]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/dwarf2.c
bfd_error_handler bfd_vma and bfd_size_type args
[thirdparty/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2017 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the original bfd for which debug was loaded. This is what
104 we use to compare and so check that the cached debug data is still
105 valid - it saves having to possibly dereference the gnu_debuglink each
106 time. */
107 bfd *orig_bfd;
108
109 /* Pointer to the bfd, section and address of the beginning of the
110 section. The bfd might be different than expected because of
111 gnu_debuglink sections. */
112 bfd *bfd_ptr;
113 asection *sec;
114 bfd_byte *sec_info_ptr;
115
116 /* Support for alternate debug info sections created by the DWZ utility:
117 This includes a pointer to an alternate bfd which contains *extra*,
118 possibly duplicate debug sections, and pointers to the loaded
119 .debug_str and .debug_info sections from this bfd. */
120 bfd * alt_bfd_ptr;
121 bfd_byte * alt_dwarf_str_buffer;
122 bfd_size_type alt_dwarf_str_size;
123 bfd_byte * alt_dwarf_info_buffer;
124 bfd_size_type alt_dwarf_info_size;
125
126 /* A pointer to the memory block allocated for info_ptr. Neither
127 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
128 beginning of the malloc block. This is used only to free the
129 memory later. */
130 bfd_byte *info_ptr_memory;
131
132 /* Pointer to the symbol table. */
133 asymbol **syms;
134
135 /* Pointer to the .debug_abbrev section loaded into memory. */
136 bfd_byte *dwarf_abbrev_buffer;
137
138 /* Length of the loaded .debug_abbrev section. */
139 bfd_size_type dwarf_abbrev_size;
140
141 /* Buffer for decode_line_info. */
142 bfd_byte *dwarf_line_buffer;
143
144 /* Length of the loaded .debug_line section. */
145 bfd_size_type dwarf_line_size;
146
147 /* Pointer to the .debug_str section loaded into memory. */
148 bfd_byte *dwarf_str_buffer;
149
150 /* Length of the loaded .debug_str section. */
151 bfd_size_type dwarf_str_size;
152
153 /* Pointer to the .debug_line_str section loaded into memory. */
154 bfd_byte *dwarf_line_str_buffer;
155
156 /* Length of the loaded .debug_line_str section. */
157 bfd_size_type dwarf_line_str_size;
158
159 /* Pointer to the .debug_ranges section loaded into memory. */
160 bfd_byte *dwarf_ranges_buffer;
161
162 /* Length of the loaded .debug_ranges section. */
163 bfd_size_type dwarf_ranges_size;
164
165 /* If the most recent call to bfd_find_nearest_line was given an
166 address in an inlined function, preserve a pointer into the
167 calling chain for subsequent calls to bfd_find_inliner_info to
168 use. */
169 struct funcinfo *inliner_chain;
170
171 /* Section VMAs at the time the stash was built. */
172 bfd_vma *sec_vma;
173
174 /* Number of sections whose VMA we must adjust. */
175 int adjusted_section_count;
176
177 /* Array of sections with adjusted VMA. */
178 struct adjusted_section *adjusted_sections;
179
180 /* Number of times find_line is called. This is used in
181 the heuristic for enabling the info hash tables. */
182 int info_hash_count;
183
184 #define STASH_INFO_HASH_TRIGGER 100
185
186 /* Hash table mapping symbol names to function infos. */
187 struct info_hash_table *funcinfo_hash_table;
188
189 /* Hash table mapping symbol names to variable infos. */
190 struct info_hash_table *varinfo_hash_table;
191
192 /* Head of comp_unit list in the last hash table update. */
193 struct comp_unit *hash_units_head;
194
195 /* Status of info hash. */
196 int info_hash_status;
197 #define STASH_INFO_HASH_OFF 0
198 #define STASH_INFO_HASH_ON 1
199 #define STASH_INFO_HASH_DISABLED 2
200
201 /* True if we opened bfd_ptr. */
202 bfd_boolean close_on_cleanup;
203 };
204
205 struct arange
206 {
207 struct arange *next;
208 bfd_vma low;
209 bfd_vma high;
210 };
211
212 /* A minimal decoding of DWARF2 compilation units. We only decode
213 what's needed to get to the line number information. */
214
215 struct comp_unit
216 {
217 /* Chain the previously read compilation units. */
218 struct comp_unit *next_unit;
219
220 /* Likewise, chain the compilation unit read after this one.
221 The comp units are stored in reversed reading order. */
222 struct comp_unit *prev_unit;
223
224 /* Keep the bfd convenient (for memory allocation). */
225 bfd *abfd;
226
227 /* The lowest and highest addresses contained in this compilation
228 unit as specified in the compilation unit header. */
229 struct arange arange;
230
231 /* The DW_AT_name attribute (for error messages). */
232 char *name;
233
234 /* The abbrev hash table. */
235 struct abbrev_info **abbrevs;
236
237 /* DW_AT_language. */
238 int lang;
239
240 /* Note that an error was found by comp_unit_find_nearest_line. */
241 int error;
242
243 /* The DW_AT_comp_dir attribute. */
244 char *comp_dir;
245
246 /* TRUE if there is a line number table associated with this comp. unit. */
247 int stmtlist;
248
249 /* Pointer to the current comp_unit so that we can find a given entry
250 by its reference. */
251 bfd_byte *info_ptr_unit;
252
253 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
254 bfd_byte *sec_info_ptr;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointer to dwarf2_debug structure. */
281 struct dwarf2_debug *stash;
282
283 /* DWARF format version for this unit - from unit header. */
284 int version;
285
286 /* Address size for this unit - from unit header. */
287 unsigned char addr_size;
288
289 /* Offset size for this unit - from unit header. */
290 unsigned char offset_size;
291
292 /* Base address for this unit - from DW_AT_low_pc attribute of
293 DW_TAG_compile_unit DIE */
294 bfd_vma base_address;
295
296 /* TRUE if symbols are cached in hash table for faster lookup by name. */
297 bfd_boolean cached;
298 };
299
300 /* This data structure holds the information of an abbrev. */
301 struct abbrev_info
302 {
303 unsigned int number; /* Number identifying abbrev. */
304 enum dwarf_tag tag; /* DWARF tag. */
305 int has_children; /* Boolean. */
306 unsigned int num_attrs; /* Number of attributes. */
307 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
308 struct abbrev_info *next; /* Next in chain. */
309 };
310
311 struct attr_abbrev
312 {
313 enum dwarf_attribute name;
314 enum dwarf_form form;
315 bfd_vma implicit_const;
316 };
317
318 /* Map of uncompressed DWARF debug section name to compressed one. It
319 is terminated by NULL uncompressed_name. */
320
321 const struct dwarf_debug_section dwarf_debug_sections[] =
322 {
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_aranges", ".zdebug_aranges" },
325 { ".debug_frame", ".zdebug_frame" },
326 { ".debug_info", ".zdebug_info" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_line", ".zdebug_line" },
329 { ".debug_loc", ".zdebug_loc" },
330 { ".debug_macinfo", ".zdebug_macinfo" },
331 { ".debug_macro", ".zdebug_macro" },
332 { ".debug_pubnames", ".zdebug_pubnames" },
333 { ".debug_pubtypes", ".zdebug_pubtypes" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_static_func", ".zdebug_static_func" },
336 { ".debug_static_vars", ".zdebug_static_vars" },
337 { ".debug_str", ".zdebug_str", },
338 { ".debug_str", ".zdebug_str", },
339 { ".debug_line_str", ".zdebug_line_str", },
340 { ".debug_types", ".zdebug_types" },
341 /* GNU DWARF 1 extensions */
342 { ".debug_sfnames", ".zdebug_sfnames" },
343 { ".debug_srcinfo", ".zebug_srcinfo" },
344 /* SGI/MIPS DWARF 2 extensions */
345 { ".debug_funcnames", ".zdebug_funcnames" },
346 { ".debug_typenames", ".zdebug_typenames" },
347 { ".debug_varnames", ".zdebug_varnames" },
348 { ".debug_weaknames", ".zdebug_weaknames" },
349 { NULL, NULL },
350 };
351
352 /* NB/ Numbers in this enum must match up with indicies
353 into the dwarf_debug_sections[] array above. */
354 enum dwarf_debug_section_enum
355 {
356 debug_abbrev = 0,
357 debug_aranges,
358 debug_frame,
359 debug_info,
360 debug_info_alt,
361 debug_line,
362 debug_loc,
363 debug_macinfo,
364 debug_macro,
365 debug_pubnames,
366 debug_pubtypes,
367 debug_ranges,
368 debug_static_func,
369 debug_static_vars,
370 debug_str,
371 debug_str_alt,
372 debug_line_str,
373 debug_types,
374 debug_sfnames,
375 debug_srcinfo,
376 debug_funcnames,
377 debug_typenames,
378 debug_varnames,
379 debug_weaknames,
380 debug_max
381 };
382
383 /* A static assertion. */
384 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
385 == debug_max + 1 ? 1 : -1];
386
387 #ifndef ABBREV_HASH_SIZE
388 #define ABBREV_HASH_SIZE 121
389 #endif
390 #ifndef ATTR_ALLOC_CHUNK
391 #define ATTR_ALLOC_CHUNK 4
392 #endif
393
394 /* Variable and function hash tables. This is used to speed up look-up
395 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
396 In order to share code between variable and function infos, we use
397 a list of untyped pointer for all variable/function info associated with
398 a symbol. We waste a bit of memory for list with one node but that
399 simplifies the code. */
400
401 struct info_list_node
402 {
403 struct info_list_node *next;
404 void *info;
405 };
406
407 /* Info hash entry. */
408 struct info_hash_entry
409 {
410 struct bfd_hash_entry root;
411 struct info_list_node *head;
412 };
413
414 struct info_hash_table
415 {
416 struct bfd_hash_table base;
417 };
418
419 /* Function to create a new entry in info hash table. */
420
421 static struct bfd_hash_entry *
422 info_hash_table_newfunc (struct bfd_hash_entry *entry,
423 struct bfd_hash_table *table,
424 const char *string)
425 {
426 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
427
428 /* Allocate the structure if it has not already been allocated by a
429 derived class. */
430 if (ret == NULL)
431 {
432 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
433 sizeof (* ret));
434 if (ret == NULL)
435 return NULL;
436 }
437
438 /* Call the allocation method of the base class. */
439 ret = ((struct info_hash_entry *)
440 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
441
442 /* Initialize the local fields here. */
443 if (ret)
444 ret->head = NULL;
445
446 return (struct bfd_hash_entry *) ret;
447 }
448
449 /* Function to create a new info hash table. It returns a pointer to the
450 newly created table or NULL if there is any error. We need abfd
451 solely for memory allocation. */
452
453 static struct info_hash_table *
454 create_info_hash_table (bfd *abfd)
455 {
456 struct info_hash_table *hash_table;
457
458 hash_table = ((struct info_hash_table *)
459 bfd_alloc (abfd, sizeof (struct info_hash_table)));
460 if (!hash_table)
461 return hash_table;
462
463 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
464 sizeof (struct info_hash_entry)))
465 {
466 bfd_release (abfd, hash_table);
467 return NULL;
468 }
469
470 return hash_table;
471 }
472
473 /* Insert an info entry into an info hash table. We do not check of
474 duplicate entries. Also, the caller need to guarantee that the
475 right type of info in inserted as info is passed as a void* pointer.
476 This function returns true if there is no error. */
477
478 static bfd_boolean
479 insert_info_hash_table (struct info_hash_table *hash_table,
480 const char *key,
481 void *info,
482 bfd_boolean copy_p)
483 {
484 struct info_hash_entry *entry;
485 struct info_list_node *node;
486
487 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
488 key, TRUE, copy_p);
489 if (!entry)
490 return FALSE;
491
492 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
493 sizeof (*node));
494 if (!node)
495 return FALSE;
496
497 node->info = info;
498 node->next = entry->head;
499 entry->head = node;
500
501 return TRUE;
502 }
503
504 /* Look up an info entry list from an info hash table. Return NULL
505 if there is none. */
506
507 static struct info_list_node *
508 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
509 {
510 struct info_hash_entry *entry;
511
512 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
513 FALSE, FALSE);
514 return entry ? entry->head : NULL;
515 }
516
517 /* Read a section into its appropriate place in the dwarf2_debug
518 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
519 not NULL, use bfd_simple_get_relocated_section_contents to read the
520 section contents, otherwise use bfd_get_section_contents. Fail if
521 the located section does not contain at least OFFSET bytes. */
522
523 static bfd_boolean
524 read_section (bfd * abfd,
525 const struct dwarf_debug_section *sec,
526 asymbol ** syms,
527 bfd_uint64_t offset,
528 bfd_byte ** section_buffer,
529 bfd_size_type * section_size)
530 {
531 asection *msec;
532 const char *section_name = sec->uncompressed_name;
533
534 /* The section may have already been read. */
535 if (*section_buffer == NULL)
536 {
537 msec = bfd_get_section_by_name (abfd, section_name);
538 if (! msec)
539 {
540 section_name = sec->compressed_name;
541 if (section_name != NULL)
542 msec = bfd_get_section_by_name (abfd, section_name);
543 }
544 if (! msec)
545 {
546 _bfd_error_handler (_("Dwarf Error: Can't find %s section."),
547 sec->uncompressed_name);
548 bfd_set_error (bfd_error_bad_value);
549 return FALSE;
550 }
551
552 *section_size = msec->rawsize ? msec->rawsize : msec->size;
553 if (syms)
554 {
555 *section_buffer
556 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
557 if (! *section_buffer)
558 return FALSE;
559 }
560 else
561 {
562 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
563 if (! *section_buffer)
564 return FALSE;
565 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
566 0, *section_size))
567 return FALSE;
568 }
569 }
570
571 /* It is possible to get a bad value for the offset into the section
572 that the client wants. Validate it here to avoid trouble later. */
573 if (offset != 0 && offset >= *section_size)
574 {
575 /* xgettext: c-format */
576 _bfd_error_handler (_("Dwarf Error: Offset (%llu)"
577 " greater than or equal to %s size (%Lu)."),
578 (long long) offset, section_name, *section_size);
579 bfd_set_error (bfd_error_bad_value);
580 return FALSE;
581 }
582
583 return TRUE;
584 }
585
586 /* Read dwarf information from a buffer. */
587
588 static unsigned int
589 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
590 {
591 if (buf + 1 > end)
592 return 0;
593 return bfd_get_8 (abfd, buf);
594 }
595
596 static int
597 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
598 {
599 if (buf + 1 > end)
600 return 0;
601 return bfd_get_signed_8 (abfd, buf);
602 }
603
604 static unsigned int
605 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
606 {
607 if (buf + 2 > end)
608 return 0;
609 return bfd_get_16 (abfd, buf);
610 }
611
612 static unsigned int
613 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
614 {
615 if (buf + 4 > end)
616 return 0;
617 return bfd_get_32 (abfd, buf);
618 }
619
620 static bfd_uint64_t
621 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
622 {
623 if (buf + 8 > end)
624 return 0;
625 return bfd_get_64 (abfd, buf);
626 }
627
628 static bfd_byte *
629 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
630 bfd_byte *buf,
631 bfd_byte *end,
632 unsigned int size ATTRIBUTE_UNUSED)
633 {
634 if (buf + size > end)
635 return NULL;
636 return buf;
637 }
638
639 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
640 Returns the number of characters in the string, *including* the NUL byte,
641 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
642 at or beyond BUF_END will not be read. Returns NULL if there was a
643 problem, or if the string is empty. */
644
645 static char *
646 read_string (bfd * abfd ATTRIBUTE_UNUSED,
647 bfd_byte * buf,
648 bfd_byte * buf_end,
649 unsigned int * bytes_read_ptr)
650 {
651 bfd_byte *str = buf;
652
653 if (buf >= buf_end)
654 {
655 * bytes_read_ptr = 0;
656 return NULL;
657 }
658
659 if (*str == '\0')
660 {
661 * bytes_read_ptr = 1;
662 return NULL;
663 }
664
665 while (buf < buf_end)
666 if (* buf ++ == 0)
667 {
668 * bytes_read_ptr = buf - str;
669 return (char *) str;
670 }
671
672 * bytes_read_ptr = buf - str;
673 return NULL;
674 }
675
676 /* Reads an offset from BUF and then locates the string at this offset
677 inside the debug string section. Returns a pointer to the string.
678 Returns the number of bytes read from BUF, *not* the length of the string,
679 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
680 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
681 a problem, or if the string is empty. Does not check for NUL termination
682 of the string. */
683
684 static char *
685 read_indirect_string (struct comp_unit * unit,
686 bfd_byte * buf,
687 bfd_byte * buf_end,
688 unsigned int * bytes_read_ptr)
689 {
690 bfd_uint64_t offset;
691 struct dwarf2_debug *stash = unit->stash;
692 char *str;
693
694 if (buf + unit->offset_size > buf_end)
695 {
696 * bytes_read_ptr = 0;
697 return NULL;
698 }
699
700 if (unit->offset_size == 4)
701 offset = read_4_bytes (unit->abfd, buf, buf_end);
702 else
703 offset = read_8_bytes (unit->abfd, buf, buf_end);
704
705 *bytes_read_ptr = unit->offset_size;
706
707 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
708 stash->syms, offset,
709 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
710 return NULL;
711
712 if (offset >= stash->dwarf_str_size)
713 return NULL;
714 str = (char *) stash->dwarf_str_buffer + offset;
715 if (*str == '\0')
716 return NULL;
717 return str;
718 }
719
720 /* Like read_indirect_string but from .debug_line_str section. */
721
722 static char *
723 read_indirect_line_string (struct comp_unit * unit,
724 bfd_byte * buf,
725 bfd_byte * buf_end,
726 unsigned int * bytes_read_ptr)
727 {
728 bfd_uint64_t offset;
729 struct dwarf2_debug *stash = unit->stash;
730 char *str;
731
732 if (buf + unit->offset_size > buf_end)
733 {
734 * bytes_read_ptr = 0;
735 return NULL;
736 }
737
738 if (unit->offset_size == 4)
739 offset = read_4_bytes (unit->abfd, buf, buf_end);
740 else
741 offset = read_8_bytes (unit->abfd, buf, buf_end);
742
743 *bytes_read_ptr = unit->offset_size;
744
745 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
746 stash->syms, offset,
747 &stash->dwarf_line_str_buffer,
748 &stash->dwarf_line_str_size))
749 return NULL;
750
751 if (offset >= stash->dwarf_line_str_size)
752 return NULL;
753 str = (char *) stash->dwarf_line_str_buffer + offset;
754 if (*str == '\0')
755 return NULL;
756 return str;
757 }
758
759 /* Like read_indirect_string but uses a .debug_str located in
760 an alternate file pointed to by the .gnu_debugaltlink section.
761 Used to impement DW_FORM_GNU_strp_alt. */
762
763 static char *
764 read_alt_indirect_string (struct comp_unit * unit,
765 bfd_byte * buf,
766 bfd_byte * buf_end,
767 unsigned int * bytes_read_ptr)
768 {
769 bfd_uint64_t offset;
770 struct dwarf2_debug *stash = unit->stash;
771 char *str;
772
773 if (buf + unit->offset_size > buf_end)
774 {
775 * bytes_read_ptr = 0;
776 return NULL;
777 }
778
779 if (unit->offset_size == 4)
780 offset = read_4_bytes (unit->abfd, buf, buf_end);
781 else
782 offset = read_8_bytes (unit->abfd, buf, buf_end);
783
784 *bytes_read_ptr = unit->offset_size;
785
786 if (stash->alt_bfd_ptr == NULL)
787 {
788 bfd * debug_bfd;
789 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
790
791 if (debug_filename == NULL)
792 return NULL;
793
794 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
795 || ! bfd_check_format (debug_bfd, bfd_object))
796 {
797 if (debug_bfd)
798 bfd_close (debug_bfd);
799
800 /* FIXME: Should we report our failure to follow the debuglink ? */
801 free (debug_filename);
802 return NULL;
803 }
804 stash->alt_bfd_ptr = debug_bfd;
805 }
806
807 if (! read_section (unit->stash->alt_bfd_ptr,
808 stash->debug_sections + debug_str_alt,
809 NULL, /* FIXME: Do we need to load alternate symbols ? */
810 offset,
811 &stash->alt_dwarf_str_buffer,
812 &stash->alt_dwarf_str_size))
813 return NULL;
814
815 if (offset >= stash->alt_dwarf_str_size)
816 return NULL;
817 str = (char *) stash->alt_dwarf_str_buffer + offset;
818 if (*str == '\0')
819 return NULL;
820
821 return str;
822 }
823
824 /* Resolve an alternate reference from UNIT at OFFSET.
825 Returns a pointer into the loaded alternate CU upon success
826 or NULL upon failure. */
827
828 static bfd_byte *
829 read_alt_indirect_ref (struct comp_unit * unit,
830 bfd_uint64_t offset)
831 {
832 struct dwarf2_debug *stash = unit->stash;
833
834 if (stash->alt_bfd_ptr == NULL)
835 {
836 bfd * debug_bfd;
837 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
838
839 if (debug_filename == NULL)
840 return FALSE;
841
842 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
843 || ! bfd_check_format (debug_bfd, bfd_object))
844 {
845 if (debug_bfd)
846 bfd_close (debug_bfd);
847
848 /* FIXME: Should we report our failure to follow the debuglink ? */
849 free (debug_filename);
850 return NULL;
851 }
852 stash->alt_bfd_ptr = debug_bfd;
853 }
854
855 if (! read_section (unit->stash->alt_bfd_ptr,
856 stash->debug_sections + debug_info_alt,
857 NULL, /* FIXME: Do we need to load alternate symbols ? */
858 offset,
859 &stash->alt_dwarf_info_buffer,
860 &stash->alt_dwarf_info_size))
861 return NULL;
862
863 if (offset >= stash->alt_dwarf_info_size)
864 return NULL;
865 return stash->alt_dwarf_info_buffer + offset;
866 }
867
868 static bfd_uint64_t
869 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
870 {
871 int signed_vma = 0;
872
873 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
874 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
875
876 if (buf + unit->addr_size > buf_end)
877 return 0;
878
879 if (signed_vma)
880 {
881 switch (unit->addr_size)
882 {
883 case 8:
884 return bfd_get_signed_64 (unit->abfd, buf);
885 case 4:
886 return bfd_get_signed_32 (unit->abfd, buf);
887 case 2:
888 return bfd_get_signed_16 (unit->abfd, buf);
889 default:
890 abort ();
891 }
892 }
893 else
894 {
895 switch (unit->addr_size)
896 {
897 case 8:
898 return bfd_get_64 (unit->abfd, buf);
899 case 4:
900 return bfd_get_32 (unit->abfd, buf);
901 case 2:
902 return bfd_get_16 (unit->abfd, buf);
903 default:
904 abort ();
905 }
906 }
907 }
908
909 /* Lookup an abbrev_info structure in the abbrev hash table. */
910
911 static struct abbrev_info *
912 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
913 {
914 unsigned int hash_number;
915 struct abbrev_info *abbrev;
916
917 hash_number = number % ABBREV_HASH_SIZE;
918 abbrev = abbrevs[hash_number];
919
920 while (abbrev)
921 {
922 if (abbrev->number == number)
923 return abbrev;
924 else
925 abbrev = abbrev->next;
926 }
927
928 return NULL;
929 }
930
931 /* In DWARF version 2, the description of the debugging information is
932 stored in a separate .debug_abbrev section. Before we read any
933 dies from a section we read in all abbreviations and install them
934 in a hash table. */
935
936 static struct abbrev_info**
937 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
938 {
939 struct abbrev_info **abbrevs;
940 bfd_byte *abbrev_ptr;
941 bfd_byte *abbrev_end;
942 struct abbrev_info *cur_abbrev;
943 unsigned int abbrev_number, bytes_read, abbrev_name;
944 unsigned int abbrev_form, hash_number;
945 bfd_size_type amt;
946
947 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
948 stash->syms, offset,
949 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
950 return NULL;
951
952 if (offset >= stash->dwarf_abbrev_size)
953 return NULL;
954
955 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
956 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
957 if (abbrevs == NULL)
958 return NULL;
959
960 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
961 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
962 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
963 FALSE, abbrev_end);
964 abbrev_ptr += bytes_read;
965
966 /* Loop until we reach an abbrev number of 0. */
967 while (abbrev_number)
968 {
969 amt = sizeof (struct abbrev_info);
970 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
971 if (cur_abbrev == NULL)
972 return NULL;
973
974 /* Read in abbrev header. */
975 cur_abbrev->number = abbrev_number;
976 cur_abbrev->tag = (enum dwarf_tag)
977 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
978 FALSE, abbrev_end);
979 abbrev_ptr += bytes_read;
980 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
981 abbrev_ptr += 1;
982
983 /* Now read in declarations. */
984 for (;;)
985 {
986 /* Initialize it just to avoid a GCC false warning. */
987 bfd_vma implicit_const = -1;
988
989 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
990 FALSE, abbrev_end);
991 abbrev_ptr += bytes_read;
992 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
993 FALSE, abbrev_end);
994 abbrev_ptr += bytes_read;
995 if (abbrev_form == DW_FORM_implicit_const)
996 {
997 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
998 &bytes_read, TRUE,
999 abbrev_end);
1000 abbrev_ptr += bytes_read;
1001 }
1002
1003 if (abbrev_name == 0)
1004 break;
1005
1006 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1007 {
1008 struct attr_abbrev *tmp;
1009
1010 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1011 amt *= sizeof (struct attr_abbrev);
1012 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1013 if (tmp == NULL)
1014 {
1015 size_t i;
1016
1017 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1018 {
1019 struct abbrev_info *abbrev = abbrevs[i];
1020
1021 while (abbrev)
1022 {
1023 free (abbrev->attrs);
1024 abbrev = abbrev->next;
1025 }
1026 }
1027 return NULL;
1028 }
1029 cur_abbrev->attrs = tmp;
1030 }
1031
1032 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1033 = (enum dwarf_attribute) abbrev_name;
1034 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1035 = (enum dwarf_form) abbrev_form;
1036 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1037 = implicit_const;
1038 ++cur_abbrev->num_attrs;
1039 }
1040
1041 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1042 cur_abbrev->next = abbrevs[hash_number];
1043 abbrevs[hash_number] = cur_abbrev;
1044
1045 /* Get next abbreviation.
1046 Under Irix6 the abbreviations for a compilation unit are not
1047 always properly terminated with an abbrev number of 0.
1048 Exit loop if we encounter an abbreviation which we have
1049 already read (which means we are about to read the abbreviations
1050 for the next compile unit) or if the end of the abbreviation
1051 table is reached. */
1052 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
1053 >= stash->dwarf_abbrev_size)
1054 break;
1055 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1056 &bytes_read, FALSE, abbrev_end);
1057 abbrev_ptr += bytes_read;
1058 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1059 break;
1060 }
1061
1062 return abbrevs;
1063 }
1064
1065 /* Returns true if the form is one which has a string value. */
1066
1067 static inline bfd_boolean
1068 is_str_attr (enum dwarf_form form)
1069 {
1070 return (form == DW_FORM_string || form == DW_FORM_strp
1071 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1072 }
1073
1074 /* Read and fill in the value of attribute ATTR as described by FORM.
1075 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1076 Returns an updated INFO_PTR taking into account the amount of data read. */
1077
1078 static bfd_byte *
1079 read_attribute_value (struct attribute * attr,
1080 unsigned form,
1081 bfd_vma implicit_const,
1082 struct comp_unit * unit,
1083 bfd_byte * info_ptr,
1084 bfd_byte * info_ptr_end)
1085 {
1086 bfd *abfd = unit->abfd;
1087 unsigned int bytes_read;
1088 struct dwarf_block *blk;
1089 bfd_size_type amt;
1090
1091 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1092 {
1093 _bfd_error_handler (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1094 bfd_set_error (bfd_error_bad_value);
1095 return info_ptr;
1096 }
1097
1098 attr->form = (enum dwarf_form) form;
1099
1100 switch (form)
1101 {
1102 case DW_FORM_ref_addr:
1103 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1104 DWARF3. */
1105 if (unit->version == 3 || unit->version == 4)
1106 {
1107 if (unit->offset_size == 4)
1108 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1109 else
1110 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1111 info_ptr += unit->offset_size;
1112 break;
1113 }
1114 /* FALLTHROUGH */
1115 case DW_FORM_addr:
1116 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1117 info_ptr += unit->addr_size;
1118 break;
1119 case DW_FORM_GNU_ref_alt:
1120 case DW_FORM_sec_offset:
1121 if (unit->offset_size == 4)
1122 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1123 else
1124 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1125 info_ptr += unit->offset_size;
1126 break;
1127 case DW_FORM_block2:
1128 amt = sizeof (struct dwarf_block);
1129 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1130 if (blk == NULL)
1131 return NULL;
1132 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1133 info_ptr += 2;
1134 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1135 info_ptr += blk->size;
1136 attr->u.blk = blk;
1137 break;
1138 case DW_FORM_block4:
1139 amt = sizeof (struct dwarf_block);
1140 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1141 if (blk == NULL)
1142 return NULL;
1143 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1144 info_ptr += 4;
1145 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1146 info_ptr += blk->size;
1147 attr->u.blk = blk;
1148 break;
1149 case DW_FORM_data2:
1150 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1151 info_ptr += 2;
1152 break;
1153 case DW_FORM_data4:
1154 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1155 info_ptr += 4;
1156 break;
1157 case DW_FORM_data8:
1158 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1159 info_ptr += 8;
1160 break;
1161 case DW_FORM_string:
1162 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1163 info_ptr += bytes_read;
1164 break;
1165 case DW_FORM_strp:
1166 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1167 info_ptr += bytes_read;
1168 break;
1169 case DW_FORM_line_strp:
1170 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1171 info_ptr += bytes_read;
1172 break;
1173 case DW_FORM_GNU_strp_alt:
1174 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1175 info_ptr += bytes_read;
1176 break;
1177 case DW_FORM_exprloc:
1178 case DW_FORM_block:
1179 amt = sizeof (struct dwarf_block);
1180 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1181 if (blk == NULL)
1182 return NULL;
1183 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1184 FALSE, info_ptr_end);
1185 info_ptr += bytes_read;
1186 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1187 info_ptr += blk->size;
1188 attr->u.blk = blk;
1189 break;
1190 case DW_FORM_block1:
1191 amt = sizeof (struct dwarf_block);
1192 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1193 if (blk == NULL)
1194 return NULL;
1195 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1196 info_ptr += 1;
1197 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1198 info_ptr += blk->size;
1199 attr->u.blk = blk;
1200 break;
1201 case DW_FORM_data1:
1202 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1203 info_ptr += 1;
1204 break;
1205 case DW_FORM_flag:
1206 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1207 info_ptr += 1;
1208 break;
1209 case DW_FORM_flag_present:
1210 attr->u.val = 1;
1211 break;
1212 case DW_FORM_sdata:
1213 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1214 TRUE, info_ptr_end);
1215 info_ptr += bytes_read;
1216 break;
1217 case DW_FORM_udata:
1218 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1219 FALSE, info_ptr_end);
1220 info_ptr += bytes_read;
1221 break;
1222 case DW_FORM_ref1:
1223 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1224 info_ptr += 1;
1225 break;
1226 case DW_FORM_ref2:
1227 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1228 info_ptr += 2;
1229 break;
1230 case DW_FORM_ref4:
1231 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1232 info_ptr += 4;
1233 break;
1234 case DW_FORM_ref8:
1235 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1236 info_ptr += 8;
1237 break;
1238 case DW_FORM_ref_sig8:
1239 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1240 info_ptr += 8;
1241 break;
1242 case DW_FORM_ref_udata:
1243 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1244 FALSE, info_ptr_end);
1245 info_ptr += bytes_read;
1246 break;
1247 case DW_FORM_indirect:
1248 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1249 FALSE, info_ptr_end);
1250 info_ptr += bytes_read;
1251 if (form == DW_FORM_implicit_const)
1252 {
1253 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1254 TRUE, info_ptr_end);
1255 info_ptr += bytes_read;
1256 }
1257 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1258 info_ptr, info_ptr_end);
1259 break;
1260 case DW_FORM_implicit_const:
1261 attr->form = DW_FORM_sdata;
1262 attr->u.sval = implicit_const;
1263 break;
1264 default:
1265 _bfd_error_handler (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1266 form);
1267 bfd_set_error (bfd_error_bad_value);
1268 return NULL;
1269 }
1270 return info_ptr;
1271 }
1272
1273 /* Read an attribute described by an abbreviated attribute. */
1274
1275 static bfd_byte *
1276 read_attribute (struct attribute * attr,
1277 struct attr_abbrev * abbrev,
1278 struct comp_unit * unit,
1279 bfd_byte * info_ptr,
1280 bfd_byte * info_ptr_end)
1281 {
1282 attr->name = abbrev->name;
1283 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1284 unit, info_ptr, info_ptr_end);
1285 return info_ptr;
1286 }
1287
1288 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1289 for a function. */
1290
1291 static bfd_boolean
1292 non_mangled (int lang)
1293 {
1294 switch (lang)
1295 {
1296 default:
1297 return FALSE;
1298
1299 case DW_LANG_C89:
1300 case DW_LANG_C:
1301 case DW_LANG_Ada83:
1302 case DW_LANG_Cobol74:
1303 case DW_LANG_Cobol85:
1304 case DW_LANG_Fortran77:
1305 case DW_LANG_Pascal83:
1306 case DW_LANG_C99:
1307 case DW_LANG_Ada95:
1308 case DW_LANG_PLI:
1309 case DW_LANG_UPC:
1310 case DW_LANG_C11:
1311 return TRUE;
1312 }
1313 }
1314
1315 /* Source line information table routines. */
1316
1317 #define FILE_ALLOC_CHUNK 5
1318 #define DIR_ALLOC_CHUNK 5
1319
1320 struct line_info
1321 {
1322 struct line_info * prev_line;
1323 bfd_vma address;
1324 char * filename;
1325 unsigned int line;
1326 unsigned int column;
1327 unsigned int discriminator;
1328 unsigned char op_index;
1329 unsigned char end_sequence; /* End of (sequential) code sequence. */
1330 };
1331
1332 struct fileinfo
1333 {
1334 char * name;
1335 unsigned int dir;
1336 unsigned int time;
1337 unsigned int size;
1338 };
1339
1340 struct line_sequence
1341 {
1342 bfd_vma low_pc;
1343 struct line_sequence* prev_sequence;
1344 struct line_info* last_line; /* Largest VMA. */
1345 struct line_info** line_info_lookup;
1346 bfd_size_type num_lines;
1347 };
1348
1349 struct line_info_table
1350 {
1351 bfd * abfd;
1352 unsigned int num_files;
1353 unsigned int num_dirs;
1354 unsigned int num_sequences;
1355 char * comp_dir;
1356 char ** dirs;
1357 struct fileinfo* files;
1358 struct line_sequence* sequences;
1359 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1360 };
1361
1362 /* Remember some information about each function. If the function is
1363 inlined (DW_TAG_inlined_subroutine) it may have two additional
1364 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1365 source code location where this function was inlined. */
1366
1367 struct funcinfo
1368 {
1369 /* Pointer to previous function in list of all functions. */
1370 struct funcinfo * prev_func;
1371 /* Pointer to function one scope higher. */
1372 struct funcinfo * caller_func;
1373 /* Source location file name where caller_func inlines this func. */
1374 char * caller_file;
1375 /* Source location file name. */
1376 char * file;
1377 /* Source location line number where caller_func inlines this func. */
1378 int caller_line;
1379 /* Source location line number. */
1380 int line;
1381 int tag;
1382 bfd_boolean is_linkage;
1383 const char * name;
1384 struct arange arange;
1385 /* Where the symbol is defined. */
1386 asection * sec;
1387 };
1388
1389 struct lookup_funcinfo
1390 {
1391 /* Function information corresponding to this lookup table entry. */
1392 struct funcinfo * funcinfo;
1393
1394 /* The lowest address for this specific function. */
1395 bfd_vma low_addr;
1396
1397 /* The highest address of this function before the lookup table is sorted.
1398 The highest address of all prior functions after the lookup table is
1399 sorted, which is used for binary search. */
1400 bfd_vma high_addr;
1401 };
1402
1403 struct varinfo
1404 {
1405 /* Pointer to previous variable in list of all variables */
1406 struct varinfo *prev_var;
1407 /* Source location file name */
1408 char *file;
1409 /* Source location line number */
1410 int line;
1411 int tag;
1412 char *name;
1413 bfd_vma addr;
1414 /* Where the symbol is defined */
1415 asection *sec;
1416 /* Is this a stack variable? */
1417 unsigned int stack: 1;
1418 };
1419
1420 /* Return TRUE if NEW_LINE should sort after LINE. */
1421
1422 static inline bfd_boolean
1423 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1424 {
1425 return (new_line->address > line->address
1426 || (new_line->address == line->address
1427 && (new_line->op_index > line->op_index
1428 || (new_line->op_index == line->op_index
1429 && new_line->end_sequence < line->end_sequence))));
1430 }
1431
1432
1433 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1434 that the list is sorted. Note that the line_info list is sorted from
1435 highest to lowest VMA (with possible duplicates); that is,
1436 line_info->prev_line always accesses an equal or smaller VMA. */
1437
1438 static bfd_boolean
1439 add_line_info (struct line_info_table *table,
1440 bfd_vma address,
1441 unsigned char op_index,
1442 char *filename,
1443 unsigned int line,
1444 unsigned int column,
1445 unsigned int discriminator,
1446 int end_sequence)
1447 {
1448 bfd_size_type amt = sizeof (struct line_info);
1449 struct line_sequence* seq = table->sequences;
1450 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1451
1452 if (info == NULL)
1453 return FALSE;
1454
1455 /* Set member data of 'info'. */
1456 info->prev_line = NULL;
1457 info->address = address;
1458 info->op_index = op_index;
1459 info->line = line;
1460 info->column = column;
1461 info->discriminator = discriminator;
1462 info->end_sequence = end_sequence;
1463
1464 if (filename && filename[0])
1465 {
1466 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1467 if (info->filename == NULL)
1468 return FALSE;
1469 strcpy (info->filename, filename);
1470 }
1471 else
1472 info->filename = NULL;
1473
1474 /* Find the correct location for 'info'. Normally we will receive
1475 new line_info data 1) in order and 2) with increasing VMAs.
1476 However some compilers break the rules (cf. decode_line_info) and
1477 so we include some heuristics for quickly finding the correct
1478 location for 'info'. In particular, these heuristics optimize for
1479 the common case in which the VMA sequence that we receive is a
1480 list of locally sorted VMAs such as
1481 p...z a...j (where a < j < p < z)
1482
1483 Note: table->lcl_head is used to head an *actual* or *possible*
1484 sub-sequence within the list (such as a...j) that is not directly
1485 headed by table->last_line
1486
1487 Note: we may receive duplicate entries from 'decode_line_info'. */
1488
1489 if (seq
1490 && seq->last_line->address == address
1491 && seq->last_line->op_index == op_index
1492 && seq->last_line->end_sequence == end_sequence)
1493 {
1494 /* We only keep the last entry with the same address and end
1495 sequence. See PR ld/4986. */
1496 if (table->lcl_head == seq->last_line)
1497 table->lcl_head = info;
1498 info->prev_line = seq->last_line->prev_line;
1499 seq->last_line = info;
1500 }
1501 else if (!seq || seq->last_line->end_sequence)
1502 {
1503 /* Start a new line sequence. */
1504 amt = sizeof (struct line_sequence);
1505 seq = (struct line_sequence *) bfd_malloc (amt);
1506 if (seq == NULL)
1507 return FALSE;
1508 seq->low_pc = address;
1509 seq->prev_sequence = table->sequences;
1510 seq->last_line = info;
1511 table->lcl_head = info;
1512 table->sequences = seq;
1513 table->num_sequences++;
1514 }
1515 else if (new_line_sorts_after (info, seq->last_line))
1516 {
1517 /* Normal case: add 'info' to the beginning of the current sequence. */
1518 info->prev_line = seq->last_line;
1519 seq->last_line = info;
1520
1521 /* lcl_head: initialize to head a *possible* sequence at the end. */
1522 if (!table->lcl_head)
1523 table->lcl_head = info;
1524 }
1525 else if (!new_line_sorts_after (info, table->lcl_head)
1526 && (!table->lcl_head->prev_line
1527 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1528 {
1529 /* Abnormal but easy: lcl_head is the head of 'info'. */
1530 info->prev_line = table->lcl_head->prev_line;
1531 table->lcl_head->prev_line = info;
1532 }
1533 else
1534 {
1535 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1536 are valid heads for 'info'. Reset 'lcl_head'. */
1537 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1538 struct line_info* li1 = li2->prev_line;
1539
1540 while (li1)
1541 {
1542 if (!new_line_sorts_after (info, li2)
1543 && new_line_sorts_after (info, li1))
1544 break;
1545
1546 li2 = li1; /* always non-NULL */
1547 li1 = li1->prev_line;
1548 }
1549 table->lcl_head = li2;
1550 info->prev_line = table->lcl_head->prev_line;
1551 table->lcl_head->prev_line = info;
1552 if (address < seq->low_pc)
1553 seq->low_pc = address;
1554 }
1555 return TRUE;
1556 }
1557
1558 /* Extract a fully qualified filename from a line info table.
1559 The returned string has been malloc'ed and it is the caller's
1560 responsibility to free it. */
1561
1562 static char *
1563 concat_filename (struct line_info_table *table, unsigned int file)
1564 {
1565 char *filename;
1566
1567 if (file - 1 >= table->num_files)
1568 {
1569 /* FILE == 0 means unknown. */
1570 if (file)
1571 _bfd_error_handler
1572 (_("Dwarf Error: mangled line number section (bad file number)."));
1573 return strdup ("<unknown>");
1574 }
1575
1576 filename = table->files[file - 1].name;
1577
1578 if (!IS_ABSOLUTE_PATH (filename))
1579 {
1580 char *dir_name = NULL;
1581 char *subdir_name = NULL;
1582 char *name;
1583 size_t len;
1584
1585 if (table->files[file - 1].dir
1586 /* PR 17512: file: 0317e960. */
1587 && table->files[file - 1].dir <= table->num_dirs
1588 /* PR 17512: file: 7f3d2e4b. */
1589 && table->dirs != NULL)
1590 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1591
1592 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1593 dir_name = table->comp_dir;
1594
1595 if (!dir_name)
1596 {
1597 dir_name = subdir_name;
1598 subdir_name = NULL;
1599 }
1600
1601 if (!dir_name)
1602 return strdup (filename);
1603
1604 len = strlen (dir_name) + strlen (filename) + 2;
1605
1606 if (subdir_name)
1607 {
1608 len += strlen (subdir_name) + 1;
1609 name = (char *) bfd_malloc (len);
1610 if (name)
1611 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1612 }
1613 else
1614 {
1615 name = (char *) bfd_malloc (len);
1616 if (name)
1617 sprintf (name, "%s/%s", dir_name, filename);
1618 }
1619
1620 return name;
1621 }
1622
1623 return strdup (filename);
1624 }
1625
1626 static bfd_boolean
1627 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1628 bfd_vma low_pc, bfd_vma high_pc)
1629 {
1630 struct arange *arange;
1631
1632 /* Ignore empty ranges. */
1633 if (low_pc == high_pc)
1634 return TRUE;
1635
1636 /* If the first arange is empty, use it. */
1637 if (first_arange->high == 0)
1638 {
1639 first_arange->low = low_pc;
1640 first_arange->high = high_pc;
1641 return TRUE;
1642 }
1643
1644 /* Next see if we can cheaply extend an existing range. */
1645 arange = first_arange;
1646 do
1647 {
1648 if (low_pc == arange->high)
1649 {
1650 arange->high = high_pc;
1651 return TRUE;
1652 }
1653 if (high_pc == arange->low)
1654 {
1655 arange->low = low_pc;
1656 return TRUE;
1657 }
1658 arange = arange->next;
1659 }
1660 while (arange);
1661
1662 /* Need to allocate a new arange and insert it into the arange list.
1663 Order isn't significant, so just insert after the first arange. */
1664 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1665 if (arange == NULL)
1666 return FALSE;
1667 arange->low = low_pc;
1668 arange->high = high_pc;
1669 arange->next = first_arange->next;
1670 first_arange->next = arange;
1671 return TRUE;
1672 }
1673
1674 /* Compare function for line sequences. */
1675
1676 static int
1677 compare_sequences (const void* a, const void* b)
1678 {
1679 const struct line_sequence* seq1 = a;
1680 const struct line_sequence* seq2 = b;
1681
1682 /* Sort by low_pc as the primary key. */
1683 if (seq1->low_pc < seq2->low_pc)
1684 return -1;
1685 if (seq1->low_pc > seq2->low_pc)
1686 return 1;
1687
1688 /* If low_pc values are equal, sort in reverse order of
1689 high_pc, so that the largest region comes first. */
1690 if (seq1->last_line->address < seq2->last_line->address)
1691 return 1;
1692 if (seq1->last_line->address > seq2->last_line->address)
1693 return -1;
1694
1695 if (seq1->last_line->op_index < seq2->last_line->op_index)
1696 return 1;
1697 if (seq1->last_line->op_index > seq2->last_line->op_index)
1698 return -1;
1699
1700 return 0;
1701 }
1702
1703 /* Construct the line information table for quick lookup. */
1704
1705 static bfd_boolean
1706 build_line_info_table (struct line_info_table * table,
1707 struct line_sequence * seq)
1708 {
1709 bfd_size_type amt;
1710 struct line_info** line_info_lookup;
1711 struct line_info* each_line;
1712 unsigned int num_lines;
1713 unsigned int line_index;
1714
1715 if (seq->line_info_lookup != NULL)
1716 return TRUE;
1717
1718 /* Count the number of line information entries. We could do this while
1719 scanning the debug information, but some entries may be added via
1720 lcl_head without having a sequence handy to increment the number of
1721 lines. */
1722 num_lines = 0;
1723 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1724 num_lines++;
1725
1726 if (num_lines == 0)
1727 return TRUE;
1728
1729 /* Allocate space for the line information lookup table. */
1730 amt = sizeof (struct line_info*) * num_lines;
1731 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1732 if (line_info_lookup == NULL)
1733 return FALSE;
1734
1735 /* Create the line information lookup table. */
1736 line_index = num_lines;
1737 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1738 line_info_lookup[--line_index] = each_line;
1739
1740 BFD_ASSERT (line_index == 0);
1741
1742 seq->num_lines = num_lines;
1743 seq->line_info_lookup = line_info_lookup;
1744
1745 return TRUE;
1746 }
1747
1748 /* Sort the line sequences for quick lookup. */
1749
1750 static bfd_boolean
1751 sort_line_sequences (struct line_info_table* table)
1752 {
1753 bfd_size_type amt;
1754 struct line_sequence* sequences;
1755 struct line_sequence* seq;
1756 unsigned int n = 0;
1757 unsigned int num_sequences = table->num_sequences;
1758 bfd_vma last_high_pc;
1759
1760 if (num_sequences == 0)
1761 return TRUE;
1762
1763 /* Allocate space for an array of sequences. */
1764 amt = sizeof (struct line_sequence) * num_sequences;
1765 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1766 if (sequences == NULL)
1767 return FALSE;
1768
1769 /* Copy the linked list into the array, freeing the original nodes. */
1770 seq = table->sequences;
1771 for (n = 0; n < num_sequences; n++)
1772 {
1773 struct line_sequence* last_seq = seq;
1774
1775 BFD_ASSERT (seq);
1776 sequences[n].low_pc = seq->low_pc;
1777 sequences[n].prev_sequence = NULL;
1778 sequences[n].last_line = seq->last_line;
1779 sequences[n].line_info_lookup = NULL;
1780 sequences[n].num_lines = 0;
1781 seq = seq->prev_sequence;
1782 free (last_seq);
1783 }
1784 BFD_ASSERT (seq == NULL);
1785
1786 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1787
1788 /* Make the list binary-searchable by trimming overlapping entries
1789 and removing nested entries. */
1790 num_sequences = 1;
1791 last_high_pc = sequences[0].last_line->address;
1792 for (n = 1; n < table->num_sequences; n++)
1793 {
1794 if (sequences[n].low_pc < last_high_pc)
1795 {
1796 if (sequences[n].last_line->address <= last_high_pc)
1797 /* Skip nested entries. */
1798 continue;
1799
1800 /* Trim overlapping entries. */
1801 sequences[n].low_pc = last_high_pc;
1802 }
1803 last_high_pc = sequences[n].last_line->address;
1804 if (n > num_sequences)
1805 {
1806 /* Close up the gap. */
1807 sequences[num_sequences].low_pc = sequences[n].low_pc;
1808 sequences[num_sequences].last_line = sequences[n].last_line;
1809 }
1810 num_sequences++;
1811 }
1812
1813 table->sequences = sequences;
1814 table->num_sequences = num_sequences;
1815 return TRUE;
1816 }
1817
1818 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1819
1820 static bfd_boolean
1821 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1822 {
1823 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1824 {
1825 char **tmp;
1826 bfd_size_type amt;
1827
1828 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1829 amt *= sizeof (char *);
1830
1831 tmp = (char **) bfd_realloc (table->dirs, amt);
1832 if (tmp == NULL)
1833 return FALSE;
1834 table->dirs = tmp;
1835 }
1836
1837 table->dirs[table->num_dirs++] = cur_dir;
1838 return TRUE;
1839 }
1840
1841 static bfd_boolean
1842 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1843 unsigned int dir ATTRIBUTE_UNUSED,
1844 unsigned int xtime ATTRIBUTE_UNUSED,
1845 unsigned int size ATTRIBUTE_UNUSED)
1846 {
1847 return line_info_add_include_dir (table, cur_dir);
1848 }
1849
1850 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1851
1852 static bfd_boolean
1853 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1854 unsigned int dir, unsigned int xtime,
1855 unsigned int size)
1856 {
1857 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1858 {
1859 struct fileinfo *tmp;
1860 bfd_size_type amt;
1861
1862 amt = table->num_files + FILE_ALLOC_CHUNK;
1863 amt *= sizeof (struct fileinfo);
1864
1865 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1866 if (tmp == NULL)
1867 return FALSE;
1868 table->files = tmp;
1869 }
1870
1871 table->files[table->num_files].name = cur_file;
1872 table->files[table->num_files].dir = dir;
1873 table->files[table->num_files].time = xtime;
1874 table->files[table->num_files].size = size;
1875 table->num_files++;
1876 return TRUE;
1877 }
1878
1879 /* Read directory or file name entry format, starting with byte of
1880 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1881 entries count and the entries themselves in the described entry
1882 format. */
1883
1884 static bfd_boolean
1885 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1886 bfd_byte *buf_end, struct line_info_table *table,
1887 bfd_boolean (*callback) (struct line_info_table *table,
1888 char *cur_file,
1889 unsigned int dir,
1890 unsigned int time,
1891 unsigned int size))
1892 {
1893 bfd *abfd = unit->abfd;
1894 bfd_byte format_count, formati;
1895 bfd_vma data_count, datai;
1896 bfd_byte *buf = *bufp;
1897 bfd_byte *format_header_data;
1898 unsigned int bytes_read;
1899
1900 format_count = read_1_byte (abfd, buf, buf_end);
1901 buf += 1;
1902 format_header_data = buf;
1903 for (formati = 0; formati < format_count; formati++)
1904 {
1905 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1906 buf += bytes_read;
1907 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1908 buf += bytes_read;
1909 }
1910
1911 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1912 buf += bytes_read;
1913 for (datai = 0; datai < data_count; datai++)
1914 {
1915 bfd_byte *format = format_header_data;
1916 struct fileinfo fe;
1917
1918 for (formati = 0; formati < format_count; formati++)
1919 {
1920 bfd_vma content_type, form;
1921 char *string_trash;
1922 char **stringp = &string_trash;
1923 unsigned int uint_trash, *uintp = &uint_trash;
1924
1925 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
1926 FALSE, buf_end);
1927 format += bytes_read;
1928 switch (content_type)
1929 {
1930 case DW_LNCT_path:
1931 stringp = &fe.name;
1932 break;
1933 case DW_LNCT_directory_index:
1934 uintp = &fe.dir;
1935 break;
1936 case DW_LNCT_timestamp:
1937 uintp = &fe.time;
1938 break;
1939 case DW_LNCT_size:
1940 uintp = &fe.size;
1941 break;
1942 case DW_LNCT_MD5:
1943 break;
1944 default:
1945 _bfd_error_handler
1946 (_("Dwarf Error: Unknown format content type %Lu."),
1947 content_type);
1948 bfd_set_error (bfd_error_bad_value);
1949 return FALSE;
1950 }
1951
1952 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
1953 buf_end);
1954 format += bytes_read;
1955 switch (form)
1956 {
1957 case DW_FORM_string:
1958 *stringp = read_string (abfd, buf, buf_end, &bytes_read);
1959 buf += bytes_read;
1960 break;
1961
1962 case DW_FORM_line_strp:
1963 *stringp = read_indirect_line_string (unit, buf, buf_end, &bytes_read);
1964 buf += bytes_read;
1965 break;
1966
1967 case DW_FORM_data1:
1968 *uintp = read_1_byte (abfd, buf, buf_end);
1969 buf += 1;
1970 break;
1971
1972 case DW_FORM_data2:
1973 *uintp = read_2_bytes (abfd, buf, buf_end);
1974 buf += 2;
1975 break;
1976
1977 case DW_FORM_data4:
1978 *uintp = read_4_bytes (abfd, buf, buf_end);
1979 buf += 4;
1980 break;
1981
1982 case DW_FORM_data8:
1983 *uintp = read_8_bytes (abfd, buf, buf_end);
1984 buf += 8;
1985 break;
1986
1987 case DW_FORM_udata:
1988 *uintp = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE,
1989 buf_end);
1990 buf += bytes_read;
1991 break;
1992
1993 case DW_FORM_block:
1994 /* It is valid only for DW_LNCT_timestamp which is ignored by
1995 current GDB. */
1996 break;
1997 }
1998 }
1999
2000 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2001 return FALSE;
2002 }
2003
2004 *bufp = buf;
2005 return TRUE;
2006 }
2007
2008 /* Decode the line number information for UNIT. */
2009
2010 static struct line_info_table*
2011 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
2012 {
2013 bfd *abfd = unit->abfd;
2014 struct line_info_table* table;
2015 bfd_byte *line_ptr;
2016 bfd_byte *line_end;
2017 struct line_head lh;
2018 unsigned int i, bytes_read, offset_size;
2019 char *cur_file, *cur_dir;
2020 unsigned char op_code, extended_op, adj_opcode;
2021 unsigned int exop_len;
2022 bfd_size_type amt;
2023
2024 if (! read_section (abfd, &stash->debug_sections[debug_line],
2025 stash->syms, unit->line_offset,
2026 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
2027 return NULL;
2028
2029 amt = sizeof (struct line_info_table);
2030 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2031 if (table == NULL)
2032 return NULL;
2033 table->abfd = abfd;
2034 table->comp_dir = unit->comp_dir;
2035
2036 table->num_files = 0;
2037 table->files = NULL;
2038
2039 table->num_dirs = 0;
2040 table->dirs = NULL;
2041
2042 table->num_sequences = 0;
2043 table->sequences = NULL;
2044
2045 table->lcl_head = NULL;
2046
2047 if (stash->dwarf_line_size < 16)
2048 {
2049 _bfd_error_handler
2050 (_("Dwarf Error: Line info section is too small (%Ld)"),
2051 stash->dwarf_line_size);
2052 bfd_set_error (bfd_error_bad_value);
2053 return NULL;
2054 }
2055 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
2056 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
2057
2058 /* Read in the prologue. */
2059 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2060 line_ptr += 4;
2061 offset_size = 4;
2062 if (lh.total_length == 0xffffffff)
2063 {
2064 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2065 line_ptr += 8;
2066 offset_size = 8;
2067 }
2068 else if (lh.total_length == 0 && unit->addr_size == 8)
2069 {
2070 /* Handle (non-standard) 64-bit DWARF2 formats. */
2071 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2072 line_ptr += 4;
2073 offset_size = 8;
2074 }
2075
2076 if (lh.total_length > stash->dwarf_line_size)
2077 {
2078 _bfd_error_handler
2079 /* xgettext: c-format */
2080 (_("Dwarf Error: Line info data is bigger (%#Lx) than the section (%#Lx)"),
2081 lh.total_length, stash->dwarf_line_size);
2082 bfd_set_error (bfd_error_bad_value);
2083 return NULL;
2084 }
2085
2086 line_end = line_ptr + lh.total_length;
2087
2088 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2089 if (lh.version < 2 || lh.version > 5)
2090 {
2091 _bfd_error_handler
2092 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
2093 bfd_set_error (bfd_error_bad_value);
2094 return NULL;
2095 }
2096 line_ptr += 2;
2097
2098 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2099 >= line_end)
2100 {
2101 _bfd_error_handler
2102 (_("Dwarf Error: Ran out of room reading prologue"));
2103 bfd_set_error (bfd_error_bad_value);
2104 return NULL;
2105 }
2106
2107 if (lh.version >= 5)
2108 {
2109 unsigned int segment_selector_size;
2110
2111 /* Skip address size. */
2112 read_1_byte (abfd, line_ptr, line_end);
2113 line_ptr += 1;
2114
2115 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2116 line_ptr += 1;
2117 if (segment_selector_size != 0)
2118 {
2119 _bfd_error_handler
2120 (_("Dwarf Error: Line info unsupported segment selector size %u."),
2121 segment_selector_size);
2122 bfd_set_error (bfd_error_bad_value);
2123 return NULL;
2124 }
2125 }
2126
2127 if (offset_size == 4)
2128 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2129 else
2130 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2131 line_ptr += offset_size;
2132
2133 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2134 line_ptr += 1;
2135
2136 if (lh.version >= 4)
2137 {
2138 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2139 line_ptr += 1;
2140 }
2141 else
2142 lh.maximum_ops_per_insn = 1;
2143
2144 if (lh.maximum_ops_per_insn == 0)
2145 {
2146 _bfd_error_handler
2147 (_("Dwarf Error: Invalid maximum operations per instruction."));
2148 bfd_set_error (bfd_error_bad_value);
2149 return NULL;
2150 }
2151
2152 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2153 line_ptr += 1;
2154
2155 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2156 line_ptr += 1;
2157
2158 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2159 line_ptr += 1;
2160
2161 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2162 line_ptr += 1;
2163
2164 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2165 {
2166 _bfd_error_handler (_("Dwarf Error: Ran out of room reading opcodes"));
2167 bfd_set_error (bfd_error_bad_value);
2168 return NULL;
2169 }
2170
2171 amt = lh.opcode_base * sizeof (unsigned char);
2172 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2173
2174 lh.standard_opcode_lengths[0] = 1;
2175
2176 for (i = 1; i < lh.opcode_base; ++i)
2177 {
2178 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2179 line_ptr += 1;
2180 }
2181
2182 if (lh.version >= 5)
2183 {
2184 /* Read directory table. */
2185 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2186 line_info_add_include_dir_stub))
2187 goto fail;
2188
2189 /* Read file name table. */
2190 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2191 line_info_add_file_name))
2192 goto fail;
2193 }
2194 else
2195 {
2196 /* Read directory table. */
2197 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2198 {
2199 line_ptr += bytes_read;
2200
2201 if (!line_info_add_include_dir (table, cur_dir))
2202 goto fail;
2203 }
2204
2205 line_ptr += bytes_read;
2206
2207 /* Read file name table. */
2208 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2209 {
2210 unsigned int dir, xtime, size;
2211
2212 line_ptr += bytes_read;
2213
2214 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2215 line_ptr += bytes_read;
2216 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2217 line_ptr += bytes_read;
2218 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2219 line_ptr += bytes_read;
2220
2221 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2222 goto fail;
2223 }
2224
2225 line_ptr += bytes_read;
2226 }
2227
2228 /* Read the statement sequences until there's nothing left. */
2229 while (line_ptr < line_end)
2230 {
2231 /* State machine registers. */
2232 bfd_vma address = 0;
2233 unsigned char op_index = 0;
2234 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2235 unsigned int line = 1;
2236 unsigned int column = 0;
2237 unsigned int discriminator = 0;
2238 int is_stmt = lh.default_is_stmt;
2239 int end_sequence = 0;
2240 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2241 compilers generate address sequences that are wildly out of
2242 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2243 for ia64-Linux). Thus, to determine the low and high
2244 address, we must compare on every DW_LNS_copy, etc. */
2245 bfd_vma low_pc = (bfd_vma) -1;
2246 bfd_vma high_pc = 0;
2247
2248 /* Decode the table. */
2249 while (! end_sequence)
2250 {
2251 op_code = read_1_byte (abfd, line_ptr, line_end);
2252 line_ptr += 1;
2253
2254 if (op_code >= lh.opcode_base)
2255 {
2256 /* Special operand. */
2257 adj_opcode = op_code - lh.opcode_base;
2258 if (lh.line_range == 0)
2259 goto line_fail;
2260 if (lh.maximum_ops_per_insn == 1)
2261 address += (adj_opcode / lh.line_range
2262 * lh.minimum_instruction_length);
2263 else
2264 {
2265 address += ((op_index + adj_opcode / lh.line_range)
2266 / lh.maximum_ops_per_insn
2267 * lh.minimum_instruction_length);
2268 op_index = ((op_index + adj_opcode / lh.line_range)
2269 % lh.maximum_ops_per_insn);
2270 }
2271 line += lh.line_base + (adj_opcode % lh.line_range);
2272 /* Append row to matrix using current values. */
2273 if (!add_line_info (table, address, op_index, filename,
2274 line, column, discriminator, 0))
2275 goto line_fail;
2276 discriminator = 0;
2277 if (address < low_pc)
2278 low_pc = address;
2279 if (address > high_pc)
2280 high_pc = address;
2281 }
2282 else switch (op_code)
2283 {
2284 case DW_LNS_extended_op:
2285 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2286 FALSE, line_end);
2287 line_ptr += bytes_read;
2288 extended_op = read_1_byte (abfd, line_ptr, line_end);
2289 line_ptr += 1;
2290
2291 switch (extended_op)
2292 {
2293 case DW_LNE_end_sequence:
2294 end_sequence = 1;
2295 if (!add_line_info (table, address, op_index, filename, line,
2296 column, discriminator, end_sequence))
2297 goto line_fail;
2298 discriminator = 0;
2299 if (address < low_pc)
2300 low_pc = address;
2301 if (address > high_pc)
2302 high_pc = address;
2303 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2304 goto line_fail;
2305 break;
2306 case DW_LNE_set_address:
2307 address = read_address (unit, line_ptr, line_end);
2308 op_index = 0;
2309 line_ptr += unit->addr_size;
2310 break;
2311 case DW_LNE_define_file:
2312 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2313 line_ptr += bytes_read;
2314 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
2315 {
2316 struct fileinfo *tmp;
2317
2318 amt = table->num_files + FILE_ALLOC_CHUNK;
2319 amt *= sizeof (struct fileinfo);
2320 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
2321 if (tmp == NULL)
2322 goto line_fail;
2323 table->files = tmp;
2324 }
2325 table->files[table->num_files].name = cur_file;
2326 table->files[table->num_files].dir =
2327 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2328 FALSE, line_end);
2329 line_ptr += bytes_read;
2330 table->files[table->num_files].time =
2331 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2332 FALSE, line_end);
2333 line_ptr += bytes_read;
2334 table->files[table->num_files].size =
2335 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2336 FALSE, line_end);
2337 line_ptr += bytes_read;
2338 table->num_files++;
2339 break;
2340 case DW_LNE_set_discriminator:
2341 discriminator =
2342 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2343 FALSE, line_end);
2344 line_ptr += bytes_read;
2345 break;
2346 case DW_LNE_HP_source_file_correlation:
2347 line_ptr += exop_len - 1;
2348 break;
2349 default:
2350 _bfd_error_handler
2351 (_("Dwarf Error: mangled line number section."));
2352 bfd_set_error (bfd_error_bad_value);
2353 line_fail:
2354 if (filename != NULL)
2355 free (filename);
2356 goto fail;
2357 }
2358 break;
2359 case DW_LNS_copy:
2360 if (!add_line_info (table, address, op_index,
2361 filename, line, column, discriminator, 0))
2362 goto line_fail;
2363 discriminator = 0;
2364 if (address < low_pc)
2365 low_pc = address;
2366 if (address > high_pc)
2367 high_pc = address;
2368 break;
2369 case DW_LNS_advance_pc:
2370 if (lh.maximum_ops_per_insn == 1)
2371 address += (lh.minimum_instruction_length
2372 * _bfd_safe_read_leb128 (abfd, line_ptr,
2373 &bytes_read,
2374 FALSE, line_end));
2375 else
2376 {
2377 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2378 &bytes_read,
2379 FALSE, line_end);
2380 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2381 * lh.minimum_instruction_length);
2382 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2383 }
2384 line_ptr += bytes_read;
2385 break;
2386 case DW_LNS_advance_line:
2387 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2388 TRUE, line_end);
2389 line_ptr += bytes_read;
2390 break;
2391 case DW_LNS_set_file:
2392 {
2393 unsigned int file;
2394
2395 /* The file and directory tables are 0
2396 based, the references are 1 based. */
2397 file = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2398 FALSE, line_end);
2399 line_ptr += bytes_read;
2400 if (filename)
2401 free (filename);
2402 filename = concat_filename (table, file);
2403 break;
2404 }
2405 case DW_LNS_set_column:
2406 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2407 FALSE, line_end);
2408 line_ptr += bytes_read;
2409 break;
2410 case DW_LNS_negate_stmt:
2411 is_stmt = (!is_stmt);
2412 break;
2413 case DW_LNS_set_basic_block:
2414 break;
2415 case DW_LNS_const_add_pc:
2416 if (lh.maximum_ops_per_insn == 1)
2417 address += (lh.minimum_instruction_length
2418 * ((255 - lh.opcode_base) / lh.line_range));
2419 else
2420 {
2421 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2422 address += (lh.minimum_instruction_length
2423 * ((op_index + adjust)
2424 / lh.maximum_ops_per_insn));
2425 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2426 }
2427 break;
2428 case DW_LNS_fixed_advance_pc:
2429 address += read_2_bytes (abfd, line_ptr, line_end);
2430 op_index = 0;
2431 line_ptr += 2;
2432 break;
2433 default:
2434 /* Unknown standard opcode, ignore it. */
2435 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2436 {
2437 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2438 FALSE, line_end);
2439 line_ptr += bytes_read;
2440 }
2441 break;
2442 }
2443 }
2444
2445 if (filename)
2446 free (filename);
2447 }
2448
2449 if (sort_line_sequences (table))
2450 return table;
2451
2452 fail:
2453 if (table->sequences != NULL)
2454 free (table->sequences);
2455 if (table->files != NULL)
2456 free (table->files);
2457 if (table->dirs != NULL)
2458 free (table->dirs);
2459 return NULL;
2460 }
2461
2462 /* If ADDR is within TABLE set the output parameters and return the
2463 range of addresses covered by the entry used to fill them out.
2464 Otherwise set * FILENAME_PTR to NULL and return 0.
2465 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2466 are pointers to the objects to be filled in. */
2467
2468 static bfd_vma
2469 lookup_address_in_line_info_table (struct line_info_table *table,
2470 bfd_vma addr,
2471 const char **filename_ptr,
2472 unsigned int *linenumber_ptr,
2473 unsigned int *discriminator_ptr)
2474 {
2475 struct line_sequence *seq = NULL;
2476 struct line_info *info;
2477 int low, high, mid;
2478
2479 /* Binary search the array of sequences. */
2480 low = 0;
2481 high = table->num_sequences;
2482 while (low < high)
2483 {
2484 mid = (low + high) / 2;
2485 seq = &table->sequences[mid];
2486 if (addr < seq->low_pc)
2487 high = mid;
2488 else if (addr >= seq->last_line->address)
2489 low = mid + 1;
2490 else
2491 break;
2492 }
2493
2494 /* Check for a valid sequence. */
2495 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2496 goto fail;
2497
2498 if (!build_line_info_table (table, seq))
2499 goto fail;
2500
2501 /* Binary search the array of line information. */
2502 low = 0;
2503 high = seq->num_lines;
2504 info = NULL;
2505 while (low < high)
2506 {
2507 mid = (low + high) / 2;
2508 info = seq->line_info_lookup[mid];
2509 if (addr < info->address)
2510 high = mid;
2511 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2512 low = mid + 1;
2513 else
2514 break;
2515 }
2516
2517 /* Check for a valid line information entry. */
2518 if (info
2519 && addr >= info->address
2520 && addr < seq->line_info_lookup[mid + 1]->address
2521 && !(info->end_sequence || info == seq->last_line))
2522 {
2523 *filename_ptr = info->filename;
2524 *linenumber_ptr = info->line;
2525 if (discriminator_ptr)
2526 *discriminator_ptr = info->discriminator;
2527 return seq->last_line->address - seq->low_pc;
2528 }
2529
2530 fail:
2531 *filename_ptr = NULL;
2532 return 0;
2533 }
2534
2535 /* Read in the .debug_ranges section for future reference. */
2536
2537 static bfd_boolean
2538 read_debug_ranges (struct comp_unit * unit)
2539 {
2540 struct dwarf2_debug * stash = unit->stash;
2541
2542 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2543 stash->syms, 0,
2544 &stash->dwarf_ranges_buffer,
2545 &stash->dwarf_ranges_size);
2546 }
2547
2548 /* Function table functions. */
2549
2550 static int
2551 compare_lookup_funcinfos (const void * a, const void * b)
2552 {
2553 const struct lookup_funcinfo * lookup1 = a;
2554 const struct lookup_funcinfo * lookup2 = b;
2555
2556 if (lookup1->low_addr < lookup2->low_addr)
2557 return -1;
2558 if (lookup1->low_addr > lookup2->low_addr)
2559 return 1;
2560 if (lookup1->high_addr < lookup2->high_addr)
2561 return -1;
2562 if (lookup1->high_addr > lookup2->high_addr)
2563 return 1;
2564
2565 return 0;
2566 }
2567
2568 static bfd_boolean
2569 build_lookup_funcinfo_table (struct comp_unit * unit)
2570 {
2571 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2572 unsigned int number_of_functions = unit->number_of_functions;
2573 struct funcinfo *each;
2574 struct lookup_funcinfo *entry;
2575 size_t func_index;
2576 struct arange *range;
2577 bfd_vma low_addr, high_addr;
2578
2579 if (lookup_funcinfo_table || number_of_functions == 0)
2580 return TRUE;
2581
2582 /* Create the function info lookup table. */
2583 lookup_funcinfo_table = (struct lookup_funcinfo *)
2584 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2585 if (lookup_funcinfo_table == NULL)
2586 return FALSE;
2587
2588 /* Populate the function info lookup table. */
2589 func_index = number_of_functions;
2590 for (each = unit->function_table; each; each = each->prev_func)
2591 {
2592 entry = &lookup_funcinfo_table[--func_index];
2593 entry->funcinfo = each;
2594
2595 /* Calculate the lowest and highest address for this function entry. */
2596 low_addr = entry->funcinfo->arange.low;
2597 high_addr = entry->funcinfo->arange.high;
2598
2599 for (range = entry->funcinfo->arange.next; range; range = range->next)
2600 {
2601 if (range->low < low_addr)
2602 low_addr = range->low;
2603 if (range->high > high_addr)
2604 high_addr = range->high;
2605 }
2606
2607 entry->low_addr = low_addr;
2608 entry->high_addr = high_addr;
2609 }
2610
2611 BFD_ASSERT (func_index == 0);
2612
2613 /* Sort the function by address. */
2614 qsort (lookup_funcinfo_table,
2615 number_of_functions,
2616 sizeof (struct lookup_funcinfo),
2617 compare_lookup_funcinfos);
2618
2619 /* Calculate the high watermark for each function in the lookup table. */
2620 high_addr = lookup_funcinfo_table[0].high_addr;
2621 for (func_index = 1; func_index < number_of_functions; func_index++)
2622 {
2623 entry = &lookup_funcinfo_table[func_index];
2624 if (entry->high_addr > high_addr)
2625 high_addr = entry->high_addr;
2626 else
2627 entry->high_addr = high_addr;
2628 }
2629
2630 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2631 return TRUE;
2632 }
2633
2634 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2635 TRUE. Note that we need to find the function that has the smallest range
2636 that contains ADDR, to handle inlined functions without depending upon
2637 them being ordered in TABLE by increasing range. */
2638
2639 static bfd_boolean
2640 lookup_address_in_function_table (struct comp_unit *unit,
2641 bfd_vma addr,
2642 struct funcinfo **function_ptr)
2643 {
2644 unsigned int number_of_functions = unit->number_of_functions;
2645 struct lookup_funcinfo* lookup_funcinfo = NULL;
2646 struct funcinfo* funcinfo = NULL;
2647 struct funcinfo* best_fit = NULL;
2648 bfd_vma best_fit_len = 0;
2649 bfd_size_type low, high, mid, first;
2650 struct arange *arange;
2651
2652 if (number_of_functions == 0)
2653 return FALSE;
2654
2655 if (!build_lookup_funcinfo_table (unit))
2656 return FALSE;
2657
2658 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2659 return FALSE;
2660
2661 /* Find the first function in the lookup table which may contain the
2662 specified address. */
2663 low = 0;
2664 high = number_of_functions;
2665 first = high;
2666 while (low < high)
2667 {
2668 mid = (low + high) / 2;
2669 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2670 if (addr < lookup_funcinfo->low_addr)
2671 high = mid;
2672 else if (addr >= lookup_funcinfo->high_addr)
2673 low = mid + 1;
2674 else
2675 high = first = mid;
2676 }
2677
2678 /* Find the 'best' match for the address. The prior algorithm defined the
2679 best match as the function with the smallest address range containing
2680 the specified address. This definition should probably be changed to the
2681 innermost inline routine containing the address, but right now we want
2682 to get the same results we did before. */
2683 while (first < number_of_functions)
2684 {
2685 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2686 break;
2687 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2688
2689 for (arange = &funcinfo->arange; arange; arange = arange->next)
2690 {
2691 if (addr < arange->low || addr >= arange->high)
2692 continue;
2693
2694 if (!best_fit
2695 || arange->high - arange->low < best_fit_len
2696 /* The following comparison is designed to return the same
2697 match as the previous algorithm for routines which have the
2698 same best fit length. */
2699 || (arange->high - arange->low == best_fit_len
2700 && funcinfo > best_fit))
2701 {
2702 best_fit = funcinfo;
2703 best_fit_len = arange->high - arange->low;
2704 }
2705 }
2706
2707 first++;
2708 }
2709
2710 if (!best_fit)
2711 return FALSE;
2712
2713 *function_ptr = best_fit;
2714 return TRUE;
2715 }
2716
2717 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2718 and LINENUMBER_PTR, and return TRUE. */
2719
2720 static bfd_boolean
2721 lookup_symbol_in_function_table (struct comp_unit *unit,
2722 asymbol *sym,
2723 bfd_vma addr,
2724 const char **filename_ptr,
2725 unsigned int *linenumber_ptr)
2726 {
2727 struct funcinfo* each_func;
2728 struct funcinfo* best_fit = NULL;
2729 bfd_vma best_fit_len = 0;
2730 struct arange *arange;
2731 const char *name = bfd_asymbol_name (sym);
2732 asection *sec = bfd_get_section (sym);
2733
2734 for (each_func = unit->function_table;
2735 each_func;
2736 each_func = each_func->prev_func)
2737 {
2738 for (arange = &each_func->arange;
2739 arange;
2740 arange = arange->next)
2741 {
2742 if ((!each_func->sec || each_func->sec == sec)
2743 && addr >= arange->low
2744 && addr < arange->high
2745 && each_func->name
2746 && strcmp (name, each_func->name) == 0
2747 && (!best_fit
2748 || arange->high - arange->low < best_fit_len))
2749 {
2750 best_fit = each_func;
2751 best_fit_len = arange->high - arange->low;
2752 }
2753 }
2754 }
2755
2756 if (best_fit)
2757 {
2758 best_fit->sec = sec;
2759 *filename_ptr = best_fit->file;
2760 *linenumber_ptr = best_fit->line;
2761 return TRUE;
2762 }
2763 else
2764 return FALSE;
2765 }
2766
2767 /* Variable table functions. */
2768
2769 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2770 LINENUMBER_PTR, and return TRUE. */
2771
2772 static bfd_boolean
2773 lookup_symbol_in_variable_table (struct comp_unit *unit,
2774 asymbol *sym,
2775 bfd_vma addr,
2776 const char **filename_ptr,
2777 unsigned int *linenumber_ptr)
2778 {
2779 const char *name = bfd_asymbol_name (sym);
2780 asection *sec = bfd_get_section (sym);
2781 struct varinfo* each;
2782
2783 for (each = unit->variable_table; each; each = each->prev_var)
2784 if (each->stack == 0
2785 && each->file != NULL
2786 && each->name != NULL
2787 && each->addr == addr
2788 && (!each->sec || each->sec == sec)
2789 && strcmp (name, each->name) == 0)
2790 break;
2791
2792 if (each)
2793 {
2794 each->sec = sec;
2795 *filename_ptr = each->file;
2796 *linenumber_ptr = each->line;
2797 return TRUE;
2798 }
2799
2800 return FALSE;
2801 }
2802
2803 static char *
2804 find_abstract_instance_name (struct comp_unit *unit,
2805 struct attribute *attr_ptr,
2806 bfd_boolean *is_linkage)
2807 {
2808 bfd *abfd = unit->abfd;
2809 bfd_byte *info_ptr;
2810 bfd_byte *info_ptr_end;
2811 unsigned int abbrev_number, bytes_read, i;
2812 struct abbrev_info *abbrev;
2813 bfd_uint64_t die_ref = attr_ptr->u.val;
2814 struct attribute attr;
2815 char *name = NULL;
2816
2817 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2818 is an offset from the .debug_info section, not the current CU. */
2819 if (attr_ptr->form == DW_FORM_ref_addr)
2820 {
2821 /* We only support DW_FORM_ref_addr within the same file, so
2822 any relocations should be resolved already. */
2823 if (!die_ref)
2824 abort ();
2825
2826 info_ptr = unit->sec_info_ptr + die_ref;
2827 info_ptr_end = unit->end_ptr;
2828
2829 /* Now find the CU containing this pointer. */
2830 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2831 ;
2832 else
2833 {
2834 /* Check other CUs to see if they contain the abbrev. */
2835 struct comp_unit * u;
2836
2837 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2838 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2839 break;
2840
2841 if (u == NULL)
2842 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2843 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2844 break;
2845
2846 if (u)
2847 unit = u;
2848 /* else FIXME: What do we do now ? */
2849 }
2850 }
2851 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2852 {
2853 info_ptr = read_alt_indirect_ref (unit, die_ref);
2854 if (info_ptr == NULL)
2855 {
2856 _bfd_error_handler
2857 (_("Dwarf Error: Unable to read alt ref %llu."),
2858 (long long) die_ref);
2859 bfd_set_error (bfd_error_bad_value);
2860 return NULL;
2861 }
2862 info_ptr_end = unit->stash->alt_dwarf_info_buffer + unit->stash->alt_dwarf_info_size;
2863
2864 /* FIXME: Do we need to locate the correct CU, in a similar
2865 fashion to the code in the DW_FORM_ref_addr case above ? */
2866 }
2867 else
2868 {
2869 info_ptr = unit->info_ptr_unit + die_ref;
2870 info_ptr_end = unit->end_ptr;
2871 }
2872
2873 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
2874 FALSE, info_ptr_end);
2875 info_ptr += bytes_read;
2876
2877 if (abbrev_number)
2878 {
2879 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2880 if (! abbrev)
2881 {
2882 _bfd_error_handler
2883 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2884 bfd_set_error (bfd_error_bad_value);
2885 }
2886 else
2887 {
2888 for (i = 0; i < abbrev->num_attrs; ++i)
2889 {
2890 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2891 info_ptr, info_ptr_end);
2892 if (info_ptr == NULL)
2893 break;
2894 switch (attr.name)
2895 {
2896 case DW_AT_name:
2897 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2898 over DW_AT_name. */
2899 if (name == NULL && is_str_attr (attr.form))
2900 {
2901 name = attr.u.str;
2902 if (non_mangled (unit->lang))
2903 *is_linkage = TRUE;
2904 }
2905 break;
2906 case DW_AT_specification:
2907 name = find_abstract_instance_name (unit, &attr, is_linkage);
2908 break;
2909 case DW_AT_linkage_name:
2910 case DW_AT_MIPS_linkage_name:
2911 /* PR 16949: Corrupt debug info can place
2912 non-string forms into these attributes. */
2913 if (is_str_attr (attr.form))
2914 {
2915 name = attr.u.str;
2916 *is_linkage = TRUE;
2917 }
2918 break;
2919 default:
2920 break;
2921 }
2922 }
2923 }
2924 }
2925 return name;
2926 }
2927
2928 static bfd_boolean
2929 read_rangelist (struct comp_unit *unit, struct arange *arange,
2930 bfd_uint64_t offset)
2931 {
2932 bfd_byte *ranges_ptr;
2933 bfd_byte *ranges_end;
2934 bfd_vma base_address = unit->base_address;
2935
2936 if (! unit->stash->dwarf_ranges_buffer)
2937 {
2938 if (! read_debug_ranges (unit))
2939 return FALSE;
2940 }
2941
2942 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2943 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
2944 return FALSE;
2945 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
2946
2947 for (;;)
2948 {
2949 bfd_vma low_pc;
2950 bfd_vma high_pc;
2951
2952 /* PR 17512: file: 62cada7d. */
2953 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
2954 return FALSE;
2955
2956 low_pc = read_address (unit, ranges_ptr, ranges_end);
2957 ranges_ptr += unit->addr_size;
2958 high_pc = read_address (unit, ranges_ptr, ranges_end);
2959 ranges_ptr += unit->addr_size;
2960
2961 if (low_pc == 0 && high_pc == 0)
2962 break;
2963 if (low_pc == -1UL && high_pc != -1UL)
2964 base_address = high_pc;
2965 else
2966 {
2967 if (!arange_add (unit, arange,
2968 base_address + low_pc, base_address + high_pc))
2969 return FALSE;
2970 }
2971 }
2972 return TRUE;
2973 }
2974
2975 /* DWARF2 Compilation unit functions. */
2976
2977 /* Scan over each die in a comp. unit looking for functions to add
2978 to the function table and variables to the variable table. */
2979
2980 static bfd_boolean
2981 scan_unit_for_symbols (struct comp_unit *unit)
2982 {
2983 bfd *abfd = unit->abfd;
2984 bfd_byte *info_ptr = unit->first_child_die_ptr;
2985 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
2986 int nesting_level = 1;
2987 struct funcinfo **nested_funcs;
2988 int nested_funcs_size;
2989
2990 /* Maintain a stack of in-scope functions and inlined functions, which we
2991 can use to set the caller_func field. */
2992 nested_funcs_size = 32;
2993 nested_funcs = (struct funcinfo **)
2994 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2995 if (nested_funcs == NULL)
2996 return FALSE;
2997 nested_funcs[nesting_level] = 0;
2998
2999 while (nesting_level)
3000 {
3001 unsigned int abbrev_number, bytes_read, i;
3002 struct abbrev_info *abbrev;
3003 struct attribute attr;
3004 struct funcinfo *func;
3005 struct varinfo *var;
3006 bfd_vma low_pc = 0;
3007 bfd_vma high_pc = 0;
3008 bfd_boolean high_pc_relative = FALSE;
3009
3010 /* PR 17512: file: 9f405d9d. */
3011 if (info_ptr >= info_ptr_end)
3012 goto fail;
3013
3014 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3015 FALSE, info_ptr_end);
3016 info_ptr += bytes_read;
3017
3018 if (! abbrev_number)
3019 {
3020 nesting_level--;
3021 continue;
3022 }
3023
3024 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3025 if (! abbrev)
3026 {
3027 static unsigned int previous_failed_abbrev = -1U;
3028
3029 /* Avoid multiple reports of the same missing abbrev. */
3030 if (abbrev_number != previous_failed_abbrev)
3031 {
3032 _bfd_error_handler
3033 (_("Dwarf Error: Could not find abbrev number %u."),
3034 abbrev_number);
3035 previous_failed_abbrev = abbrev_number;
3036 }
3037 bfd_set_error (bfd_error_bad_value);
3038 goto fail;
3039 }
3040
3041 var = NULL;
3042 if (abbrev->tag == DW_TAG_subprogram
3043 || abbrev->tag == DW_TAG_entry_point
3044 || abbrev->tag == DW_TAG_inlined_subroutine)
3045 {
3046 bfd_size_type amt = sizeof (struct funcinfo);
3047 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3048 if (func == NULL)
3049 goto fail;
3050 func->tag = abbrev->tag;
3051 func->prev_func = unit->function_table;
3052 unit->function_table = func;
3053 unit->number_of_functions++;
3054 BFD_ASSERT (!unit->cached);
3055
3056 if (func->tag == DW_TAG_inlined_subroutine)
3057 for (i = nesting_level - 1; i >= 1; i--)
3058 if (nested_funcs[i])
3059 {
3060 func->caller_func = nested_funcs[i];
3061 break;
3062 }
3063 nested_funcs[nesting_level] = func;
3064 }
3065 else
3066 {
3067 func = NULL;
3068 if (abbrev->tag == DW_TAG_variable)
3069 {
3070 bfd_size_type amt = sizeof (struct varinfo);
3071 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3072 if (var == NULL)
3073 goto fail;
3074 var->tag = abbrev->tag;
3075 var->stack = 1;
3076 var->prev_var = unit->variable_table;
3077 unit->variable_table = var;
3078 /* PR 18205: Missing debug information can cause this
3079 var to be attached to an already cached unit. */
3080 }
3081
3082 /* No inline function in scope at this nesting level. */
3083 nested_funcs[nesting_level] = 0;
3084 }
3085
3086 for (i = 0; i < abbrev->num_attrs; ++i)
3087 {
3088 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, info_ptr_end);
3089 if (info_ptr == NULL)
3090 goto fail;
3091
3092 if (func)
3093 {
3094 switch (attr.name)
3095 {
3096 case DW_AT_call_file:
3097 func->caller_file = concat_filename (unit->line_table,
3098 attr.u.val);
3099 break;
3100
3101 case DW_AT_call_line:
3102 func->caller_line = attr.u.val;
3103 break;
3104
3105 case DW_AT_abstract_origin:
3106 case DW_AT_specification:
3107 func->name = find_abstract_instance_name (unit, &attr,
3108 &func->is_linkage);
3109 break;
3110
3111 case DW_AT_name:
3112 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3113 over DW_AT_name. */
3114 if (func->name == NULL && is_str_attr (attr.form))
3115 {
3116 func->name = attr.u.str;
3117 if (non_mangled (unit->lang))
3118 func->is_linkage = TRUE;
3119 }
3120 break;
3121
3122 case DW_AT_linkage_name:
3123 case DW_AT_MIPS_linkage_name:
3124 /* PR 16949: Corrupt debug info can place
3125 non-string forms into these attributes. */
3126 if (is_str_attr (attr.form))
3127 {
3128 func->name = attr.u.str;
3129 func->is_linkage = TRUE;
3130 }
3131 break;
3132
3133 case DW_AT_low_pc:
3134 low_pc = attr.u.val;
3135 break;
3136
3137 case DW_AT_high_pc:
3138 high_pc = attr.u.val;
3139 high_pc_relative = attr.form != DW_FORM_addr;
3140 break;
3141
3142 case DW_AT_ranges:
3143 if (!read_rangelist (unit, &func->arange, attr.u.val))
3144 goto fail;
3145 break;
3146
3147 case DW_AT_decl_file:
3148 func->file = concat_filename (unit->line_table,
3149 attr.u.val);
3150 break;
3151
3152 case DW_AT_decl_line:
3153 func->line = attr.u.val;
3154 break;
3155
3156 default:
3157 break;
3158 }
3159 }
3160 else if (var)
3161 {
3162 switch (attr.name)
3163 {
3164 case DW_AT_name:
3165 var->name = attr.u.str;
3166 break;
3167
3168 case DW_AT_decl_file:
3169 var->file = concat_filename (unit->line_table,
3170 attr.u.val);
3171 break;
3172
3173 case DW_AT_decl_line:
3174 var->line = attr.u.val;
3175 break;
3176
3177 case DW_AT_external:
3178 if (attr.u.val != 0)
3179 var->stack = 0;
3180 break;
3181
3182 case DW_AT_location:
3183 switch (attr.form)
3184 {
3185 case DW_FORM_block:
3186 case DW_FORM_block1:
3187 case DW_FORM_block2:
3188 case DW_FORM_block4:
3189 case DW_FORM_exprloc:
3190 if (*attr.u.blk->data == DW_OP_addr)
3191 {
3192 var->stack = 0;
3193
3194 /* Verify that DW_OP_addr is the only opcode in the
3195 location, in which case the block size will be 1
3196 plus the address size. */
3197 /* ??? For TLS variables, gcc can emit
3198 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3199 which we don't handle here yet. */
3200 if (attr.u.blk->size == unit->addr_size + 1U)
3201 var->addr = bfd_get (unit->addr_size * 8,
3202 unit->abfd,
3203 attr.u.blk->data + 1);
3204 }
3205 break;
3206
3207 default:
3208 break;
3209 }
3210 break;
3211
3212 default:
3213 break;
3214 }
3215 }
3216 }
3217
3218 if (high_pc_relative)
3219 high_pc += low_pc;
3220
3221 if (func && high_pc != 0)
3222 {
3223 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3224 goto fail;
3225 }
3226
3227 if (abbrev->has_children)
3228 {
3229 nesting_level++;
3230
3231 if (nesting_level >= nested_funcs_size)
3232 {
3233 struct funcinfo **tmp;
3234
3235 nested_funcs_size *= 2;
3236 tmp = (struct funcinfo **)
3237 bfd_realloc (nested_funcs,
3238 nested_funcs_size * sizeof (struct funcinfo *));
3239 if (tmp == NULL)
3240 goto fail;
3241 nested_funcs = tmp;
3242 }
3243 nested_funcs[nesting_level] = 0;
3244 }
3245 }
3246
3247 free (nested_funcs);
3248 return TRUE;
3249
3250 fail:
3251 free (nested_funcs);
3252 return FALSE;
3253 }
3254
3255 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
3256 includes the compilation unit header that proceeds the DIE's, but
3257 does not include the length field that precedes each compilation
3258 unit header. END_PTR points one past the end of this comp unit.
3259 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3260
3261 This routine does not read the whole compilation unit; only enough
3262 to get to the line number information for the compilation unit. */
3263
3264 static struct comp_unit *
3265 parse_comp_unit (struct dwarf2_debug *stash,
3266 bfd_vma unit_length,
3267 bfd_byte *info_ptr_unit,
3268 unsigned int offset_size)
3269 {
3270 struct comp_unit* unit;
3271 unsigned int version;
3272 bfd_uint64_t abbrev_offset = 0;
3273 /* Initialize it just to avoid a GCC false warning. */
3274 unsigned int addr_size = -1;
3275 struct abbrev_info** abbrevs;
3276 unsigned int abbrev_number, bytes_read, i;
3277 struct abbrev_info *abbrev;
3278 struct attribute attr;
3279 bfd_byte *info_ptr = stash->info_ptr;
3280 bfd_byte *end_ptr = info_ptr + unit_length;
3281 bfd_size_type amt;
3282 bfd_vma low_pc = 0;
3283 bfd_vma high_pc = 0;
3284 bfd *abfd = stash->bfd_ptr;
3285 bfd_boolean high_pc_relative = FALSE;
3286 enum dwarf_unit_type unit_type;
3287
3288 version = read_2_bytes (abfd, info_ptr, end_ptr);
3289 info_ptr += 2;
3290 if (version < 2 || version > 5)
3291 {
3292 /* PR 19872: A version number of 0 probably means that there is padding
3293 at the end of the .debug_info section. Gold puts it there when
3294 performing an incremental link, for example. So do not generate
3295 an error, just return a NULL. */
3296 if (version)
3297 {
3298 _bfd_error_handler
3299 (_("Dwarf Error: found dwarf version '%u', this reader"
3300 " only handles version 2, 3, 4 and 5 information."), version);
3301 bfd_set_error (bfd_error_bad_value);
3302 }
3303 return NULL;
3304 }
3305
3306 if (version < 5)
3307 unit_type = DW_UT_compile;
3308 else
3309 {
3310 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3311 info_ptr += 1;
3312
3313 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3314 info_ptr += 1;
3315 }
3316
3317 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3318 if (offset_size == 4)
3319 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3320 else
3321 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3322 info_ptr += offset_size;
3323
3324 if (version < 5)
3325 {
3326 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3327 info_ptr += 1;
3328 }
3329
3330 if (unit_type == DW_UT_type)
3331 {
3332 /* Skip type signature. */
3333 info_ptr += 8;
3334
3335 /* Skip type offset. */
3336 info_ptr += offset_size;
3337 }
3338
3339 if (addr_size > sizeof (bfd_vma))
3340 {
3341 _bfd_error_handler
3342 /* xgettext: c-format */
3343 (_("Dwarf Error: found address size '%u', this reader"
3344 " can not handle sizes greater than '%u'."),
3345 addr_size,
3346 (unsigned int) sizeof (bfd_vma));
3347 bfd_set_error (bfd_error_bad_value);
3348 return NULL;
3349 }
3350
3351 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3352 {
3353 _bfd_error_handler
3354 ("Dwarf Error: found address size '%u', this reader"
3355 " can only handle address sizes '2', '4' and '8'.", addr_size);
3356 bfd_set_error (bfd_error_bad_value);
3357 return NULL;
3358 }
3359
3360 /* Read the abbrevs for this compilation unit into a table. */
3361 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
3362 if (! abbrevs)
3363 return NULL;
3364
3365 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3366 FALSE, end_ptr);
3367 info_ptr += bytes_read;
3368 if (! abbrev_number)
3369 {
3370 /* PR 19872: An abbrev number of 0 probably means that there is padding
3371 at the end of the .debug_abbrev section. Gold puts it there when
3372 performing an incremental link, for example. So do not generate
3373 an error, just return a NULL. */
3374 return NULL;
3375 }
3376
3377 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3378 if (! abbrev)
3379 {
3380 _bfd_error_handler (_("Dwarf Error: Could not find abbrev number %u."),
3381 abbrev_number);
3382 bfd_set_error (bfd_error_bad_value);
3383 return NULL;
3384 }
3385
3386 amt = sizeof (struct comp_unit);
3387 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3388 if (unit == NULL)
3389 return NULL;
3390 unit->abfd = abfd;
3391 unit->version = version;
3392 unit->addr_size = addr_size;
3393 unit->offset_size = offset_size;
3394 unit->abbrevs = abbrevs;
3395 unit->end_ptr = end_ptr;
3396 unit->stash = stash;
3397 unit->info_ptr_unit = info_ptr_unit;
3398 unit->sec_info_ptr = stash->sec_info_ptr;
3399
3400 for (i = 0; i < abbrev->num_attrs; ++i)
3401 {
3402 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3403 if (info_ptr == NULL)
3404 return NULL;
3405
3406 /* Store the data if it is of an attribute we want to keep in a
3407 partial symbol table. */
3408 switch (attr.name)
3409 {
3410 case DW_AT_stmt_list:
3411 unit->stmtlist = 1;
3412 unit->line_offset = attr.u.val;
3413 break;
3414
3415 case DW_AT_name:
3416 unit->name = attr.u.str;
3417 break;
3418
3419 case DW_AT_low_pc:
3420 low_pc = attr.u.val;
3421 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3422 this is the base address to use when reading location
3423 lists or range lists. */
3424 if (abbrev->tag == DW_TAG_compile_unit)
3425 unit->base_address = low_pc;
3426 break;
3427
3428 case DW_AT_high_pc:
3429 high_pc = attr.u.val;
3430 high_pc_relative = attr.form != DW_FORM_addr;
3431 break;
3432
3433 case DW_AT_ranges:
3434 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3435 return NULL;
3436 break;
3437
3438 case DW_AT_comp_dir:
3439 {
3440 char *comp_dir = attr.u.str;
3441
3442 /* PR 17512: file: 1fe726be. */
3443 if (! is_str_attr (attr.form))
3444 {
3445 _bfd_error_handler
3446 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
3447 comp_dir = NULL;
3448 }
3449
3450 if (comp_dir)
3451 {
3452 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3453 directory, get rid of it. */
3454 char *cp = strchr (comp_dir, ':');
3455
3456 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3457 comp_dir = cp + 1;
3458 }
3459 unit->comp_dir = comp_dir;
3460 break;
3461 }
3462
3463 case DW_AT_language:
3464 unit->lang = attr.u.val;
3465 break;
3466
3467 default:
3468 break;
3469 }
3470 }
3471 if (high_pc_relative)
3472 high_pc += low_pc;
3473 if (high_pc != 0)
3474 {
3475 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3476 return NULL;
3477 }
3478
3479 unit->first_child_die_ptr = info_ptr;
3480 return unit;
3481 }
3482
3483 /* Return TRUE if UNIT may contain the address given by ADDR. When
3484 there are functions written entirely with inline asm statements, the
3485 range info in the compilation unit header may not be correct. We
3486 need to consult the line info table to see if a compilation unit
3487 really contains the given address. */
3488
3489 static bfd_boolean
3490 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3491 {
3492 struct arange *arange;
3493
3494 if (unit->error)
3495 return FALSE;
3496
3497 arange = &unit->arange;
3498 do
3499 {
3500 if (addr >= arange->low && addr < arange->high)
3501 return TRUE;
3502 arange = arange->next;
3503 }
3504 while (arange);
3505
3506 return FALSE;
3507 }
3508
3509 /* If UNIT contains ADDR, set the output parameters to the values for
3510 the line containing ADDR. The output parameters, FILENAME_PTR,
3511 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3512 to be filled in.
3513
3514 Returns the range of addresses covered by the entry that was used
3515 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3516
3517 static bfd_vma
3518 comp_unit_find_nearest_line (struct comp_unit *unit,
3519 bfd_vma addr,
3520 const char **filename_ptr,
3521 struct funcinfo **function_ptr,
3522 unsigned int *linenumber_ptr,
3523 unsigned int *discriminator_ptr,
3524 struct dwarf2_debug *stash)
3525 {
3526 bfd_boolean func_p;
3527
3528 if (unit->error)
3529 return FALSE;
3530
3531 if (! unit->line_table)
3532 {
3533 if (! unit->stmtlist)
3534 {
3535 unit->error = 1;
3536 return FALSE;
3537 }
3538
3539 unit->line_table = decode_line_info (unit, stash);
3540
3541 if (! unit->line_table)
3542 {
3543 unit->error = 1;
3544 return FALSE;
3545 }
3546
3547 if (unit->first_child_die_ptr < unit->end_ptr
3548 && ! scan_unit_for_symbols (unit))
3549 {
3550 unit->error = 1;
3551 return FALSE;
3552 }
3553 }
3554
3555 *function_ptr = NULL;
3556 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3557 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3558 stash->inliner_chain = *function_ptr;
3559
3560 return lookup_address_in_line_info_table (unit->line_table, addr,
3561 filename_ptr,
3562 linenumber_ptr,
3563 discriminator_ptr);
3564 }
3565
3566 /* Check to see if line info is already decoded in a comp_unit.
3567 If not, decode it. Returns TRUE if no errors were encountered;
3568 FALSE otherwise. */
3569
3570 static bfd_boolean
3571 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3572 struct dwarf2_debug *stash)
3573 {
3574 if (unit->error)
3575 return FALSE;
3576
3577 if (! unit->line_table)
3578 {
3579 if (! unit->stmtlist)
3580 {
3581 unit->error = 1;
3582 return FALSE;
3583 }
3584
3585 unit->line_table = decode_line_info (unit, stash);
3586
3587 if (! unit->line_table)
3588 {
3589 unit->error = 1;
3590 return FALSE;
3591 }
3592
3593 if (unit->first_child_die_ptr < unit->end_ptr
3594 && ! scan_unit_for_symbols (unit))
3595 {
3596 unit->error = 1;
3597 return FALSE;
3598 }
3599 }
3600
3601 return TRUE;
3602 }
3603
3604 /* If UNIT contains SYM at ADDR, set the output parameters to the
3605 values for the line containing SYM. The output parameters,
3606 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3607 filled in.
3608
3609 Return TRUE if UNIT contains SYM, and no errors were encountered;
3610 FALSE otherwise. */
3611
3612 static bfd_boolean
3613 comp_unit_find_line (struct comp_unit *unit,
3614 asymbol *sym,
3615 bfd_vma addr,
3616 const char **filename_ptr,
3617 unsigned int *linenumber_ptr,
3618 struct dwarf2_debug *stash)
3619 {
3620 if (!comp_unit_maybe_decode_line_info (unit, stash))
3621 return FALSE;
3622
3623 if (sym->flags & BSF_FUNCTION)
3624 return lookup_symbol_in_function_table (unit, sym, addr,
3625 filename_ptr,
3626 linenumber_ptr);
3627
3628 return lookup_symbol_in_variable_table (unit, sym, addr,
3629 filename_ptr,
3630 linenumber_ptr);
3631 }
3632
3633 static struct funcinfo *
3634 reverse_funcinfo_list (struct funcinfo *head)
3635 {
3636 struct funcinfo *rhead;
3637 struct funcinfo *temp;
3638
3639 for (rhead = NULL; head; head = temp)
3640 {
3641 temp = head->prev_func;
3642 head->prev_func = rhead;
3643 rhead = head;
3644 }
3645 return rhead;
3646 }
3647
3648 static struct varinfo *
3649 reverse_varinfo_list (struct varinfo *head)
3650 {
3651 struct varinfo *rhead;
3652 struct varinfo *temp;
3653
3654 for (rhead = NULL; head; head = temp)
3655 {
3656 temp = head->prev_var;
3657 head->prev_var = rhead;
3658 rhead = head;
3659 }
3660 return rhead;
3661 }
3662
3663 /* Extract all interesting funcinfos and varinfos of a compilation
3664 unit into hash tables for faster lookup. Returns TRUE if no
3665 errors were enountered; FALSE otherwise. */
3666
3667 static bfd_boolean
3668 comp_unit_hash_info (struct dwarf2_debug *stash,
3669 struct comp_unit *unit,
3670 struct info_hash_table *funcinfo_hash_table,
3671 struct info_hash_table *varinfo_hash_table)
3672 {
3673 struct funcinfo* each_func;
3674 struct varinfo* each_var;
3675 bfd_boolean okay = TRUE;
3676
3677 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3678
3679 if (!comp_unit_maybe_decode_line_info (unit, stash))
3680 return FALSE;
3681
3682 BFD_ASSERT (!unit->cached);
3683
3684 /* To preserve the original search order, we went to visit the function
3685 infos in the reversed order of the list. However, making the list
3686 bi-directional use quite a bit of extra memory. So we reverse
3687 the list first, traverse the list in the now reversed order and
3688 finally reverse the list again to get back the original order. */
3689 unit->function_table = reverse_funcinfo_list (unit->function_table);
3690 for (each_func = unit->function_table;
3691 each_func && okay;
3692 each_func = each_func->prev_func)
3693 {
3694 /* Skip nameless functions. */
3695 if (each_func->name)
3696 /* There is no need to copy name string into hash table as
3697 name string is either in the dwarf string buffer or
3698 info in the stash. */
3699 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3700 (void*) each_func, FALSE);
3701 }
3702 unit->function_table = reverse_funcinfo_list (unit->function_table);
3703 if (!okay)
3704 return FALSE;
3705
3706 /* We do the same for variable infos. */
3707 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3708 for (each_var = unit->variable_table;
3709 each_var && okay;
3710 each_var = each_var->prev_var)
3711 {
3712 /* Skip stack vars and vars with no files or names. */
3713 if (each_var->stack == 0
3714 && each_var->file != NULL
3715 && each_var->name != NULL)
3716 /* There is no need to copy name string into hash table as
3717 name string is either in the dwarf string buffer or
3718 info in the stash. */
3719 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3720 (void*) each_var, FALSE);
3721 }
3722
3723 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3724 unit->cached = TRUE;
3725 return okay;
3726 }
3727
3728 /* Locate a section in a BFD containing debugging info. The search starts
3729 from the section after AFTER_SEC, or from the first section in the BFD if
3730 AFTER_SEC is NULL. The search works by examining the names of the
3731 sections. There are three permissiable names. The first two are given
3732 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3733 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3734 This is a variation on the .debug_info section which has a checksum
3735 describing the contents appended onto the name. This allows the linker to
3736 identify and discard duplicate debugging sections for different
3737 compilation units. */
3738 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3739
3740 static asection *
3741 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3742 asection *after_sec)
3743 {
3744 asection *msec;
3745 const char *look;
3746
3747 if (after_sec == NULL)
3748 {
3749 look = debug_sections[debug_info].uncompressed_name;
3750 msec = bfd_get_section_by_name (abfd, look);
3751 if (msec != NULL)
3752 return msec;
3753
3754 look = debug_sections[debug_info].compressed_name;
3755 if (look != NULL)
3756 {
3757 msec = bfd_get_section_by_name (abfd, look);
3758 if (msec != NULL)
3759 return msec;
3760 }
3761
3762 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3763 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3764 return msec;
3765
3766 return NULL;
3767 }
3768
3769 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3770 {
3771 look = debug_sections[debug_info].uncompressed_name;
3772 if (strcmp (msec->name, look) == 0)
3773 return msec;
3774
3775 look = debug_sections[debug_info].compressed_name;
3776 if (look != NULL && strcmp (msec->name, look) == 0)
3777 return msec;
3778
3779 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3780 return msec;
3781 }
3782
3783 return NULL;
3784 }
3785
3786 /* Transfer VMAs from object file to separate debug file. */
3787
3788 static void
3789 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3790 {
3791 asection *s, *d;
3792
3793 for (s = orig_bfd->sections, d = debug_bfd->sections;
3794 s != NULL && d != NULL;
3795 s = s->next, d = d->next)
3796 {
3797 if ((d->flags & SEC_DEBUGGING) != 0)
3798 break;
3799 /* ??? Assumes 1-1 correspondence between sections in the
3800 two files. */
3801 if (strcmp (s->name, d->name) == 0)
3802 {
3803 d->output_section = s->output_section;
3804 d->output_offset = s->output_offset;
3805 d->vma = s->vma;
3806 }
3807 }
3808 }
3809
3810 /* Unset vmas for adjusted sections in STASH. */
3811
3812 static void
3813 unset_sections (struct dwarf2_debug *stash)
3814 {
3815 int i;
3816 struct adjusted_section *p;
3817
3818 i = stash->adjusted_section_count;
3819 p = stash->adjusted_sections;
3820 for (; i > 0; i--, p++)
3821 p->section->vma = 0;
3822 }
3823
3824 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3825 relocatable object file. VMAs are normally all zero in relocatable
3826 object files, so if we want to distinguish locations in sections by
3827 address we need to set VMAs so the sections do not overlap. We
3828 also set VMA on .debug_info so that when we have multiple
3829 .debug_info sections (or the linkonce variant) they also do not
3830 overlap. The multiple .debug_info sections make up a single
3831 logical section. ??? We should probably do the same for other
3832 debug sections. */
3833
3834 static bfd_boolean
3835 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3836 {
3837 bfd *abfd;
3838 struct adjusted_section *p;
3839 int i;
3840 const char *debug_info_name;
3841
3842 if (stash->adjusted_section_count != 0)
3843 {
3844 i = stash->adjusted_section_count;
3845 p = stash->adjusted_sections;
3846 for (; i > 0; i--, p++)
3847 p->section->vma = p->adj_vma;
3848 return TRUE;
3849 }
3850
3851 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3852 i = 0;
3853 abfd = orig_bfd;
3854 while (1)
3855 {
3856 asection *sect;
3857
3858 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3859 {
3860 int is_debug_info;
3861
3862 if ((sect->output_section != NULL
3863 && sect->output_section != sect
3864 && (sect->flags & SEC_DEBUGGING) == 0)
3865 || sect->vma != 0)
3866 continue;
3867
3868 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3869 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3870
3871 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3872 && !is_debug_info)
3873 continue;
3874
3875 i++;
3876 }
3877 if (abfd == stash->bfd_ptr)
3878 break;
3879 abfd = stash->bfd_ptr;
3880 }
3881
3882 if (i <= 1)
3883 stash->adjusted_section_count = -1;
3884 else
3885 {
3886 bfd_vma last_vma = 0, last_dwarf = 0;
3887 bfd_size_type amt = i * sizeof (struct adjusted_section);
3888
3889 p = (struct adjusted_section *) bfd_malloc (amt);
3890 if (p == NULL)
3891 return FALSE;
3892
3893 stash->adjusted_sections = p;
3894 stash->adjusted_section_count = i;
3895
3896 abfd = orig_bfd;
3897 while (1)
3898 {
3899 asection *sect;
3900
3901 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3902 {
3903 bfd_size_type sz;
3904 int is_debug_info;
3905
3906 if ((sect->output_section != NULL
3907 && sect->output_section != sect
3908 && (sect->flags & SEC_DEBUGGING) == 0)
3909 || sect->vma != 0)
3910 continue;
3911
3912 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3913 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3914
3915 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3916 && !is_debug_info)
3917 continue;
3918
3919 sz = sect->rawsize ? sect->rawsize : sect->size;
3920
3921 if (is_debug_info)
3922 {
3923 BFD_ASSERT (sect->alignment_power == 0);
3924 sect->vma = last_dwarf;
3925 last_dwarf += sz;
3926 }
3927 else
3928 {
3929 /* Align the new address to the current section
3930 alignment. */
3931 last_vma = ((last_vma
3932 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3933 & (-((bfd_vma) 1 << sect->alignment_power)));
3934 sect->vma = last_vma;
3935 last_vma += sz;
3936 }
3937
3938 p->section = sect;
3939 p->adj_vma = sect->vma;
3940 p++;
3941 }
3942 if (abfd == stash->bfd_ptr)
3943 break;
3944 abfd = stash->bfd_ptr;
3945 }
3946 }
3947
3948 if (orig_bfd != stash->bfd_ptr)
3949 set_debug_vma (orig_bfd, stash->bfd_ptr);
3950
3951 return TRUE;
3952 }
3953
3954 /* Look up a funcinfo by name using the given info hash table. If found,
3955 also update the locations pointed to by filename_ptr and linenumber_ptr.
3956
3957 This function returns TRUE if a funcinfo that matches the given symbol
3958 and address is found with any error; otherwise it returns FALSE. */
3959
3960 static bfd_boolean
3961 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
3962 asymbol *sym,
3963 bfd_vma addr,
3964 const char **filename_ptr,
3965 unsigned int *linenumber_ptr)
3966 {
3967 struct funcinfo* each_func;
3968 struct funcinfo* best_fit = NULL;
3969 bfd_vma best_fit_len = 0;
3970 struct info_list_node *node;
3971 struct arange *arange;
3972 const char *name = bfd_asymbol_name (sym);
3973 asection *sec = bfd_get_section (sym);
3974
3975 for (node = lookup_info_hash_table (hash_table, name);
3976 node;
3977 node = node->next)
3978 {
3979 each_func = (struct funcinfo *) node->info;
3980 for (arange = &each_func->arange;
3981 arange;
3982 arange = arange->next)
3983 {
3984 if ((!each_func->sec || each_func->sec == sec)
3985 && addr >= arange->low
3986 && addr < arange->high
3987 && (!best_fit
3988 || arange->high - arange->low < best_fit_len))
3989 {
3990 best_fit = each_func;
3991 best_fit_len = arange->high - arange->low;
3992 }
3993 }
3994 }
3995
3996 if (best_fit)
3997 {
3998 best_fit->sec = sec;
3999 *filename_ptr = best_fit->file;
4000 *linenumber_ptr = best_fit->line;
4001 return TRUE;
4002 }
4003
4004 return FALSE;
4005 }
4006
4007 /* Look up a varinfo by name using the given info hash table. If found,
4008 also update the locations pointed to by filename_ptr and linenumber_ptr.
4009
4010 This function returns TRUE if a varinfo that matches the given symbol
4011 and address is found with any error; otherwise it returns FALSE. */
4012
4013 static bfd_boolean
4014 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4015 asymbol *sym,
4016 bfd_vma addr,
4017 const char **filename_ptr,
4018 unsigned int *linenumber_ptr)
4019 {
4020 const char *name = bfd_asymbol_name (sym);
4021 asection *sec = bfd_get_section (sym);
4022 struct varinfo* each;
4023 struct info_list_node *node;
4024
4025 for (node = lookup_info_hash_table (hash_table, name);
4026 node;
4027 node = node->next)
4028 {
4029 each = (struct varinfo *) node->info;
4030 if (each->addr == addr
4031 && (!each->sec || each->sec == sec))
4032 {
4033 each->sec = sec;
4034 *filename_ptr = each->file;
4035 *linenumber_ptr = each->line;
4036 return TRUE;
4037 }
4038 }
4039
4040 return FALSE;
4041 }
4042
4043 /* Update the funcinfo and varinfo info hash tables if they are
4044 not up to date. Returns TRUE if there is no error; otherwise
4045 returns FALSE and disable the info hash tables. */
4046
4047 static bfd_boolean
4048 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4049 {
4050 struct comp_unit *each;
4051
4052 /* Exit if hash tables are up-to-date. */
4053 if (stash->all_comp_units == stash->hash_units_head)
4054 return TRUE;
4055
4056 if (stash->hash_units_head)
4057 each = stash->hash_units_head->prev_unit;
4058 else
4059 each = stash->last_comp_unit;
4060
4061 while (each)
4062 {
4063 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4064 stash->varinfo_hash_table))
4065 {
4066 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4067 return FALSE;
4068 }
4069 each = each->prev_unit;
4070 }
4071
4072 stash->hash_units_head = stash->all_comp_units;
4073 return TRUE;
4074 }
4075
4076 /* Check consistency of info hash tables. This is for debugging only. */
4077
4078 static void ATTRIBUTE_UNUSED
4079 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4080 {
4081 struct comp_unit *each_unit;
4082 struct funcinfo *each_func;
4083 struct varinfo *each_var;
4084 struct info_list_node *node;
4085 bfd_boolean found;
4086
4087 for (each_unit = stash->all_comp_units;
4088 each_unit;
4089 each_unit = each_unit->next_unit)
4090 {
4091 for (each_func = each_unit->function_table;
4092 each_func;
4093 each_func = each_func->prev_func)
4094 {
4095 if (!each_func->name)
4096 continue;
4097 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4098 each_func->name);
4099 BFD_ASSERT (node);
4100 found = FALSE;
4101 while (node && !found)
4102 {
4103 found = node->info == each_func;
4104 node = node->next;
4105 }
4106 BFD_ASSERT (found);
4107 }
4108
4109 for (each_var = each_unit->variable_table;
4110 each_var;
4111 each_var = each_var->prev_var)
4112 {
4113 if (!each_var->name || !each_var->file || each_var->stack)
4114 continue;
4115 node = lookup_info_hash_table (stash->varinfo_hash_table,
4116 each_var->name);
4117 BFD_ASSERT (node);
4118 found = FALSE;
4119 while (node && !found)
4120 {
4121 found = node->info == each_var;
4122 node = node->next;
4123 }
4124 BFD_ASSERT (found);
4125 }
4126 }
4127 }
4128
4129 /* Check to see if we want to enable the info hash tables, which consume
4130 quite a bit of memory. Currently we only check the number times
4131 bfd_dwarf2_find_line is called. In the future, we may also want to
4132 take the number of symbols into account. */
4133
4134 static void
4135 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4136 {
4137 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4138
4139 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4140 return;
4141
4142 /* FIXME: Maybe we should check the reduce_memory_overheads
4143 and optimize fields in the bfd_link_info structure ? */
4144
4145 /* Create hash tables. */
4146 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4147 stash->varinfo_hash_table = create_info_hash_table (abfd);
4148 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4149 {
4150 /* Turn off info hashes if any allocation above fails. */
4151 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4152 return;
4153 }
4154 /* We need a forced update so that the info hash tables will
4155 be created even though there is no compilation unit. That
4156 happens if STASH_INFO_HASH_TRIGGER is 0. */
4157 stash_maybe_update_info_hash_tables (stash);
4158 stash->info_hash_status = STASH_INFO_HASH_ON;
4159 }
4160
4161 /* Find the file and line associated with a symbol and address using the
4162 info hash tables of a stash. If there is a match, the function returns
4163 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4164 otherwise it returns FALSE. */
4165
4166 static bfd_boolean
4167 stash_find_line_fast (struct dwarf2_debug *stash,
4168 asymbol *sym,
4169 bfd_vma addr,
4170 const char **filename_ptr,
4171 unsigned int *linenumber_ptr)
4172 {
4173 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4174
4175 if (sym->flags & BSF_FUNCTION)
4176 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4177 filename_ptr, linenumber_ptr);
4178 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4179 filename_ptr, linenumber_ptr);
4180 }
4181
4182 /* Save current section VMAs. */
4183
4184 static bfd_boolean
4185 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4186 {
4187 asection *s;
4188 unsigned int i;
4189
4190 if (abfd->section_count == 0)
4191 return TRUE;
4192 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4193 if (stash->sec_vma == NULL)
4194 return FALSE;
4195 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4196 {
4197 if (s->output_section != NULL)
4198 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4199 else
4200 stash->sec_vma[i] = s->vma;
4201 }
4202 return TRUE;
4203 }
4204
4205 /* Compare current section VMAs against those at the time the stash
4206 was created. If find_nearest_line is used in linker warnings or
4207 errors early in the link process, the debug info stash will be
4208 invalid for later calls. This is because we relocate debug info
4209 sections, so the stashed section contents depend on symbol values,
4210 which in turn depend on section VMAs. */
4211
4212 static bfd_boolean
4213 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4214 {
4215 asection *s;
4216 unsigned int i;
4217
4218 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
4219 {
4220 bfd_vma vma;
4221
4222 if (s->output_section != NULL)
4223 vma = s->output_section->vma + s->output_offset;
4224 else
4225 vma = s->vma;
4226 if (vma != stash->sec_vma[i])
4227 return FALSE;
4228 }
4229 return TRUE;
4230 }
4231
4232 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4233 If DEBUG_BFD is not specified, we read debug information from ABFD
4234 or its gnu_debuglink. The results will be stored in PINFO.
4235 The function returns TRUE iff debug information is ready. */
4236
4237 bfd_boolean
4238 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4239 const struct dwarf_debug_section *debug_sections,
4240 asymbol **symbols,
4241 void **pinfo,
4242 bfd_boolean do_place)
4243 {
4244 bfd_size_type amt = sizeof (struct dwarf2_debug);
4245 bfd_size_type total_size;
4246 asection *msec;
4247 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4248
4249 if (stash != NULL)
4250 {
4251 if (stash->orig_bfd == abfd
4252 && section_vma_same (abfd, stash))
4253 {
4254 /* Check that we did previously find some debug information
4255 before attempting to make use of it. */
4256 if (stash->bfd_ptr != NULL)
4257 {
4258 if (do_place && !place_sections (abfd, stash))
4259 return FALSE;
4260 return TRUE;
4261 }
4262
4263 return FALSE;
4264 }
4265 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4266 memset (stash, 0, amt);
4267 }
4268 else
4269 {
4270 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4271 if (! stash)
4272 return FALSE;
4273 }
4274 stash->orig_bfd = abfd;
4275 stash->debug_sections = debug_sections;
4276 stash->syms = symbols;
4277 if (!save_section_vma (abfd, stash))
4278 return FALSE;
4279
4280 *pinfo = stash;
4281
4282 if (debug_bfd == NULL)
4283 debug_bfd = abfd;
4284
4285 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4286 if (msec == NULL && abfd == debug_bfd)
4287 {
4288 char * debug_filename;
4289
4290 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4291 if (debug_filename == NULL)
4292 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4293
4294 if (debug_filename == NULL)
4295 /* No dwarf2 info, and no gnu_debuglink to follow.
4296 Note that at this point the stash has been allocated, but
4297 contains zeros. This lets future calls to this function
4298 fail more quickly. */
4299 return FALSE;
4300
4301 /* Set BFD_DECOMPRESS to decompress debug sections. */
4302 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
4303 || !(debug_bfd->flags |= BFD_DECOMPRESS,
4304 bfd_check_format (debug_bfd, bfd_object))
4305 || (msec = find_debug_info (debug_bfd,
4306 debug_sections, NULL)) == NULL
4307 || !bfd_generic_link_read_symbols (debug_bfd))
4308 {
4309 if (debug_bfd)
4310 bfd_close (debug_bfd);
4311 /* FIXME: Should we report our failure to follow the debuglink ? */
4312 free (debug_filename);
4313 return FALSE;
4314 }
4315
4316 symbols = bfd_get_outsymbols (debug_bfd);
4317 stash->syms = symbols;
4318 stash->close_on_cleanup = TRUE;
4319 }
4320 stash->bfd_ptr = debug_bfd;
4321
4322 if (do_place
4323 && !place_sections (abfd, stash))
4324 return FALSE;
4325
4326 /* There can be more than one DWARF2 info section in a BFD these
4327 days. First handle the easy case when there's only one. If
4328 there's more than one, try case two: none of the sections is
4329 compressed. In that case, read them all in and produce one
4330 large stash. We do this in two passes - in the first pass we
4331 just accumulate the section sizes, and in the second pass we
4332 read in the section's contents. (The allows us to avoid
4333 reallocing the data as we add sections to the stash.) If
4334 some or all sections are compressed, then do things the slow
4335 way, with a bunch of reallocs. */
4336
4337 if (! find_debug_info (debug_bfd, debug_sections, msec))
4338 {
4339 /* Case 1: only one info section. */
4340 total_size = msec->size;
4341 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4342 symbols, 0,
4343 &stash->info_ptr_memory, &total_size))
4344 return FALSE;
4345 }
4346 else
4347 {
4348 /* Case 2: multiple sections. */
4349 for (total_size = 0;
4350 msec;
4351 msec = find_debug_info (debug_bfd, debug_sections, msec))
4352 total_size += msec->size;
4353
4354 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
4355 if (stash->info_ptr_memory == NULL)
4356 return FALSE;
4357
4358 total_size = 0;
4359 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4360 msec;
4361 msec = find_debug_info (debug_bfd, debug_sections, msec))
4362 {
4363 bfd_size_type size;
4364
4365 size = msec->size;
4366 if (size == 0)
4367 continue;
4368
4369 if (!(bfd_simple_get_relocated_section_contents
4370 (debug_bfd, msec, stash->info_ptr_memory + total_size,
4371 symbols)))
4372 return FALSE;
4373
4374 total_size += size;
4375 }
4376 }
4377
4378 stash->info_ptr = stash->info_ptr_memory;
4379 stash->info_ptr_end = stash->info_ptr + total_size;
4380 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
4381 stash->sec_info_ptr = stash->info_ptr;
4382 return TRUE;
4383 }
4384
4385 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4386 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4387 symbol in SYMBOLS and return the difference between the low_pc and
4388 the symbol's address. Returns 0 if no suitable symbol could be found. */
4389
4390 bfd_signed_vma
4391 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4392 {
4393 struct dwarf2_debug *stash;
4394 struct comp_unit * unit;
4395
4396 stash = (struct dwarf2_debug *) *pinfo;
4397
4398 if (stash == NULL)
4399 return 0;
4400
4401 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
4402 {
4403 struct funcinfo * func;
4404
4405 if (unit->function_table == NULL)
4406 {
4407 if (unit->line_table == NULL)
4408 unit->line_table = decode_line_info (unit, stash);
4409 if (unit->line_table != NULL)
4410 scan_unit_for_symbols (unit);
4411 }
4412
4413 for (func = unit->function_table; func != NULL; func = func->prev_func)
4414 if (func->name && func->arange.low)
4415 {
4416 asymbol ** psym;
4417
4418 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4419
4420 for (psym = symbols; * psym != NULL; psym++)
4421 {
4422 asymbol * sym = * psym;
4423
4424 if (sym->flags & BSF_FUNCTION
4425 && sym->section != NULL
4426 && strcmp (sym->name, func->name) == 0)
4427 return ((bfd_signed_vma) func->arange.low) -
4428 ((bfd_signed_vma) (sym->value + sym->section->vma));
4429 }
4430 }
4431 }
4432
4433 return 0;
4434 }
4435
4436 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4437 then find the nearest source code location corresponding to
4438 the address SECTION + OFFSET.
4439 Returns TRUE if the line is found without error and fills in
4440 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4441 NULL the FUNCTIONNAME_PTR is also filled in.
4442 SYMBOLS contains the symbol table for ABFD.
4443 DEBUG_SECTIONS contains the name of the dwarf debug sections.
4444 ADDR_SIZE is the number of bytes in the initial .debug_info length
4445 field and in the abbreviation offset, or zero to indicate that the
4446 default value should be used. */
4447
4448 bfd_boolean
4449 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4450 asymbol **symbols,
4451 asymbol *symbol,
4452 asection *section,
4453 bfd_vma offset,
4454 const char **filename_ptr,
4455 const char **functionname_ptr,
4456 unsigned int *linenumber_ptr,
4457 unsigned int *discriminator_ptr,
4458 const struct dwarf_debug_section *debug_sections,
4459 unsigned int addr_size,
4460 void **pinfo)
4461 {
4462 /* Read each compilation unit from the section .debug_info, and check
4463 to see if it contains the address we are searching for. If yes,
4464 lookup the address, and return the line number info. If no, go
4465 on to the next compilation unit.
4466
4467 We keep a list of all the previously read compilation units, and
4468 a pointer to the next un-read compilation unit. Check the
4469 previously read units before reading more. */
4470 struct dwarf2_debug *stash;
4471 /* What address are we looking for? */
4472 bfd_vma addr;
4473 struct comp_unit* each;
4474 struct funcinfo *function = NULL;
4475 bfd_boolean found = FALSE;
4476 bfd_boolean do_line;
4477
4478 *filename_ptr = NULL;
4479 if (functionname_ptr != NULL)
4480 *functionname_ptr = NULL;
4481 *linenumber_ptr = 0;
4482 if (discriminator_ptr)
4483 *discriminator_ptr = 0;
4484
4485 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4486 symbols, pinfo,
4487 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4488 return FALSE;
4489
4490 stash = (struct dwarf2_debug *) *pinfo;
4491
4492 do_line = symbol != NULL;
4493 if (do_line)
4494 {
4495 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4496 section = bfd_get_section (symbol);
4497 addr = symbol->value;
4498 }
4499 else
4500 {
4501 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4502 addr = offset;
4503
4504 /* If we have no SYMBOL but the section we're looking at is not a
4505 code section, then take a look through the list of symbols to see
4506 if we have a symbol at the address we're looking for. If we do
4507 then use this to look up line information. This will allow us to
4508 give file and line results for data symbols. We exclude code
4509 symbols here, if we look up a function symbol and then look up the
4510 line information we'll actually return the line number for the
4511 opening '{' rather than the function definition line. This is
4512 because looking up by symbol uses the line table, in which the
4513 first line for a function is usually the opening '{', while
4514 looking up the function by section + offset uses the
4515 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4516 which will be the line of the function name. */
4517 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4518 {
4519 asymbol **tmp;
4520
4521 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4522 if ((*tmp)->the_bfd == abfd
4523 && (*tmp)->section == section
4524 && (*tmp)->value == offset
4525 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4526 {
4527 symbol = *tmp;
4528 do_line = TRUE;
4529 /* For local symbols, keep going in the hope we find a
4530 global. */
4531 if ((symbol->flags & BSF_GLOBAL) != 0)
4532 break;
4533 }
4534 }
4535 }
4536
4537 if (section->output_section)
4538 addr += section->output_section->vma + section->output_offset;
4539 else
4540 addr += section->vma;
4541
4542 /* A null info_ptr indicates that there is no dwarf2 info
4543 (or that an error occured while setting up the stash). */
4544 if (! stash->info_ptr)
4545 return FALSE;
4546
4547 stash->inliner_chain = NULL;
4548
4549 /* Check the previously read comp. units first. */
4550 if (do_line)
4551 {
4552 /* The info hash tables use quite a bit of memory. We may not want to
4553 always use them. We use some heuristics to decide if and when to
4554 turn it on. */
4555 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4556 stash_maybe_enable_info_hash_tables (abfd, stash);
4557
4558 /* Keep info hash table up to date if they are available. Note that we
4559 may disable the hash tables if there is any error duing update. */
4560 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4561 stash_maybe_update_info_hash_tables (stash);
4562
4563 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4564 {
4565 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4566 linenumber_ptr);
4567 if (found)
4568 goto done;
4569 }
4570 else
4571 {
4572 /* Check the previously read comp. units first. */
4573 for (each = stash->all_comp_units; each; each = each->next_unit)
4574 if ((symbol->flags & BSF_FUNCTION) == 0
4575 || each->arange.high == 0
4576 || comp_unit_contains_address (each, addr))
4577 {
4578 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4579 linenumber_ptr, stash);
4580 if (found)
4581 goto done;
4582 }
4583 }
4584 }
4585 else
4586 {
4587 bfd_vma min_range = (bfd_vma) -1;
4588 const char * local_filename = NULL;
4589 struct funcinfo *local_function = NULL;
4590 unsigned int local_linenumber = 0;
4591 unsigned int local_discriminator = 0;
4592
4593 for (each = stash->all_comp_units; each; each = each->next_unit)
4594 {
4595 bfd_vma range = (bfd_vma) -1;
4596
4597 found = ((each->arange.high == 0
4598 || comp_unit_contains_address (each, addr))
4599 && (range = comp_unit_find_nearest_line (each, addr,
4600 & local_filename,
4601 & local_function,
4602 & local_linenumber,
4603 & local_discriminator,
4604 stash)) != 0);
4605 if (found)
4606 {
4607 /* PRs 15935 15994: Bogus debug information may have provided us
4608 with an erroneous match. We attempt to counter this by
4609 selecting the match that has the smallest address range
4610 associated with it. (We are assuming that corrupt debug info
4611 will tend to result in extra large address ranges rather than
4612 extra small ranges).
4613
4614 This does mean that we scan through all of the CUs associated
4615 with the bfd each time this function is called. But this does
4616 have the benefit of producing consistent results every time the
4617 function is called. */
4618 if (range <= min_range)
4619 {
4620 if (filename_ptr && local_filename)
4621 * filename_ptr = local_filename;
4622 if (local_function)
4623 function = local_function;
4624 if (discriminator_ptr && local_discriminator)
4625 * discriminator_ptr = local_discriminator;
4626 if (local_linenumber)
4627 * linenumber_ptr = local_linenumber;
4628 min_range = range;
4629 }
4630 }
4631 }
4632
4633 if (* linenumber_ptr)
4634 {
4635 found = TRUE;
4636 goto done;
4637 }
4638 }
4639
4640 /* The DWARF2 spec says that the initial length field, and the
4641 offset of the abbreviation table, should both be 4-byte values.
4642 However, some compilers do things differently. */
4643 if (addr_size == 0)
4644 addr_size = 4;
4645 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4646
4647 /* Read each remaining comp. units checking each as they are read. */
4648 while (stash->info_ptr < stash->info_ptr_end)
4649 {
4650 bfd_vma length;
4651 unsigned int offset_size = addr_size;
4652 bfd_byte *info_ptr_unit = stash->info_ptr;
4653
4654 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4655 /* A 0xffffff length is the DWARF3 way of indicating
4656 we use 64-bit offsets, instead of 32-bit offsets. */
4657 if (length == 0xffffffff)
4658 {
4659 offset_size = 8;
4660 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4661 stash->info_ptr += 12;
4662 }
4663 /* A zero length is the IRIX way of indicating 64-bit offsets,
4664 mostly because the 64-bit length will generally fit in 32
4665 bits, and the endianness helps. */
4666 else if (length == 0)
4667 {
4668 offset_size = 8;
4669 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4670 stash->info_ptr += 8;
4671 }
4672 /* In the absence of the hints above, we assume 32-bit DWARF2
4673 offsets even for targets with 64-bit addresses, because:
4674 a) most of the time these targets will not have generated
4675 more than 2Gb of debug info and so will not need 64-bit
4676 offsets,
4677 and
4678 b) if they do use 64-bit offsets but they are not using
4679 the size hints that are tested for above then they are
4680 not conforming to the DWARF3 standard anyway. */
4681 else if (addr_size == 8)
4682 {
4683 offset_size = 4;
4684 stash->info_ptr += 4;
4685 }
4686 else
4687 stash->info_ptr += 4;
4688
4689 if (length > 0)
4690 {
4691 bfd_byte * new_ptr;
4692
4693 /* PR 21151 */
4694 if (stash->info_ptr + length > stash->info_ptr_end)
4695 return FALSE;
4696
4697 each = parse_comp_unit (stash, length, info_ptr_unit,
4698 offset_size);
4699 if (!each)
4700 /* The dwarf information is damaged, don't trust it any
4701 more. */
4702 break;
4703
4704 new_ptr = stash->info_ptr + length;
4705 /* PR 17512: file: 1500698c. */
4706 if (new_ptr < stash->info_ptr)
4707 {
4708 /* A corrupt length value - do not trust the info any more. */
4709 found = FALSE;
4710 break;
4711 }
4712 else
4713 stash->info_ptr = new_ptr;
4714
4715 if (stash->all_comp_units)
4716 stash->all_comp_units->prev_unit = each;
4717 else
4718 stash->last_comp_unit = each;
4719
4720 each->next_unit = stash->all_comp_units;
4721 stash->all_comp_units = each;
4722
4723 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4724 compilation units. If we don't have them (i.e.,
4725 unit->high == 0), we need to consult the line info table
4726 to see if a compilation unit contains the given
4727 address. */
4728 if (do_line)
4729 found = (((symbol->flags & BSF_FUNCTION) == 0
4730 || each->arange.high == 0
4731 || comp_unit_contains_address (each, addr))
4732 && comp_unit_find_line (each, symbol, addr,
4733 filename_ptr,
4734 linenumber_ptr,
4735 stash));
4736 else
4737 found = ((each->arange.high == 0
4738 || comp_unit_contains_address (each, addr))
4739 && comp_unit_find_nearest_line (each, addr,
4740 filename_ptr,
4741 &function,
4742 linenumber_ptr,
4743 discriminator_ptr,
4744 stash) != 0);
4745
4746 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4747 == stash->sec->size)
4748 {
4749 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4750 stash->sec);
4751 stash->sec_info_ptr = stash->info_ptr;
4752 }
4753
4754 if (found)
4755 goto done;
4756 }
4757 }
4758
4759 done:
4760 if (function)
4761 {
4762 if (!function->is_linkage)
4763 {
4764 asymbol *fun;
4765 bfd_vma sec_vma;
4766
4767 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4768 *filename_ptr ? NULL : filename_ptr,
4769 functionname_ptr);
4770 sec_vma = section->vma;
4771 if (section->output_section != NULL)
4772 sec_vma = section->output_section->vma + section->output_offset;
4773 if (fun != NULL
4774 && fun->value + sec_vma == function->arange.low)
4775 function->name = *functionname_ptr;
4776 /* Even if we didn't find a linkage name, say that we have
4777 to stop a repeated search of symbols. */
4778 function->is_linkage = TRUE;
4779 }
4780 *functionname_ptr = function->name;
4781 }
4782 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4783 unset_sections (stash);
4784
4785 return found;
4786 }
4787
4788 bfd_boolean
4789 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4790 const char **filename_ptr,
4791 const char **functionname_ptr,
4792 unsigned int *linenumber_ptr,
4793 void **pinfo)
4794 {
4795 struct dwarf2_debug *stash;
4796
4797 stash = (struct dwarf2_debug *) *pinfo;
4798 if (stash)
4799 {
4800 struct funcinfo *func = stash->inliner_chain;
4801
4802 if (func && func->caller_func)
4803 {
4804 *filename_ptr = func->caller_file;
4805 *functionname_ptr = func->caller_func->name;
4806 *linenumber_ptr = func->caller_line;
4807 stash->inliner_chain = func->caller_func;
4808 return TRUE;
4809 }
4810 }
4811
4812 return FALSE;
4813 }
4814
4815 void
4816 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4817 {
4818 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4819 struct comp_unit *each;
4820
4821 if (abfd == NULL || stash == NULL)
4822 return;
4823
4824 for (each = stash->all_comp_units; each; each = each->next_unit)
4825 {
4826 struct abbrev_info **abbrevs = each->abbrevs;
4827 struct funcinfo *function_table = each->function_table;
4828 struct varinfo *variable_table = each->variable_table;
4829 size_t i;
4830
4831 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4832 {
4833 struct abbrev_info *abbrev = abbrevs[i];
4834
4835 while (abbrev)
4836 {
4837 free (abbrev->attrs);
4838 abbrev = abbrev->next;
4839 }
4840 }
4841
4842 if (each->line_table)
4843 {
4844 free (each->line_table->dirs);
4845 free (each->line_table->files);
4846 }
4847
4848 while (function_table)
4849 {
4850 if (function_table->file)
4851 {
4852 free (function_table->file);
4853 function_table->file = NULL;
4854 }
4855
4856 if (function_table->caller_file)
4857 {
4858 free (function_table->caller_file);
4859 function_table->caller_file = NULL;
4860 }
4861 function_table = function_table->prev_func;
4862 }
4863
4864 if (each->lookup_funcinfo_table)
4865 {
4866 free (each->lookup_funcinfo_table);
4867 each->lookup_funcinfo_table = NULL;
4868 }
4869
4870 while (variable_table)
4871 {
4872 if (variable_table->file)
4873 {
4874 free (variable_table->file);
4875 variable_table->file = NULL;
4876 }
4877
4878 variable_table = variable_table->prev_var;
4879 }
4880 }
4881
4882 if (stash->dwarf_abbrev_buffer)
4883 free (stash->dwarf_abbrev_buffer);
4884 if (stash->dwarf_line_buffer)
4885 free (stash->dwarf_line_buffer);
4886 if (stash->dwarf_str_buffer)
4887 free (stash->dwarf_str_buffer);
4888 if (stash->dwarf_line_str_buffer)
4889 free (stash->dwarf_line_str_buffer);
4890 if (stash->dwarf_ranges_buffer)
4891 free (stash->dwarf_ranges_buffer);
4892 if (stash->info_ptr_memory)
4893 free (stash->info_ptr_memory);
4894 if (stash->close_on_cleanup)
4895 bfd_close (stash->bfd_ptr);
4896 if (stash->alt_dwarf_str_buffer)
4897 free (stash->alt_dwarf_str_buffer);
4898 if (stash->alt_dwarf_info_buffer)
4899 free (stash->alt_dwarf_info_buffer);
4900 if (stash->sec_vma)
4901 free (stash->sec_vma);
4902 if (stash->adjusted_sections)
4903 free (stash->adjusted_sections);
4904 if (stash->alt_bfd_ptr)
4905 bfd_close (stash->alt_bfd_ptr);
4906 }
4907
4908 /* Find the function to a particular section and offset,
4909 for error reporting. */
4910
4911 asymbol *
4912 _bfd_elf_find_function (bfd *abfd,
4913 asymbol **symbols,
4914 asection *section,
4915 bfd_vma offset,
4916 const char **filename_ptr,
4917 const char **functionname_ptr)
4918 {
4919 struct elf_find_function_cache
4920 {
4921 asection *last_section;
4922 asymbol *func;
4923 const char *filename;
4924 bfd_size_type func_size;
4925 } *cache;
4926
4927 if (symbols == NULL)
4928 return NULL;
4929
4930 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4931 return NULL;
4932
4933 cache = elf_tdata (abfd)->elf_find_function_cache;
4934 if (cache == NULL)
4935 {
4936 cache = bfd_zalloc (abfd, sizeof (*cache));
4937 elf_tdata (abfd)->elf_find_function_cache = cache;
4938 if (cache == NULL)
4939 return NULL;
4940 }
4941 if (cache->last_section != section
4942 || cache->func == NULL
4943 || offset < cache->func->value
4944 || offset >= cache->func->value + cache->func_size)
4945 {
4946 asymbol *file;
4947 bfd_vma low_func;
4948 asymbol **p;
4949 /* ??? Given multiple file symbols, it is impossible to reliably
4950 choose the right file name for global symbols. File symbols are
4951 local symbols, and thus all file symbols must sort before any
4952 global symbols. The ELF spec may be interpreted to say that a
4953 file symbol must sort before other local symbols, but currently
4954 ld -r doesn't do this. So, for ld -r output, it is possible to
4955 make a better choice of file name for local symbols by ignoring
4956 file symbols appearing after a given local symbol. */
4957 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
4958 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4959
4960 file = NULL;
4961 low_func = 0;
4962 state = nothing_seen;
4963 cache->filename = NULL;
4964 cache->func = NULL;
4965 cache->func_size = 0;
4966 cache->last_section = section;
4967
4968 for (p = symbols; *p != NULL; p++)
4969 {
4970 asymbol *sym = *p;
4971 bfd_vma code_off;
4972 bfd_size_type size;
4973
4974 if ((sym->flags & BSF_FILE) != 0)
4975 {
4976 file = sym;
4977 if (state == symbol_seen)
4978 state = file_after_symbol_seen;
4979 continue;
4980 }
4981
4982 size = bed->maybe_function_sym (sym, section, &code_off);
4983 if (size != 0
4984 && code_off <= offset
4985 && (code_off > low_func
4986 || (code_off == low_func
4987 && size > cache->func_size)))
4988 {
4989 cache->func = sym;
4990 cache->func_size = size;
4991 cache->filename = NULL;
4992 low_func = code_off;
4993 if (file != NULL
4994 && ((sym->flags & BSF_LOCAL) != 0
4995 || state != file_after_symbol_seen))
4996 cache->filename = bfd_asymbol_name (file);
4997 }
4998 if (state == nothing_seen)
4999 state = symbol_seen;
5000 }
5001 }
5002
5003 if (cache->func == NULL)
5004 return NULL;
5005
5006 if (filename_ptr)
5007 *filename_ptr = cache->filename;
5008 if (functionname_ptr)
5009 *functionname_ptr = bfd_asymbol_name (cache->func);
5010
5011 return cache->func;
5012 }