]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/coff-mips.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / bfd / coff-mips.c
1 /* BFD back-end for MIPS Extended-Coff files.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Original version by Per Bothner.
4 Full support added by Ian Lance Taylor, ian@cygnus.com.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "coff/internal.h"
27 #include "coff/sym.h"
28 #include "coff/symconst.h"
29 #include "coff/ecoff.h"
30 #include "coff/mips.h"
31 #include "libcoff.h"
32 #include "libecoff.h"
33 \f
34 /* Prototypes for static functions. */
35
36 static boolean mips_ecoff_bad_format_hook PARAMS ((bfd *abfd, PTR filehdr));
37 static void mips_ecoff_swap_reloc_in PARAMS ((bfd *, PTR,
38 struct internal_reloc *));
39 static void mips_ecoff_swap_reloc_out PARAMS ((bfd *,
40 const struct internal_reloc *,
41 PTR));
42 static void mips_adjust_reloc_in PARAMS ((bfd *,
43 const struct internal_reloc *,
44 arelent *));
45 static void mips_adjust_reloc_out PARAMS ((bfd *, const arelent *,
46 struct internal_reloc *));
47 static bfd_reloc_status_type mips_generic_reloc PARAMS ((bfd *abfd,
48 arelent *reloc,
49 asymbol *symbol,
50 PTR data,
51 asection *section,
52 bfd *output_bfd,
53 char **error));
54 static bfd_reloc_status_type mips_refhi_reloc PARAMS ((bfd *abfd,
55 arelent *reloc,
56 asymbol *symbol,
57 PTR data,
58 asection *section,
59 bfd *output_bfd,
60 char **error));
61 static bfd_reloc_status_type mips_reflo_reloc PARAMS ((bfd *abfd,
62 arelent *reloc,
63 asymbol *symbol,
64 PTR data,
65 asection *section,
66 bfd *output_bfd,
67 char **error));
68 static bfd_reloc_status_type mips_gprel_reloc PARAMS ((bfd *abfd,
69 arelent *reloc,
70 asymbol *symbol,
71 PTR data,
72 asection *section,
73 bfd *output_bfd,
74 char **error));
75 static bfd_reloc_status_type mips_relhi_reloc PARAMS ((bfd *abfd,
76 arelent *reloc,
77 asymbol *symbol,
78 PTR data,
79 asection *section,
80 bfd *output_bfd,
81 char **error));
82 static bfd_reloc_status_type mips_rello_reloc PARAMS ((bfd *abfd,
83 arelent *reloc,
84 asymbol *symbol,
85 PTR data,
86 asection *section,
87 bfd *output_bfd,
88 char **error));
89 static bfd_reloc_status_type mips_switch_reloc PARAMS ((bfd *abfd,
90 arelent *reloc,
91 asymbol *symbol,
92 PTR data,
93 asection *section,
94 bfd *output_bfd,
95 char **error));
96 static void mips_relocate_hi PARAMS ((struct internal_reloc *refhi,
97 struct internal_reloc *reflo,
98 bfd *input_bfd,
99 asection *input_section,
100 bfd_byte *contents,
101 size_t adjust,
102 bfd_vma relocation,
103 boolean pcrel));
104 static boolean mips_relocate_section PARAMS ((bfd *, struct bfd_link_info *,
105 bfd *, asection *,
106 bfd_byte *, PTR));
107 static boolean mips_read_relocs PARAMS ((bfd *, asection *));
108 static boolean mips_relax_section PARAMS ((bfd *, asection *,
109 struct bfd_link_info *,
110 boolean *));
111 static boolean mips_relax_pcrel16 PARAMS ((struct bfd_link_info *, bfd *,
112 asection *,
113 struct ecoff_link_hash_entry *,
114 bfd_byte *, bfd_vma));
115 static reloc_howto_type *mips_bfd_reloc_type_lookup
116 PARAMS ((bfd *, bfd_reloc_code_real_type));
117
118 \f
119 /* ECOFF has COFF sections, but the debugging information is stored in
120 a completely different format. ECOFF targets use some of the
121 swapping routines from coffswap.h, and some of the generic COFF
122 routines in coffgen.c, but, unlike the real COFF targets, do not
123 use coffcode.h itself.
124
125 Get the generic COFF swapping routines, except for the reloc,
126 symbol, and lineno ones. Give them ECOFF names. */
127 #define MIPSECOFF
128 #define NO_COFF_RELOCS
129 #define NO_COFF_SYMBOLS
130 #define NO_COFF_LINENOS
131 #define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
132 #define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
133 #define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
134 #define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
135 #define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
136 #define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
137 #include "coffswap.h"
138
139 /* Get the ECOFF swapping routines. */
140 #define ECOFF_32
141 #include "ecoffswap.h"
142 \f
143 /* How to process the various relocs types. */
144
145 static reloc_howto_type mips_howto_table[] =
146 {
147 /* Reloc type 0 is ignored. The reloc reading code ensures that
148 this is a reference to the .abs section, which will cause
149 bfd_perform_relocation to do nothing. */
150 HOWTO (MIPS_R_IGNORE, /* type */
151 0, /* rightshift */
152 0, /* size (0 = byte, 1 = short, 2 = long) */
153 8, /* bitsize */
154 false, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_dont, /* complain_on_overflow */
157 0, /* special_function */
158 "IGNORE", /* name */
159 false, /* partial_inplace */
160 0, /* src_mask */
161 0, /* dst_mask */
162 false), /* pcrel_offset */
163
164 /* A 16 bit reference to a symbol, normally from a data section. */
165 HOWTO (MIPS_R_REFHALF, /* type */
166 0, /* rightshift */
167 1, /* size (0 = byte, 1 = short, 2 = long) */
168 16, /* bitsize */
169 false, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield, /* complain_on_overflow */
172 mips_generic_reloc, /* special_function */
173 "REFHALF", /* name */
174 true, /* partial_inplace */
175 0xffff, /* src_mask */
176 0xffff, /* dst_mask */
177 false), /* pcrel_offset */
178
179 /* A 32 bit reference to a symbol, normally from a data section. */
180 HOWTO (MIPS_R_REFWORD, /* type */
181 0, /* rightshift */
182 2, /* size (0 = byte, 1 = short, 2 = long) */
183 32, /* bitsize */
184 false, /* pc_relative */
185 0, /* bitpos */
186 complain_overflow_bitfield, /* complain_on_overflow */
187 mips_generic_reloc, /* special_function */
188 "REFWORD", /* name */
189 true, /* partial_inplace */
190 0xffffffff, /* src_mask */
191 0xffffffff, /* dst_mask */
192 false), /* pcrel_offset */
193
194 /* A 26 bit absolute jump address. */
195 HOWTO (MIPS_R_JMPADDR, /* type */
196 2, /* rightshift */
197 2, /* size (0 = byte, 1 = short, 2 = long) */
198 26, /* bitsize */
199 false, /* pc_relative */
200 0, /* bitpos */
201 complain_overflow_dont, /* complain_on_overflow */
202 /* This needs complex overflow
203 detection, because the upper four
204 bits must match the PC. */
205 mips_generic_reloc, /* special_function */
206 "JMPADDR", /* name */
207 true, /* partial_inplace */
208 0x3ffffff, /* src_mask */
209 0x3ffffff, /* dst_mask */
210 false), /* pcrel_offset */
211
212 /* The high 16 bits of a symbol value. Handled by the function
213 mips_refhi_reloc. */
214 HOWTO (MIPS_R_REFHI, /* type */
215 16, /* rightshift */
216 2, /* size (0 = byte, 1 = short, 2 = long) */
217 16, /* bitsize */
218 false, /* pc_relative */
219 0, /* bitpos */
220 complain_overflow_bitfield, /* complain_on_overflow */
221 mips_refhi_reloc, /* special_function */
222 "REFHI", /* name */
223 true, /* partial_inplace */
224 0xffff, /* src_mask */
225 0xffff, /* dst_mask */
226 false), /* pcrel_offset */
227
228 /* The low 16 bits of a symbol value. */
229 HOWTO (MIPS_R_REFLO, /* type */
230 0, /* rightshift */
231 2, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 false, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_dont, /* complain_on_overflow */
236 mips_reflo_reloc, /* special_function */
237 "REFLO", /* name */
238 true, /* partial_inplace */
239 0xffff, /* src_mask */
240 0xffff, /* dst_mask */
241 false), /* pcrel_offset */
242
243 /* A reference to an offset from the gp register. Handled by the
244 function mips_gprel_reloc. */
245 HOWTO (MIPS_R_GPREL, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 16, /* bitsize */
249 false, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed, /* complain_on_overflow */
252 mips_gprel_reloc, /* special_function */
253 "GPREL", /* name */
254 true, /* partial_inplace */
255 0xffff, /* src_mask */
256 0xffff, /* dst_mask */
257 false), /* pcrel_offset */
258
259 /* A reference to a literal using an offset from the gp register.
260 Handled by the function mips_gprel_reloc. */
261 HOWTO (MIPS_R_LITERAL, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 16, /* bitsize */
265 false, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_signed, /* complain_on_overflow */
268 mips_gprel_reloc, /* special_function */
269 "LITERAL", /* name */
270 true, /* partial_inplace */
271 0xffff, /* src_mask */
272 0xffff, /* dst_mask */
273 false), /* pcrel_offset */
274
275 { 8 },
276 { 9 },
277 { 10 },
278 { 11 },
279
280 /* This reloc is a Cygnus extension used when generating position
281 independent code for embedded systems. It represents a 16 bit PC
282 relative reloc rightshifted twice as used in the MIPS branch
283 instructions. */
284 HOWTO (MIPS_R_PCREL16, /* type */
285 2, /* rightshift */
286 2, /* size (0 = byte, 1 = short, 2 = long) */
287 16, /* bitsize */
288 true, /* pc_relative */
289 0, /* bitpos */
290 complain_overflow_signed, /* complain_on_overflow */
291 mips_generic_reloc, /* special_function */
292 "PCREL16", /* name */
293 true, /* partial_inplace */
294 0xffff, /* src_mask */
295 0xffff, /* dst_mask */
296 true), /* pcrel_offset */
297
298 /* This reloc is a Cygnus extension used when generating position
299 independent code for embedded systems. It represents the high 16
300 bits of a PC relative reloc. The next reloc must be
301 MIPS_R_RELLO, and the addend is formed from the addends of the
302 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
303 final value is actually PC relative to the location of the
304 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
305 HOWTO (MIPS_R_RELHI, /* type */
306 16, /* rightshift */
307 2, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 true, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 mips_relhi_reloc, /* special_function */
313 "RELHI", /* name */
314 true, /* partial_inplace */
315 0xffff, /* src_mask */
316 0xffff, /* dst_mask */
317 true), /* pcrel_offset */
318
319 /* This reloc is a Cygnus extension used when generating position
320 independent code for embedded systems. It represents the low 16
321 bits of a PC relative reloc. */
322 HOWTO (MIPS_R_RELLO, /* type */
323 0, /* rightshift */
324 2, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 true, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 mips_rello_reloc, /* special_function */
330 "RELLO", /* name */
331 true, /* partial_inplace */
332 0xffff, /* src_mask */
333 0xffff, /* dst_mask */
334 true), /* pcrel_offset */
335
336 { 15 },
337 { 16 },
338 { 17 },
339 { 18 },
340 { 19 },
341 { 20 },
342 { 21 },
343
344 /* This reloc is a Cygnus extension used when generating position
345 independent code for embedded systems. It represents an entry in
346 a switch table, which is the difference between two symbols in
347 the .text section. The symndx is actually the offset from the
348 reloc address to the subtrahend. See include/coff/mips.h for
349 more details. */
350 HOWTO (MIPS_R_SWITCH, /* type */
351 0, /* rightshift */
352 2, /* size (0 = byte, 1 = short, 2 = long) */
353 32, /* bitsize */
354 true, /* pc_relative */
355 0, /* bitpos */
356 complain_overflow_dont, /* complain_on_overflow */
357 mips_switch_reloc, /* special_function */
358 "SWITCH", /* name */
359 true, /* partial_inplace */
360 0xffffffff, /* src_mask */
361 0xffffffff, /* dst_mask */
362 true) /* pcrel_offset */
363 };
364
365 /* When the linker is doing relaxing, it may change a external PCREL16
366 reloc. This typically represents an instruction like
367 bal foo
368 We change it to
369 .set noreorder
370 bal $L1
371 lui $at,%hi(foo - $L1)
372 $L1:
373 addiu $at,%lo(foo - $L1)
374 addu $at,$at,$31
375 jalr $at
376 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
377 instruction by. */
378
379 #define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
380 \f
381 /* See whether the magic number matches. */
382
383 static boolean
384 mips_ecoff_bad_format_hook (abfd, filehdr)
385 bfd *abfd;
386 PTR filehdr;
387 {
388 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
389
390 switch (internal_f->f_magic)
391 {
392 case MIPS_MAGIC_1:
393 /* I don't know what endianness this implies. */
394 return true;
395
396 case MIPS_MAGIC_BIG:
397 case MIPS_MAGIC_BIG2:
398 case MIPS_MAGIC_BIG3:
399 return bfd_big_endian (abfd);
400
401 case MIPS_MAGIC_LITTLE:
402 case MIPS_MAGIC_LITTLE2:
403 case MIPS_MAGIC_LITTLE3:
404 return bfd_little_endian (abfd);
405
406 default:
407 return false;
408 }
409 }
410 \f
411 /* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
412 external form. They use a bit which indicates whether the symbol
413 is external. */
414
415 /* Swap a reloc in. */
416
417 static void
418 mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
419 bfd *abfd;
420 PTR ext_ptr;
421 struct internal_reloc *intern;
422 {
423 const RELOC *ext = (RELOC *) ext_ptr;
424
425 intern->r_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) ext->r_vaddr);
426 if (bfd_header_big_endian (abfd))
427 {
428 intern->r_symndx = (((int) ext->r_bits[0]
429 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
430 | ((int) ext->r_bits[1]
431 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
432 | ((int) ext->r_bits[2]
433 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
434 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
435 >> RELOC_BITS3_TYPE_SH_BIG);
436 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
437 }
438 else
439 {
440 intern->r_symndx = (((int) ext->r_bits[0]
441 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
442 | ((int) ext->r_bits[1]
443 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
444 | ((int) ext->r_bits[2]
445 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
446 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
447 >> RELOC_BITS3_TYPE_SH_LITTLE)
448 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
449 << RELOC_BITS3_TYPEHI_SH_LITTLE));
450 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
451 }
452
453 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
454 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
455 reloc address to the base of the difference (see
456 include/coff/mips.h for more details). We copy symndx into the
457 r_offset field so as not to confuse ecoff_slurp_reloc_table in
458 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
459 addend. */
460 if (intern->r_type == MIPS_R_SWITCH
461 || (! intern->r_extern
462 && (intern->r_type == MIPS_R_RELLO
463 || intern->r_type == MIPS_R_RELHI)))
464 {
465 BFD_ASSERT (! intern->r_extern);
466 intern->r_offset = intern->r_symndx;
467 if (intern->r_offset & 0x800000)
468 intern->r_offset -= 0x1000000;
469 intern->r_symndx = RELOC_SECTION_TEXT;
470 }
471 }
472
473 /* Swap a reloc out. */
474
475 static void
476 mips_ecoff_swap_reloc_out (abfd, intern, dst)
477 bfd *abfd;
478 const struct internal_reloc *intern;
479 PTR dst;
480 {
481 RELOC *ext = (RELOC *) dst;
482 long r_symndx;
483
484 BFD_ASSERT (intern->r_extern
485 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
486
487 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
488 MIPS_R_RELHI reloc, we actually want to write the contents of
489 r_offset out as the symbol index. This undoes the change made by
490 mips_ecoff_swap_reloc_in. */
491 if (intern->r_type != MIPS_R_SWITCH
492 && (intern->r_extern
493 || (intern->r_type != MIPS_R_RELHI
494 && intern->r_type != MIPS_R_RELLO)))
495 r_symndx = intern->r_symndx;
496 else
497 {
498 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
499 r_symndx = intern->r_offset & 0xffffff;
500 }
501
502 bfd_h_put_32 (abfd, intern->r_vaddr, (bfd_byte *) ext->r_vaddr);
503 if (bfd_header_big_endian (abfd))
504 {
505 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
506 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
507 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
508 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
509 & RELOC_BITS3_TYPE_BIG)
510 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
511 }
512 else
513 {
514 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
515 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
516 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
517 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
518 & RELOC_BITS3_TYPE_LITTLE)
519 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
520 & RELOC_BITS3_TYPEHI_LITTLE))
521 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
522 }
523 }
524
525 /* Finish canonicalizing a reloc. Part of this is generic to all
526 ECOFF targets, and that part is in ecoff.c. The rest is done in
527 this backend routine. It must fill in the howto field. */
528
529 static void
530 mips_adjust_reloc_in (abfd, intern, rptr)
531 bfd *abfd;
532 const struct internal_reloc *intern;
533 arelent *rptr;
534 {
535 if (intern->r_type > MIPS_R_SWITCH)
536 abort ();
537
538 if (! intern->r_extern
539 && (intern->r_type == MIPS_R_GPREL
540 || intern->r_type == MIPS_R_LITERAL))
541 rptr->addend += ecoff_data (abfd)->gp;
542
543 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
544 the absolute section so that the reloc is ignored. */
545 if (intern->r_type == MIPS_R_IGNORE)
546 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
547
548 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
549 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
550 hold the value which was originally in the symndx field of the
551 internal MIPS ECOFF reloc. This value was copied into
552 intern->r_offset by mips_swap_reloc_in, and here we copy it into
553 the addend field. */
554 if (intern->r_type == MIPS_R_SWITCH
555 || (! intern->r_extern
556 && (intern->r_type == MIPS_R_RELHI
557 || intern->r_type == MIPS_R_RELLO)))
558 rptr->addend = intern->r_offset;
559
560 rptr->howto = &ecoff_backend (abfd)->howto_table[intern->r_type];
561 }
562
563 /* Make any adjustments needed to a reloc before writing it out. None
564 are needed for MIPS. */
565
566 static void
567 mips_adjust_reloc_out (abfd, rel, intern)
568 bfd *abfd;
569 const arelent *rel;
570 struct internal_reloc *intern;
571 {
572 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
573 MIPS_R_RELLO reloc, we must copy rel->addend into
574 intern->r_offset. This will then be written out as the symbol
575 index by mips_ecoff_swap_reloc_out. This operation parallels the
576 action of mips_adjust_reloc_in. */
577 if (intern->r_type == MIPS_R_SWITCH
578 || (! intern->r_extern
579 && (intern->r_type == MIPS_R_RELHI
580 || intern->r_type == MIPS_R_RELLO)))
581 intern->r_offset = rel->addend;
582 }
583
584 /* ECOFF relocs are either against external symbols, or against
585 sections. If we are producing relocateable output, and the reloc
586 is against an external symbol, and nothing has given us any
587 additional addend, the resulting reloc will also be against the
588 same symbol. In such a case, we don't want to change anything
589 about the way the reloc is handled, since it will all be done at
590 final link time. Rather than put special case code into
591 bfd_perform_relocation, all the reloc types use this howto
592 function. It just short circuits the reloc if producing
593 relocateable output against an external symbol. */
594
595 static bfd_reloc_status_type
596 mips_generic_reloc (abfd,
597 reloc_entry,
598 symbol,
599 data,
600 input_section,
601 output_bfd,
602 error_message)
603 bfd *abfd;
604 arelent *reloc_entry;
605 asymbol *symbol;
606 PTR data;
607 asection *input_section;
608 bfd *output_bfd;
609 char **error_message;
610 {
611 if (output_bfd != (bfd *) NULL
612 && (symbol->flags & BSF_SECTION_SYM) == 0
613 && reloc_entry->addend == 0)
614 {
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
617 }
618
619 return bfd_reloc_continue;
620 }
621
622 /* Do a REFHI relocation. This has to be done in combination with a
623 REFLO reloc, because there is a carry from the REFLO to the REFHI.
624 Here we just save the information we need; we do the actual
625 relocation when we see the REFLO. MIPS ECOFF requires that the
626 REFLO immediately follow the REFHI. As a GNU extension, we permit
627 an arbitrary number of HI relocs to be associated with a single LO
628 reloc. This extension permits gcc to output the HI and LO relocs
629 itself. */
630
631 struct mips_hi
632 {
633 struct mips_hi *next;
634 bfd_byte *addr;
635 bfd_vma addend;
636 };
637
638 /* FIXME: This should not be a static variable. */
639
640 static struct mips_hi *mips_refhi_list;
641
642 static bfd_reloc_status_type
643 mips_refhi_reloc (abfd,
644 reloc_entry,
645 symbol,
646 data,
647 input_section,
648 output_bfd,
649 error_message)
650 bfd *abfd;
651 arelent *reloc_entry;
652 asymbol *symbol;
653 PTR data;
654 asection *input_section;
655 bfd *output_bfd;
656 char **error_message;
657 {
658 bfd_reloc_status_type ret;
659 bfd_vma relocation;
660 struct mips_hi *n;
661
662 /* If we're relocating, and this an external symbol, we don't want
663 to change anything. */
664 if (output_bfd != (bfd *) NULL
665 && (symbol->flags & BSF_SECTION_SYM) == 0
666 && reloc_entry->addend == 0)
667 {
668 reloc_entry->address += input_section->output_offset;
669 return bfd_reloc_ok;
670 }
671
672 ret = bfd_reloc_ok;
673 if (bfd_is_und_section (symbol->section)
674 && output_bfd == (bfd *) NULL)
675 ret = bfd_reloc_undefined;
676
677 if (bfd_is_com_section (symbol->section))
678 relocation = 0;
679 else
680 relocation = symbol->value;
681
682 relocation += symbol->section->output_section->vma;
683 relocation += symbol->section->output_offset;
684 relocation += reloc_entry->addend;
685
686 if (reloc_entry->address > input_section->_cooked_size)
687 return bfd_reloc_outofrange;
688
689 /* Save the information, and let REFLO do the actual relocation. */
690 n = (struct mips_hi *) bfd_malloc (sizeof *n);
691 if (n == NULL)
692 return bfd_reloc_outofrange;
693 n->addr = (bfd_byte *) data + reloc_entry->address;
694 n->addend = relocation;
695 n->next = mips_refhi_list;
696 mips_refhi_list = n;
697
698 if (output_bfd != (bfd *) NULL)
699 reloc_entry->address += input_section->output_offset;
700
701 return ret;
702 }
703
704 /* Do a REFLO relocation. This is a straightforward 16 bit inplace
705 relocation; this function exists in order to do the REFHI
706 relocation described above. */
707
708 static bfd_reloc_status_type
709 mips_reflo_reloc (abfd,
710 reloc_entry,
711 symbol,
712 data,
713 input_section,
714 output_bfd,
715 error_message)
716 bfd *abfd;
717 arelent *reloc_entry;
718 asymbol *symbol;
719 PTR data;
720 asection *input_section;
721 bfd *output_bfd;
722 char **error_message;
723 {
724 if (mips_refhi_list != NULL)
725 {
726 struct mips_hi *l;
727
728 l = mips_refhi_list;
729 while (l != NULL)
730 {
731 unsigned long insn;
732 unsigned long val;
733 unsigned long vallo;
734 struct mips_hi *next;
735
736 /* Do the REFHI relocation. Note that we actually don't
737 need to know anything about the REFLO itself, except
738 where to find the low 16 bits of the addend needed by the
739 REFHI. */
740 insn = bfd_get_32 (abfd, l->addr);
741 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
742 & 0xffff);
743 val = ((insn & 0xffff) << 16) + vallo;
744 val += l->addend;
745
746 /* The low order 16 bits are always treated as a signed
747 value. Therefore, a negative value in the low order bits
748 requires an adjustment in the high order bits. We need
749 to make this adjustment in two ways: once for the bits we
750 took from the data, and once for the bits we are putting
751 back in to the data. */
752 if ((vallo & 0x8000) != 0)
753 val -= 0x10000;
754 if ((val & 0x8000) != 0)
755 val += 0x10000;
756
757 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
758 bfd_put_32 (abfd, insn, l->addr);
759
760 next = l->next;
761 free (l);
762 l = next;
763 }
764
765 mips_refhi_list = NULL;
766 }
767
768 /* Now do the REFLO reloc in the usual way. */
769 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
770 input_section, output_bfd, error_message);
771 }
772
773 /* Do a GPREL relocation. This is a 16 bit value which must become
774 the offset from the gp register. */
775
776 static bfd_reloc_status_type
777 mips_gprel_reloc (abfd,
778 reloc_entry,
779 symbol,
780 data,
781 input_section,
782 output_bfd,
783 error_message)
784 bfd *abfd;
785 arelent *reloc_entry;
786 asymbol *symbol;
787 PTR data;
788 asection *input_section;
789 bfd *output_bfd;
790 char **error_message;
791 {
792 boolean relocateable;
793 bfd_vma gp;
794 bfd_vma relocation;
795 unsigned long val;
796 unsigned long insn;
797
798 /* If we're relocating, and this is an external symbol with no
799 addend, we don't want to change anything. We will only have an
800 addend if this is a newly created reloc, not read from an ECOFF
801 file. */
802 if (output_bfd != (bfd *) NULL
803 && (symbol->flags & BSF_SECTION_SYM) == 0
804 && reloc_entry->addend == 0)
805 {
806 reloc_entry->address += input_section->output_offset;
807 return bfd_reloc_ok;
808 }
809
810 if (output_bfd != (bfd *) NULL)
811 relocateable = true;
812 else
813 {
814 relocateable = false;
815 output_bfd = symbol->section->output_section->owner;
816 }
817
818 if (bfd_is_und_section (symbol->section)
819 && relocateable == false)
820 return bfd_reloc_undefined;
821
822 /* We have to figure out the gp value, so that we can adjust the
823 symbol value correctly. We look up the symbol _gp in the output
824 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
825 target data. We don't need to adjust the symbol value for an
826 external symbol if we are producing relocateable output. */
827 gp = _bfd_get_gp_value (output_bfd);
828 if (gp == 0
829 && (relocateable == false
830 || (symbol->flags & BSF_SECTION_SYM) != 0))
831 {
832 if (relocateable != false)
833 {
834 /* Make up a value. */
835 gp = symbol->section->output_section->vma + 0x4000;
836 _bfd_set_gp_value (output_bfd, gp);
837 }
838 else
839 {
840 unsigned int count;
841 asymbol **sym;
842 unsigned int i;
843
844 count = bfd_get_symcount (output_bfd);
845 sym = bfd_get_outsymbols (output_bfd);
846
847 if (sym == (asymbol **) NULL)
848 i = count;
849 else
850 {
851 for (i = 0; i < count; i++, sym++)
852 {
853 register CONST char *name;
854
855 name = bfd_asymbol_name (*sym);
856 if (*name == '_' && strcmp (name, "_gp") == 0)
857 {
858 gp = bfd_asymbol_value (*sym);
859 _bfd_set_gp_value (output_bfd, gp);
860 break;
861 }
862 }
863 }
864
865 if (i >= count)
866 {
867 /* Only get the error once. */
868 gp = 4;
869 _bfd_set_gp_value (output_bfd, gp);
870 *error_message =
871 (char *) "GP relative relocation when _gp not defined";
872 return bfd_reloc_dangerous;
873 }
874 }
875 }
876
877 if (bfd_is_com_section (symbol->section))
878 relocation = 0;
879 else
880 relocation = symbol->value;
881
882 relocation += symbol->section->output_section->vma;
883 relocation += symbol->section->output_offset;
884
885 if (reloc_entry->address > input_section->_cooked_size)
886 return bfd_reloc_outofrange;
887
888 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
889
890 /* Set val to the offset into the section or symbol. */
891 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
892 if (val & 0x8000)
893 val -= 0x10000;
894
895 /* Adjust val for the final section location and GP value. If we
896 are producing relocateable output, we don't want to do this for
897 an external symbol. */
898 if (relocateable == false
899 || (symbol->flags & BSF_SECTION_SYM) != 0)
900 val += relocation - gp;
901
902 insn = (insn &~ 0xffff) | (val & 0xffff);
903 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
904
905 if (relocateable != false)
906 reloc_entry->address += input_section->output_offset;
907
908 /* Make sure it fit in 16 bits. */
909 if (val >= 0x8000 && val < 0xffff8000)
910 return bfd_reloc_overflow;
911
912 return bfd_reloc_ok;
913 }
914
915 /* Do a RELHI relocation. We do this in conjunction with a RELLO
916 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
917 are Cygnus extensions used when generating position independent
918 code for embedded systems. */
919
920 /* FIXME: This should not be a static variable. */
921
922 static struct mips_hi *mips_relhi_list;
923
924 static bfd_reloc_status_type
925 mips_relhi_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
938 char **error_message;
939 {
940 bfd_reloc_status_type ret;
941 bfd_vma relocation;
942 struct mips_hi *n;
943
944 /* If this is a reloc against a section symbol, then it is correct
945 in the object file. The only time we want to change this case is
946 when we are relaxing, and that is handled entirely by
947 mips_relocate_section and never calls this function. */
948 if ((symbol->flags & BSF_SECTION_SYM) != 0)
949 {
950 if (output_bfd != (bfd *) NULL)
951 reloc_entry->address += input_section->output_offset;
952 return bfd_reloc_ok;
953 }
954
955 /* This is an external symbol. If we're relocating, we don't want
956 to change anything. */
957 if (output_bfd != (bfd *) NULL)
958 {
959 reloc_entry->address += input_section->output_offset;
960 return bfd_reloc_ok;
961 }
962
963 ret = bfd_reloc_ok;
964 if (bfd_is_und_section (symbol->section)
965 && output_bfd == (bfd *) NULL)
966 ret = bfd_reloc_undefined;
967
968 if (bfd_is_com_section (symbol->section))
969 relocation = 0;
970 else
971 relocation = symbol->value;
972
973 relocation += symbol->section->output_section->vma;
974 relocation += symbol->section->output_offset;
975 relocation += reloc_entry->addend;
976
977 if (reloc_entry->address > input_section->_cooked_size)
978 return bfd_reloc_outofrange;
979
980 /* Save the information, and let RELLO do the actual relocation. */
981 n = (struct mips_hi *) bfd_malloc (sizeof *n);
982 if (n == NULL)
983 return bfd_reloc_outofrange;
984 n->addr = (bfd_byte *) data + reloc_entry->address;
985 n->addend = relocation;
986 n->next = mips_relhi_list;
987 mips_relhi_list = n;
988
989 if (output_bfd != (bfd *) NULL)
990 reloc_entry->address += input_section->output_offset;
991
992 return ret;
993 }
994
995 /* Do a RELLO relocation. This is a straightforward 16 bit PC
996 relative relocation; this function exists in order to do the RELHI
997 relocation described above. */
998
999 static bfd_reloc_status_type
1000 mips_rello_reloc (abfd,
1001 reloc_entry,
1002 symbol,
1003 data,
1004 input_section,
1005 output_bfd,
1006 error_message)
1007 bfd *abfd;
1008 arelent *reloc_entry;
1009 asymbol *symbol;
1010 PTR data;
1011 asection *input_section;
1012 bfd *output_bfd;
1013 char **error_message;
1014 {
1015 if (mips_relhi_list != NULL)
1016 {
1017 struct mips_hi *l;
1018
1019 l = mips_relhi_list;
1020 while (l != NULL)
1021 {
1022 unsigned long insn;
1023 unsigned long val;
1024 unsigned long vallo;
1025 struct mips_hi *next;
1026
1027 /* Do the RELHI relocation. Note that we actually don't
1028 need to know anything about the RELLO itself, except
1029 where to find the low 16 bits of the addend needed by the
1030 RELHI. */
1031 insn = bfd_get_32 (abfd, l->addr);
1032 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1033 & 0xffff);
1034 val = ((insn & 0xffff) << 16) + vallo;
1035 val += l->addend;
1036
1037 /* If the symbol is defined, make val PC relative. If the
1038 symbol is not defined we don't want to do this, because
1039 we don't want the value in the object file to incorporate
1040 the address of the reloc. */
1041 if (! bfd_is_und_section (bfd_get_section (symbol))
1042 && ! bfd_is_com_section (bfd_get_section (symbol)))
1043 val -= (input_section->output_section->vma
1044 + input_section->output_offset
1045 + reloc_entry->address);
1046
1047 /* The low order 16 bits are always treated as a signed
1048 value. Therefore, a negative value in the low order bits
1049 requires an adjustment in the high order bits. We need
1050 to make this adjustment in two ways: once for the bits we
1051 took from the data, and once for the bits we are putting
1052 back in to the data. */
1053 if ((vallo & 0x8000) != 0)
1054 val -= 0x10000;
1055 if ((val & 0x8000) != 0)
1056 val += 0x10000;
1057
1058 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1059 bfd_put_32 (abfd, insn, l->addr);
1060
1061 next = l->next;
1062 free (l);
1063 l = next;
1064 }
1065
1066 mips_relhi_list = NULL;
1067 }
1068
1069 /* If this is a reloc against a section symbol, then it is correct
1070 in the object file. The only time we want to change this case is
1071 when we are relaxing, and that is handled entirely by
1072 mips_relocate_section and never calls this function. */
1073 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1074 {
1075 if (output_bfd != (bfd *) NULL)
1076 reloc_entry->address += input_section->output_offset;
1077 return bfd_reloc_ok;
1078 }
1079
1080 /* bfd_perform_relocation does not handle pcrel_offset relocations
1081 correctly when generating a relocateable file, so handle them
1082 directly here. */
1083 if (output_bfd != (bfd *) NULL)
1084 {
1085 reloc_entry->address += input_section->output_offset;
1086 return bfd_reloc_ok;
1087 }
1088
1089 /* Now do the RELLO reloc in the usual way. */
1090 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1091 input_section, output_bfd, error_message);
1092 }
1093
1094 /* This is the special function for the MIPS_R_SWITCH reloc. This
1095 special reloc is normally correct in the object file, and only
1096 requires special handling when relaxing. We don't want
1097 bfd_perform_relocation to tamper with it at all. */
1098
1099 /*ARGSUSED*/
1100 static bfd_reloc_status_type
1101 mips_switch_reloc (abfd,
1102 reloc_entry,
1103 symbol,
1104 data,
1105 input_section,
1106 output_bfd,
1107 error_message)
1108 bfd *abfd;
1109 arelent *reloc_entry;
1110 asymbol *symbol;
1111 PTR data;
1112 asection *input_section;
1113 bfd *output_bfd;
1114 char **error_message;
1115 {
1116 return bfd_reloc_ok;
1117 }
1118
1119 /* Get the howto structure for a generic reloc type. */
1120
1121 static reloc_howto_type *
1122 mips_bfd_reloc_type_lookup (abfd, code)
1123 bfd *abfd;
1124 bfd_reloc_code_real_type code;
1125 {
1126 int mips_type;
1127
1128 switch (code)
1129 {
1130 case BFD_RELOC_16:
1131 mips_type = MIPS_R_REFHALF;
1132 break;
1133 case BFD_RELOC_32:
1134 case BFD_RELOC_CTOR:
1135 mips_type = MIPS_R_REFWORD;
1136 break;
1137 case BFD_RELOC_MIPS_JMP:
1138 mips_type = MIPS_R_JMPADDR;
1139 break;
1140 case BFD_RELOC_HI16_S:
1141 mips_type = MIPS_R_REFHI;
1142 break;
1143 case BFD_RELOC_LO16:
1144 mips_type = MIPS_R_REFLO;
1145 break;
1146 case BFD_RELOC_MIPS_GPREL:
1147 mips_type = MIPS_R_GPREL;
1148 break;
1149 case BFD_RELOC_MIPS_LITERAL:
1150 mips_type = MIPS_R_LITERAL;
1151 break;
1152 case BFD_RELOC_16_PCREL_S2:
1153 mips_type = MIPS_R_PCREL16;
1154 break;
1155 case BFD_RELOC_PCREL_HI16_S:
1156 mips_type = MIPS_R_RELHI;
1157 break;
1158 case BFD_RELOC_PCREL_LO16:
1159 mips_type = MIPS_R_RELLO;
1160 break;
1161 case BFD_RELOC_GPREL32:
1162 mips_type = MIPS_R_SWITCH;
1163 break;
1164 default:
1165 return (reloc_howto_type *) NULL;
1166 }
1167
1168 return &ecoff_backend (abfd)->howto_table[mips_type];
1169 }
1170 \f
1171 /* A helper routine for mips_relocate_section which handles the REFHI
1172 and RELHI relocations. The REFHI relocation must be followed by a
1173 REFLO relocation (and RELHI by a RELLO), and the addend used is
1174 formed from the addends of both instructions. */
1175
1176 static void
1177 mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1178 relocation, pcrel)
1179 struct internal_reloc *refhi;
1180 struct internal_reloc *reflo;
1181 bfd *input_bfd;
1182 asection *input_section;
1183 bfd_byte *contents;
1184 size_t adjust;
1185 bfd_vma relocation;
1186 boolean pcrel;
1187 {
1188 unsigned long insn;
1189 unsigned long val;
1190 unsigned long vallo;
1191
1192 insn = bfd_get_32 (input_bfd,
1193 contents + adjust + refhi->r_vaddr - input_section->vma);
1194 vallo = (bfd_get_32 (input_bfd,
1195 contents + adjust + reflo->r_vaddr - input_section->vma)
1196 & 0xffff);
1197 val = ((insn & 0xffff) << 16) + vallo;
1198 val += relocation;
1199
1200 /* The low order 16 bits are always treated as a signed value.
1201 Therefore, a negative value in the low order bits requires an
1202 adjustment in the high order bits. We need to make this
1203 adjustment in two ways: once for the bits we took from the data,
1204 and once for the bits we are putting back in to the data. */
1205 if ((vallo & 0x8000) != 0)
1206 val -= 0x10000;
1207
1208 if (pcrel)
1209 val -= (input_section->output_section->vma
1210 + input_section->output_offset
1211 + (reflo->r_vaddr - input_section->vma + adjust));
1212
1213 if ((val & 0x8000) != 0)
1214 val += 0x10000;
1215
1216 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1217 bfd_put_32 (input_bfd, (bfd_vma) insn,
1218 contents + adjust + refhi->r_vaddr - input_section->vma);
1219 }
1220
1221 /* Relocate a section while linking a MIPS ECOFF file. */
1222
1223 static boolean
1224 mips_relocate_section (output_bfd, info, input_bfd, input_section,
1225 contents, external_relocs)
1226 bfd *output_bfd;
1227 struct bfd_link_info *info;
1228 bfd *input_bfd;
1229 asection *input_section;
1230 bfd_byte *contents;
1231 PTR external_relocs;
1232 {
1233 asection **symndx_to_section;
1234 struct ecoff_link_hash_entry **sym_hashes;
1235 bfd_vma gp;
1236 boolean gp_undefined;
1237 size_t adjust;
1238 long *offsets;
1239 struct external_reloc *ext_rel;
1240 struct external_reloc *ext_rel_end;
1241 unsigned int i;
1242 boolean got_lo;
1243 struct internal_reloc lo_int_rel;
1244
1245 BFD_ASSERT (input_bfd->xvec->byteorder
1246 == output_bfd->xvec->byteorder);
1247
1248 /* We keep a table mapping the symndx found in an internal reloc to
1249 the appropriate section. This is faster than looking up the
1250 section by name each time. */
1251 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1252 if (symndx_to_section == (asection **) NULL)
1253 {
1254 symndx_to_section = ((asection **)
1255 bfd_alloc (input_bfd,
1256 (NUM_RELOC_SECTIONS
1257 * sizeof (asection *))));
1258 if (!symndx_to_section)
1259 return false;
1260
1261 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1262 symndx_to_section[RELOC_SECTION_TEXT] =
1263 bfd_get_section_by_name (input_bfd, ".text");
1264 symndx_to_section[RELOC_SECTION_RDATA] =
1265 bfd_get_section_by_name (input_bfd, ".rdata");
1266 symndx_to_section[RELOC_SECTION_DATA] =
1267 bfd_get_section_by_name (input_bfd, ".data");
1268 symndx_to_section[RELOC_SECTION_SDATA] =
1269 bfd_get_section_by_name (input_bfd, ".sdata");
1270 symndx_to_section[RELOC_SECTION_SBSS] =
1271 bfd_get_section_by_name (input_bfd, ".sbss");
1272 symndx_to_section[RELOC_SECTION_BSS] =
1273 bfd_get_section_by_name (input_bfd, ".bss");
1274 symndx_to_section[RELOC_SECTION_INIT] =
1275 bfd_get_section_by_name (input_bfd, ".init");
1276 symndx_to_section[RELOC_SECTION_LIT8] =
1277 bfd_get_section_by_name (input_bfd, ".lit8");
1278 symndx_to_section[RELOC_SECTION_LIT4] =
1279 bfd_get_section_by_name (input_bfd, ".lit4");
1280 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1281 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1282 symndx_to_section[RELOC_SECTION_FINI] =
1283 bfd_get_section_by_name (input_bfd, ".fini");
1284 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1285 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1286
1287 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1288 }
1289
1290 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1291
1292 gp = _bfd_get_gp_value (output_bfd);
1293 if (gp == 0)
1294 gp_undefined = true;
1295 else
1296 gp_undefined = false;
1297
1298 got_lo = false;
1299
1300 adjust = 0;
1301
1302 if (ecoff_section_data (input_bfd, input_section) == NULL)
1303 offsets = NULL;
1304 else
1305 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1306
1307 ext_rel = (struct external_reloc *) external_relocs;
1308 ext_rel_end = ext_rel + input_section->reloc_count;
1309 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1310 {
1311 struct internal_reloc int_rel;
1312 boolean use_lo;
1313 bfd_vma addend;
1314 reloc_howto_type *howto;
1315 struct ecoff_link_hash_entry *h = NULL;
1316 asection *s = NULL;
1317 bfd_vma relocation;
1318 bfd_reloc_status_type r;
1319
1320 if (! got_lo)
1321 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1322 else
1323 {
1324 int_rel = lo_int_rel;
1325 got_lo = false;
1326 }
1327
1328 BFD_ASSERT (int_rel.r_type < ecoff_backend (abfd)->howto_table_size);
1329
1330 /* The REFHI and RELHI relocs requires special handling. they
1331 must be followed by a REFLO or RELLO reloc, respectively, and
1332 the addend is formed from both relocs. */
1333 if (int_rel.r_type == MIPS_R_REFHI
1334 || int_rel.r_type == MIPS_R_RELHI)
1335 {
1336 struct external_reloc *lo_ext_rel;
1337
1338 /* As a GNU extension, permit an arbitrary number of REFHI
1339 or RELHI relocs before the REFLO or RELLO reloc. This
1340 permits gcc to emit the HI and LO relocs itself. */
1341 for (lo_ext_rel = ext_rel + 1;
1342 lo_ext_rel < ext_rel_end;
1343 lo_ext_rel++)
1344 {
1345 mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
1346 &lo_int_rel);
1347 if (lo_int_rel.r_type != int_rel.r_type)
1348 break;
1349 }
1350
1351 if (lo_ext_rel < ext_rel_end
1352 && (lo_int_rel.r_type
1353 == (int_rel.r_type == MIPS_R_REFHI
1354 ? MIPS_R_REFLO
1355 : MIPS_R_RELLO))
1356 && int_rel.r_extern == lo_int_rel.r_extern
1357 && int_rel.r_symndx == lo_int_rel.r_symndx)
1358 {
1359 use_lo = true;
1360 if (lo_ext_rel == ext_rel + 1)
1361 got_lo = true;
1362 }
1363 }
1364
1365 howto = &ecoff_backend (abfd)->howto_table[int_rel.r_type];
1366
1367 /* The SWITCH reloc must be handled specially. This reloc is
1368 marks the location of a difference between two portions of an
1369 object file. The symbol index does not reference a symbol,
1370 but is actually the offset from the reloc to the subtrahend
1371 of the difference. This reloc is correct in the object file,
1372 and needs no further adjustment, unless we are relaxing. If
1373 we are relaxing, we may have to add in an offset. Since no
1374 symbols are involved in this reloc, we handle it completely
1375 here. */
1376 if (int_rel.r_type == MIPS_R_SWITCH)
1377 {
1378 if (offsets != NULL
1379 && offsets[i] != 0)
1380 {
1381 r = _bfd_relocate_contents (howto, input_bfd,
1382 (bfd_vma) offsets[i],
1383 (contents
1384 + adjust
1385 + int_rel.r_vaddr
1386 - input_section->vma));
1387 BFD_ASSERT (r == bfd_reloc_ok);
1388 }
1389
1390 continue;
1391 }
1392
1393 if (int_rel.r_extern)
1394 {
1395 h = sym_hashes[int_rel.r_symndx];
1396 /* If h is NULL, that means that there is a reloc against an
1397 external symbol which we thought was just a debugging
1398 symbol. This should not happen. */
1399 if (h == (struct ecoff_link_hash_entry *) NULL)
1400 abort ();
1401 }
1402 else
1403 {
1404 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1405 s = NULL;
1406 else
1407 s = symndx_to_section[int_rel.r_symndx];
1408
1409 if (s == (asection *) NULL)
1410 abort ();
1411 }
1412
1413 /* The GPREL reloc uses an addend: the difference in the GP
1414 values. */
1415 if (int_rel.r_type != MIPS_R_GPREL
1416 && int_rel.r_type != MIPS_R_LITERAL)
1417 addend = 0;
1418 else
1419 {
1420 if (gp_undefined)
1421 {
1422 if (! ((*info->callbacks->reloc_dangerous)
1423 (info, "GP relative relocation when GP not defined",
1424 input_bfd, input_section,
1425 int_rel.r_vaddr - input_section->vma)))
1426 return false;
1427 /* Only give the error once per link. */
1428 gp = 4;
1429 _bfd_set_gp_value (output_bfd, gp);
1430 gp_undefined = false;
1431 }
1432 if (! int_rel.r_extern)
1433 {
1434 /* This is a relocation against a section. The current
1435 addend in the instruction is the difference between
1436 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1437 must change this to be the difference between the
1438 final definition (which will end up in RELOCATION)
1439 and the GP value of OUTPUT_BFD (which is in GP). */
1440 addend = ecoff_data (input_bfd)->gp - gp;
1441 }
1442 else if (! info->relocateable
1443 || h->root.type == bfd_link_hash_defined
1444 || h->root.type == bfd_link_hash_defweak)
1445 {
1446 /* This is a relocation against a defined symbol. The
1447 current addend in the instruction is simply the
1448 desired offset into the symbol (normally zero). We
1449 are going to change this into a relocation against a
1450 defined symbol, so we want the instruction to hold
1451 the difference between the final definition of the
1452 symbol (which will end up in RELOCATION) and the GP
1453 value of OUTPUT_BFD (which is in GP). */
1454 addend = - gp;
1455 }
1456 else
1457 {
1458 /* This is a relocation against an undefined or common
1459 symbol. The current addend in the instruction is
1460 simply the desired offset into the symbol (normally
1461 zero). We are generating relocateable output, and we
1462 aren't going to define this symbol, so we just leave
1463 the instruction alone. */
1464 addend = 0;
1465 }
1466 }
1467
1468 /* If we are relaxing, mips_relax_section may have set
1469 offsets[i] to some value. A value of 1 means we must expand
1470 a PC relative branch into a multi-instruction of sequence,
1471 and any other value is an addend. */
1472 if (offsets != NULL
1473 && offsets[i] != 0)
1474 {
1475 BFD_ASSERT (! info->relocateable);
1476 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1477 || int_rel.r_type == MIPS_R_RELHI
1478 || int_rel.r_type == MIPS_R_RELLO);
1479 if (offsets[i] != 1)
1480 addend += offsets[i];
1481 else
1482 {
1483 bfd_byte *here;
1484
1485 BFD_ASSERT (int_rel.r_extern
1486 && int_rel.r_type == MIPS_R_PCREL16);
1487
1488 /* Move the rest of the instructions up. */
1489 here = (contents
1490 + adjust
1491 + int_rel.r_vaddr
1492 - input_section->vma);
1493 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1494 (size_t) (input_section->_raw_size
1495 - (int_rel.r_vaddr - input_section->vma)));
1496
1497 /* Generate the new instructions. */
1498 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1499 h, here,
1500 (input_section->output_section->vma
1501 + input_section->output_offset
1502 + (int_rel.r_vaddr
1503 - input_section->vma)
1504 + adjust)))
1505 return false;
1506
1507 /* We must adjust everything else up a notch. */
1508 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1509
1510 /* mips_relax_pcrel16 handles all the details of this
1511 relocation. */
1512 continue;
1513 }
1514 }
1515
1516 /* If we are relaxing, and this is a reloc against the .text
1517 segment, we may need to adjust it if some branches have been
1518 expanded. The reloc types which are likely to occur in the
1519 .text section are handled efficiently by mips_relax_section,
1520 and thus do not need to be handled here. */
1521 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1522 && ! int_rel.r_extern
1523 && int_rel.r_symndx == RELOC_SECTION_TEXT
1524 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1525 ".text") != 0
1526 || (int_rel.r_type != MIPS_R_PCREL16
1527 && int_rel.r_type != MIPS_R_SWITCH
1528 && int_rel.r_type != MIPS_R_RELHI
1529 && int_rel.r_type != MIPS_R_RELLO)))
1530 {
1531 bfd_vma adr;
1532 struct ecoff_value_adjust *a;
1533
1534 /* We need to get the addend so that we know whether we need
1535 to adjust the address. */
1536 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1537
1538 adr = bfd_get_32 (input_bfd,
1539 (contents
1540 + adjust
1541 + int_rel.r_vaddr
1542 - input_section->vma));
1543
1544 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1545 a != (struct ecoff_value_adjust *) NULL;
1546 a = a->next)
1547 {
1548 if (adr >= a->start && adr < a->end)
1549 addend += a->adjust;
1550 }
1551 }
1552
1553 if (info->relocateable)
1554 {
1555 /* We are generating relocateable output, and must convert
1556 the existing reloc. */
1557 if (int_rel.r_extern)
1558 {
1559 if ((h->root.type == bfd_link_hash_defined
1560 || h->root.type == bfd_link_hash_defweak)
1561 && ! bfd_is_abs_section (h->root.u.def.section))
1562 {
1563 const char *name;
1564
1565 /* This symbol is defined in the output. Convert
1566 the reloc from being against the symbol to being
1567 against the section. */
1568
1569 /* Clear the r_extern bit. */
1570 int_rel.r_extern = 0;
1571
1572 /* Compute a new r_symndx value. */
1573 s = h->root.u.def.section;
1574 name = bfd_get_section_name (output_bfd,
1575 s->output_section);
1576
1577 int_rel.r_symndx = -1;
1578 switch (name[1])
1579 {
1580 case 'b':
1581 if (strcmp (name, ".bss") == 0)
1582 int_rel.r_symndx = RELOC_SECTION_BSS;
1583 break;
1584 case 'd':
1585 if (strcmp (name, ".data") == 0)
1586 int_rel.r_symndx = RELOC_SECTION_DATA;
1587 break;
1588 case 'f':
1589 if (strcmp (name, ".fini") == 0)
1590 int_rel.r_symndx = RELOC_SECTION_FINI;
1591 break;
1592 case 'i':
1593 if (strcmp (name, ".init") == 0)
1594 int_rel.r_symndx = RELOC_SECTION_INIT;
1595 break;
1596 case 'l':
1597 if (strcmp (name, ".lit8") == 0)
1598 int_rel.r_symndx = RELOC_SECTION_LIT8;
1599 else if (strcmp (name, ".lit4") == 0)
1600 int_rel.r_symndx = RELOC_SECTION_LIT4;
1601 break;
1602 case 'r':
1603 if (strcmp (name, ".rdata") == 0)
1604 int_rel.r_symndx = RELOC_SECTION_RDATA;
1605 break;
1606 case 's':
1607 if (strcmp (name, ".sdata") == 0)
1608 int_rel.r_symndx = RELOC_SECTION_SDATA;
1609 else if (strcmp (name, ".sbss") == 0)
1610 int_rel.r_symndx = RELOC_SECTION_SBSS;
1611 break;
1612 case 't':
1613 if (strcmp (name, ".text") == 0)
1614 int_rel.r_symndx = RELOC_SECTION_TEXT;
1615 break;
1616 }
1617
1618 if (int_rel.r_symndx == -1)
1619 abort ();
1620
1621 /* Add the section VMA and the symbol value. */
1622 relocation = (h->root.u.def.value
1623 + s->output_section->vma
1624 + s->output_offset);
1625
1626 /* For a PC relative relocation, the object file
1627 currently holds just the addend. We must adjust
1628 by the address to get the right value. */
1629 if (howto->pc_relative)
1630 {
1631 relocation -= int_rel.r_vaddr - input_section->vma;
1632
1633 /* If we are converting a RELHI or RELLO reloc
1634 from being against an external symbol to
1635 being against a section, we must put a
1636 special value into the r_offset field. This
1637 value is the old addend. The r_offset for
1638 both the RELHI and RELLO relocs are the same,
1639 and we set both when we see RELHI. */
1640 if (int_rel.r_type == MIPS_R_RELHI)
1641 {
1642 long addhi, addlo;
1643
1644 addhi = bfd_get_32 (input_bfd,
1645 (contents
1646 + adjust
1647 + int_rel.r_vaddr
1648 - input_section->vma));
1649 addhi &= 0xffff;
1650 if (addhi & 0x8000)
1651 addhi -= 0x10000;
1652 addhi <<= 16;
1653
1654 if (! use_lo)
1655 addlo = 0;
1656 else
1657 {
1658 addlo = bfd_get_32 (input_bfd,
1659 (contents
1660 + adjust
1661 + lo_int_rel.r_vaddr
1662 - input_section->vma));
1663 addlo &= 0xffff;
1664 if (addlo & 0x8000)
1665 addlo -= 0x10000;
1666
1667 lo_int_rel.r_offset = addhi + addlo;
1668 }
1669
1670 int_rel.r_offset = addhi + addlo;
1671 }
1672 }
1673
1674 h = NULL;
1675 }
1676 else
1677 {
1678 /* Change the symndx value to the right one for the
1679 output BFD. */
1680 int_rel.r_symndx = h->indx;
1681 if (int_rel.r_symndx == -1)
1682 {
1683 /* This symbol is not being written out. */
1684 if (! ((*info->callbacks->unattached_reloc)
1685 (info, h->root.root.string, input_bfd,
1686 input_section,
1687 int_rel.r_vaddr - input_section->vma)))
1688 return false;
1689 int_rel.r_symndx = 0;
1690 }
1691 relocation = 0;
1692 }
1693 }
1694 else
1695 {
1696 /* This is a relocation against a section. Adjust the
1697 value by the amount the section moved. */
1698 relocation = (s->output_section->vma
1699 + s->output_offset
1700 - s->vma);
1701 }
1702
1703 relocation += addend;
1704 addend = 0;
1705
1706 /* Adjust a PC relative relocation by removing the reference
1707 to the original address in the section and including the
1708 reference to the new address. However, external RELHI
1709 and RELLO relocs are PC relative, but don't include any
1710 reference to the address. The addend is merely an
1711 addend. */
1712 if (howto->pc_relative
1713 && (! int_rel.r_extern
1714 || (int_rel.r_type != MIPS_R_RELHI
1715 && int_rel.r_type != MIPS_R_RELLO)))
1716 relocation -= (input_section->output_section->vma
1717 + input_section->output_offset
1718 - input_section->vma);
1719
1720 /* Adjust the contents. */
1721 if (relocation == 0)
1722 r = bfd_reloc_ok;
1723 else
1724 {
1725 if (int_rel.r_type != MIPS_R_REFHI
1726 && int_rel.r_type != MIPS_R_RELHI)
1727 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1728 (contents
1729 + adjust
1730 + int_rel.r_vaddr
1731 - input_section->vma));
1732 else
1733 {
1734 mips_relocate_hi (&int_rel,
1735 use_lo ? &lo_int_rel : NULL,
1736 input_bfd, input_section, contents,
1737 adjust, relocation,
1738 int_rel.r_type == MIPS_R_RELHI);
1739 r = bfd_reloc_ok;
1740 }
1741 }
1742
1743 /* Adjust the reloc address. */
1744 int_rel.r_vaddr += (input_section->output_section->vma
1745 + input_section->output_offset
1746 - input_section->vma);
1747
1748 /* Save the changed reloc information. */
1749 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1750 }
1751 else
1752 {
1753 /* We are producing a final executable. */
1754 if (int_rel.r_extern)
1755 {
1756 /* This is a reloc against a symbol. */
1757 if (h->root.type == bfd_link_hash_defined
1758 || h->root.type == bfd_link_hash_defweak)
1759 {
1760 asection *hsec;
1761
1762 hsec = h->root.u.def.section;
1763 relocation = (h->root.u.def.value
1764 + hsec->output_section->vma
1765 + hsec->output_offset);
1766 }
1767 else
1768 {
1769 if (! ((*info->callbacks->undefined_symbol)
1770 (info, h->root.root.string, input_bfd,
1771 input_section,
1772 int_rel.r_vaddr - input_section->vma)))
1773 return false;
1774 relocation = 0;
1775 }
1776 }
1777 else
1778 {
1779 /* This is a reloc against a section. */
1780 relocation = (s->output_section->vma
1781 + s->output_offset
1782 - s->vma);
1783
1784 /* A PC relative reloc is already correct in the object
1785 file. Make it look like a pcrel_offset relocation by
1786 adding in the start address. */
1787 if (howto->pc_relative)
1788 {
1789 if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
1790 relocation += int_rel.r_vaddr + adjust;
1791 else
1792 relocation += lo_int_rel.r_vaddr + adjust;
1793 }
1794 }
1795
1796 if (int_rel.r_type != MIPS_R_REFHI
1797 && int_rel.r_type != MIPS_R_RELHI)
1798 r = _bfd_final_link_relocate (howto,
1799 input_bfd,
1800 input_section,
1801 contents,
1802 (int_rel.r_vaddr
1803 - input_section->vma
1804 + adjust),
1805 relocation,
1806 addend);
1807 else
1808 {
1809 mips_relocate_hi (&int_rel,
1810 use_lo ? &lo_int_rel : NULL,
1811 input_bfd, input_section, contents, adjust,
1812 relocation,
1813 int_rel.r_type == MIPS_R_RELHI);
1814 r = bfd_reloc_ok;
1815 }
1816 }
1817
1818 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1819 instruction provides a 28 bit address (the two lower bits are
1820 implicit zeroes) which is combined with the upper four bits
1821 of the instruction address. */
1822 if (r == bfd_reloc_ok
1823 && int_rel.r_type == MIPS_R_JMPADDR
1824 && (((relocation
1825 + addend
1826 + (int_rel.r_extern ? 0 : s->vma))
1827 & 0xf0000000)
1828 != ((input_section->output_section->vma
1829 + input_section->output_offset
1830 + (int_rel.r_vaddr - input_section->vma)
1831 + adjust)
1832 & 0xf0000000)))
1833 r = bfd_reloc_overflow;
1834
1835 if (r != bfd_reloc_ok)
1836 {
1837 switch (r)
1838 {
1839 default:
1840 case bfd_reloc_outofrange:
1841 abort ();
1842 case bfd_reloc_overflow:
1843 {
1844 const char *name;
1845
1846 if (int_rel.r_extern)
1847 name = h->root.root.string;
1848 else
1849 name = bfd_section_name (input_bfd, s);
1850 if (! ((*info->callbacks->reloc_overflow)
1851 (info, name, howto->name, (bfd_vma) 0,
1852 input_bfd, input_section,
1853 int_rel.r_vaddr - input_section->vma)))
1854 return false;
1855 }
1856 break;
1857 }
1858 }
1859 }
1860
1861 return true;
1862 }
1863 \f
1864 /* Read in the relocs for a section. */
1865
1866 static boolean
1867 mips_read_relocs (abfd, sec)
1868 bfd *abfd;
1869 asection *sec;
1870 {
1871 struct ecoff_section_tdata *section_tdata;
1872
1873 section_tdata = ecoff_section_data (abfd, sec);
1874 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1875 {
1876 sec->used_by_bfd =
1877 (PTR) bfd_alloc (abfd, sizeof (struct ecoff_section_tdata));
1878 if (sec->used_by_bfd == NULL)
1879 return false;
1880
1881 section_tdata = ecoff_section_data (abfd, sec);
1882 section_tdata->external_relocs = NULL;
1883 section_tdata->contents = NULL;
1884 section_tdata->offsets = NULL;
1885 }
1886
1887 if (section_tdata->external_relocs == NULL)
1888 {
1889 bfd_size_type external_relocs_size;
1890
1891 external_relocs_size = (ecoff_backend (abfd)->external_reloc_size
1892 * sec->reloc_count);
1893
1894 section_tdata->external_relocs =
1895 (PTR) bfd_alloc (abfd, external_relocs_size);
1896 if (section_tdata->external_relocs == NULL && external_relocs_size != 0)
1897 return false;
1898
1899 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1900 || (bfd_read (section_tdata->external_relocs, 1,
1901 external_relocs_size, abfd)
1902 != external_relocs_size))
1903 return false;
1904 }
1905
1906 return true;
1907 }
1908
1909 /* Relax a section when linking a MIPS ECOFF file. This is used for
1910 embedded PIC code, which always uses PC relative branches which
1911 only have an 18 bit range on MIPS. If a branch is not in range, we
1912 generate a long instruction sequence to compensate. Each time we
1913 find a branch to expand, we have to check all the others again to
1914 make sure they are still in range. This is slow, but it only has
1915 to be done when -relax is passed to the linker.
1916
1917 This routine figures out which branches need to expand; the actual
1918 expansion is done in mips_relocate_section when the section
1919 contents are relocated. The information is stored in the offsets
1920 field of the ecoff_section_tdata structure. An offset of 1 means
1921 that the branch must be expanded into a multi-instruction PC
1922 relative branch (such an offset will only occur for a PC relative
1923 branch to an external symbol). Any other offset must be a multiple
1924 of four, and is the amount to change the branch by (such an offset
1925 will only occur for a PC relative branch within the same section).
1926
1927 We do not modify the section relocs or contents themselves so that
1928 if memory usage becomes an issue we can discard them and read them
1929 again. The only information we must save in memory between this
1930 routine and the mips_relocate_section routine is the table of
1931 offsets. */
1932
1933 static boolean
1934 mips_relax_section (abfd, sec, info, again)
1935 bfd *abfd;
1936 asection *sec;
1937 struct bfd_link_info *info;
1938 boolean *again;
1939 {
1940 struct ecoff_section_tdata *section_tdata;
1941 bfd_byte *contents = NULL;
1942 long *offsets;
1943 struct external_reloc *ext_rel;
1944 struct external_reloc *ext_rel_end;
1945 unsigned int i;
1946
1947 /* Assume we are not going to need another pass. */
1948 *again = false;
1949
1950 /* If we are not generating an ECOFF file, this is much too
1951 confusing to deal with. */
1952 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1953 return true;
1954
1955 /* If there are no relocs, there is nothing to do. */
1956 if (sec->reloc_count == 0)
1957 return true;
1958
1959 /* We are only interested in PC relative relocs, and why would there
1960 ever be one from anything but the .text section? */
1961 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1962 return true;
1963
1964 /* Read in the relocs, if we haven't already got them. */
1965 section_tdata = ecoff_section_data (abfd, sec);
1966 if (section_tdata == (struct ecoff_section_tdata *) NULL
1967 || section_tdata->external_relocs == NULL)
1968 {
1969 if (! mips_read_relocs (abfd, sec))
1970 goto error_return;
1971 section_tdata = ecoff_section_data (abfd, sec);
1972 }
1973
1974 if (sec->_cooked_size == 0)
1975 {
1976 /* We must initialize _cooked_size only the first time we are
1977 called. */
1978 sec->_cooked_size = sec->_raw_size;
1979 }
1980
1981 contents = section_tdata->contents;
1982 offsets = section_tdata->offsets;
1983
1984 /* Look for any external PC relative relocs. Internal PC relative
1985 relocs are already correct in the object file, so they certainly
1986 can not overflow. */
1987 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1988 ext_rel_end = ext_rel + sec->reloc_count;
1989 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1990 {
1991 struct internal_reloc int_rel;
1992 struct ecoff_link_hash_entry *h;
1993 asection *hsec;
1994 bfd_signed_vma relocation;
1995 struct external_reloc *adj_ext_rel;
1996 unsigned int adj_i;
1997 unsigned long ext_count;
1998 struct ecoff_link_hash_entry **adj_h_ptr;
1999 struct ecoff_link_hash_entry **adj_h_ptr_end;
2000 struct ecoff_value_adjust *adjust;
2001
2002 /* If we have already expanded this reloc, we certainly don't
2003 need to do it again. */
2004 if (offsets != (long *) NULL && offsets[i] == 1)
2005 continue;
2006
2007 /* Quickly check that this reloc is external PCREL16. */
2008 if (bfd_header_big_endian (abfd))
2009 {
2010 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
2011 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
2012 >> RELOC_BITS3_TYPE_SH_BIG)
2013 != MIPS_R_PCREL16))
2014 continue;
2015 }
2016 else
2017 {
2018 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
2019 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
2020 >> RELOC_BITS3_TYPE_SH_LITTLE)
2021 != MIPS_R_PCREL16))
2022 continue;
2023 }
2024
2025 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2026
2027 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
2028 if (h == (struct ecoff_link_hash_entry *) NULL)
2029 abort ();
2030
2031 if (h->root.type != bfd_link_hash_defined
2032 && h->root.type != bfd_link_hash_defweak)
2033 {
2034 /* Just ignore undefined symbols. These will presumably
2035 generate an error later in the link. */
2036 continue;
2037 }
2038
2039 /* Get the value of the symbol. */
2040 hsec = h->root.u.def.section;
2041 relocation = (h->root.u.def.value
2042 + hsec->output_section->vma
2043 + hsec->output_offset);
2044
2045 /* Subtract out the current address. */
2046 relocation -= (sec->output_section->vma
2047 + sec->output_offset
2048 + (int_rel.r_vaddr - sec->vma));
2049
2050 /* The addend is stored in the object file. In the normal case
2051 of ``bal symbol'', the addend will be -4. It will only be
2052 different in the case of ``bal symbol+constant''. To avoid
2053 always reading in the section contents, we don't check the
2054 addend in the object file (we could easily check the contents
2055 if we happen to have already read them in, but I fear that
2056 this could be confusing). This means we will screw up if
2057 there is a branch to a symbol that is in range, but added to
2058 a constant which puts it out of range; in such a case the
2059 link will fail with a reloc overflow error. Since the
2060 compiler will never generate such code, it should be easy
2061 enough to work around it by changing the assembly code in the
2062 source file. */
2063 relocation -= 4;
2064
2065 /* Now RELOCATION is the number we want to put in the object
2066 file. See whether it fits. */
2067 if (relocation >= -0x20000 && relocation < 0x20000)
2068 continue;
2069
2070 /* Now that we know this reloc needs work, which will rarely
2071 happen, go ahead and grab the section contents. */
2072 if (contents == (bfd_byte *) NULL)
2073 {
2074 if (info->keep_memory)
2075 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2076 else
2077 contents = (bfd_byte *) bfd_malloc ((size_t) sec->_raw_size);
2078 if (contents == (bfd_byte *) NULL)
2079 goto error_return;
2080 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2081 (file_ptr) 0, sec->_raw_size))
2082 goto error_return;
2083 if (info->keep_memory)
2084 section_tdata->contents = contents;
2085 }
2086
2087 /* We only support changing the bal instruction. It would be
2088 possible to handle other PC relative branches, but some of
2089 them (the conditional branches) would require a different
2090 length instruction sequence which would complicate both this
2091 routine and mips_relax_pcrel16. It could be written if
2092 somebody felt it were important. Ignoring this reloc will
2093 presumably cause a reloc overflow error later on. */
2094 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2095 != 0x0411ffff) /* bgezal $0,. == bal . */
2096 continue;
2097
2098 /* Bother. We need to expand this reloc, and we will need to
2099 make another relaxation pass since this change may put other
2100 relocs out of range. We need to examine the local branches
2101 and we need to allocate memory to hold the offsets we must
2102 add to them. We also need to adjust the values of all
2103 symbols in the object file following this location. */
2104
2105 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2106 *again = true;
2107
2108 if (offsets == (long *) NULL)
2109 {
2110 size_t size;
2111
2112 size = sec->reloc_count * sizeof (long);
2113 offsets = (long *) bfd_alloc (abfd, size);
2114 if (offsets == (long *) NULL)
2115 goto error_return;
2116 memset (offsets, 0, size);
2117 section_tdata->offsets = offsets;
2118 }
2119
2120 offsets[i] = 1;
2121
2122 /* Now look for all PC relative references that cross this reloc
2123 and adjust their offsets. */
2124 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2125 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2126 {
2127 struct internal_reloc adj_int_rel;
2128 bfd_vma start, stop;
2129 int change;
2130
2131 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2132
2133 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2134 {
2135 unsigned long insn;
2136
2137 /* We only care about local references. External ones
2138 will be relocated correctly anyhow. */
2139 if (adj_int_rel.r_extern)
2140 continue;
2141
2142 /* We are only interested in a PC relative reloc within
2143 this section. FIXME: Cross section PC relative
2144 relocs may not be handled correctly; does anybody
2145 care? */
2146 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2147 continue;
2148
2149 start = adj_int_rel.r_vaddr;
2150
2151 insn = bfd_get_32 (abfd,
2152 contents + adj_int_rel.r_vaddr - sec->vma);
2153
2154 stop = (insn & 0xffff) << 2;
2155 if ((stop & 0x20000) != 0)
2156 stop -= 0x40000;
2157 stop += adj_int_rel.r_vaddr + 4;
2158 }
2159 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2160 {
2161 struct internal_reloc rello;
2162 long addhi, addlo;
2163
2164 /* The next reloc must be MIPS_R_RELLO, and we handle
2165 them together. */
2166 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2167
2168 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2169
2170 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2171
2172 addhi = bfd_get_32 (abfd,
2173 contents + adj_int_rel.r_vaddr - sec->vma);
2174 addhi &= 0xffff;
2175 if (addhi & 0x8000)
2176 addhi -= 0x10000;
2177 addhi <<= 16;
2178
2179 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2180 addlo &= 0xffff;
2181 if (addlo & 0x8000)
2182 addlo -= 0x10000;
2183
2184 if (adj_int_rel.r_extern)
2185 {
2186 /* The value we want here is
2187 sym - RELLOaddr + addend
2188 which we can express as
2189 sym - (RELLOaddr - addend)
2190 Therefore if we are expanding the area between
2191 RELLOaddr and RELLOaddr - addend we must adjust
2192 the addend. This is admittedly ambiguous, since
2193 we might mean (sym + addend) - RELLOaddr, but in
2194 practice we don't, and there is no way to handle
2195 that case correctly since at this point we have
2196 no idea whether any reloc is being expanded
2197 between sym and sym + addend. */
2198 start = rello.r_vaddr - (addhi + addlo);
2199 stop = rello.r_vaddr;
2200 }
2201 else
2202 {
2203 /* An internal RELHI/RELLO pair represents the
2204 difference between two addresses, $LC0 - foo.
2205 The symndx value is actually the difference
2206 between the reloc address and $LC0. This lets us
2207 compute $LC0, and, by considering the addend,
2208 foo. If the reloc we are expanding falls between
2209 those two relocs, we must adjust the addend. At
2210 this point, the symndx value is actually in the
2211 r_offset field, where it was put by
2212 mips_ecoff_swap_reloc_in. */
2213 start = rello.r_vaddr - adj_int_rel.r_offset;
2214 stop = start + addhi + addlo;
2215 }
2216 }
2217 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2218 {
2219 /* A MIPS_R_SWITCH reloc represents a word of the form
2220 .word $L3-$LS12
2221 The value in the object file is correct, assuming the
2222 original value of $L3. The symndx value is actually
2223 the difference between the reloc address and $LS12.
2224 This lets us compute the original value of $LS12 as
2225 vaddr - symndx
2226 and the original value of $L3 as
2227 vaddr - symndx + addend
2228 where addend is the value from the object file. At
2229 this point, the symndx value is actually found in the
2230 r_offset field, since it was moved by
2231 mips_ecoff_swap_reloc_in. */
2232 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2233 stop = start + bfd_get_32 (abfd,
2234 (contents
2235 + adj_int_rel.r_vaddr
2236 - sec->vma));
2237 }
2238 else
2239 continue;
2240
2241 /* If the range expressed by this reloc, which is the
2242 distance between START and STOP crosses the reloc we are
2243 expanding, we must adjust the offset. The sign of the
2244 adjustment depends upon the direction in which the range
2245 crosses the reloc being expanded. */
2246 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2247 change = PCREL16_EXPANSION_ADJUSTMENT;
2248 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2249 change = - PCREL16_EXPANSION_ADJUSTMENT;
2250 else
2251 change = 0;
2252
2253 offsets[adj_i] += change;
2254
2255 if (adj_int_rel.r_type == MIPS_R_RELHI)
2256 {
2257 adj_ext_rel++;
2258 adj_i++;
2259 offsets[adj_i] += change;
2260 }
2261 }
2262
2263 /* Find all symbols in this section defined by this object file
2264 and adjust their values. Note that we decide whether to
2265 adjust the value based on the value stored in the ECOFF EXTR
2266 structure, because the value stored in the hash table may
2267 have been changed by an earlier expanded reloc and thus may
2268 no longer correctly indicate whether the symbol is before or
2269 after the expanded reloc. */
2270 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2271 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2272 adj_h_ptr_end = adj_h_ptr + ext_count;
2273 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2274 {
2275 struct ecoff_link_hash_entry *adj_h;
2276
2277 adj_h = *adj_h_ptr;
2278 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2279 && (adj_h->root.type == bfd_link_hash_defined
2280 || adj_h->root.type == bfd_link_hash_defweak)
2281 && adj_h->root.u.def.section == sec
2282 && adj_h->esym.asym.value > int_rel.r_vaddr)
2283 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2284 }
2285
2286 /* Add an entry to the symbol value adjust list. This is used
2287 by bfd_ecoff_debug_accumulate to adjust the values of
2288 internal symbols and FDR's. */
2289 adjust = ((struct ecoff_value_adjust *)
2290 bfd_alloc (abfd, sizeof (struct ecoff_value_adjust)));
2291 if (adjust == (struct ecoff_value_adjust *) NULL)
2292 goto error_return;
2293
2294 adjust->start = int_rel.r_vaddr;
2295 adjust->end = sec->vma + sec->_raw_size;
2296 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2297
2298 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2299 ecoff_data (abfd)->debug_info.adjust = adjust;
2300 }
2301
2302 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2303 free (contents);
2304
2305 return true;
2306
2307 error_return:
2308 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2309 free (contents);
2310 return false;
2311 }
2312
2313 /* This routine is called from mips_relocate_section when a PC
2314 relative reloc must be expanded into the five instruction sequence.
2315 It handles all the details of the expansion, including resolving
2316 the reloc. */
2317
2318 static boolean
2319 mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2320 struct bfd_link_info *info;
2321 bfd *input_bfd;
2322 asection *input_section;
2323 struct ecoff_link_hash_entry *h;
2324 bfd_byte *location;
2325 bfd_vma address;
2326 {
2327 bfd_vma relocation;
2328
2329 /* 0x0411ffff is bgezal $0,. == bal . */
2330 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2331
2332 /* We need to compute the distance between the symbol and the
2333 current address plus eight. */
2334 relocation = (h->root.u.def.value
2335 + h->root.u.def.section->output_section->vma
2336 + h->root.u.def.section->output_offset);
2337 relocation -= address + 8;
2338
2339 /* If the lower half is negative, increment the upper 16 half. */
2340 if ((relocation & 0x8000) != 0)
2341 relocation += 0x10000;
2342
2343 bfd_put_32 (input_bfd, 0x04110001, location); /* bal .+8 */
2344 bfd_put_32 (input_bfd,
2345 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2346 location + 4);
2347 bfd_put_32 (input_bfd,
2348 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2349 location + 8);
2350 bfd_put_32 (input_bfd, 0x003f0821, location + 12); /* addu $at,$at,$ra */
2351 bfd_put_32 (input_bfd, 0x0020f809, location + 16); /* jalr $at */
2352
2353 return true;
2354 }
2355
2356 /* Given a .sdata section and a .rel.sdata in-memory section, store
2357 relocation information into the .rel.sdata section which can be
2358 used at runtime to relocate the section. This is called by the
2359 linker when the --embedded-relocs switch is used. This is called
2360 after the add_symbols entry point has been called for all the
2361 objects, and before the final_link entry point is called. This
2362 function presumes that the object was compiled using
2363 -membedded-pic. */
2364
2365 boolean
2366 bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2367 bfd *abfd;
2368 struct bfd_link_info *info;
2369 asection *datasec;
2370 asection *relsec;
2371 char **errmsg;
2372 {
2373 struct ecoff_link_hash_entry **sym_hashes;
2374 struct ecoff_section_tdata *section_tdata;
2375 struct external_reloc *ext_rel;
2376 struct external_reloc *ext_rel_end;
2377 bfd_byte *p;
2378
2379 BFD_ASSERT (! info->relocateable);
2380
2381 *errmsg = NULL;
2382
2383 if (datasec->reloc_count == 0)
2384 return true;
2385
2386 sym_hashes = ecoff_data (abfd)->sym_hashes;
2387
2388 if (! mips_read_relocs (abfd, datasec))
2389 return false;
2390
2391 relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 4);
2392 if (relsec->contents == NULL)
2393 return false;
2394
2395 p = relsec->contents;
2396
2397 section_tdata = ecoff_section_data (abfd, datasec);
2398 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2399 ext_rel_end = ext_rel + datasec->reloc_count;
2400 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2401 {
2402 struct internal_reloc int_rel;
2403 boolean text_relative;
2404
2405 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2406
2407 /* We are going to write a four byte word into the runtime reloc
2408 section. The word will be the address in the data section
2409 which must be relocated. This must be on a word boundary,
2410 which means the lower two bits must be zero. We use the
2411 least significant bit to indicate how the value in the data
2412 section must be relocated. A 0 means that the value is
2413 relative to the text section, while a 1 indicates that the
2414 value is relative to the data section. Given that we are
2415 assuming the code was compiled using -membedded-pic, there
2416 should not be any other possibilities. */
2417
2418 /* We can only relocate REFWORD relocs at run time. */
2419 if (int_rel.r_type != MIPS_R_REFWORD)
2420 {
2421 *errmsg = "unsupported reloc type";
2422 bfd_set_error (bfd_error_bad_value);
2423 return false;
2424 }
2425
2426 if (int_rel.r_extern)
2427 {
2428 struct ecoff_link_hash_entry *h;
2429
2430 h = sym_hashes[int_rel.r_symndx];
2431 /* If h is NULL, that means that there is a reloc against an
2432 external symbol which we thought was just a debugging
2433 symbol. This should not happen. */
2434 if (h == (struct ecoff_link_hash_entry *) NULL)
2435 abort ();
2436 if ((h->root.type == bfd_link_hash_defined
2437 || h->root.type == bfd_link_hash_defweak)
2438 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2439 text_relative = true;
2440 else
2441 text_relative = false;
2442 }
2443 else
2444 {
2445 switch (int_rel.r_symndx)
2446 {
2447 case RELOC_SECTION_TEXT:
2448 text_relative = true;
2449 break;
2450 case RELOC_SECTION_SDATA:
2451 case RELOC_SECTION_SBSS:
2452 case RELOC_SECTION_LIT8:
2453 text_relative = false;
2454 break;
2455 default:
2456 /* No other sections should appear in -membedded-pic
2457 code. */
2458 *errmsg = "reloc against unsupported section";
2459 bfd_set_error (bfd_error_bad_value);
2460 return false;
2461 }
2462 }
2463
2464 if ((int_rel.r_offset & 3) != 0)
2465 {
2466 *errmsg = "reloc not properly aligned";
2467 bfd_set_error (bfd_error_bad_value);
2468 return false;
2469 }
2470
2471 bfd_put_32 (abfd,
2472 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2473 + (text_relative ? 0 : 1)),
2474 p);
2475 }
2476
2477 return true;
2478 }
2479 \f
2480 /* This is the ECOFF backend structure. The backend field of the
2481 target vector points to this. */
2482
2483 static const struct ecoff_backend_data mips_ecoff_backend_data =
2484 {
2485 /* COFF backend structure. */
2486 {
2487 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2488 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2489 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2490 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2491 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2492 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2493 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2494 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2495 mips_ecoff_swap_scnhdr_out,
2496 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, true, false, 4,
2497 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2498 mips_ecoff_swap_scnhdr_in, NULL,
2499 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2500 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2501 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2502 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
2503 },
2504 /* Supported architecture. */
2505 bfd_arch_mips,
2506 /* Initial portion of armap string. */
2507 "__________",
2508 /* The page boundary used to align sections in a demand-paged
2509 executable file. E.g., 0x1000. */
2510 0x1000,
2511 /* True if the .rdata section is part of the text segment, as on the
2512 Alpha. False if .rdata is part of the data segment, as on the
2513 MIPS. */
2514 false,
2515 /* Bitsize of constructor entries. */
2516 32,
2517 /* Reloc to use for constructor entries. */
2518 &mips_howto_table[MIPS_R_REFWORD],
2519 {
2520 /* Symbol table magic number. */
2521 magicSym,
2522 /* Alignment of debugging information. E.g., 4. */
2523 4,
2524 /* Sizes of external symbolic information. */
2525 sizeof (struct hdr_ext),
2526 sizeof (struct dnr_ext),
2527 sizeof (struct pdr_ext),
2528 sizeof (struct sym_ext),
2529 sizeof (struct opt_ext),
2530 sizeof (struct fdr_ext),
2531 sizeof (struct rfd_ext),
2532 sizeof (struct ext_ext),
2533 /* Functions to swap in external symbolic data. */
2534 ecoff_swap_hdr_in,
2535 ecoff_swap_dnr_in,
2536 ecoff_swap_pdr_in,
2537 ecoff_swap_sym_in,
2538 ecoff_swap_opt_in,
2539 ecoff_swap_fdr_in,
2540 ecoff_swap_rfd_in,
2541 ecoff_swap_ext_in,
2542 _bfd_ecoff_swap_tir_in,
2543 _bfd_ecoff_swap_rndx_in,
2544 /* Functions to swap out external symbolic data. */
2545 ecoff_swap_hdr_out,
2546 ecoff_swap_dnr_out,
2547 ecoff_swap_pdr_out,
2548 ecoff_swap_sym_out,
2549 ecoff_swap_opt_out,
2550 ecoff_swap_fdr_out,
2551 ecoff_swap_rfd_out,
2552 ecoff_swap_ext_out,
2553 _bfd_ecoff_swap_tir_out,
2554 _bfd_ecoff_swap_rndx_out,
2555 /* Function to read in symbolic data. */
2556 _bfd_ecoff_slurp_symbolic_info
2557 },
2558 /* External reloc size. */
2559 RELSZ,
2560 /* Howto reloc table. */
2561 mips_howto_table,
2562 /* Howto reloc table size. */
2563 sizeof mips_howto_table / sizeof mips_howto_table[0],
2564 /* Does this backend implement the LITERALSLEAZY reloc? */
2565 false,
2566 /* Reloc swapping functions. */
2567 mips_ecoff_swap_reloc_in,
2568 mips_ecoff_swap_reloc_out,
2569 /* Backend reloc tweaking. */
2570 mips_adjust_reloc_in,
2571 mips_adjust_reloc_out,
2572 /* Relocate section contents while linking. */
2573 mips_relocate_section,
2574 /* Do final adjustments to filehdr and aouthdr. */
2575 NULL,
2576 /* Read an element from an archive at a given file position. */
2577 _bfd_get_elt_at_filepos
2578 };
2579
2580 /* Looking up a reloc type is MIPS specific. */
2581 #define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2582
2583 /* Getting relocated section contents is generic. */
2584 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2585 bfd_generic_get_relocated_section_contents
2586
2587 /* Handling file windows is generic. */
2588 #define _bfd_ecoff_get_section_contents_in_window \
2589 _bfd_generic_get_section_contents_in_window
2590
2591 /* Relaxing sections is MIPS specific. */
2592 #define _bfd_ecoff_bfd_relax_section mips_relax_section
2593
2594 const bfd_target ecoff_little_vec =
2595 {
2596 "ecoff-littlemips", /* name */
2597 bfd_target_ecoff_flavour,
2598 BFD_ENDIAN_LITTLE, /* data byte order is little */
2599 BFD_ENDIAN_LITTLE, /* header byte order is little */
2600
2601 (HAS_RELOC | EXEC_P | /* object flags */
2602 HAS_LINENO | HAS_DEBUG |
2603 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2604
2605 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2606 0, /* leading underscore */
2607 ' ', /* ar_pad_char */
2608 15, /* ar_max_namelen */
2609 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2610 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2611 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2612 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2613 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2614 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2615
2616 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2617 _bfd_ecoff_archive_p, _bfd_dummy_target},
2618 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2619 _bfd_generic_mkarchive, bfd_false},
2620 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2621 _bfd_write_archive_contents, bfd_false},
2622
2623 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2624 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2625 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2626 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2627 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2628 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2629 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2630 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2631 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2632
2633 (PTR) &mips_ecoff_backend_data
2634 };
2635
2636 const bfd_target ecoff_big_vec =
2637 {
2638 "ecoff-bigmips", /* name */
2639 bfd_target_ecoff_flavour,
2640 BFD_ENDIAN_BIG, /* data byte order is big */
2641 BFD_ENDIAN_BIG, /* header byte order is big */
2642
2643 (HAS_RELOC | EXEC_P | /* object flags */
2644 HAS_LINENO | HAS_DEBUG |
2645 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2646
2647 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2648 0, /* leading underscore */
2649 ' ', /* ar_pad_char */
2650 15, /* ar_max_namelen */
2651 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2652 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2653 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2654 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2655 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2656 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2657 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2658 _bfd_ecoff_archive_p, _bfd_dummy_target},
2659 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2660 _bfd_generic_mkarchive, bfd_false},
2661 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2662 _bfd_write_archive_contents, bfd_false},
2663
2664 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2665 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2666 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2667 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2668 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2669 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2670 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2671 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2672 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2673
2674 (PTR) &mips_ecoff_backend_data
2675 };
2676
2677 const bfd_target ecoff_biglittle_vec =
2678 {
2679 "ecoff-biglittlemips", /* name */
2680 bfd_target_ecoff_flavour,
2681 BFD_ENDIAN_LITTLE, /* data byte order is little */
2682 BFD_ENDIAN_BIG, /* header byte order is big */
2683
2684 (HAS_RELOC | EXEC_P | /* object flags */
2685 HAS_LINENO | HAS_DEBUG |
2686 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2687
2688 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2689 0, /* leading underscore */
2690 ' ', /* ar_pad_char */
2691 15, /* ar_max_namelen */
2692 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2693 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2694 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2695 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2696 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2697 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2698
2699 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2700 _bfd_ecoff_archive_p, _bfd_dummy_target},
2701 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2702 _bfd_generic_mkarchive, bfd_false},
2703 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2704 _bfd_write_archive_contents, bfd_false},
2705
2706 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2707 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2708 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2709 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2710 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2711 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2712 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2713 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2714 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2715
2716 (PTR) &mips_ecoff_backend_data
2717 };