]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/symtab.c
gdb/testsuite: Add is-stmt support to the DWARF compiler
[thirdparty/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "gdb_regex.h"
31#include "expression.h"
32#include "language.h"
33#include "demangle.h"
34#include "inferior.h"
35#include "source.h"
36#include "filenames.h" /* for FILENAME_CMP */
37#include "objc-lang.h"
38#include "d-lang.h"
39#include "ada-lang.h"
40#include "go-lang.h"
41#include "p-lang.h"
42#include "addrmap.h"
43#include "cli/cli-utils.h"
44#include "cli/cli-style.h"
45#include "fnmatch.h"
46#include "hashtab.h"
47#include "typeprint.h"
48
49#include "gdb_obstack.h"
50#include "block.h"
51#include "dictionary.h"
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include <sys/stat.h>
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observable.h"
60#include "solist.h"
61#include "macrotab.h"
62#include "macroscope.h"
63
64#include "parser-defs.h"
65#include "completer.h"
66#include "progspace-and-thread.h"
67#include "gdbsupport/gdb_optional.h"
68#include "filename-seen-cache.h"
69#include "arch-utils.h"
70#include <algorithm>
71#include "gdbsupport/gdb_string_view.h"
72#include "gdbsupport/pathstuff.h"
73#include "gdbsupport/common-utils.h"
74
75/* Forward declarations for local functions. */
76
77static void rbreak_command (const char *, int);
78
79static int find_line_common (struct linetable *, int, int *, int);
80
81static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89static
90struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101/* Type of the data stored on the program space. */
102
103struct main_info
104{
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119};
120
121/* Program space key for finding name and language of "main". */
122
123static const program_space_key<main_info> main_progspace_key;
124
125/* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130#define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132/* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135#define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137/* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139#define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141#define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143/* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146enum symbol_cache_slot_state
147{
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151};
152
153struct symbol_cache_slot
154{
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184};
185
186/* Clear out SLOT. */
187
188static void
189symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190{
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194}
195
196/* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199struct block_symbol_cache
200{
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212};
213
214/* Clear all slots of BSC and free BSC. */
215
216static void
217destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218{
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225}
226
227/* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237struct symbol_cache
238{
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249};
250
251/* Program space key for finding its symbol cache. */
252
253static const program_space_key<symbol_cache> symbol_cache_key;
254
255/* When non-zero, print debugging messages related to symtab creation. */
256unsigned int symtab_create_debug = 0;
257
258/* When non-zero, print debugging messages related to symbol lookup. */
259unsigned int symbol_lookup_debug = 0;
260
261/* The size of the cache is staged here. */
262static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264/* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269/* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272bool basenames_may_differ = false;
273
274/* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278const char multiple_symbols_ask[] = "ask";
279const char multiple_symbols_all[] = "all";
280const char multiple_symbols_cancel[] = "cancel";
281static const char *const multiple_symbols_modes[] =
282{
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287};
288static const char *multiple_symbols_mode = multiple_symbols_all;
289
290/* Read-only accessor to AUTO_SELECT_MODE. */
291
292const char *
293multiple_symbols_select_mode (void)
294{
295 return multiple_symbols_mode;
296}
297
298/* Return the name of a domain_enum. */
299
300const char *
301domain_name (domain_enum e)
302{
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313}
314
315/* Return the name of a search_domain . */
316
317const char *
318search_domain_name (enum search_domain e)
319{
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329}
330
331/* See symtab.h. */
332
333struct symtab *
334compunit_primary_filetab (const struct compunit_symtab *cust)
335{
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340}
341
342/* See symtab.h. */
343
344enum language
345compunit_language (const struct compunit_symtab *cust)
346{
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349/* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352}
353
354/* See symtab.h. */
355
356bool
357minimal_symbol::data_p () const
358{
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364}
365
366/* See symtab.h. */
367
368bool
369minimal_symbol::text_p () const
370{
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377}
378
379/* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384bool
385compare_filenames_for_search (const char *filename, const char *search_name)
386{
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415}
416
417/* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422bool
423compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425{
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449}
450
451/* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465bool
466iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471{
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521}
522
523/* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530void
531iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533{
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564}
565
566/* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569struct symtab *
570lookup_symtab (const char *name)
571{
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581}
582
583\f
584/* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589char *
590gdb_mangle_name (struct type *type, int method_id, int signature_id)
591{
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668}
669
670/* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673void
674symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677{
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693}
694
695/* Return the demangled name of GSYMBOL. */
696
697const char *
698symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699{
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708}
709
710\f
711/* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714void
715general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717{
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736}
737
738/* Functions to initialize a symbol's mangled name. */
739
740/* Objects of this type are stored in the demangled name hash table. */
741struct demangled_name_entry
742{
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749};
750
751/* Hash function for the demangled name hash. */
752
753static hashval_t
754hash_demangled_name_entry (const void *data)
755{
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760}
761
762/* Equality function for the demangled name hash. */
763
764static int
765eq_demangled_name_entry (const void *a, const void *b)
766{
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773}
774
775static void
776free_demangled_name_entry (void *data)
777{
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782}
783
784/* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788static void
789create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790{
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809}
810
811/* See symtab.h */
812
813char *
814symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816{
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844}
845
846/* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857void
858general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862{
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 m_name = obstack_strndup (&per_bfd->storage_obstack,
873 linkage_name.data (),
874 linkage_name.length ());
875 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
876
877 return;
878 }
879
880 if (per_bfd->demangled_names_hash == NULL)
881 create_demangled_names_hash (per_bfd);
882
883 struct demangled_name_entry entry (linkage_name);
884 if (!hash.has_value ())
885 hash = hash_demangled_name_entry (&entry);
886 slot = ((struct demangled_name_entry **)
887 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
888 &entry, *hash, INSERT));
889
890 /* The const_cast is safe because the only reason it is already
891 initialized is if we purposefully set it from a background
892 thread to avoid doing the work here. However, it is still
893 allocated from the heap and needs to be freed by us, just
894 like if we called symbol_find_demangled_name here. If this is
895 nullptr, we call symbol_find_demangled_name below, but we put
896 this smart pointer here to be sure that we don't leak this name. */
897 gdb::unique_xmalloc_ptr<char> demangled_name
898 (const_cast<char *> (language_specific.demangled_name));
899
900 /* If this name is not in the hash table, add it. */
901 if (*slot == NULL
902 /* A C version of the symbol may have already snuck into the table.
903 This happens to, e.g., main.init (__go_init_main). Cope. */
904 || (language () == language_go && (*slot)->demangled == nullptr))
905 {
906 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
907 to true if the string might not be nullterminated. We have to make
908 this copy because demangling needs a nullterminated string. */
909 gdb::string_view linkage_name_copy;
910 if (copy_name)
911 {
912 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
913 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
914 alloc_name[linkage_name.length ()] = '\0';
915
916 linkage_name_copy = gdb::string_view (alloc_name,
917 linkage_name.length ());
918 }
919 else
920 linkage_name_copy = linkage_name;
921
922 if (demangled_name.get () == nullptr)
923 demangled_name.reset
924 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
925
926 /* Suppose we have demangled_name==NULL, copy_name==0, and
927 linkage_name_copy==linkage_name. In this case, we already have the
928 mangled name saved, and we don't have a demangled name. So,
929 you might think we could save a little space by not recording
930 this in the hash table at all.
931
932 It turns out that it is actually important to still save such
933 an entry in the hash table, because storing this name gives
934 us better bcache hit rates for partial symbols. */
935 if (!copy_name)
936 {
937 *slot
938 = ((struct demangled_name_entry *)
939 obstack_alloc (&per_bfd->storage_obstack,
940 sizeof (demangled_name_entry)));
941 new (*slot) demangled_name_entry (linkage_name);
942 }
943 else
944 {
945 /* If we must copy the mangled name, put it directly after
946 the struct so we can have a single allocation. */
947 *slot
948 = ((struct demangled_name_entry *)
949 obstack_alloc (&per_bfd->storage_obstack,
950 sizeof (demangled_name_entry)
951 + linkage_name.length () + 1));
952 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
953 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
954 mangled_ptr [linkage_name.length ()] = '\0';
955 new (*slot) demangled_name_entry
956 (gdb::string_view (mangled_ptr, linkage_name.length ()));
957 }
958 (*slot)->demangled = std::move (demangled_name);
959 (*slot)->language = language ();
960 }
961 else if (language () == language_unknown || language () == language_auto)
962 m_language = (*slot)->language;
963
964 m_name = (*slot)->mangled.data ();
965 symbol_set_demangled_name (this, (*slot)->demangled.get (),
966 &per_bfd->storage_obstack);
967}
968
969/* See symtab.h. */
970
971const char *
972general_symbol_info::natural_name () const
973{
974 switch (language ())
975 {
976 case language_cplus:
977 case language_d:
978 case language_go:
979 case language_objc:
980 case language_fortran:
981 if (symbol_get_demangled_name (this) != NULL)
982 return symbol_get_demangled_name (this);
983 break;
984 case language_ada:
985 return ada_decode_symbol (this);
986 default:
987 break;
988 }
989 return linkage_name ();
990}
991
992/* See symtab.h. */
993
994const char *
995general_symbol_info::demangled_name () const
996{
997 const char *dem_name = NULL;
998
999 switch (language ())
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_objc:
1005 case language_fortran:
1006 dem_name = symbol_get_demangled_name (this);
1007 break;
1008 case language_ada:
1009 dem_name = ada_decode_symbol (this);
1010 break;
1011 default:
1012 break;
1013 }
1014 return dem_name;
1015}
1016
1017/* See symtab.h. */
1018
1019const char *
1020general_symbol_info::search_name () const
1021{
1022 if (language () == language_ada)
1023 return linkage_name ();
1024 else
1025 return natural_name ();
1026}
1027
1028/* See symtab.h. */
1029
1030bool
1031symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1032 const lookup_name_info &name)
1033{
1034 symbol_name_matcher_ftype *name_match
1035 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1036 return name_match (gsymbol->search_name (), name, NULL);
1037}
1038
1039\f
1040
1041/* Return true if the two sections are the same, or if they could
1042 plausibly be copies of each other, one in an original object
1043 file and another in a separated debug file. */
1044
1045bool
1046matching_obj_sections (struct obj_section *obj_first,
1047 struct obj_section *obj_second)
1048{
1049 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1050 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1051
1052 /* If they're the same section, then they match. */
1053 if (first == second)
1054 return true;
1055
1056 /* If either is NULL, give up. */
1057 if (first == NULL || second == NULL)
1058 return false;
1059
1060 /* This doesn't apply to absolute symbols. */
1061 if (first->owner == NULL || second->owner == NULL)
1062 return false;
1063
1064 /* If they're in the same object file, they must be different sections. */
1065 if (first->owner == second->owner)
1066 return false;
1067
1068 /* Check whether the two sections are potentially corresponding. They must
1069 have the same size, address, and name. We can't compare section indexes,
1070 which would be more reliable, because some sections may have been
1071 stripped. */
1072 if (bfd_section_size (first) != bfd_section_size (second))
1073 return false;
1074
1075 /* In-memory addresses may start at a different offset, relativize them. */
1076 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1077 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1078 return false;
1079
1080 if (bfd_section_name (first) == NULL
1081 || bfd_section_name (second) == NULL
1082 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1083 return false;
1084
1085 /* Otherwise check that they are in corresponding objfiles. */
1086
1087 struct objfile *obj = NULL;
1088 for (objfile *objfile : current_program_space->objfiles ())
1089 if (objfile->obfd == first->owner)
1090 {
1091 obj = objfile;
1092 break;
1093 }
1094 gdb_assert (obj != NULL);
1095
1096 if (obj->separate_debug_objfile != NULL
1097 && obj->separate_debug_objfile->obfd == second->owner)
1098 return true;
1099 if (obj->separate_debug_objfile_backlink != NULL
1100 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1101 return true;
1102
1103 return false;
1104}
1105
1106/* See symtab.h. */
1107
1108void
1109expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1110{
1111 struct bound_minimal_symbol msymbol;
1112
1113 /* If we know that this is not a text address, return failure. This is
1114 necessary because we loop based on texthigh and textlow, which do
1115 not include the data ranges. */
1116 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1117 if (msymbol.minsym && msymbol.minsym->data_p ())
1118 return;
1119
1120 for (objfile *objfile : current_program_space->objfiles ())
1121 {
1122 struct compunit_symtab *cust = NULL;
1123
1124 if (objfile->sf)
1125 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1126 pc, section, 0);
1127 if (cust)
1128 return;
1129 }
1130}
1131\f
1132/* Hash function for the symbol cache. */
1133
1134static unsigned int
1135hash_symbol_entry (const struct objfile *objfile_context,
1136 const char *name, domain_enum domain)
1137{
1138 unsigned int hash = (uintptr_t) objfile_context;
1139
1140 if (name != NULL)
1141 hash += htab_hash_string (name);
1142
1143 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1144 to map to the same slot. */
1145 if (domain == STRUCT_DOMAIN)
1146 hash += VAR_DOMAIN * 7;
1147 else
1148 hash += domain * 7;
1149
1150 return hash;
1151}
1152
1153/* Equality function for the symbol cache. */
1154
1155static int
1156eq_symbol_entry (const struct symbol_cache_slot *slot,
1157 const struct objfile *objfile_context,
1158 const char *name, domain_enum domain)
1159{
1160 const char *slot_name;
1161 domain_enum slot_domain;
1162
1163 if (slot->state == SYMBOL_SLOT_UNUSED)
1164 return 0;
1165
1166 if (slot->objfile_context != objfile_context)
1167 return 0;
1168
1169 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1170 {
1171 slot_name = slot->value.not_found.name;
1172 slot_domain = slot->value.not_found.domain;
1173 }
1174 else
1175 {
1176 slot_name = slot->value.found.symbol->search_name ();
1177 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1178 }
1179
1180 /* NULL names match. */
1181 if (slot_name == NULL && name == NULL)
1182 {
1183 /* But there's no point in calling symbol_matches_domain in the
1184 SYMBOL_SLOT_FOUND case. */
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else if (slot_name != NULL && name != NULL)
1189 {
1190 /* It's important that we use the same comparison that was done
1191 the first time through. If the slot records a found symbol,
1192 then this means using the symbol name comparison function of
1193 the symbol's language with symbol->search_name (). See
1194 dictionary.c. It also means using symbol_matches_domain for
1195 found symbols. See block.c.
1196
1197 If the slot records a not-found symbol, then require a precise match.
1198 We could still be lax with whitespace like strcmp_iw though. */
1199
1200 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1201 {
1202 if (strcmp (slot_name, name) != 0)
1203 return 0;
1204 if (slot_domain != domain)
1205 return 0;
1206 }
1207 else
1208 {
1209 struct symbol *sym = slot->value.found.symbol;
1210 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1211
1212 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1213 return 0;
1214
1215 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1216 return 0;
1217 }
1218 }
1219 else
1220 {
1221 /* Only one name is NULL. */
1222 return 0;
1223 }
1224
1225 return 1;
1226}
1227
1228/* Given a cache of size SIZE, return the size of the struct (with variable
1229 length array) in bytes. */
1230
1231static size_t
1232symbol_cache_byte_size (unsigned int size)
1233{
1234 return (sizeof (struct block_symbol_cache)
1235 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1236}
1237
1238/* Resize CACHE. */
1239
1240static void
1241resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1242{
1243 /* If there's no change in size, don't do anything.
1244 All caches have the same size, so we can just compare with the size
1245 of the global symbols cache. */
1246 if ((cache->global_symbols != NULL
1247 && cache->global_symbols->size == new_size)
1248 || (cache->global_symbols == NULL
1249 && new_size == 0))
1250 return;
1251
1252 destroy_block_symbol_cache (cache->global_symbols);
1253 destroy_block_symbol_cache (cache->static_symbols);
1254
1255 if (new_size == 0)
1256 {
1257 cache->global_symbols = NULL;
1258 cache->static_symbols = NULL;
1259 }
1260 else
1261 {
1262 size_t total_size = symbol_cache_byte_size (new_size);
1263
1264 cache->global_symbols
1265 = (struct block_symbol_cache *) xcalloc (1, total_size);
1266 cache->static_symbols
1267 = (struct block_symbol_cache *) xcalloc (1, total_size);
1268 cache->global_symbols->size = new_size;
1269 cache->static_symbols->size = new_size;
1270 }
1271}
1272
1273/* Return the symbol cache of PSPACE.
1274 Create one if it doesn't exist yet. */
1275
1276static struct symbol_cache *
1277get_symbol_cache (struct program_space *pspace)
1278{
1279 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1280
1281 if (cache == NULL)
1282 {
1283 cache = symbol_cache_key.emplace (pspace);
1284 resize_symbol_cache (cache, symbol_cache_size);
1285 }
1286
1287 return cache;
1288}
1289
1290/* Set the size of the symbol cache in all program spaces. */
1291
1292static void
1293set_symbol_cache_size (unsigned int new_size)
1294{
1295 struct program_space *pspace;
1296
1297 ALL_PSPACES (pspace)
1298 {
1299 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1300
1301 /* The pspace could have been created but not have a cache yet. */
1302 if (cache != NULL)
1303 resize_symbol_cache (cache, new_size);
1304 }
1305}
1306
1307/* Called when symbol-cache-size is set. */
1308
1309static void
1310set_symbol_cache_size_handler (const char *args, int from_tty,
1311 struct cmd_list_element *c)
1312{
1313 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1314 {
1315 /* Restore the previous value.
1316 This is the value the "show" command prints. */
1317 new_symbol_cache_size = symbol_cache_size;
1318
1319 error (_("Symbol cache size is too large, max is %u."),
1320 MAX_SYMBOL_CACHE_SIZE);
1321 }
1322 symbol_cache_size = new_symbol_cache_size;
1323
1324 set_symbol_cache_size (symbol_cache_size);
1325}
1326
1327/* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1328 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1329 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1330 failed (and thus this one will too), or NULL if the symbol is not present
1331 in the cache.
1332 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1333 can be used to save the result of a full lookup attempt. */
1334
1335static struct block_symbol
1336symbol_cache_lookup (struct symbol_cache *cache,
1337 struct objfile *objfile_context, enum block_enum block,
1338 const char *name, domain_enum domain,
1339 struct block_symbol_cache **bsc_ptr,
1340 struct symbol_cache_slot **slot_ptr)
1341{
1342 struct block_symbol_cache *bsc;
1343 unsigned int hash;
1344 struct symbol_cache_slot *slot;
1345
1346 if (block == GLOBAL_BLOCK)
1347 bsc = cache->global_symbols;
1348 else
1349 bsc = cache->static_symbols;
1350 if (bsc == NULL)
1351 {
1352 *bsc_ptr = NULL;
1353 *slot_ptr = NULL;
1354 return {};
1355 }
1356
1357 hash = hash_symbol_entry (objfile_context, name, domain);
1358 slot = bsc->symbols + hash % bsc->size;
1359
1360 *bsc_ptr = bsc;
1361 *slot_ptr = slot;
1362
1363 if (eq_symbol_entry (slot, objfile_context, name, domain))
1364 {
1365 if (symbol_lookup_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache hit%s for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 slot->state == SYMBOL_SLOT_NOT_FOUND
1370 ? " (not found)" : "",
1371 name, domain_name (domain));
1372 ++bsc->hits;
1373 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1374 return SYMBOL_LOOKUP_FAILED;
1375 return slot->value.found;
1376 }
1377
1378 /* Symbol is not present in the cache. */
1379
1380 if (symbol_lookup_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s block symbol cache miss for %s, %s\n",
1384 block == GLOBAL_BLOCK ? "Global" : "Static",
1385 name, domain_name (domain));
1386 }
1387 ++bsc->misses;
1388 return {};
1389}
1390
1391/* Mark SYMBOL as found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1394 necessarily the objfile the symbol was found in. */
1395
1396static void
1397symbol_cache_mark_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 struct symbol *symbol,
1401 const struct block *block)
1402{
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.found.symbol = symbol;
1413 slot->value.found.block = block;
1414}
1415
1416/* Mark symbol NAME, DOMAIN as not found in SLOT.
1417 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1418 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1419
1420static void
1421symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1422 struct symbol_cache_slot *slot,
1423 struct objfile *objfile_context,
1424 const char *name, domain_enum domain)
1425{
1426 if (bsc == NULL)
1427 return;
1428 if (slot->state != SYMBOL_SLOT_UNUSED)
1429 {
1430 ++bsc->collisions;
1431 symbol_cache_clear_slot (slot);
1432 }
1433 slot->state = SYMBOL_SLOT_NOT_FOUND;
1434 slot->objfile_context = objfile_context;
1435 slot->value.not_found.name = xstrdup (name);
1436 slot->value.not_found.domain = domain;
1437}
1438
1439/* Flush the symbol cache of PSPACE. */
1440
1441static void
1442symbol_cache_flush (struct program_space *pspace)
1443{
1444 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1445 int pass;
1446
1447 if (cache == NULL)
1448 return;
1449 if (cache->global_symbols == NULL)
1450 {
1451 gdb_assert (symbol_cache_size == 0);
1452 gdb_assert (cache->static_symbols == NULL);
1453 return;
1454 }
1455
1456 /* If the cache is untouched since the last flush, early exit.
1457 This is important for performance during the startup of a program linked
1458 with 100s (or 1000s) of shared libraries. */
1459 if (cache->global_symbols->misses == 0
1460 && cache->static_symbols->misses == 0)
1461 return;
1462
1463 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1464 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 for (i = 0; i < bsc->size; ++i)
1473 symbol_cache_clear_slot (&bsc->symbols[i]);
1474 }
1475
1476 cache->global_symbols->hits = 0;
1477 cache->global_symbols->misses = 0;
1478 cache->global_symbols->collisions = 0;
1479 cache->static_symbols->hits = 0;
1480 cache->static_symbols->misses = 0;
1481 cache->static_symbols->collisions = 0;
1482}
1483
1484/* Dump CACHE. */
1485
1486static void
1487symbol_cache_dump (const struct symbol_cache *cache)
1488{
1489 int pass;
1490
1491 if (cache->global_symbols == NULL)
1492 {
1493 printf_filtered (" <disabled>\n");
1494 return;
1495 }
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 const struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 if (pass == 0)
1504 printf_filtered ("Global symbols:\n");
1505 else
1506 printf_filtered ("Static symbols:\n");
1507
1508 for (i = 0; i < bsc->size; ++i)
1509 {
1510 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1511
1512 QUIT;
1513
1514 switch (slot->state)
1515 {
1516 case SYMBOL_SLOT_UNUSED:
1517 break;
1518 case SYMBOL_SLOT_NOT_FOUND:
1519 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1520 host_address_to_string (slot->objfile_context),
1521 slot->value.not_found.name,
1522 domain_name (slot->value.not_found.domain));
1523 break;
1524 case SYMBOL_SLOT_FOUND:
1525 {
1526 struct symbol *found = slot->value.found.symbol;
1527 const struct objfile *context = slot->objfile_context;
1528
1529 printf_filtered (" [%4u] = %s, %s %s\n", i,
1530 host_address_to_string (context),
1531 found->print_name (),
1532 domain_name (SYMBOL_DOMAIN (found)));
1533 break;
1534 }
1535 }
1536 }
1537 }
1538}
1539
1540/* The "mt print symbol-cache" command. */
1541
1542static void
1543maintenance_print_symbol_cache (const char *args, int from_tty)
1544{
1545 struct program_space *pspace;
1546
1547 ALL_PSPACES (pspace)
1548 {
1549 struct symbol_cache *cache;
1550
1551 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1552 pspace->num,
1553 pspace->symfile_object_file != NULL
1554 ? objfile_name (pspace->symfile_object_file)
1555 : "(no object file)");
1556
1557 /* If the cache hasn't been created yet, avoid creating one. */
1558 cache = symbol_cache_key.get (pspace);
1559 if (cache == NULL)
1560 printf_filtered (" <empty>\n");
1561 else
1562 symbol_cache_dump (cache);
1563 }
1564}
1565
1566/* The "mt flush-symbol-cache" command. */
1567
1568static void
1569maintenance_flush_symbol_cache (const char *args, int from_tty)
1570{
1571 struct program_space *pspace;
1572
1573 ALL_PSPACES (pspace)
1574 {
1575 symbol_cache_flush (pspace);
1576 }
1577}
1578
1579/* Print usage statistics of CACHE. */
1580
1581static void
1582symbol_cache_stats (struct symbol_cache *cache)
1583{
1584 int pass;
1585
1586 if (cache->global_symbols == NULL)
1587 {
1588 printf_filtered (" <disabled>\n");
1589 return;
1590 }
1591
1592 for (pass = 0; pass < 2; ++pass)
1593 {
1594 const struct block_symbol_cache *bsc
1595 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1596
1597 QUIT;
1598
1599 if (pass == 0)
1600 printf_filtered ("Global block cache stats:\n");
1601 else
1602 printf_filtered ("Static block cache stats:\n");
1603
1604 printf_filtered (" size: %u\n", bsc->size);
1605 printf_filtered (" hits: %u\n", bsc->hits);
1606 printf_filtered (" misses: %u\n", bsc->misses);
1607 printf_filtered (" collisions: %u\n", bsc->collisions);
1608 }
1609}
1610
1611/* The "mt print symbol-cache-statistics" command. */
1612
1613static void
1614maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1615{
1616 struct program_space *pspace;
1617
1618 ALL_PSPACES (pspace)
1619 {
1620 struct symbol_cache *cache;
1621
1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1623 pspace->num,
1624 pspace->symfile_object_file != NULL
1625 ? objfile_name (pspace->symfile_object_file)
1626 : "(no object file)");
1627
1628 /* If the cache hasn't been created yet, avoid creating one. */
1629 cache = symbol_cache_key.get (pspace);
1630 if (cache == NULL)
1631 printf_filtered (" empty, no stats available\n");
1632 else
1633 symbol_cache_stats (cache);
1634 }
1635}
1636
1637/* This module's 'new_objfile' observer. */
1638
1639static void
1640symtab_new_objfile_observer (struct objfile *objfile)
1641{
1642 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1643 symbol_cache_flush (current_program_space);
1644}
1645
1646/* This module's 'free_objfile' observer. */
1647
1648static void
1649symtab_free_objfile_observer (struct objfile *objfile)
1650{
1651 symbol_cache_flush (objfile->pspace);
1652}
1653\f
1654/* Debug symbols usually don't have section information. We need to dig that
1655 out of the minimal symbols and stash that in the debug symbol. */
1656
1657void
1658fixup_section (struct general_symbol_info *ginfo,
1659 CORE_ADDR addr, struct objfile *objfile)
1660{
1661 struct minimal_symbol *msym;
1662
1663 /* First, check whether a minimal symbol with the same name exists
1664 and points to the same address. The address check is required
1665 e.g. on PowerPC64, where the minimal symbol for a function will
1666 point to the function descriptor, while the debug symbol will
1667 point to the actual function code. */
1668 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1669 objfile);
1670 if (msym)
1671 ginfo->section = MSYMBOL_SECTION (msym);
1672 else
1673 {
1674 /* Static, function-local variables do appear in the linker
1675 (minimal) symbols, but are frequently given names that won't
1676 be found via lookup_minimal_symbol(). E.g., it has been
1677 observed in frv-uclinux (ELF) executables that a static,
1678 function-local variable named "foo" might appear in the
1679 linker symbols as "foo.6" or "foo.3". Thus, there is no
1680 point in attempting to extend the lookup-by-name mechanism to
1681 handle this case due to the fact that there can be multiple
1682 names.
1683
1684 So, instead, search the section table when lookup by name has
1685 failed. The ``addr'' and ``endaddr'' fields may have already
1686 been relocated. If so, the relocation offset needs to be
1687 subtracted from these values when performing the comparison.
1688 We unconditionally subtract it, because, when no relocation
1689 has been performed, the value will simply be zero.
1690
1691 The address of the symbol whose section we're fixing up HAS
1692 NOT BEEN adjusted (relocated) yet. It can't have been since
1693 the section isn't yet known and knowing the section is
1694 necessary in order to add the correct relocation value. In
1695 other words, we wouldn't even be in this function (attempting
1696 to compute the section) if it were already known.
1697
1698 Note that it is possible to search the minimal symbols
1699 (subtracting the relocation value if necessary) to find the
1700 matching minimal symbol, but this is overkill and much less
1701 efficient. It is not necessary to find the matching minimal
1702 symbol, only its section.
1703
1704 Note that this technique (of doing a section table search)
1705 can fail when unrelocated section addresses overlap. For
1706 this reason, we still attempt a lookup by name prior to doing
1707 a search of the section table. */
1708
1709 struct obj_section *s;
1710 int fallback = -1;
1711
1712 ALL_OBJFILE_OSECTIONS (objfile, s)
1713 {
1714 int idx = s - objfile->sections;
1715 CORE_ADDR offset = objfile->section_offsets[idx];
1716
1717 if (fallback == -1)
1718 fallback = idx;
1719
1720 if (obj_section_addr (s) - offset <= addr
1721 && addr < obj_section_endaddr (s) - offset)
1722 {
1723 ginfo->section = idx;
1724 return;
1725 }
1726 }
1727
1728 /* If we didn't find the section, assume it is in the first
1729 section. If there is no allocated section, then it hardly
1730 matters what we pick, so just pick zero. */
1731 if (fallback == -1)
1732 ginfo->section = 0;
1733 else
1734 ginfo->section = fallback;
1735 }
1736}
1737
1738struct symbol *
1739fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1740{
1741 CORE_ADDR addr;
1742
1743 if (!sym)
1744 return NULL;
1745
1746 if (!SYMBOL_OBJFILE_OWNED (sym))
1747 return sym;
1748
1749 /* We either have an OBJFILE, or we can get at it from the sym's
1750 symtab. Anything else is a bug. */
1751 gdb_assert (objfile || symbol_symtab (sym));
1752
1753 if (objfile == NULL)
1754 objfile = symbol_objfile (sym);
1755
1756 if (SYMBOL_OBJ_SECTION (objfile, sym))
1757 return sym;
1758
1759 /* We should have an objfile by now. */
1760 gdb_assert (objfile);
1761
1762 switch (SYMBOL_CLASS (sym))
1763 {
1764 case LOC_STATIC:
1765 case LOC_LABEL:
1766 addr = SYMBOL_VALUE_ADDRESS (sym);
1767 break;
1768 case LOC_BLOCK:
1769 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1770 break;
1771
1772 default:
1773 /* Nothing else will be listed in the minsyms -- no use looking
1774 it up. */
1775 return sym;
1776 }
1777
1778 fixup_section (sym, addr, objfile);
1779
1780 return sym;
1781}
1782
1783/* See symtab.h. */
1784
1785demangle_for_lookup_info::demangle_for_lookup_info
1786 (const lookup_name_info &lookup_name, language lang)
1787{
1788 demangle_result_storage storage;
1789
1790 if (lookup_name.ignore_parameters () && lang == language_cplus)
1791 {
1792 gdb::unique_xmalloc_ptr<char> without_params
1793 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1794 lookup_name.completion_mode ());
1795
1796 if (without_params != NULL)
1797 {
1798 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = demangle_for_lookup (without_params.get (),
1800 lang, storage);
1801 return;
1802 }
1803 }
1804
1805 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = lookup_name.name ();
1807 else
1808 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1809 lang, storage);
1810}
1811
1812/* See symtab.h. */
1813
1814const lookup_name_info &
1815lookup_name_info::match_any ()
1816{
1817 /* Lookup any symbol that "" would complete. I.e., this matches all
1818 symbol names. */
1819 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1820 true);
1821
1822 return lookup_name;
1823}
1824
1825/* Compute the demangled form of NAME as used by the various symbol
1826 lookup functions. The result can either be the input NAME
1827 directly, or a pointer to a buffer owned by the STORAGE object.
1828
1829 For Ada, this function just returns NAME, unmodified.
1830 Normally, Ada symbol lookups are performed using the encoded name
1831 rather than the demangled name, and so it might seem to make sense
1832 for this function to return an encoded version of NAME.
1833 Unfortunately, we cannot do this, because this function is used in
1834 circumstances where it is not appropriate to try to encode NAME.
1835 For instance, when displaying the frame info, we demangle the name
1836 of each parameter, and then perform a symbol lookup inside our
1837 function using that demangled name. In Ada, certain functions
1838 have internally-generated parameters whose name contain uppercase
1839 characters. Encoding those name would result in those uppercase
1840 characters to become lowercase, and thus cause the symbol lookup
1841 to fail. */
1842
1843const char *
1844demangle_for_lookup (const char *name, enum language lang,
1845 demangle_result_storage &storage)
1846{
1847 /* If we are using C++, D, or Go, demangle the name before doing a
1848 lookup, so we can always binary search. */
1849 if (lang == language_cplus)
1850 {
1851 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854
1855 /* If we were given a non-mangled name, canonicalize it
1856 according to the language (so far only for C++). */
1857 std::string canon = cp_canonicalize_string (name);
1858 if (!canon.empty ())
1859 return storage.swap_string (canon);
1860 }
1861 else if (lang == language_d)
1862 {
1863 char *demangled_name = d_demangle (name, 0);
1864 if (demangled_name != NULL)
1865 return storage.set_malloc_ptr (demangled_name);
1866 }
1867 else if (lang == language_go)
1868 {
1869 char *demangled_name = go_demangle (name, 0);
1870 if (demangled_name != NULL)
1871 return storage.set_malloc_ptr (demangled_name);
1872 }
1873
1874 return name;
1875}
1876
1877/* See symtab.h. */
1878
1879unsigned int
1880search_name_hash (enum language language, const char *search_name)
1881{
1882 return language_def (language)->la_search_name_hash (search_name);
1883}
1884
1885/* See symtab.h.
1886
1887 This function (or rather its subordinates) have a bunch of loops and
1888 it would seem to be attractive to put in some QUIT's (though I'm not really
1889 sure whether it can run long enough to be really important). But there
1890 are a few calls for which it would appear to be bad news to quit
1891 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1892 that there is C++ code below which can error(), but that probably
1893 doesn't affect these calls since they are looking for a known
1894 variable and thus can probably assume it will never hit the C++
1895 code). */
1896
1897struct block_symbol
1898lookup_symbol_in_language (const char *name, const struct block *block,
1899 const domain_enum domain, enum language lang,
1900 struct field_of_this_result *is_a_field_of_this)
1901{
1902 demangle_result_storage storage;
1903 const char *modified_name = demangle_for_lookup (name, lang, storage);
1904
1905 return lookup_symbol_aux (modified_name,
1906 symbol_name_match_type::FULL,
1907 block, domain, lang,
1908 is_a_field_of_this);
1909}
1910
1911/* See symtab.h. */
1912
1913struct block_symbol
1914lookup_symbol (const char *name, const struct block *block,
1915 domain_enum domain,
1916 struct field_of_this_result *is_a_field_of_this)
1917{
1918 return lookup_symbol_in_language (name, block, domain,
1919 current_language->la_language,
1920 is_a_field_of_this);
1921}
1922
1923/* See symtab.h. */
1924
1925struct block_symbol
1926lookup_symbol_search_name (const char *search_name, const struct block *block,
1927 domain_enum domain)
1928{
1929 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1930 block, domain, language_asm, NULL);
1931}
1932
1933/* See symtab.h. */
1934
1935struct block_symbol
1936lookup_language_this (const struct language_defn *lang,
1937 const struct block *block)
1938{
1939 if (lang->la_name_of_this == NULL || block == NULL)
1940 return {};
1941
1942 if (symbol_lookup_debug > 1)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_language_this (%s, %s (objfile %s))",
1948 lang->la_name, host_address_to_string (block),
1949 objfile_debug_name (objfile));
1950 }
1951
1952 while (block)
1953 {
1954 struct symbol *sym;
1955
1956 sym = block_lookup_symbol (block, lang->la_name_of_this,
1957 symbol_name_match_type::SEARCH_NAME,
1958 VAR_DOMAIN);
1959 if (sym != NULL)
1960 {
1961 if (symbol_lookup_debug > 1)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1964 sym->print_name (),
1965 host_address_to_string (sym),
1966 host_address_to_string (block));
1967 }
1968 return (struct block_symbol) {sym, block};
1969 }
1970 if (BLOCK_FUNCTION (block))
1971 break;
1972 block = BLOCK_SUPERBLOCK (block);
1973 }
1974
1975 if (symbol_lookup_debug > 1)
1976 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1977 return {};
1978}
1979
1980/* Given TYPE, a structure/union,
1981 return 1 if the component named NAME from the ultimate target
1982 structure/union is defined, otherwise, return 0. */
1983
1984static int
1985check_field (struct type *type, const char *name,
1986 struct field_of_this_result *is_a_field_of_this)
1987{
1988 int i;
1989
1990 /* The type may be a stub. */
1991 type = check_typedef (type);
1992
1993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1998 {
1999 is_a_field_of_this->type = type;
2000 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2001 return 1;
2002 }
2003 }
2004
2005 /* C++: If it was not found as a data field, then try to return it
2006 as a pointer to a method. */
2007
2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2009 {
2010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2011 {
2012 is_a_field_of_this->type = type;
2013 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2014 return 1;
2015 }
2016 }
2017
2018 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2019 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2020 return 1;
2021
2022 return 0;
2023}
2024
2025/* Behave like lookup_symbol except that NAME is the natural name
2026 (e.g., demangled name) of the symbol that we're looking for. */
2027
2028static struct block_symbol
2029lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2030 const struct block *block,
2031 const domain_enum domain, enum language language,
2032 struct field_of_this_result *is_a_field_of_this)
2033{
2034 struct block_symbol result;
2035 const struct language_defn *langdef;
2036
2037 if (symbol_lookup_debug)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2043 name, host_address_to_string (block),
2044 objfile != NULL
2045 ? objfile_debug_name (objfile) : "NULL",
2046 domain_name (domain), language_str (language));
2047 }
2048
2049 /* Make sure we do something sensible with is_a_field_of_this, since
2050 the callers that set this parameter to some non-null value will
2051 certainly use it later. If we don't set it, the contents of
2052 is_a_field_of_this are undefined. */
2053 if (is_a_field_of_this != NULL)
2054 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2055
2056 /* Search specified block and its superiors. Don't search
2057 STATIC_BLOCK or GLOBAL_BLOCK. */
2058
2059 result = lookup_local_symbol (name, match_type, block, domain, language);
2060 if (result.symbol != NULL)
2061 {
2062 if (symbol_lookup_debug)
2063 {
2064 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2065 host_address_to_string (result.symbol));
2066 }
2067 return result;
2068 }
2069
2070 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2071 check to see if NAME is a field of `this'. */
2072
2073 langdef = language_def (language);
2074
2075 /* Don't do this check if we are searching for a struct. It will
2076 not be found by check_field, but will be found by other
2077 means. */
2078 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2079 {
2080 result = lookup_language_this (langdef, block);
2081
2082 if (result.symbol)
2083 {
2084 struct type *t = result.symbol->type;
2085
2086 /* I'm not really sure that type of this can ever
2087 be typedefed; just be safe. */
2088 t = check_typedef (t);
2089 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2090 t = TYPE_TARGET_TYPE (t);
2091
2092 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2093 && TYPE_CODE (t) != TYPE_CODE_UNION)
2094 error (_("Internal error: `%s' is not an aggregate"),
2095 langdef->la_name_of_this);
2096
2097 if (check_field (t, name, is_a_field_of_this))
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog,
2102 "lookup_symbol_aux (...) = NULL\n");
2103 }
2104 return {};
2105 }
2106 }
2107 }
2108
2109 /* Now do whatever is appropriate for LANGUAGE to look
2110 up static and global variables. */
2111
2112 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2113 if (result.symbol != NULL)
2114 {
2115 if (symbol_lookup_debug)
2116 {
2117 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2118 host_address_to_string (result.symbol));
2119 }
2120 return result;
2121 }
2122
2123 /* Now search all static file-level symbols. Not strictly correct,
2124 but more useful than an error. */
2125
2126 result = lookup_static_symbol (name, domain);
2127 if (symbol_lookup_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2130 result.symbol != NULL
2131 ? host_address_to_string (result.symbol)
2132 : "NULL");
2133 }
2134 return result;
2135}
2136
2137/* Check to see if the symbol is defined in BLOCK or its superiors.
2138 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2139
2140static struct block_symbol
2141lookup_local_symbol (const char *name,
2142 symbol_name_match_type match_type,
2143 const struct block *block,
2144 const domain_enum domain,
2145 enum language language)
2146{
2147 struct symbol *sym;
2148 const struct block *static_block = block_static_block (block);
2149 const char *scope = block_scope (block);
2150
2151 /* Check if either no block is specified or it's a global block. */
2152
2153 if (static_block == NULL)
2154 return {};
2155
2156 while (block != static_block)
2157 {
2158 sym = lookup_symbol_in_block (name, match_type, block, domain);
2159 if (sym != NULL)
2160 return (struct block_symbol) {sym, block};
2161
2162 if (language == language_cplus || language == language_fortran)
2163 {
2164 struct block_symbol blocksym
2165 = cp_lookup_symbol_imports_or_template (scope, name, block,
2166 domain);
2167
2168 if (blocksym.symbol != NULL)
2169 return blocksym;
2170 }
2171
2172 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2173 break;
2174 block = BLOCK_SUPERBLOCK (block);
2175 }
2176
2177 /* We've reached the end of the function without finding a result. */
2178
2179 return {};
2180}
2181
2182/* See symtab.h. */
2183
2184struct objfile *
2185lookup_objfile_from_block (const struct block *block)
2186{
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 for (objfile *obj : current_program_space->objfiles ())
2193 {
2194 for (compunit_symtab *cust : obj->compunits ())
2195 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2196 GLOBAL_BLOCK))
2197 {
2198 if (obj->separate_debug_objfile_backlink)
2199 obj = obj->separate_debug_objfile_backlink;
2200
2201 return obj;
2202 }
2203 }
2204
2205 return NULL;
2206}
2207
2208/* See symtab.h. */
2209
2210struct symbol *
2211lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2212 const struct block *block,
2213 const domain_enum domain)
2214{
2215 struct symbol *sym;
2216
2217 if (symbol_lookup_debug > 1)
2218 {
2219 struct objfile *objfile = lookup_objfile_from_block (block);
2220
2221 fprintf_unfiltered (gdb_stdlog,
2222 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2223 name, host_address_to_string (block),
2224 objfile_debug_name (objfile),
2225 domain_name (domain));
2226 }
2227
2228 sym = block_lookup_symbol (block, name, match_type, domain);
2229 if (sym)
2230 {
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2234 host_address_to_string (sym));
2235 }
2236 return fixup_symbol_section (sym, NULL);
2237 }
2238
2239 if (symbol_lookup_debug > 1)
2240 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2241 return NULL;
2242}
2243
2244/* See symtab.h. */
2245
2246struct block_symbol
2247lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2248 enum block_enum block_index,
2249 const char *name,
2250 const domain_enum domain)
2251{
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2255 {
2256 struct block_symbol result
2257 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2258
2259 if (result.symbol != nullptr)
2260 return result;
2261 }
2262
2263 return {};
2264}
2265
2266/* Check to see if the symbol is defined in one of the OBJFILE's
2267 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2268 depending on whether or not we want to search global symbols or
2269 static symbols. */
2270
2271static struct block_symbol
2272lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2273 enum block_enum block_index, const char *name,
2274 const domain_enum domain)
2275{
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog,
2281 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2282 objfile_debug_name (objfile),
2283 block_index == GLOBAL_BLOCK
2284 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2285 name, domain_name (domain));
2286 }
2287
2288 for (compunit_symtab *cust : objfile->compunits ())
2289 {
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2293
2294 bv = COMPUNIT_BLOCKVECTOR (cust);
2295 block = BLOCKVECTOR_BLOCK (bv, block_index);
2296 result.symbol = block_lookup_symbol_primary (block, name, domain);
2297 result.block = block;
2298 if (result.symbol != NULL)
2299 {
2300 if (symbol_lookup_debug > 1)
2301 {
2302 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2303 host_address_to_string (result.symbol),
2304 host_address_to_string (block));
2305 }
2306 result.symbol = fixup_symbol_section (result.symbol, objfile);
2307 return result;
2308
2309 }
2310 }
2311
2312 if (symbol_lookup_debug > 1)
2313 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2314 return {};
2315}
2316
2317/* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2318 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2319 and all associated separate debug objfiles.
2320
2321 Normally we only look in OBJFILE, and not any separate debug objfiles
2322 because the outer loop will cause them to be searched too. This case is
2323 different. Here we're called from search_symbols where it will only
2324 call us for the objfile that contains a matching minsym. */
2325
2326static struct block_symbol
2327lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2328 const char *linkage_name,
2329 domain_enum domain)
2330{
2331 enum language lang = current_language->la_language;
2332 struct objfile *main_objfile;
2333
2334 demangle_result_storage storage;
2335 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2336
2337 if (objfile->separate_debug_objfile_backlink)
2338 main_objfile = objfile->separate_debug_objfile_backlink;
2339 else
2340 main_objfile = objfile;
2341
2342 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2343 {
2344 struct block_symbol result;
2345
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol == NULL)
2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2350 modified_name, domain);
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return {};
2356}
2357
2358/* A helper function that throws an exception when a symbol was found
2359 in a psymtab but not in a symtab. */
2360
2361static void ATTRIBUTE_NORETURN
2362error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2363 struct compunit_symtab *cust)
2364{
2365 error (_("\
2366Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2367%s may be an inlined function, or may be a template function\n \
2368(if a template, try specifying an instantiation: %s<type>)."),
2369 block_index == GLOBAL_BLOCK ? "global" : "static",
2370 name,
2371 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2372 name, name);
2373}
2374
2375/* A helper function for various lookup routines that interfaces with
2376 the "quick" symbol table functions. */
2377
2378static struct block_symbol
2379lookup_symbol_via_quick_fns (struct objfile *objfile,
2380 enum block_enum block_index, const char *name,
2381 const domain_enum domain)
2382{
2383 struct compunit_symtab *cust;
2384 const struct blockvector *bv;
2385 const struct block *block;
2386 struct block_symbol result;
2387
2388 if (!objfile->sf)
2389 return {};
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2395 objfile_debug_name (objfile),
2396 block_index == GLOBAL_BLOCK
2397 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2398 name, domain_name (domain));
2399 }
2400
2401 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2402 if (cust == NULL)
2403 {
2404 if (symbol_lookup_debug > 1)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "lookup_symbol_via_quick_fns (...) = NULL\n");
2408 }
2409 return {};
2410 }
2411
2412 bv = COMPUNIT_BLOCKVECTOR (cust);
2413 block = BLOCKVECTOR_BLOCK (bv, block_index);
2414 result.symbol = block_lookup_symbol (block, name,
2415 symbol_name_match_type::FULL, domain);
2416 if (result.symbol == NULL)
2417 error_in_psymtab_expansion (block_index, name, cust);
2418
2419 if (symbol_lookup_debug > 1)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
2422 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2423 host_address_to_string (result.symbol),
2424 host_address_to_string (block));
2425 }
2426
2427 result.symbol = fixup_symbol_section (result.symbol, objfile);
2428 result.block = block;
2429 return result;
2430}
2431
2432/* See symtab.h. */
2433
2434struct block_symbol
2435basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2436 const char *name,
2437 const struct block *block,
2438 const domain_enum domain)
2439{
2440 struct block_symbol result;
2441
2442 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2443 the current objfile. Searching the current objfile first is useful
2444 for both matching user expectations as well as performance. */
2445
2446 result = lookup_symbol_in_static_block (name, block, domain);
2447 if (result.symbol != NULL)
2448 return result;
2449
2450 /* If we didn't find a definition for a builtin type in the static block,
2451 search for it now. This is actually the right thing to do and can be
2452 a massive performance win. E.g., when debugging a program with lots of
2453 shared libraries we could search all of them only to find out the
2454 builtin type isn't defined in any of them. This is common for types
2455 like "void". */
2456 if (domain == VAR_DOMAIN)
2457 {
2458 struct gdbarch *gdbarch;
2459
2460 if (block == NULL)
2461 gdbarch = target_gdbarch ();
2462 else
2463 gdbarch = block_gdbarch (block);
2464 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2465 gdbarch, name);
2466 result.block = NULL;
2467 if (result.symbol != NULL)
2468 return result;
2469 }
2470
2471 return lookup_global_symbol (name, block, domain);
2472}
2473
2474/* See symtab.h. */
2475
2476struct block_symbol
2477lookup_symbol_in_static_block (const char *name,
2478 const struct block *block,
2479 const domain_enum domain)
2480{
2481 const struct block *static_block = block_static_block (block);
2482 struct symbol *sym;
2483
2484 if (static_block == NULL)
2485 return {};
2486
2487 if (symbol_lookup_debug)
2488 {
2489 struct objfile *objfile = lookup_objfile_from_block (static_block);
2490
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2493 " %s)\n",
2494 name,
2495 host_address_to_string (block),
2496 objfile_debug_name (objfile),
2497 domain_name (domain));
2498 }
2499
2500 sym = lookup_symbol_in_block (name,
2501 symbol_name_match_type::FULL,
2502 static_block, domain);
2503 if (symbol_lookup_debug)
2504 {
2505 fprintf_unfiltered (gdb_stdlog,
2506 "lookup_symbol_in_static_block (...) = %s\n",
2507 sym != NULL ? host_address_to_string (sym) : "NULL");
2508 }
2509 return (struct block_symbol) {sym, static_block};
2510}
2511
2512/* Perform the standard symbol lookup of NAME in OBJFILE:
2513 1) First search expanded symtabs, and if not found
2514 2) Search the "quick" symtabs (partial or .gdb_index).
2515 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2516
2517static struct block_symbol
2518lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2519 const char *name, const domain_enum domain)
2520{
2521 struct block_symbol result;
2522
2523 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2524
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2529 objfile_debug_name (objfile),
2530 block_index == GLOBAL_BLOCK
2531 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2532 name, domain_name (domain));
2533 }
2534
2535 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2536 name, domain);
2537 if (result.symbol != NULL)
2538 {
2539 if (symbol_lookup_debug)
2540 {
2541 fprintf_unfiltered (gdb_stdlog,
2542 "lookup_symbol_in_objfile (...) = %s"
2543 " (in symtabs)\n",
2544 host_address_to_string (result.symbol));
2545 }
2546 return result;
2547 }
2548
2549 result = lookup_symbol_via_quick_fns (objfile, block_index,
2550 name, domain);
2551 if (symbol_lookup_debug)
2552 {
2553 fprintf_unfiltered (gdb_stdlog,
2554 "lookup_symbol_in_objfile (...) = %s%s\n",
2555 result.symbol != NULL
2556 ? host_address_to_string (result.symbol)
2557 : "NULL",
2558 result.symbol != NULL ? " (via quick fns)" : "");
2559 }
2560 return result;
2561}
2562
2563/* Private data to be used with lookup_symbol_global_iterator_cb. */
2564
2565struct global_or_static_sym_lookup_data
2566{
2567 /* The name of the symbol we are searching for. */
2568 const char *name;
2569
2570 /* The domain to use for our search. */
2571 domain_enum domain;
2572
2573 /* The block index in which to search. */
2574 enum block_enum block_index;
2575
2576 /* The field where the callback should store the symbol if found.
2577 It should be initialized to {NULL, NULL} before the search is started. */
2578 struct block_symbol result;
2579};
2580
2581/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2582 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2583 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2584 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2585
2586static int
2587lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2588 void *cb_data)
2589{
2590 struct global_or_static_sym_lookup_data *data =
2591 (struct global_or_static_sym_lookup_data *) cb_data;
2592
2593 gdb_assert (data->result.symbol == NULL
2594 && data->result.block == NULL);
2595
2596 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2597 data->name, data->domain);
2598
2599 /* If we found a match, tell the iterator to stop. Otherwise,
2600 keep going. */
2601 return (data->result.symbol != NULL);
2602}
2603
2604/* This function contains the common code of lookup_{global,static}_symbol.
2605 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2606 the objfile to start the lookup in. */
2607
2608static struct block_symbol
2609lookup_global_or_static_symbol (const char *name,
2610 enum block_enum block_index,
2611 struct objfile *objfile,
2612 const domain_enum domain)
2613{
2614 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2615 struct block_symbol result;
2616 struct global_or_static_sym_lookup_data lookup_data;
2617 struct block_symbol_cache *bsc;
2618 struct symbol_cache_slot *slot;
2619
2620 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2621 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2622
2623 /* First see if we can find the symbol in the cache.
2624 This works because we use the current objfile to qualify the lookup. */
2625 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2626 &bsc, &slot);
2627 if (result.symbol != NULL)
2628 {
2629 if (SYMBOL_LOOKUP_FAILED_P (result))
2630 return {};
2631 return result;
2632 }
2633
2634 /* Do a global search (of global blocks, heh). */
2635 if (result.symbol == NULL)
2636 {
2637 memset (&lookup_data, 0, sizeof (lookup_data));
2638 lookup_data.name = name;
2639 lookup_data.block_index = block_index;
2640 lookup_data.domain = domain;
2641 gdbarch_iterate_over_objfiles_in_search_order
2642 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2643 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2644 result = lookup_data.result;
2645 }
2646
2647 if (result.symbol != NULL)
2648 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2649 else
2650 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2651
2652 return result;
2653}
2654
2655/* See symtab.h. */
2656
2657struct block_symbol
2658lookup_static_symbol (const char *name, const domain_enum domain)
2659{
2660 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2661}
2662
2663/* See symtab.h. */
2664
2665struct block_symbol
2666lookup_global_symbol (const char *name,
2667 const struct block *block,
2668 const domain_enum domain)
2669{
2670 /* If a block was passed in, we want to search the corresponding
2671 global block first. This yields "more expected" behavior, and is
2672 needed to support 'FILENAME'::VARIABLE lookups. */
2673 const struct block *global_block = block_global_block (block);
2674 if (global_block != nullptr)
2675 {
2676 symbol *sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != nullptr)
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = lookup_objfile_from_block (block);
2684 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2685}
2686
2687bool
2688symbol_matches_domain (enum language symbol_language,
2689 domain_enum symbol_domain,
2690 domain_enum domain)
2691{
2692 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2693 Similarly, any Ada type declaration implicitly defines a typedef. */
2694 if (symbol_language == language_cplus
2695 || symbol_language == language_d
2696 || symbol_language == language_ada
2697 || symbol_language == language_rust)
2698 {
2699 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2700 && symbol_domain == STRUCT_DOMAIN)
2701 return true;
2702 }
2703 /* For all other languages, strict match is required. */
2704 return (symbol_domain == domain);
2705}
2706
2707/* See symtab.h. */
2708
2709struct type *
2710lookup_transparent_type (const char *name)
2711{
2712 return current_language->la_lookup_transparent_type (name);
2713}
2714
2715/* A helper for basic_lookup_transparent_type that interfaces with the
2716 "quick" symbol table functions. */
2717
2718static struct type *
2719basic_lookup_transparent_type_quick (struct objfile *objfile,
2720 enum block_enum block_index,
2721 const char *name)
2722{
2723 struct compunit_symtab *cust;
2724 const struct blockvector *bv;
2725 const struct block *block;
2726 struct symbol *sym;
2727
2728 if (!objfile->sf)
2729 return NULL;
2730 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2731 STRUCT_DOMAIN);
2732 if (cust == NULL)
2733 return NULL;
2734
2735 bv = COMPUNIT_BLOCKVECTOR (cust);
2736 block = BLOCKVECTOR_BLOCK (bv, block_index);
2737 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2738 block_find_non_opaque_type, NULL);
2739 if (sym == NULL)
2740 error_in_psymtab_expansion (block_index, name, cust);
2741 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2742 return SYMBOL_TYPE (sym);
2743}
2744
2745/* Subroutine of basic_lookup_transparent_type to simplify it.
2746 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2747 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2748
2749static struct type *
2750basic_lookup_transparent_type_1 (struct objfile *objfile,
2751 enum block_enum block_index,
2752 const char *name)
2753{
2754 const struct blockvector *bv;
2755 const struct block *block;
2756 const struct symbol *sym;
2757
2758 for (compunit_symtab *cust : objfile->compunits ())
2759 {
2760 bv = COMPUNIT_BLOCKVECTOR (cust);
2761 block = BLOCKVECTOR_BLOCK (bv, block_index);
2762 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2763 block_find_non_opaque_type, NULL);
2764 if (sym != NULL)
2765 {
2766 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2767 return SYMBOL_TYPE (sym);
2768 }
2769 }
2770
2771 return NULL;
2772}
2773
2774/* The standard implementation of lookup_transparent_type. This code
2775 was modeled on lookup_symbol -- the parts not relevant to looking
2776 up types were just left out. In particular it's assumed here that
2777 types are available in STRUCT_DOMAIN and only in file-static or
2778 global blocks. */
2779
2780struct type *
2781basic_lookup_transparent_type (const char *name)
2782{
2783 struct type *t;
2784
2785 /* Now search all the global symbols. Do the symtab's first, then
2786 check the psymtab's. If a psymtab indicates the existence
2787 of the desired name as a global, then do psymtab-to-symtab
2788 conversion on the fly and return the found symbol. */
2789
2790 for (objfile *objfile : current_program_space->objfiles ())
2791 {
2792 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2793 if (t)
2794 return t;
2795 }
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 /* Now search the static file-level symbols.
2805 Not strictly correct, but more useful than an error.
2806 Do the symtab's first, then
2807 check the psymtab's. If a psymtab indicates the existence
2808 of the desired name as a file-level static, then do psymtab-to-symtab
2809 conversion on the fly and return the found symbol. */
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 return (struct type *) 0;
2826}
2827
2828/* See symtab.h. */
2829
2830bool
2831iterate_over_symbols (const struct block *block,
2832 const lookup_name_info &name,
2833 const domain_enum domain,
2834 gdb::function_view<symbol_found_callback_ftype> callback)
2835{
2836 struct block_iterator iter;
2837 struct symbol *sym;
2838
2839 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2840 {
2841 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2842 {
2843 struct block_symbol block_sym = {sym, block};
2844
2845 if (!callback (&block_sym))
2846 return false;
2847 }
2848 }
2849 return true;
2850}
2851
2852/* See symtab.h. */
2853
2854bool
2855iterate_over_symbols_terminated
2856 (const struct block *block,
2857 const lookup_name_info &name,
2858 const domain_enum domain,
2859 gdb::function_view<symbol_found_callback_ftype> callback)
2860{
2861 if (!iterate_over_symbols (block, name, domain, callback))
2862 return false;
2863 struct block_symbol block_sym = {nullptr, block};
2864 return callback (&block_sym);
2865}
2866
2867/* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870struct compunit_symtab *
2871find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872{
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym && msymbol.minsym->data_p ())
2884 return NULL;
2885
2886 /* Search all symtabs for the one whose file contains our address, and which
2887 is the smallest of all the ones containing the address. This is designed
2888 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2889 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2890 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2891
2892 This happens for native ecoff format, where code from included files
2893 gets its own symtab. The symtab for the included file should have
2894 been read in already via the dependency mechanism.
2895 It might be swifter to create several symtabs with the same name
2896 like xcoff does (I'm not sure).
2897
2898 It also happens for objfiles that have their functions reordered.
2899 For these, the symtab we are looking for is not necessarily read in. */
2900
2901 for (objfile *obj_file : current_program_space->objfiles ())
2902 {
2903 for (compunit_symtab *cust : obj_file->compunits ())
2904 {
2905 const struct block *b;
2906 const struct blockvector *bv;
2907
2908 bv = COMPUNIT_BLOCKVECTOR (cust);
2909 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2910
2911 if (BLOCK_START (b) <= pc
2912 && BLOCK_END (b) > pc
2913 && (distance == 0
2914 || BLOCK_END (b) - BLOCK_START (b) < distance))
2915 {
2916 /* For an objfile that has its functions reordered,
2917 find_pc_psymtab will find the proper partial symbol table
2918 and we simply return its corresponding symtab. */
2919 /* In order to better support objfiles that contain both
2920 stabs and coff debugging info, we continue on if a psymtab
2921 can't be found. */
2922 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2923 {
2924 struct compunit_symtab *result;
2925
2926 result
2927 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2928 msymbol,
2929 pc,
2930 section,
2931 0);
2932 if (result != NULL)
2933 return result;
2934 }
2935 if (section != 0)
2936 {
2937 struct block_iterator iter;
2938 struct symbol *sym = NULL;
2939
2940 ALL_BLOCK_SYMBOLS (b, iter, sym)
2941 {
2942 fixup_symbol_section (sym, obj_file);
2943 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2944 sym),
2945 section))
2946 break;
2947 }
2948 if (sym == NULL)
2949 continue; /* No symbol in this symtab matches
2950 section. */
2951 }
2952 distance = BLOCK_END (b) - BLOCK_START (b);
2953 best_cust = cust;
2954 }
2955 }
2956 }
2957
2958 if (best_cust != NULL)
2959 return best_cust;
2960
2961 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2962
2963 for (objfile *objf : current_program_space->objfiles ())
2964 {
2965 struct compunit_symtab *result;
2966
2967 if (!objf->sf)
2968 continue;
2969 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2970 msymbol,
2971 pc, section,
2972 1);
2973 if (result != NULL)
2974 return result;
2975 }
2976
2977 return NULL;
2978}
2979
2980/* Find the compunit symtab associated with PC.
2981 This will read in debug info as necessary.
2982 Backward compatibility, no section. */
2983
2984struct compunit_symtab *
2985find_pc_compunit_symtab (CORE_ADDR pc)
2986{
2987 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2988}
2989
2990/* See symtab.h. */
2991
2992struct symbol *
2993find_symbol_at_address (CORE_ADDR address)
2994{
2995 for (objfile *objfile : current_program_space->objfiles ())
2996 {
2997 if (objfile->sf == NULL
2998 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2999 continue;
3000
3001 struct compunit_symtab *symtab
3002 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3003 if (symtab != NULL)
3004 {
3005 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3006
3007 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3008 {
3009 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3010 struct block_iterator iter;
3011 struct symbol *sym;
3012
3013 ALL_BLOCK_SYMBOLS (b, iter, sym)
3014 {
3015 if (SYMBOL_CLASS (sym) == LOC_STATIC
3016 && SYMBOL_VALUE_ADDRESS (sym) == address)
3017 return sym;
3018 }
3019 }
3020 }
3021 }
3022
3023 return NULL;
3024}
3025
3026\f
3027
3028/* Find the source file and line number for a given PC value and SECTION.
3029 Return a structure containing a symtab pointer, a line number,
3030 and a pc range for the entire source line.
3031 The value's .pc field is NOT the specified pc.
3032 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3033 use the line that ends there. Otherwise, in that case, the line
3034 that begins there is used. */
3035
3036/* The big complication here is that a line may start in one file, and end just
3037 before the start of another file. This usually occurs when you #include
3038 code in the middle of a subroutine. To properly find the end of a line's PC
3039 range, we must search all symtabs associated with this compilation unit, and
3040 find the one whose first PC is closer than that of the next line in this
3041 symtab. */
3042
3043struct symtab_and_line
3044find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3045{
3046 struct compunit_symtab *cust;
3047 struct linetable *l;
3048 int len;
3049 struct linetable_entry *item;
3050 const struct blockvector *bv;
3051 struct bound_minimal_symbol msymbol;
3052
3053 /* Info on best line seen so far, and where it starts, and its file. */
3054
3055 struct linetable_entry *best = NULL;
3056 CORE_ADDR best_end = 0;
3057 struct symtab *best_symtab = 0;
3058
3059 /* Store here the first line number
3060 of a file which contains the line at the smallest pc after PC.
3061 If we don't find a line whose range contains PC,
3062 we will use a line one less than this,
3063 with a range from the start of that file to the first line's pc. */
3064 struct linetable_entry *alt = NULL;
3065
3066 /* Info on best line seen in this file. */
3067
3068 struct linetable_entry *prev;
3069
3070 /* If this pc is not from the current frame,
3071 it is the address of the end of a call instruction.
3072 Quite likely that is the start of the following statement.
3073 But what we want is the statement containing the instruction.
3074 Fudge the pc to make sure we get that. */
3075
3076 /* It's tempting to assume that, if we can't find debugging info for
3077 any function enclosing PC, that we shouldn't search for line
3078 number info, either. However, GAS can emit line number info for
3079 assembly files --- very helpful when debugging hand-written
3080 assembly code. In such a case, we'd have no debug info for the
3081 function, but we would have line info. */
3082
3083 if (notcurrent)
3084 pc -= 1;
3085
3086 /* elz: added this because this function returned the wrong
3087 information if the pc belongs to a stub (import/export)
3088 to call a shlib function. This stub would be anywhere between
3089 two functions in the target, and the line info was erroneously
3090 taken to be the one of the line before the pc. */
3091
3092 /* RT: Further explanation:
3093
3094 * We have stubs (trampolines) inserted between procedures.
3095 *
3096 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3097 * exists in the main image.
3098 *
3099 * In the minimal symbol table, we have a bunch of symbols
3100 * sorted by start address. The stubs are marked as "trampoline",
3101 * the others appear as text. E.g.:
3102 *
3103 * Minimal symbol table for main image
3104 * main: code for main (text symbol)
3105 * shr1: stub (trampoline symbol)
3106 * foo: code for foo (text symbol)
3107 * ...
3108 * Minimal symbol table for "shr1" image:
3109 * ...
3110 * shr1: code for shr1 (text symbol)
3111 * ...
3112 *
3113 * So the code below is trying to detect if we are in the stub
3114 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3115 * and if found, do the symbolization from the real-code address
3116 * rather than the stub address.
3117 *
3118 * Assumptions being made about the minimal symbol table:
3119 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3120 * if we're really in the trampoline.s If we're beyond it (say
3121 * we're in "foo" in the above example), it'll have a closer
3122 * symbol (the "foo" text symbol for example) and will not
3123 * return the trampoline.
3124 * 2. lookup_minimal_symbol_text() will find a real text symbol
3125 * corresponding to the trampoline, and whose address will
3126 * be different than the trampoline address. I put in a sanity
3127 * check for the address being the same, to avoid an
3128 * infinite recursion.
3129 */
3130 msymbol = lookup_minimal_symbol_by_pc (pc);
3131 if (msymbol.minsym != NULL)
3132 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3133 {
3134 struct bound_minimal_symbol mfunsym
3135 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3136 NULL);
3137
3138 if (mfunsym.minsym == NULL)
3139 /* I eliminated this warning since it is coming out
3140 * in the following situation:
3141 * gdb shmain // test program with shared libraries
3142 * (gdb) break shr1 // function in shared lib
3143 * Warning: In stub for ...
3144 * In the above situation, the shared lib is not loaded yet,
3145 * so of course we can't find the real func/line info,
3146 * but the "break" still works, and the warning is annoying.
3147 * So I commented out the warning. RT */
3148 /* warning ("In stub for %s; unable to find real function/line info",
3149 msymbol->linkage_name ()); */
3150 ;
3151 /* fall through */
3152 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3153 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3154 /* Avoid infinite recursion */
3155 /* See above comment about why warning is commented out. */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3158 ;
3159 /* fall through */
3160 else
3161 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3162 }
3163
3164 symtab_and_line val;
3165 val.pspace = current_program_space;
3166
3167 cust = find_pc_sect_compunit_symtab (pc, section);
3168 if (cust == NULL)
3169 {
3170 /* If no symbol information, return previous pc. */
3171 if (notcurrent)
3172 pc++;
3173 val.pc = pc;
3174 return val;
3175 }
3176
3177 bv = COMPUNIT_BLOCKVECTOR (cust);
3178
3179 /* Look at all the symtabs that share this blockvector.
3180 They all have the same apriori range, that we found was right;
3181 but they have different line tables. */
3182
3183 for (symtab *iter_s : compunit_filetabs (cust))
3184 {
3185 /* Find the best line in this symtab. */
3186 l = SYMTAB_LINETABLE (iter_s);
3187 if (!l)
3188 continue;
3189 len = l->nitems;
3190 if (len <= 0)
3191 {
3192 /* I think len can be zero if the symtab lacks line numbers
3193 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3194 I'm not sure which, and maybe it depends on the symbol
3195 reader). */
3196 continue;
3197 }
3198
3199 prev = NULL;
3200 item = l->item; /* Get first line info. */
3201
3202 /* Is this file's first line closer than the first lines of other files?
3203 If so, record this file, and its first line, as best alternate. */
3204 if (item->pc > pc && (!alt || item->pc < alt->pc))
3205 alt = item;
3206
3207 auto pc_compare = [](const CORE_ADDR & comp_pc,
3208 const struct linetable_entry & lhs)->bool
3209 {
3210 return comp_pc < lhs.pc;
3211 };
3212
3213 struct linetable_entry *first = item;
3214 struct linetable_entry *last = item + len;
3215 item = std::upper_bound (first, last, pc, pc_compare);
3216 if (item != first)
3217 {
3218 /* Found a matching item. Skip backwards over any end of
3219 sequence markers. */
3220 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3221 /* Nothing. */;
3222 }
3223
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3228
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3233
3234 if (prev && prev->line && (!best || prev->pc > best->pc))
3235 {
3236 best = prev;
3237 best_symtab = iter_s;
3238
3239 /* Discard BEST_END if it's before the PC of the current BEST. */
3240 if (best_end <= best->pc)
3241 best_end = 0;
3242 }
3243
3244 /* If another line (denoted by ITEM) is in the linetable and its
3245 PC is after BEST's PC, but before the current BEST_END, then
3246 use ITEM's PC as the new best_end. */
3247 if (best && item < last && item->pc > best->pc
3248 && (best_end == 0 || best_end > item->pc))
3249 best_end = item->pc;
3250 }
3251
3252 if (!best_symtab)
3253 {
3254 /* If we didn't find any line number info, just return zeros.
3255 We used to return alt->line - 1 here, but that could be
3256 anywhere; if we don't have line number info for this PC,
3257 don't make some up. */
3258 val.pc = pc;
3259 }
3260 else if (best->line == 0)
3261 {
3262 /* If our best fit is in a range of PC's for which no line
3263 number info is available (line number is zero) then we didn't
3264 find any valid line information. */
3265 val.pc = pc;
3266 }
3267 else
3268 {
3269 val.symtab = best_symtab;
3270 val.line = best->line;
3271 val.pc = best->pc;
3272 if (best_end && (!alt || best_end < alt->pc))
3273 val.end = best_end;
3274 else if (alt)
3275 val.end = alt->pc;
3276 else
3277 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3278 }
3279 val.section = section;
3280 return val;
3281}
3282
3283/* Backward compatibility (no section). */
3284
3285struct symtab_and_line
3286find_pc_line (CORE_ADDR pc, int notcurrent)
3287{
3288 struct obj_section *section;
3289
3290 section = find_pc_overlay (pc);
3291 if (pc_in_unmapped_range (pc, section))
3292 pc = overlay_mapped_address (pc, section);
3293 return find_pc_sect_line (pc, section, notcurrent);
3294}
3295
3296/* See symtab.h. */
3297
3298struct symtab *
3299find_pc_line_symtab (CORE_ADDR pc)
3300{
3301 struct symtab_and_line sal;
3302
3303 /* This always passes zero for NOTCURRENT to find_pc_line.
3304 There are currently no callers that ever pass non-zero. */
3305 sal = find_pc_line (pc, 0);
3306 return sal.symtab;
3307}
3308\f
3309/* Find line number LINE in any symtab whose name is the same as
3310 SYMTAB.
3311
3312 If found, return the symtab that contains the linetable in which it was
3313 found, set *INDEX to the index in the linetable of the best entry
3314 found, and set *EXACT_MATCH to true if the value returned is an
3315 exact match.
3316
3317 If not found, return NULL. */
3318
3319struct symtab *
3320find_line_symtab (struct symtab *sym_tab, int line,
3321 int *index, bool *exact_match)
3322{
3323 int exact = 0; /* Initialized here to avoid a compiler warning. */
3324
3325 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3326 so far seen. */
3327
3328 int best_index;
3329 struct linetable *best_linetable;
3330 struct symtab *best_symtab;
3331
3332 /* First try looking it up in the given symtab. */
3333 best_linetable = SYMTAB_LINETABLE (sym_tab);
3334 best_symtab = sym_tab;
3335 best_index = find_line_common (best_linetable, line, &exact, 0);
3336 if (best_index < 0 || !exact)
3337 {
3338 /* Didn't find an exact match. So we better keep looking for
3339 another symtab with the same name. In the case of xcoff,
3340 multiple csects for one source file (produced by IBM's FORTRAN
3341 compiler) produce multiple symtabs (this is unavoidable
3342 assuming csects can be at arbitrary places in memory and that
3343 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3344
3345 /* BEST is the smallest linenumber > LINE so far seen,
3346 or 0 if none has been seen so far.
3347 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3348 int best;
3349
3350 if (best_index >= 0)
3351 best = best_linetable->item[best_index].line;
3352 else
3353 best = 0;
3354
3355 for (objfile *objfile : current_program_space->objfiles ())
3356 {
3357 if (objfile->sf)
3358 objfile->sf->qf->expand_symtabs_with_fullname
3359 (objfile, symtab_to_fullname (sym_tab));
3360 }
3361
3362 for (objfile *objfile : current_program_space->objfiles ())
3363 {
3364 for (compunit_symtab *cu : objfile->compunits ())
3365 {
3366 for (symtab *s : compunit_filetabs (cu))
3367 {
3368 struct linetable *l;
3369 int ind;
3370
3371 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3372 continue;
3373 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3374 symtab_to_fullname (s)) != 0)
3375 continue;
3376 l = SYMTAB_LINETABLE (s);
3377 ind = find_line_common (l, line, &exact, 0);
3378 if (ind >= 0)
3379 {
3380 if (exact)
3381 {
3382 best_index = ind;
3383 best_linetable = l;
3384 best_symtab = s;
3385 goto done;
3386 }
3387 if (best == 0 || l->item[ind].line < best)
3388 {
3389 best = l->item[ind].line;
3390 best_index = ind;
3391 best_linetable = l;
3392 best_symtab = s;
3393 }
3394 }
3395 }
3396 }
3397 }
3398 }
3399done:
3400 if (best_index < 0)
3401 return NULL;
3402
3403 if (index)
3404 *index = best_index;
3405 if (exact_match)
3406 *exact_match = (exact != 0);
3407
3408 return best_symtab;
3409}
3410
3411/* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3414
3415std::vector<CORE_ADDR>
3416find_pcs_for_symtab_line (struct symtab *symtab, int line,
3417 struct linetable_entry **best_item)
3418{
3419 int start = 0;
3420 std::vector<CORE_ADDR> result;
3421
3422 /* First, collect all the PCs that are at this line. */
3423 while (1)
3424 {
3425 int was_exact;
3426 int idx;
3427
3428 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3429 start);
3430 if (idx < 0)
3431 break;
3432
3433 if (!was_exact)
3434 {
3435 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3436
3437 if (*best_item == NULL || item->line < (*best_item)->line)
3438 *best_item = item;
3439
3440 break;
3441 }
3442
3443 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444 start = idx + 1;
3445 }
3446
3447 return result;
3448}
3449
3450\f
3451/* Set the PC value for a given source file and line number and return true.
3452 Returns false for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3454
3455bool
3456find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457{
3458 struct linetable *l;
3459 int ind;
3460
3461 *pc = 0;
3462 if (symtab == 0)
3463 return false;
3464
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3466 if (symtab != NULL)
3467 {
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3470 return true;
3471 }
3472 else
3473 return false;
3474}
3475
3476/* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns true to indicate success.
3480 Returns false if could not find the specified line. */
3481
3482bool
3483find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 CORE_ADDR *endptr)
3485{
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3488
3489 startaddr = sal.pc;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491 return false;
3492
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3499
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3502 {
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3506 }
3507 else
3508 {
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3511 }
3512 return true;
3513}
3514
3515/* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3519
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3521
3522static int
3523find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3525{
3526 int i;
3527 int len;
3528
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3532
3533 int best_index = -1;
3534 int best = 0;
3535
3536 *exact_match = 0;
3537
3538 if (lineno <= 0)
3539 return -1;
3540 if (l == 0)
3541 return -1;
3542
3543 len = l->nitems;
3544 for (i = start; i < len; i++)
3545 {
3546 struct linetable_entry *item = &(l->item[i]);
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564}
3565
3566bool
3567find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568{
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575}
3576
3577/* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3579
3580static symtab_and_line
3581find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3582 bool funfirstline)
3583{
3584 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3585
3586 if (funfirstline && sal.symtab != NULL
3587 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3588 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3589 {
3590 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3591
3592 sal.pc = func_addr;
3593 if (gdbarch_skip_entrypoint_p (gdbarch))
3594 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3595 return sal;
3596 }
3597
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal.pc < func_addr)
3603 {
3604 sal = {};
3605 sal.pspace = current_program_space;
3606 sal.pc = func_addr;
3607 sal.section = section;
3608 }
3609
3610 if (funfirstline)
3611 skip_prologue_sal (&sal);
3612
3613 return sal;
3614}
3615
3616/* See symtab.h. */
3617
3618symtab_and_line
3619find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3620 bool funfirstline)
3621{
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (func_addr, section, funfirstline);
3624
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3629
3630 return sal;
3631}
3632
3633/* See symtab.h. */
3634
3635symtab_and_line
3636find_function_start_sal (symbol *sym, bool funfirstline)
3637{
3638 fixup_symbol_section (sym, NULL);
3639 symtab_and_line sal
3640 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3641 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3642 funfirstline);
3643 sal.symbol = sym;
3644 return sal;
3645}
3646
3647
3648/* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3651 unaltered. */
3652
3653static CORE_ADDR
3654skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655{
3656 CORE_ADDR func_start, func_end;
3657 struct linetable *l;
3658 int i;
3659
3660 /* Give up if this symbol has no lineinfo table. */
3661 l = SYMTAB_LINETABLE (symtab);
3662 if (l == NULL)
3663 return func_addr;
3664
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668 return func_addr;
3669
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i = 0; i < l->nitems; i++)
3675 {
3676 struct linetable_entry *item = &(l->item[i]);
3677
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 return item->pc;
3683 }
3684
3685 return func_addr;
3686}
3687
3688/* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified then the SAL can still be
3691 updated, unless the language for SAL is assembler, in which case the SAL
3692 will be left unchanged.
3693 If SAL is already past the prologue, then do nothing. */
3694
3695void
3696skip_prologue_sal (struct symtab_and_line *sal)
3697{
3698 struct symbol *sym;
3699 struct symtab_and_line start_sal;
3700 CORE_ADDR pc, saved_pc;
3701 struct obj_section *section;
3702 const char *name;
3703 struct objfile *objfile;
3704 struct gdbarch *gdbarch;
3705 const struct block *b, *function_block;
3706 int force_skip, skip;
3707
3708 /* Do not change the SAL if PC was specified explicitly. */
3709 if (sal->explicit_pc)
3710 return;
3711
3712 /* In assembly code, if the user asks for a specific line then we should
3713 not adjust the SAL. The user already has instruction level
3714 visibility in this case, so selecting a line other than one requested
3715 is likely to be the wrong choice. */
3716 if (sal->symtab != nullptr
3717 && sal->explicit_line
3718 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3719 return;
3720
3721 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3722
3723 switch_to_program_space_and_thread (sal->pspace);
3724
3725 sym = find_pc_sect_function (sal->pc, sal->section);
3726 if (sym != NULL)
3727 {
3728 fixup_symbol_section (sym, NULL);
3729
3730 objfile = symbol_objfile (sym);
3731 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3732 section = SYMBOL_OBJ_SECTION (objfile, sym);
3733 name = sym->linkage_name ();
3734 }
3735 else
3736 {
3737 struct bound_minimal_symbol msymbol
3738 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3739
3740 if (msymbol.minsym == NULL)
3741 return;
3742
3743 objfile = msymbol.objfile;
3744 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3745 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3746 name = msymbol.minsym->linkage_name ();
3747 }
3748
3749 gdbarch = get_objfile_arch (objfile);
3750
3751 /* Process the prologue in two passes. In the first pass try to skip the
3752 prologue (SKIP is true) and verify there is a real need for it (indicated
3753 by FORCE_SKIP). If no such reason was found run a second pass where the
3754 prologue is not skipped (SKIP is false). */
3755
3756 skip = 1;
3757 force_skip = 1;
3758
3759 /* Be conservative - allow direct PC (without skipping prologue) only if we
3760 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3761 have to be set by the caller so we use SYM instead. */
3762 if (sym != NULL
3763 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3764 force_skip = 0;
3765
3766 saved_pc = pc;
3767 do
3768 {
3769 pc = saved_pc;
3770
3771 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3772 so that gdbarch_skip_prologue has something unique to work on. */
3773 if (section_is_overlay (section) && !section_is_mapped (section))
3774 pc = overlay_unmapped_address (pc, section);
3775
3776 /* Skip "first line" of function (which is actually its prologue). */
3777 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3778 if (gdbarch_skip_entrypoint_p (gdbarch))
3779 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3780 if (skip)
3781 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3782
3783 /* For overlays, map pc back into its mapped VMA range. */
3784 pc = overlay_mapped_address (pc, section);
3785
3786 /* Calculate line number. */
3787 start_sal = find_pc_sect_line (pc, section, 0);
3788
3789 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3790 line is still part of the same function. */
3791 if (skip && start_sal.pc != pc
3792 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3793 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3794 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3795 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3796 {
3797 /* First pc of next line */
3798 pc = start_sal.end;
3799 /* Recalculate the line number (might not be N+1). */
3800 start_sal = find_pc_sect_line (pc, section, 0);
3801 }
3802
3803 /* On targets with executable formats that don't have a concept of
3804 constructors (ELF with .init has, PE doesn't), gcc emits a call
3805 to `__main' in `main' between the prologue and before user
3806 code. */
3807 if (gdbarch_skip_main_prologue_p (gdbarch)
3808 && name && strcmp_iw (name, "main") == 0)
3809 {
3810 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3811 /* Recalculate the line number (might not be N+1). */
3812 start_sal = find_pc_sect_line (pc, section, 0);
3813 force_skip = 1;
3814 }
3815 }
3816 while (!force_skip && skip--);
3817
3818 /* If we still don't have a valid source line, try to find the first
3819 PC in the lineinfo table that belongs to the same function. This
3820 happens with COFF debug info, which does not seem to have an
3821 entry in lineinfo table for the code after the prologue which has
3822 no direct relation to source. For example, this was found to be
3823 the case with the DJGPP target using "gcc -gcoff" when the
3824 compiler inserted code after the prologue to make sure the stack
3825 is aligned. */
3826 if (!force_skip && sym && start_sal.symtab == NULL)
3827 {
3828 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3829 /* Recalculate the line number. */
3830 start_sal = find_pc_sect_line (pc, section, 0);
3831 }
3832
3833 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3834 forward SAL to the end of the prologue. */
3835 if (sal->pc >= pc)
3836 return;
3837
3838 sal->pc = pc;
3839 sal->section = section;
3840 sal->symtab = start_sal.symtab;
3841 sal->line = start_sal.line;
3842 sal->end = start_sal.end;
3843
3844 /* Check if we are now inside an inlined function. If we can,
3845 use the call site of the function instead. */
3846 b = block_for_pc_sect (sal->pc, sal->section);
3847 function_block = NULL;
3848 while (b != NULL)
3849 {
3850 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3851 function_block = b;
3852 else if (BLOCK_FUNCTION (b) != NULL)
3853 break;
3854 b = BLOCK_SUPERBLOCK (b);
3855 }
3856 if (function_block != NULL
3857 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3858 {
3859 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3860 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3861 }
3862}
3863
3864/* Given PC at the function's start address, attempt to find the
3865 prologue end using SAL information. Return zero if the skip fails.
3866
3867 A non-optimized prologue traditionally has one SAL for the function
3868 and a second for the function body. A single line function has
3869 them both pointing at the same line.
3870
3871 An optimized prologue is similar but the prologue may contain
3872 instructions (SALs) from the instruction body. Need to skip those
3873 while not getting into the function body.
3874
3875 The functions end point and an increasing SAL line are used as
3876 indicators of the prologue's endpoint.
3877
3878 This code is based on the function refine_prologue_limit
3879 (found in ia64). */
3880
3881CORE_ADDR
3882skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3883{
3884 struct symtab_and_line prologue_sal;
3885 CORE_ADDR start_pc;
3886 CORE_ADDR end_pc;
3887 const struct block *bl;
3888
3889 /* Get an initial range for the function. */
3890 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3891 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3892
3893 prologue_sal = find_pc_line (start_pc, 0);
3894 if (prologue_sal.line != 0)
3895 {
3896 /* For languages other than assembly, treat two consecutive line
3897 entries at the same address as a zero-instruction prologue.
3898 The GNU assembler emits separate line notes for each instruction
3899 in a multi-instruction macro, but compilers generally will not
3900 do this. */
3901 if (prologue_sal.symtab->language != language_asm)
3902 {
3903 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3904 int idx = 0;
3905
3906 /* Skip any earlier lines, and any end-of-sequence marker
3907 from a previous function. */
3908 while (linetable->item[idx].pc != prologue_sal.pc
3909 || linetable->item[idx].line == 0)
3910 idx++;
3911
3912 if (idx+1 < linetable->nitems
3913 && linetable->item[idx+1].line != 0
3914 && linetable->item[idx+1].pc == start_pc)
3915 return start_pc;
3916 }
3917
3918 /* If there is only one sal that covers the entire function,
3919 then it is probably a single line function, like
3920 "foo(){}". */
3921 if (prologue_sal.end >= end_pc)
3922 return 0;
3923
3924 while (prologue_sal.end < end_pc)
3925 {
3926 struct symtab_and_line sal;
3927
3928 sal = find_pc_line (prologue_sal.end, 0);
3929 if (sal.line == 0)
3930 break;
3931 /* Assume that a consecutive SAL for the same (or larger)
3932 line mark the prologue -> body transition. */
3933 if (sal.line >= prologue_sal.line)
3934 break;
3935 /* Likewise if we are in a different symtab altogether
3936 (e.g. within a file included via #include).  */
3937 if (sal.symtab != prologue_sal.symtab)
3938 break;
3939
3940 /* The line number is smaller. Check that it's from the
3941 same function, not something inlined. If it's inlined,
3942 then there is no point comparing the line numbers. */
3943 bl = block_for_pc (prologue_sal.end);
3944 while (bl)
3945 {
3946 if (block_inlined_p (bl))
3947 break;
3948 if (BLOCK_FUNCTION (bl))
3949 {
3950 bl = NULL;
3951 break;
3952 }
3953 bl = BLOCK_SUPERBLOCK (bl);
3954 }
3955 if (bl != NULL)
3956 break;
3957
3958 /* The case in which compiler's optimizer/scheduler has
3959 moved instructions into the prologue. We look ahead in
3960 the function looking for address ranges whose
3961 corresponding line number is less the first one that we
3962 found for the function. This is more conservative then
3963 refine_prologue_limit which scans a large number of SALs
3964 looking for any in the prologue. */
3965 prologue_sal = sal;
3966 }
3967 }
3968
3969 if (prologue_sal.end < end_pc)
3970 /* Return the end of this line, or zero if we could not find a
3971 line. */
3972 return prologue_sal.end;
3973 else
3974 /* Don't return END_PC, which is past the end of the function. */
3975 return prologue_sal.pc;
3976}
3977
3978/* See symtab.h. */
3979
3980symbol *
3981find_function_alias_target (bound_minimal_symbol msymbol)
3982{
3983 CORE_ADDR func_addr;
3984 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3985 return NULL;
3986
3987 symbol *sym = find_pc_function (func_addr);
3988 if (sym != NULL
3989 && SYMBOL_CLASS (sym) == LOC_BLOCK
3990 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3991 return sym;
3992
3993 return NULL;
3994}
3995
3996\f
3997/* If P is of the form "operator[ \t]+..." where `...' is
3998 some legitimate operator text, return a pointer to the
3999 beginning of the substring of the operator text.
4000 Otherwise, return "". */
4001
4002static const char *
4003operator_chars (const char *p, const char **end)
4004{
4005 *end = "";
4006 if (!startswith (p, CP_OPERATOR_STR))
4007 return *end;
4008 p += CP_OPERATOR_LEN;
4009
4010 /* Don't get faked out by `operator' being part of a longer
4011 identifier. */
4012 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4013 return *end;
4014
4015 /* Allow some whitespace between `operator' and the operator symbol. */
4016 while (*p == ' ' || *p == '\t')
4017 p++;
4018
4019 /* Recognize 'operator TYPENAME'. */
4020
4021 if (isalpha (*p) || *p == '_' || *p == '$')
4022 {
4023 const char *q = p + 1;
4024
4025 while (isalnum (*q) || *q == '_' || *q == '$')
4026 q++;
4027 *end = q;
4028 return p;
4029 }
4030
4031 while (*p)
4032 switch (*p)
4033 {
4034 case '\\': /* regexp quoting */
4035 if (p[1] == '*')
4036 {
4037 if (p[2] == '=') /* 'operator\*=' */
4038 *end = p + 3;
4039 else /* 'operator\*' */
4040 *end = p + 2;
4041 return p;
4042 }
4043 else if (p[1] == '[')
4044 {
4045 if (p[2] == ']')
4046 error (_("mismatched quoting on brackets, "
4047 "try 'operator\\[\\]'"));
4048 else if (p[2] == '\\' && p[3] == ']')
4049 {
4050 *end = p + 4; /* 'operator\[\]' */
4051 return p;
4052 }
4053 else
4054 error (_("nothing is allowed between '[' and ']'"));
4055 }
4056 else
4057 {
4058 /* Gratuitous quote: skip it and move on. */
4059 p++;
4060 continue;
4061 }
4062 break;
4063 case '!':
4064 case '=':
4065 case '*':
4066 case '/':
4067 case '%':
4068 case '^':
4069 if (p[1] == '=')
4070 *end = p + 2;
4071 else
4072 *end = p + 1;
4073 return p;
4074 case '<':
4075 case '>':
4076 case '+':
4077 case '-':
4078 case '&':
4079 case '|':
4080 if (p[0] == '-' && p[1] == '>')
4081 {
4082 /* Struct pointer member operator 'operator->'. */
4083 if (p[2] == '*')
4084 {
4085 *end = p + 3; /* 'operator->*' */
4086 return p;
4087 }
4088 else if (p[2] == '\\')
4089 {
4090 *end = p + 4; /* Hopefully 'operator->\*' */
4091 return p;
4092 }
4093 else
4094 {
4095 *end = p + 2; /* 'operator->' */
4096 return p;
4097 }
4098 }
4099 if (p[1] == '=' || p[1] == p[0])
4100 *end = p + 2;
4101 else
4102 *end = p + 1;
4103 return p;
4104 case '~':
4105 case ',':
4106 *end = p + 1;
4107 return p;
4108 case '(':
4109 if (p[1] != ')')
4110 error (_("`operator ()' must be specified "
4111 "without whitespace in `()'"));
4112 *end = p + 2;
4113 return p;
4114 case '?':
4115 if (p[1] != ':')
4116 error (_("`operator ?:' must be specified "
4117 "without whitespace in `?:'"));
4118 *end = p + 2;
4119 return p;
4120 case '[':
4121 if (p[1] != ']')
4122 error (_("`operator []' must be specified "
4123 "without whitespace in `[]'"));
4124 *end = p + 2;
4125 return p;
4126 default:
4127 error (_("`operator %s' not supported"), p);
4128 break;
4129 }
4130
4131 *end = "";
4132 return *end;
4133}
4134\f
4135
4136/* What part to match in a file name. */
4137
4138struct filename_partial_match_opts
4139{
4140 /* Only match the directory name part. */
4141 bool dirname = false;
4142
4143 /* Only match the basename part. */
4144 bool basename = false;
4145};
4146
4147/* Data structure to maintain printing state for output_source_filename. */
4148
4149struct output_source_filename_data
4150{
4151 /* Output only filenames matching REGEXP. */
4152 std::string regexp;
4153 gdb::optional<compiled_regex> c_regexp;
4154 /* Possibly only match a part of the filename. */
4155 filename_partial_match_opts partial_match;
4156
4157
4158 /* Cache of what we've seen so far. */
4159 struct filename_seen_cache *filename_seen_cache;
4160
4161 /* Flag of whether we're printing the first one. */
4162 int first;
4163};
4164
4165/* Slave routine for sources_info. Force line breaks at ,'s.
4166 NAME is the name to print.
4167 DATA contains the state for printing and watching for duplicates. */
4168
4169static void
4170output_source_filename (const char *name,
4171 struct output_source_filename_data *data)
4172{
4173 /* Since a single source file can result in several partial symbol
4174 tables, we need to avoid printing it more than once. Note: if
4175 some of the psymtabs are read in and some are not, it gets
4176 printed both under "Source files for which symbols have been
4177 read" and "Source files for which symbols will be read in on
4178 demand". I consider this a reasonable way to deal with the
4179 situation. I'm not sure whether this can also happen for
4180 symtabs; it doesn't hurt to check. */
4181
4182 /* Was NAME already seen? */
4183 if (data->filename_seen_cache->seen (name))
4184 {
4185 /* Yes; don't print it again. */
4186 return;
4187 }
4188
4189 /* Does it match data->regexp? */
4190 if (data->c_regexp.has_value ())
4191 {
4192 const char *to_match;
4193 std::string dirname;
4194
4195 if (data->partial_match.dirname)
4196 {
4197 dirname = ldirname (name);
4198 to_match = dirname.c_str ();
4199 }
4200 else if (data->partial_match.basename)
4201 to_match = lbasename (name);
4202 else
4203 to_match = name;
4204
4205 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4206 return;
4207 }
4208
4209 /* Print it and reset *FIRST. */
4210 if (! data->first)
4211 printf_filtered (", ");
4212 data->first = 0;
4213
4214 wrap_here ("");
4215 fputs_styled (name, file_name_style.style (), gdb_stdout);
4216}
4217
4218/* A callback for map_partial_symbol_filenames. */
4219
4220static void
4221output_partial_symbol_filename (const char *filename, const char *fullname,
4222 void *data)
4223{
4224 output_source_filename (fullname ? fullname : filename,
4225 (struct output_source_filename_data *) data);
4226}
4227
4228using isrc_flag_option_def
4229 = gdb::option::flag_option_def<filename_partial_match_opts>;
4230
4231static const gdb::option::option_def info_sources_option_defs[] = {
4232
4233 isrc_flag_option_def {
4234 "dirname",
4235 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4236 N_("Show only the files having a dirname matching REGEXP."),
4237 },
4238
4239 isrc_flag_option_def {
4240 "basename",
4241 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4242 N_("Show only the files having a basename matching REGEXP."),
4243 },
4244
4245};
4246
4247/* Create an option_def_group for the "info sources" options, with
4248 ISRC_OPTS as context. */
4249
4250static inline gdb::option::option_def_group
4251make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4252{
4253 return {{info_sources_option_defs}, isrc_opts};
4254}
4255
4256/* Prints the header message for the source files that will be printed
4257 with the matching info present in DATA. SYMBOL_MSG is a message
4258 that tells what will or has been done with the symbols of the
4259 matching source files. */
4260
4261static void
4262print_info_sources_header (const char *symbol_msg,
4263 const struct output_source_filename_data *data)
4264{
4265 puts_filtered (symbol_msg);
4266 if (!data->regexp.empty ())
4267 {
4268 if (data->partial_match.dirname)
4269 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4270 data->regexp.c_str ());
4271 else if (data->partial_match.basename)
4272 printf_filtered (_("(basename matching regular expression \"%s\")"),
4273 data->regexp.c_str ());
4274 else
4275 printf_filtered (_("(filename matching regular expression \"%s\")"),
4276 data->regexp.c_str ());
4277 }
4278 puts_filtered ("\n");
4279}
4280
4281/* Completer for "info sources". */
4282
4283static void
4284info_sources_command_completer (cmd_list_element *ignore,
4285 completion_tracker &tracker,
4286 const char *text, const char *word)
4287{
4288 const auto group = make_info_sources_options_def_group (nullptr);
4289 if (gdb::option::complete_options
4290 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4291 return;
4292}
4293
4294static void
4295info_sources_command (const char *args, int from_tty)
4296{
4297 struct output_source_filename_data data;
4298
4299 if (!have_full_symbols () && !have_partial_symbols ())
4300 {
4301 error (_("No symbol table is loaded. Use the \"file\" command."));
4302 }
4303
4304 filename_seen_cache filenames_seen;
4305
4306 auto group = make_info_sources_options_def_group (&data.partial_match);
4307
4308 gdb::option::process_options
4309 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4310
4311 if (args != NULL && *args != '\000')
4312 data.regexp = args;
4313
4314 data.filename_seen_cache = &filenames_seen;
4315 data.first = 1;
4316
4317 if (data.partial_match.dirname && data.partial_match.basename)
4318 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4319 if ((data.partial_match.dirname || data.partial_match.basename)
4320 && data.regexp.empty ())
4321 error (_("Missing REGEXP for 'info sources'."));
4322
4323 if (data.regexp.empty ())
4324 data.c_regexp.reset ();
4325 else
4326 {
4327 int cflags = REG_NOSUB;
4328#ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4329 cflags |= REG_ICASE;
4330#endif
4331 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4332 _("Invalid regexp"));
4333 }
4334
4335 print_info_sources_header
4336 (_("Source files for which symbols have been read in:\n"), &data);
4337
4338 for (objfile *objfile : current_program_space->objfiles ())
4339 {
4340 for (compunit_symtab *cu : objfile->compunits ())
4341 {
4342 for (symtab *s : compunit_filetabs (cu))
4343 {
4344 const char *fullname = symtab_to_fullname (s);
4345
4346 output_source_filename (fullname, &data);
4347 }
4348 }
4349 }
4350 printf_filtered ("\n\n");
4351
4352 print_info_sources_header
4353 (_("Source files for which symbols will be read in on demand:\n"), &data);
4354
4355 filenames_seen.clear ();
4356 data.first = 1;
4357 map_symbol_filenames (output_partial_symbol_filename, &data,
4358 1 /*need_fullname*/);
4359 printf_filtered ("\n");
4360}
4361
4362/* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4363 true compare only lbasename of FILENAMES. */
4364
4365static bool
4366file_matches (const char *file, const std::vector<const char *> &filenames,
4367 bool basenames)
4368{
4369 if (filenames.empty ())
4370 return true;
4371
4372 for (const char *name : filenames)
4373 {
4374 name = (basenames ? lbasename (name) : name);
4375 if (compare_filenames_for_search (file, name))
4376 return true;
4377 }
4378
4379 return false;
4380}
4381
4382/* Helper function for std::sort on symbol_search objects. Can only sort
4383 symbols, not minimal symbols. */
4384
4385int
4386symbol_search::compare_search_syms (const symbol_search &sym_a,
4387 const symbol_search &sym_b)
4388{
4389 int c;
4390
4391 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4392 symbol_symtab (sym_b.symbol)->filename);
4393 if (c != 0)
4394 return c;
4395
4396 if (sym_a.block != sym_b.block)
4397 return sym_a.block - sym_b.block;
4398
4399 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4400}
4401
4402/* Returns true if the type_name of symbol_type of SYM matches TREG.
4403 If SYM has no symbol_type or symbol_name, returns false. */
4404
4405bool
4406treg_matches_sym_type_name (const compiled_regex &treg,
4407 const struct symbol *sym)
4408{
4409 struct type *sym_type;
4410 std::string printed_sym_type_name;
4411
4412 if (symbol_lookup_debug > 1)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "treg_matches_sym_type_name\n sym %s\n",
4416 sym->natural_name ());
4417 }
4418
4419 sym_type = SYMBOL_TYPE (sym);
4420 if (sym_type == NULL)
4421 return false;
4422
4423 {
4424 scoped_switch_to_sym_language_if_auto l (sym);
4425
4426 printed_sym_type_name = type_to_string (sym_type);
4427 }
4428
4429
4430 if (symbol_lookup_debug > 1)
4431 {
4432 fprintf_unfiltered (gdb_stdlog,
4433 " sym_type_name %s\n",
4434 printed_sym_type_name.c_str ());
4435 }
4436
4437
4438 if (printed_sym_type_name.empty ())
4439 return false;
4440
4441 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4442}
4443
4444/* See symtab.h. */
4445
4446bool
4447global_symbol_searcher::is_suitable_msymbol
4448 (const enum search_domain kind, const minimal_symbol *msymbol)
4449{
4450 switch (MSYMBOL_TYPE (msymbol))
4451 {
4452 case mst_data:
4453 case mst_bss:
4454 case mst_file_data:
4455 case mst_file_bss:
4456 return kind == VARIABLES_DOMAIN;
4457 case mst_text:
4458 case mst_file_text:
4459 case mst_solib_trampoline:
4460 case mst_text_gnu_ifunc:
4461 return kind == FUNCTIONS_DOMAIN;
4462 default:
4463 return false;
4464 }
4465}
4466
4467/* See symtab.h. */
4468
4469bool
4470global_symbol_searcher::expand_symtabs
4471 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4472{
4473 enum search_domain kind = m_kind;
4474 bool found_msymbol = false;
4475
4476 if (objfile->sf)
4477 objfile->sf->qf->expand_symtabs_matching
4478 (objfile,
4479 [&] (const char *filename, bool basenames)
4480 {
4481 return file_matches (filename, filenames, basenames);
4482 },
4483 lookup_name_info::match_any (),
4484 [&] (const char *symname)
4485 {
4486 return (!preg.has_value ()
4487 || preg->exec (symname, 0, NULL, 0) == 0);
4488 },
4489 NULL,
4490 kind);
4491
4492 /* Here, we search through the minimal symbol tables for functions and
4493 variables that match, and force their symbols to be read. This is in
4494 particular necessary for demangled variable names, which are no longer
4495 put into the partial symbol tables. The symbol will then be found
4496 during the scan of symtabs later.
4497
4498 For functions, find_pc_symtab should succeed if we have debug info for
4499 the function, for variables we have to call
4500 lookup_symbol_in_objfile_from_linkage_name to determine if the
4501 variable has debug info. If the lookup fails, set found_msymbol so
4502 that we will rescan to print any matching symbols without debug info.
4503 We only search the objfile the msymbol came from, we no longer search
4504 all objfiles. In large programs (1000s of shared libs) searching all
4505 objfiles is not worth the pain. */
4506 if (filenames.empty ()
4507 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4508 {
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4510 {
4511 QUIT;
4512
4513 if (msymbol->created_by_gdb)
4514 continue;
4515
4516 if (is_suitable_msymbol (kind, msymbol))
4517 {
4518 if (!preg.has_value ()
4519 || preg->exec (msymbol->natural_name (), 0,
4520 NULL, 0) == 0)
4521 {
4522 /* An important side-effect of these lookup functions is
4523 to expand the symbol table if msymbol is found, later
4524 in the process we will add matching symbols or
4525 msymbols to the results list, and that requires that
4526 the symbols tables are expanded. */
4527 if (kind == FUNCTIONS_DOMAIN
4528 ? (find_pc_compunit_symtab
4529 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4530 == NULL)
4531 : (lookup_symbol_in_objfile_from_linkage_name
4532 (objfile, msymbol->linkage_name (),
4533 VAR_DOMAIN)
4534 .symbol == NULL))
4535 found_msymbol = true;
4536 }
4537 }
4538 }
4539 }
4540
4541 return found_msymbol;
4542}
4543
4544/* See symtab.h. */
4545
4546bool
4547global_symbol_searcher::add_matching_symbols
4548 (objfile *objfile,
4549 const gdb::optional<compiled_regex> &preg,
4550 const gdb::optional<compiled_regex> &treg,
4551 std::set<symbol_search> *result_set) const
4552{
4553 enum search_domain kind = m_kind;
4554
4555 /* Add matching symbols (if not already present). */
4556 for (compunit_symtab *cust : objfile->compunits ())
4557 {
4558 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4559
4560 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4561 {
4562 struct block_iterator iter;
4563 struct symbol *sym;
4564 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4565
4566 ALL_BLOCK_SYMBOLS (b, iter, sym)
4567 {
4568 struct symtab *real_symtab = symbol_symtab (sym);
4569
4570 QUIT;
4571
4572 /* Check first sole REAL_SYMTAB->FILENAME. It does
4573 not need to be a substring of symtab_to_fullname as
4574 it may contain "./" etc. */
4575 if ((file_matches (real_symtab->filename, filenames, false)
4576 || ((basenames_may_differ
4577 || file_matches (lbasename (real_symtab->filename),
4578 filenames, true))
4579 && file_matches (symtab_to_fullname (real_symtab),
4580 filenames, false)))
4581 && ((!preg.has_value ()
4582 || preg->exec (sym->natural_name (), 0,
4583 NULL, 0) == 0)
4584 && ((kind == VARIABLES_DOMAIN
4585 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4586 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4587 && SYMBOL_CLASS (sym) != LOC_BLOCK
4588 /* LOC_CONST can be used for more than
4589 just enums, e.g., c++ static const
4590 members. We only want to skip enums
4591 here. */
4592 && !(SYMBOL_CLASS (sym) == LOC_CONST
4593 && (TYPE_CODE (SYMBOL_TYPE (sym))
4594 == TYPE_CODE_ENUM))
4595 && (!treg.has_value ()
4596 || treg_matches_sym_type_name (*treg, sym)))
4597 || (kind == FUNCTIONS_DOMAIN
4598 && SYMBOL_CLASS (sym) == LOC_BLOCK
4599 && (!treg.has_value ()
4600 || treg_matches_sym_type_name (*treg,
4601 sym)))
4602 || (kind == TYPES_DOMAIN
4603 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4604 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4605 || (kind == MODULES_DOMAIN
4606 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4607 && SYMBOL_LINE (sym) != 0))))
4608 {
4609 if (result_set->size () < m_max_search_results)
4610 {
4611 /* Match, insert if not already in the results. */
4612 symbol_search ss (block, sym);
4613 if (result_set->find (ss) == result_set->end ())
4614 result_set->insert (ss);
4615 }
4616 else
4617 return false;
4618 }
4619 }
4620 }
4621 }
4622
4623 return true;
4624}
4625
4626/* See symtab.h. */
4627
4628bool
4629global_symbol_searcher::add_matching_msymbols
4630 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4631 std::vector<symbol_search> *results) const
4632{
4633 enum search_domain kind = m_kind;
4634
4635 for (minimal_symbol *msymbol : objfile->msymbols ())
4636 {
4637 QUIT;
4638
4639 if (msymbol->created_by_gdb)
4640 continue;
4641
4642 if (is_suitable_msymbol (kind, msymbol))
4643 {
4644 if (!preg.has_value ()
4645 || preg->exec (msymbol->natural_name (), 0,
4646 NULL, 0) == 0)
4647 {
4648 /* For functions we can do a quick check of whether the
4649 symbol might be found via find_pc_symtab. */
4650 if (kind != FUNCTIONS_DOMAIN
4651 || (find_pc_compunit_symtab
4652 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4653 == NULL))
4654 {
4655 if (lookup_symbol_in_objfile_from_linkage_name
4656 (objfile, msymbol->linkage_name (),
4657 VAR_DOMAIN).symbol == NULL)
4658 {
4659 /* Matching msymbol, add it to the results list. */
4660 if (results->size () < m_max_search_results)
4661 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4662 else
4663 return false;
4664 }
4665 }
4666 }
4667 }
4668 }
4669
4670 return true;
4671}
4672
4673/* See symtab.h. */
4674
4675std::vector<symbol_search>
4676global_symbol_searcher::search () const
4677{
4678 gdb::optional<compiled_regex> preg;
4679 gdb::optional<compiled_regex> treg;
4680
4681 gdb_assert (m_kind != ALL_DOMAIN);
4682
4683 if (m_symbol_name_regexp != NULL)
4684 {
4685 const char *symbol_name_regexp = m_symbol_name_regexp;
4686
4687 /* Make sure spacing is right for C++ operators.
4688 This is just a courtesy to make the matching less sensitive
4689 to how many spaces the user leaves between 'operator'
4690 and <TYPENAME> or <OPERATOR>. */
4691 const char *opend;
4692 const char *opname = operator_chars (symbol_name_regexp, &opend);
4693
4694 if (*opname)
4695 {
4696 int fix = -1; /* -1 means ok; otherwise number of
4697 spaces needed. */
4698
4699 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4700 {
4701 /* There should 1 space between 'operator' and 'TYPENAME'. */
4702 if (opname[-1] != ' ' || opname[-2] == ' ')
4703 fix = 1;
4704 }
4705 else
4706 {
4707 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4708 if (opname[-1] == ' ')
4709 fix = 0;
4710 }
4711 /* If wrong number of spaces, fix it. */
4712 if (fix >= 0)
4713 {
4714 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4715
4716 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4717 symbol_name_regexp = tmp;
4718 }
4719 }
4720
4721 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4722 ? REG_ICASE : 0);
4723 preg.emplace (symbol_name_regexp, cflags,
4724 _("Invalid regexp"));
4725 }
4726
4727 if (m_symbol_type_regexp != NULL)
4728 {
4729 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4730 ? REG_ICASE : 0);
4731 treg.emplace (m_symbol_type_regexp, cflags,
4732 _("Invalid regexp"));
4733 }
4734
4735 bool found_msymbol = false;
4736 std::set<symbol_search> result_set;
4737 for (objfile *objfile : current_program_space->objfiles ())
4738 {
4739 /* Expand symtabs within objfile that possibly contain matching
4740 symbols. */
4741 found_msymbol |= expand_symtabs (objfile, preg);
4742
4743 /* Find matching symbols within OBJFILE and add them in to the
4744 RESULT_SET set. Use a set here so that we can easily detect
4745 duplicates as we go, and can therefore track how many unique
4746 matches we have found so far. */
4747 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4748 break;
4749 }
4750
4751 /* Convert the result set into a sorted result list, as std::set is
4752 defined to be sorted then no explicit call to std::sort is needed. */
4753 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4754
4755 /* If there are no debug symbols, then add matching minsyms. But if the
4756 user wants to see symbols matching a type regexp, then never give a
4757 minimal symbol, as we assume that a minimal symbol does not have a
4758 type. */
4759 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4760 && !m_exclude_minsyms
4761 && !treg.has_value ())
4762 {
4763 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4764 for (objfile *objfile : current_program_space->objfiles ())
4765 if (!add_matching_msymbols (objfile, preg, &result))
4766 break;
4767 }
4768
4769 return result;
4770}
4771
4772/* See symtab.h. */
4773
4774std::string
4775symbol_to_info_string (struct symbol *sym, int block,
4776 enum search_domain kind)
4777{
4778 std::string str;
4779
4780 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4781
4782 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4783 str += "static ";
4784
4785 /* Typedef that is not a C++ class. */
4786 if (kind == TYPES_DOMAIN
4787 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4788 {
4789 string_file tmp_stream;
4790
4791 /* FIXME: For C (and C++) we end up with a difference in output here
4792 between how a typedef is printed, and non-typedefs are printed.
4793 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4794 appear C-like, while TYPE_PRINT doesn't.
4795
4796 For the struct printing case below, things are worse, we force
4797 printing of the ";" in this function, which is going to be wrong
4798 for languages that don't require a ";" between statements. */
4799 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4800 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4801 else
4802 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4803 str += tmp_stream.string ();
4804 }
4805 /* variable, func, or typedef-that-is-c++-class. */
4806 else if (kind < TYPES_DOMAIN
4807 || (kind == TYPES_DOMAIN
4808 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4809 {
4810 string_file tmp_stream;
4811
4812 type_print (SYMBOL_TYPE (sym),
4813 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4814 ? "" : sym->print_name ()),
4815 &tmp_stream, 0);
4816
4817 str += tmp_stream.string ();
4818 str += ";";
4819 }
4820 /* Printing of modules is currently done here, maybe at some future
4821 point we might want a language specific method to print the module
4822 symbol so that we can customise the output more. */
4823 else if (kind == MODULES_DOMAIN)
4824 str += sym->print_name ();
4825
4826 return str;
4827}
4828
4829/* Helper function for symbol info commands, for example 'info functions',
4830 'info variables', etc. KIND is the kind of symbol we searched for, and
4831 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4832 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4833 print file and line number information for the symbol as well. Skip
4834 printing the filename if it matches LAST. */
4835
4836static void
4837print_symbol_info (enum search_domain kind,
4838 struct symbol *sym,
4839 int block, const char *last)
4840{
4841 scoped_switch_to_sym_language_if_auto l (sym);
4842 struct symtab *s = symbol_symtab (sym);
4843
4844 if (last != NULL)
4845 {
4846 const char *s_filename = symtab_to_filename_for_display (s);
4847
4848 if (filename_cmp (last, s_filename) != 0)
4849 {
4850 printf_filtered (_("\nFile %ps:\n"),
4851 styled_string (file_name_style.style (),
4852 s_filename));
4853 }
4854
4855 if (SYMBOL_LINE (sym) != 0)
4856 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4857 else
4858 puts_filtered ("\t");
4859 }
4860
4861 std::string str = symbol_to_info_string (sym, block, kind);
4862 printf_filtered ("%s\n", str.c_str ());
4863}
4864
4865/* This help function for symtab_symbol_info() prints information
4866 for non-debugging symbols to gdb_stdout. */
4867
4868static void
4869print_msymbol_info (struct bound_minimal_symbol msymbol)
4870{
4871 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4872 char *tmp;
4873
4874 if (gdbarch_addr_bit (gdbarch) <= 32)
4875 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4876 & (CORE_ADDR) 0xffffffff,
4877 8);
4878 else
4879 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4880 16);
4881
4882 ui_file_style sym_style = (msymbol.minsym->text_p ()
4883 ? function_name_style.style ()
4884 : ui_file_style ());
4885
4886 printf_filtered (_("%ps %ps\n"),
4887 styled_string (address_style.style (), tmp),
4888 styled_string (sym_style, msymbol.minsym->print_name ()));
4889}
4890
4891/* This is the guts of the commands "info functions", "info types", and
4892 "info variables". It calls search_symbols to find all matches and then
4893 print_[m]symbol_info to print out some useful information about the
4894 matches. */
4895
4896static void
4897symtab_symbol_info (bool quiet, bool exclude_minsyms,
4898 const char *regexp, enum search_domain kind,
4899 const char *t_regexp, int from_tty)
4900{
4901 static const char * const classnames[] =
4902 {"variable", "function", "type", "module"};
4903 const char *last_filename = "";
4904 int first = 1;
4905
4906 gdb_assert (kind != ALL_DOMAIN);
4907
4908 if (regexp != nullptr && *regexp == '\0')
4909 regexp = nullptr;
4910
4911 global_symbol_searcher spec (kind, regexp);
4912 spec.set_symbol_type_regexp (t_regexp);
4913 spec.set_exclude_minsyms (exclude_minsyms);
4914 std::vector<symbol_search> symbols = spec.search ();
4915
4916 if (!quiet)
4917 {
4918 if (regexp != NULL)
4919 {
4920 if (t_regexp != NULL)
4921 printf_filtered
4922 (_("All %ss matching regular expression \"%s\""
4923 " with type matching regular expression \"%s\":\n"),
4924 classnames[kind], regexp, t_regexp);
4925 else
4926 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4927 classnames[kind], regexp);
4928 }
4929 else
4930 {
4931 if (t_regexp != NULL)
4932 printf_filtered
4933 (_("All defined %ss"
4934 " with type matching regular expression \"%s\" :\n"),
4935 classnames[kind], t_regexp);
4936 else
4937 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4938 }
4939 }
4940
4941 for (const symbol_search &p : symbols)
4942 {
4943 QUIT;
4944
4945 if (p.msymbol.minsym != NULL)
4946 {
4947 if (first)
4948 {
4949 if (!quiet)
4950 printf_filtered (_("\nNon-debugging symbols:\n"));
4951 first = 0;
4952 }
4953 print_msymbol_info (p.msymbol);
4954 }
4955 else
4956 {
4957 print_symbol_info (kind,
4958 p.symbol,
4959 p.block,
4960 last_filename);
4961 last_filename
4962 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4963 }
4964 }
4965}
4966
4967/* Structure to hold the values of the options used by the 'info variables'
4968 and 'info functions' commands. These correspond to the -q, -t, and -n
4969 options. */
4970
4971struct info_vars_funcs_options
4972{
4973 bool quiet = false;
4974 bool exclude_minsyms = false;
4975 char *type_regexp = nullptr;
4976
4977 ~info_vars_funcs_options ()
4978 {
4979 xfree (type_regexp);
4980 }
4981};
4982
4983/* The options used by the 'info variables' and 'info functions'
4984 commands. */
4985
4986static const gdb::option::option_def info_vars_funcs_options_defs[] = {
4987 gdb::option::boolean_option_def<info_vars_funcs_options> {
4988 "q",
4989 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
4990 nullptr, /* show_cmd_cb */
4991 nullptr /* set_doc */
4992 },
4993
4994 gdb::option::boolean_option_def<info_vars_funcs_options> {
4995 "n",
4996 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
4997 nullptr, /* show_cmd_cb */
4998 nullptr /* set_doc */
4999 },
5000
5001 gdb::option::string_option_def<info_vars_funcs_options> {
5002 "t",
5003 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5004 },
5005 nullptr, /* show_cmd_cb */
5006 nullptr /* set_doc */
5007 }
5008};
5009
5010/* Returns the option group used by 'info variables' and 'info
5011 functions'. */
5012
5013static gdb::option::option_def_group
5014make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5015{
5016 return {{info_vars_funcs_options_defs}, opts};
5017}
5018
5019/* Command completer for 'info variables' and 'info functions'. */
5020
5021static void
5022info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5023 completion_tracker &tracker,
5024 const char *text, const char * /* word */)
5025{
5026 const auto group
5027 = make_info_vars_funcs_options_def_group (nullptr);
5028 if (gdb::option::complete_options
5029 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5030 return;
5031
5032 const char *word = advance_to_expression_complete_word_point (tracker, text);
5033 symbol_completer (ignore, tracker, text, word);
5034}
5035
5036/* Implement the 'info variables' command. */
5037
5038static void
5039info_variables_command (const char *args, int from_tty)
5040{
5041 info_vars_funcs_options opts;
5042 auto grp = make_info_vars_funcs_options_def_group (&opts);
5043 gdb::option::process_options
5044 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5045 if (args != nullptr && *args == '\0')
5046 args = nullptr;
5047
5048 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5049 opts.type_regexp, from_tty);
5050}
5051
5052/* Implement the 'info functions' command. */
5053
5054static void
5055info_functions_command (const char *args, int from_tty)
5056{
5057 info_vars_funcs_options opts;
5058
5059 auto grp = make_info_vars_funcs_options_def_group (&opts);
5060 gdb::option::process_options
5061 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5062 if (args != nullptr && *args == '\0')
5063 args = nullptr;
5064
5065 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5066 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5067}
5068
5069/* Holds the -q option for the 'info types' command. */
5070
5071struct info_types_options
5072{
5073 bool quiet = false;
5074};
5075
5076/* The options used by the 'info types' command. */
5077
5078static const gdb::option::option_def info_types_options_defs[] = {
5079 gdb::option::boolean_option_def<info_types_options> {
5080 "q",
5081 [] (info_types_options *opt) { return &opt->quiet; },
5082 nullptr, /* show_cmd_cb */
5083 nullptr /* set_doc */
5084 }
5085};
5086
5087/* Returns the option group used by 'info types'. */
5088
5089static gdb::option::option_def_group
5090make_info_types_options_def_group (info_types_options *opts)
5091{
5092 return {{info_types_options_defs}, opts};
5093}
5094
5095/* Implement the 'info types' command. */
5096
5097static void
5098info_types_command (const char *args, int from_tty)
5099{
5100 info_types_options opts;
5101
5102 auto grp = make_info_types_options_def_group (&opts);
5103 gdb::option::process_options
5104 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5105 if (args != nullptr && *args == '\0')
5106 args = nullptr;
5107 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5108}
5109
5110/* Command completer for 'info types' command. */
5111
5112static void
5113info_types_command_completer (struct cmd_list_element *ignore,
5114 completion_tracker &tracker,
5115 const char *text, const char * /* word */)
5116{
5117 const auto group
5118 = make_info_types_options_def_group (nullptr);
5119 if (gdb::option::complete_options
5120 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5121 return;
5122
5123 const char *word = advance_to_expression_complete_word_point (tracker, text);
5124 symbol_completer (ignore, tracker, text, word);
5125}
5126
5127/* Implement the 'info modules' command. */
5128
5129static void
5130info_modules_command (const char *args, int from_tty)
5131{
5132 info_types_options opts;
5133
5134 auto grp = make_info_types_options_def_group (&opts);
5135 gdb::option::process_options
5136 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5137 if (args != nullptr && *args == '\0')
5138 args = nullptr;
5139 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5140 from_tty);
5141}
5142
5143static void
5144rbreak_command (const char *regexp, int from_tty)
5145{
5146 std::string string;
5147 const char *file_name = nullptr;
5148
5149 if (regexp != nullptr)
5150 {
5151 const char *colon = strchr (regexp, ':');
5152
5153 if (colon && *(colon + 1) != ':')
5154 {
5155 int colon_index;
5156 char *local_name;
5157
5158 colon_index = colon - regexp;
5159 local_name = (char *) alloca (colon_index + 1);
5160 memcpy (local_name, regexp, colon_index);
5161 local_name[colon_index--] = 0;
5162 while (isspace (local_name[colon_index]))
5163 local_name[colon_index--] = 0;
5164 file_name = local_name;
5165 regexp = skip_spaces (colon + 1);
5166 }
5167 }
5168
5169 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5170 if (file_name != nullptr)
5171 spec.filenames.push_back (file_name);
5172 std::vector<symbol_search> symbols = spec.search ();
5173
5174 scoped_rbreak_breakpoints finalize;
5175 for (const symbol_search &p : symbols)
5176 {
5177 if (p.msymbol.minsym == NULL)
5178 {
5179 struct symtab *symtab = symbol_symtab (p.symbol);
5180 const char *fullname = symtab_to_fullname (symtab);
5181
5182 string = string_printf ("%s:'%s'", fullname,
5183 p.symbol->linkage_name ());
5184 break_command (&string[0], from_tty);
5185 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5186 }
5187 else
5188 {
5189 string = string_printf ("'%s'",
5190 p.msymbol.minsym->linkage_name ());
5191
5192 break_command (&string[0], from_tty);
5193 printf_filtered ("<function, no debug info> %s;\n",
5194 p.msymbol.minsym->print_name ());
5195 }
5196 }
5197}
5198\f
5199
5200/* Evaluate if SYMNAME matches LOOKUP_NAME. */
5201
5202static int
5203compare_symbol_name (const char *symbol_name, language symbol_language,
5204 const lookup_name_info &lookup_name,
5205 completion_match_result &match_res)
5206{
5207 const language_defn *lang = language_def (symbol_language);
5208
5209 symbol_name_matcher_ftype *name_match
5210 = get_symbol_name_matcher (lang, lookup_name);
5211
5212 return name_match (symbol_name, lookup_name, &match_res);
5213}
5214
5215/* See symtab.h. */
5216
5217void
5218completion_list_add_name (completion_tracker &tracker,
5219 language symbol_language,
5220 const char *symname,
5221 const lookup_name_info &lookup_name,
5222 const char *text, const char *word)
5223{
5224 completion_match_result &match_res
5225 = tracker.reset_completion_match_result ();
5226
5227 /* Clip symbols that cannot match. */
5228 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5229 return;
5230
5231 /* Refresh SYMNAME from the match string. It's potentially
5232 different depending on language. (E.g., on Ada, the match may be
5233 the encoded symbol name wrapped in "<>"). */
5234 symname = match_res.match.match ();
5235 gdb_assert (symname != NULL);
5236
5237 /* We have a match for a completion, so add SYMNAME to the current list
5238 of matches. Note that the name is moved to freshly malloc'd space. */
5239
5240 {
5241 gdb::unique_xmalloc_ptr<char> completion
5242 = make_completion_match_str (symname, text, word);
5243
5244 /* Here we pass the match-for-lcd object to add_completion. Some
5245 languages match the user text against substrings of symbol
5246 names in some cases. E.g., in C++, "b push_ba" completes to
5247 "std::vector::push_back", "std::string::push_back", etc., and
5248 in this case we want the completion lowest common denominator
5249 to be "push_back" instead of "std::". */
5250 tracker.add_completion (std::move (completion),
5251 &match_res.match_for_lcd, text, word);
5252 }
5253}
5254
5255/* completion_list_add_name wrapper for struct symbol. */
5256
5257static void
5258completion_list_add_symbol (completion_tracker &tracker,
5259 symbol *sym,
5260 const lookup_name_info &lookup_name,
5261 const char *text, const char *word)
5262{
5263 completion_list_add_name (tracker, sym->language (),
5264 sym->natural_name (),
5265 lookup_name, text, word);
5266}
5267
5268/* completion_list_add_name wrapper for struct minimal_symbol. */
5269
5270static void
5271completion_list_add_msymbol (completion_tracker &tracker,
5272 minimal_symbol *sym,
5273 const lookup_name_info &lookup_name,
5274 const char *text, const char *word)
5275{
5276 completion_list_add_name (tracker, sym->language (),
5277 sym->natural_name (),
5278 lookup_name, text, word);
5279}
5280
5281
5282/* ObjC: In case we are completing on a selector, look as the msymbol
5283 again and feed all the selectors into the mill. */
5284
5285static void
5286completion_list_objc_symbol (completion_tracker &tracker,
5287 struct minimal_symbol *msymbol,
5288 const lookup_name_info &lookup_name,
5289 const char *text, const char *word)
5290{
5291 static char *tmp = NULL;
5292 static unsigned int tmplen = 0;
5293
5294 const char *method, *category, *selector;
5295 char *tmp2 = NULL;
5296
5297 method = msymbol->natural_name ();
5298
5299 /* Is it a method? */
5300 if ((method[0] != '-') && (method[0] != '+'))
5301 return;
5302
5303 if (text[0] == '[')
5304 /* Complete on shortened method method. */
5305 completion_list_add_name (tracker, language_objc,
5306 method + 1,
5307 lookup_name,
5308 text, word);
5309
5310 while ((strlen (method) + 1) >= tmplen)
5311 {
5312 if (tmplen == 0)
5313 tmplen = 1024;
5314 else
5315 tmplen *= 2;
5316 tmp = (char *) xrealloc (tmp, tmplen);
5317 }
5318 selector = strchr (method, ' ');
5319 if (selector != NULL)
5320 selector++;
5321
5322 category = strchr (method, '(');
5323
5324 if ((category != NULL) && (selector != NULL))
5325 {
5326 memcpy (tmp, method, (category - method));
5327 tmp[category - method] = ' ';
5328 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5329 completion_list_add_name (tracker, language_objc, tmp,
5330 lookup_name, text, word);
5331 if (text[0] == '[')
5332 completion_list_add_name (tracker, language_objc, tmp + 1,
5333 lookup_name, text, word);
5334 }
5335
5336 if (selector != NULL)
5337 {
5338 /* Complete on selector only. */
5339 strcpy (tmp, selector);
5340 tmp2 = strchr (tmp, ']');
5341 if (tmp2 != NULL)
5342 *tmp2 = '\0';
5343
5344 completion_list_add_name (tracker, language_objc, tmp,
5345 lookup_name, text, word);
5346 }
5347}
5348
5349/* Break the non-quoted text based on the characters which are in
5350 symbols. FIXME: This should probably be language-specific. */
5351
5352static const char *
5353language_search_unquoted_string (const char *text, const char *p)
5354{
5355 for (; p > text; --p)
5356 {
5357 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5358 continue;
5359 else
5360 {
5361 if ((current_language->la_language == language_objc))
5362 {
5363 if (p[-1] == ':') /* Might be part of a method name. */
5364 continue;
5365 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5366 p -= 2; /* Beginning of a method name. */
5367 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5368 { /* Might be part of a method name. */
5369 const char *t = p;
5370
5371 /* Seeing a ' ' or a '(' is not conclusive evidence
5372 that we are in the middle of a method name. However,
5373 finding "-[" or "+[" should be pretty un-ambiguous.
5374 Unfortunately we have to find it now to decide. */
5375
5376 while (t > text)
5377 if (isalnum (t[-1]) || t[-1] == '_' ||
5378 t[-1] == ' ' || t[-1] == ':' ||
5379 t[-1] == '(' || t[-1] == ')')
5380 --t;
5381 else
5382 break;
5383
5384 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5385 p = t - 2; /* Method name detected. */
5386 /* Else we leave with p unchanged. */
5387 }
5388 }
5389 break;
5390 }
5391 }
5392 return p;
5393}
5394
5395static void
5396completion_list_add_fields (completion_tracker &tracker,
5397 struct symbol *sym,
5398 const lookup_name_info &lookup_name,
5399 const char *text, const char *word)
5400{
5401 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5402 {
5403 struct type *t = SYMBOL_TYPE (sym);
5404 enum type_code c = TYPE_CODE (t);
5405 int j;
5406
5407 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5408 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5409 if (TYPE_FIELD_NAME (t, j))
5410 completion_list_add_name (tracker, sym->language (),
5411 TYPE_FIELD_NAME (t, j),
5412 lookup_name, text, word);
5413 }
5414}
5415
5416/* See symtab.h. */
5417
5418bool
5419symbol_is_function_or_method (symbol *sym)
5420{
5421 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5422 {
5423 case TYPE_CODE_FUNC:
5424 case TYPE_CODE_METHOD:
5425 return true;
5426 default:
5427 return false;
5428 }
5429}
5430
5431/* See symtab.h. */
5432
5433bool
5434symbol_is_function_or_method (minimal_symbol *msymbol)
5435{
5436 switch (MSYMBOL_TYPE (msymbol))
5437 {
5438 case mst_text:
5439 case mst_text_gnu_ifunc:
5440 case mst_solib_trampoline:
5441 case mst_file_text:
5442 return true;
5443 default:
5444 return false;
5445 }
5446}
5447
5448/* See symtab.h. */
5449
5450bound_minimal_symbol
5451find_gnu_ifunc (const symbol *sym)
5452{
5453 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5454 return {};
5455
5456 lookup_name_info lookup_name (sym->search_name (),
5457 symbol_name_match_type::SEARCH_NAME);
5458 struct objfile *objfile = symbol_objfile (sym);
5459
5460 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5461 minimal_symbol *ifunc = NULL;
5462
5463 iterate_over_minimal_symbols (objfile, lookup_name,
5464 [&] (minimal_symbol *minsym)
5465 {
5466 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5467 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5468 {
5469 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5470 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5471 {
5472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5473 msym_addr
5474 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5475 msym_addr,
5476 current_top_target ());
5477 }
5478 if (msym_addr == address)
5479 {
5480 ifunc = minsym;
5481 return true;
5482 }
5483 }
5484 return false;
5485 });
5486
5487 if (ifunc != NULL)
5488 return {ifunc, objfile};
5489 return {};
5490}
5491
5492/* Add matching symbols from SYMTAB to the current completion list. */
5493
5494static void
5495add_symtab_completions (struct compunit_symtab *cust,
5496 completion_tracker &tracker,
5497 complete_symbol_mode mode,
5498 const lookup_name_info &lookup_name,
5499 const char *text, const char *word,
5500 enum type_code code)
5501{
5502 struct symbol *sym;
5503 const struct block *b;
5504 struct block_iterator iter;
5505 int i;
5506
5507 if (cust == NULL)
5508 return;
5509
5510 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5511 {
5512 QUIT;
5513 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5514 ALL_BLOCK_SYMBOLS (b, iter, sym)
5515 {
5516 if (completion_skip_symbol (mode, sym))
5517 continue;
5518
5519 if (code == TYPE_CODE_UNDEF
5520 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5521 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5522 completion_list_add_symbol (tracker, sym,
5523 lookup_name,
5524 text, word);
5525 }
5526 }
5527}
5528
5529void
5530default_collect_symbol_completion_matches_break_on
5531 (completion_tracker &tracker, complete_symbol_mode mode,
5532 symbol_name_match_type name_match_type,
5533 const char *text, const char *word,
5534 const char *break_on, enum type_code code)
5535{
5536 /* Problem: All of the symbols have to be copied because readline
5537 frees them. I'm not going to worry about this; hopefully there
5538 won't be that many. */
5539
5540 struct symbol *sym;
5541 const struct block *b;
5542 const struct block *surrounding_static_block, *surrounding_global_block;
5543 struct block_iterator iter;
5544 /* The symbol we are completing on. Points in same buffer as text. */
5545 const char *sym_text;
5546
5547 /* Now look for the symbol we are supposed to complete on. */
5548 if (mode == complete_symbol_mode::LINESPEC)
5549 sym_text = text;
5550 else
5551 {
5552 const char *p;
5553 char quote_found;
5554 const char *quote_pos = NULL;
5555
5556 /* First see if this is a quoted string. */
5557 quote_found = '\0';
5558 for (p = text; *p != '\0'; ++p)
5559 {
5560 if (quote_found != '\0')
5561 {
5562 if (*p == quote_found)
5563 /* Found close quote. */
5564 quote_found = '\0';
5565 else if (*p == '\\' && p[1] == quote_found)
5566 /* A backslash followed by the quote character
5567 doesn't end the string. */
5568 ++p;
5569 }
5570 else if (*p == '\'' || *p == '"')
5571 {
5572 quote_found = *p;
5573 quote_pos = p;
5574 }
5575 }
5576 if (quote_found == '\'')
5577 /* A string within single quotes can be a symbol, so complete on it. */
5578 sym_text = quote_pos + 1;
5579 else if (quote_found == '"')
5580 /* A double-quoted string is never a symbol, nor does it make sense
5581 to complete it any other way. */
5582 {
5583 return;
5584 }
5585 else
5586 {
5587 /* It is not a quoted string. Break it based on the characters
5588 which are in symbols. */
5589 while (p > text)
5590 {
5591 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5592 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5593 --p;
5594 else
5595 break;
5596 }
5597 sym_text = p;
5598 }
5599 }
5600
5601 lookup_name_info lookup_name (sym_text, name_match_type, true);
5602
5603 /* At this point scan through the misc symbol vectors and add each
5604 symbol you find to the list. Eventually we want to ignore
5605 anything that isn't a text symbol (everything else will be
5606 handled by the psymtab code below). */
5607
5608 if (code == TYPE_CODE_UNDEF)
5609 {
5610 for (objfile *objfile : current_program_space->objfiles ())
5611 {
5612 for (minimal_symbol *msymbol : objfile->msymbols ())
5613 {
5614 QUIT;
5615
5616 if (completion_skip_symbol (mode, msymbol))
5617 continue;
5618
5619 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5620 sym_text, word);
5621
5622 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5623 sym_text, word);
5624 }
5625 }
5626 }
5627
5628 /* Add completions for all currently loaded symbol tables. */
5629 for (objfile *objfile : current_program_space->objfiles ())
5630 {
5631 for (compunit_symtab *cust : objfile->compunits ())
5632 add_symtab_completions (cust, tracker, mode, lookup_name,
5633 sym_text, word, code);
5634 }
5635
5636 /* Look through the partial symtabs for all symbols which begin by
5637 matching SYM_TEXT. Expand all CUs that you find to the list. */
5638 expand_symtabs_matching (NULL,
5639 lookup_name,
5640 NULL,
5641 [&] (compunit_symtab *symtab) /* expansion notify */
5642 {
5643 add_symtab_completions (symtab,
5644 tracker, mode, lookup_name,
5645 sym_text, word, code);
5646 },
5647 ALL_DOMAIN);
5648
5649 /* Search upwards from currently selected frame (so that we can
5650 complete on local vars). Also catch fields of types defined in
5651 this places which match our text string. Only complete on types
5652 visible from current context. */
5653
5654 b = get_selected_block (0);
5655 surrounding_static_block = block_static_block (b);
5656 surrounding_global_block = block_global_block (b);
5657 if (surrounding_static_block != NULL)
5658 while (b != surrounding_static_block)
5659 {
5660 QUIT;
5661
5662 ALL_BLOCK_SYMBOLS (b, iter, sym)
5663 {
5664 if (code == TYPE_CODE_UNDEF)
5665 {
5666 completion_list_add_symbol (tracker, sym, lookup_name,
5667 sym_text, word);
5668 completion_list_add_fields (tracker, sym, lookup_name,
5669 sym_text, word);
5670 }
5671 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5672 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5673 completion_list_add_symbol (tracker, sym, lookup_name,
5674 sym_text, word);
5675 }
5676
5677 /* Stop when we encounter an enclosing function. Do not stop for
5678 non-inlined functions - the locals of the enclosing function
5679 are in scope for a nested function. */
5680 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5681 break;
5682 b = BLOCK_SUPERBLOCK (b);
5683 }
5684
5685 /* Add fields from the file's types; symbols will be added below. */
5686
5687 if (code == TYPE_CODE_UNDEF)
5688 {
5689 if (surrounding_static_block != NULL)
5690 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5691 completion_list_add_fields (tracker, sym, lookup_name,
5692 sym_text, word);
5693
5694 if (surrounding_global_block != NULL)
5695 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5696 completion_list_add_fields (tracker, sym, lookup_name,
5697 sym_text, word);
5698 }
5699
5700 /* Skip macros if we are completing a struct tag -- arguable but
5701 usually what is expected. */
5702 if (current_language->la_macro_expansion == macro_expansion_c
5703 && code == TYPE_CODE_UNDEF)
5704 {
5705 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5706
5707 /* This adds a macro's name to the current completion list. */
5708 auto add_macro_name = [&] (const char *macro_name,
5709 const macro_definition *,
5710 macro_source_file *,
5711 int)
5712 {
5713 completion_list_add_name (tracker, language_c, macro_name,
5714 lookup_name, sym_text, word);
5715 };
5716
5717 /* Add any macros visible in the default scope. Note that this
5718 may yield the occasional wrong result, because an expression
5719 might be evaluated in a scope other than the default. For
5720 example, if the user types "break file:line if <TAB>", the
5721 resulting expression will be evaluated at "file:line" -- but
5722 at there does not seem to be a way to detect this at
5723 completion time. */
5724 scope = default_macro_scope ();
5725 if (scope)
5726 macro_for_each_in_scope (scope->file, scope->line,
5727 add_macro_name);
5728
5729 /* User-defined macros are always visible. */
5730 macro_for_each (macro_user_macros, add_macro_name);
5731 }
5732}
5733
5734void
5735default_collect_symbol_completion_matches (completion_tracker &tracker,
5736 complete_symbol_mode mode,
5737 symbol_name_match_type name_match_type,
5738 const char *text, const char *word,
5739 enum type_code code)
5740{
5741 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5742 name_match_type,
5743 text, word, "",
5744 code);
5745}
5746
5747/* Collect all symbols (regardless of class) which begin by matching
5748 TEXT. */
5749
5750void
5751collect_symbol_completion_matches (completion_tracker &tracker,
5752 complete_symbol_mode mode,
5753 symbol_name_match_type name_match_type,
5754 const char *text, const char *word)
5755{
5756 current_language->la_collect_symbol_completion_matches (tracker, mode,
5757 name_match_type,
5758 text, word,
5759 TYPE_CODE_UNDEF);
5760}
5761
5762/* Like collect_symbol_completion_matches, but only collect
5763 STRUCT_DOMAIN symbols whose type code is CODE. */
5764
5765void
5766collect_symbol_completion_matches_type (completion_tracker &tracker,
5767 const char *text, const char *word,
5768 enum type_code code)
5769{
5770 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5771 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5772
5773 gdb_assert (code == TYPE_CODE_UNION
5774 || code == TYPE_CODE_STRUCT
5775 || code == TYPE_CODE_ENUM);
5776 current_language->la_collect_symbol_completion_matches (tracker, mode,
5777 name_match_type,
5778 text, word, code);
5779}
5780
5781/* Like collect_symbol_completion_matches, but collects a list of
5782 symbols defined in all source files named SRCFILE. */
5783
5784void
5785collect_file_symbol_completion_matches (completion_tracker &tracker,
5786 complete_symbol_mode mode,
5787 symbol_name_match_type name_match_type,
5788 const char *text, const char *word,
5789 const char *srcfile)
5790{
5791 /* The symbol we are completing on. Points in same buffer as text. */
5792 const char *sym_text;
5793
5794 /* Now look for the symbol we are supposed to complete on.
5795 FIXME: This should be language-specific. */
5796 if (mode == complete_symbol_mode::LINESPEC)
5797 sym_text = text;
5798 else
5799 {
5800 const char *p;
5801 char quote_found;
5802 const char *quote_pos = NULL;
5803
5804 /* First see if this is a quoted string. */
5805 quote_found = '\0';
5806 for (p = text; *p != '\0'; ++p)
5807 {
5808 if (quote_found != '\0')
5809 {
5810 if (*p == quote_found)
5811 /* Found close quote. */
5812 quote_found = '\0';
5813 else if (*p == '\\' && p[1] == quote_found)
5814 /* A backslash followed by the quote character
5815 doesn't end the string. */
5816 ++p;
5817 }
5818 else if (*p == '\'' || *p == '"')
5819 {
5820 quote_found = *p;
5821 quote_pos = p;
5822 }
5823 }
5824 if (quote_found == '\'')
5825 /* A string within single quotes can be a symbol, so complete on it. */
5826 sym_text = quote_pos + 1;
5827 else if (quote_found == '"')
5828 /* A double-quoted string is never a symbol, nor does it make sense
5829 to complete it any other way. */
5830 {
5831 return;
5832 }
5833 else
5834 {
5835 /* Not a quoted string. */
5836 sym_text = language_search_unquoted_string (text, p);
5837 }
5838 }
5839
5840 lookup_name_info lookup_name (sym_text, name_match_type, true);
5841
5842 /* Go through symtabs for SRCFILE and check the externs and statics
5843 for symbols which match. */
5844 iterate_over_symtabs (srcfile, [&] (symtab *s)
5845 {
5846 add_symtab_completions (SYMTAB_COMPUNIT (s),
5847 tracker, mode, lookup_name,
5848 sym_text, word, TYPE_CODE_UNDEF);
5849 return false;
5850 });
5851}
5852
5853/* A helper function for make_source_files_completion_list. It adds
5854 another file name to a list of possible completions, growing the
5855 list as necessary. */
5856
5857static void
5858add_filename_to_list (const char *fname, const char *text, const char *word,
5859 completion_list *list)
5860{
5861 list->emplace_back (make_completion_match_str (fname, text, word));
5862}
5863
5864static int
5865not_interesting_fname (const char *fname)
5866{
5867 static const char *illegal_aliens[] = {
5868 "_globals_", /* inserted by coff_symtab_read */
5869 NULL
5870 };
5871 int i;
5872
5873 for (i = 0; illegal_aliens[i]; i++)
5874 {
5875 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5876 return 1;
5877 }
5878 return 0;
5879}
5880
5881/* An object of this type is passed as the user_data argument to
5882 map_partial_symbol_filenames. */
5883struct add_partial_filename_data
5884{
5885 struct filename_seen_cache *filename_seen_cache;
5886 const char *text;
5887 const char *word;
5888 int text_len;
5889 completion_list *list;
5890};
5891
5892/* A callback for map_partial_symbol_filenames. */
5893
5894static void
5895maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5896 void *user_data)
5897{
5898 struct add_partial_filename_data *data
5899 = (struct add_partial_filename_data *) user_data;
5900
5901 if (not_interesting_fname (filename))
5902 return;
5903 if (!data->filename_seen_cache->seen (filename)
5904 && filename_ncmp (filename, data->text, data->text_len) == 0)
5905 {
5906 /* This file matches for a completion; add it to the
5907 current list of matches. */
5908 add_filename_to_list (filename, data->text, data->word, data->list);
5909 }
5910 else
5911 {
5912 const char *base_name = lbasename (filename);
5913
5914 if (base_name != filename
5915 && !data->filename_seen_cache->seen (base_name)
5916 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5917 add_filename_to_list (base_name, data->text, data->word, data->list);
5918 }
5919}
5920
5921/* Return a list of all source files whose names begin with matching
5922 TEXT. The file names are looked up in the symbol tables of this
5923 program. */
5924
5925completion_list
5926make_source_files_completion_list (const char *text, const char *word)
5927{
5928 size_t text_len = strlen (text);
5929 completion_list list;
5930 const char *base_name;
5931 struct add_partial_filename_data datum;
5932
5933 if (!have_full_symbols () && !have_partial_symbols ())
5934 return list;
5935
5936 filename_seen_cache filenames_seen;
5937
5938 for (objfile *objfile : current_program_space->objfiles ())
5939 {
5940 for (compunit_symtab *cu : objfile->compunits ())
5941 {
5942 for (symtab *s : compunit_filetabs (cu))
5943 {
5944 if (not_interesting_fname (s->filename))
5945 continue;
5946 if (!filenames_seen.seen (s->filename)
5947 && filename_ncmp (s->filename, text, text_len) == 0)
5948 {
5949 /* This file matches for a completion; add it to the current
5950 list of matches. */
5951 add_filename_to_list (s->filename, text, word, &list);
5952 }
5953 else
5954 {
5955 /* NOTE: We allow the user to type a base name when the
5956 debug info records leading directories, but not the other
5957 way around. This is what subroutines of breakpoint
5958 command do when they parse file names. */
5959 base_name = lbasename (s->filename);
5960 if (base_name != s->filename
5961 && !filenames_seen.seen (base_name)
5962 && filename_ncmp (base_name, text, text_len) == 0)
5963 add_filename_to_list (base_name, text, word, &list);
5964 }
5965 }
5966 }
5967 }
5968
5969 datum.filename_seen_cache = &filenames_seen;
5970 datum.text = text;
5971 datum.word = word;
5972 datum.text_len = text_len;
5973 datum.list = &list;
5974 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5975 0 /*need_fullname*/);
5976
5977 return list;
5978}
5979\f
5980/* Track MAIN */
5981
5982/* Return the "main_info" object for the current program space. If
5983 the object has not yet been created, create it and fill in some
5984 default values. */
5985
5986static struct main_info *
5987get_main_info (void)
5988{
5989 struct main_info *info = main_progspace_key.get (current_program_space);
5990
5991 if (info == NULL)
5992 {
5993 /* It may seem strange to store the main name in the progspace
5994 and also in whatever objfile happens to see a main name in
5995 its debug info. The reason for this is mainly historical:
5996 gdb returned "main" as the name even if no function named
5997 "main" was defined the program; and this approach lets us
5998 keep compatibility. */
5999 info = main_progspace_key.emplace (current_program_space);
6000 }
6001
6002 return info;
6003}
6004
6005static void
6006set_main_name (const char *name, enum language lang)
6007{
6008 struct main_info *info = get_main_info ();
6009
6010 if (info->name_of_main != NULL)
6011 {
6012 xfree (info->name_of_main);
6013 info->name_of_main = NULL;
6014 info->language_of_main = language_unknown;
6015 }
6016 if (name != NULL)
6017 {
6018 info->name_of_main = xstrdup (name);
6019 info->language_of_main = lang;
6020 }
6021}
6022
6023/* Deduce the name of the main procedure, and set NAME_OF_MAIN
6024 accordingly. */
6025
6026static void
6027find_main_name (void)
6028{
6029 const char *new_main_name;
6030
6031 /* First check the objfiles to see whether a debuginfo reader has
6032 picked up the appropriate main name. Historically the main name
6033 was found in a more or less random way; this approach instead
6034 relies on the order of objfile creation -- which still isn't
6035 guaranteed to get the correct answer, but is just probably more
6036 accurate. */
6037 for (objfile *objfile : current_program_space->objfiles ())
6038 {
6039 if (objfile->per_bfd->name_of_main != NULL)
6040 {
6041 set_main_name (objfile->per_bfd->name_of_main,
6042 objfile->per_bfd->language_of_main);
6043 return;
6044 }
6045 }
6046
6047 /* Try to see if the main procedure is in Ada. */
6048 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6049 be to add a new method in the language vector, and call this
6050 method for each language until one of them returns a non-empty
6051 name. This would allow us to remove this hard-coded call to
6052 an Ada function. It is not clear that this is a better approach
6053 at this point, because all methods need to be written in a way
6054 such that false positives never be returned. For instance, it is
6055 important that a method does not return a wrong name for the main
6056 procedure if the main procedure is actually written in a different
6057 language. It is easy to guaranty this with Ada, since we use a
6058 special symbol generated only when the main in Ada to find the name
6059 of the main procedure. It is difficult however to see how this can
6060 be guarantied for languages such as C, for instance. This suggests
6061 that order of call for these methods becomes important, which means
6062 a more complicated approach. */
6063 new_main_name = ada_main_name ();
6064 if (new_main_name != NULL)
6065 {
6066 set_main_name (new_main_name, language_ada);
6067 return;
6068 }
6069
6070 new_main_name = d_main_name ();
6071 if (new_main_name != NULL)
6072 {
6073 set_main_name (new_main_name, language_d);
6074 return;
6075 }
6076
6077 new_main_name = go_main_name ();
6078 if (new_main_name != NULL)
6079 {
6080 set_main_name (new_main_name, language_go);
6081 return;
6082 }
6083
6084 new_main_name = pascal_main_name ();
6085 if (new_main_name != NULL)
6086 {
6087 set_main_name (new_main_name, language_pascal);
6088 return;
6089 }
6090
6091 /* The languages above didn't identify the name of the main procedure.
6092 Fallback to "main". */
6093 set_main_name ("main", language_unknown);
6094}
6095
6096/* See symtab.h. */
6097
6098const char *
6099main_name ()
6100{
6101 struct main_info *info = get_main_info ();
6102
6103 if (info->name_of_main == NULL)
6104 find_main_name ();
6105
6106 return info->name_of_main;
6107}
6108
6109/* Return the language of the main function. If it is not known,
6110 return language_unknown. */
6111
6112enum language
6113main_language (void)
6114{
6115 struct main_info *info = get_main_info ();
6116
6117 if (info->name_of_main == NULL)
6118 find_main_name ();
6119
6120 return info->language_of_main;
6121}
6122
6123/* Handle ``executable_changed'' events for the symtab module. */
6124
6125static void
6126symtab_observer_executable_changed (void)
6127{
6128 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6129 set_main_name (NULL, language_unknown);
6130}
6131
6132/* Return 1 if the supplied producer string matches the ARM RealView
6133 compiler (armcc). */
6134
6135bool
6136producer_is_realview (const char *producer)
6137{
6138 static const char *const arm_idents[] = {
6139 "ARM C Compiler, ADS",
6140 "Thumb C Compiler, ADS",
6141 "ARM C++ Compiler, ADS",
6142 "Thumb C++ Compiler, ADS",
6143 "ARM/Thumb C/C++ Compiler, RVCT",
6144 "ARM C/C++ Compiler, RVCT"
6145 };
6146 int i;
6147
6148 if (producer == NULL)
6149 return false;
6150
6151 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6152 if (startswith (producer, arm_idents[i]))
6153 return true;
6154
6155 return false;
6156}
6157
6158\f
6159
6160/* The next index to hand out in response to a registration request. */
6161
6162static int next_aclass_value = LOC_FINAL_VALUE;
6163
6164/* The maximum number of "aclass" registrations we support. This is
6165 constant for convenience. */
6166#define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6167
6168/* The objects representing the various "aclass" values. The elements
6169 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6170 elements are those registered at gdb initialization time. */
6171
6172static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6173
6174/* The globally visible pointer. This is separate from 'symbol_impl'
6175 so that it can be const. */
6176
6177const struct symbol_impl *symbol_impls = &symbol_impl[0];
6178
6179/* Make sure we saved enough room in struct symbol. */
6180
6181gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6182
6183/* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6184 is the ops vector associated with this index. This returns the new
6185 index, which should be used as the aclass_index field for symbols
6186 of this type. */
6187
6188int
6189register_symbol_computed_impl (enum address_class aclass,
6190 const struct symbol_computed_ops *ops)
6191{
6192 int result = next_aclass_value++;
6193
6194 gdb_assert (aclass == LOC_COMPUTED);
6195 gdb_assert (result < MAX_SYMBOL_IMPLS);
6196 symbol_impl[result].aclass = aclass;
6197 symbol_impl[result].ops_computed = ops;
6198
6199 /* Sanity check OPS. */
6200 gdb_assert (ops != NULL);
6201 gdb_assert (ops->tracepoint_var_ref != NULL);
6202 gdb_assert (ops->describe_location != NULL);
6203 gdb_assert (ops->get_symbol_read_needs != NULL);
6204 gdb_assert (ops->read_variable != NULL);
6205
6206 return result;
6207}
6208
6209/* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6210 OPS is the ops vector associated with this index. This returns the
6211 new index, which should be used as the aclass_index field for symbols
6212 of this type. */
6213
6214int
6215register_symbol_block_impl (enum address_class aclass,
6216 const struct symbol_block_ops *ops)
6217{
6218 int result = next_aclass_value++;
6219
6220 gdb_assert (aclass == LOC_BLOCK);
6221 gdb_assert (result < MAX_SYMBOL_IMPLS);
6222 symbol_impl[result].aclass = aclass;
6223 symbol_impl[result].ops_block = ops;
6224
6225 /* Sanity check OPS. */
6226 gdb_assert (ops != NULL);
6227 gdb_assert (ops->find_frame_base_location != NULL);
6228
6229 return result;
6230}
6231
6232/* Register a register symbol type. ACLASS must be LOC_REGISTER or
6233 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6234 this index. This returns the new index, which should be used as
6235 the aclass_index field for symbols of this type. */
6236
6237int
6238register_symbol_register_impl (enum address_class aclass,
6239 const struct symbol_register_ops *ops)
6240{
6241 int result = next_aclass_value++;
6242
6243 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6244 gdb_assert (result < MAX_SYMBOL_IMPLS);
6245 symbol_impl[result].aclass = aclass;
6246 symbol_impl[result].ops_register = ops;
6247
6248 return result;
6249}
6250
6251/* Initialize elements of 'symbol_impl' for the constants in enum
6252 address_class. */
6253
6254static void
6255initialize_ordinary_address_classes (void)
6256{
6257 int i;
6258
6259 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6260 symbol_impl[i].aclass = (enum address_class) i;
6261}
6262
6263\f
6264
6265/* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6266
6267void
6268initialize_objfile_symbol (struct symbol *sym)
6269{
6270 SYMBOL_OBJFILE_OWNED (sym) = 1;
6271 SYMBOL_SECTION (sym) = -1;
6272}
6273
6274/* Allocate and initialize a new 'struct symbol' on OBJFILE's
6275 obstack. */
6276
6277struct symbol *
6278allocate_symbol (struct objfile *objfile)
6279{
6280 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6281
6282 initialize_objfile_symbol (result);
6283
6284 return result;
6285}
6286
6287/* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6288 obstack. */
6289
6290struct template_symbol *
6291allocate_template_symbol (struct objfile *objfile)
6292{
6293 struct template_symbol *result;
6294
6295 result = new (&objfile->objfile_obstack) template_symbol ();
6296 initialize_objfile_symbol (result);
6297
6298 return result;
6299}
6300
6301/* See symtab.h. */
6302
6303struct objfile *
6304symbol_objfile (const struct symbol *symbol)
6305{
6306 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6307 return SYMTAB_OBJFILE (symbol->owner.symtab);
6308}
6309
6310/* See symtab.h. */
6311
6312struct gdbarch *
6313symbol_arch (const struct symbol *symbol)
6314{
6315 if (!SYMBOL_OBJFILE_OWNED (symbol))
6316 return symbol->owner.arch;
6317 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6318}
6319
6320/* See symtab.h. */
6321
6322struct symtab *
6323symbol_symtab (const struct symbol *symbol)
6324{
6325 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6326 return symbol->owner.symtab;
6327}
6328
6329/* See symtab.h. */
6330
6331void
6332symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6333{
6334 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6335 symbol->owner.symtab = symtab;
6336}
6337
6338/* See symtab.h. */
6339
6340CORE_ADDR
6341get_symbol_address (const struct symbol *sym)
6342{
6343 gdb_assert (sym->maybe_copied);
6344 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6345
6346 const char *linkage_name = sym->linkage_name ();
6347
6348 for (objfile *objfile : current_program_space->objfiles ())
6349 {
6350 bound_minimal_symbol minsym
6351 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6352 if (minsym.minsym != nullptr)
6353 return BMSYMBOL_VALUE_ADDRESS (minsym);
6354 }
6355 return sym->value.address;
6356}
6357
6358/* See symtab.h. */
6359
6360CORE_ADDR
6361get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6362{
6363 gdb_assert (minsym->maybe_copied);
6364 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6365
6366 const char *linkage_name = minsym->linkage_name ();
6367
6368 for (objfile *objfile : current_program_space->objfiles ())
6369 {
6370 if ((objfile->flags & OBJF_MAINLINE) != 0)
6371 {
6372 bound_minimal_symbol found
6373 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6374 if (found.minsym != nullptr)
6375 return BMSYMBOL_VALUE_ADDRESS (found);
6376 }
6377 }
6378 return minsym->value.address + objf->section_offsets[minsym->section];
6379}
6380
6381\f
6382
6383/* Hold the sub-commands of 'info module'. */
6384
6385static struct cmd_list_element *info_module_cmdlist = NULL;
6386
6387/* Implement the 'info module' command, just displays some help text for
6388 the available sub-commands. */
6389
6390static void
6391info_module_command (const char *args, int from_tty)
6392{
6393 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6394}
6395
6396/* See symtab.h. */
6397
6398std::vector<module_symbol_search>
6399search_module_symbols (const char *module_regexp, const char *regexp,
6400 const char *type_regexp, search_domain kind)
6401{
6402 std::vector<module_symbol_search> results;
6403
6404 /* Search for all modules matching MODULE_REGEXP. */
6405 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6406 spec1.set_exclude_minsyms (true);
6407 std::vector<symbol_search> modules = spec1.search ();
6408
6409 /* Now search for all symbols of the required KIND matching the required
6410 regular expressions. We figure out which ones are in which modules
6411 below. */
6412 global_symbol_searcher spec2 (kind, regexp);
6413 spec2.set_symbol_type_regexp (type_regexp);
6414 spec2.set_exclude_minsyms (true);
6415 std::vector<symbol_search> symbols = spec2.search ();
6416
6417 /* Now iterate over all MODULES, checking to see which items from
6418 SYMBOLS are in each module. */
6419 for (const symbol_search &p : modules)
6420 {
6421 QUIT;
6422
6423 /* This is a module. */
6424 gdb_assert (p.symbol != nullptr);
6425
6426 std::string prefix = p.symbol->print_name ();
6427 prefix += "::";
6428
6429 for (const symbol_search &q : symbols)
6430 {
6431 if (q.symbol == nullptr)
6432 continue;
6433
6434 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6435 prefix.size ()) != 0)
6436 continue;
6437
6438 results.push_back ({p, q});
6439 }
6440 }
6441
6442 return results;
6443}
6444
6445/* Implement the core of both 'info module functions' and 'info module
6446 variables'. */
6447
6448static void
6449info_module_subcommand (bool quiet, const char *module_regexp,
6450 const char *regexp, const char *type_regexp,
6451 search_domain kind)
6452{
6453 /* Print a header line. Don't build the header line bit by bit as this
6454 prevents internationalisation. */
6455 if (!quiet)
6456 {
6457 if (module_regexp == nullptr)
6458 {
6459 if (type_regexp == nullptr)
6460 {
6461 if (regexp == nullptr)
6462 printf_filtered ((kind == VARIABLES_DOMAIN
6463 ? _("All variables in all modules:")
6464 : _("All functions in all modules:")));
6465 else
6466 printf_filtered
6467 ((kind == VARIABLES_DOMAIN
6468 ? _("All variables matching regular expression"
6469 " \"%s\" in all modules:")
6470 : _("All functions matching regular expression"
6471 " \"%s\" in all modules:")),
6472 regexp);
6473 }
6474 else
6475 {
6476 if (regexp == nullptr)
6477 printf_filtered
6478 ((kind == VARIABLES_DOMAIN
6479 ? _("All variables with type matching regular "
6480 "expression \"%s\" in all modules:")
6481 : _("All functions with type matching regular "
6482 "expression \"%s\" in all modules:")),
6483 type_regexp);
6484 else
6485 printf_filtered
6486 ((kind == VARIABLES_DOMAIN
6487 ? _("All variables matching regular expression "
6488 "\"%s\",\n\twith type matching regular "
6489 "expression \"%s\" in all modules:")
6490 : _("All functions matching regular expression "
6491 "\"%s\",\n\twith type matching regular "
6492 "expression \"%s\" in all modules:")),
6493 regexp, type_regexp);
6494 }
6495 }
6496 else
6497 {
6498 if (type_regexp == nullptr)
6499 {
6500 if (regexp == nullptr)
6501 printf_filtered
6502 ((kind == VARIABLES_DOMAIN
6503 ? _("All variables in all modules matching regular "
6504 "expression \"%s\":")
6505 : _("All functions in all modules matching regular "
6506 "expression \"%s\":")),
6507 module_regexp);
6508 else
6509 printf_filtered
6510 ((kind == VARIABLES_DOMAIN
6511 ? _("All variables matching regular expression "
6512 "\"%s\",\n\tin all modules matching regular "
6513 "expression \"%s\":")
6514 : _("All functions matching regular expression "
6515 "\"%s\",\n\tin all modules matching regular "
6516 "expression \"%s\":")),
6517 regexp, module_regexp);
6518 }
6519 else
6520 {
6521 if (regexp == nullptr)
6522 printf_filtered
6523 ((kind == VARIABLES_DOMAIN
6524 ? _("All variables with type matching regular "
6525 "expression \"%s\"\n\tin all modules matching "
6526 "regular expression \"%s\":")
6527 : _("All functions with type matching regular "
6528 "expression \"%s\"\n\tin all modules matching "
6529 "regular expression \"%s\":")),
6530 type_regexp, module_regexp);
6531 else
6532 printf_filtered
6533 ((kind == VARIABLES_DOMAIN
6534 ? _("All variables matching regular expression "
6535 "\"%s\",\n\twith type matching regular expression "
6536 "\"%s\",\n\tin all modules matching regular "
6537 "expression \"%s\":")
6538 : _("All functions matching regular expression "
6539 "\"%s\",\n\twith type matching regular expression "
6540 "\"%s\",\n\tin all modules matching regular "
6541 "expression \"%s\":")),
6542 regexp, type_regexp, module_regexp);
6543 }
6544 }
6545 printf_filtered ("\n");
6546 }
6547
6548 /* Find all symbols of type KIND matching the given regular expressions
6549 along with the symbols for the modules in which those symbols
6550 reside. */
6551 std::vector<module_symbol_search> module_symbols
6552 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6553
6554 std::sort (module_symbols.begin (), module_symbols.end (),
6555 [] (const module_symbol_search &a, const module_symbol_search &b)
6556 {
6557 if (a.first < b.first)
6558 return true;
6559 else if (a.first == b.first)
6560 return a.second < b.second;
6561 else
6562 return false;
6563 });
6564
6565 const char *last_filename = "";
6566 const symbol *last_module_symbol = nullptr;
6567 for (const module_symbol_search &ms : module_symbols)
6568 {
6569 const symbol_search &p = ms.first;
6570 const symbol_search &q = ms.second;
6571
6572 gdb_assert (q.symbol != nullptr);
6573
6574 if (last_module_symbol != p.symbol)
6575 {
6576 printf_filtered ("\n");
6577 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6578 last_module_symbol = p.symbol;
6579 last_filename = "";
6580 }
6581
6582 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6583 last_filename);
6584 last_filename
6585 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6586 }
6587}
6588
6589/* Hold the option values for the 'info module .....' sub-commands. */
6590
6591struct info_modules_var_func_options
6592{
6593 bool quiet = false;
6594 char *type_regexp = nullptr;
6595 char *module_regexp = nullptr;
6596
6597 ~info_modules_var_func_options ()
6598 {
6599 xfree (type_regexp);
6600 xfree (module_regexp);
6601 }
6602};
6603
6604/* The options used by 'info module variables' and 'info module functions'
6605 commands. */
6606
6607static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6608 gdb::option::boolean_option_def<info_modules_var_func_options> {
6609 "q",
6610 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6611 nullptr, /* show_cmd_cb */
6612 nullptr /* set_doc */
6613 },
6614
6615 gdb::option::string_option_def<info_modules_var_func_options> {
6616 "t",
6617 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6618 nullptr, /* show_cmd_cb */
6619 nullptr /* set_doc */
6620 },
6621
6622 gdb::option::string_option_def<info_modules_var_func_options> {
6623 "m",
6624 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6625 nullptr, /* show_cmd_cb */
6626 nullptr /* set_doc */
6627 }
6628};
6629
6630/* Return the option group used by the 'info module ...' sub-commands. */
6631
6632static inline gdb::option::option_def_group
6633make_info_modules_var_func_options_def_group
6634 (info_modules_var_func_options *opts)
6635{
6636 return {{info_modules_var_func_options_defs}, opts};
6637}
6638
6639/* Implements the 'info module functions' command. */
6640
6641static void
6642info_module_functions_command (const char *args, int from_tty)
6643{
6644 info_modules_var_func_options opts;
6645 auto grp = make_info_modules_var_func_options_def_group (&opts);
6646 gdb::option::process_options
6647 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6648 if (args != nullptr && *args == '\0')
6649 args = nullptr;
6650
6651 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6652 opts.type_regexp, FUNCTIONS_DOMAIN);
6653}
6654
6655/* Implements the 'info module variables' command. */
6656
6657static void
6658info_module_variables_command (const char *args, int from_tty)
6659{
6660 info_modules_var_func_options opts;
6661 auto grp = make_info_modules_var_func_options_def_group (&opts);
6662 gdb::option::process_options
6663 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6664 if (args != nullptr && *args == '\0')
6665 args = nullptr;
6666
6667 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6668 opts.type_regexp, VARIABLES_DOMAIN);
6669}
6670
6671/* Command completer for 'info module ...' sub-commands. */
6672
6673static void
6674info_module_var_func_command_completer (struct cmd_list_element *ignore,
6675 completion_tracker &tracker,
6676 const char *text,
6677 const char * /* word */)
6678{
6679
6680 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6681 if (gdb::option::complete_options
6682 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6683 return;
6684
6685 const char *word = advance_to_expression_complete_word_point (tracker, text);
6686 symbol_completer (ignore, tracker, text, word);
6687}
6688
6689\f
6690
6691void _initialize_symtab ();
6692void
6693_initialize_symtab ()
6694{
6695 cmd_list_element *c;
6696
6697 initialize_ordinary_address_classes ();
6698
6699 c = add_info ("variables", info_variables_command,
6700 info_print_args_help (_("\
6701All global and static variable names or those matching REGEXPs.\n\
6702Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6703Prints the global and static variables.\n"),
6704 _("global and static variables"),
6705 true));
6706 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6707 if (dbx_commands)
6708 {
6709 c = add_com ("whereis", class_info, info_variables_command,
6710 info_print_args_help (_("\
6711All global and static variable names, or those matching REGEXPs.\n\
6712Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6713Prints the global and static variables.\n"),
6714 _("global and static variables"),
6715 true));
6716 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6717 }
6718
6719 c = add_info ("functions", info_functions_command,
6720 info_print_args_help (_("\
6721All function names or those matching REGEXPs.\n\
6722Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6723Prints the functions.\n"),
6724 _("functions"),
6725 true));
6726 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6727
6728 c = add_info ("types", info_types_command, _("\
6729All type names, or those matching REGEXP.\n\
6730Usage: info types [-q] [REGEXP]\n\
6731Print information about all types matching REGEXP, or all types if no\n\
6732REGEXP is given. The optional flag -q disables printing of headers."));
6733 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6734
6735 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6736
6737 static std::string info_sources_help
6738 = gdb::option::build_help (_("\
6739All source files in the program or those matching REGEXP.\n\
6740Usage: info sources [OPTION]... [REGEXP]\n\
6741By default, REGEXP is used to match anywhere in the filename.\n\
6742\n\
6743Options:\n\
6744%OPTIONS%"),
6745 info_sources_opts);
6746
6747 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6748 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6749
6750 c = add_info ("modules", info_modules_command,
6751 _("All module names, or those matching REGEXP."));
6752 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6753
6754 add_prefix_cmd ("module", class_info, info_module_command, _("\
6755Print information about modules."),
6756 &info_module_cmdlist, "info module ",
6757 0, &infolist);
6758
6759 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6760Display functions arranged by modules.\n\
6761Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6762Print a summary of all functions within each Fortran module, grouped by\n\
6763module and file. For each function the line on which the function is\n\
6764defined is given along with the type signature and name of the function.\n\
6765\n\
6766If REGEXP is provided then only functions whose name matches REGEXP are\n\
6767listed. If MODREGEXP is provided then only functions in modules matching\n\
6768MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6769type signature matches TYPEREGEXP are listed.\n\
6770\n\
6771The -q flag suppresses printing some header information."),
6772 &info_module_cmdlist);
6773 set_cmd_completer_handle_brkchars
6774 (c, info_module_var_func_command_completer);
6775
6776 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6777Display variables arranged by modules.\n\
6778Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6779Print a summary of all variables within each Fortran module, grouped by\n\
6780module and file. For each variable the line on which the variable is\n\
6781defined is given along with the type and name of the variable.\n\
6782\n\
6783If REGEXP is provided then only variables whose name matches REGEXP are\n\
6784listed. If MODREGEXP is provided then only variables in modules matching\n\
6785MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6786type matches TYPEREGEXP are listed.\n\
6787\n\
6788The -q flag suppresses printing some header information."),
6789 &info_module_cmdlist);
6790 set_cmd_completer_handle_brkchars
6791 (c, info_module_var_func_command_completer);
6792
6793 add_com ("rbreak", class_breakpoint, rbreak_command,
6794 _("Set a breakpoint for all functions matching REGEXP."));
6795
6796 add_setshow_enum_cmd ("multiple-symbols", no_class,
6797 multiple_symbols_modes, &multiple_symbols_mode,
6798 _("\
6799Set how the debugger handles ambiguities in expressions."), _("\
6800Show how the debugger handles ambiguities in expressions."), _("\
6801Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6802 NULL, NULL, &setlist, &showlist);
6803
6804 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6805 &basenames_may_differ, _("\
6806Set whether a source file may have multiple base names."), _("\
6807Show whether a source file may have multiple base names."), _("\
6808(A \"base name\" is the name of a file with the directory part removed.\n\
6809Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6810If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6811before comparing them. Canonicalization is an expensive operation,\n\
6812but it allows the same file be known by more than one base name.\n\
6813If not set (the default), all source files are assumed to have just\n\
6814one base name, and gdb will do file name comparisons more efficiently."),
6815 NULL, NULL,
6816 &setlist, &showlist);
6817
6818 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6819 _("Set debugging of symbol table creation."),
6820 _("Show debugging of symbol table creation."), _("\
6821When enabled (non-zero), debugging messages are printed when building\n\
6822symbol tables. A value of 1 (one) normally provides enough information.\n\
6823A value greater than 1 provides more verbose information."),
6824 NULL,
6825 NULL,
6826 &setdebuglist, &showdebuglist);
6827
6828 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6829 _("\
6830Set debugging of symbol lookup."), _("\
6831Show debugging of symbol lookup."), _("\
6832When enabled (non-zero), symbol lookups are logged."),
6833 NULL, NULL,
6834 &setdebuglist, &showdebuglist);
6835
6836 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6837 &new_symbol_cache_size,
6838 _("Set the size of the symbol cache."),
6839 _("Show the size of the symbol cache."), _("\
6840The size of the symbol cache.\n\
6841If zero then the symbol cache is disabled."),
6842 set_symbol_cache_size_handler, NULL,
6843 &maintenance_set_cmdlist,
6844 &maintenance_show_cmdlist);
6845
6846 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6847 _("Dump the symbol cache for each program space."),
6848 &maintenanceprintlist);
6849
6850 add_cmd ("symbol-cache-statistics", class_maintenance,
6851 maintenance_print_symbol_cache_statistics,
6852 _("Print symbol cache statistics for each program space."),
6853 &maintenanceprintlist);
6854
6855 add_cmd ("flush-symbol-cache", class_maintenance,
6856 maintenance_flush_symbol_cache,
6857 _("Flush the symbol cache for each program space."),
6858 &maintenancelist);
6859
6860 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6861 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6862 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6863}