]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/ppc/cpu/mpc83xx/spd_sdram.c
nios2: Move individual board linker scripts to common script in cpu tree.
[people/ms/u-boot.git] / arch / ppc / cpu / mpc83xx / spd_sdram.c
1 /*
2 * (C) Copyright 2006-2007 Freescale Semiconductor, Inc.
3 *
4 * (C) Copyright 2006
5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 *
7 * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
8 * (C) Copyright 2003 Motorola Inc.
9 * Xianghua Xiao (X.Xiao@motorola.com)
10 *
11 * See file CREDITS for list of people who contributed to this
12 * project.
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License as
16 * published by the Free Software Foundation; either version 2 of
17 * the License, or (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27 * MA 02111-1307 USA
28 */
29
30 #include <common.h>
31 #include <asm/processor.h>
32 #include <asm/io.h>
33 #include <i2c.h>
34 #include <spd.h>
35 #include <asm/mmu.h>
36 #include <spd_sdram.h>
37
38 DECLARE_GLOBAL_DATA_PTR;
39
40 void board_add_ram_info(int use_default)
41 {
42 volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
43 volatile ddr83xx_t *ddr = &immap->ddr;
44 char buf[32];
45
46 printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
47 >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
48
49 if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
50 puts(", 32-bit");
51 else
52 puts(", 64-bit");
53
54 if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
55 puts(", ECC on");
56 else
57 puts(", ECC off");
58
59 printf(", %s MHz)", strmhz(buf, gd->mem_clk));
60
61 #if defined(CONFIG_SYS_LB_SDRAM) && defined(CONFIG_SYS_LBC_SDRAM_SIZE)
62 puts("\nSDRAM: ");
63 print_size (CONFIG_SYS_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
64 #endif
65 }
66
67 #ifdef CONFIG_SPD_EEPROM
68 #ifndef CONFIG_SYS_READ_SPD
69 #define CONFIG_SYS_READ_SPD i2c_read
70 #endif
71
72 /*
73 * Convert picoseconds into clock cycles (rounding up if needed).
74 */
75 int
76 picos_to_clk(int picos)
77 {
78 unsigned int mem_bus_clk;
79 int clks;
80
81 mem_bus_clk = gd->mem_clk >> 1;
82 clks = picos / (1000000000 / (mem_bus_clk / 1000));
83 if (picos % (1000000000 / (mem_bus_clk / 1000)) != 0)
84 clks++;
85
86 return clks;
87 }
88
89 unsigned int banksize(unsigned char row_dens)
90 {
91 return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
92 }
93
94 int read_spd(uint addr)
95 {
96 return ((int) addr);
97 }
98
99 #undef SPD_DEBUG
100 #ifdef SPD_DEBUG
101 static void spd_debug(spd_eeprom_t *spd)
102 {
103 printf ("\nDIMM type: %-18.18s\n", spd->mpart);
104 printf ("SPD size: %d\n", spd->info_size);
105 printf ("EEPROM size: %d\n", 1 << spd->chip_size);
106 printf ("Memory type: %d\n", spd->mem_type);
107 printf ("Row addr: %d\n", spd->nrow_addr);
108 printf ("Column addr: %d\n", spd->ncol_addr);
109 printf ("# of rows: %d\n", spd->nrows);
110 printf ("Row density: %d\n", spd->row_dens);
111 printf ("# of banks: %d\n", spd->nbanks);
112 printf ("Data width: %d\n",
113 256 * spd->dataw_msb + spd->dataw_lsb);
114 printf ("Chip width: %d\n", spd->primw);
115 printf ("Refresh rate: %02X\n", spd->refresh);
116 printf ("CAS latencies: %02X\n", spd->cas_lat);
117 printf ("Write latencies: %02X\n", spd->write_lat);
118 printf ("tRP: %d\n", spd->trp);
119 printf ("tRCD: %d\n", spd->trcd);
120 printf ("\n");
121 }
122 #endif /* SPD_DEBUG */
123
124 long int spd_sdram()
125 {
126 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
127 volatile ddr83xx_t *ddr = &immap->ddr;
128 volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
129 spd_eeprom_t spd;
130 unsigned int n_ranks;
131 unsigned int odt_rd_cfg, odt_wr_cfg;
132 unsigned char twr_clk, twtr_clk;
133 unsigned int sdram_type;
134 unsigned int memsize;
135 unsigned int law_size;
136 unsigned char caslat, caslat_ctrl;
137 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
138 unsigned int trcd_clk, trtp_clk;
139 unsigned char cke_min_clk;
140 unsigned char add_lat, wr_lat;
141 unsigned char wr_data_delay;
142 unsigned char four_act;
143 unsigned char cpo;
144 unsigned char burstlen;
145 unsigned char odt_cfg, mode_odt_enable;
146 unsigned int max_bus_clk;
147 unsigned int max_data_rate, effective_data_rate;
148 unsigned int ddrc_clk;
149 unsigned int refresh_clk;
150 unsigned int sdram_cfg;
151 unsigned int ddrc_ecc_enable;
152 unsigned int pvr = get_pvr();
153
154 /*
155 * First disable the memory controller (could be enabled
156 * by the debugger)
157 */
158 clrsetbits_be32(&ddr->sdram_cfg, SDRAM_CFG_MEM_EN, 0);
159 sync();
160 isync();
161
162 /* Read SPD parameters with I2C */
163 CONFIG_SYS_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
164 #ifdef SPD_DEBUG
165 spd_debug(&spd);
166 #endif
167 /* Check the memory type */
168 if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
169 debug("DDR: Module mem type is %02X\n", spd.mem_type);
170 return 0;
171 }
172
173 /* Check the number of physical bank */
174 if (spd.mem_type == SPD_MEMTYPE_DDR) {
175 n_ranks = spd.nrows;
176 } else {
177 n_ranks = (spd.nrows & 0x7) + 1;
178 }
179
180 if (n_ranks > 2) {
181 printf("DDR: The number of physical bank is %02X\n", n_ranks);
182 return 0;
183 }
184
185 /* Check if the number of row of the module is in the range of DDRC */
186 if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
187 printf("DDR: Row number is out of range of DDRC, row=%02X\n",
188 spd.nrow_addr);
189 return 0;
190 }
191
192 /* Check if the number of col of the module is in the range of DDRC */
193 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
194 printf("DDR: Col number is out of range of DDRC, col=%02X\n",
195 spd.ncol_addr);
196 return 0;
197 }
198
199 #ifdef CONFIG_SYS_DDRCDR_VALUE
200 /*
201 * Adjust DDR II IO voltage biasing. It just makes it work.
202 */
203 if(spd.mem_type == SPD_MEMTYPE_DDR2) {
204 immap->sysconf.ddrcdr = CONFIG_SYS_DDRCDR_VALUE;
205 }
206 udelay(50000);
207 #endif
208
209 /*
210 * ODT configuration recommendation from DDR Controller Chapter.
211 */
212 odt_rd_cfg = 0; /* Never assert ODT */
213 odt_wr_cfg = 0; /* Never assert ODT */
214 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
215 odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
216 }
217
218 /* Setup DDR chip select register */
219 #ifdef CONFIG_SYS_83XX_DDR_USES_CS0
220 ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
221 ddr->cs_config[0] = ( 1 << 31
222 | (odt_rd_cfg << 20)
223 | (odt_wr_cfg << 16)
224 | ((spd.nbanks == 8 ? 1 : 0) << 14)
225 | ((spd.nrow_addr - 12) << 8)
226 | (spd.ncol_addr - 8) );
227 debug("\n");
228 debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
229 debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
230
231 if (n_ranks == 2) {
232 ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
233 | ((banksize(spd.row_dens) >> 23) - 1) );
234 ddr->cs_config[1] = ( 1<<31
235 | (odt_rd_cfg << 20)
236 | (odt_wr_cfg << 16)
237 | ((spd.nbanks == 8 ? 1 : 0) << 14)
238 | ((spd.nrow_addr - 12) << 8)
239 | (spd.ncol_addr - 8) );
240 debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
241 debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
242 }
243
244 #else
245 ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
246 ddr->cs_config[2] = ( 1 << 31
247 | (odt_rd_cfg << 20)
248 | (odt_wr_cfg << 16)
249 | ((spd.nbanks == 8 ? 1 : 0) << 14)
250 | ((spd.nrow_addr - 12) << 8)
251 | (spd.ncol_addr - 8) );
252 debug("\n");
253 debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
254 debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
255
256 if (n_ranks == 2) {
257 ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
258 | ((banksize(spd.row_dens) >> 23) - 1) );
259 ddr->cs_config[3] = ( 1<<31
260 | (odt_rd_cfg << 20)
261 | (odt_wr_cfg << 16)
262 | ((spd.nbanks == 8 ? 1 : 0) << 14)
263 | ((spd.nrow_addr - 12) << 8)
264 | (spd.ncol_addr - 8) );
265 debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
266 debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
267 }
268 #endif
269
270 /*
271 * Figure out memory size in Megabytes.
272 */
273 memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
274
275 /*
276 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
277 */
278 law_size = 19 + __ilog2(memsize);
279
280 /*
281 * Set up LAWBAR for all of DDR.
282 */
283 ecm->bar = CONFIG_SYS_DDR_SDRAM_BASE & 0xfffff000;
284 ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
285 debug("DDR:bar=0x%08x\n", ecm->bar);
286 debug("DDR:ar=0x%08x\n", ecm->ar);
287
288 /*
289 * Find the largest CAS by locating the highest 1 bit
290 * in the spd.cas_lat field. Translate it to a DDR
291 * controller field value:
292 *
293 * CAS Lat DDR I DDR II Ctrl
294 * Clocks SPD Bit SPD Bit Value
295 * ------- ------- ------- -----
296 * 1.0 0 0001
297 * 1.5 1 0010
298 * 2.0 2 2 0011
299 * 2.5 3 0100
300 * 3.0 4 3 0101
301 * 3.5 5 0110
302 * 4.0 6 4 0111
303 * 4.5 1000
304 * 5.0 5 1001
305 */
306 caslat = __ilog2(spd.cas_lat);
307 if ((spd.mem_type == SPD_MEMTYPE_DDR)
308 && (caslat > 6)) {
309 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
310 return 0;
311 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
312 && (caslat < 2 || caslat > 5)) {
313 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
314 spd.cas_lat);
315 return 0;
316 }
317 debug("DDR: caslat SPD bit is %d\n", caslat);
318
319 max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
320 + (spd.clk_cycle & 0x0f));
321 max_data_rate = max_bus_clk * 2;
322
323 debug("DDR:Module maximum data rate is: %d MHz\n", max_data_rate);
324
325 ddrc_clk = gd->mem_clk / 1000000;
326 effective_data_rate = 0;
327
328 if (max_data_rate >= 460) { /* it is DDR2-800, 667, 533 */
329 if (spd.cas_lat & 0x08)
330 caslat = 3;
331 else
332 caslat = 4;
333 if (ddrc_clk <= 460 && ddrc_clk > 350)
334 effective_data_rate = 400;
335 else if (ddrc_clk <=350 && ddrc_clk > 280)
336 effective_data_rate = 333;
337 else if (ddrc_clk <= 280 && ddrc_clk > 230)
338 effective_data_rate = 266;
339 else
340 effective_data_rate = 200;
341 } else if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
342 if (ddrc_clk <= 460 && ddrc_clk > 350) {
343 /* DDR controller clk at 350~460 */
344 effective_data_rate = 400; /* 5ns */
345 caslat = caslat;
346 } else if (ddrc_clk <= 350 && ddrc_clk > 280) {
347 /* DDR controller clk at 280~350 */
348 effective_data_rate = 333; /* 6ns */
349 if (spd.clk_cycle2 == 0x60)
350 caslat = caslat - 1;
351 else
352 caslat = caslat;
353 } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
354 /* DDR controller clk at 230~280 */
355 effective_data_rate = 266; /* 7.5ns */
356 if (spd.clk_cycle3 == 0x75)
357 caslat = caslat - 2;
358 else if (spd.clk_cycle2 == 0x75)
359 caslat = caslat - 1;
360 else
361 caslat = caslat;
362 } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
363 /* DDR controller clk at 90~230 */
364 effective_data_rate = 200; /* 10ns */
365 if (spd.clk_cycle3 == 0xa0)
366 caslat = caslat - 2;
367 else if (spd.clk_cycle2 == 0xa0)
368 caslat = caslat - 1;
369 else
370 caslat = caslat;
371 }
372 } else if (max_data_rate >= 323) { /* it is DDR 333 */
373 if (ddrc_clk <= 350 && ddrc_clk > 280) {
374 /* DDR controller clk at 280~350 */
375 effective_data_rate = 333; /* 6ns */
376 caslat = caslat;
377 } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
378 /* DDR controller clk at 230~280 */
379 effective_data_rate = 266; /* 7.5ns */
380 if (spd.clk_cycle2 == 0x75)
381 caslat = caslat - 1;
382 else
383 caslat = caslat;
384 } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
385 /* DDR controller clk at 90~230 */
386 effective_data_rate = 200; /* 10ns */
387 if (spd.clk_cycle3 == 0xa0)
388 caslat = caslat - 2;
389 else if (spd.clk_cycle2 == 0xa0)
390 caslat = caslat - 1;
391 else
392 caslat = caslat;
393 }
394 } else if (max_data_rate >= 256) { /* it is DDR 266 */
395 if (ddrc_clk <= 350 && ddrc_clk > 280) {
396 /* DDR controller clk at 280~350 */
397 printf("DDR: DDR controller freq is more than "
398 "max data rate of the module\n");
399 return 0;
400 } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
401 /* DDR controller clk at 230~280 */
402 effective_data_rate = 266; /* 7.5ns */
403 caslat = caslat;
404 } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
405 /* DDR controller clk at 90~230 */
406 effective_data_rate = 200; /* 10ns */
407 if (spd.clk_cycle2 == 0xa0)
408 caslat = caslat - 1;
409 }
410 } else if (max_data_rate >= 190) { /* it is DDR 200 */
411 if (ddrc_clk <= 350 && ddrc_clk > 230) {
412 /* DDR controller clk at 230~350 */
413 printf("DDR: DDR controller freq is more than "
414 "max data rate of the module\n");
415 return 0;
416 } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
417 /* DDR controller clk at 90~230 */
418 effective_data_rate = 200; /* 10ns */
419 caslat = caslat;
420 }
421 }
422
423 debug("DDR:Effective data rate is: %dMHz\n", effective_data_rate);
424 debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
425
426 /*
427 * Errata DDR6 work around: input enable 2 cycles earlier.
428 * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
429 */
430 if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
431 if (caslat == 2)
432 ddr->debug_reg = 0x201c0000; /* CL=2 */
433 else if (caslat == 3)
434 ddr->debug_reg = 0x202c0000; /* CL=2.5 */
435 else if (caslat == 4)
436 ddr->debug_reg = 0x202c0000; /* CL=3.0 */
437
438 __asm__ __volatile__ ("sync");
439
440 debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
441 }
442
443 /*
444 * Convert caslat clocks to DDR controller value.
445 * Force caslat_ctrl to be DDR Controller field-sized.
446 */
447 if (spd.mem_type == SPD_MEMTYPE_DDR) {
448 caslat_ctrl = (caslat + 1) & 0x07;
449 } else {
450 caslat_ctrl = (2 * caslat - 1) & 0x0f;
451 }
452
453 debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
454 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
455 caslat, caslat_ctrl);
456
457 /*
458 * Timing Config 0.
459 * Avoid writing for DDR I.
460 */
461 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
462 unsigned char taxpd_clk = 8; /* By the book. */
463 unsigned char tmrd_clk = 2; /* By the book. */
464 unsigned char act_pd_exit = 2; /* Empirical? */
465 unsigned char pre_pd_exit = 6; /* Empirical? */
466
467 ddr->timing_cfg_0 = (0
468 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
469 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
470 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
471 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
472 );
473 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
474 }
475
476 /*
477 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
478 * use conservative value.
479 * For DDR II, they are bytes 36 and 37, in quarter nanos.
480 */
481
482 if (spd.mem_type == SPD_MEMTYPE_DDR) {
483 twr_clk = 3; /* Clocks */
484 twtr_clk = 1; /* Clocks */
485 } else {
486 twr_clk = picos_to_clk(spd.twr * 250);
487 twtr_clk = picos_to_clk(spd.twtr * 250);
488 if (twtr_clk < 2)
489 twtr_clk = 2;
490 }
491
492 /*
493 * Calculate Trfc, in picos.
494 * DDR I: Byte 42 straight up in ns.
495 * DDR II: Byte 40 and 42 swizzled some, in ns.
496 */
497 if (spd.mem_type == SPD_MEMTYPE_DDR) {
498 trfc = spd.trfc * 1000; /* up to ps */
499 } else {
500 unsigned int byte40_table_ps[8] = {
501 0,
502 250,
503 330,
504 500,
505 660,
506 750,
507 0,
508 0
509 };
510
511 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
512 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
513 }
514 trfc_clk = picos_to_clk(trfc);
515
516 /*
517 * Trcd, Byte 29, from quarter nanos to ps and clocks.
518 */
519 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
520
521 /*
522 * Convert trfc_clk to DDR controller fields. DDR I should
523 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
524 * 83xx controller has an extended REFREC field of three bits.
525 * The controller automatically adds 8 clocks to this value,
526 * so preadjust it down 8 first before splitting it up.
527 */
528 trfc_low = (trfc_clk - 8) & 0xf;
529 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
530
531 ddr->timing_cfg_1 =
532 (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
533 ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
534 (trcd_clk << 20 ) | /* ACTTORW */
535 (caslat_ctrl << 16 ) | /* CASLAT */
536 (trfc_low << 12 ) | /* REFEC */
537 ((twr_clk & 0x07) << 8) | /* WRRREC */
538 ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
539 ((twtr_clk & 0x07) << 0) /* WRTORD */
540 );
541
542 /*
543 * Additive Latency
544 * For DDR I, 0.
545 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
546 * which comes from Trcd, and also note that:
547 * add_lat + caslat must be >= 4
548 */
549 add_lat = 0;
550 if (spd.mem_type == SPD_MEMTYPE_DDR2
551 && (odt_wr_cfg || odt_rd_cfg)
552 && (caslat < 4)) {
553 add_lat = 4 - caslat;
554 if ((add_lat + caslat) < 4) {
555 add_lat = 0;
556 }
557 }
558
559 /*
560 * Write Data Delay
561 * Historically 0x2 == 4/8 clock delay.
562 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
563 */
564 wr_data_delay = 2;
565
566 /*
567 * Write Latency
568 * Read to Precharge
569 * Minimum CKE Pulse Width.
570 * Four Activate Window
571 */
572 if (spd.mem_type == SPD_MEMTYPE_DDR) {
573 /*
574 * This is a lie. It should really be 1, but if it is
575 * set to 1, bits overlap into the old controller's
576 * otherwise unused ACSM field. If we leave it 0, then
577 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
578 */
579 wr_lat = 0;
580
581 trtp_clk = 2; /* By the book. */
582 cke_min_clk = 1; /* By the book. */
583 four_act = 1; /* By the book. */
584
585 } else {
586 wr_lat = caslat - 1;
587
588 /* Convert SPD value from quarter nanos to picos. */
589 trtp_clk = picos_to_clk(spd.trtp * 250);
590 if (trtp_clk < 2)
591 trtp_clk = 2;
592 trtp_clk += add_lat;
593
594 cke_min_clk = 3; /* By the book. */
595 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
596 }
597
598 /*
599 * Empirically set ~MCAS-to-preamble override for DDR 2.
600 * Your milage will vary.
601 */
602 cpo = 0;
603 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
604 if (effective_data_rate == 266) {
605 cpo = 0x4; /* READ_LAT + 1/2 */
606 } else if (effective_data_rate == 333) {
607 cpo = 0x6; /* READ_LAT + 1 */
608 } else if (effective_data_rate == 400) {
609 cpo = 0x7; /* READ_LAT + 5/4 */
610 } else {
611 /* Automatic calibration */
612 cpo = 0x1f;
613 }
614 }
615
616 ddr->timing_cfg_2 = (0
617 | ((add_lat & 0x7) << 28) /* ADD_LAT */
618 | ((cpo & 0x1f) << 23) /* CPO */
619 | ((wr_lat & 0x7) << 19) /* WR_LAT */
620 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
621 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
622 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
623 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
624 );
625
626 debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
627 debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
628
629 /* Check DIMM data bus width */
630 if (spd.dataw_lsb < 64) {
631 if (spd.mem_type == SPD_MEMTYPE_DDR)
632 burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
633 else
634 burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
635 debug("\n DDR DIMM: data bus width is 32 bit");
636 } else {
637 burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
638 debug("\n DDR DIMM: data bus width is 64 bit");
639 }
640
641 /* Is this an ECC DDR chip? */
642 if (spd.config == 0x02)
643 debug(" with ECC\n");
644 else
645 debug(" without ECC\n");
646
647 /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
648 Burst type is sequential
649 */
650 if (spd.mem_type == SPD_MEMTYPE_DDR) {
651 switch (caslat) {
652 case 1:
653 ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
654 break;
655 case 2:
656 ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
657 break;
658 case 3:
659 ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
660 break;
661 case 4:
662 ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
663 break;
664 default:
665 printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
666 return 0;
667 }
668 } else {
669 mode_odt_enable = 0x0; /* Default disabled */
670 if (odt_wr_cfg || odt_rd_cfg) {
671 /*
672 * Bits 6 and 2 in Extended MRS(1)
673 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
674 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
675 */
676 mode_odt_enable = 0x40; /* 150 Ohm */
677 }
678
679 ddr->sdram_mode =
680 (0
681 | (1 << (16 + 10)) /* DQS Differential disable */
682 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
683 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
684 | ((twr_clk - 1) << 9) /* Write Recovery Autopre */
685 | (caslat << 4) /* caslat */
686 | (burstlen << 0) /* Burst length */
687 );
688 }
689 debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
690
691 /*
692 * Clear EMRS2 and EMRS3.
693 */
694 ddr->sdram_mode2 = 0;
695 debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
696
697 switch (spd.refresh) {
698 case 0x00:
699 case 0x80:
700 refresh_clk = picos_to_clk(15625000);
701 break;
702 case 0x01:
703 case 0x81:
704 refresh_clk = picos_to_clk(3900000);
705 break;
706 case 0x02:
707 case 0x82:
708 refresh_clk = picos_to_clk(7800000);
709 break;
710 case 0x03:
711 case 0x83:
712 refresh_clk = picos_to_clk(31300000);
713 break;
714 case 0x04:
715 case 0x84:
716 refresh_clk = picos_to_clk(62500000);
717 break;
718 case 0x05:
719 case 0x85:
720 refresh_clk = picos_to_clk(125000000);
721 break;
722 default:
723 refresh_clk = 0x512;
724 break;
725 }
726
727 /*
728 * Set BSTOPRE to 0x100 for page mode
729 * If auto-charge is used, set BSTOPRE = 0
730 */
731 ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
732 debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
733
734 /*
735 * SDRAM Cfg 2
736 */
737 odt_cfg = 0;
738 #ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU
739 if (odt_rd_cfg | odt_wr_cfg) {
740 odt_cfg = 0x2; /* ODT to IOs during reads */
741 }
742 #endif
743 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
744 ddr->sdram_cfg2 = (0
745 | (0 << 26) /* True DQS */
746 | (odt_cfg << 21) /* ODT only read */
747 | (1 << 12) /* 1 refresh at a time */
748 );
749
750 debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
751 }
752
753 #ifdef CONFIG_SYS_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
754 ddr->sdram_clk_cntl = CONFIG_SYS_DDR_SDRAM_CLK_CNTL;
755 #endif
756 debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
757
758 asm("sync;isync");
759
760 udelay(600);
761
762 /*
763 * Figure out the settings for the sdram_cfg register. Build up
764 * the value in 'sdram_cfg' before writing since the write into
765 * the register will actually enable the memory controller, and all
766 * settings must be done before enabling.
767 *
768 * sdram_cfg[0] = 1 (ddr sdram logic enable)
769 * sdram_cfg[1] = 1 (self-refresh-enable)
770 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
771 * 010 DDR 1 SDRAM
772 * 011 DDR 2 SDRAM
773 * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
774 * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
775 */
776 if (spd.mem_type == SPD_MEMTYPE_DDR)
777 sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
778 else
779 sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2;
780
781 sdram_cfg = (0
782 | SDRAM_CFG_MEM_EN /* DDR enable */
783 | SDRAM_CFG_SREN /* Self refresh */
784 | sdram_type /* SDRAM type */
785 );
786
787 /* sdram_cfg[3] = RD_EN - registered DIMM enable */
788 if (spd.mod_attr & 0x02)
789 sdram_cfg |= SDRAM_CFG_RD_EN;
790
791 /* The DIMM is 32bit width */
792 if (spd.dataw_lsb < 64) {
793 if (spd.mem_type == SPD_MEMTYPE_DDR)
794 sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
795 if (spd.mem_type == SPD_MEMTYPE_DDR2)
796 sdram_cfg |= SDRAM_CFG_32_BE;
797 }
798
799 ddrc_ecc_enable = 0;
800
801 #if defined(CONFIG_DDR_ECC)
802 /* Enable ECC with sdram_cfg[2] */
803 if (spd.config == 0x02) {
804 sdram_cfg |= 0x20000000;
805 ddrc_ecc_enable = 1;
806 /* disable error detection */
807 ddr->err_disable = ~ECC_ERROR_ENABLE;
808 /* set single bit error threshold to maximum value,
809 * reset counter to zero */
810 ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
811 (0 << ECC_ERROR_MAN_SBEC_SHIFT);
812 }
813
814 debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
815 debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
816 #endif
817 debug(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
818
819 #if defined(CONFIG_DDR_2T_TIMING)
820 /*
821 * Enable 2T timing by setting sdram_cfg[16].
822 */
823 sdram_cfg |= SDRAM_CFG_2T_EN;
824 #endif
825 /* Enable controller, and GO! */
826 ddr->sdram_cfg = sdram_cfg;
827 asm("sync;isync");
828 udelay(500);
829
830 debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
831 return memsize; /*in MBytes*/
832 }
833 #endif /* CONFIG_SPD_EEPROM */
834
835 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
836 /*
837 * Use timebase counter, get_timer() is not availabe
838 * at this point of initialization yet.
839 */
840 static __inline__ unsigned long get_tbms (void)
841 {
842 unsigned long tbl;
843 unsigned long tbu1, tbu2;
844 unsigned long ms;
845 unsigned long long tmp;
846
847 ulong tbclk = get_tbclk();
848
849 /* get the timebase ticks */
850 do {
851 asm volatile ("mftbu %0":"=r" (tbu1):);
852 asm volatile ("mftb %0":"=r" (tbl):);
853 asm volatile ("mftbu %0":"=r" (tbu2):);
854 } while (tbu1 != tbu2);
855
856 /* convert ticks to ms */
857 tmp = (unsigned long long)(tbu1);
858 tmp = (tmp << 32);
859 tmp += (unsigned long long)(tbl);
860 ms = tmp/(tbclk/1000);
861
862 return ms;
863 }
864
865 /*
866 * Initialize all of memory for ECC, then enable errors.
867 */
868 void ddr_enable_ecc(unsigned int dram_size)
869 {
870 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
871 volatile ddr83xx_t *ddr= &immap->ddr;
872 unsigned long t_start, t_end;
873 register u64 *p;
874 register uint size;
875 unsigned int pattern[2];
876
877 icache_enable();
878 t_start = get_tbms();
879 pattern[0] = 0xdeadbeef;
880 pattern[1] = 0xdeadbeef;
881
882 #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
883 dma_meminit(pattern[0], dram_size);
884 #else
885 debug("ddr init: CPU FP write method\n");
886 size = dram_size;
887 for (p = 0; p < (u64*)(size); p++) {
888 ppcDWstore((u32*)p, pattern);
889 }
890 __asm__ __volatile__ ("sync");
891 #endif
892
893 t_end = get_tbms();
894 icache_disable();
895
896 debug("\nREADY!!\n");
897 debug("ddr init duration: %ld ms\n", t_end - t_start);
898
899 /* Clear All ECC Errors */
900 if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
901 ddr->err_detect |= ECC_ERROR_DETECT_MME;
902 if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
903 ddr->err_detect |= ECC_ERROR_DETECT_MBE;
904 if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
905 ddr->err_detect |= ECC_ERROR_DETECT_SBE;
906 if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
907 ddr->err_detect |= ECC_ERROR_DETECT_MSE;
908
909 /* Disable ECC-Interrupts */
910 ddr->err_int_en &= ECC_ERR_INT_DISABLE;
911
912 /* Enable errors for ECC */
913 ddr->err_disable &= ECC_ERROR_ENABLE;
914
915 __asm__ __volatile__ ("sync");
916 __asm__ __volatile__ ("isync");
917 }
918 #endif /* CONFIG_DDR_ECC */