]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf-eh-frame.c
* elf-eh-frame.c (skip_cfa_op, skip_non_nops): New functions.
[thirdparty/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26
27 #define EH_FRAME_HDR_SIZE 8
28
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30 move onto the next byte. Return true on success. */
31
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35 if (*iter >= end)
36 return FALSE;
37 *result = *((*iter)++);
38 return TRUE;
39 }
40
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42 Return true it was possible to move LENGTH bytes. */
43
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47 if ((bfd_size_type) (end - *iter) < length)
48 {
49 *iter = end;
50 return FALSE;
51 }
52 *iter += length;
53 return TRUE;
54 }
55
56 /* Move *ITER over an leb128, stopping at END. Return true if the end
57 of the leb128 was found. */
58
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62 unsigned char byte;
63 do
64 if (!read_byte (iter, end, &byte))
65 return FALSE;
66 while (byte & 0x80);
67 return TRUE;
68 }
69
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71 store it in *VALUE. */
72
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76 bfd_byte *start, *p;
77
78 start = *iter;
79 if (!skip_leb128 (iter, end))
80 return FALSE;
81
82 p = *iter;
83 *value = *--p;
84 while (p > start)
85 *value = (*value << 7) | (*--p & 0x7f);
86
87 return TRUE;
88 }
89
90 /* Like read_uleb128, but for signed values. */
91
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95 bfd_byte *start, *p;
96
97 start = *iter;
98 if (!skip_leb128 (iter, end))
99 return FALSE;
100
101 p = *iter;
102 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103 while (p > start)
104 *value = (*value << 7) | (*--p & 0x7f);
105
106 return TRUE;
107 }
108
109 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
110
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115 was added to bfd. */
116 if ((encoding & 0x60) == 0x60)
117 return 0;
118
119 switch (encoding & 7)
120 {
121 case DW_EH_PE_udata2: return 2;
122 case DW_EH_PE_udata4: return 4;
123 case DW_EH_PE_udata8: return 8;
124 case DW_EH_PE_absptr: return ptr_size;
125 default:
126 break;
127 }
128
129 return 0;
130 }
131
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133
134 /* Read a width sized value from memory. */
135
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139 bfd_vma value;
140
141 switch (width)
142 {
143 case 2:
144 if (is_signed)
145 value = bfd_get_signed_16 (abfd, buf);
146 else
147 value = bfd_get_16 (abfd, buf);
148 break;
149 case 4:
150 if (is_signed)
151 value = bfd_get_signed_32 (abfd, buf);
152 else
153 value = bfd_get_32 (abfd, buf);
154 break;
155 case 8:
156 if (is_signed)
157 value = bfd_get_signed_64 (abfd, buf);
158 else
159 value = bfd_get_64 (abfd, buf);
160 break;
161 default:
162 BFD_FAIL ();
163 return 0;
164 }
165
166 return value;
167 }
168
169 /* Store a width sized value to memory. */
170
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174 switch (width)
175 {
176 case 2: bfd_put_16 (abfd, value, buf); break;
177 case 4: bfd_put_32 (abfd, value, buf); break;
178 case 8: bfd_put_64 (abfd, value, buf); break;
179 default: BFD_FAIL ();
180 }
181 }
182
183 /* Return zero if C1 and C2 CIEs can be merged. */
184
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188 if (c1->hdr.length == c2->hdr.length
189 && c1->version == c2->version
190 && strcmp (c1->augmentation, c2->augmentation) == 0
191 && strcmp (c1->augmentation, "eh") != 0
192 && c1->code_align == c2->code_align
193 && c1->data_align == c2->data_align
194 && c1->ra_column == c2->ra_column
195 && c1->augmentation_size == c2->augmentation_size
196 && c1->personality == c2->personality
197 && c1->per_encoding == c2->per_encoding
198 && c1->lsda_encoding == c2->lsda_encoding
199 && c1->fde_encoding == c2->fde_encoding
200 && c1->initial_insn_length == c2->initial_insn_length
201 && memcmp (c1->initial_instructions,
202 c2->initial_instructions,
203 c1->initial_insn_length) == 0)
204 return 0;
205
206 return 1;
207 }
208
209 /* Return the number of extra bytes that we'll be inserting into
210 ENTRY's augmentation string. */
211
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215 unsigned int size = 0;
216 if (entry->cie)
217 {
218 if (entry->add_augmentation_size)
219 size++;
220 if (entry->add_fde_encoding)
221 size++;
222 }
223 return size;
224 }
225
226 /* Likewise ENTRY's augmentation data. */
227
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231 unsigned int size = 0;
232 if (entry->cie)
233 {
234 if (entry->add_augmentation_size)
235 size++;
236 if (entry->add_fde_encoding)
237 size++;
238 }
239 else
240 {
241 if (entry->cie_inf->add_augmentation_size)
242 size++;
243 }
244 return size;
245 }
246
247 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
248 required alignment of ENTRY in bytes. */
249
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253 if (entry->removed)
254 return 0;
255 if (entry->size == 4)
256 return 4;
257 return (entry->size
258 + extra_augmentation_string_bytes (entry)
259 + extra_augmentation_data_bytes (entry)
260 + alignment - 1) & -alignment;
261 }
262
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264 Try to move *ITER past the first instruction and return true on
265 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
266
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270 bfd_byte op;
271 bfd_vma length;
272
273 if (!read_byte (iter, end, &op))
274 return FALSE;
275
276 switch (op & 0x80 ? op & 0xc0 : op)
277 {
278 case DW_CFA_nop:
279 case DW_CFA_advance_loc:
280 case DW_CFA_restore:
281 /* No arguments. */
282 return TRUE;
283
284 case DW_CFA_offset:
285 case DW_CFA_restore_extended:
286 case DW_CFA_undefined:
287 case DW_CFA_same_value:
288 case DW_CFA_def_cfa_register:
289 case DW_CFA_def_cfa_offset:
290 case DW_CFA_def_cfa_offset_sf:
291 case DW_CFA_GNU_args_size:
292 /* One leb128 argument. */
293 return skip_leb128 (iter, end);
294
295 case DW_CFA_offset_extended:
296 case DW_CFA_register:
297 case DW_CFA_def_cfa:
298 case DW_CFA_offset_extended_sf:
299 case DW_CFA_GNU_negative_offset_extended:
300 case DW_CFA_def_cfa_sf:
301 /* Two leb128 arguments. */
302 return (skip_leb128 (iter, end)
303 && skip_leb128 (iter, end));
304
305 case DW_CFA_def_cfa_expression:
306 /* A variable-length argument. */
307 return (read_uleb128 (iter, end, &length)
308 && skip_bytes (iter, end, length));
309
310 case DW_CFA_expression:
311 /* A leb128 followed by a variable-length argument. */
312 return (skip_leb128 (iter, end)
313 && read_uleb128 (iter, end, &length)
314 && skip_bytes (iter, end, length));
315
316 case DW_CFA_set_loc:
317 return skip_bytes (iter, end, encoded_ptr_width);
318
319 case DW_CFA_advance_loc1:
320 return skip_bytes (iter, end, 1);
321
322 case DW_CFA_advance_loc2:
323 return skip_bytes (iter, end, 2);
324
325 case DW_CFA_advance_loc4:
326 return skip_bytes (iter, end, 4);
327
328 case DW_CFA_MIPS_advance_loc8:
329 return skip_bytes (iter, end, 8);
330
331 default:
332 return FALSE;
333 }
334 }
335
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337 If every byte makes sense, return a pointer to the first DW_CFA_nop
338 padding byte, or END if there is no padding. Return null otherwise.
339 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
340
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344 bfd_byte *last;
345
346 last = buf;
347 while (buf < end)
348 if (*buf == DW_CFA_nop)
349 buf++;
350 else
351 {
352 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 return 0;
354 last = buf;
355 }
356 return last;
357 }
358
359 /* This function is called for each input file before the .eh_frame
360 section is relocated. It discards duplicate CIEs and FDEs for discarded
361 functions. The function returns TRUE iff any entries have been
362 deleted. */
363
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366 (bfd *abfd, struct bfd_link_info *info, asection *sec,
367 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368 struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND) \
371 do \
372 if (!(COND)) \
373 goto free_no_table; \
374 while (0)
375
376 bfd_byte *ehbuf = NULL, *buf;
377 bfd_byte *last_cie, *last_fde;
378 struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379 struct cie_header hdr;
380 struct cie cie;
381 struct elf_link_hash_table *htab;
382 struct eh_frame_hdr_info *hdr_info;
383 struct eh_frame_sec_info *sec_info = NULL;
384 unsigned int cie_usage_count, offset;
385 unsigned int ptr_size;
386
387 if (sec->size == 0)
388 {
389 /* This file does not contain .eh_frame information. */
390 return FALSE;
391 }
392
393 if ((sec->output_section != NULL
394 && bfd_is_abs_section (sec->output_section)))
395 {
396 /* At least one of the sections is being discarded from the
397 link, so we should just ignore them. */
398 return FALSE;
399 }
400
401 htab = elf_hash_table (info);
402 hdr_info = &htab->eh_info;
403
404 /* Read the frame unwind information from abfd. */
405
406 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
407
408 if (sec->size >= 4
409 && bfd_get_32 (abfd, ehbuf) == 0
410 && cookie->rel == cookie->relend)
411 {
412 /* Empty .eh_frame section. */
413 free (ehbuf);
414 return FALSE;
415 }
416
417 /* If .eh_frame section size doesn't fit into int, we cannot handle
418 it (it would need to use 64-bit .eh_frame format anyway). */
419 REQUIRE (sec->size == (unsigned int) sec->size);
420
421 ptr_size = (elf_elfheader (abfd)->e_ident[EI_CLASS]
422 == ELFCLASS64) ? 8 : 4;
423 buf = ehbuf;
424 last_cie = NULL;
425 last_cie_inf = NULL;
426 memset (&cie, 0, sizeof (cie));
427 cie_usage_count = 0;
428 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
429 + 99 * sizeof (struct eh_cie_fde));
430 REQUIRE (sec_info);
431
432 sec_info->alloced = 100;
433
434 #define ENSURE_NO_RELOCS(buf) \
435 REQUIRE (!(cookie->rel < cookie->relend \
436 && (cookie->rel->r_offset \
437 < (bfd_size_type) ((buf) - ehbuf)) \
438 && cookie->rel->r_info != 0))
439
440 #define SKIP_RELOCS(buf) \
441 while (cookie->rel < cookie->relend \
442 && (cookie->rel->r_offset \
443 < (bfd_size_type) ((buf) - ehbuf))) \
444 cookie->rel++
445
446 #define GET_RELOC(buf) \
447 ((cookie->rel < cookie->relend \
448 && (cookie->rel->r_offset \
449 == (bfd_size_type) ((buf) - ehbuf))) \
450 ? cookie->rel : NULL)
451
452 for (;;)
453 {
454 unsigned char *aug;
455 bfd_byte *start, *end, *insns;
456 bfd_size_type length;
457
458 if (sec_info->count == sec_info->alloced)
459 {
460 struct eh_cie_fde *old_entry = sec_info->entry;
461 sec_info = bfd_realloc (sec_info,
462 sizeof (struct eh_frame_sec_info)
463 + ((sec_info->alloced + 99)
464 * sizeof (struct eh_cie_fde)));
465 REQUIRE (sec_info);
466
467 memset (&sec_info->entry[sec_info->alloced], 0,
468 100 * sizeof (struct eh_cie_fde));
469 sec_info->alloced += 100;
470
471 /* Now fix any pointers into the array. */
472 if (last_cie_inf >= old_entry
473 && last_cie_inf < old_entry + sec_info->count)
474 last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
475 }
476
477 this_inf = sec_info->entry + sec_info->count;
478 last_fde = buf;
479 /* If we are at the end of the section, we still need to decide
480 on whether to output or discard last encountered CIE (if any). */
481 if ((bfd_size_type) (buf - ehbuf) == sec->size)
482 {
483 hdr.id = (unsigned int) -1;
484 end = buf;
485 }
486 else
487 {
488 /* Read the length of the entry. */
489 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
490 hdr.length = bfd_get_32 (abfd, buf - 4);
491
492 /* 64-bit .eh_frame is not supported. */
493 REQUIRE (hdr.length != 0xffffffff);
494
495 /* The CIE/FDE must be fully contained in this input section. */
496 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
497 end = buf + hdr.length;
498
499 this_inf->offset = last_fde - ehbuf;
500 this_inf->size = 4 + hdr.length;
501
502 if (hdr.length == 0)
503 {
504 /* A zero-length CIE should only be found at the end of
505 the section. */
506 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
507 ENSURE_NO_RELOCS (buf);
508 sec_info->count++;
509 /* Now just finish last encountered CIE processing and break
510 the loop. */
511 hdr.id = (unsigned int) -1;
512 }
513 else
514 {
515 REQUIRE (skip_bytes (&buf, end, 4));
516 hdr.id = bfd_get_32 (abfd, buf - 4);
517 REQUIRE (hdr.id != (unsigned int) -1);
518 }
519 }
520
521 if (hdr.id == 0 || hdr.id == (unsigned int) -1)
522 {
523 unsigned int initial_insn_length;
524
525 /* CIE */
526 if (last_cie != NULL)
527 {
528 /* Now check if this CIE is identical to the last CIE,
529 in which case we can remove it provided we adjust
530 all FDEs. Also, it can be removed if we have removed
531 all FDEs using it. */
532 if ((!info->relocatable
533 && hdr_info->last_cie_sec
534 && (sec->output_section
535 == hdr_info->last_cie_sec->output_section)
536 && cie_compare (&cie, &hdr_info->last_cie) == 0)
537 || cie_usage_count == 0)
538 last_cie_inf->removed = 1;
539 else
540 {
541 hdr_info->last_cie = cie;
542 hdr_info->last_cie_sec = sec;
543 last_cie_inf->make_relative = cie.make_relative;
544 last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
545 last_cie_inf->per_encoding_relative
546 = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
547 }
548 }
549
550 if (hdr.id == (unsigned int) -1)
551 break;
552
553 last_cie_inf = this_inf;
554 this_inf->cie = 1;
555
556 cie_usage_count = 0;
557 memset (&cie, 0, sizeof (cie));
558 cie.hdr = hdr;
559 REQUIRE (read_byte (&buf, end, &cie.version));
560
561 /* Cannot handle unknown versions. */
562 REQUIRE (cie.version == 1 || cie.version == 3);
563 REQUIRE (strlen (buf) < sizeof (cie.augmentation));
564
565 strcpy (cie.augmentation, buf);
566 buf = strchr (buf, '\0') + 1;
567 ENSURE_NO_RELOCS (buf);
568 if (buf[0] == 'e' && buf[1] == 'h')
569 {
570 /* GCC < 3.0 .eh_frame CIE */
571 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
572 is private to each CIE, so we don't need it for anything.
573 Just skip it. */
574 REQUIRE (skip_bytes (&buf, end, ptr_size));
575 SKIP_RELOCS (buf);
576 }
577 REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
578 REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
579 if (cie.version == 1)
580 {
581 REQUIRE (buf < end);
582 cie.ra_column = *buf++;
583 }
584 else
585 REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
586 ENSURE_NO_RELOCS (buf);
587 cie.lsda_encoding = DW_EH_PE_omit;
588 cie.fde_encoding = DW_EH_PE_omit;
589 cie.per_encoding = DW_EH_PE_omit;
590 aug = cie.augmentation;
591 if (aug[0] != 'e' || aug[1] != 'h')
592 {
593 if (*aug == 'z')
594 {
595 aug++;
596 REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
597 ENSURE_NO_RELOCS (buf);
598 }
599
600 while (*aug != '\0')
601 switch (*aug++)
602 {
603 case 'L':
604 REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
605 ENSURE_NO_RELOCS (buf);
606 REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
607 break;
608 case 'R':
609 REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
610 ENSURE_NO_RELOCS (buf);
611 REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
612 break;
613 case 'P':
614 {
615 int per_width;
616
617 REQUIRE (read_byte (&buf, end, &cie.per_encoding));
618 per_width = get_DW_EH_PE_width (cie.per_encoding,
619 ptr_size);
620 REQUIRE (per_width);
621 if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
622 {
623 length = -(buf - ehbuf) & (per_width - 1);
624 REQUIRE (skip_bytes (&buf, end, length));
625 }
626 ENSURE_NO_RELOCS (buf);
627 /* Ensure we have a reloc here, against
628 a global symbol. */
629 if (GET_RELOC (buf) != NULL)
630 {
631 unsigned long r_symndx;
632
633 #ifdef BFD64
634 if (ptr_size == 8)
635 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
636 else
637 #endif
638 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
639 if (r_symndx >= cookie->locsymcount)
640 {
641 struct elf_link_hash_entry *h;
642
643 r_symndx -= cookie->extsymoff;
644 h = cookie->sym_hashes[r_symndx];
645
646 while (h->root.type == bfd_link_hash_indirect
647 || h->root.type == bfd_link_hash_warning)
648 h = (struct elf_link_hash_entry *)
649 h->root.u.i.link;
650
651 cie.personality = h;
652 }
653 /* Cope with MIPS-style composite relocations. */
654 do
655 cookie->rel++;
656 while (GET_RELOC (buf) != NULL);
657 }
658 REQUIRE (skip_bytes (&buf, end, per_width));
659 }
660 break;
661 default:
662 /* Unrecognized augmentation. Better bail out. */
663 goto free_no_table;
664 }
665 }
666
667 /* For shared libraries, try to get rid of as many RELATIVE relocs
668 as possible. */
669 if (info->shared
670 && (get_elf_backend_data (abfd)
671 ->elf_backend_can_make_relative_eh_frame
672 (abfd, info, sec)))
673 {
674 if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
675 cie.make_relative = 1;
676 /* If the CIE doesn't already have an 'R' entry, it's fairly
677 easy to add one, provided that there's no aligned data
678 after the augmentation string. */
679 else if (cie.fde_encoding == DW_EH_PE_omit
680 && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
681 {
682 if (*cie.augmentation == 0)
683 this_inf->add_augmentation_size = 1;
684 this_inf->add_fde_encoding = 1;
685 cie.make_relative = 1;
686 }
687 }
688
689 if (info->shared
690 && (get_elf_backend_data (abfd)
691 ->elf_backend_can_make_lsda_relative_eh_frame
692 (abfd, info, sec))
693 && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
694 cie.make_lsda_relative = 1;
695
696 /* If FDE encoding was not specified, it defaults to
697 DW_EH_absptr. */
698 if (cie.fde_encoding == DW_EH_PE_omit)
699 cie.fde_encoding = DW_EH_PE_absptr;
700
701 initial_insn_length = end - buf;
702 if (initial_insn_length <= 50)
703 {
704 cie.initial_insn_length = initial_insn_length;
705 memcpy (cie.initial_instructions, buf, initial_insn_length);
706 }
707 insns = buf;
708 buf += initial_insn_length;
709 ENSURE_NO_RELOCS (buf);
710 last_cie = last_fde;
711 }
712 else
713 {
714 /* Ensure this FDE uses the last CIE encountered. */
715 REQUIRE (last_cie);
716 REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
717
718 ENSURE_NO_RELOCS (buf);
719 REQUIRE (GET_RELOC (buf));
720
721 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
722 /* This is a FDE against a discarded section. It should
723 be deleted. */
724 this_inf->removed = 1;
725 else
726 {
727 if (info->shared
728 && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
729 && cie.make_relative == 0)
730 || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
731 {
732 /* If a shared library uses absolute pointers
733 which we cannot turn into PC relative,
734 don't create the binary search table,
735 since it is affected by runtime relocations. */
736 hdr_info->table = FALSE;
737 }
738 cie_usage_count++;
739 hdr_info->fde_count++;
740 }
741 /* Skip the initial location and address range. */
742 start = buf;
743 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
744 REQUIRE (skip_bytes (&buf, end, 2 * length));
745
746 /* Skip the augmentation size, if present. */
747 if (cie.augmentation[0] == 'z')
748 REQUIRE (read_uleb128 (&buf, end, &length));
749 else
750 length = 0;
751
752 /* Of the supported augmentation characters above, only 'L'
753 adds augmentation data to the FDE. This code would need to
754 be adjusted if any future augmentations do the same thing. */
755 if (cie.lsda_encoding != DW_EH_PE_omit)
756 {
757 this_inf->lsda_offset = buf - start;
758 /* If there's no 'z' augmentation, we don't know where the
759 CFA insns begin. Assume no padding. */
760 if (cie.augmentation[0] != 'z')
761 length = end - buf;
762 }
763
764 /* Skip over the augmentation data. */
765 REQUIRE (skip_bytes (&buf, end, length));
766 insns = buf;
767
768 buf = last_fde + 4 + hdr.length;
769 SKIP_RELOCS (buf);
770 }
771
772 /* Try to interpret the CFA instructions and find the first
773 padding nop. Shrink this_inf's size so that it doesn't
774 including the padding. */
775 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
776 insns = skip_non_nops (insns, end, length);
777 if (insns != 0)
778 this_inf->size -= end - insns;
779
780 this_inf->fde_encoding = cie.fde_encoding;
781 this_inf->lsda_encoding = cie.lsda_encoding;
782 sec_info->count++;
783 }
784
785 elf_section_data (sec)->sec_info = sec_info;
786 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
787
788 /* Ok, now we can assign new offsets. */
789 offset = 0;
790 last_cie_inf = hdr_info->last_cie_inf;
791 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
792 if (!ent->removed)
793 {
794 if (ent->cie)
795 last_cie_inf = ent;
796 else
797 ent->cie_inf = last_cie_inf;
798 ent->new_offset = offset;
799 offset += size_of_output_cie_fde (ent, ptr_size);
800 }
801 hdr_info->last_cie_inf = last_cie_inf;
802
803 /* Resize the sec as needed. */
804 sec->rawsize = sec->size;
805 sec->size = offset;
806 if (sec->size == 0)
807 sec->flags |= SEC_EXCLUDE;
808
809 free (ehbuf);
810 return offset != sec->rawsize;
811
812 free_no_table:
813 if (ehbuf)
814 free (ehbuf);
815 if (sec_info)
816 free (sec_info);
817 hdr_info->table = FALSE;
818 hdr_info->last_cie.hdr.length = 0;
819 return FALSE;
820
821 #undef REQUIRE
822 }
823
824 /* This function is called for .eh_frame_hdr section after
825 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
826 input sections. It finalizes the size of .eh_frame_hdr section. */
827
828 bfd_boolean
829 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
830 {
831 struct elf_link_hash_table *htab;
832 struct eh_frame_hdr_info *hdr_info;
833 asection *sec;
834
835 htab = elf_hash_table (info);
836 hdr_info = &htab->eh_info;
837 sec = hdr_info->hdr_sec;
838 if (sec == NULL)
839 return FALSE;
840
841 sec->size = EH_FRAME_HDR_SIZE;
842 if (hdr_info->table)
843 sec->size += 4 + hdr_info->fde_count * 8;
844
845 /* Request program headers to be recalculated. */
846 elf_tdata (abfd)->program_header_size = 0;
847 elf_tdata (abfd)->eh_frame_hdr = sec;
848 return TRUE;
849 }
850
851 /* This function is called from size_dynamic_sections.
852 It needs to decide whether .eh_frame_hdr should be output or not,
853 because later on it is too late for calling _bfd_strip_section_from_output,
854 since dynamic symbol table has been sized. */
855
856 bfd_boolean
857 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
858 {
859 asection *o;
860 bfd *abfd;
861 struct elf_link_hash_table *htab;
862 struct eh_frame_hdr_info *hdr_info;
863
864 htab = elf_hash_table (info);
865 hdr_info = &htab->eh_info;
866 if (hdr_info->hdr_sec == NULL)
867 return TRUE;
868
869 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
870 {
871 hdr_info->hdr_sec = NULL;
872 return TRUE;
873 }
874
875 abfd = NULL;
876 if (info->eh_frame_hdr)
877 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
878 {
879 /* Count only sections which have at least a single CIE or FDE.
880 There cannot be any CIE or FDE <= 8 bytes. */
881 o = bfd_get_section_by_name (abfd, ".eh_frame");
882 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
883 break;
884 }
885
886 if (abfd == NULL)
887 {
888 _bfd_strip_section_from_output (info, hdr_info->hdr_sec);
889 hdr_info->hdr_sec = NULL;
890 return TRUE;
891 }
892
893 hdr_info->table = TRUE;
894 return TRUE;
895 }
896
897 /* Adjust an address in the .eh_frame section. Given OFFSET within
898 SEC, this returns the new offset in the adjusted .eh_frame section,
899 or -1 if the address refers to a CIE/FDE which has been removed
900 or to offset with dynamic relocation which is no longer needed. */
901
902 bfd_vma
903 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
904 struct bfd_link_info *info,
905 asection *sec,
906 bfd_vma offset)
907 {
908 struct eh_frame_sec_info *sec_info;
909 struct elf_link_hash_table *htab;
910 struct eh_frame_hdr_info *hdr_info;
911 unsigned int lo, hi, mid;
912
913 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
914 return offset;
915 sec_info = elf_section_data (sec)->sec_info;
916
917 if (offset >= sec->rawsize)
918 return offset - sec->rawsize + sec->size;
919
920 htab = elf_hash_table (info);
921 hdr_info = &htab->eh_info;
922 if (hdr_info->offsets_adjusted)
923 offset += sec->output_offset;
924
925 lo = 0;
926 hi = sec_info->count;
927 mid = 0;
928 while (lo < hi)
929 {
930 mid = (lo + hi) / 2;
931 if (offset < sec_info->entry[mid].offset)
932 hi = mid;
933 else if (offset
934 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
935 lo = mid + 1;
936 else
937 break;
938 }
939
940 BFD_ASSERT (lo < hi);
941
942 /* FDE or CIE was removed. */
943 if (sec_info->entry[mid].removed)
944 return (bfd_vma) -1;
945
946 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
947 relocation against FDE's initial_location field. */
948 if (!sec_info->entry[mid].cie
949 && sec_info->entry[mid].cie_inf->make_relative
950 && offset == sec_info->entry[mid].offset + 8)
951 return (bfd_vma) -2;
952
953 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
954 for run-time relocation against LSDA field. */
955 if (!sec_info->entry[mid].cie
956 && sec_info->entry[mid].cie_inf->make_lsda_relative
957 && (offset == (sec_info->entry[mid].offset + 8
958 + sec_info->entry[mid].lsda_offset))
959 && (sec_info->entry[mid].cie_inf->need_lsda_relative
960 || !hdr_info->offsets_adjusted))
961 {
962 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
963 return (bfd_vma) -2;
964 }
965
966 if (hdr_info->offsets_adjusted)
967 offset -= sec->output_offset;
968 /* Any new augmentation bytes go before the first relocation. */
969 return (offset + sec_info->entry[mid].new_offset
970 - sec_info->entry[mid].offset
971 + extra_augmentation_string_bytes (sec_info->entry + mid)
972 + extra_augmentation_data_bytes (sec_info->entry + mid));
973 }
974
975 /* Write out .eh_frame section. This is called with the relocated
976 contents. */
977
978 bfd_boolean
979 _bfd_elf_write_section_eh_frame (bfd *abfd,
980 struct bfd_link_info *info,
981 asection *sec,
982 bfd_byte *contents)
983 {
984 struct eh_frame_sec_info *sec_info;
985 struct elf_link_hash_table *htab;
986 struct eh_frame_hdr_info *hdr_info;
987 unsigned int ptr_size;
988 struct eh_cie_fde *ent;
989
990 ptr_size = (elf_elfheader (sec->owner)->e_ident[EI_CLASS]
991 == ELFCLASS64) ? 8 : 4;
992
993 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
994 return bfd_set_section_contents (abfd, sec->output_section, contents,
995 sec->output_offset, sec->size);
996 sec_info = elf_section_data (sec)->sec_info;
997 htab = elf_hash_table (info);
998 hdr_info = &htab->eh_info;
999
1000 /* First convert all offsets to output section offsets, so that a
1001 CIE offset is valid if the CIE is used by a FDE from some other
1002 section. This can happen when duplicate CIEs are deleted in
1003 _bfd_elf_discard_section_eh_frame. We do all sections here because
1004 this function might not be called on sections in the same order as
1005 _bfd_elf_discard_section_eh_frame. */
1006 if (!hdr_info->offsets_adjusted)
1007 {
1008 bfd *ibfd;
1009 asection *eh;
1010 struct eh_frame_sec_info *eh_inf;
1011
1012 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1013 {
1014 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1015 || (ibfd->flags & DYNAMIC) != 0)
1016 continue;
1017
1018 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1019 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1020 continue;
1021
1022 eh_inf = elf_section_data (eh)->sec_info;
1023 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1024 {
1025 ent->offset += eh->output_offset;
1026 ent->new_offset += eh->output_offset;
1027 }
1028 }
1029 hdr_info->offsets_adjusted = TRUE;
1030 }
1031
1032 if (hdr_info->table && hdr_info->array == NULL)
1033 hdr_info->array
1034 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1035 if (hdr_info->array == NULL)
1036 hdr_info = NULL;
1037
1038 /* The new offsets can be bigger or smaller than the original offsets.
1039 We therefore need to make two passes over the section: one backward
1040 pass to move entries up and one forward pass to move entries down.
1041 The two passes won't interfere with each other because entries are
1042 not reordered */
1043 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1044 if (!ent->removed && ent->new_offset > ent->offset)
1045 memmove (contents + ent->new_offset - sec->output_offset,
1046 contents + ent->offset - sec->output_offset, ent->size);
1047
1048 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1049 if (!ent->removed && ent->new_offset < ent->offset)
1050 memmove (contents + ent->new_offset - sec->output_offset,
1051 contents + ent->offset - sec->output_offset, ent->size);
1052
1053 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1054 {
1055 unsigned char *buf, *end;
1056 unsigned int new_size;
1057
1058 if (ent->removed)
1059 continue;
1060
1061 if (ent->size == 4)
1062 {
1063 /* Any terminating FDE must be at the end of the section. */
1064 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1065 continue;
1066 }
1067
1068 buf = contents + ent->new_offset - sec->output_offset;
1069 end = buf + ent->size;
1070 new_size = size_of_output_cie_fde (ent, ptr_size);
1071
1072 /* Install the new size, filling the extra bytes with DW_CFA_nops. */
1073 if (new_size != ent->size)
1074 {
1075 memset (end, 0, new_size - ent->size);
1076 bfd_put_32 (abfd, new_size - 4, buf);
1077 }
1078
1079 if (ent->cie)
1080 {
1081 /* CIE */
1082 if (ent->make_relative
1083 || ent->need_lsda_relative
1084 || ent->per_encoding_relative)
1085 {
1086 unsigned char *aug;
1087 unsigned int action, extra_string, extra_data;
1088 unsigned int per_width, per_encoding;
1089
1090 /* Need to find 'R' or 'L' augmentation's argument and modify
1091 DW_EH_PE_* value. */
1092 action = ((ent->make_relative ? 1 : 0)
1093 | (ent->need_lsda_relative ? 2 : 0)
1094 | (ent->per_encoding_relative ? 4 : 0));
1095 extra_string = extra_augmentation_string_bytes (ent);
1096 extra_data = extra_augmentation_data_bytes (ent);
1097
1098 /* Skip length, id and version. */
1099 buf += 9;
1100 aug = buf;
1101 buf = strchr (buf, '\0') + 1;
1102 skip_leb128 (&buf, end);
1103 skip_leb128 (&buf, end);
1104 skip_leb128 (&buf, end);
1105 if (*aug == 'z')
1106 {
1107 /* The uleb128 will always be a single byte for the kind
1108 of augmentation strings that we're prepared to handle. */
1109 *buf++ += extra_data;
1110 aug++;
1111 }
1112
1113 /* Make room for the new augmentation string and data bytes. */
1114 memmove (buf + extra_string + extra_data, buf, end - buf);
1115 memmove (aug + extra_string, aug, buf - aug);
1116 buf += extra_string;
1117 end += extra_string + extra_data;
1118
1119 if (ent->add_augmentation_size)
1120 {
1121 *aug++ = 'z';
1122 *buf++ = extra_data - 1;
1123 }
1124 if (ent->add_fde_encoding)
1125 {
1126 BFD_ASSERT (action & 1);
1127 *aug++ = 'R';
1128 *buf++ = DW_EH_PE_pcrel;
1129 action &= ~1;
1130 }
1131
1132 while (action)
1133 switch (*aug++)
1134 {
1135 case 'L':
1136 if (action & 2)
1137 {
1138 BFD_ASSERT (*buf == ent->lsda_encoding);
1139 *buf |= DW_EH_PE_pcrel;
1140 action &= ~2;
1141 }
1142 buf++;
1143 break;
1144 case 'P':
1145 per_encoding = *buf++;
1146 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1147 BFD_ASSERT (per_width != 0);
1148 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1149 == ent->per_encoding_relative);
1150 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1151 buf = (contents
1152 + ((buf - contents + per_width - 1)
1153 & ~((bfd_size_type) per_width - 1)));
1154 if (action & 4)
1155 {
1156 bfd_vma val;
1157
1158 val = read_value (abfd, buf, per_width,
1159 get_DW_EH_PE_signed (per_encoding));
1160 val += ent->offset - ent->new_offset;
1161 val -= extra_string + extra_data;
1162 write_value (abfd, buf, val, per_width);
1163 action &= ~4;
1164 }
1165 buf += per_width;
1166 break;
1167 case 'R':
1168 if (action & 1)
1169 {
1170 BFD_ASSERT (*buf == ent->fde_encoding);
1171 *buf |= DW_EH_PE_pcrel;
1172 action &= ~1;
1173 }
1174 buf++;
1175 break;
1176 default:
1177 BFD_FAIL ();
1178 }
1179 }
1180 }
1181 else
1182 {
1183 /* FDE */
1184 bfd_vma value, address;
1185 unsigned int width;
1186
1187 /* Skip length. */
1188 buf += 4;
1189 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1190 bfd_put_32 (abfd, value, buf);
1191 buf += 4;
1192 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1193 value = read_value (abfd, buf, width,
1194 get_DW_EH_PE_signed (ent->fde_encoding));
1195 address = value;
1196 if (value)
1197 {
1198 switch (ent->fde_encoding & 0xf0)
1199 {
1200 case DW_EH_PE_indirect:
1201 case DW_EH_PE_textrel:
1202 BFD_ASSERT (hdr_info == NULL);
1203 break;
1204 case DW_EH_PE_datarel:
1205 {
1206 asection *got = bfd_get_section_by_name (abfd, ".got");
1207
1208 BFD_ASSERT (got != NULL);
1209 address += got->vma;
1210 }
1211 break;
1212 case DW_EH_PE_pcrel:
1213 value += ent->offset - ent->new_offset;
1214 address += sec->output_section->vma + ent->offset + 8;
1215 break;
1216 }
1217 if (ent->cie_inf->make_relative)
1218 value -= sec->output_section->vma + ent->new_offset + 8;
1219 write_value (abfd, buf, value, width);
1220 }
1221
1222 if (hdr_info)
1223 {
1224 hdr_info->array[hdr_info->array_count].initial_loc = address;
1225 hdr_info->array[hdr_info->array_count++].fde
1226 = sec->output_section->vma + ent->new_offset;
1227 }
1228
1229 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1230 || ent->cie_inf->need_lsda_relative)
1231 {
1232 buf += ent->lsda_offset;
1233 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1234 value = read_value (abfd, buf, width,
1235 get_DW_EH_PE_signed (ent->lsda_encoding));
1236 if (value)
1237 {
1238 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1239 value += ent->offset - ent->new_offset;
1240 else if (ent->cie_inf->need_lsda_relative)
1241 value -= (sec->output_section->vma + ent->new_offset + 8
1242 + ent->lsda_offset);
1243 write_value (abfd, buf, value, width);
1244 }
1245 }
1246 else if (ent->cie_inf->add_augmentation_size)
1247 {
1248 /* Skip the PC and length and insert a zero byte for the
1249 augmentation size. */
1250 buf += width * 2;
1251 memmove (buf + 1, buf, end - buf);
1252 *buf = 0;
1253 }
1254 }
1255 }
1256
1257 {
1258 unsigned int alignment = 1 << sec->alignment_power;
1259 unsigned int pad = sec->size % alignment;
1260
1261 /* Don't pad beyond the raw size of the output section. It
1262 can happen at the last input section. */
1263 if (pad
1264 && ((sec->output_offset + sec->size + pad)
1265 <= sec->output_section->size))
1266 {
1267 bfd_byte *buf;
1268 unsigned int new_size;
1269
1270 /* Find the last CIE/FDE. */
1271 ent = sec_info->entry + sec_info->count;
1272 while (--ent != sec_info->entry)
1273 if (!ent->removed)
1274 break;
1275
1276 /* The size of the last CIE/FDE must be at least 4. */
1277 if (ent->removed || ent->size < 4)
1278 abort ();
1279
1280 pad = alignment - pad;
1281 buf = contents + ent->new_offset - sec->output_offset;
1282 new_size = size_of_output_cie_fde (ent, ptr_size);
1283
1284 /* Pad it with DW_CFA_nop */
1285 memset (buf + new_size, 0, pad);
1286 bfd_put_32 (abfd, new_size + pad - 4, buf);
1287
1288 sec->size += pad;
1289 }
1290 }
1291
1292 return bfd_set_section_contents (abfd, sec->output_section,
1293 contents, (file_ptr) sec->output_offset,
1294 sec->size);
1295 }
1296
1297 /* Helper function used to sort .eh_frame_hdr search table by increasing
1298 VMA of FDE initial location. */
1299
1300 static int
1301 vma_compare (const void *a, const void *b)
1302 {
1303 const struct eh_frame_array_ent *p = a;
1304 const struct eh_frame_array_ent *q = b;
1305 if (p->initial_loc > q->initial_loc)
1306 return 1;
1307 if (p->initial_loc < q->initial_loc)
1308 return -1;
1309 return 0;
1310 }
1311
1312 /* Write out .eh_frame_hdr section. This must be called after
1313 _bfd_elf_write_section_eh_frame has been called on all input
1314 .eh_frame sections.
1315 .eh_frame_hdr format:
1316 ubyte version (currently 1)
1317 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1318 .eh_frame section)
1319 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1320 number (or DW_EH_PE_omit if there is no
1321 binary search table computed))
1322 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1323 or DW_EH_PE_omit if not present.
1324 DW_EH_PE_datarel is using address of
1325 .eh_frame_hdr section start as base)
1326 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1327 optionally followed by:
1328 [encoded] fde_count (total number of FDEs in .eh_frame section)
1329 fde_count x [encoded] initial_loc, fde
1330 (array of encoded pairs containing
1331 FDE initial_location field and FDE address,
1332 sorted by increasing initial_loc). */
1333
1334 bfd_boolean
1335 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1336 {
1337 struct elf_link_hash_table *htab;
1338 struct eh_frame_hdr_info *hdr_info;
1339 asection *sec;
1340 bfd_byte *contents;
1341 asection *eh_frame_sec;
1342 bfd_size_type size;
1343 bfd_boolean retval;
1344 bfd_vma encoded_eh_frame;
1345
1346 htab = elf_hash_table (info);
1347 hdr_info = &htab->eh_info;
1348 sec = hdr_info->hdr_sec;
1349 if (sec == NULL)
1350 return TRUE;
1351
1352 size = EH_FRAME_HDR_SIZE;
1353 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1354 size += 4 + hdr_info->fde_count * 8;
1355 contents = bfd_malloc (size);
1356 if (contents == NULL)
1357 return FALSE;
1358
1359 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1360 if (eh_frame_sec == NULL)
1361 {
1362 free (contents);
1363 return FALSE;
1364 }
1365
1366 memset (contents, 0, EH_FRAME_HDR_SIZE);
1367 contents[0] = 1; /* Version. */
1368 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1369 (abfd, info, eh_frame_sec, 0, sec, 4,
1370 &encoded_eh_frame); /* .eh_frame offset. */
1371
1372 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1373 {
1374 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1375 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1376 }
1377 else
1378 {
1379 contents[2] = DW_EH_PE_omit;
1380 contents[3] = DW_EH_PE_omit;
1381 }
1382 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1383
1384 if (contents[2] != DW_EH_PE_omit)
1385 {
1386 unsigned int i;
1387
1388 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1389 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1390 vma_compare);
1391 for (i = 0; i < hdr_info->fde_count; i++)
1392 {
1393 bfd_put_32 (abfd,
1394 hdr_info->array[i].initial_loc
1395 - sec->output_section->vma,
1396 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1397 bfd_put_32 (abfd,
1398 hdr_info->array[i].fde - sec->output_section->vma,
1399 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1400 }
1401 }
1402
1403 retval = bfd_set_section_contents (abfd, sec->output_section,
1404 contents, (file_ptr) sec->output_offset,
1405 sec->size);
1406 free (contents);
1407 return retval;
1408 }
1409
1410 /* Decide whether we can use a PC-relative encoding within the given
1411 EH frame section. This is the default implementation. */
1412
1413 bfd_boolean
1414 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1415 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1416 asection *eh_frame_section ATTRIBUTE_UNUSED)
1417 {
1418 return TRUE;
1419 }
1420
1421 /* Select an encoding for the given address. Preference is given to
1422 PC-relative addressing modes. */
1423
1424 bfd_byte
1425 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1426 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1427 asection *osec, bfd_vma offset,
1428 asection *loc_sec, bfd_vma loc_offset,
1429 bfd_vma *encoded)
1430 {
1431 *encoded = osec->vma + offset -
1432 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1433 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1434 }