten here if we don't know where the call site
7772 is. */
7773 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7774
7775 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7776
7777 symtab_and_line sr_sal;
7778 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7779 frame_unwind_caller_pc (next_frame));
7780 sr_sal.section = find_pc_overlay (sr_sal.pc);
7781 sr_sal.pspace = frame_unwind_program_space (next_frame);
7782
7783 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7784 frame_unwind_caller_id (next_frame));
7785}
7786
7787/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7788 new breakpoint at the target of a jmp_buf. The handling of
7789 longjmp-resume uses the same mechanisms used for handling
7790 "step-resume" breakpoints. */
7791
7792static void
7793insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7794{
7795 /* There should never be more than one longjmp-resume breakpoint per
7796 thread, so we should never be setting a new
7797 longjmp_resume_breakpoint when one is already active. */
7798 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7799
7800 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7801 paddress (gdbarch, pc));
7802
7803 inferior_thread ()->control.exception_resume_breakpoint =
7804 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7805}
7806
7807/* Insert an exception resume breakpoint. TP is the thread throwing
7808 the exception. The block B is the block of the unwinder debug hook
7809 function. FRAME is the frame corresponding to the call to this
7810 function. SYM is the symbol of the function argument holding the
7811 target PC of the exception. */
7812
7813static void
7814insert_exception_resume_breakpoint (struct thread_info *tp,
7815 const struct block *b,
7816 struct frame_info *frame,
7817 struct symbol *sym)
7818{
7819 try
7820 {
7821 struct block_symbol vsym;
7822 struct value *value;
7823 CORE_ADDR handler;
7824 struct breakpoint *bp;
7825
7826 vsym = lookup_symbol_search_name (sym->search_name (),
7827 b, VAR_DOMAIN);
7828 value = read_var_value (vsym.symbol, vsym.block, frame);
7829 /* If the value was optimized out, revert to the old behavior. */
7830 if (! value_optimized_out (value))
7831 {
7832 handler = value_as_address (value);
7833
7834 infrun_debug_printf ("exception resume at %lx",
7835 (unsigned long) handler);
7836
7837 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7838 handler,
7839 bp_exception_resume).release ();
7840
7841 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7842 frame = NULL;
7843
7844 bp->thread = tp->global_num;
7845 inferior_thread ()->control.exception_resume_breakpoint = bp;
7846 }
7847 }
7848 catch (const gdb_exception_error &e)
7849 {
7850 /* We want to ignore errors here. */
7851 }
7852}
7853
7854/* A helper for check_exception_resume that sets an
7855 exception-breakpoint based on a SystemTap probe. */
7856
7857static void
7858insert_exception_resume_from_probe (struct thread_info *tp,
7859 const struct bound_probe *probe,
7860 struct frame_info *frame)
7861{
7862 struct value *arg_value;
7863 CORE_ADDR handler;
7864 struct breakpoint *bp;
7865
7866 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7867 if (!arg_value)
7868 return;
7869
7870 handler = value_as_address (arg_value);
7871
7872 infrun_debug_printf ("exception resume at %s",
7873 paddress (probe->objfile->arch (), handler));
7874
7875 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7876 handler, bp_exception_resume).release ();
7877 bp->thread = tp->global_num;
7878 inferior_thread ()->control.exception_resume_breakpoint = bp;
7879}
7880
7881/* This is called when an exception has been intercepted. Check to
7882 see whether the exception's destination is of interest, and if so,
7883 set an exception resume breakpoint there. */
7884
7885static void
7886check_exception_resume (struct execution_control_state *ecs,
7887 struct frame_info *frame)
7888{
7889 struct bound_probe probe;
7890 struct symbol *func;
7891
7892 /* First see if this exception unwinding breakpoint was set via a
7893 SystemTap probe point. If so, the probe has two arguments: the
7894 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7895 set a breakpoint there. */
7896 probe = find_probe_by_pc (get_frame_pc (frame));
7897 if (probe.prob)
7898 {
7899 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7900 return;
7901 }
7902
7903 func = get_frame_function (frame);
7904 if (!func)
7905 return;
7906
7907 try
7908 {
7909 const struct block *b;
7910 struct block_iterator iter;
7911 struct symbol *sym;
7912 int argno = 0;
7913
7914 /* The exception breakpoint is a thread-specific breakpoint on
7915 the unwinder's debug hook, declared as:
7916
7917 void _Unwind_DebugHook (void *cfa, void *handler);
7918
7919 The CFA argument indicates the frame to which control is
7920 about to be transferred. HANDLER is the destination PC.
7921
7922 We ignore the CFA and set a temporary breakpoint at HANDLER.
7923 This is not extremely efficient but it avoids issues in gdb
7924 with computing the DWARF CFA, and it also works even in weird
7925 cases such as throwing an exception from inside a signal
7926 handler. */
7927
7928 b = SYMBOL_BLOCK_VALUE (func);
7929 ALL_BLOCK_SYMBOLS (b, iter, sym)
7930 {
7931 if (!SYMBOL_IS_ARGUMENT (sym))
7932 continue;
7933
7934 if (argno == 0)
7935 ++argno;
7936 else
7937 {
7938 insert_exception_resume_breakpoint (ecs->event_thread,
7939 b, frame, sym);
7940 break;
7941 }
7942 }
7943 }
7944 catch (const gdb_exception_error &e)
7945 {
7946 }
7947}
7948
7949static void
7950stop_waiting (struct execution_control_state *ecs)
7951{
7952 infrun_debug_printf ("stop_waiting");
7953
7954 /* Let callers know we don't want to wait for the inferior anymore. */
7955 ecs->wait_some_more = 0;
7956
7957 /* If all-stop, but there exists a non-stop target, stop all
7958 threads now that we're presenting the stop to the user. */
7959 if (!non_stop && exists_non_stop_target ())
7960 stop_all_threads ();
7961}
7962
7963/* Like keep_going, but passes the signal to the inferior, even if the
7964 signal is set to nopass. */
7965
7966static void
7967keep_going_pass_signal (struct execution_control_state *ecs)
7968{
7969 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7970 gdb_assert (!ecs->event_thread->resumed ());
7971
7972 /* Save the pc before execution, to compare with pc after stop. */
7973 ecs->event_thread->prev_pc
7974 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7975
7976 if (ecs->event_thread->control.trap_expected)
7977 {
7978 struct thread_info *tp = ecs->event_thread;
7979
7980 infrun_debug_printf ("%s has trap_expected set, "
7981 "resuming to collect trap",
7982 tp->ptid.to_string ().c_str ());
7983
7984 /* We haven't yet gotten our trap, and either: intercepted a
7985 non-signal event (e.g., a fork); or took a signal which we
7986 are supposed to pass through to the inferior. Simply
7987 continue. */
7988 resume (ecs->event_thread->stop_signal ());
7989 }
7990 else if (step_over_info_valid_p ())
7991 {
7992 /* Another thread is stepping over a breakpoint in-line. If
7993 this thread needs a step-over too, queue the request. In
7994 either case, this resume must be deferred for later. */
7995 struct thread_info *tp = ecs->event_thread;
7996
7997 if (ecs->hit_singlestep_breakpoint
7998 || thread_still_needs_step_over (tp))
7999 {
8000 infrun_debug_printf ("step-over already in progress: "
8001 "step-over for %s deferred",
8002 tp->ptid.to_string ().c_str ());
8003 global_thread_step_over_chain_enqueue (tp);
8004 }
8005 else
8006 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8007 tp->ptid.to_string ().c_str ());
8008 }
8009 else
8010 {
8011 struct regcache *regcache = get_current_regcache ();
8012 int remove_bp;
8013 int remove_wps;
8014 step_over_what step_what;
8015
8016 /* Either the trap was not expected, but we are continuing
8017 anyway (if we got a signal, the user asked it be passed to
8018 the child)
8019 -- or --
8020 We got our expected trap, but decided we should resume from
8021 it.
8022
8023 We're going to run this baby now!
8024
8025 Note that insert_breakpoints won't try to re-insert
8026 already inserted breakpoints. Therefore, we don't
8027 care if breakpoints were already inserted, or not. */
8028
8029 /* If we need to step over a breakpoint, and we're not using
8030 displaced stepping to do so, insert all breakpoints
8031 (watchpoints, etc.) but the one we're stepping over, step one
8032 instruction, and then re-insert the breakpoint when that step
8033 is finished. */
8034
8035 step_what = thread_still_needs_step_over (ecs->event_thread);
8036
8037 remove_bp = (ecs->hit_singlestep_breakpoint
8038 || (step_what & STEP_OVER_BREAKPOINT));
8039 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8040
8041 /* We can't use displaced stepping if we need to step past a
8042 watchpoint. The instruction copied to the scratch pad would
8043 still trigger the watchpoint. */
8044 if (remove_bp
8045 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8046 {
8047 set_step_over_info (regcache->aspace (),
8048 regcache_read_pc (regcache), remove_wps,
8049 ecs->event_thread->global_num);
8050 }
8051 else if (remove_wps)
8052 set_step_over_info (NULL, 0, remove_wps, -1);
8053
8054 /* If we now need to do an in-line step-over, we need to stop
8055 all other threads. Note this must be done before
8056 insert_breakpoints below, because that removes the breakpoint
8057 we're about to step over, otherwise other threads could miss
8058 it. */
8059 if (step_over_info_valid_p () && target_is_non_stop_p ())
8060 stop_all_threads ();
8061
8062 /* Stop stepping if inserting breakpoints fails. */
8063 try
8064 {
8065 insert_breakpoints ();
8066 }
8067 catch (const gdb_exception_error &e)
8068 {
8069 exception_print (gdb_stderr, e);
8070 stop_waiting (ecs);
8071 clear_step_over_info ();
8072 return;
8073 }
8074
8075 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8076
8077 resume (ecs->event_thread->stop_signal ());
8078 }
8079
8080 prepare_to_wait (ecs);
8081}
8082
8083/* Called when we should continue running the inferior, because the
8084 current event doesn't cause a user visible stop. This does the
8085 resuming part; waiting for the next event is done elsewhere. */
8086
8087static void
8088keep_going (struct execution_control_state *ecs)
8089{
8090 if (ecs->event_thread->control.trap_expected
8091 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
8092 ecs->event_thread->control.trap_expected = 0;
8093
8094 if (!signal_program[ecs->event_thread->stop_signal ()])
8095 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
8096 keep_going_pass_signal (ecs);
8097}
8098
8099/* This function normally comes after a resume, before
8100 handle_inferior_event exits. It takes care of any last bits of
8101 housekeeping, and sets the all-important wait_some_more flag. */
8102
8103static void
8104prepare_to_wait (struct execution_control_state *ecs)
8105{
8106 infrun_debug_printf ("prepare_to_wait");
8107
8108 ecs->wait_some_more = 1;
8109
8110 /* If the target can't async, emulate it by marking the infrun event
8111 handler such that as soon as we get back to the event-loop, we
8112 immediately end up in fetch_inferior_event again calling
8113 target_wait. */
8114 if (!target_can_async_p ())
8115 mark_infrun_async_event_handler ();
8116}
8117
8118/* We are done with the step range of a step/next/si/ni command.
8119 Called once for each n of a "step n" operation. */
8120
8121static void
8122end_stepping_range (struct execution_control_state *ecs)
8123{
8124 ecs->event_thread->control.stop_step = 1;
8125 stop_waiting (ecs);
8126}
8127
8128/* Several print_*_reason functions to print why the inferior has stopped.
8129 We always print something when the inferior exits, or receives a signal.
8130 The rest of the cases are dealt with later on in normal_stop and
8131 print_it_typical. Ideally there should be a call to one of these
8132 print_*_reason functions functions from handle_inferior_event each time
8133 stop_waiting is called.
8134
8135 Note that we don't call these directly, instead we delegate that to
8136 the interpreters, through observers. Interpreters then call these
8137 with whatever uiout is right. */
8138
8139void
8140print_end_stepping_range_reason (struct ui_out *uiout)
8141{
8142 /* For CLI-like interpreters, print nothing. */
8143
8144 if (uiout->is_mi_like_p ())
8145 {
8146 uiout->field_string ("reason",
8147 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8148 }
8149}
8150
8151void
8152print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8153{
8154 annotate_signalled ();
8155 if (uiout->is_mi_like_p ())
8156 uiout->field_string
8157 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8158 uiout->text ("\nProgram terminated with signal ");
8159 annotate_signal_name ();
8160 uiout->field_string ("signal-name",
8161 gdb_signal_to_name (siggnal));
8162 annotate_signal_name_end ();
8163 uiout->text (", ");
8164 annotate_signal_string ();
8165 uiout->field_string ("signal-meaning",
8166 gdb_signal_to_string (siggnal));
8167 annotate_signal_string_end ();
8168 uiout->text (".\n");
8169 uiout->text ("The program no longer exists.\n");
8170}
8171
8172void
8173print_exited_reason (struct ui_out *uiout, int exitstatus)
8174{
8175 struct inferior *inf = current_inferior ();
8176 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8177
8178 annotate_exited (exitstatus);
8179 if (exitstatus)
8180 {
8181 if (uiout->is_mi_like_p ())
8182 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8183 std::string exit_code_str
8184 = string_printf ("0%o", (unsigned int) exitstatus);
8185 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8186 plongest (inf->num), pidstr.c_str (),
8187 string_field ("exit-code", exit_code_str.c_str ()));
8188 }
8189 else
8190 {
8191 if (uiout->is_mi_like_p ())
8192 uiout->field_string
8193 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8194 uiout->message ("[Inferior %s (%s) exited normally]\n",
8195 plongest (inf->num), pidstr.c_str ());
8196 }
8197}
8198
8199void
8200print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8201{
8202 struct thread_info *thr = inferior_thread ();
8203
8204 annotate_signal ();
8205
8206 if (uiout->is_mi_like_p ())
8207 ;
8208 else if (show_thread_that_caused_stop ())
8209 {
8210 uiout->text ("\nThread ");
8211 uiout->field_string ("thread-id", print_thread_id (thr));
8212
8213 const char *name = thread_name (thr);
8214 if (name != NULL)
8215 {
8216 uiout->text (" \"");
8217 uiout->field_string ("name", name);
8218 uiout->text ("\"");
8219 }
8220 }
8221 else
8222 uiout->text ("\nProgram");
8223
8224 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8225 uiout->text (" stopped");
8226 else
8227 {
8228 uiout->text (" received signal ");
8229 annotate_signal_name ();
8230 if (uiout->is_mi_like_p ())
8231 uiout->field_string
8232 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8233 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8234 annotate_signal_name_end ();
8235 uiout->text (", ");
8236 annotate_signal_string ();
8237 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8238
8239 struct regcache *regcache = get_current_regcache ();
8240 struct gdbarch *gdbarch = regcache->arch ();
8241 if (gdbarch_report_signal_info_p (gdbarch))
8242 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8243
8244 annotate_signal_string_end ();
8245 }
8246 uiout->text (".\n");
8247}
8248
8249void
8250print_no_history_reason (struct ui_out *uiout)
8251{
8252 uiout->text ("\nNo more reverse-execution history.\n");
8253}
8254
8255/* Print current location without a level number, if we have changed
8256 functions or hit a breakpoint. Print source line if we have one.
8257 bpstat_print contains the logic deciding in detail what to print,
8258 based on the event(s) that just occurred. */
8259
8260static void
8261print_stop_location (struct target_waitstatus *ws)
8262{
8263 int bpstat_ret;
8264 enum print_what source_flag;
8265 int do_frame_printing = 1;
8266 struct thread_info *tp = inferior_thread ();
8267
8268 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind ());
8269 switch (bpstat_ret)
8270 {
8271 case PRINT_UNKNOWN:
8272 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8273 should) carry around the function and does (or should) use
8274 that when doing a frame comparison. */
8275 if (tp->control.stop_step
8276 && frame_id_eq (tp->control.step_frame_id,
8277 get_frame_id (get_current_frame ()))
8278 && (tp->control.step_start_function
8279 == find_pc_function (tp->stop_pc ())))
8280 {
8281 /* Finished step, just print source line. */
8282 source_flag = SRC_LINE;
8283 }
8284 else
8285 {
8286 /* Print location and source line. */
8287 source_flag = SRC_AND_LOC;
8288 }
8289 break;
8290 case PRINT_SRC_AND_LOC:
8291 /* Print location and source line. */
8292 source_flag = SRC_AND_LOC;
8293 break;
8294 case PRINT_SRC_ONLY:
8295 source_flag = SRC_LINE;
8296 break;
8297 case PRINT_NOTHING:
8298 /* Something bogus. */
8299 source_flag = SRC_LINE;
8300 do_frame_printing = 0;
8301 break;
8302 default:
8303 internal_error (__FILE__, __LINE__, _("Unknown value."));
8304 }
8305
8306 /* The behavior of this routine with respect to the source
8307 flag is:
8308 SRC_LINE: Print only source line
8309 LOCATION: Print only location
8310 SRC_AND_LOC: Print location and source line. */
8311 if (do_frame_printing)
8312 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8313}
8314
8315/* See infrun.h. */
8316
8317void
8318print_stop_event (struct ui_out *uiout, bool displays)
8319{
8320 struct target_waitstatus last;
8321 struct thread_info *tp;
8322
8323 get_last_target_status (nullptr, nullptr, &last);
8324
8325 {
8326 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8327
8328 print_stop_location (&last);
8329
8330 /* Display the auto-display expressions. */
8331 if (displays)
8332 do_displays ();
8333 }
8334
8335 tp = inferior_thread ();
8336 if (tp->thread_fsm != NULL
8337 && tp->thread_fsm->finished_p ())
8338 {
8339 struct return_value_info *rv;
8340
8341 rv = tp->thread_fsm->return_value ();
8342 if (rv != NULL)
8343 print_return_value (uiout, rv);
8344 }
8345}
8346
8347/* See infrun.h. */
8348
8349void
8350maybe_remove_breakpoints (void)
8351{
8352 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8353 {
8354 if (remove_breakpoints ())
8355 {
8356 target_terminal::ours_for_output ();
8357 printf_filtered (_("Cannot remove breakpoints because "
8358 "program is no longer writable.\nFurther "
8359 "execution is probably impossible.\n"));
8360 }
8361 }
8362}
8363
8364/* The execution context that just caused a normal stop. */
8365
8366struct stop_context
8367{
8368 stop_context ();
8369
8370 DISABLE_COPY_AND_ASSIGN (stop_context);
8371
8372 bool changed () const;
8373
8374 /* The stop ID. */
8375 ULONGEST stop_id;
8376
8377 /* The event PTID. */
8378
8379 ptid_t ptid;
8380
8381 /* If stopp for a thread event, this is the thread that caused the
8382 stop. */
8383 thread_info_ref thread;
8384
8385 /* The inferior that caused the stop. */
8386 int inf_num;
8387};
8388
8389/* Initializes a new stop context. If stopped for a thread event, this
8390 takes a strong reference to the thread. */
8391
8392stop_context::stop_context ()
8393{
8394 stop_id = get_stop_id ();
8395 ptid = inferior_ptid;
8396 inf_num = current_inferior ()->num;
8397
8398 if (inferior_ptid != null_ptid)
8399 {
8400 /* Take a strong reference so that the thread can't be deleted
8401 yet. */
8402 thread = thread_info_ref::new_reference (inferior_thread ());
8403 }
8404}
8405
8406/* Return true if the current context no longer matches the saved stop
8407 context. */
8408
8409bool
8410stop_context::changed () const
8411{
8412 if (ptid != inferior_ptid)
8413 return true;
8414 if (inf_num != current_inferior ()->num)
8415 return true;
8416 if (thread != NULL && thread->state != THREAD_STOPPED)
8417 return true;
8418 if (get_stop_id () != stop_id)
8419 return true;
8420 return false;
8421}
8422
8423/* See infrun.h. */
8424
8425int
8426normal_stop (void)
8427{
8428 struct target_waitstatus last;
8429
8430 get_last_target_status (nullptr, nullptr, &last);
8431
8432 new_stop_id ();
8433
8434 /* If an exception is thrown from this point on, make sure to
8435 propagate GDB's knowledge of the executing state to the
8436 frontend/user running state. A QUIT is an easy exception to see
8437 here, so do this before any filtered output. */
8438
8439 ptid_t finish_ptid = null_ptid;
8440
8441 if (!non_stop)
8442 finish_ptid = minus_one_ptid;
8443 else if (last.kind () == TARGET_WAITKIND_SIGNALLED
8444 || last.kind () == TARGET_WAITKIND_EXITED)
8445 {
8446 /* On some targets, we may still have live threads in the
8447 inferior when we get a process exit event. E.g., for
8448 "checkpoint", when the current checkpoint/fork exits,
8449 linux-fork.c automatically switches to another fork from
8450 within target_mourn_inferior. */
8451 if (inferior_ptid != null_ptid)
8452 finish_ptid = ptid_t (inferior_ptid.pid ());
8453 }
8454 else if (last.kind () != TARGET_WAITKIND_NO_RESUMED)
8455 finish_ptid = inferior_ptid;
8456
8457 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8458 if (finish_ptid != null_ptid)
8459 {
8460 maybe_finish_thread_state.emplace
8461 (user_visible_resume_target (finish_ptid), finish_ptid);
8462 }
8463
8464 /* As we're presenting a stop, and potentially removing breakpoints,
8465 update the thread list so we can tell whether there are threads
8466 running on the target. With target remote, for example, we can
8467 only learn about new threads when we explicitly update the thread
8468 list. Do this before notifying the interpreters about signal
8469 stops, end of stepping ranges, etc., so that the "new thread"
8470 output is emitted before e.g., "Program received signal FOO",
8471 instead of after. */
8472 update_thread_list ();
8473
8474 if (last.kind () == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8475 gdb::observers::signal_received.notify (inferior_thread ()->stop_signal ());
8476
8477 /* As with the notification of thread events, we want to delay
8478 notifying the user that we've switched thread context until
8479 the inferior actually stops.
8480
8481 There's no point in saying anything if the inferior has exited.
8482 Note that SIGNALLED here means "exited with a signal", not
8483 "received a signal".
8484
8485 Also skip saying anything in non-stop mode. In that mode, as we
8486 don't want GDB to switch threads behind the user's back, to avoid
8487 races where the user is typing a command to apply to thread x,
8488 but GDB switches to thread y before the user finishes entering
8489 the command, fetch_inferior_event installs a cleanup to restore
8490 the current thread back to the thread the user had selected right
8491 after this event is handled, so we're not really switching, only
8492 informing of a stop. */
8493 if (!non_stop
8494 && previous_inferior_ptid != inferior_ptid
8495 && target_has_execution ()
8496 && last.kind () != TARGET_WAITKIND_SIGNALLED
8497 && last.kind () != TARGET_WAITKIND_EXITED
8498 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8499 {
8500 SWITCH_THRU_ALL_UIS ()
8501 {
8502 target_terminal::ours_for_output ();
8503 printf_filtered (_("[Switching to %s]\n"),
8504 target_pid_to_str (inferior_ptid).c_str ());
8505 annotate_thread_changed ();
8506 }
8507 previous_inferior_ptid = inferior_ptid;
8508 }
8509
8510 if (last.kind () == TARGET_WAITKIND_NO_RESUMED)
8511 {
8512 SWITCH_THRU_ALL_UIS ()
8513 if (current_ui->prompt_state == PROMPT_BLOCKED)
8514 {
8515 target_terminal::ours_for_output ();
8516 printf_filtered (_("No unwaited-for children left.\n"));
8517 }
8518 }
8519
8520 /* Note: this depends on the update_thread_list call above. */
8521 maybe_remove_breakpoints ();
8522
8523 /* If an auto-display called a function and that got a signal,
8524 delete that auto-display to avoid an infinite recursion. */
8525
8526 if (stopped_by_random_signal)
8527 disable_current_display ();
8528
8529 SWITCH_THRU_ALL_UIS ()
8530 {
8531 async_enable_stdin ();
8532 }
8533
8534 /* Let the user/frontend see the threads as stopped. */
8535 maybe_finish_thread_state.reset ();
8536
8537 /* Select innermost stack frame - i.e., current frame is frame 0,
8538 and current location is based on that. Handle the case where the
8539 dummy call is returning after being stopped. E.g. the dummy call
8540 previously hit a breakpoint. (If the dummy call returns
8541 normally, we won't reach here.) Do this before the stop hook is
8542 run, so that it doesn't get to see the temporary dummy frame,
8543 which is not where we'll present the stop. */
8544 if (has_stack_frames ())
8545 {
8546 if (stop_stack_dummy == STOP_STACK_DUMMY)
8547 {
8548 /* Pop the empty frame that contains the stack dummy. This
8549 also restores inferior state prior to the call (struct
8550 infcall_suspend_state). */
8551 struct frame_info *frame = get_current_frame ();
8552
8553 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8554 frame_pop (frame);
8555 /* frame_pop calls reinit_frame_cache as the last thing it
8556 does which means there's now no selected frame. */
8557 }
8558
8559 select_frame (get_current_frame ());
8560
8561 /* Set the current source location. */
8562 set_current_sal_from_frame (get_current_frame ());
8563 }
8564
8565 /* Look up the hook_stop and run it (CLI internally handles problem
8566 of stop_command's pre-hook not existing). */
8567 if (stop_command != NULL)
8568 {
8569 stop_context saved_context;
8570
8571 try
8572 {
8573 execute_cmd_pre_hook (stop_command);
8574 }
8575 catch (const gdb_exception &ex)
8576 {
8577 exception_fprintf (gdb_stderr, ex,
8578 "Error while running hook_stop:\n");
8579 }
8580
8581 /* If the stop hook resumes the target, then there's no point in
8582 trying to notify about the previous stop; its context is
8583 gone. Likewise if the command switches thread or inferior --
8584 the observers would print a stop for the wrong
8585 thread/inferior. */
8586 if (saved_context.changed ())
8587 return 1;
8588 }
8589
8590 /* Notify observers about the stop. This is where the interpreters
8591 print the stop event. */
8592 if (inferior_ptid != null_ptid)
8593 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8594 stop_print_frame);
8595 else
8596 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8597
8598 annotate_stopped ();
8599
8600 if (target_has_execution ())
8601 {
8602 if (last.kind () != TARGET_WAITKIND_SIGNALLED
8603 && last.kind () != TARGET_WAITKIND_EXITED
8604 && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8605 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8606 Delete any breakpoint that is to be deleted at the next stop. */
8607 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8608 }
8609
8610 /* Try to get rid of automatically added inferiors that are no
8611 longer needed. Keeping those around slows down things linearly.
8612 Note that this never removes the current inferior. */
8613 prune_inferiors ();
8614
8615 return 0;
8616}
8617\f
8618int
8619signal_stop_state (int signo)
8620{
8621 return signal_stop[signo];
8622}
8623
8624int
8625signal_print_state (int signo)
8626{
8627 return signal_print[signo];
8628}
8629
8630int
8631signal_pass_state (int signo)
8632{
8633 return signal_program[signo];
8634}
8635
8636static void
8637signal_cache_update (int signo)
8638{
8639 if (signo == -1)
8640 {
8641 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8642 signal_cache_update (signo);
8643
8644 return;
8645 }
8646
8647 signal_pass[signo] = (signal_stop[signo] == 0
8648 && signal_print[signo] == 0
8649 && signal_program[signo] == 1
8650 && signal_catch[signo] == 0);
8651}
8652
8653int
8654signal_stop_update (int signo, int state)
8655{
8656 int ret = signal_stop[signo];
8657
8658 signal_stop[signo] = state;
8659 signal_cache_update (signo);
8660 return ret;
8661}
8662
8663int
8664signal_print_update (int signo, int state)
8665{
8666 int ret = signal_print[signo];
8667
8668 signal_print[signo] = state;
8669 signal_cache_update (signo);
8670 return ret;
8671}
8672
8673int
8674signal_pass_update (int signo, int state)
8675{
8676 int ret = signal_program[signo];
8677
8678 signal_program[signo] = state;
8679 signal_cache_update (signo);
8680 return ret;
8681}
8682
8683/* Update the global 'signal_catch' from INFO and notify the
8684 target. */
8685
8686void
8687signal_catch_update (const unsigned int *info)
8688{
8689 int i;
8690
8691 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8692 signal_catch[i] = info[i] > 0;
8693 signal_cache_update (-1);
8694 target_pass_signals (signal_pass);
8695}
8696
8697static void
8698sig_print_header (void)
8699{
8700 printf_filtered (_("Signal Stop\tPrint\tPass "
8701 "to program\tDescription\n"));
8702}
8703
8704static void
8705sig_print_info (enum gdb_signal oursig)
8706{
8707 const char *name = gdb_signal_to_name (oursig);
8708 int name_padding = 13 - strlen (name);
8709
8710 if (name_padding <= 0)
8711 name_padding = 0;
8712
8713 printf_filtered ("%s", name);
8714 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8715 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8716 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8717 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8718 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8719}
8720
8721/* Specify how various signals in the inferior should be handled. */
8722
8723static void
8724handle_command (const char *args, int from_tty)
8725{
8726 int digits, wordlen;
8727 int sigfirst, siglast;
8728 enum gdb_signal oursig;
8729 int allsigs;
8730
8731 if (args == NULL)
8732 {
8733 error_no_arg (_("signal to handle"));
8734 }
8735
8736 /* Allocate and zero an array of flags for which signals to handle. */
8737
8738 const size_t nsigs = GDB_SIGNAL_LAST;
8739 unsigned char sigs[nsigs] {};
8740
8741 /* Break the command line up into args. */
8742
8743 gdb_argv built_argv (args);
8744
8745 /* Walk through the args, looking for signal oursigs, signal names, and
8746 actions. Signal numbers and signal names may be interspersed with
8747 actions, with the actions being performed for all signals cumulatively
8748 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8749
8750 for (char *arg : built_argv)
8751 {
8752 wordlen = strlen (arg);
8753 for (digits = 0; isdigit (arg[digits]); digits++)
8754 {;
8755 }
8756 allsigs = 0;
8757 sigfirst = siglast = -1;
8758
8759 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8760 {
8761 /* Apply action to all signals except those used by the
8762 debugger. Silently skip those. */
8763 allsigs = 1;
8764 sigfirst = 0;
8765 siglast = nsigs - 1;
8766 }
8767 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8768 {
8769 SET_SIGS (nsigs, sigs, signal_stop);
8770 SET_SIGS (nsigs, sigs, signal_print);
8771 }
8772 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8773 {
8774 UNSET_SIGS (nsigs, sigs, signal_program);
8775 }
8776 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8777 {
8778 SET_SIGS (nsigs, sigs, signal_print);
8779 }
8780 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8781 {
8782 SET_SIGS (nsigs, sigs, signal_program);
8783 }
8784 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8785 {
8786 UNSET_SIGS (nsigs, sigs, signal_stop);
8787 }
8788 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8789 {
8790 SET_SIGS (nsigs, sigs, signal_program);
8791 }
8792 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8793 {
8794 UNSET_SIGS (nsigs, sigs, signal_print);
8795 UNSET_SIGS (nsigs, sigs, signal_stop);
8796 }
8797 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8798 {
8799 UNSET_SIGS (nsigs, sigs, signal_program);
8800 }
8801 else if (digits > 0)
8802 {
8803 /* It is numeric. The numeric signal refers to our own
8804 internal signal numbering from target.h, not to host/target
8805 signal number. This is a feature; users really should be
8806 using symbolic names anyway, and the common ones like
8807 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8808
8809 sigfirst = siglast = (int)
8810 gdb_signal_from_command (atoi (arg));
8811 if (arg[digits] == '-')
8812 {
8813 siglast = (int)
8814 gdb_signal_from_command (atoi (arg + digits + 1));
8815 }
8816 if (sigfirst > siglast)
8817 {
8818 /* Bet he didn't figure we'd think of this case... */
8819 std::swap (sigfirst, siglast);
8820 }
8821 }
8822 else
8823 {
8824 oursig = gdb_signal_from_name (arg);
8825 if (oursig != GDB_SIGNAL_UNKNOWN)
8826 {
8827 sigfirst = siglast = (int) oursig;
8828 }
8829 else
8830 {
8831 /* Not a number and not a recognized flag word => complain. */
8832 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8833 }
8834 }
8835
8836 /* If any signal numbers or symbol names were found, set flags for
8837 which signals to apply actions to. */
8838
8839 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8840 {
8841 switch ((enum gdb_signal) signum)
8842 {
8843 case GDB_SIGNAL_TRAP:
8844 case GDB_SIGNAL_INT:
8845 if (!allsigs && !sigs[signum])
8846 {
8847 if (query (_("%s is used by the debugger.\n\
8848Are you sure you want to change it? "),
8849 gdb_signal_to_name ((enum gdb_signal) signum)))
8850 {
8851 sigs[signum] = 1;
8852 }
8853 else
8854 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8855 }
8856 break;
8857 case GDB_SIGNAL_0:
8858 case GDB_SIGNAL_DEFAULT:
8859 case GDB_SIGNAL_UNKNOWN:
8860 /* Make sure that "all" doesn't print these. */
8861 break;
8862 default:
8863 sigs[signum] = 1;
8864 break;
8865 }
8866 }
8867 }
8868
8869 for (int signum = 0; signum < nsigs; signum++)
8870 if (sigs[signum])
8871 {
8872 signal_cache_update (-1);
8873 target_pass_signals (signal_pass);
8874 target_program_signals (signal_program);
8875
8876 if (from_tty)
8877 {
8878 /* Show the results. */
8879 sig_print_header ();
8880 for (; signum < nsigs; signum++)
8881 if (sigs[signum])
8882 sig_print_info ((enum gdb_signal) signum);
8883 }
8884
8885 break;
8886 }
8887}
8888
8889/* Complete the "handle" command. */
8890
8891static void
8892handle_completer (struct cmd_list_element *ignore,
8893 completion_tracker &tracker,
8894 const char *text, const char *word)
8895{
8896 static const char * const keywords[] =
8897 {
8898 "all",
8899 "stop",
8900 "ignore",
8901 "print",
8902 "pass",
8903 "nostop",
8904 "noignore",
8905 "noprint",
8906 "nopass",
8907 NULL,
8908 };
8909
8910 signal_completer (ignore, tracker, text, word);
8911 complete_on_enum (tracker, keywords, word, word);
8912}
8913
8914enum gdb_signal
8915gdb_signal_from_command (int num)
8916{
8917 if (num >= 1 && num <= 15)
8918 return (enum gdb_signal) num;
8919 error (_("Only signals 1-15 are valid as numeric signals.\n\
8920Use \"info signals\" for a list of symbolic signals."));
8921}
8922
8923/* Print current contents of the tables set by the handle command.
8924 It is possible we should just be printing signals actually used
8925 by the current target (but for things to work right when switching
8926 targets, all signals should be in the signal tables). */
8927
8928static void
8929info_signals_command (const char *signum_exp, int from_tty)
8930{
8931 enum gdb_signal oursig;
8932
8933 sig_print_header ();
8934
8935 if (signum_exp)
8936 {
8937 /* First see if this is a symbol name. */
8938 oursig = gdb_signal_from_name (signum_exp);
8939 if (oursig == GDB_SIGNAL_UNKNOWN)
8940 {
8941 /* No, try numeric. */
8942 oursig =
8943 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8944 }
8945 sig_print_info (oursig);
8946 return;
8947 }
8948
8949 printf_filtered ("\n");
8950 /* These ugly casts brought to you by the native VAX compiler. */
8951 for (oursig = GDB_SIGNAL_FIRST;
8952 (int) oursig < (int) GDB_SIGNAL_LAST;
8953 oursig = (enum gdb_signal) ((int) oursig + 1))
8954 {
8955 QUIT;
8956
8957 if (oursig != GDB_SIGNAL_UNKNOWN
8958 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8959 sig_print_info (oursig);
8960 }
8961
8962 printf_filtered (_("\nUse the \"handle\" command "
8963 "to change these tables.\n"));
8964}
8965
8966/* The $_siginfo convenience variable is a bit special. We don't know
8967 for sure the type of the value until we actually have a chance to
8968 fetch the data. The type can change depending on gdbarch, so it is
8969 also dependent on which thread you have selected.
8970
8971 1. making $_siginfo be an internalvar that creates a new value on
8972 access.
8973
8974 2. making the value of $_siginfo be an lval_computed value. */
8975
8976/* This function implements the lval_computed support for reading a
8977 $_siginfo value. */
8978
8979static void
8980siginfo_value_read (struct value *v)
8981{
8982 LONGEST transferred;
8983
8984 /* If we can access registers, so can we access $_siginfo. Likewise
8985 vice versa. */
8986 validate_registers_access ();
8987
8988 transferred =
8989 target_read (current_inferior ()->top_target (),
8990 TARGET_OBJECT_SIGNAL_INFO,
8991 NULL,
8992 value_contents_all_raw (v).data (),
8993 value_offset (v),
8994 TYPE_LENGTH (value_type (v)));
8995
8996 if (transferred != TYPE_LENGTH (value_type (v)))
8997 error (_("Unable to read siginfo"));
8998}
8999
9000/* This function implements the lval_computed support for writing a
9001 $_siginfo value. */
9002
9003static void
9004siginfo_value_write (struct value *v, struct value *fromval)
9005{
9006 LONGEST transferred;
9007
9008 /* If we can access registers, so can we access $_siginfo. Likewise
9009 vice versa. */
9010 validate_registers_access ();
9011
9012 transferred = target_write (current_inferior ()->top_target (),
9013 TARGET_OBJECT_SIGNAL_INFO,
9014 NULL,
9015 value_contents_all_raw (fromval).data (),
9016 value_offset (v),
9017 TYPE_LENGTH (value_type (fromval)));
9018
9019 if (transferred != TYPE_LENGTH (value_type (fromval)))
9020 error (_("Unable to write siginfo"));
9021}
9022
9023static const struct lval_funcs siginfo_value_funcs =
9024 {
9025 siginfo_value_read,
9026 siginfo_value_write
9027 };
9028
9029/* Return a new value with the correct type for the siginfo object of
9030 the current thread using architecture GDBARCH. Return a void value
9031 if there's no object available. */
9032
9033static struct value *
9034siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9035 void *ignore)
9036{
9037 if (target_has_stack ()
9038 && inferior_ptid != null_ptid
9039 && gdbarch_get_siginfo_type_p (gdbarch))
9040 {
9041 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9042
9043 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9044 }
9045
9046 return allocate_value (builtin_type (gdbarch)->builtin_void);
9047}
9048
9049\f
9050/* infcall_suspend_state contains state about the program itself like its
9051 registers and any signal it received when it last stopped.
9052 This state must be restored regardless of how the inferior function call
9053 ends (either successfully, or after it hits a breakpoint or signal)
9054 if the program is to properly continue where it left off. */
9055
9056class infcall_suspend_state
9057{
9058public:
9059 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9060 once the inferior function call has finished. */
9061 infcall_suspend_state (struct gdbarch *gdbarch,
9062 const struct thread_info *tp,
9063 struct regcache *regcache)
9064 : m_registers (new readonly_detached_regcache (*regcache))
9065 {
9066 tp->save_suspend_to (m_thread_suspend);
9067
9068 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9069
9070 if (gdbarch_get_siginfo_type_p (gdbarch))
9071 {
9072 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9073 size_t len = TYPE_LENGTH (type);
9074
9075 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9076
9077 if (target_read (current_inferior ()->top_target (),
9078 TARGET_OBJECT_SIGNAL_INFO, NULL,
9079 siginfo_data.get (), 0, len) != len)
9080 {
9081 /* Errors ignored. */
9082 siginfo_data.reset (nullptr);
9083 }
9084 }
9085
9086 if (siginfo_data)
9087 {
9088 m_siginfo_gdbarch = gdbarch;
9089 m_siginfo_data = std::move (siginfo_data);
9090 }
9091 }
9092
9093 /* Return a pointer to the stored register state. */
9094
9095 readonly_detached_regcache *registers () const
9096 {
9097 return m_registers.get ();
9098 }
9099
9100 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9101
9102 void restore (struct gdbarch *gdbarch,
9103 struct thread_info *tp,
9104 struct regcache *regcache) const
9105 {
9106 tp->restore_suspend_from (m_thread_suspend);
9107
9108 if (m_siginfo_gdbarch == gdbarch)
9109 {
9110 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9111
9112 /* Errors ignored. */
9113 target_write (current_inferior ()->top_target (),
9114 TARGET_OBJECT_SIGNAL_INFO, NULL,
9115 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9116 }
9117
9118 /* The inferior can be gone if the user types "print exit(0)"
9119 (and perhaps other times). */
9120 if (target_has_execution ())
9121 /* NB: The register write goes through to the target. */
9122 regcache->restore (registers ());
9123 }
9124
9125private:
9126 /* How the current thread stopped before the inferior function call was
9127 executed. */
9128 struct thread_suspend_state m_thread_suspend;
9129
9130 /* The registers before the inferior function call was executed. */
9131 std::unique_ptr<readonly_detached_regcache> m_registers;
9132
9133 /* Format of SIGINFO_DATA or NULL if it is not present. */
9134 struct gdbarch *m_siginfo_gdbarch = nullptr;
9135
9136 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9137 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9138 content would be invalid. */
9139 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9140};
9141
9142infcall_suspend_state_up
9143save_infcall_suspend_state ()
9144{
9145 struct thread_info *tp = inferior_thread ();
9146 struct regcache *regcache = get_current_regcache ();
9147 struct gdbarch *gdbarch = regcache->arch ();
9148
9149 infcall_suspend_state_up inf_state
9150 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9151
9152 /* Having saved the current state, adjust the thread state, discarding
9153 any stop signal information. The stop signal is not useful when
9154 starting an inferior function call, and run_inferior_call will not use
9155 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9156 tp->set_stop_signal (GDB_SIGNAL_0);
9157
9158 return inf_state;
9159}
9160
9161/* Restore inferior session state to INF_STATE. */
9162
9163void
9164restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9165{
9166 struct thread_info *tp = inferior_thread ();
9167 struct regcache *regcache = get_current_regcache ();
9168 struct gdbarch *gdbarch = regcache->arch ();
9169
9170 inf_state->restore (gdbarch, tp, regcache);
9171 discard_infcall_suspend_state (inf_state);
9172}
9173
9174void
9175discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9176{
9177 delete inf_state;
9178}
9179
9180readonly_detached_regcache *
9181get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9182{
9183 return inf_state->registers ();
9184}
9185
9186/* infcall_control_state contains state regarding gdb's control of the
9187 inferior itself like stepping control. It also contains session state like
9188 the user's currently selected frame. */
9189
9190struct infcall_control_state
9191{
9192 struct thread_control_state thread_control;
9193 struct inferior_control_state inferior_control;
9194
9195 /* Other fields: */
9196 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9197 int stopped_by_random_signal = 0;
9198
9199 /* ID and level of the selected frame when the inferior function
9200 call was made. */
9201 struct frame_id selected_frame_id {};
9202 int selected_frame_level = -1;
9203};
9204
9205/* Save all of the information associated with the inferior<==>gdb
9206 connection. */
9207
9208infcall_control_state_up
9209save_infcall_control_state ()
9210{
9211 infcall_control_state_up inf_status (new struct infcall_control_state);
9212 struct thread_info *tp = inferior_thread ();
9213 struct inferior *inf = current_inferior ();
9214
9215 inf_status->thread_control = tp->control;
9216 inf_status->inferior_control = inf->control;
9217
9218 tp->control.step_resume_breakpoint = NULL;
9219 tp->control.exception_resume_breakpoint = NULL;
9220
9221 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9222 chain. If caller's caller is walking the chain, they'll be happier if we
9223 hand them back the original chain when restore_infcall_control_state is
9224 called. */
9225 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9226
9227 /* Other fields: */
9228 inf_status->stop_stack_dummy = stop_stack_dummy;
9229 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9230
9231 save_selected_frame (&inf_status->selected_frame_id,
9232 &inf_status->selected_frame_level);
9233
9234 return inf_status;
9235}
9236
9237/* Restore inferior session state to INF_STATUS. */
9238
9239void
9240restore_infcall_control_state (struct infcall_control_state *inf_status)
9241{
9242 struct thread_info *tp = inferior_thread ();
9243 struct inferior *inf = current_inferior ();
9244
9245 if (tp->control.step_resume_breakpoint)
9246 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9247
9248 if (tp->control.exception_resume_breakpoint)
9249 tp->control.exception_resume_breakpoint->disposition
9250 = disp_del_at_next_stop;
9251
9252 /* Handle the bpstat_copy of the chain. */
9253 bpstat_clear (&tp->control.stop_bpstat);
9254
9255 tp->control = inf_status->thread_control;
9256 inf->control = inf_status->inferior_control;
9257
9258 /* Other fields: */
9259 stop_stack_dummy = inf_status->stop_stack_dummy;
9260 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9261
9262 if (target_has_stack ())
9263 {
9264 restore_selected_frame (inf_status->selected_frame_id,
9265 inf_status->selected_frame_level);
9266 }
9267
9268 delete inf_status;
9269}
9270
9271void
9272discard_infcall_control_state (struct infcall_control_state *inf_status)
9273{
9274 if (inf_status->thread_control.step_resume_breakpoint)
9275 inf_status->thread_control.step_resume_breakpoint->disposition
9276 = disp_del_at_next_stop;
9277
9278 if (inf_status->thread_control.exception_resume_breakpoint)
9279 inf_status->thread_control.exception_resume_breakpoint->disposition
9280 = disp_del_at_next_stop;
9281
9282 /* See save_infcall_control_state for info on stop_bpstat. */
9283 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9284
9285 delete inf_status;
9286}
9287\f
9288/* See infrun.h. */
9289
9290void
9291clear_exit_convenience_vars (void)
9292{
9293 clear_internalvar (lookup_internalvar ("_exitsignal"));
9294 clear_internalvar (lookup_internalvar ("_exitcode"));
9295}
9296\f
9297
9298/* User interface for reverse debugging:
9299 Set exec-direction / show exec-direction commands
9300 (returns error unless target implements to_set_exec_direction method). */
9301
9302enum exec_direction_kind execution_direction = EXEC_FORWARD;
9303static const char exec_forward[] = "forward";
9304static const char exec_reverse[] = "reverse";
9305static const char *exec_direction = exec_forward;
9306static const char *const exec_direction_names[] = {
9307 exec_forward,
9308 exec_reverse,
9309 NULL
9310};
9311
9312static void
9313set_exec_direction_func (const char *args, int from_tty,
9314 struct cmd_list_element *cmd)
9315{
9316 if (target_can_execute_reverse ())
9317 {
9318 if (!strcmp (exec_direction, exec_forward))
9319 execution_direction = EXEC_FORWARD;
9320 else if (!strcmp (exec_direction, exec_reverse))
9321 execution_direction = EXEC_REVERSE;
9322 }
9323 else
9324 {
9325 exec_direction = exec_forward;
9326 error (_("Target does not support this operation."));
9327 }
9328}
9329
9330static void
9331show_exec_direction_func (struct ui_file *out, int from_tty,
9332 struct cmd_list_element *cmd, const char *value)
9333{
9334 switch (execution_direction) {
9335 case EXEC_FORWARD:
9336 fprintf_filtered (out, _("Forward.\n"));
9337 break;
9338 case EXEC_REVERSE:
9339 fprintf_filtered (out, _("Reverse.\n"));
9340 break;
9341 default:
9342 internal_error (__FILE__, __LINE__,
9343 _("bogus execution_direction value: %d"),
9344 (int) execution_direction);
9345 }
9346}
9347
9348static void
9349show_schedule_multiple (struct ui_file *file, int from_tty,
9350 struct cmd_list_element *c, const char *value)
9351{
9352 fprintf_filtered (file, _("Resuming the execution of threads "
9353 "of all processes is %s.\n"), value);
9354}
9355
9356/* Implementation of `siginfo' variable. */
9357
9358static const struct internalvar_funcs siginfo_funcs =
9359{
9360 siginfo_make_value,
9361 NULL,
9362 NULL
9363};
9364
9365/* Callback for infrun's target events source. This is marked when a
9366 thread has a pending status to process. */
9367
9368static void
9369infrun_async_inferior_event_handler (gdb_client_data data)
9370{
9371 clear_async_event_handler (infrun_async_inferior_event_token);
9372 inferior_event_handler (INF_REG_EVENT);
9373}
9374
9375#if GDB_SELF_TEST
9376namespace selftests
9377{
9378
9379/* Verify that when two threads with the same ptid exist (from two different
9380 targets) and one of them changes ptid, we only update inferior_ptid if
9381 it is appropriate. */
9382
9383static void
9384infrun_thread_ptid_changed ()
9385{
9386 gdbarch *arch = current_inferior ()->gdbarch;
9387
9388 /* The thread which inferior_ptid represents changes ptid. */
9389 {
9390 scoped_restore_current_pspace_and_thread restore;
9391
9392 scoped_mock_context<test_target_ops> target1 (arch);
9393 scoped_mock_context<test_target_ops> target2 (arch);
9394
9395 ptid_t old_ptid (111, 222);
9396 ptid_t new_ptid (111, 333);
9397
9398 target1.mock_inferior.pid = old_ptid.pid ();
9399 target1.mock_thread.ptid = old_ptid;
9400 target1.mock_inferior.ptid_thread_map.clear ();
9401 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9402
9403 target2.mock_inferior.pid = old_ptid.pid ();
9404 target2.mock_thread.ptid = old_ptid;
9405 target2.mock_inferior.ptid_thread_map.clear ();
9406 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9407
9408 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9409 set_current_inferior (&target1.mock_inferior);
9410
9411 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9412
9413 gdb_assert (inferior_ptid == new_ptid);
9414 }
9415
9416 /* A thread with the same ptid as inferior_ptid, but from another target,
9417 changes ptid. */
9418 {
9419 scoped_restore_current_pspace_and_thread restore;
9420
9421 scoped_mock_context<test_target_ops> target1 (arch);
9422 scoped_mock_context<test_target_ops> target2 (arch);
9423
9424 ptid_t old_ptid (111, 222);
9425 ptid_t new_ptid (111, 333);
9426
9427 target1.mock_inferior.pid = old_ptid.pid ();
9428 target1.mock_thread.ptid = old_ptid;
9429 target1.mock_inferior.ptid_thread_map.clear ();
9430 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9431
9432 target2.mock_inferior.pid = old_ptid.pid ();
9433 target2.mock_thread.ptid = old_ptid;
9434 target2.mock_inferior.ptid_thread_map.clear ();
9435 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9436
9437 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9438 set_current_inferior (&target2.mock_inferior);
9439
9440 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9441
9442 gdb_assert (inferior_ptid == old_ptid);
9443 }
9444}
9445
9446} /* namespace selftests */
9447
9448#endif /* GDB_SELF_TEST */
9449
9450void _initialize_infrun ();
9451void
9452_initialize_infrun ()
9453{
9454 struct cmd_list_element *c;
9455
9456 /* Register extra event sources in the event loop. */
9457 infrun_async_inferior_event_token
9458 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9459 "infrun");
9460
9461 cmd_list_element *info_signals_cmd
9462 = add_info ("signals", info_signals_command, _("\
9463What debugger does when program gets various signals.\n\
9464Specify a signal as argument to print info on that signal only."));
9465 add_info_alias ("handle", info_signals_cmd, 0);
9466
9467 c = add_com ("handle", class_run, handle_command, _("\
9468Specify how to handle signals.\n\
9469Usage: handle SIGNAL [ACTIONS]\n\
9470Args are signals and actions to apply to those signals.\n\
9471If no actions are specified, the current settings for the specified signals\n\
9472will be displayed instead.\n\
9473\n\
9474Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9475from 1-15 are allowed for compatibility with old versions of GDB.\n\
9476Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9477The special arg \"all\" is recognized to mean all signals except those\n\
9478used by the debugger, typically SIGTRAP and SIGINT.\n\
9479\n\
9480Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9481\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9482Stop means reenter debugger if this signal happens (implies print).\n\
9483Print means print a message if this signal happens.\n\
9484Pass means let program see this signal; otherwise program doesn't know.\n\
9485Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9486Pass and Stop may be combined.\n\
9487\n\
9488Multiple signals may be specified. Signal numbers and signal names\n\
9489may be interspersed with actions, with the actions being performed for\n\
9490all signals cumulatively specified."));
9491 set_cmd_completer (c, handle_completer);
9492
9493 if (!dbx_commands)
9494 stop_command = add_cmd ("stop", class_obscure,
9495 not_just_help_class_command, _("\
9496There is no `stop' command, but you can set a hook on `stop'.\n\
9497This allows you to set a list of commands to be run each time execution\n\
9498of the program stops."), &cmdlist);
9499
9500 add_setshow_boolean_cmd
9501 ("infrun", class_maintenance, &debug_infrun,
9502 _("Set inferior debugging."),
9503 _("Show inferior debugging."),
9504 _("When non-zero, inferior specific debugging is enabled."),
9505 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9506
9507 add_setshow_boolean_cmd ("non-stop", no_class,
9508 &non_stop_1, _("\
9509Set whether gdb controls the inferior in non-stop mode."), _("\
9510Show whether gdb controls the inferior in non-stop mode."), _("\
9511When debugging a multi-threaded program and this setting is\n\
9512off (the default, also called all-stop mode), when one thread stops\n\
9513(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9514all other threads in the program while you interact with the thread of\n\
9515interest. When you continue or step a thread, you can allow the other\n\
9516threads to run, or have them remain stopped, but while you inspect any\n\
9517thread's state, all threads stop.\n\
9518\n\
9519In non-stop mode, when one thread stops, other threads can continue\n\
9520to run freely. You'll be able to step each thread independently,\n\
9521leave it stopped or free to run as needed."),
9522 set_non_stop,
9523 show_non_stop,
9524 &setlist,
9525 &showlist);
9526
9527 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9528 {
9529 signal_stop[i] = 1;
9530 signal_print[i] = 1;
9531 signal_program[i] = 1;
9532 signal_catch[i] = 0;
9533 }
9534
9535 /* Signals caused by debugger's own actions should not be given to
9536 the program afterwards.
9537
9538 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9539 explicitly specifies that it should be delivered to the target
9540 program. Typically, that would occur when a user is debugging a
9541 target monitor on a simulator: the target monitor sets a
9542 breakpoint; the simulator encounters this breakpoint and halts
9543 the simulation handing control to GDB; GDB, noting that the stop
9544 address doesn't map to any known breakpoint, returns control back
9545 to the simulator; the simulator then delivers the hardware
9546 equivalent of a GDB_SIGNAL_TRAP to the program being
9547 debugged. */
9548 signal_program[GDB_SIGNAL_TRAP] = 0;
9549 signal_program[GDB_SIGNAL_INT] = 0;
9550
9551 /* Signals that are not errors should not normally enter the debugger. */
9552 signal_stop[GDB_SIGNAL_ALRM] = 0;
9553 signal_print[GDB_SIGNAL_ALRM] = 0;
9554 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9555 signal_print[GDB_SIGNAL_VTALRM] = 0;
9556 signal_stop[GDB_SIGNAL_PROF] = 0;
9557 signal_print[GDB_SIGNAL_PROF] = 0;
9558 signal_stop[GDB_SIGNAL_CHLD] = 0;
9559 signal_print[GDB_SIGNAL_CHLD] = 0;
9560 signal_stop[GDB_SIGNAL_IO] = 0;
9561 signal_print[GDB_SIGNAL_IO] = 0;
9562 signal_stop[GDB_SIGNAL_POLL] = 0;
9563 signal_print[GDB_SIGNAL_POLL] = 0;
9564 signal_stop[GDB_SIGNAL_URG] = 0;
9565 signal_print[GDB_SIGNAL_URG] = 0;
9566 signal_stop[GDB_SIGNAL_WINCH] = 0;
9567 signal_print[GDB_SIGNAL_WINCH] = 0;
9568 signal_stop[GDB_SIGNAL_PRIO] = 0;
9569 signal_print[GDB_SIGNAL_PRIO] = 0;
9570
9571 /* These signals are used internally by user-level thread
9572 implementations. (See signal(5) on Solaris.) Like the above
9573 signals, a healthy program receives and handles them as part of
9574 its normal operation. */
9575 signal_stop[GDB_SIGNAL_LWP] = 0;
9576 signal_print[GDB_SIGNAL_LWP] = 0;
9577 signal_stop[GDB_SIGNAL_WAITING] = 0;
9578 signal_print[GDB_SIGNAL_WAITING] = 0;
9579 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9580 signal_print[GDB_SIGNAL_CANCEL] = 0;
9581 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9582 signal_print[GDB_SIGNAL_LIBRT] = 0;
9583
9584 /* Update cached state. */
9585 signal_cache_update (-1);
9586
9587 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9588 &stop_on_solib_events, _("\
9589Set stopping for shared library events."), _("\
9590Show stopping for shared library events."), _("\
9591If nonzero, gdb will give control to the user when the dynamic linker\n\
9592notifies gdb of shared library events. The most common event of interest\n\
9593to the user would be loading/unloading of a new library."),
9594 set_stop_on_solib_events,
9595 show_stop_on_solib_events,
9596 &setlist, &showlist);
9597
9598 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9599 follow_fork_mode_kind_names,
9600 &follow_fork_mode_string, _("\
9601Set debugger response to a program call of fork or vfork."), _("\
9602Show debugger response to a program call of fork or vfork."), _("\
9603A fork or vfork creates a new process. follow-fork-mode can be:\n\
9604 parent - the original process is debugged after a fork\n\
9605 child - the new process is debugged after a fork\n\
9606The unfollowed process will continue to run.\n\
9607By default, the debugger will follow the parent process."),
9608 NULL,
9609 show_follow_fork_mode_string,
9610 &setlist, &showlist);
9611
9612 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9613 follow_exec_mode_names,
9614 &follow_exec_mode_string, _("\
9615Set debugger response to a program call of exec."), _("\
9616Show debugger response to a program call of exec."), _("\
9617An exec call replaces the program image of a process.\n\
9618\n\
9619follow-exec-mode can be:\n\
9620\n\
9621 new - the debugger creates a new inferior and rebinds the process\n\
9622to this new inferior. The program the process was running before\n\
9623the exec call can be restarted afterwards by restarting the original\n\
9624inferior.\n\
9625\n\
9626 same - the debugger keeps the process bound to the same inferior.\n\
9627The new executable image replaces the previous executable loaded in\n\
9628the inferior. Restarting the inferior after the exec call restarts\n\
9629the executable the process was running after the exec call.\n\
9630\n\
9631By default, the debugger will use the same inferior."),
9632 NULL,
9633 show_follow_exec_mode_string,
9634 &setlist, &showlist);
9635
9636 add_setshow_enum_cmd ("scheduler-locking", class_run,
9637 scheduler_enums, &scheduler_mode, _("\
9638Set mode for locking scheduler during execution."), _("\
9639Show mode for locking scheduler during execution."), _("\
9640off == no locking (threads may preempt at any time)\n\
9641on == full locking (no thread except the current thread may run)\n\
9642 This applies to both normal execution and replay mode.\n\
9643step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9644 In this mode, other threads may run during other commands.\n\
9645 This applies to both normal execution and replay mode.\n\
9646replay == scheduler locked in replay mode and unlocked during normal execution."),
9647 set_schedlock_func, /* traps on target vector */
9648 show_scheduler_mode,
9649 &setlist, &showlist);
9650
9651 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9652Set mode for resuming threads of all processes."), _("\
9653Show mode for resuming threads of all processes."), _("\
9654When on, execution commands (such as 'continue' or 'next') resume all\n\
9655threads of all processes. When off (which is the default), execution\n\
9656commands only resume the threads of the current process. The set of\n\
9657threads that are resumed is further refined by the scheduler-locking\n\
9658mode (see help set scheduler-locking)."),
9659 NULL,
9660 show_schedule_multiple,
9661 &setlist, &showlist);
9662
9663 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9664Set mode of the step operation."), _("\
9665Show mode of the step operation."), _("\
9666When set, doing a step over a function without debug line information\n\
9667will stop at the first instruction of that function. Otherwise, the\n\
9668function is skipped and the step command stops at a different source line."),
9669 NULL,
9670 show_step_stop_if_no_debug,
9671 &setlist, &showlist);
9672
9673 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9674 &can_use_displaced_stepping, _("\
9675Set debugger's willingness to use displaced stepping."), _("\
9676Show debugger's willingness to use displaced stepping."), _("\
9677If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9678supported by the target architecture. If off, gdb will not use displaced\n\
9679stepping to step over breakpoints, even if such is supported by the target\n\
9680architecture. If auto (which is the default), gdb will use displaced stepping\n\
9681if the target architecture supports it and non-stop mode is active, but will not\n\
9682use it in all-stop mode (see help set non-stop)."),
9683 NULL,
9684 show_can_use_displaced_stepping,
9685 &setlist, &showlist);
9686
9687 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9688 &exec_direction, _("Set direction of execution.\n\
9689Options are 'forward' or 'reverse'."),
9690 _("Show direction of execution (forward/reverse)."),
9691 _("Tells gdb whether to execute forward or backward."),
9692 set_exec_direction_func, show_exec_direction_func,
9693 &setlist, &showlist);
9694
9695 /* Set/show detach-on-fork: user-settable mode. */
9696
9697 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9698Set whether gdb will detach the child of a fork."), _("\
9699Show whether gdb will detach the child of a fork."), _("\
9700Tells gdb whether to detach the child of a fork."),
9701 NULL, NULL, &setlist, &showlist);
9702
9703 /* Set/show disable address space randomization mode. */
9704
9705 add_setshow_boolean_cmd ("disable-randomization", class_support,
9706 &disable_randomization, _("\
9707Set disabling of debuggee's virtual address space randomization."), _("\
9708Show disabling of debuggee's virtual address space randomization."), _("\
9709When this mode is on (which is the default), randomization of the virtual\n\
9710address space is disabled. Standalone programs run with the randomization\n\
9711enabled by default on some platforms."),
9712 &set_disable_randomization,
9713 &show_disable_randomization,
9714 &setlist, &showlist);
9715
9716 /* ptid initializations */
9717 inferior_ptid = null_ptid;
9718 target_last_wait_ptid = minus_one_ptid;
9719
9720 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9721 "infrun");
9722 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9723 "infrun");
9724 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9725 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9726 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9727
9728 /* Explicitly create without lookup, since that tries to create a
9729 value with a void typed value, and when we get here, gdbarch
9730 isn't initialized yet. At this point, we're quite sure there
9731 isn't another convenience variable of the same name. */
9732 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9733
9734 add_setshow_boolean_cmd ("observer", no_class,
9735 &observer_mode_1, _("\
9736Set whether gdb controls the inferior in observer mode."), _("\
9737Show whether gdb controls the inferior in observer mode."), _("\
9738In observer mode, GDB can get data from the inferior, but not\n\
9739affect its execution. Registers and memory may not be changed,\n\
9740breakpoints may not be set, and the program cannot be interrupted\n\
9741or signalled."),
9742 set_observer_mode,
9743 show_observer_mode,
9744 &setlist,
9745 &showlist);
9746
9747#if GDB_SELF_TEST
9748 selftests::register_test ("infrun_thread_ptid_changed",
9749 selftests::infrun_thread_ptid_changed);
9750#endif
9751}