]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/symtab.c
gdb/testsuite/
[thirdparty/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
33#include "gdb_regex.h"
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
38#include "linespec.h"
39#include "source.h"
40#include "filenames.h" /* for FILENAME_CMP */
41#include "objc-lang.h"
42#include "ada-lang.h"
43#include "p-lang.h"
44#include "addrmap.h"
45
46#include "hashtab.h"
47
48#include "gdb_obstack.h"
49#include "block.h"
50#include "dictionary.h"
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observer.h"
60#include "gdb_assert.h"
61#include "solist.h"
62#include "macrotab.h"
63#include "macroscope.h"
64
65/* Prototypes for local functions */
66
67static void completion_list_add_name (char *, char *, int, char *, char *);
68
69static void rbreak_command (char *, int);
70
71static void types_info (char *, int);
72
73static void functions_info (char *, int);
74
75static void variables_info (char *, int);
76
77static void sources_info (char *, int);
78
79static void output_source_filename (const char *, int *);
80
81static int find_line_common (struct linetable *, int, int *);
82
83/* This one is used by linespec.c */
84
85char *operator_chars (char *p, char **end);
86
87static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94static
95struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100static
101struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106static
107struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112static int file_matches (char *, char **, int);
113
114static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117static void print_msymbol_info (struct minimal_symbol *);
118
119static void symtab_symbol_info (char *, domain_enum, int);
120
121void _initialize_symtab (void);
122
123/* */
124
125/* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129const char multiple_symbols_ask[] = "ask";
130const char multiple_symbols_all[] = "all";
131const char multiple_symbols_cancel[] = "cancel";
132static const char *multiple_symbols_modes[] =
133{
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138};
139static const char *multiple_symbols_mode = multiple_symbols_all;
140
141/* Read-only accessor to AUTO_SELECT_MODE. */
142
143const char *
144multiple_symbols_select_mode (void)
145{
146 return multiple_symbols_mode;
147}
148
149/* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153const struct block *block_found;
154
155/* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159struct symtab *
160lookup_symtab (const char *name)
161{
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250}
251
252/* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256struct partial_symtab *
257lookup_partial_symtab (const char *name)
258{
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319}
320\f
321/* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326char *
327gdb_mangle_name (struct type *type, int method_id, int signature_id)
328{
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405}
406
407\f
408/* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410void
411symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413{
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426}
427
428/* Functions to initialize a symbol's mangled name. */
429
430/* Objects of this type are stored in the demangled name hash table. */
431struct demangled_name_entry
432{
433 char *mangled;
434 char demangled[1];
435};
436
437/* Hash function for the demangled name hash. */
438static hashval_t
439hash_demangled_name_entry (const void *data)
440{
441 const struct demangled_name_entry *e = data;
442 return htab_hash_string (e->mangled);
443}
444
445/* Equality function for the demangled name hash. */
446static int
447eq_demangled_name_entry (const void *a, const void *b)
448{
449 const struct demangled_name_entry *da = a;
450 const struct demangled_name_entry *db = b;
451 return strcmp (da->mangled, db->mangled) == 0;
452}
453
454/* Create the hash table used for demangled names. Each hash entry is
455 a pair of strings; one for the mangled name and one for the demangled
456 name. The entry is hashed via just the mangled name. */
457
458static void
459create_demangled_names_hash (struct objfile *objfile)
460{
461 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
462 The hash table code will round this up to the next prime number.
463 Choosing a much larger table size wastes memory, and saves only about
464 1% in symbol reading. */
465
466 objfile->demangled_names_hash = htab_create_alloc
467 (256, hash_demangled_name_entry, eq_demangled_name_entry,
468 NULL, xcalloc, xfree);
469}
470
471/* Try to determine the demangled name for a symbol, based on the
472 language of that symbol. If the language is set to language_auto,
473 it will attempt to find any demangling algorithm that works and
474 then set the language appropriately. The returned name is allocated
475 by the demangler and should be xfree'd. */
476
477static char *
478symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 const char *mangled)
480{
481 char *demangled = NULL;
482
483 if (gsymbol->language == language_unknown)
484 gsymbol->language = language_auto;
485
486 if (gsymbol->language == language_objc
487 || gsymbol->language == language_auto)
488 {
489 demangled =
490 objc_demangle (mangled, 0);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_objc;
494 return demangled;
495 }
496 }
497 if (gsymbol->language == language_cplus
498 || gsymbol->language == language_auto)
499 {
500 demangled =
501 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
502 if (demangled != NULL)
503 {
504 gsymbol->language = language_cplus;
505 return demangled;
506 }
507 }
508 if (gsymbol->language == language_java)
509 {
510 demangled =
511 cplus_demangle (mangled,
512 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_java;
516 return demangled;
517 }
518 }
519 return NULL;
520}
521
522/* Set both the mangled and demangled (if any) names for GSYMBOL based
523 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
524 objfile's obstack; but if COPY_NAME is 0 and if NAME is
525 NUL-terminated, then this function assumes that NAME is already
526 correctly saved (either permanently or with a lifetime tied to the
527 objfile), and it will not be copied.
528
529 The hash table corresponding to OBJFILE is used, and the memory
530 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
531 so the pointer can be discarded after calling this function. */
532
533/* We have to be careful when dealing with Java names: when we run
534 into a Java minimal symbol, we don't know it's a Java symbol, so it
535 gets demangled as a C++ name. This is unfortunate, but there's not
536 much we can do about it: but when demangling partial symbols and
537 regular symbols, we'd better not reuse the wrong demangled name.
538 (See PR gdb/1039.) We solve this by putting a distinctive prefix
539 on Java names when storing them in the hash table. */
540
541/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
542 don't mind the Java prefix so much: different languages have
543 different demangling requirements, so it's only natural that we
544 need to keep language data around in our demangling cache. But
545 it's not good that the minimal symbol has the wrong demangled name.
546 Unfortunately, I can't think of any easy solution to that
547 problem. */
548
549#define JAVA_PREFIX "##JAVA$$"
550#define JAVA_PREFIX_LEN 8
551
552void
553symbol_set_names (struct general_symbol_info *gsymbol,
554 const char *linkage_name, int len, int copy_name,
555 struct objfile *objfile)
556{
557 struct demangled_name_entry **slot;
558 /* A 0-terminated copy of the linkage name. */
559 const char *linkage_name_copy;
560 /* A copy of the linkage name that might have a special Java prefix
561 added to it, for use when looking names up in the hash table. */
562 const char *lookup_name;
563 /* The length of lookup_name. */
564 int lookup_len;
565 struct demangled_name_entry entry;
566
567 if (gsymbol->language == language_ada)
568 {
569 /* In Ada, we do the symbol lookups using the mangled name, so
570 we can save some space by not storing the demangled name.
571
572 As a side note, we have also observed some overlap between
573 the C++ mangling and Ada mangling, similarly to what has
574 been observed with Java. Because we don't store the demangled
575 name with the symbol, we don't need to use the same trick
576 as Java. */
577 if (!copy_name)
578 gsymbol->name = (char *) linkage_name;
579 else
580 {
581 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
582 memcpy (gsymbol->name, linkage_name, len);
583 gsymbol->name[len] = '\0';
584 }
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586
587 return;
588 }
589
590 if (objfile->demangled_names_hash == NULL)
591 create_demangled_names_hash (objfile);
592
593 /* The stabs reader generally provides names that are not
594 NUL-terminated; most of the other readers don't do this, so we
595 can just use the given copy, unless we're in the Java case. */
596 if (gsymbol->language == language_java)
597 {
598 char *alloc_name;
599 lookup_len = len + JAVA_PREFIX_LEN;
600
601 alloc_name = alloca (lookup_len + 1);
602 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
603 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
604 alloc_name[lookup_len] = '\0';
605
606 lookup_name = alloc_name;
607 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
608 }
609 else if (linkage_name[len] != '\0')
610 {
611 char *alloc_name;
612 lookup_len = len;
613
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, linkage_name, len);
616 alloc_name[lookup_len] = '\0';
617
618 lookup_name = alloc_name;
619 linkage_name_copy = alloc_name;
620 }
621 else
622 {
623 lookup_len = len;
624 lookup_name = linkage_name;
625 linkage_name_copy = linkage_name;
626 }
627
628 entry.mangled = (char *) lookup_name;
629 slot = ((struct demangled_name_entry **)
630 htab_find_slot (objfile->demangled_names_hash,
631 &entry, INSERT));
632
633 /* If this name is not in the hash table, add it. */
634 if (*slot == NULL)
635 {
636 char *demangled_name = symbol_find_demangled_name (gsymbol,
637 linkage_name_copy);
638 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
639
640 /* Suppose we have demangled_name==NULL, copy_name==0, and
641 lookup_name==linkage_name. In this case, we already have the
642 mangled name saved, and we don't have a demangled name. So,
643 you might think we could save a little space by not recording
644 this in the hash table at all.
645
646 It turns out that it is actually important to still save such
647 an entry in the hash table, because storing this name gives
648 us better backache hit rates for partial symbols. */
649 if (!copy_name && lookup_name == linkage_name)
650 {
651 *slot = obstack_alloc (&objfile->objfile_obstack,
652 offsetof (struct demangled_name_entry,
653 demangled)
654 + demangled_len + 1);
655 (*slot)->mangled = (char *) lookup_name;
656 }
657 else
658 {
659 /* If we must copy the mangled name, put it directly after
660 the demangled name so we can have a single
661 allocation. */
662 *slot = obstack_alloc (&objfile->objfile_obstack,
663 offsetof (struct demangled_name_entry,
664 demangled)
665 + lookup_len + demangled_len + 2);
666 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
667 strcpy ((*slot)->mangled, lookup_name);
668 }
669
670 if (demangled_name != NULL)
671 {
672 strcpy ((*slot)->demangled, demangled_name);
673 xfree (demangled_name);
674 }
675 else
676 (*slot)->demangled[0] = '\0';
677 }
678
679 gsymbol->name = (*slot)->mangled + lookup_len - len;
680 if ((*slot)->demangled[0] != '\0')
681 gsymbol->language_specific.cplus_specific.demangled_name
682 = (*slot)->demangled;
683 else
684 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
685}
686
687/* Return the source code name of a symbol. In languages where
688 demangling is necessary, this is the demangled name. */
689
690char *
691symbol_natural_name (const struct general_symbol_info *gsymbol)
692{
693 switch (gsymbol->language)
694 {
695 case language_cplus:
696 case language_java:
697 case language_objc:
698 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
699 return gsymbol->language_specific.cplus_specific.demangled_name;
700 break;
701 case language_ada:
702 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
703 return gsymbol->language_specific.cplus_specific.demangled_name;
704 else
705 return ada_decode_symbol (gsymbol);
706 break;
707 default:
708 break;
709 }
710 return gsymbol->name;
711}
712
713/* Return the demangled name for a symbol based on the language for
714 that symbol. If no demangled name exists, return NULL. */
715char *
716symbol_demangled_name (const struct general_symbol_info *gsymbol)
717{
718 switch (gsymbol->language)
719 {
720 case language_cplus:
721 case language_java:
722 case language_objc:
723 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
724 return gsymbol->language_specific.cplus_specific.demangled_name;
725 break;
726 case language_ada:
727 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
728 return gsymbol->language_specific.cplus_specific.demangled_name;
729 else
730 return ada_decode_symbol (gsymbol);
731 break;
732 default:
733 break;
734 }
735 return NULL;
736}
737
738/* Return the search name of a symbol---generally the demangled or
739 linkage name of the symbol, depending on how it will be searched for.
740 If there is no distinct demangled name, then returns the same value
741 (same pointer) as SYMBOL_LINKAGE_NAME. */
742char *
743symbol_search_name (const struct general_symbol_info *gsymbol)
744{
745 if (gsymbol->language == language_ada)
746 return gsymbol->name;
747 else
748 return symbol_natural_name (gsymbol);
749}
750
751/* Initialize the structure fields to zero values. */
752void
753init_sal (struct symtab_and_line *sal)
754{
755 sal->pspace = NULL;
756 sal->symtab = 0;
757 sal->section = 0;
758 sal->line = 0;
759 sal->pc = 0;
760 sal->end = 0;
761 sal->explicit_pc = 0;
762 sal->explicit_line = 0;
763}
764\f
765
766/* Return 1 if the two sections are the same, or if they could
767 plausibly be copies of each other, one in an original object
768 file and another in a separated debug file. */
769
770int
771matching_obj_sections (struct obj_section *obj_first,
772 struct obj_section *obj_second)
773{
774 asection *first = obj_first? obj_first->the_bfd_section : NULL;
775 asection *second = obj_second? obj_second->the_bfd_section : NULL;
776 struct objfile *obj;
777
778 /* If they're the same section, then they match. */
779 if (first == second)
780 return 1;
781
782 /* If either is NULL, give up. */
783 if (first == NULL || second == NULL)
784 return 0;
785
786 /* This doesn't apply to absolute symbols. */
787 if (first->owner == NULL || second->owner == NULL)
788 return 0;
789
790 /* If they're in the same object file, they must be different sections. */
791 if (first->owner == second->owner)
792 return 0;
793
794 /* Check whether the two sections are potentially corresponding. They must
795 have the same size, address, and name. We can't compare section indexes,
796 which would be more reliable, because some sections may have been
797 stripped. */
798 if (bfd_get_section_size (first) != bfd_get_section_size (second))
799 return 0;
800
801 /* In-memory addresses may start at a different offset, relativize them. */
802 if (bfd_get_section_vma (first->owner, first)
803 - bfd_get_start_address (first->owner)
804 != bfd_get_section_vma (second->owner, second)
805 - bfd_get_start_address (second->owner))
806 return 0;
807
808 if (bfd_get_section_name (first->owner, first) == NULL
809 || bfd_get_section_name (second->owner, second) == NULL
810 || strcmp (bfd_get_section_name (first->owner, first),
811 bfd_get_section_name (second->owner, second)) != 0)
812 return 0;
813
814 /* Otherwise check that they are in corresponding objfiles. */
815
816 ALL_OBJFILES (obj)
817 if (obj->obfd == first->owner)
818 break;
819 gdb_assert (obj != NULL);
820
821 if (obj->separate_debug_objfile != NULL
822 && obj->separate_debug_objfile->obfd == second->owner)
823 return 1;
824 if (obj->separate_debug_objfile_backlink != NULL
825 && obj->separate_debug_objfile_backlink->obfd == second->owner)
826 return 1;
827
828 return 0;
829}
830
831/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
832 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
833
834static struct partial_symtab *
835find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
836 struct partial_symtab *pst,
837 struct minimal_symbol *msymbol)
838{
839 struct objfile *objfile = pst->objfile;
840 struct partial_symtab *tpst;
841 struct partial_symtab *best_pst = pst;
842 CORE_ADDR best_addr = pst->textlow;
843
844 /* An objfile that has its functions reordered might have
845 many partial symbol tables containing the PC, but
846 we want the partial symbol table that contains the
847 function containing the PC. */
848 if (!(objfile->flags & OBJF_REORDERED) &&
849 section == 0) /* can't validate section this way */
850 return pst;
851
852 if (msymbol == NULL)
853 return (pst);
854
855 /* The code range of partial symtabs sometimes overlap, so, in
856 the loop below, we need to check all partial symtabs and
857 find the one that fits better for the given PC address. We
858 select the partial symtab that contains a symbol whose
859 address is closest to the PC address. By closest we mean
860 that find_pc_sect_symbol returns the symbol with address
861 that is closest and still less than the given PC. */
862 for (tpst = pst; tpst != NULL; tpst = tpst->next)
863 {
864 if (pc >= tpst->textlow && pc < tpst->texthigh)
865 {
866 struct partial_symbol *p;
867 CORE_ADDR this_addr;
868
869 /* NOTE: This assumes that every psymbol has a
870 corresponding msymbol, which is not necessarily
871 true; the debug info might be much richer than the
872 object's symbol table. */
873 p = find_pc_sect_psymbol (tpst, pc, section);
874 if (p != NULL
875 && SYMBOL_VALUE_ADDRESS (p)
876 == SYMBOL_VALUE_ADDRESS (msymbol))
877 return tpst;
878
879 /* Also accept the textlow value of a psymtab as a
880 "symbol", to provide some support for partial
881 symbol tables with line information but no debug
882 symbols (e.g. those produced by an assembler). */
883 if (p != NULL)
884 this_addr = SYMBOL_VALUE_ADDRESS (p);
885 else
886 this_addr = tpst->textlow;
887
888 /* Check whether it is closer than our current
889 BEST_ADDR. Since this symbol address is
890 necessarily lower or equal to PC, the symbol closer
891 to PC is the symbol which address is the highest.
892 This way we return the psymtab which contains such
893 best match symbol. This can help in cases where the
894 symbol information/debuginfo is not complete, like
895 for instance on IRIX6 with gcc, where no debug info
896 is emitted for statics. (See also the nodebug.exp
897 testcase.) */
898 if (this_addr > best_addr)
899 {
900 best_addr = this_addr;
901 best_pst = tpst;
902 }
903 }
904 }
905 return best_pst;
906}
907
908/* Find which partial symtab contains PC and SECTION. Return 0 if
909 none. We return the psymtab that contains a symbol whose address
910 exactly matches PC, or, if we cannot find an exact match, the
911 psymtab that contains a symbol whose address is closest to PC. */
912struct partial_symtab *
913find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
914{
915 struct objfile *objfile;
916 struct minimal_symbol *msymbol;
917
918 /* If we know that this is not a text address, return failure. This is
919 necessary because we loop based on texthigh and textlow, which do
920 not include the data ranges. */
921 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
922 if (msymbol
923 && (MSYMBOL_TYPE (msymbol) == mst_data
924 || MSYMBOL_TYPE (msymbol) == mst_bss
925 || MSYMBOL_TYPE (msymbol) == mst_abs
926 || MSYMBOL_TYPE (msymbol) == mst_file_data
927 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
928 return NULL;
929
930 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
931 than the later used TEXTLOW/TEXTHIGH one. */
932
933 ALL_OBJFILES (objfile)
934 if (objfile->psymtabs_addrmap != NULL)
935 {
936 struct partial_symtab *pst;
937
938 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
939 if (pst != NULL)
940 {
941 /* FIXME: addrmaps currently do not handle overlayed sections,
942 so fall back to the non-addrmap case if we're debugging
943 overlays and the addrmap returned the wrong section. */
944 if (overlay_debugging && msymbol && section)
945 {
946 struct partial_symbol *p;
947 /* NOTE: This assumes that every psymbol has a
948 corresponding msymbol, which is not necessarily
949 true; the debug info might be much richer than the
950 object's symbol table. */
951 p = find_pc_sect_psymbol (pst, pc, section);
952 if (!p
953 || SYMBOL_VALUE_ADDRESS (p)
954 != SYMBOL_VALUE_ADDRESS (msymbol))
955 continue;
956 }
957
958 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
959 PSYMTABS_ADDRMAP we used has already the best 1-byte
960 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
961 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
962 overlap. */
963
964 return pst;
965 }
966 }
967
968 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
969 which still have no corresponding full SYMTABs read. But it is not
970 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
971 so far. */
972
973 ALL_OBJFILES (objfile)
974 {
975 struct partial_symtab *pst;
976
977 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
978 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
979 debug info type in single OBJFILE. */
980
981 ALL_OBJFILE_PSYMTABS (objfile, pst)
982 if (pc >= pst->textlow && pc < pst->texthigh)
983 {
984 struct partial_symtab *best_pst;
985
986 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
987 msymbol);
988 if (best_pst != NULL)
989 return best_pst;
990 }
991 }
992
993 return NULL;
994}
995
996/* Find which partial symtab contains PC. Return 0 if none.
997 Backward compatibility, no section */
998
999struct partial_symtab *
1000find_pc_psymtab (CORE_ADDR pc)
1001{
1002 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
1003}
1004
1005/* Find which partial symbol within a psymtab matches PC and SECTION.
1006 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
1007
1008struct partial_symbol *
1009find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
1010 struct obj_section *section)
1011{
1012 struct partial_symbol *best = NULL, *p, **pp;
1013 CORE_ADDR best_pc;
1014
1015 if (!psymtab)
1016 psymtab = find_pc_sect_psymtab (pc, section);
1017 if (!psymtab)
1018 return 0;
1019
1020 /* Cope with programs that start at address 0 */
1021 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
1022
1023 /* Search the global symbols as well as the static symbols, so that
1024 find_pc_partial_function doesn't use a minimal symbol and thus
1025 cache a bad endaddr. */
1026 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
1027 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
1028 < psymtab->n_global_syms);
1029 pp++)
1030 {
1031 p = *pp;
1032 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1033 && SYMBOL_CLASS (p) == LOC_BLOCK
1034 && pc >= SYMBOL_VALUE_ADDRESS (p)
1035 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1036 || (psymtab->textlow == 0
1037 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1038 {
1039 if (section) /* match on a specific section */
1040 {
1041 fixup_psymbol_section (p, psymtab->objfile);
1042 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1043 continue;
1044 }
1045 best_pc = SYMBOL_VALUE_ADDRESS (p);
1046 best = p;
1047 }
1048 }
1049
1050 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
1051 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
1052 < psymtab->n_static_syms);
1053 pp++)
1054 {
1055 p = *pp;
1056 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1057 && SYMBOL_CLASS (p) == LOC_BLOCK
1058 && pc >= SYMBOL_VALUE_ADDRESS (p)
1059 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1060 || (psymtab->textlow == 0
1061 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1062 {
1063 if (section) /* match on a specific section */
1064 {
1065 fixup_psymbol_section (p, psymtab->objfile);
1066 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1067 continue;
1068 }
1069 best_pc = SYMBOL_VALUE_ADDRESS (p);
1070 best = p;
1071 }
1072 }
1073
1074 return best;
1075}
1076
1077/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1078 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1079
1080struct partial_symbol *
1081find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1082{
1083 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1084}
1085\f
1086/* Debug symbols usually don't have section information. We need to dig that
1087 out of the minimal symbols and stash that in the debug symbol. */
1088
1089static void
1090fixup_section (struct general_symbol_info *ginfo,
1091 CORE_ADDR addr, struct objfile *objfile)
1092{
1093 struct minimal_symbol *msym;
1094
1095 /* First, check whether a minimal symbol with the same name exists
1096 and points to the same address. The address check is required
1097 e.g. on PowerPC64, where the minimal symbol for a function will
1098 point to the function descriptor, while the debug symbol will
1099 point to the actual function code. */
1100 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1101 if (msym)
1102 {
1103 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 }
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 {
1147 int idx = s->the_bfd_section->index;
1148 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1149
1150 if (obj_section_addr (s) - offset <= addr
1151 && addr < obj_section_endaddr (s) - offset)
1152 {
1153 ginfo->obj_section = s;
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158 }
1159}
1160
1161struct symbol *
1162fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1163{
1164 CORE_ADDR addr;
1165
1166 if (!sym)
1167 return NULL;
1168
1169 if (SYMBOL_OBJ_SECTION (sym))
1170 return sym;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 /* We should have an objfile by now. */
1180 gdb_assert (objfile);
1181
1182 switch (SYMBOL_CLASS (sym))
1183 {
1184 case LOC_STATIC:
1185 case LOC_LABEL:
1186 addr = SYMBOL_VALUE_ADDRESS (sym);
1187 break;
1188 case LOC_BLOCK:
1189 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 break;
1191
1192 default:
1193 /* Nothing else will be listed in the minsyms -- no use looking
1194 it up. */
1195 return sym;
1196 }
1197
1198 fixup_section (&sym->ginfo, addr, objfile);
1199
1200 return sym;
1201}
1202
1203struct partial_symbol *
1204fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1205{
1206 CORE_ADDR addr;
1207
1208 if (!psym)
1209 return NULL;
1210
1211 if (SYMBOL_OBJ_SECTION (psym))
1212 return psym;
1213
1214 gdb_assert (objfile);
1215
1216 switch (SYMBOL_CLASS (psym))
1217 {
1218 case LOC_STATIC:
1219 case LOC_LABEL:
1220 case LOC_BLOCK:
1221 addr = SYMBOL_VALUE_ADDRESS (psym);
1222 break;
1223 default:
1224 /* Nothing else will be listed in the minsyms -- no use looking
1225 it up. */
1226 return psym;
1227 }
1228
1229 fixup_section (&psym->ginfo, addr, objfile);
1230
1231 return psym;
1232}
1233
1234/* Find the definition for a specified symbol name NAME
1235 in domain DOMAIN, visible from lexical block BLOCK.
1236 Returns the struct symbol pointer, or zero if no symbol is found.
1237 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1238 NAME is a field of the current implied argument `this'. If so set
1239 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1240 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1241 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1242
1243/* This function has a bunch of loops in it and it would seem to be
1244 attractive to put in some QUIT's (though I'm not really sure
1245 whether it can run long enough to be really important). But there
1246 are a few calls for which it would appear to be bad news to quit
1247 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1248 that there is C++ code below which can error(), but that probably
1249 doesn't affect these calls since they are looking for a known
1250 variable and thus can probably assume it will never hit the C++
1251 code). */
1252
1253struct symbol *
1254lookup_symbol_in_language (const char *name, const struct block *block,
1255 const domain_enum domain, enum language lang,
1256 int *is_a_field_of_this)
1257{
1258 char *demangled_name = NULL;
1259 const char *modified_name = NULL;
1260 const char *mangled_name = NULL;
1261 struct symbol *returnval;
1262 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1263
1264 modified_name = name;
1265
1266 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1267 we can always binary search. */
1268 if (lang == language_cplus)
1269 {
1270 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1271 if (demangled_name)
1272 {
1273 mangled_name = name;
1274 modified_name = demangled_name;
1275 make_cleanup (xfree, demangled_name);
1276 }
1277 else
1278 {
1279 /* If we were given a non-mangled name, canonicalize it
1280 according to the language (so far only for C++). */
1281 demangled_name = cp_canonicalize_string (name);
1282 if (demangled_name)
1283 {
1284 modified_name = demangled_name;
1285 make_cleanup (xfree, demangled_name);
1286 }
1287 }
1288 }
1289 else if (lang == language_java)
1290 {
1291 demangled_name = cplus_demangle (name,
1292 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1293 if (demangled_name)
1294 {
1295 mangled_name = name;
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 if (case_sensitivity == case_sensitive_off)
1302 {
1303 char *copy;
1304 int len, i;
1305
1306 len = strlen (name);
1307 copy = (char *) alloca (len + 1);
1308 for (i= 0; i < len; i++)
1309 copy[i] = tolower (name[i]);
1310 copy[len] = 0;
1311 modified_name = copy;
1312 }
1313
1314 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1315 domain, lang, is_a_field_of_this);
1316 do_cleanups (cleanup);
1317
1318 return returnval;
1319}
1320
1321/* Behave like lookup_symbol_in_language, but performed with the
1322 current language. */
1323
1324struct symbol *
1325lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain, int *is_a_field_of_this)
1327{
1328 return lookup_symbol_in_language (name, block, domain,
1329 current_language->la_language,
1330 is_a_field_of_this);
1331}
1332
1333/* Behave like lookup_symbol except that NAME is the natural name
1334 of the symbol that we're looking for and, if LINKAGE_NAME is
1335 non-NULL, ensure that the symbol's linkage name matches as
1336 well. */
1337
1338static struct symbol *
1339lookup_symbol_aux (const char *name, const char *linkage_name,
1340 const struct block *block, const domain_enum domain,
1341 enum language language, int *is_a_field_of_this)
1342{
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later and expect it to be either 0 or 1.
1349 If we don't set it, the contents of is_a_field_of_this are
1350 undefined. */
1351 if (is_a_field_of_this != NULL)
1352 *is_a_field_of_this = 0;
1353
1354 /* Search specified block and its superiors. Don't search
1355 STATIC_BLOCK or GLOBAL_BLOCK. */
1356
1357 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1362 check to see if NAME is a field of `this'. */
1363
1364 langdef = language_def (language);
1365
1366 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1367 && block != NULL)
1368 {
1369 struct symbol *sym = NULL;
1370 /* 'this' is only defined in the function's block, so find the
1371 enclosing function block. */
1372 for (; block && !BLOCK_FUNCTION (block);
1373 block = BLOCK_SUPERBLOCK (block));
1374
1375 if (block && !dict_empty (BLOCK_DICT (block)))
1376 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1377 NULL, VAR_DOMAIN);
1378 if (sym)
1379 {
1380 struct type *t = sym->type;
1381
1382 /* I'm not really sure that type of this can ever
1383 be typedefed; just be safe. */
1384 CHECK_TYPEDEF (t);
1385 if (TYPE_CODE (t) == TYPE_CODE_PTR
1386 || TYPE_CODE (t) == TYPE_CODE_REF)
1387 t = TYPE_TARGET_TYPE (t);
1388
1389 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1390 && TYPE_CODE (t) != TYPE_CODE_UNION)
1391 error (_("Internal error: `%s' is not an aggregate"),
1392 langdef->la_name_of_this);
1393
1394 if (check_field (t, name))
1395 {
1396 *is_a_field_of_this = 1;
1397 return NULL;
1398 }
1399 }
1400 }
1401
1402 /* Now do whatever is appropriate for LANGUAGE to look
1403 up static and global variables. */
1404
1405 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1406 if (sym != NULL)
1407 return sym;
1408
1409 /* Now search all static file-level symbols. Not strictly correct,
1410 but more useful than an error. Do the symtabs first, then check
1411 the psymtabs. If a psymtab indicates the existence of the
1412 desired name as a file-level static, then do psymtab-to-symtab
1413 conversion on the fly and return the found symbol. */
1414
1415 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1420 if (sym != NULL)
1421 return sym;
1422
1423 return NULL;
1424}
1425
1426/* Check to see if the symbol is defined in BLOCK or its superiors.
1427 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1428
1429static struct symbol *
1430lookup_symbol_aux_local (const char *name, const char *linkage_name,
1431 const struct block *block,
1432 const domain_enum domain)
1433{
1434 struct symbol *sym;
1435 const struct block *static_block = block_static_block (block);
1436
1437 /* Check if either no block is specified or it's a global block. */
1438
1439 if (static_block == NULL)
1440 return NULL;
1441
1442 while (block != static_block)
1443 {
1444 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1445 if (sym != NULL)
1446 return sym;
1447
1448 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1449 break;
1450 block = BLOCK_SUPERBLOCK (block);
1451 }
1452
1453 /* We've reached the edge of the function without finding a result. */
1454
1455 return NULL;
1456}
1457
1458/* Look up OBJFILE to BLOCK. */
1459
1460static struct objfile *
1461lookup_objfile_from_block (const struct block *block)
1462{
1463 struct objfile *obj;
1464 struct symtab *s;
1465
1466 if (block == NULL)
1467 return NULL;
1468
1469 block = block_global_block (block);
1470 /* Go through SYMTABS. */
1471 ALL_SYMTABS (obj, s)
1472 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1473 return obj;
1474
1475 return NULL;
1476}
1477
1478/* Look up a symbol in a block; if found, fixup the symbol, and set
1479 block_found appropriately. */
1480
1481struct symbol *
1482lookup_symbol_aux_block (const char *name, const char *linkage_name,
1483 const struct block *block,
1484 const domain_enum domain)
1485{
1486 struct symbol *sym;
1487
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, NULL);
1493 }
1494
1495 return NULL;
1496}
1497
1498/* Check all global symbols in OBJFILE in symtabs and
1499 psymtabs. */
1500
1501struct symbol *
1502lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1503 const char *name,
1504 const char *linkage_name,
1505 const domain_enum domain)
1506{
1507 const struct objfile *objfile;
1508 struct symbol *sym;
1509 struct blockvector *bv;
1510 const struct block *block;
1511 struct symtab *s;
1512 struct partial_symtab *ps;
1513
1514 for (objfile = main_objfile;
1515 objfile;
1516 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1517 {
1518 /* Go through symtabs. */
1519 ALL_OBJFILE_SYMTABS (objfile, s)
1520 {
1521 bv = BLOCKVECTOR (s);
1522 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1523 sym = lookup_block_symbol (block, name, linkage_name, domain);
1524 if (sym)
1525 {
1526 block_found = block;
1527 return fixup_symbol_section (sym, (struct objfile *)objfile);
1528 }
1529 }
1530
1531 /* Now go through psymtabs. */
1532 ALL_OBJFILE_PSYMTABS (objfile, ps)
1533 {
1534 if (!ps->readin
1535 && lookup_partial_symbol (ps, name, linkage_name,
1536 1, domain))
1537 {
1538 s = PSYMTAB_TO_SYMTAB (ps);
1539 bv = BLOCKVECTOR (s);
1540 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1541 sym = lookup_block_symbol (block, name, linkage_name, domain);
1542 return fixup_symbol_section (sym, (struct objfile *)objfile);
1543 }
1544 }
1545 }
1546
1547 return NULL;
1548}
1549
1550/* Check to see if the symbol is defined in one of the symtabs.
1551 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1552 depending on whether or not we want to search global symbols or
1553 static symbols. */
1554
1555static struct symbol *
1556lookup_symbol_aux_symtabs (int block_index,
1557 const char *name, const char *linkage_name,
1558 const domain_enum domain)
1559{
1560 struct symbol *sym;
1561 struct objfile *objfile;
1562 struct blockvector *bv;
1563 const struct block *block;
1564 struct symtab *s;
1565
1566 ALL_PRIMARY_SYMTABS (objfile, s)
1567 {
1568 bv = BLOCKVECTOR (s);
1569 block = BLOCKVECTOR_BLOCK (bv, block_index);
1570 sym = lookup_block_symbol (block, name, linkage_name, domain);
1571 if (sym)
1572 {
1573 block_found = block;
1574 return fixup_symbol_section (sym, objfile);
1575 }
1576 }
1577
1578 return NULL;
1579}
1580
1581/* Check to see if the symbol is defined in one of the partial
1582 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1583 STATIC_BLOCK, depending on whether or not we want to search global
1584 symbols or static symbols. */
1585
1586static struct symbol *
1587lookup_symbol_aux_psymtabs (int block_index, const char *name,
1588 const char *linkage_name,
1589 const domain_enum domain)
1590{
1591 struct symbol *sym;
1592 struct objfile *objfile;
1593 struct blockvector *bv;
1594 const struct block *block;
1595 struct partial_symtab *ps;
1596 struct symtab *s;
1597 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1598
1599 ALL_PSYMTABS (objfile, ps)
1600 {
1601 if (!ps->readin
1602 && lookup_partial_symbol (ps, name, linkage_name,
1603 psymtab_index, domain))
1604 {
1605 s = PSYMTAB_TO_SYMTAB (ps);
1606 bv = BLOCKVECTOR (s);
1607 block = BLOCKVECTOR_BLOCK (bv, block_index);
1608 sym = lookup_block_symbol (block, name, linkage_name, domain);
1609 if (!sym)
1610 {
1611 /* This shouldn't be necessary, but as a last resort try
1612 looking in the statics even though the psymtab claimed
1613 the symbol was global, or vice-versa. It's possible
1614 that the psymtab gets it wrong in some cases. */
1615
1616 /* FIXME: carlton/2002-09-30: Should we really do that?
1617 If that happens, isn't it likely to be a GDB error, in
1618 which case we should fix the GDB error rather than
1619 silently dealing with it here? So I'd vote for
1620 removing the check for the symbol in the other
1621 block. */
1622 block = BLOCKVECTOR_BLOCK (bv,
1623 block_index == GLOBAL_BLOCK ?
1624 STATIC_BLOCK : GLOBAL_BLOCK);
1625 sym = lookup_block_symbol (block, name, linkage_name, domain);
1626 if (!sym)
1627 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1628 block_index == GLOBAL_BLOCK ? "global" : "static",
1629 name, ps->filename, name, name);
1630 }
1631 return fixup_symbol_section (sym, objfile);
1632 }
1633 }
1634
1635 return NULL;
1636}
1637
1638/* A default version of lookup_symbol_nonlocal for use by languages
1639 that can't think of anything better to do. This implements the C
1640 lookup rules. */
1641
1642struct symbol *
1643basic_lookup_symbol_nonlocal (const char *name,
1644 const char *linkage_name,
1645 const struct block *block,
1646 const domain_enum domain)
1647{
1648 struct symbol *sym;
1649
1650 /* NOTE: carlton/2003-05-19: The comments below were written when
1651 this (or what turned into this) was part of lookup_symbol_aux;
1652 I'm much less worried about these questions now, since these
1653 decisions have turned out well, but I leave these comments here
1654 for posterity. */
1655
1656 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1657 not it would be appropriate to search the current global block
1658 here as well. (That's what this code used to do before the
1659 is_a_field_of_this check was moved up.) On the one hand, it's
1660 redundant with the lookup_symbol_aux_symtabs search that happens
1661 next. On the other hand, if decode_line_1 is passed an argument
1662 like filename:var, then the user presumably wants 'var' to be
1663 searched for in filename. On the third hand, there shouldn't be
1664 multiple global variables all of which are named 'var', and it's
1665 not like decode_line_1 has ever restricted its search to only
1666 global variables in a single filename. All in all, only
1667 searching the static block here seems best: it's correct and it's
1668 cleanest. */
1669
1670 /* NOTE: carlton/2002-12-05: There's also a possible performance
1671 issue here: if you usually search for global symbols in the
1672 current file, then it would be slightly better to search the
1673 current global block before searching all the symtabs. But there
1674 are other factors that have a much greater effect on performance
1675 than that one, so I don't think we should worry about that for
1676 now. */
1677
1678 sym = lookup_symbol_static (name, linkage_name, block, domain);
1679 if (sym != NULL)
1680 return sym;
1681
1682 return lookup_symbol_global (name, linkage_name, block, domain);
1683}
1684
1685/* Lookup a symbol in the static block associated to BLOCK, if there
1686 is one; do nothing if BLOCK is NULL or a global block. */
1687
1688struct symbol *
1689lookup_symbol_static (const char *name,
1690 const char *linkage_name,
1691 const struct block *block,
1692 const domain_enum domain)
1693{
1694 const struct block *static_block = block_static_block (block);
1695
1696 if (static_block != NULL)
1697 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1698 else
1699 return NULL;
1700}
1701
1702/* Lookup a symbol in all files' global blocks (searching psymtabs if
1703 necessary). */
1704
1705struct symbol *
1706lookup_symbol_global (const char *name,
1707 const char *linkage_name,
1708 const struct block *block,
1709 const domain_enum domain)
1710{
1711 struct symbol *sym = NULL;
1712 struct objfile *objfile = NULL;
1713
1714 /* Call library-specific lookup procedure. */
1715 objfile = lookup_objfile_from_block (block);
1716 if (objfile != NULL)
1717 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1718 if (sym != NULL)
1719 return sym;
1720
1721 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1722 if (sym != NULL)
1723 return sym;
1724
1725 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1726}
1727
1728int
1729symbol_matches_domain (enum language symbol_language,
1730 domain_enum symbol_domain,
1731 domain_enum domain)
1732{
1733 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1734 A Java class declaration also defines a typedef for the class.
1735 Similarly, any Ada type declaration implicitly defines a typedef. */
1736 if (symbol_language == language_cplus
1737 || symbol_language == language_java
1738 || symbol_language == language_ada)
1739 {
1740 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1741 && symbol_domain == STRUCT_DOMAIN)
1742 return 1;
1743 }
1744 /* For all other languages, strict match is required. */
1745 return (symbol_domain == domain);
1746}
1747
1748/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1749 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1750 linkage name matches it. Check the global symbols if GLOBAL, the
1751 static symbols if not */
1752
1753struct partial_symbol *
1754lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1755 const char *linkage_name, int global,
1756 domain_enum domain)
1757{
1758 struct partial_symbol *temp;
1759 struct partial_symbol **start, **psym;
1760 struct partial_symbol **top, **real_top, **bottom, **center;
1761 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1762 int do_linear_search = 1;
1763
1764 if (length == 0)
1765 {
1766 return (NULL);
1767 }
1768 start = (global ?
1769 pst->objfile->global_psymbols.list + pst->globals_offset :
1770 pst->objfile->static_psymbols.list + pst->statics_offset);
1771
1772 if (global) /* This means we can use a binary search. */
1773 {
1774 do_linear_search = 0;
1775
1776 /* Binary search. This search is guaranteed to end with center
1777 pointing at the earliest partial symbol whose name might be
1778 correct. At that point *all* partial symbols with an
1779 appropriate name will be checked against the correct
1780 domain. */
1781
1782 bottom = start;
1783 top = start + length - 1;
1784 real_top = top;
1785 while (top > bottom)
1786 {
1787 center = bottom + (top - bottom) / 2;
1788 if (!(center < top))
1789 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1790 if (!do_linear_search
1791 && (SYMBOL_LANGUAGE (*center) == language_java))
1792 {
1793 do_linear_search = 1;
1794 }
1795 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1796 {
1797 top = center;
1798 }
1799 else
1800 {
1801 bottom = center + 1;
1802 }
1803 }
1804 if (!(top == bottom))
1805 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1806
1807 while (top <= real_top
1808 && (linkage_name != NULL
1809 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1810 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1811 {
1812 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1813 SYMBOL_DOMAIN (*top), domain))
1814 return (*top);
1815 top++;
1816 }
1817 }
1818
1819 /* Can't use a binary search or else we found during the binary search that
1820 we should also do a linear search. */
1821
1822 if (do_linear_search)
1823 {
1824 for (psym = start; psym < start + length; psym++)
1825 {
1826 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1827 SYMBOL_DOMAIN (*psym), domain))
1828 {
1829 if (linkage_name != NULL
1830 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1831 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1832 {
1833 return (*psym);
1834 }
1835 }
1836 }
1837 }
1838
1839 return (NULL);
1840}
1841
1842/* Look up a type named NAME in the struct_domain. The type returned
1843 must not be opaque -- i.e., must have at least one field
1844 defined. */
1845
1846struct type *
1847lookup_transparent_type (const char *name)
1848{
1849 return current_language->la_lookup_transparent_type (name);
1850}
1851
1852/* The standard implementation of lookup_transparent_type. This code
1853 was modeled on lookup_symbol -- the parts not relevant to looking
1854 up types were just left out. In particular it's assumed here that
1855 types are available in struct_domain and only at file-static or
1856 global blocks. */
1857
1858struct type *
1859basic_lookup_transparent_type (const char *name)
1860{
1861 struct symbol *sym;
1862 struct symtab *s = NULL;
1863 struct partial_symtab *ps;
1864 struct blockvector *bv;
1865 struct objfile *objfile;
1866 struct block *block;
1867
1868 /* Now search all the global symbols. Do the symtab's first, then
1869 check the psymtab's. If a psymtab indicates the existence
1870 of the desired name as a global, then do psymtab-to-symtab
1871 conversion on the fly and return the found symbol. */
1872
1873 ALL_PRIMARY_SYMTABS (objfile, s)
1874 {
1875 bv = BLOCKVECTOR (s);
1876 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1877 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1878 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1879 {
1880 return SYMBOL_TYPE (sym);
1881 }
1882 }
1883
1884 ALL_PSYMTABS (objfile, ps)
1885 {
1886 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1887 1, STRUCT_DOMAIN))
1888 {
1889 s = PSYMTAB_TO_SYMTAB (ps);
1890 bv = BLOCKVECTOR (s);
1891 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1892 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1893 if (!sym)
1894 {
1895 /* This shouldn't be necessary, but as a last resort
1896 * try looking in the statics even though the psymtab
1897 * claimed the symbol was global. It's possible that
1898 * the psymtab gets it wrong in some cases.
1899 */
1900 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1901 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1902 if (!sym)
1903 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1904%s may be an inlined function, or may be a template function\n\
1905(if a template, try specifying an instantiation: %s<type>)."),
1906 name, ps->filename, name, name);
1907 }
1908 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1909 return SYMBOL_TYPE (sym);
1910 }
1911 }
1912
1913 /* Now search the static file-level symbols.
1914 Not strictly correct, but more useful than an error.
1915 Do the symtab's first, then
1916 check the psymtab's. If a psymtab indicates the existence
1917 of the desired name as a file-level static, then do psymtab-to-symtab
1918 conversion on the fly and return the found symbol.
1919 */
1920
1921 ALL_PRIMARY_SYMTABS (objfile, s)
1922 {
1923 bv = BLOCKVECTOR (s);
1924 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1925 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1926 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1927 {
1928 return SYMBOL_TYPE (sym);
1929 }
1930 }
1931
1932 ALL_PSYMTABS (objfile, ps)
1933 {
1934 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1935 {
1936 s = PSYMTAB_TO_SYMTAB (ps);
1937 bv = BLOCKVECTOR (s);
1938 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1939 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1940 if (!sym)
1941 {
1942 /* This shouldn't be necessary, but as a last resort
1943 * try looking in the globals even though the psymtab
1944 * claimed the symbol was static. It's possible that
1945 * the psymtab gets it wrong in some cases.
1946 */
1947 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1948 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1949 if (!sym)
1950 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1951%s may be an inlined function, or may be a template function\n\
1952(if a template, try specifying an instantiation: %s<type>)."),
1953 name, ps->filename, name, name);
1954 }
1955 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1956 return SYMBOL_TYPE (sym);
1957 }
1958 }
1959 return (struct type *) 0;
1960}
1961
1962
1963/* Find the psymtab containing main(). */
1964/* FIXME: What about languages without main() or specially linked
1965 executables that have no main() ? */
1966
1967struct partial_symtab *
1968find_main_psymtab (void)
1969{
1970 struct partial_symtab *pst;
1971 struct objfile *objfile;
1972
1973 ALL_PSYMTABS (objfile, pst)
1974 {
1975 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1976 {
1977 return (pst);
1978 }
1979 }
1980 return (NULL);
1981}
1982
1983/* Search BLOCK for symbol NAME in DOMAIN.
1984
1985 Note that if NAME is the demangled form of a C++ symbol, we will fail
1986 to find a match during the binary search of the non-encoded names, but
1987 for now we don't worry about the slight inefficiency of looking for
1988 a match we'll never find, since it will go pretty quick. Once the
1989 binary search terminates, we drop through and do a straight linear
1990 search on the symbols. Each symbol which is marked as being a ObjC/C++
1991 symbol (language_cplus or language_objc set) has both the encoded and
1992 non-encoded names tested for a match.
1993
1994 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1995 particular mangled name.
1996*/
1997
1998struct symbol *
1999lookup_block_symbol (const struct block *block, const char *name,
2000 const char *linkage_name,
2001 const domain_enum domain)
2002{
2003 struct dict_iterator iter;
2004 struct symbol *sym;
2005
2006 if (!BLOCK_FUNCTION (block))
2007 {
2008 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2009 sym != NULL;
2010 sym = dict_iter_name_next (name, &iter))
2011 {
2012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2013 SYMBOL_DOMAIN (sym), domain)
2014 && (linkage_name != NULL
2015 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2016 return sym;
2017 }
2018 return NULL;
2019 }
2020 else
2021 {
2022 /* Note that parameter symbols do not always show up last in the
2023 list; this loop makes sure to take anything else other than
2024 parameter symbols first; it only uses parameter symbols as a
2025 last resort. Note that this only takes up extra computation
2026 time on a match. */
2027
2028 struct symbol *sym_found = NULL;
2029
2030 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2031 sym != NULL;
2032 sym = dict_iter_name_next (name, &iter))
2033 {
2034 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2035 SYMBOL_DOMAIN (sym), domain)
2036 && (linkage_name != NULL
2037 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2038 {
2039 sym_found = sym;
2040 if (!SYMBOL_IS_ARGUMENT (sym))
2041 {
2042 break;
2043 }
2044 }
2045 }
2046 return (sym_found); /* Will be NULL if not found. */
2047 }
2048}
2049
2050/* Find the symtab associated with PC and SECTION. Look through the
2051 psymtabs and read in another symtab if necessary. */
2052
2053struct symtab *
2054find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2055{
2056 struct block *b;
2057 struct blockvector *bv;
2058 struct symtab *s = NULL;
2059 struct symtab *best_s = NULL;
2060 struct partial_symtab *ps;
2061 struct objfile *objfile;
2062 struct program_space *pspace;
2063 CORE_ADDR distance = 0;
2064 struct minimal_symbol *msymbol;
2065
2066 pspace = current_program_space;
2067
2068 /* If we know that this is not a text address, return failure. This is
2069 necessary because we loop based on the block's high and low code
2070 addresses, which do not include the data ranges, and because
2071 we call find_pc_sect_psymtab which has a similar restriction based
2072 on the partial_symtab's texthigh and textlow. */
2073 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2074 if (msymbol
2075 && (MSYMBOL_TYPE (msymbol) == mst_data
2076 || MSYMBOL_TYPE (msymbol) == mst_bss
2077 || MSYMBOL_TYPE (msymbol) == mst_abs
2078 || MSYMBOL_TYPE (msymbol) == mst_file_data
2079 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2080 return NULL;
2081
2082 /* Search all symtabs for the one whose file contains our address, and which
2083 is the smallest of all the ones containing the address. This is designed
2084 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2085 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2086 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2087
2088 This happens for native ecoff format, where code from included files
2089 gets its own symtab. The symtab for the included file should have
2090 been read in already via the dependency mechanism.
2091 It might be swifter to create several symtabs with the same name
2092 like xcoff does (I'm not sure).
2093
2094 It also happens for objfiles that have their functions reordered.
2095 For these, the symtab we are looking for is not necessarily read in. */
2096
2097 ALL_PRIMARY_SYMTABS (objfile, s)
2098 {
2099 bv = BLOCKVECTOR (s);
2100 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2101
2102 if (BLOCK_START (b) <= pc
2103 && BLOCK_END (b) > pc
2104 && (distance == 0
2105 || BLOCK_END (b) - BLOCK_START (b) < distance))
2106 {
2107 /* For an objfile that has its functions reordered,
2108 find_pc_psymtab will find the proper partial symbol table
2109 and we simply return its corresponding symtab. */
2110 /* In order to better support objfiles that contain both
2111 stabs and coff debugging info, we continue on if a psymtab
2112 can't be found. */
2113 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2114 {
2115 ps = find_pc_sect_psymtab (pc, section);
2116 if (ps)
2117 return PSYMTAB_TO_SYMTAB (ps);
2118 }
2119 if (section != 0)
2120 {
2121 struct dict_iterator iter;
2122 struct symbol *sym = NULL;
2123
2124 ALL_BLOCK_SYMBOLS (b, iter, sym)
2125 {
2126 fixup_symbol_section (sym, objfile);
2127 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2128 break;
2129 }
2130 if (sym == NULL)
2131 continue; /* no symbol in this symtab matches section */
2132 }
2133 distance = BLOCK_END (b) - BLOCK_START (b);
2134 best_s = s;
2135 }
2136 }
2137
2138 if (best_s != NULL)
2139 return (best_s);
2140
2141 s = NULL;
2142 ps = find_pc_sect_psymtab (pc, section);
2143 if (ps)
2144 {
2145 if (ps->readin)
2146 /* Might want to error() here (in case symtab is corrupt and
2147 will cause a core dump), but maybe we can successfully
2148 continue, so let's not. */
2149 warning (_("\
2150(Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2151 paddress (get_objfile_arch (ps->objfile), pc));
2152 s = PSYMTAB_TO_SYMTAB (ps);
2153 }
2154 return (s);
2155}
2156
2157/* Find the symtab associated with PC. Look through the psymtabs and
2158 read in another symtab if necessary. Backward compatibility, no section */
2159
2160struct symtab *
2161find_pc_symtab (CORE_ADDR pc)
2162{
2163 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2164}
2165\f
2166
2167/* Find the source file and line number for a given PC value and SECTION.
2168 Return a structure containing a symtab pointer, a line number,
2169 and a pc range for the entire source line.
2170 The value's .pc field is NOT the specified pc.
2171 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2172 use the line that ends there. Otherwise, in that case, the line
2173 that begins there is used. */
2174
2175/* The big complication here is that a line may start in one file, and end just
2176 before the start of another file. This usually occurs when you #include
2177 code in the middle of a subroutine. To properly find the end of a line's PC
2178 range, we must search all symtabs associated with this compilation unit, and
2179 find the one whose first PC is closer than that of the next line in this
2180 symtab. */
2181
2182/* If it's worth the effort, we could be using a binary search. */
2183
2184struct symtab_and_line
2185find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2186{
2187 struct symtab *s;
2188 struct linetable *l;
2189 int len;
2190 int i;
2191 struct linetable_entry *item;
2192 struct symtab_and_line val;
2193 struct blockvector *bv;
2194 struct minimal_symbol *msymbol;
2195 struct minimal_symbol *mfunsym;
2196
2197 /* Info on best line seen so far, and where it starts, and its file. */
2198
2199 struct linetable_entry *best = NULL;
2200 CORE_ADDR best_end = 0;
2201 struct symtab *best_symtab = 0;
2202
2203 /* Store here the first line number
2204 of a file which contains the line at the smallest pc after PC.
2205 If we don't find a line whose range contains PC,
2206 we will use a line one less than this,
2207 with a range from the start of that file to the first line's pc. */
2208 struct linetable_entry *alt = NULL;
2209 struct symtab *alt_symtab = 0;
2210
2211 /* Info on best line seen in this file. */
2212
2213 struct linetable_entry *prev;
2214
2215 /* If this pc is not from the current frame,
2216 it is the address of the end of a call instruction.
2217 Quite likely that is the start of the following statement.
2218 But what we want is the statement containing the instruction.
2219 Fudge the pc to make sure we get that. */
2220
2221 init_sal (&val); /* initialize to zeroes */
2222
2223 val.pspace = current_program_space;
2224
2225 /* It's tempting to assume that, if we can't find debugging info for
2226 any function enclosing PC, that we shouldn't search for line
2227 number info, either. However, GAS can emit line number info for
2228 assembly files --- very helpful when debugging hand-written
2229 assembly code. In such a case, we'd have no debug info for the
2230 function, but we would have line info. */
2231
2232 if (notcurrent)
2233 pc -= 1;
2234
2235 /* elz: added this because this function returned the wrong
2236 information if the pc belongs to a stub (import/export)
2237 to call a shlib function. This stub would be anywhere between
2238 two functions in the target, and the line info was erroneously
2239 taken to be the one of the line before the pc.
2240 */
2241 /* RT: Further explanation:
2242
2243 * We have stubs (trampolines) inserted between procedures.
2244 *
2245 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2246 * exists in the main image.
2247 *
2248 * In the minimal symbol table, we have a bunch of symbols
2249 * sorted by start address. The stubs are marked as "trampoline",
2250 * the others appear as text. E.g.:
2251 *
2252 * Minimal symbol table for main image
2253 * main: code for main (text symbol)
2254 * shr1: stub (trampoline symbol)
2255 * foo: code for foo (text symbol)
2256 * ...
2257 * Minimal symbol table for "shr1" image:
2258 * ...
2259 * shr1: code for shr1 (text symbol)
2260 * ...
2261 *
2262 * So the code below is trying to detect if we are in the stub
2263 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2264 * and if found, do the symbolization from the real-code address
2265 * rather than the stub address.
2266 *
2267 * Assumptions being made about the minimal symbol table:
2268 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2269 * if we're really in the trampoline. If we're beyond it (say
2270 * we're in "foo" in the above example), it'll have a closer
2271 * symbol (the "foo" text symbol for example) and will not
2272 * return the trampoline.
2273 * 2. lookup_minimal_symbol_text() will find a real text symbol
2274 * corresponding to the trampoline, and whose address will
2275 * be different than the trampoline address. I put in a sanity
2276 * check for the address being the same, to avoid an
2277 * infinite recursion.
2278 */
2279 msymbol = lookup_minimal_symbol_by_pc (pc);
2280 if (msymbol != NULL)
2281 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2282 {
2283 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2284 NULL);
2285 if (mfunsym == NULL)
2286 /* I eliminated this warning since it is coming out
2287 * in the following situation:
2288 * gdb shmain // test program with shared libraries
2289 * (gdb) break shr1 // function in shared lib
2290 * Warning: In stub for ...
2291 * In the above situation, the shared lib is not loaded yet,
2292 * so of course we can't find the real func/line info,
2293 * but the "break" still works, and the warning is annoying.
2294 * So I commented out the warning. RT */
2295 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2296 /* fall through */
2297 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2298 /* Avoid infinite recursion */
2299 /* See above comment about why warning is commented out */
2300 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2301 /* fall through */
2302 else
2303 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2304 }
2305
2306
2307 s = find_pc_sect_symtab (pc, section);
2308 if (!s)
2309 {
2310 /* if no symbol information, return previous pc */
2311 if (notcurrent)
2312 pc++;
2313 val.pc = pc;
2314 return val;
2315 }
2316
2317 bv = BLOCKVECTOR (s);
2318
2319 /* Look at all the symtabs that share this blockvector.
2320 They all have the same apriori range, that we found was right;
2321 but they have different line tables. */
2322
2323 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2324 {
2325 /* Find the best line in this symtab. */
2326 l = LINETABLE (s);
2327 if (!l)
2328 continue;
2329 len = l->nitems;
2330 if (len <= 0)
2331 {
2332 /* I think len can be zero if the symtab lacks line numbers
2333 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2334 I'm not sure which, and maybe it depends on the symbol
2335 reader). */
2336 continue;
2337 }
2338
2339 prev = NULL;
2340 item = l->item; /* Get first line info */
2341
2342 /* Is this file's first line closer than the first lines of other files?
2343 If so, record this file, and its first line, as best alternate. */
2344 if (item->pc > pc && (!alt || item->pc < alt->pc))
2345 {
2346 alt = item;
2347 alt_symtab = s;
2348 }
2349
2350 for (i = 0; i < len; i++, item++)
2351 {
2352 /* Leave prev pointing to the linetable entry for the last line
2353 that started at or before PC. */
2354 if (item->pc > pc)
2355 break;
2356
2357 prev = item;
2358 }
2359
2360 /* At this point, prev points at the line whose start addr is <= pc, and
2361 item points at the next line. If we ran off the end of the linetable
2362 (pc >= start of the last line), then prev == item. If pc < start of
2363 the first line, prev will not be set. */
2364
2365 /* Is this file's best line closer than the best in the other files?
2366 If so, record this file, and its best line, as best so far. Don't
2367 save prev if it represents the end of a function (i.e. line number
2368 0) instead of a real line. */
2369
2370 if (prev && prev->line && (!best || prev->pc > best->pc))
2371 {
2372 best = prev;
2373 best_symtab = s;
2374
2375 /* Discard BEST_END if it's before the PC of the current BEST. */
2376 if (best_end <= best->pc)
2377 best_end = 0;
2378 }
2379
2380 /* If another line (denoted by ITEM) is in the linetable and its
2381 PC is after BEST's PC, but before the current BEST_END, then
2382 use ITEM's PC as the new best_end. */
2383 if (best && i < len && item->pc > best->pc
2384 && (best_end == 0 || best_end > item->pc))
2385 best_end = item->pc;
2386 }
2387
2388 if (!best_symtab)
2389 {
2390 /* If we didn't find any line number info, just return zeros.
2391 We used to return alt->line - 1 here, but that could be
2392 anywhere; if we don't have line number info for this PC,
2393 don't make some up. */
2394 val.pc = pc;
2395 }
2396 else if (best->line == 0)
2397 {
2398 /* If our best fit is in a range of PC's for which no line
2399 number info is available (line number is zero) then we didn't
2400 find any valid line information. */
2401 val.pc = pc;
2402 }
2403 else
2404 {
2405 val.symtab = best_symtab;
2406 val.line = best->line;
2407 val.pc = best->pc;
2408 if (best_end && (!alt || best_end < alt->pc))
2409 val.end = best_end;
2410 else if (alt)
2411 val.end = alt->pc;
2412 else
2413 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2414 }
2415 val.section = section;
2416 return val;
2417}
2418
2419/* Backward compatibility (no section) */
2420
2421struct symtab_and_line
2422find_pc_line (CORE_ADDR pc, int notcurrent)
2423{
2424 struct obj_section *section;
2425
2426 section = find_pc_overlay (pc);
2427 if (pc_in_unmapped_range (pc, section))
2428 pc = overlay_mapped_address (pc, section);
2429 return find_pc_sect_line (pc, section, notcurrent);
2430}
2431\f
2432/* Find line number LINE in any symtab whose name is the same as
2433 SYMTAB.
2434
2435 If found, return the symtab that contains the linetable in which it was
2436 found, set *INDEX to the index in the linetable of the best entry
2437 found, and set *EXACT_MATCH nonzero if the value returned is an
2438 exact match.
2439
2440 If not found, return NULL. */
2441
2442struct symtab *
2443find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2444{
2445 int exact = 0; /* Initialized here to avoid a compiler warning. */
2446
2447 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2448 so far seen. */
2449
2450 int best_index;
2451 struct linetable *best_linetable;
2452 struct symtab *best_symtab;
2453
2454 /* First try looking it up in the given symtab. */
2455 best_linetable = LINETABLE (symtab);
2456 best_symtab = symtab;
2457 best_index = find_line_common (best_linetable, line, &exact);
2458 if (best_index < 0 || !exact)
2459 {
2460 /* Didn't find an exact match. So we better keep looking for
2461 another symtab with the same name. In the case of xcoff,
2462 multiple csects for one source file (produced by IBM's FORTRAN
2463 compiler) produce multiple symtabs (this is unavoidable
2464 assuming csects can be at arbitrary places in memory and that
2465 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2466
2467 /* BEST is the smallest linenumber > LINE so far seen,
2468 or 0 if none has been seen so far.
2469 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2470 int best;
2471
2472 struct objfile *objfile;
2473 struct symtab *s;
2474 struct partial_symtab *p;
2475
2476 if (best_index >= 0)
2477 best = best_linetable->item[best_index].line;
2478 else
2479 best = 0;
2480
2481 ALL_PSYMTABS (objfile, p)
2482 {
2483 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2484 continue;
2485 PSYMTAB_TO_SYMTAB (p);
2486 }
2487
2488 /* Get symbol full file name if possible. */
2489 symtab_to_fullname (symtab);
2490
2491 ALL_SYMTABS (objfile, s)
2492 {
2493 struct linetable *l;
2494 int ind;
2495
2496 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2497 continue;
2498 if (symtab->fullname != NULL
2499 && symtab_to_fullname (s) != NULL
2500 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2501 continue;
2502 l = LINETABLE (s);
2503 ind = find_line_common (l, line, &exact);
2504 if (ind >= 0)
2505 {
2506 if (exact)
2507 {
2508 best_index = ind;
2509 best_linetable = l;
2510 best_symtab = s;
2511 goto done;
2512 }
2513 if (best == 0 || l->item[ind].line < best)
2514 {
2515 best = l->item[ind].line;
2516 best_index = ind;
2517 best_linetable = l;
2518 best_symtab = s;
2519 }
2520 }
2521 }
2522 }
2523done:
2524 if (best_index < 0)
2525 return NULL;
2526
2527 if (index)
2528 *index = best_index;
2529 if (exact_match)
2530 *exact_match = exact;
2531
2532 return best_symtab;
2533}
2534\f
2535/* Set the PC value for a given source file and line number and return true.
2536 Returns zero for invalid line number (and sets the PC to 0).
2537 The source file is specified with a struct symtab. */
2538
2539int
2540find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2541{
2542 struct linetable *l;
2543 int ind;
2544
2545 *pc = 0;
2546 if (symtab == 0)
2547 return 0;
2548
2549 symtab = find_line_symtab (symtab, line, &ind, NULL);
2550 if (symtab != NULL)
2551 {
2552 l = LINETABLE (symtab);
2553 *pc = l->item[ind].pc;
2554 return 1;
2555 }
2556 else
2557 return 0;
2558}
2559
2560/* Find the range of pc values in a line.
2561 Store the starting pc of the line into *STARTPTR
2562 and the ending pc (start of next line) into *ENDPTR.
2563 Returns 1 to indicate success.
2564 Returns 0 if could not find the specified line. */
2565
2566int
2567find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2568 CORE_ADDR *endptr)
2569{
2570 CORE_ADDR startaddr;
2571 struct symtab_and_line found_sal;
2572
2573 startaddr = sal.pc;
2574 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2575 return 0;
2576
2577 /* This whole function is based on address. For example, if line 10 has
2578 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2579 "info line *0x123" should say the line goes from 0x100 to 0x200
2580 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2581 This also insures that we never give a range like "starts at 0x134
2582 and ends at 0x12c". */
2583
2584 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2585 if (found_sal.line != sal.line)
2586 {
2587 /* The specified line (sal) has zero bytes. */
2588 *startptr = found_sal.pc;
2589 *endptr = found_sal.pc;
2590 }
2591 else
2592 {
2593 *startptr = found_sal.pc;
2594 *endptr = found_sal.end;
2595 }
2596 return 1;
2597}
2598
2599/* Given a line table and a line number, return the index into the line
2600 table for the pc of the nearest line whose number is >= the specified one.
2601 Return -1 if none is found. The value is >= 0 if it is an index.
2602
2603 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2604
2605static int
2606find_line_common (struct linetable *l, int lineno,
2607 int *exact_match)
2608{
2609 int i;
2610 int len;
2611
2612 /* BEST is the smallest linenumber > LINENO so far seen,
2613 or 0 if none has been seen so far.
2614 BEST_INDEX identifies the item for it. */
2615
2616 int best_index = -1;
2617 int best = 0;
2618
2619 *exact_match = 0;
2620
2621 if (lineno <= 0)
2622 return -1;
2623 if (l == 0)
2624 return -1;
2625
2626 len = l->nitems;
2627 for (i = 0; i < len; i++)
2628 {
2629 struct linetable_entry *item = &(l->item[i]);
2630
2631 if (item->line == lineno)
2632 {
2633 /* Return the first (lowest address) entry which matches. */
2634 *exact_match = 1;
2635 return i;
2636 }
2637
2638 if (item->line > lineno && (best == 0 || item->line < best))
2639 {
2640 best = item->line;
2641 best_index = i;
2642 }
2643 }
2644
2645 /* If we got here, we didn't get an exact match. */
2646 return best_index;
2647}
2648
2649int
2650find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2651{
2652 struct symtab_and_line sal;
2653 sal = find_pc_line (pc, 0);
2654 *startptr = sal.pc;
2655 *endptr = sal.end;
2656 return sal.symtab != 0;
2657}
2658
2659/* Given a function start address PC and SECTION, find the first
2660 address after the function prologue. */
2661CORE_ADDR
2662find_function_start_pc (struct gdbarch *gdbarch,
2663 CORE_ADDR pc, struct obj_section *section)
2664{
2665 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2666 so that gdbarch_skip_prologue has something unique to work on. */
2667 if (section_is_overlay (section) && !section_is_mapped (section))
2668 pc = overlay_unmapped_address (pc, section);
2669
2670 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2671 pc = gdbarch_skip_prologue (gdbarch, pc);
2672
2673 /* For overlays, map pc back into its mapped VMA range. */
2674 pc = overlay_mapped_address (pc, section);
2675
2676 return pc;
2677}
2678
2679/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2680 address for that function that has an entry in SYMTAB's line info
2681 table. If such an entry cannot be found, return FUNC_ADDR
2682 unaltered. */
2683CORE_ADDR
2684skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2685{
2686 CORE_ADDR func_start, func_end;
2687 struct linetable *l;
2688 int ind, i, len;
2689 int best_lineno = 0;
2690 CORE_ADDR best_pc = func_addr;
2691
2692 /* Give up if this symbol has no lineinfo table. */
2693 l = LINETABLE (symtab);
2694 if (l == NULL)
2695 return func_addr;
2696
2697 /* Get the range for the function's PC values, or give up if we
2698 cannot, for some reason. */
2699 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2700 return func_addr;
2701
2702 /* Linetable entries are ordered by PC values, see the commentary in
2703 symtab.h where `struct linetable' is defined. Thus, the first
2704 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2705 address we are looking for. */
2706 for (i = 0; i < l->nitems; i++)
2707 {
2708 struct linetable_entry *item = &(l->item[i]);
2709
2710 /* Don't use line numbers of zero, they mark special entries in
2711 the table. See the commentary on symtab.h before the
2712 definition of struct linetable. */
2713 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2714 return item->pc;
2715 }
2716
2717 return func_addr;
2718}
2719
2720/* Given a function symbol SYM, find the symtab and line for the start
2721 of the function.
2722 If the argument FUNFIRSTLINE is nonzero, we want the first line
2723 of real code inside the function. */
2724
2725struct symtab_and_line
2726find_function_start_sal (struct symbol *sym, int funfirstline)
2727{
2728 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2729 struct objfile *objfile = lookup_objfile_from_block (block);
2730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2731
2732 CORE_ADDR pc;
2733 struct symtab_and_line sal;
2734 struct block *b, *function_block;
2735
2736 struct cleanup *old_chain;
2737
2738 old_chain = save_current_space_and_thread ();
2739 switch_to_program_space_and_thread (objfile->pspace);
2740
2741 pc = BLOCK_START (block);
2742 fixup_symbol_section (sym, objfile);
2743 if (funfirstline)
2744 {
2745 /* Skip "first line" of function (which is actually its prologue). */
2746 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2747 }
2748 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2749
2750 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2751 line is still part of the same function. */
2752 if (sal.pc != pc
2753 && BLOCK_START (block) <= sal.end
2754 && sal.end < BLOCK_END (block))
2755 {
2756 /* First pc of next line */
2757 pc = sal.end;
2758 /* Recalculate the line number (might not be N+1). */
2759 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2760 }
2761
2762 /* On targets with executable formats that don't have a concept of
2763 constructors (ELF with .init has, PE doesn't), gcc emits a call
2764 to `__main' in `main' between the prologue and before user
2765 code. */
2766 if (funfirstline
2767 && gdbarch_skip_main_prologue_p (gdbarch)
2768 && SYMBOL_LINKAGE_NAME (sym)
2769 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2770 {
2771 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2772 /* Recalculate the line number (might not be N+1). */
2773 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2774 }
2775
2776 /* If we still don't have a valid source line, try to find the first
2777 PC in the lineinfo table that belongs to the same function. This
2778 happens with COFF debug info, which does not seem to have an
2779 entry in lineinfo table for the code after the prologue which has
2780 no direct relation to source. For example, this was found to be
2781 the case with the DJGPP target using "gcc -gcoff" when the
2782 compiler inserted code after the prologue to make sure the stack
2783 is aligned. */
2784 if (funfirstline && sal.symtab == NULL)
2785 {
2786 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2787 /* Recalculate the line number. */
2788 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2789 }
2790
2791 sal.pc = pc;
2792 sal.pspace = objfile->pspace;
2793
2794 /* Check if we are now inside an inlined function. If we can,
2795 use the call site of the function instead. */
2796 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2797 function_block = NULL;
2798 while (b != NULL)
2799 {
2800 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2801 function_block = b;
2802 else if (BLOCK_FUNCTION (b) != NULL)
2803 break;
2804 b = BLOCK_SUPERBLOCK (b);
2805 }
2806 if (function_block != NULL
2807 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2808 {
2809 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2810 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2811 }
2812
2813 do_cleanups (old_chain);
2814 return sal;
2815}
2816
2817/* If P is of the form "operator[ \t]+..." where `...' is
2818 some legitimate operator text, return a pointer to the
2819 beginning of the substring of the operator text.
2820 Otherwise, return "". */
2821char *
2822operator_chars (char *p, char **end)
2823{
2824 *end = "";
2825 if (strncmp (p, "operator", 8))
2826 return *end;
2827 p += 8;
2828
2829 /* Don't get faked out by `operator' being part of a longer
2830 identifier. */
2831 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2832 return *end;
2833
2834 /* Allow some whitespace between `operator' and the operator symbol. */
2835 while (*p == ' ' || *p == '\t')
2836 p++;
2837
2838 /* Recognize 'operator TYPENAME'. */
2839
2840 if (isalpha (*p) || *p == '_' || *p == '$')
2841 {
2842 char *q = p + 1;
2843 while (isalnum (*q) || *q == '_' || *q == '$')
2844 q++;
2845 *end = q;
2846 return p;
2847 }
2848
2849 while (*p)
2850 switch (*p)
2851 {
2852 case '\\': /* regexp quoting */
2853 if (p[1] == '*')
2854 {
2855 if (p[2] == '=') /* 'operator\*=' */
2856 *end = p + 3;
2857 else /* 'operator\*' */
2858 *end = p + 2;
2859 return p;
2860 }
2861 else if (p[1] == '[')
2862 {
2863 if (p[2] == ']')
2864 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2865 else if (p[2] == '\\' && p[3] == ']')
2866 {
2867 *end = p + 4; /* 'operator\[\]' */
2868 return p;
2869 }
2870 else
2871 error (_("nothing is allowed between '[' and ']'"));
2872 }
2873 else
2874 {
2875 /* Gratuitous qoute: skip it and move on. */
2876 p++;
2877 continue;
2878 }
2879 break;
2880 case '!':
2881 case '=':
2882 case '*':
2883 case '/':
2884 case '%':
2885 case '^':
2886 if (p[1] == '=')
2887 *end = p + 2;
2888 else
2889 *end = p + 1;
2890 return p;
2891 case '<':
2892 case '>':
2893 case '+':
2894 case '-':
2895 case '&':
2896 case '|':
2897 if (p[0] == '-' && p[1] == '>')
2898 {
2899 /* Struct pointer member operator 'operator->'. */
2900 if (p[2] == '*')
2901 {
2902 *end = p + 3; /* 'operator->*' */
2903 return p;
2904 }
2905 else if (p[2] == '\\')
2906 {
2907 *end = p + 4; /* Hopefully 'operator->\*' */
2908 return p;
2909 }
2910 else
2911 {
2912 *end = p + 2; /* 'operator->' */
2913 return p;
2914 }
2915 }
2916 if (p[1] == '=' || p[1] == p[0])
2917 *end = p + 2;
2918 else
2919 *end = p + 1;
2920 return p;
2921 case '~':
2922 case ',':
2923 *end = p + 1;
2924 return p;
2925 case '(':
2926 if (p[1] != ')')
2927 error (_("`operator ()' must be specified without whitespace in `()'"));
2928 *end = p + 2;
2929 return p;
2930 case '?':
2931 if (p[1] != ':')
2932 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2933 *end = p + 2;
2934 return p;
2935 case '[':
2936 if (p[1] != ']')
2937 error (_("`operator []' must be specified without whitespace in `[]'"));
2938 *end = p + 2;
2939 return p;
2940 default:
2941 error (_("`operator %s' not supported"), p);
2942 break;
2943 }
2944
2945 *end = "";
2946 return *end;
2947}
2948\f
2949
2950/* If FILE is not already in the table of files, return zero;
2951 otherwise return non-zero. Optionally add FILE to the table if ADD
2952 is non-zero. If *FIRST is non-zero, forget the old table
2953 contents. */
2954static int
2955filename_seen (const char *file, int add, int *first)
2956{
2957 /* Table of files seen so far. */
2958 static const char **tab = NULL;
2959 /* Allocated size of tab in elements.
2960 Start with one 256-byte block (when using GNU malloc.c).
2961 24 is the malloc overhead when range checking is in effect. */
2962 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2963 /* Current size of tab in elements. */
2964 static int tab_cur_size;
2965 const char **p;
2966
2967 if (*first)
2968 {
2969 if (tab == NULL)
2970 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2971 tab_cur_size = 0;
2972 }
2973
2974 /* Is FILE in tab? */
2975 for (p = tab; p < tab + tab_cur_size; p++)
2976 if (strcmp (*p, file) == 0)
2977 return 1;
2978
2979 /* No; maybe add it to tab. */
2980 if (add)
2981 {
2982 if (tab_cur_size == tab_alloc_size)
2983 {
2984 tab_alloc_size *= 2;
2985 tab = (const char **) xrealloc ((char *) tab,
2986 tab_alloc_size * sizeof (*tab));
2987 }
2988 tab[tab_cur_size++] = file;
2989 }
2990
2991 return 0;
2992}
2993
2994/* Slave routine for sources_info. Force line breaks at ,'s.
2995 NAME is the name to print and *FIRST is nonzero if this is the first
2996 name printed. Set *FIRST to zero. */
2997static void
2998output_source_filename (const char *name, int *first)
2999{
3000 /* Since a single source file can result in several partial symbol
3001 tables, we need to avoid printing it more than once. Note: if
3002 some of the psymtabs are read in and some are not, it gets
3003 printed both under "Source files for which symbols have been
3004 read" and "Source files for which symbols will be read in on
3005 demand". I consider this a reasonable way to deal with the
3006 situation. I'm not sure whether this can also happen for
3007 symtabs; it doesn't hurt to check. */
3008
3009 /* Was NAME already seen? */
3010 if (filename_seen (name, 1, first))
3011 {
3012 /* Yes; don't print it again. */
3013 return;
3014 }
3015 /* No; print it and reset *FIRST. */
3016 if (*first)
3017 {
3018 *first = 0;
3019 }
3020 else
3021 {
3022 printf_filtered (", ");
3023 }
3024
3025 wrap_here ("");
3026 fputs_filtered (name, gdb_stdout);
3027}
3028
3029static void
3030sources_info (char *ignore, int from_tty)
3031{
3032 struct symtab *s;
3033 struct partial_symtab *ps;
3034 struct objfile *objfile;
3035 int first;
3036
3037 if (!have_full_symbols () && !have_partial_symbols ())
3038 {
3039 error (_("No symbol table is loaded. Use the \"file\" command."));
3040 }
3041
3042 printf_filtered ("Source files for which symbols have been read in:\n\n");
3043
3044 first = 1;
3045 ALL_SYMTABS (objfile, s)
3046 {
3047 const char *fullname = symtab_to_fullname (s);
3048 output_source_filename (fullname ? fullname : s->filename, &first);
3049 }
3050 printf_filtered ("\n\n");
3051
3052 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
3053
3054 first = 1;
3055 ALL_PSYMTABS (objfile, ps)
3056 {
3057 if (!ps->readin)
3058 {
3059 const char *fullname = psymtab_to_fullname (ps);
3060 output_source_filename (fullname ? fullname : ps->filename, &first);
3061 }
3062 }
3063 printf_filtered ("\n");
3064}
3065
3066static int
3067file_matches (char *file, char *files[], int nfiles)
3068{
3069 int i;
3070
3071 if (file != NULL && nfiles != 0)
3072 {
3073 for (i = 0; i < nfiles; i++)
3074 {
3075 if (strcmp (files[i], lbasename (file)) == 0)
3076 return 1;
3077 }
3078 }
3079 else if (nfiles == 0)
3080 return 1;
3081 return 0;
3082}
3083
3084/* Free any memory associated with a search. */
3085void
3086free_search_symbols (struct symbol_search *symbols)
3087{
3088 struct symbol_search *p;
3089 struct symbol_search *next;
3090
3091 for (p = symbols; p != NULL; p = next)
3092 {
3093 next = p->next;
3094 xfree (p);
3095 }
3096}
3097
3098static void
3099do_free_search_symbols_cleanup (void *symbols)
3100{
3101 free_search_symbols (symbols);
3102}
3103
3104struct cleanup *
3105make_cleanup_free_search_symbols (struct symbol_search *symbols)
3106{
3107 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3108}
3109
3110/* Helper function for sort_search_symbols and qsort. Can only
3111 sort symbols, not minimal symbols. */
3112static int
3113compare_search_syms (const void *sa, const void *sb)
3114{
3115 struct symbol_search **sym_a = (struct symbol_search **) sa;
3116 struct symbol_search **sym_b = (struct symbol_search **) sb;
3117
3118 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3119 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3120}
3121
3122/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3123 prevtail where it is, but update its next pointer to point to
3124 the first of the sorted symbols. */
3125static struct symbol_search *
3126sort_search_symbols (struct symbol_search *prevtail, int nfound)
3127{
3128 struct symbol_search **symbols, *symp, *old_next;
3129 int i;
3130
3131 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3132 * nfound);
3133 symp = prevtail->next;
3134 for (i = 0; i < nfound; i++)
3135 {
3136 symbols[i] = symp;
3137 symp = symp->next;
3138 }
3139 /* Generally NULL. */
3140 old_next = symp;
3141
3142 qsort (symbols, nfound, sizeof (struct symbol_search *),
3143 compare_search_syms);
3144
3145 symp = prevtail;
3146 for (i = 0; i < nfound; i++)
3147 {
3148 symp->next = symbols[i];
3149 symp = symp->next;
3150 }
3151 symp->next = old_next;
3152
3153 xfree (symbols);
3154 return symp;
3155}
3156
3157/* Search the symbol table for matches to the regular expression REGEXP,
3158 returning the results in *MATCHES.
3159
3160 Only symbols of KIND are searched:
3161 FUNCTIONS_DOMAIN - search all functions
3162 TYPES_DOMAIN - search all type names
3163 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3164 and constants (enums)
3165
3166 free_search_symbols should be called when *MATCHES is no longer needed.
3167
3168 The results are sorted locally; each symtab's global and static blocks are
3169 separately alphabetized.
3170 */
3171void
3172search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3173 struct symbol_search **matches)
3174{
3175 struct symtab *s;
3176 struct partial_symtab *ps;
3177 struct blockvector *bv;
3178 struct block *b;
3179 int i = 0;
3180 struct dict_iterator iter;
3181 struct symbol *sym;
3182 struct partial_symbol **psym;
3183 struct objfile *objfile;
3184 struct minimal_symbol *msymbol;
3185 char *val;
3186 int found_misc = 0;
3187 static enum minimal_symbol_type types[]
3188 =
3189 {mst_data, mst_text, mst_abs, mst_unknown};
3190 static enum minimal_symbol_type types2[]
3191 =
3192 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3193 static enum minimal_symbol_type types3[]
3194 =
3195 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3196 static enum minimal_symbol_type types4[]
3197 =
3198 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3199 enum minimal_symbol_type ourtype;
3200 enum minimal_symbol_type ourtype2;
3201 enum minimal_symbol_type ourtype3;
3202 enum minimal_symbol_type ourtype4;
3203 struct symbol_search *sr;
3204 struct symbol_search *psr;
3205 struct symbol_search *tail;
3206 struct cleanup *old_chain = NULL;
3207
3208 if (kind < VARIABLES_DOMAIN)
3209 error (_("must search on specific domain"));
3210
3211 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3212 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3213 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3214 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3215
3216 sr = *matches = NULL;
3217 tail = NULL;
3218
3219 if (regexp != NULL)
3220 {
3221 /* Make sure spacing is right for C++ operators.
3222 This is just a courtesy to make the matching less sensitive
3223 to how many spaces the user leaves between 'operator'
3224 and <TYPENAME> or <OPERATOR>. */
3225 char *opend;
3226 char *opname = operator_chars (regexp, &opend);
3227 if (*opname)
3228 {
3229 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3230 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3231 {
3232 /* There should 1 space between 'operator' and 'TYPENAME'. */
3233 if (opname[-1] != ' ' || opname[-2] == ' ')
3234 fix = 1;
3235 }
3236 else
3237 {
3238 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3239 if (opname[-1] == ' ')
3240 fix = 0;
3241 }
3242 /* If wrong number of spaces, fix it. */
3243 if (fix >= 0)
3244 {
3245 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3246 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3247 regexp = tmp;
3248 }
3249 }
3250
3251 if (0 != (val = re_comp (regexp)))
3252 error (_("Invalid regexp (%s): %s"), val, regexp);
3253 }
3254
3255 /* Search through the partial symtabs *first* for all symbols
3256 matching the regexp. That way we don't have to reproduce all of
3257 the machinery below. */
3258
3259 ALL_PSYMTABS (objfile, ps)
3260 {
3261 struct partial_symbol **bound, **gbound, **sbound;
3262 int keep_going = 1;
3263
3264 if (ps->readin)
3265 continue;
3266
3267 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3268 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3269 bound = gbound;
3270
3271 /* Go through all of the symbols stored in a partial
3272 symtab in one loop. */
3273 psym = objfile->global_psymbols.list + ps->globals_offset;
3274 while (keep_going)
3275 {
3276 if (psym >= bound)
3277 {
3278 if (bound == gbound && ps->n_static_syms != 0)
3279 {
3280 psym = objfile->static_psymbols.list + ps->statics_offset;
3281 bound = sbound;
3282 }
3283 else
3284 keep_going = 0;
3285 continue;
3286 }
3287 else
3288 {
3289 QUIT;
3290
3291 /* If it would match (logic taken from loop below)
3292 load the file and go on to the next one. We check the
3293 filename here, but that's a bit bogus: we don't know
3294 what file it really comes from until we have full
3295 symtabs. The symbol might be in a header file included by
3296 this psymtab. This only affects Insight. */
3297 if (file_matches (ps->filename, files, nfiles)
3298 && ((regexp == NULL
3299 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3300 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3301 && SYMBOL_CLASS (*psym) != LOC_UNRESOLVED
3302 && SYMBOL_CLASS (*psym) != LOC_BLOCK
3303 && SYMBOL_CLASS (*psym) != LOC_CONST)
3304 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3305 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3306 {
3307 PSYMTAB_TO_SYMTAB (ps);
3308 keep_going = 0;
3309 }
3310 }
3311 psym++;
3312 }
3313 }
3314
3315 /* Here, we search through the minimal symbol tables for functions
3316 and variables that match, and force their symbols to be read.
3317 This is in particular necessary for demangled variable names,
3318 which are no longer put into the partial symbol tables.
3319 The symbol will then be found during the scan of symtabs below.
3320
3321 For functions, find_pc_symtab should succeed if we have debug info
3322 for the function, for variables we have to call lookup_symbol
3323 to determine if the variable has debug info.
3324 If the lookup fails, set found_misc so that we will rescan to print
3325 any matching symbols without debug info.
3326 */
3327
3328 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3329 {
3330 ALL_MSYMBOLS (objfile, msymbol)
3331 {
3332 QUIT;
3333
3334 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3335 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3336 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3337 MSYMBOL_TYPE (msymbol) == ourtype4)
3338 {
3339 if (regexp == NULL
3340 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3341 {
3342 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3343 {
3344 /* FIXME: carlton/2003-02-04: Given that the
3345 semantics of lookup_symbol keeps on changing
3346 slightly, it would be a nice idea if we had a
3347 function lookup_symbol_minsym that found the
3348 symbol associated to a given minimal symbol (if
3349 any). */
3350 if (kind == FUNCTIONS_DOMAIN
3351 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3352 (struct block *) NULL,
3353 VAR_DOMAIN, 0)
3354 == NULL)
3355 found_misc = 1;
3356 }
3357 }
3358 }
3359 }
3360 }
3361
3362 ALL_PRIMARY_SYMTABS (objfile, s)
3363 {
3364 bv = BLOCKVECTOR (s);
3365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3366 {
3367 struct symbol_search *prevtail = tail;
3368 int nfound = 0;
3369 b = BLOCKVECTOR_BLOCK (bv, i);
3370 ALL_BLOCK_SYMBOLS (b, iter, sym)
3371 {
3372 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3373 QUIT;
3374
3375 if (file_matches (real_symtab->filename, files, nfiles)
3376 && ((regexp == NULL
3377 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3378 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3379 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3380 && SYMBOL_CLASS (sym) != LOC_BLOCK
3381 && SYMBOL_CLASS (sym) != LOC_CONST)
3382 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3383 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3384 {
3385 /* match */
3386 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3387 psr->block = i;
3388 psr->symtab = real_symtab;
3389 psr->symbol = sym;
3390 psr->msymbol = NULL;
3391 psr->next = NULL;
3392 if (tail == NULL)
3393 sr = psr;
3394 else
3395 tail->next = psr;
3396 tail = psr;
3397 nfound ++;
3398 }
3399 }
3400 if (nfound > 0)
3401 {
3402 if (prevtail == NULL)
3403 {
3404 struct symbol_search dummy;
3405
3406 dummy.next = sr;
3407 tail = sort_search_symbols (&dummy, nfound);
3408 sr = dummy.next;
3409
3410 old_chain = make_cleanup_free_search_symbols (sr);
3411 }
3412 else
3413 tail = sort_search_symbols (prevtail, nfound);
3414 }
3415 }
3416 }
3417
3418 /* If there are no eyes, avoid all contact. I mean, if there are
3419 no debug symbols, then print directly from the msymbol_vector. */
3420
3421 if (found_misc || kind != FUNCTIONS_DOMAIN)
3422 {
3423 ALL_MSYMBOLS (objfile, msymbol)
3424 {
3425 QUIT;
3426
3427 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3428 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3429 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3430 MSYMBOL_TYPE (msymbol) == ourtype4)
3431 {
3432 if (regexp == NULL
3433 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3434 {
3435 /* Functions: Look up by address. */
3436 if (kind != FUNCTIONS_DOMAIN ||
3437 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3438 {
3439 /* Variables/Absolutes: Look up by name */
3440 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3441 (struct block *) NULL, VAR_DOMAIN, 0)
3442 == NULL)
3443 {
3444 /* match */
3445 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3446 psr->block = i;
3447 psr->msymbol = msymbol;
3448 psr->symtab = NULL;
3449 psr->symbol = NULL;
3450 psr->next = NULL;
3451 if (tail == NULL)
3452 {
3453 sr = psr;
3454 old_chain = make_cleanup_free_search_symbols (sr);
3455 }
3456 else
3457 tail->next = psr;
3458 tail = psr;
3459 }
3460 }
3461 }
3462 }
3463 }
3464 }
3465
3466 *matches = sr;
3467 if (sr != NULL)
3468 discard_cleanups (old_chain);
3469}
3470
3471/* Helper function for symtab_symbol_info, this function uses
3472 the data returned from search_symbols() to print information
3473 regarding the match to gdb_stdout.
3474 */
3475static void
3476print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3477 int block, char *last)
3478{
3479 if (last == NULL || strcmp (last, s->filename) != 0)
3480 {
3481 fputs_filtered ("\nFile ", gdb_stdout);
3482 fputs_filtered (s->filename, gdb_stdout);
3483 fputs_filtered (":\n", gdb_stdout);
3484 }
3485
3486 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3487 printf_filtered ("static ");
3488
3489 /* Typedef that is not a C++ class */
3490 if (kind == TYPES_DOMAIN
3491 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3492 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3493 /* variable, func, or typedef-that-is-c++-class */
3494 else if (kind < TYPES_DOMAIN ||
3495 (kind == TYPES_DOMAIN &&
3496 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3497 {
3498 type_print (SYMBOL_TYPE (sym),
3499 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3500 ? "" : SYMBOL_PRINT_NAME (sym)),
3501 gdb_stdout, 0);
3502
3503 printf_filtered (";\n");
3504 }
3505}
3506
3507/* This help function for symtab_symbol_info() prints information
3508 for non-debugging symbols to gdb_stdout.
3509 */
3510static void
3511print_msymbol_info (struct minimal_symbol *msymbol)
3512{
3513 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3514 char *tmp;
3515
3516 if (gdbarch_addr_bit (gdbarch) <= 32)
3517 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3518 & (CORE_ADDR) 0xffffffff,
3519 8);
3520 else
3521 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3522 16);
3523 printf_filtered ("%s %s\n",
3524 tmp, SYMBOL_PRINT_NAME (msymbol));
3525}
3526
3527/* This is the guts of the commands "info functions", "info types", and
3528 "info variables". It calls search_symbols to find all matches and then
3529 print_[m]symbol_info to print out some useful information about the
3530 matches.
3531 */
3532static void
3533symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3534{
3535 static char *classnames[]
3536 =
3537 {"variable", "function", "type", "method"};
3538 struct symbol_search *symbols;
3539 struct symbol_search *p;
3540 struct cleanup *old_chain;
3541 char *last_filename = NULL;
3542 int first = 1;
3543
3544 /* must make sure that if we're interrupted, symbols gets freed */
3545 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3546 old_chain = make_cleanup_free_search_symbols (symbols);
3547
3548 printf_filtered (regexp
3549 ? "All %ss matching regular expression \"%s\":\n"
3550 : "All defined %ss:\n",
3551 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3552
3553 for (p = symbols; p != NULL; p = p->next)
3554 {
3555 QUIT;
3556
3557 if (p->msymbol != NULL)
3558 {
3559 if (first)
3560 {
3561 printf_filtered ("\nNon-debugging symbols:\n");
3562 first = 0;
3563 }
3564 print_msymbol_info (p->msymbol);
3565 }
3566 else
3567 {
3568 print_symbol_info (kind,
3569 p->symtab,
3570 p->symbol,
3571 p->block,
3572 last_filename);
3573 last_filename = p->symtab->filename;
3574 }
3575 }
3576
3577 do_cleanups (old_chain);
3578}
3579
3580static void
3581variables_info (char *regexp, int from_tty)
3582{
3583 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3584}
3585
3586static void
3587functions_info (char *regexp, int from_tty)
3588{
3589 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3590}
3591
3592
3593static void
3594types_info (char *regexp, int from_tty)
3595{
3596 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3597}
3598
3599/* Breakpoint all functions matching regular expression. */
3600
3601void
3602rbreak_command_wrapper (char *regexp, int from_tty)
3603{
3604 rbreak_command (regexp, from_tty);
3605}
3606
3607static void
3608rbreak_command (char *regexp, int from_tty)
3609{
3610 struct symbol_search *ss;
3611 struct symbol_search *p;
3612 struct cleanup *old_chain;
3613
3614 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3615 old_chain = make_cleanup_free_search_symbols (ss);
3616
3617 for (p = ss; p != NULL; p = p->next)
3618 {
3619 if (p->msymbol == NULL)
3620 {
3621 char *string = alloca (strlen (p->symtab->filename)
3622 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3623 + 4);
3624 strcpy (string, p->symtab->filename);
3625 strcat (string, ":'");
3626 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3627 strcat (string, "'");
3628 break_command (string, from_tty);
3629 print_symbol_info (FUNCTIONS_DOMAIN,
3630 p->symtab,
3631 p->symbol,
3632 p->block,
3633 p->symtab->filename);
3634 }
3635 else
3636 {
3637 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3638 + 3);
3639 strcpy (string, "'");
3640 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3641 strcat (string, "'");
3642
3643 break_command (string, from_tty);
3644 printf_filtered ("<function, no debug info> %s;\n",
3645 SYMBOL_PRINT_NAME (p->msymbol));
3646 }
3647 }
3648
3649 do_cleanups (old_chain);
3650}
3651\f
3652
3653/* Helper routine for make_symbol_completion_list. */
3654
3655static int return_val_size;
3656static int return_val_index;
3657static char **return_val;
3658
3659#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3660 completion_list_add_name \
3661 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3662
3663/* Test to see if the symbol specified by SYMNAME (which is already
3664 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3665 characters. If so, add it to the current completion list. */
3666
3667static void
3668completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3669 char *text, char *word)
3670{
3671 int newsize;
3672 int i;
3673
3674 /* clip symbols that cannot match */
3675
3676 if (strncmp (symname, sym_text, sym_text_len) != 0)
3677 {
3678 return;
3679 }
3680
3681 /* We have a match for a completion, so add SYMNAME to the current list
3682 of matches. Note that the name is moved to freshly malloc'd space. */
3683
3684 {
3685 char *new;
3686 if (word == sym_text)
3687 {
3688 new = xmalloc (strlen (symname) + 5);
3689 strcpy (new, symname);
3690 }
3691 else if (word > sym_text)
3692 {
3693 /* Return some portion of symname. */
3694 new = xmalloc (strlen (symname) + 5);
3695 strcpy (new, symname + (word - sym_text));
3696 }
3697 else
3698 {
3699 /* Return some of SYM_TEXT plus symname. */
3700 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3701 strncpy (new, word, sym_text - word);
3702 new[sym_text - word] = '\0';
3703 strcat (new, symname);
3704 }
3705
3706 if (return_val_index + 3 > return_val_size)
3707 {
3708 newsize = (return_val_size *= 2) * sizeof (char *);
3709 return_val = (char **) xrealloc ((char *) return_val, newsize);
3710 }
3711 return_val[return_val_index++] = new;
3712 return_val[return_val_index] = NULL;
3713 }
3714}
3715
3716/* ObjC: In case we are completing on a selector, look as the msymbol
3717 again and feed all the selectors into the mill. */
3718
3719static void
3720completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3721 int sym_text_len, char *text, char *word)
3722{
3723 static char *tmp = NULL;
3724 static unsigned int tmplen = 0;
3725
3726 char *method, *category, *selector;
3727 char *tmp2 = NULL;
3728
3729 method = SYMBOL_NATURAL_NAME (msymbol);
3730
3731 /* Is it a method? */
3732 if ((method[0] != '-') && (method[0] != '+'))
3733 return;
3734
3735 if (sym_text[0] == '[')
3736 /* Complete on shortened method method. */
3737 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3738
3739 while ((strlen (method) + 1) >= tmplen)
3740 {
3741 if (tmplen == 0)
3742 tmplen = 1024;
3743 else
3744 tmplen *= 2;
3745 tmp = xrealloc (tmp, tmplen);
3746 }
3747 selector = strchr (method, ' ');
3748 if (selector != NULL)
3749 selector++;
3750
3751 category = strchr (method, '(');
3752
3753 if ((category != NULL) && (selector != NULL))
3754 {
3755 memcpy (tmp, method, (category - method));
3756 tmp[category - method] = ' ';
3757 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3758 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3759 if (sym_text[0] == '[')
3760 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3761 }
3762
3763 if (selector != NULL)
3764 {
3765 /* Complete on selector only. */
3766 strcpy (tmp, selector);
3767 tmp2 = strchr (tmp, ']');
3768 if (tmp2 != NULL)
3769 *tmp2 = '\0';
3770
3771 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3772 }
3773}
3774
3775/* Break the non-quoted text based on the characters which are in
3776 symbols. FIXME: This should probably be language-specific. */
3777
3778static char *
3779language_search_unquoted_string (char *text, char *p)
3780{
3781 for (; p > text; --p)
3782 {
3783 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3784 continue;
3785 else
3786 {
3787 if ((current_language->la_language == language_objc))
3788 {
3789 if (p[-1] == ':') /* might be part of a method name */
3790 continue;
3791 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3792 p -= 2; /* beginning of a method name */
3793 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3794 { /* might be part of a method name */
3795 char *t = p;
3796
3797 /* Seeing a ' ' or a '(' is not conclusive evidence
3798 that we are in the middle of a method name. However,
3799 finding "-[" or "+[" should be pretty un-ambiguous.
3800 Unfortunately we have to find it now to decide. */
3801
3802 while (t > text)
3803 if (isalnum (t[-1]) || t[-1] == '_' ||
3804 t[-1] == ' ' || t[-1] == ':' ||
3805 t[-1] == '(' || t[-1] == ')')
3806 --t;
3807 else
3808 break;
3809
3810 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3811 p = t - 2; /* method name detected */
3812 /* else we leave with p unchanged */
3813 }
3814 }
3815 break;
3816 }
3817 }
3818 return p;
3819}
3820
3821static void
3822completion_list_add_fields (struct symbol *sym, char *sym_text,
3823 int sym_text_len, char *text, char *word)
3824{
3825 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3826 {
3827 struct type *t = SYMBOL_TYPE (sym);
3828 enum type_code c = TYPE_CODE (t);
3829 int j;
3830
3831 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3832 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3833 if (TYPE_FIELD_NAME (t, j))
3834 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3835 sym_text, sym_text_len, text, word);
3836 }
3837}
3838
3839/* Type of the user_data argument passed to add_macro_name. The
3840 contents are simply whatever is needed by
3841 completion_list_add_name. */
3842struct add_macro_name_data
3843{
3844 char *sym_text;
3845 int sym_text_len;
3846 char *text;
3847 char *word;
3848};
3849
3850/* A callback used with macro_for_each and macro_for_each_in_scope.
3851 This adds a macro's name to the current completion list. */
3852static void
3853add_macro_name (const char *name, const struct macro_definition *ignore,
3854 void *user_data)
3855{
3856 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3857 completion_list_add_name ((char *) name,
3858 datum->sym_text, datum->sym_text_len,
3859 datum->text, datum->word);
3860}
3861
3862char **
3863default_make_symbol_completion_list (char *text, char *word)
3864{
3865 /* Problem: All of the symbols have to be copied because readline
3866 frees them. I'm not going to worry about this; hopefully there
3867 won't be that many. */
3868
3869 struct symbol *sym;
3870 struct symtab *s;
3871 struct partial_symtab *ps;
3872 struct minimal_symbol *msymbol;
3873 struct objfile *objfile;
3874 struct block *b;
3875 const struct block *surrounding_static_block, *surrounding_global_block;
3876 struct dict_iterator iter;
3877 struct partial_symbol **psym;
3878 /* The symbol we are completing on. Points in same buffer as text. */
3879 char *sym_text;
3880 /* Length of sym_text. */
3881 int sym_text_len;
3882
3883 /* Now look for the symbol we are supposed to complete on. */
3884 {
3885 char *p;
3886 char quote_found;
3887 char *quote_pos = NULL;
3888
3889 /* First see if this is a quoted string. */
3890 quote_found = '\0';
3891 for (p = text; *p != '\0'; ++p)
3892 {
3893 if (quote_found != '\0')
3894 {
3895 if (*p == quote_found)
3896 /* Found close quote. */
3897 quote_found = '\0';
3898 else if (*p == '\\' && p[1] == quote_found)
3899 /* A backslash followed by the quote character
3900 doesn't end the string. */
3901 ++p;
3902 }
3903 else if (*p == '\'' || *p == '"')
3904 {
3905 quote_found = *p;
3906 quote_pos = p;
3907 }
3908 }
3909 if (quote_found == '\'')
3910 /* A string within single quotes can be a symbol, so complete on it. */
3911 sym_text = quote_pos + 1;
3912 else if (quote_found == '"')
3913 /* A double-quoted string is never a symbol, nor does it make sense
3914 to complete it any other way. */
3915 {
3916 return_val = (char **) xmalloc (sizeof (char *));
3917 return_val[0] = NULL;
3918 return return_val;
3919 }
3920 else
3921 {
3922 /* It is not a quoted string. Break it based on the characters
3923 which are in symbols. */
3924 while (p > text)
3925 {
3926 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3927 || p[-1] == ':')
3928 --p;
3929 else
3930 break;
3931 }
3932 sym_text = p;
3933 }
3934 }
3935
3936 sym_text_len = strlen (sym_text);
3937
3938 return_val_size = 100;
3939 return_val_index = 0;
3940 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3941 return_val[0] = NULL;
3942
3943 /* Look through the partial symtabs for all symbols which begin
3944 by matching SYM_TEXT. Add each one that you find to the list. */
3945
3946 ALL_PSYMTABS (objfile, ps)
3947 {
3948 /* If the psymtab's been read in we'll get it when we search
3949 through the blockvector. */
3950 if (ps->readin)
3951 continue;
3952
3953 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3954 psym < (objfile->global_psymbols.list + ps->globals_offset
3955 + ps->n_global_syms);
3956 psym++)
3957 {
3958 /* If interrupted, then quit. */
3959 QUIT;
3960 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3961 }
3962
3963 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3964 psym < (objfile->static_psymbols.list + ps->statics_offset
3965 + ps->n_static_syms);
3966 psym++)
3967 {
3968 QUIT;
3969 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3970 }
3971 }
3972
3973 /* At this point scan through the misc symbol vectors and add each
3974 symbol you find to the list. Eventually we want to ignore
3975 anything that isn't a text symbol (everything else will be
3976 handled by the psymtab code above). */
3977
3978 ALL_MSYMBOLS (objfile, msymbol)
3979 {
3980 QUIT;
3981 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3982
3983 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3984 }
3985
3986 /* Search upwards from currently selected frame (so that we can
3987 complete on local vars). Also catch fields of types defined in
3988 this places which match our text string. Only complete on types
3989 visible from current context. */
3990
3991 b = get_selected_block (0);
3992 surrounding_static_block = block_static_block (b);
3993 surrounding_global_block = block_global_block (b);
3994 if (surrounding_static_block != NULL)
3995 while (b != surrounding_static_block)
3996 {
3997 QUIT;
3998
3999 ALL_BLOCK_SYMBOLS (b, iter, sym)
4000 {
4001 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4002 word);
4003 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4004 word);
4005 }
4006
4007 /* Stop when we encounter an enclosing function. Do not stop for
4008 non-inlined functions - the locals of the enclosing function
4009 are in scope for a nested function. */
4010 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4011 break;
4012 b = BLOCK_SUPERBLOCK (b);
4013 }
4014
4015 /* Add fields from the file's types; symbols will be added below. */
4016
4017 if (surrounding_static_block != NULL)
4018 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4019 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4020
4021 if (surrounding_global_block != NULL)
4022 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4023 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4024
4025 /* Go through the symtabs and check the externs and statics for
4026 symbols which match. */
4027
4028 ALL_PRIMARY_SYMTABS (objfile, s)
4029 {
4030 QUIT;
4031 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4032 ALL_BLOCK_SYMBOLS (b, iter, sym)
4033 {
4034 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4035 }
4036 }
4037
4038 ALL_PRIMARY_SYMTABS (objfile, s)
4039 {
4040 QUIT;
4041 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4042 ALL_BLOCK_SYMBOLS (b, iter, sym)
4043 {
4044 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4045 }
4046 }
4047
4048 if (current_language->la_macro_expansion == macro_expansion_c)
4049 {
4050 struct macro_scope *scope;
4051 struct add_macro_name_data datum;
4052
4053 datum.sym_text = sym_text;
4054 datum.sym_text_len = sym_text_len;
4055 datum.text = text;
4056 datum.word = word;
4057
4058 /* Add any macros visible in the default scope. Note that this
4059 may yield the occasional wrong result, because an expression
4060 might be evaluated in a scope other than the default. For
4061 example, if the user types "break file:line if <TAB>", the
4062 resulting expression will be evaluated at "file:line" -- but
4063 at there does not seem to be a way to detect this at
4064 completion time. */
4065 scope = default_macro_scope ();
4066 if (scope)
4067 {
4068 macro_for_each_in_scope (scope->file, scope->line,
4069 add_macro_name, &datum);
4070 xfree (scope);
4071 }
4072
4073 /* User-defined macros are always visible. */
4074 macro_for_each (macro_user_macros, add_macro_name, &datum);
4075 }
4076
4077 return (return_val);
4078}
4079
4080/* Return a NULL terminated array of all symbols (regardless of class)
4081 which begin by matching TEXT. If the answer is no symbols, then
4082 the return value is an array which contains only a NULL pointer. */
4083
4084char **
4085make_symbol_completion_list (char *text, char *word)
4086{
4087 return current_language->la_make_symbol_completion_list (text, word);
4088}
4089
4090/* Like make_symbol_completion_list, but suitable for use as a
4091 completion function. */
4092
4093char **
4094make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4095 char *text, char *word)
4096{
4097 return make_symbol_completion_list (text, word);
4098}
4099
4100/* Like make_symbol_completion_list, but returns a list of symbols
4101 defined in a source file FILE. */
4102
4103char **
4104make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4105{
4106 struct symbol *sym;
4107 struct symtab *s;
4108 struct block *b;
4109 struct dict_iterator iter;
4110 /* The symbol we are completing on. Points in same buffer as text. */
4111 char *sym_text;
4112 /* Length of sym_text. */
4113 int sym_text_len;
4114
4115 /* Now look for the symbol we are supposed to complete on.
4116 FIXME: This should be language-specific. */
4117 {
4118 char *p;
4119 char quote_found;
4120 char *quote_pos = NULL;
4121
4122 /* First see if this is a quoted string. */
4123 quote_found = '\0';
4124 for (p = text; *p != '\0'; ++p)
4125 {
4126 if (quote_found != '\0')
4127 {
4128 if (*p == quote_found)
4129 /* Found close quote. */
4130 quote_found = '\0';
4131 else if (*p == '\\' && p[1] == quote_found)
4132 /* A backslash followed by the quote character
4133 doesn't end the string. */
4134 ++p;
4135 }
4136 else if (*p == '\'' || *p == '"')
4137 {
4138 quote_found = *p;
4139 quote_pos = p;
4140 }
4141 }
4142 if (quote_found == '\'')
4143 /* A string within single quotes can be a symbol, so complete on it. */
4144 sym_text = quote_pos + 1;
4145 else if (quote_found == '"')
4146 /* A double-quoted string is never a symbol, nor does it make sense
4147 to complete it any other way. */
4148 {
4149 return_val = (char **) xmalloc (sizeof (char *));
4150 return_val[0] = NULL;
4151 return return_val;
4152 }
4153 else
4154 {
4155 /* Not a quoted string. */
4156 sym_text = language_search_unquoted_string (text, p);
4157 }
4158 }
4159
4160 sym_text_len = strlen (sym_text);
4161
4162 return_val_size = 10;
4163 return_val_index = 0;
4164 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4165 return_val[0] = NULL;
4166
4167 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4168 in). */
4169 s = lookup_symtab (srcfile);
4170 if (s == NULL)
4171 {
4172 /* Maybe they typed the file with leading directories, while the
4173 symbol tables record only its basename. */
4174 const char *tail = lbasename (srcfile);
4175
4176 if (tail > srcfile)
4177 s = lookup_symtab (tail);
4178 }
4179
4180 /* If we have no symtab for that file, return an empty list. */
4181 if (s == NULL)
4182 return (return_val);
4183
4184 /* Go through this symtab and check the externs and statics for
4185 symbols which match. */
4186
4187 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4188 ALL_BLOCK_SYMBOLS (b, iter, sym)
4189 {
4190 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4191 }
4192
4193 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4194 ALL_BLOCK_SYMBOLS (b, iter, sym)
4195 {
4196 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4197 }
4198
4199 return (return_val);
4200}
4201
4202/* A helper function for make_source_files_completion_list. It adds
4203 another file name to a list of possible completions, growing the
4204 list as necessary. */
4205
4206static void
4207add_filename_to_list (const char *fname, char *text, char *word,
4208 char ***list, int *list_used, int *list_alloced)
4209{
4210 char *new;
4211 size_t fnlen = strlen (fname);
4212
4213 if (*list_used + 1 >= *list_alloced)
4214 {
4215 *list_alloced *= 2;
4216 *list = (char **) xrealloc ((char *) *list,
4217 *list_alloced * sizeof (char *));
4218 }
4219
4220 if (word == text)
4221 {
4222 /* Return exactly fname. */
4223 new = xmalloc (fnlen + 5);
4224 strcpy (new, fname);
4225 }
4226 else if (word > text)
4227 {
4228 /* Return some portion of fname. */
4229 new = xmalloc (fnlen + 5);
4230 strcpy (new, fname + (word - text));
4231 }
4232 else
4233 {
4234 /* Return some of TEXT plus fname. */
4235 new = xmalloc (fnlen + (text - word) + 5);
4236 strncpy (new, word, text - word);
4237 new[text - word] = '\0';
4238 strcat (new, fname);
4239 }
4240 (*list)[*list_used] = new;
4241 (*list)[++*list_used] = NULL;
4242}
4243
4244static int
4245not_interesting_fname (const char *fname)
4246{
4247 static const char *illegal_aliens[] = {
4248 "_globals_", /* inserted by coff_symtab_read */
4249 NULL
4250 };
4251 int i;
4252
4253 for (i = 0; illegal_aliens[i]; i++)
4254 {
4255 if (strcmp (fname, illegal_aliens[i]) == 0)
4256 return 1;
4257 }
4258 return 0;
4259}
4260
4261/* Return a NULL terminated array of all source files whose names
4262 begin with matching TEXT. The file names are looked up in the
4263 symbol tables of this program. If the answer is no matchess, then
4264 the return value is an array which contains only a NULL pointer. */
4265
4266char **
4267make_source_files_completion_list (char *text, char *word)
4268{
4269 struct symtab *s;
4270 struct partial_symtab *ps;
4271 struct objfile *objfile;
4272 int first = 1;
4273 int list_alloced = 1;
4274 int list_used = 0;
4275 size_t text_len = strlen (text);
4276 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4277 const char *base_name;
4278
4279 list[0] = NULL;
4280
4281 if (!have_full_symbols () && !have_partial_symbols ())
4282 return list;
4283
4284 ALL_SYMTABS (objfile, s)
4285 {
4286 if (not_interesting_fname (s->filename))
4287 continue;
4288 if (!filename_seen (s->filename, 1, &first)
4289#if HAVE_DOS_BASED_FILE_SYSTEM
4290 && strncasecmp (s->filename, text, text_len) == 0
4291#else
4292 && strncmp (s->filename, text, text_len) == 0
4293#endif
4294 )
4295 {
4296 /* This file matches for a completion; add it to the current
4297 list of matches. */
4298 add_filename_to_list (s->filename, text, word,
4299 &list, &list_used, &list_alloced);
4300 }
4301 else
4302 {
4303 /* NOTE: We allow the user to type a base name when the
4304 debug info records leading directories, but not the other
4305 way around. This is what subroutines of breakpoint
4306 command do when they parse file names. */
4307 base_name = lbasename (s->filename);
4308 if (base_name != s->filename
4309 && !filename_seen (base_name, 1, &first)
4310#if HAVE_DOS_BASED_FILE_SYSTEM
4311 && strncasecmp (base_name, text, text_len) == 0
4312#else
4313 && strncmp (base_name, text, text_len) == 0
4314#endif
4315 )
4316 add_filename_to_list (base_name, text, word,
4317 &list, &list_used, &list_alloced);
4318 }
4319 }
4320
4321 ALL_PSYMTABS (objfile, ps)
4322 {
4323 if (not_interesting_fname (ps->filename))
4324 continue;
4325 if (!ps->readin)
4326 {
4327 if (!filename_seen (ps->filename, 1, &first)
4328#if HAVE_DOS_BASED_FILE_SYSTEM
4329 && strncasecmp (ps->filename, text, text_len) == 0
4330#else
4331 && strncmp (ps->filename, text, text_len) == 0
4332#endif
4333 )
4334 {
4335 /* This file matches for a completion; add it to the
4336 current list of matches. */
4337 add_filename_to_list (ps->filename, text, word,
4338 &list, &list_used, &list_alloced);
4339
4340 }
4341 else
4342 {
4343 base_name = lbasename (ps->filename);
4344 if (base_name != ps->filename
4345 && !filename_seen (base_name, 1, &first)
4346#if HAVE_DOS_BASED_FILE_SYSTEM
4347 && strncasecmp (base_name, text, text_len) == 0
4348#else
4349 && strncmp (base_name, text, text_len) == 0
4350#endif
4351 )
4352 add_filename_to_list (base_name, text, word,
4353 &list, &list_used, &list_alloced);
4354 }
4355 }
4356 }
4357
4358 return list;
4359}
4360
4361/* Determine if PC is in the prologue of a function. The prologue is the area
4362 between the first instruction of a function, and the first executable line.
4363 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4364
4365 If non-zero, func_start is where we think the prologue starts, possibly
4366 by previous examination of symbol table information.
4367 */
4368
4369int
4370in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4371{
4372 struct symtab_and_line sal;
4373 CORE_ADDR func_addr, func_end;
4374
4375 /* We have several sources of information we can consult to figure
4376 this out.
4377 - Compilers usually emit line number info that marks the prologue
4378 as its own "source line". So the ending address of that "line"
4379 is the end of the prologue. If available, this is the most
4380 reliable method.
4381 - The minimal symbols and partial symbols, which can usually tell
4382 us the starting and ending addresses of a function.
4383 - If we know the function's start address, we can call the
4384 architecture-defined gdbarch_skip_prologue function to analyze the
4385 instruction stream and guess where the prologue ends.
4386 - Our `func_start' argument; if non-zero, this is the caller's
4387 best guess as to the function's entry point. At the time of
4388 this writing, handle_inferior_event doesn't get this right, so
4389 it should be our last resort. */
4390
4391 /* Consult the partial symbol table, to find which function
4392 the PC is in. */
4393 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4394 {
4395 CORE_ADDR prologue_end;
4396
4397 /* We don't even have minsym information, so fall back to using
4398 func_start, if given. */
4399 if (! func_start)
4400 return 1; /* We *might* be in a prologue. */
4401
4402 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4403
4404 return func_start <= pc && pc < prologue_end;
4405 }
4406
4407 /* If we have line number information for the function, that's
4408 usually pretty reliable. */
4409 sal = find_pc_line (func_addr, 0);
4410
4411 /* Now sal describes the source line at the function's entry point,
4412 which (by convention) is the prologue. The end of that "line",
4413 sal.end, is the end of the prologue.
4414
4415 Note that, for functions whose source code is all on a single
4416 line, the line number information doesn't always end up this way.
4417 So we must verify that our purported end-of-prologue address is
4418 *within* the function, not at its start or end. */
4419 if (sal.line == 0
4420 || sal.end <= func_addr
4421 || func_end <= sal.end)
4422 {
4423 /* We don't have any good line number info, so use the minsym
4424 information, together with the architecture-specific prologue
4425 scanning code. */
4426 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4427
4428 return func_addr <= pc && pc < prologue_end;
4429 }
4430
4431 /* We have line number info, and it looks good. */
4432 return func_addr <= pc && pc < sal.end;
4433}
4434
4435/* Given PC at the function's start address, attempt to find the
4436 prologue end using SAL information. Return zero if the skip fails.
4437
4438 A non-optimized prologue traditionally has one SAL for the function
4439 and a second for the function body. A single line function has
4440 them both pointing at the same line.
4441
4442 An optimized prologue is similar but the prologue may contain
4443 instructions (SALs) from the instruction body. Need to skip those
4444 while not getting into the function body.
4445
4446 The functions end point and an increasing SAL line are used as
4447 indicators of the prologue's endpoint.
4448
4449 This code is based on the function refine_prologue_limit (versions
4450 found in both ia64 and ppc). */
4451
4452CORE_ADDR
4453skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4454{
4455 struct symtab_and_line prologue_sal;
4456 CORE_ADDR start_pc;
4457 CORE_ADDR end_pc;
4458 struct block *bl;
4459
4460 /* Get an initial range for the function. */
4461 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4462 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4463
4464 prologue_sal = find_pc_line (start_pc, 0);
4465 if (prologue_sal.line != 0)
4466 {
4467 /* For langauges other than assembly, treat two consecutive line
4468 entries at the same address as a zero-instruction prologue.
4469 The GNU assembler emits separate line notes for each instruction
4470 in a multi-instruction macro, but compilers generally will not
4471 do this. */
4472 if (prologue_sal.symtab->language != language_asm)
4473 {
4474 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4475 int exact;
4476 int idx = 0;
4477
4478 /* Skip any earlier lines, and any end-of-sequence marker
4479 from a previous function. */
4480 while (linetable->item[idx].pc != prologue_sal.pc
4481 || linetable->item[idx].line == 0)
4482 idx++;
4483
4484 if (idx+1 < linetable->nitems
4485 && linetable->item[idx+1].line != 0
4486 && linetable->item[idx+1].pc == start_pc)
4487 return start_pc;
4488 }
4489
4490 /* If there is only one sal that covers the entire function,
4491 then it is probably a single line function, like
4492 "foo(){}". */
4493 if (prologue_sal.end >= end_pc)
4494 return 0;
4495
4496 while (prologue_sal.end < end_pc)
4497 {
4498 struct symtab_and_line sal;
4499
4500 sal = find_pc_line (prologue_sal.end, 0);
4501 if (sal.line == 0)
4502 break;
4503 /* Assume that a consecutive SAL for the same (or larger)
4504 line mark the prologue -> body transition. */
4505 if (sal.line >= prologue_sal.line)
4506 break;
4507
4508 /* The line number is smaller. Check that it's from the
4509 same function, not something inlined. If it's inlined,
4510 then there is no point comparing the line numbers. */
4511 bl = block_for_pc (prologue_sal.end);
4512 while (bl)
4513 {
4514 if (block_inlined_p (bl))
4515 break;
4516 if (BLOCK_FUNCTION (bl))
4517 {
4518 bl = NULL;
4519 break;
4520 }
4521 bl = BLOCK_SUPERBLOCK (bl);
4522 }
4523 if (bl != NULL)
4524 break;
4525
4526 /* The case in which compiler's optimizer/scheduler has
4527 moved instructions into the prologue. We look ahead in
4528 the function looking for address ranges whose
4529 corresponding line number is less the first one that we
4530 found for the function. This is more conservative then
4531 refine_prologue_limit which scans a large number of SALs
4532 looking for any in the prologue */
4533 prologue_sal = sal;
4534 }
4535 }
4536
4537 if (prologue_sal.end < end_pc)
4538 /* Return the end of this line, or zero if we could not find a
4539 line. */
4540 return prologue_sal.end;
4541 else
4542 /* Don't return END_PC, which is past the end of the function. */
4543 return prologue_sal.pc;
4544}
4545\f
4546struct symtabs_and_lines
4547decode_line_spec (char *string, int funfirstline)
4548{
4549 struct symtabs_and_lines sals;
4550 struct symtab_and_line cursal;
4551
4552 if (string == 0)
4553 error (_("Empty line specification."));
4554
4555 /* We use whatever is set as the current source line. We do not try
4556 and get a default or it will recursively call us! */
4557 cursal = get_current_source_symtab_and_line ();
4558
4559 sals = decode_line_1 (&string, funfirstline,
4560 cursal.symtab, cursal.line,
4561 (char ***) NULL, NULL);
4562
4563 if (*string)
4564 error (_("Junk at end of line specification: %s"), string);
4565 return sals;
4566}
4567
4568/* Track MAIN */
4569static char *name_of_main;
4570
4571void
4572set_main_name (const char *name)
4573{
4574 if (name_of_main != NULL)
4575 {
4576 xfree (name_of_main);
4577 name_of_main = NULL;
4578 }
4579 if (name != NULL)
4580 {
4581 name_of_main = xstrdup (name);
4582 }
4583}
4584
4585/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4586 accordingly. */
4587
4588static void
4589find_main_name (void)
4590{
4591 const char *new_main_name;
4592
4593 /* Try to see if the main procedure is in Ada. */
4594 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4595 be to add a new method in the language vector, and call this
4596 method for each language until one of them returns a non-empty
4597 name. This would allow us to remove this hard-coded call to
4598 an Ada function. It is not clear that this is a better approach
4599 at this point, because all methods need to be written in a way
4600 such that false positives never be returned. For instance, it is
4601 important that a method does not return a wrong name for the main
4602 procedure if the main procedure is actually written in a different
4603 language. It is easy to guaranty this with Ada, since we use a
4604 special symbol generated only when the main in Ada to find the name
4605 of the main procedure. It is difficult however to see how this can
4606 be guarantied for languages such as C, for instance. This suggests
4607 that order of call for these methods becomes important, which means
4608 a more complicated approach. */
4609 new_main_name = ada_main_name ();
4610 if (new_main_name != NULL)
4611 {
4612 set_main_name (new_main_name);
4613 return;
4614 }
4615
4616 new_main_name = pascal_main_name ();
4617 if (new_main_name != NULL)
4618 {
4619 set_main_name (new_main_name);
4620 return;
4621 }
4622
4623 /* The languages above didn't identify the name of the main procedure.
4624 Fallback to "main". */
4625 set_main_name ("main");
4626}
4627
4628char *
4629main_name (void)
4630{
4631 if (name_of_main == NULL)
4632 find_main_name ();
4633
4634 return name_of_main;
4635}
4636
4637/* Handle ``executable_changed'' events for the symtab module. */
4638
4639static void
4640symtab_observer_executable_changed (void)
4641{
4642 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4643 set_main_name (NULL);
4644}
4645
4646/* Helper to expand_line_sal below. Appends new sal to SAL,
4647 initializing it from SYMTAB, LINENO and PC. */
4648static void
4649append_expanded_sal (struct symtabs_and_lines *sal,
4650 struct program_space *pspace,
4651 struct symtab *symtab,
4652 int lineno, CORE_ADDR pc)
4653{
4654 sal->sals = xrealloc (sal->sals,
4655 sizeof (sal->sals[0])
4656 * (sal->nelts + 1));
4657 init_sal (sal->sals + sal->nelts);
4658 sal->sals[sal->nelts].pspace = pspace;
4659 sal->sals[sal->nelts].symtab = symtab;
4660 sal->sals[sal->nelts].section = NULL;
4661 sal->sals[sal->nelts].end = 0;
4662 sal->sals[sal->nelts].line = lineno;
4663 sal->sals[sal->nelts].pc = pc;
4664 ++sal->nelts;
4665}
4666
4667/* Helper to expand_line_sal below. Search in the symtabs for any
4668 linetable entry that exactly matches FULLNAME and LINENO and append
4669 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4670 use FILENAME and LINENO instead. If there is at least one match,
4671 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4672 and BEST_SYMTAB. */
4673
4674static int
4675append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4676 struct symtabs_and_lines *ret,
4677 struct linetable_entry **best_item,
4678 struct symtab **best_symtab)
4679{
4680 struct program_space *pspace;
4681 struct objfile *objfile;
4682 struct symtab *symtab;
4683 int exact = 0;
4684 int j;
4685 *best_item = 0;
4686 *best_symtab = 0;
4687
4688 ALL_PSPACES (pspace)
4689 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4690 {
4691 if (FILENAME_CMP (filename, symtab->filename) == 0)
4692 {
4693 struct linetable *l;
4694 int len;
4695 if (fullname != NULL
4696 && symtab_to_fullname (symtab) != NULL
4697 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4698 continue;
4699 l = LINETABLE (symtab);
4700 if (!l)
4701 continue;
4702 len = l->nitems;
4703
4704 for (j = 0; j < len; j++)
4705 {
4706 struct linetable_entry *item = &(l->item[j]);
4707
4708 if (item->line == lineno)
4709 {
4710 exact = 1;
4711 append_expanded_sal (ret, objfile->pspace,
4712 symtab, lineno, item->pc);
4713 }
4714 else if (!exact && item->line > lineno
4715 && (*best_item == NULL
4716 || item->line < (*best_item)->line))
4717 {
4718 *best_item = item;
4719 *best_symtab = symtab;
4720 }
4721 }
4722 }
4723 }
4724 return exact;
4725}
4726
4727/* Compute a set of all sals in all program spaces that correspond to
4728 same file and line as SAL and return those. If there are several
4729 sals that belong to the same block, only one sal for the block is
4730 included in results. */
4731
4732struct symtabs_and_lines
4733expand_line_sal (struct symtab_and_line sal)
4734{
4735 struct symtabs_and_lines ret, this_line;
4736 int i, j;
4737 struct objfile *objfile;
4738 struct partial_symtab *psymtab;
4739 struct symtab *symtab;
4740 int lineno;
4741 int deleted = 0;
4742 struct block **blocks = NULL;
4743 int *filter;
4744 struct cleanup *old_chain;
4745
4746 ret.nelts = 0;
4747 ret.sals = NULL;
4748
4749 /* Only expand sals that represent file.c:line. */
4750 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4751 {
4752 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4753 ret.sals[0] = sal;
4754 ret.nelts = 1;
4755 return ret;
4756 }
4757 else
4758 {
4759 struct program_space *pspace;
4760 struct linetable_entry *best_item = 0;
4761 struct symtab *best_symtab = 0;
4762 int exact = 0;
4763 char *match_filename;
4764
4765 lineno = sal.line;
4766 match_filename = sal.symtab->filename;
4767
4768 /* We need to find all symtabs for a file which name
4769 is described by sal. We cannot just directly
4770 iterate over symtabs, since a symtab might not be
4771 yet created. We also cannot iterate over psymtabs,
4772 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4773 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4774 corresponding to an included file. Therefore, we do
4775 first pass over psymtabs, reading in those with
4776 the right name. Then, we iterate over symtabs, knowing
4777 that all symtabs we're interested in are loaded. */
4778
4779 old_chain = save_current_program_space ();
4780 ALL_PSPACES (pspace)
4781 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4782 {
4783 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4784 {
4785 set_current_program_space (pspace);
4786
4787 PSYMTAB_TO_SYMTAB (psymtab);
4788 }
4789 }
4790 do_cleanups (old_chain);
4791
4792 /* Now search the symtab for exact matches and append them. If
4793 none is found, append the best_item and all its exact
4794 matches. */
4795 symtab_to_fullname (sal.symtab);
4796 exact = append_exact_match_to_sals (sal.symtab->filename,
4797 sal.symtab->fullname, lineno,
4798 &ret, &best_item, &best_symtab);
4799 if (!exact && best_item)
4800 append_exact_match_to_sals (best_symtab->filename,
4801 best_symtab->fullname, best_item->line,
4802 &ret, &best_item, &best_symtab);
4803 }
4804
4805 /* For optimized code, compiler can scatter one source line accross
4806 disjoint ranges of PC values, even when no duplicate functions
4807 or inline functions are involved. For example, 'for (;;)' inside
4808 non-template non-inline non-ctor-or-dtor function can result
4809 in two PC ranges. In this case, we don't want to set breakpoint
4810 on first PC of each range. To filter such cases, we use containing
4811 blocks -- for each PC found above we see if there are other PCs
4812 that are in the same block. If yes, the other PCs are filtered out. */
4813
4814 old_chain = save_current_program_space ();
4815 filter = alloca (ret.nelts * sizeof (int));
4816 blocks = alloca (ret.nelts * sizeof (struct block *));
4817 for (i = 0; i < ret.nelts; ++i)
4818 {
4819 struct blockvector *bl;
4820 struct block *b;
4821
4822 set_current_program_space (ret.sals[i].pspace);
4823
4824 filter[i] = 1;
4825 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4826
4827 }
4828 do_cleanups (old_chain);
4829
4830 for (i = 0; i < ret.nelts; ++i)
4831 if (blocks[i] != NULL)
4832 for (j = i+1; j < ret.nelts; ++j)
4833 if (blocks[j] == blocks[i])
4834 {
4835 filter[j] = 0;
4836 ++deleted;
4837 break;
4838 }
4839
4840 {
4841 struct symtab_and_line *final =
4842 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4843
4844 for (i = 0, j = 0; i < ret.nelts; ++i)
4845 if (filter[i])
4846 final[j++] = ret.sals[i];
4847
4848 ret.nelts -= deleted;
4849 xfree (ret.sals);
4850 ret.sals = final;
4851 }
4852
4853 return ret;
4854}
4855
4856
4857void
4858_initialize_symtab (void)
4859{
4860 add_info ("variables", variables_info, _("\
4861All global and static variable names, or those matching REGEXP."));
4862 if (dbx_commands)
4863 add_com ("whereis", class_info, variables_info, _("\
4864All global and static variable names, or those matching REGEXP."));
4865
4866 add_info ("functions", functions_info,
4867 _("All function names, or those matching REGEXP."));
4868
4869 /* FIXME: This command has at least the following problems:
4870 1. It prints builtin types (in a very strange and confusing fashion).
4871 2. It doesn't print right, e.g. with
4872 typedef struct foo *FOO
4873 type_print prints "FOO" when we want to make it (in this situation)
4874 print "struct foo *".
4875 I also think "ptype" or "whatis" is more likely to be useful (but if
4876 there is much disagreement "info types" can be fixed). */
4877 add_info ("types", types_info,
4878 _("All type names, or those matching REGEXP."));
4879
4880 add_info ("sources", sources_info,
4881 _("Source files in the program."));
4882
4883 add_com ("rbreak", class_breakpoint, rbreak_command,
4884 _("Set a breakpoint for all functions matching REGEXP."));
4885
4886 if (xdb_commands)
4887 {
4888 add_com ("lf", class_info, sources_info,
4889 _("Source files in the program"));
4890 add_com ("lg", class_info, variables_info, _("\
4891All global and static variable names, or those matching REGEXP."));
4892 }
4893
4894 add_setshow_enum_cmd ("multiple-symbols", no_class,
4895 multiple_symbols_modes, &multiple_symbols_mode,
4896 _("\
4897Set the debugger behavior when more than one symbol are possible matches\n\
4898in an expression."), _("\
4899Show how the debugger handles ambiguities in expressions."), _("\
4900Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4901 NULL, NULL, &setlist, &showlist);
4902
4903 observer_attach_executable_changed (symtab_observer_executable_changed);
4904}