]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf-m10300.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elf-m10300.c
1 /* Matsushita 10300 specific support for 32-bit ELF
2 Copyright (C) 1996-2023 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/mn10300.h"
26 #include "libiberty.h"
27
28 /* The mn10300 linker needs to keep track of the number of relocs that
29 it decides to copy in check_relocs for each symbol. This is so
30 that it can discard PC relative relocs if it doesn't need them when
31 linking with -Bsymbolic. We store the information in a field
32 extending the regular ELF linker hash table. */
33
34 struct elf32_mn10300_link_hash_entry
35 {
36 /* The basic elf link hash table entry. */
37 struct elf_link_hash_entry root;
38
39 /* For function symbols, the number of times this function is
40 called directly (ie by name). */
41 unsigned int direct_calls;
42
43 /* For function symbols, the size of this function's stack
44 (if <= 255 bytes). We stuff this into "call" instructions
45 to this target when it's valid and profitable to do so.
46
47 This does not include stack allocated by movm! */
48 unsigned char stack_size;
49
50 /* For function symbols, arguments (if any) for movm instruction
51 in the prologue. We stuff this value into "call" instructions
52 to the target when it's valid and profitable to do so. */
53 unsigned char movm_args;
54
55 /* For function symbols, the amount of stack space that would be allocated
56 by the movm instruction. This is redundant with movm_args, but we
57 add it to the hash table to avoid computing it over and over. */
58 unsigned char movm_stack_size;
59
60 /* When set, convert all "call" instructions to this target into "calls"
61 instructions. */
62 #define MN10300_CONVERT_CALL_TO_CALLS 0x1
63
64 /* Used to mark functions which have had redundant parts of their
65 prologue deleted. */
66 #define MN10300_DELETED_PROLOGUE_BYTES 0x2
67 unsigned char flags;
68
69 /* Calculated value. */
70 bfd_vma value;
71
72 #define GOT_UNKNOWN 0
73 #define GOT_NORMAL 1
74 #define GOT_TLS_GD 2
75 #define GOT_TLS_LD 3
76 #define GOT_TLS_IE 4
77 /* Used to distinguish GOT entries for TLS types from normal GOT entries. */
78 unsigned char tls_type;
79 };
80
81 /* We derive a hash table from the main elf linker hash table so
82 we can store state variables and a secondary hash table without
83 resorting to global variables. */
84 struct elf32_mn10300_link_hash_table
85 {
86 /* The main hash table. */
87 struct elf_link_hash_table root;
88
89 /* A hash table for static functions. We could derive a new hash table
90 instead of using the full elf32_mn10300_link_hash_table if we wanted
91 to save some memory. */
92 struct elf32_mn10300_link_hash_table *static_hash_table;
93
94 /* Random linker state flags. */
95 #define MN10300_HASH_ENTRIES_INITIALIZED 0x1
96 char flags;
97 struct
98 {
99 bfd_signed_vma refcount;
100 bfd_vma offset;
101 char got_allocated;
102 char rel_emitted;
103 } tls_ldm_got;
104 };
105
106 #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent))
107
108 struct elf_mn10300_obj_tdata
109 {
110 struct elf_obj_tdata root;
111
112 /* tls_type for each local got entry. */
113 char * local_got_tls_type;
114 };
115
116 #define elf_mn10300_tdata(abfd) \
117 ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any)
118
119 #define elf_mn10300_local_got_tls_type(abfd) \
120 (elf_mn10300_tdata (abfd)->local_got_tls_type)
121
122 #ifndef streq
123 #define streq(a, b) (strcmp ((a),(b)) == 0)
124 #endif
125
126 /* For MN10300 linker hash table. */
127
128 /* Get the MN10300 ELF linker hash table from a link_info structure. */
129
130 #define elf32_mn10300_hash_table(p) \
131 ((is_elf_hash_table ((p)->hash) \
132 && elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA) \
133 ? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL)
134
135 #define elf32_mn10300_link_hash_traverse(table, func, info) \
136 (elf_link_hash_traverse \
137 (&(table)->root, \
138 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
139 (info)))
140
141 static reloc_howto_type elf_mn10300_howto_table[] =
142 {
143 /* Dummy relocation. Does nothing. */
144 HOWTO (R_MN10300_NONE,
145 0,
146 0,
147 0,
148 false,
149 0,
150 complain_overflow_dont,
151 bfd_elf_generic_reloc,
152 "R_MN10300_NONE",
153 false,
154 0,
155 0,
156 false),
157 /* Standard 32 bit reloc. */
158 HOWTO (R_MN10300_32,
159 0,
160 4,
161 32,
162 false,
163 0,
164 complain_overflow_bitfield,
165 bfd_elf_generic_reloc,
166 "R_MN10300_32",
167 false,
168 0xffffffff,
169 0xffffffff,
170 false),
171 /* Standard 16 bit reloc. */
172 HOWTO (R_MN10300_16,
173 0,
174 2,
175 16,
176 false,
177 0,
178 complain_overflow_bitfield,
179 bfd_elf_generic_reloc,
180 "R_MN10300_16",
181 false,
182 0xffff,
183 0xffff,
184 false),
185 /* Standard 8 bit reloc. */
186 HOWTO (R_MN10300_8,
187 0,
188 1,
189 8,
190 false,
191 0,
192 complain_overflow_bitfield,
193 bfd_elf_generic_reloc,
194 "R_MN10300_8",
195 false,
196 0xff,
197 0xff,
198 false),
199 /* Standard 32bit pc-relative reloc. */
200 HOWTO (R_MN10300_PCREL32,
201 0,
202 4,
203 32,
204 true,
205 0,
206 complain_overflow_bitfield,
207 bfd_elf_generic_reloc,
208 "R_MN10300_PCREL32",
209 false,
210 0xffffffff,
211 0xffffffff,
212 true),
213 /* Standard 16bit pc-relative reloc. */
214 HOWTO (R_MN10300_PCREL16,
215 0,
216 2,
217 16,
218 true,
219 0,
220 complain_overflow_bitfield,
221 bfd_elf_generic_reloc,
222 "R_MN10300_PCREL16",
223 false,
224 0xffff,
225 0xffff,
226 true),
227 /* Standard 8 pc-relative reloc. */
228 HOWTO (R_MN10300_PCREL8,
229 0,
230 1,
231 8,
232 true,
233 0,
234 complain_overflow_bitfield,
235 bfd_elf_generic_reloc,
236 "R_MN10300_PCREL8",
237 false,
238 0xff,
239 0xff,
240 true),
241
242 /* GNU extension to record C++ vtable hierarchy. */
243 HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
244 0, /* rightshift */
245 0, /* size */
246 0, /* bitsize */
247 false, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_dont, /* complain_on_overflow */
250 NULL, /* special_function */
251 "R_MN10300_GNU_VTINHERIT", /* name */
252 false, /* partial_inplace */
253 0, /* src_mask */
254 0, /* dst_mask */
255 false), /* pcrel_offset */
256
257 /* GNU extension to record C++ vtable member usage */
258 HOWTO (R_MN10300_GNU_VTENTRY, /* type */
259 0, /* rightshift */
260 0, /* size */
261 0, /* bitsize */
262 false, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_dont, /* complain_on_overflow */
265 NULL, /* special_function */
266 "R_MN10300_GNU_VTENTRY", /* name */
267 false, /* partial_inplace */
268 0, /* src_mask */
269 0, /* dst_mask */
270 false), /* pcrel_offset */
271
272 /* Standard 24 bit reloc. */
273 HOWTO (R_MN10300_24,
274 0,
275 4,
276 24,
277 false,
278 0,
279 complain_overflow_bitfield,
280 bfd_elf_generic_reloc,
281 "R_MN10300_24",
282 false,
283 0xffffff,
284 0xffffff,
285 false),
286 HOWTO (R_MN10300_GOTPC32, /* type */
287 0, /* rightshift */
288 4, /* size */
289 32, /* bitsize */
290 true, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_bitfield, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* */
294 "R_MN10300_GOTPC32", /* name */
295 false, /* partial_inplace */
296 0xffffffff, /* src_mask */
297 0xffffffff, /* dst_mask */
298 true), /* pcrel_offset */
299
300 HOWTO (R_MN10300_GOTPC16, /* type */
301 0, /* rightshift */
302 2, /* size */
303 16, /* bitsize */
304 true, /* pc_relative */
305 0, /* bitpos */
306 complain_overflow_bitfield, /* complain_on_overflow */
307 bfd_elf_generic_reloc, /* */
308 "R_MN10300_GOTPC16", /* name */
309 false, /* partial_inplace */
310 0xffff, /* src_mask */
311 0xffff, /* dst_mask */
312 true), /* pcrel_offset */
313
314 HOWTO (R_MN10300_GOTOFF32, /* type */
315 0, /* rightshift */
316 4, /* size */
317 32, /* bitsize */
318 false, /* pc_relative */
319 0, /* bitpos */
320 complain_overflow_bitfield, /* complain_on_overflow */
321 bfd_elf_generic_reloc, /* */
322 "R_MN10300_GOTOFF32", /* name */
323 false, /* partial_inplace */
324 0xffffffff, /* src_mask */
325 0xffffffff, /* dst_mask */
326 false), /* pcrel_offset */
327
328 HOWTO (R_MN10300_GOTOFF24, /* type */
329 0, /* rightshift */
330 4, /* size */
331 24, /* bitsize */
332 false, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* */
336 "R_MN10300_GOTOFF24", /* name */
337 false, /* partial_inplace */
338 0xffffff, /* src_mask */
339 0xffffff, /* dst_mask */
340 false), /* pcrel_offset */
341
342 HOWTO (R_MN10300_GOTOFF16, /* type */
343 0, /* rightshift */
344 2, /* size */
345 16, /* bitsize */
346 false, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* */
350 "R_MN10300_GOTOFF16", /* name */
351 false, /* partial_inplace */
352 0xffff, /* src_mask */
353 0xffff, /* dst_mask */
354 false), /* pcrel_offset */
355
356 HOWTO (R_MN10300_PLT32, /* type */
357 0, /* rightshift */
358 4, /* size */
359 32, /* bitsize */
360 true, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield, /* complain_on_overflow */
363 bfd_elf_generic_reloc, /* */
364 "R_MN10300_PLT32", /* name */
365 false, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 true), /* pcrel_offset */
369
370 HOWTO (R_MN10300_PLT16, /* type */
371 0, /* rightshift */
372 2, /* size */
373 16, /* bitsize */
374 true, /* pc_relative */
375 0, /* bitpos */
376 complain_overflow_bitfield, /* complain_on_overflow */
377 bfd_elf_generic_reloc, /* */
378 "R_MN10300_PLT16", /* name */
379 false, /* partial_inplace */
380 0xffff, /* src_mask */
381 0xffff, /* dst_mask */
382 true), /* pcrel_offset */
383
384 HOWTO (R_MN10300_GOT32, /* type */
385 0, /* rightshift */
386 4, /* size */
387 32, /* bitsize */
388 false, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_bitfield, /* complain_on_overflow */
391 bfd_elf_generic_reloc, /* */
392 "R_MN10300_GOT32", /* name */
393 false, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 false), /* pcrel_offset */
397
398 HOWTO (R_MN10300_GOT24, /* type */
399 0, /* rightshift */
400 4, /* size */
401 24, /* bitsize */
402 false, /* pc_relative */
403 0, /* bitpos */
404 complain_overflow_bitfield, /* complain_on_overflow */
405 bfd_elf_generic_reloc, /* */
406 "R_MN10300_GOT24", /* name */
407 false, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 false), /* pcrel_offset */
411
412 HOWTO (R_MN10300_GOT16, /* type */
413 0, /* rightshift */
414 2, /* size */
415 16, /* bitsize */
416 false, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_bitfield, /* complain_on_overflow */
419 bfd_elf_generic_reloc, /* */
420 "R_MN10300_GOT16", /* name */
421 false, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 false), /* pcrel_offset */
425
426 HOWTO (R_MN10300_COPY, /* type */
427 0, /* rightshift */
428 4, /* size */
429 32, /* bitsize */
430 false, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_bitfield, /* complain_on_overflow */
433 bfd_elf_generic_reloc, /* */
434 "R_MN10300_COPY", /* name */
435 false, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 false), /* pcrel_offset */
439
440 HOWTO (R_MN10300_GLOB_DAT, /* type */
441 0, /* rightshift */
442 4, /* size */
443 32, /* bitsize */
444 false, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_bitfield, /* complain_on_overflow */
447 bfd_elf_generic_reloc, /* */
448 "R_MN10300_GLOB_DAT", /* name */
449 false, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 false), /* pcrel_offset */
453
454 HOWTO (R_MN10300_JMP_SLOT, /* type */
455 0, /* rightshift */
456 4, /* size */
457 32, /* bitsize */
458 false, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_bitfield, /* complain_on_overflow */
461 bfd_elf_generic_reloc, /* */
462 "R_MN10300_JMP_SLOT", /* name */
463 false, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 false), /* pcrel_offset */
467
468 HOWTO (R_MN10300_RELATIVE, /* type */
469 0, /* rightshift */
470 4, /* size */
471 32, /* bitsize */
472 false, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_bitfield, /* complain_on_overflow */
475 bfd_elf_generic_reloc, /* */
476 "R_MN10300_RELATIVE", /* name */
477 false, /* partial_inplace */
478 0xffffffff, /* src_mask */
479 0xffffffff, /* dst_mask */
480 false), /* pcrel_offset */
481
482 HOWTO (R_MN10300_TLS_GD, /* type */
483 0, /* rightshift */
484 4, /* size */
485 32, /* bitsize */
486 false, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_bitfield, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* */
490 "R_MN10300_TLS_GD", /* name */
491 false, /* partial_inplace */
492 0xffffffff, /* src_mask */
493 0xffffffff, /* dst_mask */
494 false), /* pcrel_offset */
495
496 HOWTO (R_MN10300_TLS_LD, /* type */
497 0, /* rightshift */
498 4, /* size */
499 32, /* bitsize */
500 false, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_bitfield, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* */
504 "R_MN10300_TLS_LD", /* name */
505 false, /* partial_inplace */
506 0xffffffff, /* src_mask */
507 0xffffffff, /* dst_mask */
508 false), /* pcrel_offset */
509
510 HOWTO (R_MN10300_TLS_LDO, /* type */
511 0, /* rightshift */
512 4, /* size */
513 32, /* bitsize */
514 false, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_bitfield, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* */
518 "R_MN10300_TLS_LDO", /* name */
519 false, /* partial_inplace */
520 0xffffffff, /* src_mask */
521 0xffffffff, /* dst_mask */
522 false), /* pcrel_offset */
523
524 HOWTO (R_MN10300_TLS_GOTIE, /* type */
525 0, /* rightshift */
526 4, /* size */
527 32, /* bitsize */
528 false, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_bitfield, /* complain_on_overflow */
531 bfd_elf_generic_reloc, /* */
532 "R_MN10300_TLS_GOTIE", /* name */
533 false, /* partial_inplace */
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
536 false), /* pcrel_offset */
537
538 HOWTO (R_MN10300_TLS_IE, /* type */
539 0, /* rightshift */
540 4, /* size */
541 32, /* bitsize */
542 false, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_bitfield, /* complain_on_overflow */
545 bfd_elf_generic_reloc, /* */
546 "R_MN10300_TLS_IE", /* name */
547 false, /* partial_inplace */
548 0xffffffff, /* src_mask */
549 0xffffffff, /* dst_mask */
550 false), /* pcrel_offset */
551
552 HOWTO (R_MN10300_TLS_LE, /* type */
553 0, /* rightshift */
554 4, /* size */
555 32, /* bitsize */
556 false, /* pc_relative */
557 0, /* bitpos */
558 complain_overflow_bitfield, /* complain_on_overflow */
559 bfd_elf_generic_reloc, /* */
560 "R_MN10300_TLS_LE", /* name */
561 false, /* partial_inplace */
562 0xffffffff, /* src_mask */
563 0xffffffff, /* dst_mask */
564 false), /* pcrel_offset */
565
566 HOWTO (R_MN10300_TLS_DTPMOD, /* type */
567 0, /* rightshift */
568 4, /* size */
569 32, /* bitsize */
570 false, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_bitfield, /* complain_on_overflow */
573 bfd_elf_generic_reloc, /* */
574 "R_MN10300_TLS_DTPMOD", /* name */
575 false, /* partial_inplace */
576 0xffffffff, /* src_mask */
577 0xffffffff, /* dst_mask */
578 false), /* pcrel_offset */
579
580 HOWTO (R_MN10300_TLS_DTPOFF, /* type */
581 0, /* rightshift */
582 4, /* size */
583 32, /* bitsize */
584 false, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_bitfield, /* complain_on_overflow */
587 bfd_elf_generic_reloc, /* */
588 "R_MN10300_TLS_DTPOFF", /* name */
589 false, /* partial_inplace */
590 0xffffffff, /* src_mask */
591 0xffffffff, /* dst_mask */
592 false), /* pcrel_offset */
593
594 HOWTO (R_MN10300_TLS_TPOFF, /* type */
595 0, /* rightshift */
596 4, /* size */
597 32, /* bitsize */
598 false, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_bitfield, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* */
602 "R_MN10300_TLS_TPOFF", /* name */
603 false, /* partial_inplace */
604 0xffffffff, /* src_mask */
605 0xffffffff, /* dst_mask */
606 false), /* pcrel_offset */
607
608 HOWTO (R_MN10300_SYM_DIFF, /* type */
609 0, /* rightshift */
610 4, /* size */
611 32, /* bitsize */
612 false, /* pc_relative */
613 0, /* bitpos */
614 complain_overflow_dont,/* complain_on_overflow */
615 NULL, /* special handler. */
616 "R_MN10300_SYM_DIFF", /* name */
617 false, /* partial_inplace */
618 0xffffffff, /* src_mask */
619 0xffffffff, /* dst_mask */
620 false), /* pcrel_offset */
621
622 HOWTO (R_MN10300_ALIGN, /* type */
623 0, /* rightshift */
624 1, /* size */
625 32, /* bitsize */
626 false, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont,/* complain_on_overflow */
629 NULL, /* special handler. */
630 "R_MN10300_ALIGN", /* name */
631 false, /* partial_inplace */
632 0, /* src_mask */
633 0, /* dst_mask */
634 false) /* pcrel_offset */
635 };
636
637 struct mn10300_reloc_map
638 {
639 bfd_reloc_code_real_type bfd_reloc_val;
640 unsigned char elf_reloc_val;
641 };
642
643 static const struct mn10300_reloc_map mn10300_reloc_map[] =
644 {
645 { BFD_RELOC_NONE, R_MN10300_NONE, },
646 { BFD_RELOC_32, R_MN10300_32, },
647 { BFD_RELOC_16, R_MN10300_16, },
648 { BFD_RELOC_8, R_MN10300_8, },
649 { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
650 { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
651 { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
652 { BFD_RELOC_24, R_MN10300_24, },
653 { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
654 { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
655 { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
656 { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
657 { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
658 { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
659 { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
660 { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
661 { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
662 { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
663 { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
664 { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
665 { BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
666 { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
667 { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
668 { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
669 { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD },
670 { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD },
671 { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO },
672 { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE },
673 { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE },
674 { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE },
675 { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD },
676 { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF },
677 { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF },
678 { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
679 { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
680 };
681
682 /* Create the GOT section. */
683
684 static bool
685 _bfd_mn10300_elf_create_got_section (bfd * abfd,
686 struct bfd_link_info * info)
687 {
688 flagword flags;
689 flagword pltflags;
690 asection * s;
691 struct elf_link_hash_entry * h;
692 const struct elf_backend_data * bed = get_elf_backend_data (abfd);
693 struct elf_link_hash_table *htab;
694 int ptralign;
695
696 /* This function may be called more than once. */
697 htab = elf_hash_table (info);
698 if (htab->sgot != NULL)
699 return true;
700
701 switch (bed->s->arch_size)
702 {
703 case 32:
704 ptralign = 2;
705 break;
706
707 case 64:
708 ptralign = 3;
709 break;
710
711 default:
712 bfd_set_error (bfd_error_bad_value);
713 return false;
714 }
715
716 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
717 | SEC_LINKER_CREATED);
718
719 pltflags = flags;
720 pltflags |= SEC_CODE;
721 if (bed->plt_not_loaded)
722 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
723 if (bed->plt_readonly)
724 pltflags |= SEC_READONLY;
725
726 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
727 htab->splt = s;
728 if (s == NULL
729 || !bfd_set_section_alignment (s, bed->plt_alignment))
730 return false;
731
732 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
733 .plt section. */
734 if (bed->want_plt_sym)
735 {
736 h = _bfd_elf_define_linkage_sym (abfd, info, s,
737 "_PROCEDURE_LINKAGE_TABLE_");
738 htab->hplt = h;
739 if (h == NULL)
740 return false;
741 }
742
743 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
744 htab->sgot = s;
745 if (s == NULL
746 || !bfd_set_section_alignment (s, ptralign))
747 return false;
748
749 if (bed->want_got_plt)
750 {
751 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
752 htab->sgotplt = s;
753 if (s == NULL
754 || !bfd_set_section_alignment (s, ptralign))
755 return false;
756 }
757
758 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
759 (or .got.plt) section. We don't do this in the linker script
760 because we don't want to define the symbol if we are not creating
761 a global offset table. */
762 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
763 htab->hgot = h;
764 if (h == NULL)
765 return false;
766
767 /* The first bit of the global offset table is the header. */
768 s->size += bed->got_header_size;
769
770 return true;
771 }
772
773 static reloc_howto_type *
774 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
775 bfd_reloc_code_real_type code)
776 {
777 unsigned int i;
778
779 for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
780 if (mn10300_reloc_map[i].bfd_reloc_val == code)
781 return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
782
783 return NULL;
784 }
785
786 static reloc_howto_type *
787 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
788 const char *r_name)
789 {
790 unsigned int i;
791
792 for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
793 if (elf_mn10300_howto_table[i].name != NULL
794 && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
795 return elf_mn10300_howto_table + i;
796
797 return NULL;
798 }
799
800 /* Set the howto pointer for an MN10300 ELF reloc. */
801
802 static bool
803 mn10300_info_to_howto (bfd *abfd,
804 arelent *cache_ptr,
805 Elf_Internal_Rela *dst)
806 {
807 unsigned int r_type;
808
809 r_type = ELF32_R_TYPE (dst->r_info);
810 if (r_type >= R_MN10300_MAX)
811 {
812 /* xgettext:c-format */
813 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
814 abfd, r_type);
815 bfd_set_error (bfd_error_bad_value);
816 return false;
817 }
818 cache_ptr->howto = elf_mn10300_howto_table + r_type;
819 return true;
820 }
821
822 static int
823 elf_mn10300_tls_transition (struct bfd_link_info * info,
824 int r_type,
825 struct elf_link_hash_entry * h,
826 asection * sec,
827 bool counting)
828 {
829 bool is_local;
830
831 if (r_type == R_MN10300_TLS_GD
832 && h != NULL
833 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
834 return R_MN10300_TLS_GOTIE;
835
836 if (bfd_link_pic (info))
837 return r_type;
838
839 if (! (sec->flags & SEC_CODE))
840 return r_type;
841
842 if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created)
843 is_local = true;
844 else
845 is_local = SYMBOL_CALLS_LOCAL (info, h);
846
847 /* For the main program, these are the transitions we do. */
848 switch (r_type)
849 {
850 case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE;
851 case R_MN10300_TLS_LD: return R_MN10300_NONE;
852 case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE;
853 case R_MN10300_TLS_IE:
854 case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type;
855 }
856
857 return r_type;
858 }
859
860 /* Return the relocation value for @tpoff relocation
861 if STT_TLS virtual address is ADDRESS. */
862
863 static bfd_vma
864 dtpoff (struct bfd_link_info * info, bfd_vma address)
865 {
866 struct elf_link_hash_table *htab = elf_hash_table (info);
867
868 /* If tls_sec is NULL, we should have signalled an error already. */
869 if (htab->tls_sec == NULL)
870 return 0;
871 return address - htab->tls_sec->vma;
872 }
873
874 /* Return the relocation value for @tpoff relocation
875 if STT_TLS virtual address is ADDRESS. */
876
877 static bfd_vma
878 tpoff (struct bfd_link_info * info, bfd_vma address)
879 {
880 struct elf_link_hash_table *htab = elf_hash_table (info);
881
882 /* If tls_sec is NULL, we should have signalled an error already. */
883 if (htab->tls_sec == NULL)
884 return 0;
885 return address - (htab->tls_size + htab->tls_sec->vma);
886 }
887
888 /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need
889 to skip, after this one. The actual value is the offset between
890 this reloc and the PLT reloc. */
891
892 static int
893 mn10300_do_tls_transition (bfd * input_bfd,
894 unsigned int r_type,
895 unsigned int tls_r_type,
896 bfd_byte * contents,
897 bfd_vma offset)
898 {
899 bfd_byte *op = contents + offset;
900 int gotreg = 0;
901
902 #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2))
903
904 /* This is common to all GD/LD transitions, so break it out. */
905 if (r_type == R_MN10300_TLS_GD
906 || r_type == R_MN10300_TLS_LD)
907 {
908 op -= 2;
909 /* mov imm,d0. */
910 BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC);
911 BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC);
912 /* add aN,d0. */
913 BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1);
914 gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2;
915 /* Call. */
916 BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD);
917 }
918
919 switch (TLS_PAIR (r_type, tls_r_type))
920 {
921 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE):
922 {
923 /* Keep track of which register we put GOTptr in. */
924 /* mov (_x@indntpoff,a2),a0. */
925 memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6);
926 op[1] |= gotreg;
927 /* add e2,a0. */
928 memcpy (op+6, "\xF9\x78\x28", 3);
929 /* or 0x00000000, d0 - six byte nop. */
930 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
931 }
932 return 7;
933
934 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE):
935 {
936 /* Register is *always* a0. */
937 /* mov _x@tpoff,a0. */
938 memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6);
939 /* add e2,a0. */
940 memcpy (op+6, "\xF9\x78\x28", 3);
941 /* or 0x00000000, d0 - six byte nop. */
942 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
943 }
944 return 7;
945 case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE):
946 {
947 /* Register is *always* a0. */
948 /* mov e2,a0. */
949 memcpy (op, "\xF5\x88", 2);
950 /* or 0x00000000, d0 - six byte nop. */
951 memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6);
952 /* or 0x00000000, e2 - seven byte nop. */
953 memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7);
954 }
955 return 7;
956
957 case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE):
958 /* No changes needed, just the reloc change. */
959 return 0;
960
961 /* These are a little tricky, because we have to detect which
962 opcode is being used (they're different sizes, with the reloc
963 at different offsets within the opcode) and convert each
964 accordingly, copying the operands as needed. The conversions
965 we do are as follows (IE,GOTIE,LE):
966
967 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn
968 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn
969 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn
970
971 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An
972 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An
973 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An
974
975 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn
976 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn
977 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn
978
979 Since the GOT pointer is always $a2, we assume the last
980 normally won't happen, but let's be paranoid and plan for the
981 day that GCC optimizes it somewhow. */
982
983 case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE):
984 if (op[-2] == 0xFC)
985 {
986 op -= 2;
987 if ((op[1] & 0xFC) == 0xA4) /* Dn */
988 {
989 op[1] &= 0x03; /* Leaves Dn. */
990 op[1] |= 0xCC;
991 }
992 else /* An */
993 {
994 op[1] &= 0x03; /* Leaves An. */
995 op[1] |= 0xDC;
996 }
997 }
998 else if (op[-3] == 0xFE)
999 op[-2] = 0x08;
1000 else
1001 abort ();
1002 break;
1003
1004 case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE):
1005 if (op[-2] == 0xFC)
1006 {
1007 op -= 2;
1008 if ((op[1] & 0xF0) == 0x00) /* Dn */
1009 {
1010 op[1] &= 0x0C; /* Leaves Dn. */
1011 op[1] >>= 2;
1012 op[1] |= 0xCC;
1013 }
1014 else /* An */
1015 {
1016 op[1] &= 0x0C; /* Leaves An. */
1017 op[1] >>= 2;
1018 op[1] |= 0xDC;
1019 }
1020 }
1021 else if (op[-3] == 0xFE)
1022 op[-2] = 0x08;
1023 else
1024 abort ();
1025 break;
1026
1027 default:
1028 _bfd_error_handler
1029 /* xgettext:c-format */
1030 (_("%pB: unsupported transition from %s to %s"),
1031 input_bfd,
1032 elf_mn10300_howto_table[r_type].name,
1033 elf_mn10300_howto_table[tls_r_type].name);
1034 break;
1035 }
1036 #undef TLS_PAIR
1037 return 0;
1038 }
1039
1040 /* Look through the relocs for a section during the first phase.
1041 Since we don't do .gots or .plts, we just need to consider the
1042 virtual table relocs for gc. */
1043
1044 static bool
1045 mn10300_elf_check_relocs (bfd *abfd,
1046 struct bfd_link_info *info,
1047 asection *sec,
1048 const Elf_Internal_Rela *relocs)
1049 {
1050 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1051 bool sym_diff_reloc_seen;
1052 Elf_Internal_Shdr *symtab_hdr;
1053 Elf_Internal_Sym * isymbuf = NULL;
1054 struct elf_link_hash_entry **sym_hashes;
1055 const Elf_Internal_Rela *rel;
1056 const Elf_Internal_Rela *rel_end;
1057 bfd * dynobj;
1058 bfd_vma * local_got_offsets;
1059 asection * sgot;
1060 asection * srelgot;
1061 asection * sreloc;
1062 bool result = false;
1063
1064 sgot = NULL;
1065 srelgot = NULL;
1066 sreloc = NULL;
1067
1068 if (bfd_link_relocatable (info))
1069 return true;
1070
1071 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1072 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1073 sym_hashes = elf_sym_hashes (abfd);
1074
1075 dynobj = elf_hash_table (info)->dynobj;
1076 local_got_offsets = elf_local_got_offsets (abfd);
1077 rel_end = relocs + sec->reloc_count;
1078 sym_diff_reloc_seen = false;
1079
1080 for (rel = relocs; rel < rel_end; rel++)
1081 {
1082 struct elf_link_hash_entry *h;
1083 unsigned long r_symndx;
1084 unsigned int r_type;
1085 int tls_type = GOT_NORMAL;
1086
1087 r_symndx = ELF32_R_SYM (rel->r_info);
1088 if (r_symndx < symtab_hdr->sh_info)
1089 h = NULL;
1090 else
1091 {
1092 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1093 while (h->root.type == bfd_link_hash_indirect
1094 || h->root.type == bfd_link_hash_warning)
1095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1096 }
1097
1098 r_type = ELF32_R_TYPE (rel->r_info);
1099 r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true);
1100
1101 /* Some relocs require a global offset table. */
1102 if (dynobj == NULL)
1103 {
1104 switch (r_type)
1105 {
1106 case R_MN10300_GOT32:
1107 case R_MN10300_GOT24:
1108 case R_MN10300_GOT16:
1109 case R_MN10300_GOTOFF32:
1110 case R_MN10300_GOTOFF24:
1111 case R_MN10300_GOTOFF16:
1112 case R_MN10300_GOTPC32:
1113 case R_MN10300_GOTPC16:
1114 case R_MN10300_TLS_GD:
1115 case R_MN10300_TLS_LD:
1116 case R_MN10300_TLS_GOTIE:
1117 case R_MN10300_TLS_IE:
1118 elf_hash_table (info)->dynobj = dynobj = abfd;
1119 if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
1120 goto fail;
1121 break;
1122
1123 default:
1124 break;
1125 }
1126 }
1127
1128 switch (r_type)
1129 {
1130 /* This relocation describes the C++ object vtable hierarchy.
1131 Reconstruct it for later use during GC. */
1132 case R_MN10300_GNU_VTINHERIT:
1133 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1134 goto fail;
1135 break;
1136
1137 /* This relocation describes which C++ vtable entries are actually
1138 used. Record for later use during GC. */
1139 case R_MN10300_GNU_VTENTRY:
1140 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1141 goto fail;
1142 break;
1143
1144 case R_MN10300_TLS_LD:
1145 htab->tls_ldm_got.refcount ++;
1146 tls_type = GOT_TLS_LD;
1147
1148 if (htab->tls_ldm_got.got_allocated)
1149 break;
1150 goto create_got;
1151
1152 case R_MN10300_TLS_IE:
1153 case R_MN10300_TLS_GOTIE:
1154 if (bfd_link_pic (info))
1155 info->flags |= DF_STATIC_TLS;
1156 /* Fall through */
1157
1158 case R_MN10300_TLS_GD:
1159 case R_MN10300_GOT32:
1160 case R_MN10300_GOT24:
1161 case R_MN10300_GOT16:
1162 create_got:
1163 /* This symbol requires a global offset table entry. */
1164
1165 switch (r_type)
1166 {
1167 case R_MN10300_TLS_IE:
1168 case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break;
1169 case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break;
1170 default: tls_type = GOT_NORMAL; break;
1171 }
1172
1173 sgot = htab->root.sgot;
1174 srelgot = htab->root.srelgot;
1175 BFD_ASSERT (sgot != NULL && srelgot != NULL);
1176
1177 if (r_type == R_MN10300_TLS_LD)
1178 {
1179 htab->tls_ldm_got.offset = sgot->size;
1180 htab->tls_ldm_got.got_allocated ++;
1181 }
1182 else if (h != NULL)
1183 {
1184 if (elf_mn10300_hash_entry (h)->tls_type != tls_type
1185 && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN)
1186 {
1187 if (tls_type == GOT_TLS_IE
1188 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD)
1189 /* No change - this is ok. */;
1190 else if (tls_type == GOT_TLS_GD
1191 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
1192 /* Transition GD->IE. */
1193 tls_type = GOT_TLS_IE;
1194 else
1195 _bfd_error_handler
1196 /* xgettext:c-format */
1197 (_("%pB: %s' accessed both as normal and thread local symbol"),
1198 abfd, h ? h->root.root.string : "<local>");
1199 }
1200
1201 elf_mn10300_hash_entry (h)->tls_type = tls_type;
1202
1203 if (h->got.offset != (bfd_vma) -1)
1204 /* We have already allocated space in the .got. */
1205 break;
1206
1207 h->got.offset = sgot->size;
1208
1209 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1210 /* Make sure this symbol is output as a dynamic symbol. */
1211 && h->dynindx == -1)
1212 {
1213 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1214 goto fail;
1215 }
1216
1217 srelgot->size += sizeof (Elf32_External_Rela);
1218 if (r_type == R_MN10300_TLS_GD)
1219 srelgot->size += sizeof (Elf32_External_Rela);
1220 }
1221 else
1222 {
1223 /* This is a global offset table entry for a local
1224 symbol. */
1225 if (local_got_offsets == NULL)
1226 {
1227 size_t size;
1228 unsigned int i;
1229
1230 size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char));
1231 local_got_offsets = bfd_alloc (abfd, size);
1232
1233 if (local_got_offsets == NULL)
1234 goto fail;
1235
1236 elf_local_got_offsets (abfd) = local_got_offsets;
1237 elf_mn10300_local_got_tls_type (abfd)
1238 = (char *) (local_got_offsets + symtab_hdr->sh_info);
1239
1240 for (i = 0; i < symtab_hdr->sh_info; i++)
1241 local_got_offsets[i] = (bfd_vma) -1;
1242 }
1243
1244 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1245 /* We have already allocated space in the .got. */
1246 break;
1247
1248 local_got_offsets[r_symndx] = sgot->size;
1249
1250 if (bfd_link_pic (info))
1251 {
1252 /* If we are generating a shared object, we need to
1253 output a R_MN10300_RELATIVE reloc so that the dynamic
1254 linker can adjust this GOT entry. */
1255 srelgot->size += sizeof (Elf32_External_Rela);
1256
1257 if (r_type == R_MN10300_TLS_GD)
1258 /* And a R_MN10300_TLS_DTPOFF reloc as well. */
1259 srelgot->size += sizeof (Elf32_External_Rela);
1260 }
1261
1262 elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type;
1263 }
1264
1265 sgot->size += 4;
1266 if (r_type == R_MN10300_TLS_GD
1267 || r_type == R_MN10300_TLS_LD)
1268 sgot->size += 4;
1269
1270 goto need_shared_relocs;
1271
1272 case R_MN10300_PLT32:
1273 case R_MN10300_PLT16:
1274 /* This symbol requires a procedure linkage table entry. We
1275 actually build the entry in adjust_dynamic_symbol,
1276 because this might be a case of linking PIC code which is
1277 never referenced by a dynamic object, in which case we
1278 don't need to generate a procedure linkage table entry
1279 after all. */
1280
1281 /* If this is a local symbol, we resolve it directly without
1282 creating a procedure linkage table entry. */
1283 if (h == NULL)
1284 continue;
1285
1286 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
1287 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
1288 break;
1289
1290 h->needs_plt = 1;
1291 break;
1292
1293 case R_MN10300_24:
1294 case R_MN10300_16:
1295 case R_MN10300_8:
1296 case R_MN10300_PCREL32:
1297 case R_MN10300_PCREL16:
1298 case R_MN10300_PCREL8:
1299 if (h != NULL)
1300 h->non_got_ref = 1;
1301 break;
1302
1303 case R_MN10300_SYM_DIFF:
1304 sym_diff_reloc_seen = true;
1305 break;
1306
1307 case R_MN10300_32:
1308 if (h != NULL)
1309 h->non_got_ref = 1;
1310
1311 need_shared_relocs:
1312 /* If we are creating a shared library, then we
1313 need to copy the reloc into the shared library. */
1314 if (bfd_link_pic (info)
1315 && (sec->flags & SEC_ALLOC) != 0
1316 /* Do not generate a dynamic reloc for a
1317 reloc associated with a SYM_DIFF operation. */
1318 && ! sym_diff_reloc_seen)
1319 {
1320 asection * sym_section = NULL;
1321
1322 /* Find the section containing the
1323 symbol involved in the relocation. */
1324 if (h == NULL)
1325 {
1326 Elf_Internal_Sym * isym;
1327
1328 if (isymbuf == NULL)
1329 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1330 symtab_hdr->sh_info, 0,
1331 NULL, NULL, NULL);
1332 if (isymbuf)
1333 {
1334 isym = isymbuf + r_symndx;
1335 /* All we care about is whether this local symbol is absolute. */
1336 if (isym->st_shndx == SHN_ABS)
1337 sym_section = bfd_abs_section_ptr;
1338 }
1339 }
1340 else
1341 {
1342 if (h->root.type == bfd_link_hash_defined
1343 || h->root.type == bfd_link_hash_defweak)
1344 sym_section = h->root.u.def.section;
1345 }
1346
1347 /* If the symbol is absolute then the relocation can
1348 be resolved during linking and there is no need for
1349 a dynamic reloc. */
1350 if (sym_section != bfd_abs_section_ptr)
1351 {
1352 /* When creating a shared object, we must copy these
1353 reloc types into the output file. We create a reloc
1354 section in dynobj and make room for this reloc. */
1355 if (sreloc == NULL)
1356 {
1357 sreloc = _bfd_elf_make_dynamic_reloc_section
1358 (sec, dynobj, 2, abfd, /*rela?*/ true);
1359 if (sreloc == NULL)
1360 goto fail;
1361 }
1362
1363 sreloc->size += sizeof (Elf32_External_Rela);
1364 }
1365 }
1366
1367 break;
1368 }
1369
1370 if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
1371 sym_diff_reloc_seen = false;
1372 }
1373
1374 result = true;
1375 fail:
1376 if (symtab_hdr->contents != (unsigned char *) isymbuf)
1377 free (isymbuf);
1378
1379 return result;
1380 }
1381
1382 /* Return the section that should be marked against GC for a given
1383 relocation. */
1384
1385 static asection *
1386 mn10300_elf_gc_mark_hook (asection *sec,
1387 struct bfd_link_info *info,
1388 Elf_Internal_Rela *rel,
1389 struct elf_link_hash_entry *h,
1390 Elf_Internal_Sym *sym)
1391 {
1392 if (h != NULL)
1393 switch (ELF32_R_TYPE (rel->r_info))
1394 {
1395 case R_MN10300_GNU_VTINHERIT:
1396 case R_MN10300_GNU_VTENTRY:
1397 return NULL;
1398 }
1399
1400 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1401 }
1402
1403 /* Perform a relocation as part of a final link. */
1404
1405 static bfd_reloc_status_type
1406 mn10300_elf_final_link_relocate (reloc_howto_type *howto,
1407 bfd *input_bfd,
1408 bfd *output_bfd ATTRIBUTE_UNUSED,
1409 asection *input_section,
1410 bfd_byte *contents,
1411 bfd_vma offset,
1412 bfd_vma value,
1413 bfd_vma addend,
1414 struct elf_link_hash_entry * h,
1415 unsigned long symndx,
1416 struct bfd_link_info *info,
1417 asection *sym_sec ATTRIBUTE_UNUSED,
1418 int is_local ATTRIBUTE_UNUSED)
1419 {
1420 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1421 static asection * sym_diff_section;
1422 static bfd_vma sym_diff_value;
1423 bool is_sym_diff_reloc;
1424 unsigned long r_type = howto->type;
1425 bfd_byte * hit_data = contents + offset;
1426 bfd * dynobj;
1427 asection * sgot;
1428 asection * splt;
1429 asection * sreloc;
1430
1431 dynobj = elf_hash_table (info)->dynobj;
1432 sgot = NULL;
1433 splt = NULL;
1434 sreloc = NULL;
1435
1436 switch (r_type)
1437 {
1438 case R_MN10300_24:
1439 case R_MN10300_16:
1440 case R_MN10300_8:
1441 case R_MN10300_PCREL8:
1442 case R_MN10300_PCREL16:
1443 case R_MN10300_PCREL32:
1444 case R_MN10300_GOTOFF32:
1445 case R_MN10300_GOTOFF24:
1446 case R_MN10300_GOTOFF16:
1447 if (bfd_link_pic (info)
1448 && (input_section->flags & SEC_ALLOC) != 0
1449 && h != NULL
1450 && ! SYMBOL_REFERENCES_LOCAL (info, h))
1451 return bfd_reloc_dangerous;
1452 /* Fall through. */
1453 case R_MN10300_GOT32:
1454 /* Issue 2052223:
1455 Taking the address of a protected function in a shared library
1456 is illegal. Issue an error message here. */
1457 if (bfd_link_pic (info)
1458 && (input_section->flags & SEC_ALLOC) != 0
1459 && h != NULL
1460 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED
1461 && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
1462 && ! SYMBOL_REFERENCES_LOCAL (info, h))
1463 return bfd_reloc_dangerous;
1464 }
1465
1466 is_sym_diff_reloc = false;
1467 if (sym_diff_section != NULL)
1468 {
1469 BFD_ASSERT (sym_diff_section == input_section);
1470
1471 switch (r_type)
1472 {
1473 case R_MN10300_32:
1474 case R_MN10300_24:
1475 case R_MN10300_16:
1476 case R_MN10300_8:
1477 value -= sym_diff_value;
1478 /* If we are computing a 32-bit value for the location lists
1479 and the result is 0 then we add one to the value. A zero
1480 value can result because of linker relaxation deleteing
1481 prologue instructions and using a value of 1 (for the begin
1482 and end offsets in the location list entry) results in a
1483 nul entry which does not prevent the following entries from
1484 being parsed. */
1485 if (r_type == R_MN10300_32
1486 && value == 0
1487 && strcmp (input_section->name, ".debug_loc") == 0)
1488 value = 1;
1489 sym_diff_section = NULL;
1490 is_sym_diff_reloc = true;
1491 break;
1492
1493 default:
1494 sym_diff_section = NULL;
1495 break;
1496 }
1497 }
1498
1499 switch (r_type)
1500 {
1501 case R_MN10300_SYM_DIFF:
1502 BFD_ASSERT (addend == 0);
1503 /* Cache the input section and value.
1504 The offset is unreliable, since relaxation may
1505 have reduced the following reloc's offset. */
1506 sym_diff_section = input_section;
1507 sym_diff_value = value;
1508 return bfd_reloc_ok;
1509
1510 case R_MN10300_ALIGN:
1511 case R_MN10300_NONE:
1512 return bfd_reloc_ok;
1513
1514 case R_MN10300_32:
1515 if (bfd_link_pic (info)
1516 /* Do not generate relocs when an R_MN10300_32 has been used
1517 with an R_MN10300_SYM_DIFF to compute a difference of two
1518 symbols. */
1519 && !is_sym_diff_reloc
1520 /* Also, do not generate a reloc when the symbol associated
1521 with the R_MN10300_32 reloc is absolute - there is no
1522 need for a run time computation in this case. */
1523 && sym_sec != bfd_abs_section_ptr
1524 /* If the section is not going to be allocated at load time
1525 then there is no need to generate relocs for it. */
1526 && (input_section->flags & SEC_ALLOC) != 0)
1527 {
1528 Elf_Internal_Rela outrel;
1529 bool skip, relocate;
1530
1531 /* When generating a shared object, these relocations are
1532 copied into the output file to be resolved at run
1533 time. */
1534 if (sreloc == NULL)
1535 {
1536 sreloc = _bfd_elf_get_dynamic_reloc_section
1537 (input_bfd, input_section, /*rela?*/ true);
1538 if (sreloc == NULL)
1539 return false;
1540 }
1541
1542 skip = false;
1543
1544 outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
1545 input_section, offset);
1546 if (outrel.r_offset == (bfd_vma) -1)
1547 skip = true;
1548
1549 outrel.r_offset += (input_section->output_section->vma
1550 + input_section->output_offset);
1551
1552 if (skip)
1553 {
1554 memset (&outrel, 0, sizeof outrel);
1555 relocate = false;
1556 }
1557 else
1558 {
1559 /* h->dynindx may be -1 if this symbol was marked to
1560 become local. */
1561 if (h == NULL
1562 || SYMBOL_REFERENCES_LOCAL (info, h))
1563 {
1564 relocate = true;
1565 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1566 outrel.r_addend = value + addend;
1567 }
1568 else
1569 {
1570 BFD_ASSERT (h->dynindx != -1);
1571 relocate = false;
1572 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
1573 outrel.r_addend = value + addend;
1574 }
1575 }
1576
1577 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1578 (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
1579 + sreloc->reloc_count));
1580 ++sreloc->reloc_count;
1581
1582 /* If this reloc is against an external symbol, we do
1583 not want to fiddle with the addend. Otherwise, we
1584 need to include the symbol value so that it becomes
1585 an addend for the dynamic reloc. */
1586 if (! relocate)
1587 return bfd_reloc_ok;
1588 }
1589 value += addend;
1590 bfd_put_32 (input_bfd, value, hit_data);
1591 return bfd_reloc_ok;
1592
1593 case R_MN10300_24:
1594 value += addend;
1595
1596 if ((long) value > 0x7fffff || (long) value < -0x800000)
1597 return bfd_reloc_overflow;
1598
1599 bfd_put_8 (input_bfd, value & 0xff, hit_data);
1600 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1601 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1602 return bfd_reloc_ok;
1603
1604 case R_MN10300_16:
1605 value += addend;
1606
1607 if ((long) value > 0x7fff || (long) value < -0x8000)
1608 return bfd_reloc_overflow;
1609
1610 bfd_put_16 (input_bfd, value, hit_data);
1611 return bfd_reloc_ok;
1612
1613 case R_MN10300_8:
1614 value += addend;
1615
1616 if ((long) value > 0x7f || (long) value < -0x80)
1617 return bfd_reloc_overflow;
1618
1619 bfd_put_8 (input_bfd, value, hit_data);
1620 return bfd_reloc_ok;
1621
1622 case R_MN10300_PCREL8:
1623 value -= (input_section->output_section->vma
1624 + input_section->output_offset);
1625 value -= offset;
1626 value += addend;
1627
1628 if ((long) value > 0x7f || (long) value < -0x80)
1629 return bfd_reloc_overflow;
1630
1631 bfd_put_8 (input_bfd, value, hit_data);
1632 return bfd_reloc_ok;
1633
1634 case R_MN10300_PCREL16:
1635 value -= (input_section->output_section->vma
1636 + input_section->output_offset);
1637 value -= offset;
1638 value += addend;
1639
1640 if ((long) value > 0x7fff || (long) value < -0x8000)
1641 return bfd_reloc_overflow;
1642
1643 bfd_put_16 (input_bfd, value, hit_data);
1644 return bfd_reloc_ok;
1645
1646 case R_MN10300_PCREL32:
1647 value -= (input_section->output_section->vma
1648 + input_section->output_offset);
1649 value -= offset;
1650 value += addend;
1651
1652 bfd_put_32 (input_bfd, value, hit_data);
1653 return bfd_reloc_ok;
1654
1655 case R_MN10300_GNU_VTINHERIT:
1656 case R_MN10300_GNU_VTENTRY:
1657 return bfd_reloc_ok;
1658
1659 case R_MN10300_GOTPC32:
1660 if (dynobj == NULL)
1661 return bfd_reloc_dangerous;
1662
1663 /* Use global offset table as symbol value. */
1664 value = htab->root.sgot->output_section->vma;
1665 value -= (input_section->output_section->vma
1666 + input_section->output_offset);
1667 value -= offset;
1668 value += addend;
1669
1670 bfd_put_32 (input_bfd, value, hit_data);
1671 return bfd_reloc_ok;
1672
1673 case R_MN10300_GOTPC16:
1674 if (dynobj == NULL)
1675 return bfd_reloc_dangerous;
1676
1677 /* Use global offset table as symbol value. */
1678 value = htab->root.sgot->output_section->vma;
1679 value -= (input_section->output_section->vma
1680 + input_section->output_offset);
1681 value -= offset;
1682 value += addend;
1683
1684 if ((long) value > 0x7fff || (long) value < -0x8000)
1685 return bfd_reloc_overflow;
1686
1687 bfd_put_16 (input_bfd, value, hit_data);
1688 return bfd_reloc_ok;
1689
1690 case R_MN10300_GOTOFF32:
1691 if (dynobj == NULL)
1692 return bfd_reloc_dangerous;
1693
1694 value -= htab->root.sgot->output_section->vma;
1695 value += addend;
1696
1697 bfd_put_32 (input_bfd, value, hit_data);
1698 return bfd_reloc_ok;
1699
1700 case R_MN10300_GOTOFF24:
1701 if (dynobj == NULL)
1702 return bfd_reloc_dangerous;
1703
1704 value -= htab->root.sgot->output_section->vma;
1705 value += addend;
1706
1707 if ((long) value > 0x7fffff || (long) value < -0x800000)
1708 return bfd_reloc_overflow;
1709
1710 bfd_put_8 (input_bfd, value, hit_data);
1711 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1712 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1713 return bfd_reloc_ok;
1714
1715 case R_MN10300_GOTOFF16:
1716 if (dynobj == NULL)
1717 return bfd_reloc_dangerous;
1718
1719 value -= htab->root.sgot->output_section->vma;
1720 value += addend;
1721
1722 if ((long) value > 0x7fff || (long) value < -0x8000)
1723 return bfd_reloc_overflow;
1724
1725 bfd_put_16 (input_bfd, value, hit_data);
1726 return bfd_reloc_ok;
1727
1728 case R_MN10300_PLT32:
1729 if (h != NULL
1730 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1731 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1732 && h->plt.offset != (bfd_vma) -1)
1733 {
1734 if (dynobj == NULL)
1735 return bfd_reloc_dangerous;
1736
1737 splt = htab->root.splt;
1738 value = (splt->output_section->vma
1739 + splt->output_offset
1740 + h->plt.offset) - value;
1741 }
1742
1743 value -= (input_section->output_section->vma
1744 + input_section->output_offset);
1745 value -= offset;
1746 value += addend;
1747
1748 bfd_put_32 (input_bfd, value, hit_data);
1749 return bfd_reloc_ok;
1750
1751 case R_MN10300_PLT16:
1752 if (h != NULL
1753 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1754 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1755 && h->plt.offset != (bfd_vma) -1)
1756 {
1757 if (dynobj == NULL)
1758 return bfd_reloc_dangerous;
1759
1760 splt = htab->root.splt;
1761 value = (splt->output_section->vma
1762 + splt->output_offset
1763 + h->plt.offset) - value;
1764 }
1765
1766 value -= (input_section->output_section->vma
1767 + input_section->output_offset);
1768 value -= offset;
1769 value += addend;
1770
1771 if ((long) value > 0x7fff || (long) value < -0x8000)
1772 return bfd_reloc_overflow;
1773
1774 bfd_put_16 (input_bfd, value, hit_data);
1775 return bfd_reloc_ok;
1776
1777 case R_MN10300_TLS_LDO:
1778 value = dtpoff (info, value);
1779 bfd_put_32 (input_bfd, value + addend, hit_data);
1780 return bfd_reloc_ok;
1781
1782 case R_MN10300_TLS_LE:
1783 value = tpoff (info, value);
1784 bfd_put_32 (input_bfd, value + addend, hit_data);
1785 return bfd_reloc_ok;
1786
1787 case R_MN10300_TLS_LD:
1788 if (dynobj == NULL)
1789 return bfd_reloc_dangerous;
1790
1791 sgot = htab->root.sgot;
1792 BFD_ASSERT (sgot != NULL);
1793 value = htab->tls_ldm_got.offset + sgot->output_offset;
1794 bfd_put_32 (input_bfd, value, hit_data);
1795
1796 if (!htab->tls_ldm_got.rel_emitted)
1797 {
1798 asection *srelgot = htab->root.srelgot;
1799 Elf_Internal_Rela rel;
1800
1801 BFD_ASSERT (srelgot != NULL);
1802 htab->tls_ldm_got.rel_emitted ++;
1803 rel.r_offset = (sgot->output_section->vma
1804 + sgot->output_offset
1805 + htab->tls_ldm_got.offset);
1806 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset);
1807 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4);
1808 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1809 rel.r_addend = 0;
1810 bfd_elf32_swap_reloca_out (output_bfd, & rel,
1811 (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents
1812 + srelgot->reloc_count));
1813 ++ srelgot->reloc_count;
1814 }
1815
1816 return bfd_reloc_ok;
1817
1818 case R_MN10300_TLS_GOTIE:
1819 value = tpoff (info, value);
1820 /* Fall Through. */
1821
1822 case R_MN10300_TLS_GD:
1823 case R_MN10300_TLS_IE:
1824 case R_MN10300_GOT32:
1825 case R_MN10300_GOT24:
1826 case R_MN10300_GOT16:
1827 if (dynobj == NULL)
1828 return bfd_reloc_dangerous;
1829
1830 sgot = htab->root.sgot;
1831 if (r_type == R_MN10300_TLS_GD)
1832 value = dtpoff (info, value);
1833
1834 if (h != NULL)
1835 {
1836 bfd_vma off;
1837
1838 off = h->got.offset;
1839 /* Offsets in the GOT are allocated in check_relocs
1840 which is not called for shared libraries... */
1841 if (off == (bfd_vma) -1)
1842 off = 0;
1843
1844 if (sgot->contents != NULL
1845 && (! elf_hash_table (info)->dynamic_sections_created
1846 || SYMBOL_REFERENCES_LOCAL (info, h)))
1847 /* This is actually a static link, or it is a
1848 -Bsymbolic link and the symbol is defined
1849 locally, or the symbol was forced to be local
1850 because of a version file. We must initialize
1851 this entry in the global offset table.
1852
1853 When doing a dynamic link, we create a .rela.got
1854 relocation entry to initialize the value. This
1855 is done in the finish_dynamic_symbol routine. */
1856 bfd_put_32 (output_bfd, value,
1857 sgot->contents + off);
1858
1859 value = sgot->output_offset + off;
1860 }
1861 else
1862 {
1863 bfd_vma off;
1864
1865 off = elf_local_got_offsets (input_bfd)[symndx];
1866
1867 if (off & 1)
1868 bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1));
1869 else
1870 {
1871 bfd_put_32 (output_bfd, value, sgot->contents + off);
1872
1873 if (bfd_link_pic (info))
1874 {
1875 asection *srelgot = htab->root.srelgot;;
1876 Elf_Internal_Rela outrel;
1877
1878 BFD_ASSERT (srelgot != NULL);
1879
1880 outrel.r_offset = (sgot->output_section->vma
1881 + sgot->output_offset
1882 + off);
1883 switch (r_type)
1884 {
1885 case R_MN10300_TLS_GD:
1886 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF);
1887 outrel.r_offset = (sgot->output_section->vma
1888 + sgot->output_offset
1889 + off + 4);
1890 bfd_elf32_swap_reloca_out (output_bfd, & outrel,
1891 (bfd_byte *) (((Elf32_External_Rela *)
1892 srelgot->contents)
1893 + srelgot->reloc_count));
1894 ++ srelgot->reloc_count;
1895 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1896 break;
1897 case R_MN10300_TLS_GOTIE:
1898 case R_MN10300_TLS_IE:
1899 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
1900 break;
1901 default:
1902 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1903 break;
1904 }
1905
1906 outrel.r_addend = value;
1907 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1908 (bfd_byte *) (((Elf32_External_Rela *)
1909 srelgot->contents)
1910 + srelgot->reloc_count));
1911 ++ srelgot->reloc_count;
1912 elf_local_got_offsets (input_bfd)[symndx] |= 1;
1913 }
1914
1915 value = sgot->output_offset + (off & ~(bfd_vma) 1);
1916 }
1917 }
1918
1919 value += addend;
1920
1921 if (r_type == R_MN10300_TLS_IE)
1922 {
1923 value += sgot->output_section->vma;
1924 bfd_put_32 (input_bfd, value, hit_data);
1925 return bfd_reloc_ok;
1926 }
1927 else if (r_type == R_MN10300_TLS_GOTIE
1928 || r_type == R_MN10300_TLS_GD
1929 || r_type == R_MN10300_TLS_LD)
1930 {
1931 bfd_put_32 (input_bfd, value, hit_data);
1932 return bfd_reloc_ok;
1933 }
1934 else if (r_type == R_MN10300_GOT32)
1935 {
1936 bfd_put_32 (input_bfd, value, hit_data);
1937 return bfd_reloc_ok;
1938 }
1939 else if (r_type == R_MN10300_GOT24)
1940 {
1941 if ((long) value > 0x7fffff || (long) value < -0x800000)
1942 return bfd_reloc_overflow;
1943
1944 bfd_put_8 (input_bfd, value & 0xff, hit_data);
1945 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1946 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1947 return bfd_reloc_ok;
1948 }
1949 else if (r_type == R_MN10300_GOT16)
1950 {
1951 if ((long) value > 0x7fff || (long) value < -0x8000)
1952 return bfd_reloc_overflow;
1953
1954 bfd_put_16 (input_bfd, value, hit_data);
1955 return bfd_reloc_ok;
1956 }
1957 /* Fall through. */
1958
1959 default:
1960 return bfd_reloc_notsupported;
1961 }
1962 }
1963 \f
1964 /* Relocate an MN10300 ELF section. */
1965
1966 static int
1967 mn10300_elf_relocate_section (bfd *output_bfd,
1968 struct bfd_link_info *info,
1969 bfd *input_bfd,
1970 asection *input_section,
1971 bfd_byte *contents,
1972 Elf_Internal_Rela *relocs,
1973 Elf_Internal_Sym *local_syms,
1974 asection **local_sections)
1975 {
1976 Elf_Internal_Shdr *symtab_hdr;
1977 struct elf_link_hash_entry **sym_hashes;
1978 Elf_Internal_Rela *rel, *relend;
1979 Elf_Internal_Rela * trel;
1980
1981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1982 sym_hashes = elf_sym_hashes (input_bfd);
1983
1984 rel = relocs;
1985 relend = relocs + input_section->reloc_count;
1986 for (; rel < relend; rel++)
1987 {
1988 int r_type;
1989 reloc_howto_type *howto;
1990 unsigned long r_symndx;
1991 Elf_Internal_Sym *sym;
1992 asection *sec;
1993 struct elf32_mn10300_link_hash_entry *h;
1994 bfd_vma relocation;
1995 bfd_reloc_status_type r;
1996 int tls_r_type;
1997 bool unresolved_reloc = false;
1998 bool warned, ignored;
1999 struct elf_link_hash_entry * hh;
2000
2001 relocation = 0;
2002 r_symndx = ELF32_R_SYM (rel->r_info);
2003 r_type = ELF32_R_TYPE (rel->r_info);
2004 howto = elf_mn10300_howto_table + r_type;
2005
2006 /* Just skip the vtable gc relocs. */
2007 if (r_type == R_MN10300_GNU_VTINHERIT
2008 || r_type == R_MN10300_GNU_VTENTRY)
2009 continue;
2010
2011 h = NULL;
2012 sym = NULL;
2013 sec = NULL;
2014 if (r_symndx < symtab_hdr->sh_info)
2015 hh = NULL;
2016 else
2017 {
2018 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2019 r_symndx, symtab_hdr, sym_hashes,
2020 hh, sec, relocation,
2021 unresolved_reloc, warned, ignored);
2022 }
2023 h = elf_mn10300_hash_entry (hh);
2024
2025 tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0);
2026 if (tls_r_type != r_type)
2027 {
2028 bool had_plt;
2029
2030 had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type,
2031 contents, rel->r_offset);
2032 r_type = tls_r_type;
2033 howto = elf_mn10300_howto_table + r_type;
2034
2035 if (had_plt)
2036 for (trel = rel+1; trel < relend; trel++)
2037 if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32
2038 || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32)
2039 && rel->r_offset + had_plt == trel->r_offset)
2040 trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE);
2041 }
2042
2043 if (r_symndx < symtab_hdr->sh_info)
2044 {
2045 sym = local_syms + r_symndx;
2046 sec = local_sections[r_symndx];
2047 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2048 }
2049 else
2050 {
2051 if ((h->root.root.type == bfd_link_hash_defined
2052 || h->root.root.type == bfd_link_hash_defweak)
2053 && ( r_type == R_MN10300_GOTPC32
2054 || r_type == R_MN10300_GOTPC16
2055 || (( r_type == R_MN10300_PLT32
2056 || r_type == R_MN10300_PLT16)
2057 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
2058 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
2059 && h->root.plt.offset != (bfd_vma) -1)
2060 || (( r_type == R_MN10300_GOT32
2061 || r_type == R_MN10300_GOT24
2062 || r_type == R_MN10300_TLS_GD
2063 || r_type == R_MN10300_TLS_LD
2064 || r_type == R_MN10300_TLS_GOTIE
2065 || r_type == R_MN10300_TLS_IE
2066 || r_type == R_MN10300_GOT16)
2067 && elf_hash_table (info)->dynamic_sections_created
2068 && !SYMBOL_REFERENCES_LOCAL (info, hh))
2069 || (r_type == R_MN10300_32
2070 && !SYMBOL_REFERENCES_LOCAL (info, hh)
2071 /* _32 relocs in executables force _COPY relocs,
2072 such that the address of the symbol ends up
2073 being local. */
2074 && (((input_section->flags & SEC_ALLOC) != 0
2075 && !bfd_link_executable (info))
2076 /* DWARF will emit R_MN10300_32 relocations
2077 in its sections against symbols defined
2078 externally in shared libraries. We can't
2079 do anything with them here. */
2080 || ((input_section->flags & SEC_DEBUGGING) != 0
2081 && h->root.def_dynamic)))))
2082 /* In these cases, we don't need the relocation
2083 value. We check specially because in some
2084 obscure cases sec->output_section will be NULL. */
2085 relocation = 0;
2086
2087 else if (!bfd_link_relocatable (info) && unresolved_reloc
2088 && _bfd_elf_section_offset (output_bfd, info, input_section,
2089 rel->r_offset) != (bfd_vma) -1)
2090
2091 _bfd_error_handler
2092 /* xgettext:c-format */
2093 (_("%pB(%pA+%#" PRIx64 "): "
2094 "unresolvable %s relocation against symbol `%s'"),
2095 input_bfd,
2096 input_section,
2097 (uint64_t) rel->r_offset,
2098 howto->name,
2099 h->root.root.root.string);
2100 }
2101
2102 if (sec != NULL && discarded_section (sec))
2103 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2104 rel, 1, relend, howto, 0, contents);
2105
2106 if (bfd_link_relocatable (info))
2107 continue;
2108
2109 r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
2110 input_section,
2111 contents, rel->r_offset,
2112 relocation, rel->r_addend,
2113 (struct elf_link_hash_entry *) h,
2114 r_symndx,
2115 info, sec, h == NULL);
2116
2117 if (r != bfd_reloc_ok)
2118 {
2119 const char *name;
2120 const char *msg = NULL;
2121
2122 if (h != NULL)
2123 name = h->root.root.root.string;
2124 else
2125 {
2126 name = (bfd_elf_string_from_elf_section
2127 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2128 if (name == NULL || *name == '\0')
2129 name = bfd_section_name (sec);
2130 }
2131
2132 switch (r)
2133 {
2134 case bfd_reloc_overflow:
2135 (*info->callbacks->reloc_overflow)
2136 (info, (h ? &h->root.root : NULL), name, howto->name,
2137 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2138 break;
2139
2140 case bfd_reloc_undefined:
2141 (*info->callbacks->undefined_symbol)
2142 (info, name, input_bfd, input_section, rel->r_offset, true);
2143 break;
2144
2145 case bfd_reloc_outofrange:
2146 msg = _("internal error: out of range error");
2147 goto common_error;
2148
2149 case bfd_reloc_notsupported:
2150 msg = _("internal error: unsupported relocation error");
2151 goto common_error;
2152
2153 case bfd_reloc_dangerous:
2154 if (r_type == R_MN10300_PCREL32)
2155 msg = _("error: inappropriate relocation type for shared"
2156 " library (did you forget -fpic?)");
2157 else if (r_type == R_MN10300_GOT32)
2158 /* xgettext:c-format */
2159 msg = _("%pB: taking the address of protected function"
2160 " '%s' cannot be done when making a shared library");
2161 else
2162 msg = _("internal error: suspicious relocation type used"
2163 " in shared library");
2164 goto common_error;
2165
2166 default:
2167 msg = _("internal error: unknown error");
2168 /* Fall through. */
2169
2170 common_error:
2171 _bfd_error_handler (msg, input_bfd, name);
2172 bfd_set_error (bfd_error_bad_value);
2173 return false;
2174 }
2175 }
2176 }
2177
2178 return true;
2179 }
2180
2181 /* Finish initializing one hash table entry. */
2182
2183 static bool
2184 elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
2185 void * in_args)
2186 {
2187 struct elf32_mn10300_link_hash_entry *entry;
2188 struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
2189 unsigned int byte_count = 0;
2190
2191 entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
2192
2193 /* If we already know we want to convert "call" to "calls" for calls
2194 to this symbol, then return now. */
2195 if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
2196 return true;
2197
2198 /* If there are no named calls to this symbol, or there's nothing we
2199 can move from the function itself into the "call" instruction,
2200 then note that all "call" instructions should be converted into
2201 "calls" instructions and return. If a symbol is available for
2202 dynamic symbol resolution (overridable or overriding), avoid
2203 custom calling conventions. */
2204 if (entry->direct_calls == 0
2205 || (entry->stack_size == 0 && entry->movm_args == 0)
2206 || (elf_hash_table (link_info)->dynamic_sections_created
2207 && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
2208 && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
2209 {
2210 /* Make a note that we should convert "call" instructions to "calls"
2211 instructions for calls to this symbol. */
2212 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2213 return true;
2214 }
2215
2216 /* We may be able to move some instructions from the function itself into
2217 the "call" instruction. Count how many bytes we might be able to
2218 eliminate in the function itself. */
2219
2220 /* A movm instruction is two bytes. */
2221 if (entry->movm_args)
2222 byte_count += 2;
2223
2224 /* Count the insn to allocate stack space too. */
2225 if (entry->stack_size > 0)
2226 {
2227 if (entry->stack_size <= 128)
2228 byte_count += 3;
2229 else
2230 byte_count += 4;
2231 }
2232
2233 /* If using "call" will result in larger code, then turn all
2234 the associated "call" instructions into "calls" instructions. */
2235 if (byte_count < entry->direct_calls)
2236 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2237
2238 /* This routine never fails. */
2239 return true;
2240 }
2241
2242 /* Used to count hash table entries. */
2243
2244 static bool
2245 elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
2246 void * in_args)
2247 {
2248 int *count = (int *) in_args;
2249
2250 (*count) ++;
2251 return true;
2252 }
2253
2254 /* Used to enumerate hash table entries into a linear array. */
2255
2256 static bool
2257 elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
2258 void * in_args)
2259 {
2260 struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
2261
2262 **ptr = gen_entry;
2263 (*ptr) ++;
2264 return true;
2265 }
2266
2267 /* Used to sort the array created by the above. */
2268
2269 static int
2270 sort_by_value (const void *va, const void *vb)
2271 {
2272 struct elf32_mn10300_link_hash_entry *a
2273 = *(struct elf32_mn10300_link_hash_entry **) va;
2274 struct elf32_mn10300_link_hash_entry *b
2275 = *(struct elf32_mn10300_link_hash_entry **) vb;
2276
2277 return a->value - b->value;
2278 }
2279
2280 /* Compute the stack size and movm arguments for the function
2281 referred to by HASH at address ADDR in section with
2282 contents CONTENTS, store the information in the hash table. */
2283
2284 static void
2285 compute_function_info (bfd *abfd,
2286 struct elf32_mn10300_link_hash_entry *hash,
2287 bfd_vma addr,
2288 unsigned char *contents)
2289 {
2290 unsigned char byte1, byte2;
2291 /* We only care about a very small subset of the possible prologue
2292 sequences here. Basically we look for:
2293
2294 movm [d2,d3,a2,a3],sp (optional)
2295 add <size>,sp (optional, and only for sizes which fit in an unsigned
2296 8 bit number)
2297
2298 If we find anything else, we quit. */
2299
2300 /* Look for movm [regs],sp. */
2301 byte1 = bfd_get_8 (abfd, contents + addr);
2302 byte2 = bfd_get_8 (abfd, contents + addr + 1);
2303
2304 if (byte1 == 0xcf)
2305 {
2306 hash->movm_args = byte2;
2307 addr += 2;
2308 byte1 = bfd_get_8 (abfd, contents + addr);
2309 byte2 = bfd_get_8 (abfd, contents + addr + 1);
2310 }
2311
2312 /* Now figure out how much stack space will be allocated by the movm
2313 instruction. We need this kept separate from the function's normal
2314 stack space. */
2315 if (hash->movm_args)
2316 {
2317 /* Space for d2. */
2318 if (hash->movm_args & 0x80)
2319 hash->movm_stack_size += 4;
2320
2321 /* Space for d3. */
2322 if (hash->movm_args & 0x40)
2323 hash->movm_stack_size += 4;
2324
2325 /* Space for a2. */
2326 if (hash->movm_args & 0x20)
2327 hash->movm_stack_size += 4;
2328
2329 /* Space for a3. */
2330 if (hash->movm_args & 0x10)
2331 hash->movm_stack_size += 4;
2332
2333 /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */
2334 if (hash->movm_args & 0x08)
2335 hash->movm_stack_size += 8 * 4;
2336
2337 if (bfd_get_mach (abfd) == bfd_mach_am33
2338 || bfd_get_mach (abfd) == bfd_mach_am33_2)
2339 {
2340 /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */
2341 if (hash->movm_args & 0x1)
2342 hash->movm_stack_size += 6 * 4;
2343
2344 /* exreg1 space. e4, e5, e6, e7 */
2345 if (hash->movm_args & 0x2)
2346 hash->movm_stack_size += 4 * 4;
2347
2348 /* exreg0 space. e2, e3 */
2349 if (hash->movm_args & 0x4)
2350 hash->movm_stack_size += 2 * 4;
2351 }
2352 }
2353
2354 /* Now look for the two stack adjustment variants. */
2355 if (byte1 == 0xf8 && byte2 == 0xfe)
2356 {
2357 int temp = bfd_get_8 (abfd, contents + addr + 2);
2358 temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
2359
2360 hash->stack_size = -temp;
2361 }
2362 else if (byte1 == 0xfa && byte2 == 0xfe)
2363 {
2364 int temp = bfd_get_16 (abfd, contents + addr + 2);
2365 temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
2366 temp = -temp;
2367
2368 if (temp < 255)
2369 hash->stack_size = temp;
2370 }
2371
2372 /* If the total stack to be allocated by the call instruction is more
2373 than 255 bytes, then we can't remove the stack adjustment by using
2374 "call" (we might still be able to remove the "movm" instruction. */
2375 if (hash->stack_size + hash->movm_stack_size > 255)
2376 hash->stack_size = 0;
2377 }
2378
2379 /* Delete some bytes from a section while relaxing. */
2380
2381 static bool
2382 mn10300_elf_relax_delete_bytes (bfd *abfd,
2383 asection *sec,
2384 bfd_vma addr,
2385 int count)
2386 {
2387 Elf_Internal_Shdr *symtab_hdr;
2388 unsigned int sec_shndx;
2389 bfd_byte *contents;
2390 Elf_Internal_Rela *irel, *irelend;
2391 Elf_Internal_Rela *irelalign;
2392 bfd_vma toaddr;
2393 Elf_Internal_Sym *isym, *isymend;
2394 struct elf_link_hash_entry **sym_hashes;
2395 struct elf_link_hash_entry **end_hashes;
2396 unsigned int symcount;
2397
2398 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2399
2400 contents = elf_section_data (sec)->this_hdr.contents;
2401
2402 irelalign = NULL;
2403 toaddr = sec->size;
2404
2405 irel = elf_section_data (sec)->relocs;
2406 irelend = irel + sec->reloc_count;
2407
2408 if (sec->reloc_count > 0)
2409 {
2410 /* If there is an align reloc at the end of the section ignore it.
2411 GAS creates these relocs for reasons of its own, and they just
2412 serve to keep the section artifically inflated. */
2413 if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
2414 --irelend;
2415
2416 /* The deletion must stop at the next ALIGN reloc for an alignment
2417 power larger than, or not a multiple of, the number of bytes we
2418 are deleting. */
2419 for (; irel < irelend; irel++)
2420 {
2421 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2422 && irel->r_offset > addr
2423 && irel->r_offset < toaddr)
2424 {
2425 int alignment = 1 << irel->r_addend;
2426
2427 if (count < alignment
2428 || alignment % count != 0)
2429 {
2430 irelalign = irel;
2431 toaddr = irel->r_offset;
2432 break;
2433 }
2434 }
2435 }
2436 }
2437
2438 /* Actually delete the bytes. */
2439 memmove (contents + addr, contents + addr + count,
2440 (size_t) (toaddr - addr - count));
2441
2442 /* Adjust the section's size if we are shrinking it, or else
2443 pad the bytes between the end of the shrunken region and
2444 the start of the next region with NOP codes. */
2445 if (irelalign == NULL)
2446 {
2447 sec->size -= count;
2448 /* Include symbols at the end of the section, but
2449 not at the end of a sub-region of the section. */
2450 toaddr ++;
2451 }
2452 else
2453 {
2454 int i;
2455
2456 #define NOP_OPCODE 0xcb
2457
2458 for (i = 0; i < count; i ++)
2459 bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
2460 }
2461
2462 /* Adjust all the relocs. */
2463 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
2464 {
2465 /* Get the new reloc address. */
2466 if ((irel->r_offset > addr
2467 && irel->r_offset < toaddr)
2468 || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2469 && irel->r_offset == toaddr))
2470 irel->r_offset -= count;
2471 }
2472
2473 /* Adjust the local symbols in the section, reducing their value
2474 by the number of bytes deleted. Note - symbols within the deleted
2475 region are moved to the address of the start of the region, which
2476 actually means that they will address the byte beyond the end of
2477 the region once the deletion has been completed. */
2478 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2479 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2480 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2481 {
2482 if (isym->st_shndx == sec_shndx
2483 && isym->st_value > addr
2484 && isym->st_value < toaddr)
2485 {
2486 if (isym->st_value < addr + count)
2487 isym->st_value = addr;
2488 else
2489 isym->st_value -= count;
2490 }
2491 /* Adjust the function symbol's size as well. */
2492 else if (isym->st_shndx == sec_shndx
2493 && ELF_ST_TYPE (isym->st_info) == STT_FUNC
2494 && isym->st_value + isym->st_size > addr
2495 && isym->st_value + isym->st_size < toaddr)
2496 isym->st_size -= count;
2497 }
2498
2499 /* Now adjust the global symbols defined in this section. */
2500 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2501 - symtab_hdr->sh_info);
2502 sym_hashes = elf_sym_hashes (abfd);
2503 end_hashes = sym_hashes + symcount;
2504 for (; sym_hashes < end_hashes; sym_hashes++)
2505 {
2506 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2507
2508 if ((sym_hash->root.type == bfd_link_hash_defined
2509 || sym_hash->root.type == bfd_link_hash_defweak)
2510 && sym_hash->root.u.def.section == sec
2511 && sym_hash->root.u.def.value > addr
2512 && sym_hash->root.u.def.value < toaddr)
2513 {
2514 if (sym_hash->root.u.def.value < addr + count)
2515 sym_hash->root.u.def.value = addr;
2516 else
2517 sym_hash->root.u.def.value -= count;
2518 }
2519 /* Adjust the function symbol's size as well. */
2520 else if (sym_hash->root.type == bfd_link_hash_defined
2521 && sym_hash->root.u.def.section == sec
2522 && sym_hash->type == STT_FUNC
2523 && sym_hash->root.u.def.value + sym_hash->size > addr
2524 && sym_hash->root.u.def.value + sym_hash->size < toaddr)
2525 sym_hash->size -= count;
2526 }
2527
2528 /* See if we can move the ALIGN reloc forward.
2529 We have adjusted r_offset for it already. */
2530 if (irelalign != NULL)
2531 {
2532 bfd_vma alignto, alignaddr;
2533
2534 if ((int) irelalign->r_addend > 0)
2535 {
2536 /* This is the old address. */
2537 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
2538 /* This is where the align points to now. */
2539 alignaddr = BFD_ALIGN (irelalign->r_offset,
2540 1 << irelalign->r_addend);
2541 if (alignaddr < alignto)
2542 /* Tail recursion. */
2543 return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
2544 (int) (alignto - alignaddr));
2545 }
2546 }
2547
2548 return true;
2549 }
2550
2551 /* Return TRUE if a symbol exists at the given address, else return
2552 FALSE. */
2553
2554 static bool
2555 mn10300_elf_symbol_address_p (bfd *abfd,
2556 asection *sec,
2557 Elf_Internal_Sym *isym,
2558 bfd_vma addr)
2559 {
2560 Elf_Internal_Shdr *symtab_hdr;
2561 unsigned int sec_shndx;
2562 Elf_Internal_Sym *isymend;
2563 struct elf_link_hash_entry **sym_hashes;
2564 struct elf_link_hash_entry **end_hashes;
2565 unsigned int symcount;
2566
2567 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2568
2569 /* Examine all the symbols. */
2570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2571 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2572 if (isym->st_shndx == sec_shndx
2573 && isym->st_value == addr)
2574 return true;
2575
2576 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2577 - symtab_hdr->sh_info);
2578 sym_hashes = elf_sym_hashes (abfd);
2579 end_hashes = sym_hashes + symcount;
2580 for (; sym_hashes < end_hashes; sym_hashes++)
2581 {
2582 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2583
2584 if ((sym_hash->root.type == bfd_link_hash_defined
2585 || sym_hash->root.type == bfd_link_hash_defweak)
2586 && sym_hash->root.u.def.section == sec
2587 && sym_hash->root.u.def.value == addr)
2588 return true;
2589 }
2590
2591 return false;
2592 }
2593
2594 /* This function handles relaxing for the mn10300.
2595
2596 There are quite a few relaxing opportunities available on the mn10300:
2597
2598 * calls:32 -> calls:16 2 bytes
2599 * call:32 -> call:16 2 bytes
2600
2601 * call:32 -> calls:32 1 byte
2602 * call:16 -> calls:16 1 byte
2603 * These are done anytime using "calls" would result
2604 in smaller code, or when necessary to preserve the
2605 meaning of the program.
2606
2607 * call:32 varies
2608 * call:16
2609 * In some circumstances we can move instructions
2610 from a function prologue into a "call" instruction.
2611 This is only done if the resulting code is no larger
2612 than the original code.
2613
2614 * jmp:32 -> jmp:16 2 bytes
2615 * jmp:16 -> bra:8 1 byte
2616
2617 * If the previous instruction is a conditional branch
2618 around the jump/bra, we may be able to reverse its condition
2619 and change its target to the jump's target. The jump/bra
2620 can then be deleted. 2 bytes
2621
2622 * mov abs32 -> mov abs16 1 or 2 bytes
2623
2624 * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
2625 - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
2626
2627 * Most instructions which accept d32 can relax to d16 1 or 2 bytes
2628 - Most instructions which accept d16 can relax to d8 1 or 2 bytes
2629
2630 We don't handle imm16->imm8 or d16->d8 as they're very rare
2631 and somewhat more difficult to support. */
2632
2633 static bool
2634 mn10300_elf_relax_section (bfd *abfd,
2635 asection *sec,
2636 struct bfd_link_info *link_info,
2637 bool *again)
2638 {
2639 Elf_Internal_Shdr *symtab_hdr;
2640 Elf_Internal_Rela *internal_relocs = NULL;
2641 Elf_Internal_Rela *irel, *irelend;
2642 bfd_byte *contents = NULL;
2643 Elf_Internal_Sym *isymbuf = NULL;
2644 struct elf32_mn10300_link_hash_table *hash_table;
2645 asection *section = sec;
2646 bfd_vma align_gap_adjustment;
2647
2648 if (bfd_link_relocatable (link_info))
2649 (*link_info->callbacks->einfo)
2650 (_("%P%F: --relax and -r may not be used together\n"));
2651
2652 /* Assume nothing changes. */
2653 *again = false;
2654
2655 /* We need a pointer to the mn10300 specific hash table. */
2656 hash_table = elf32_mn10300_hash_table (link_info);
2657 if (hash_table == NULL)
2658 return false;
2659
2660 /* Initialize fields in each hash table entry the first time through. */
2661 if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
2662 {
2663 bfd *input_bfd;
2664
2665 /* Iterate over all the input bfds. */
2666 for (input_bfd = link_info->input_bfds;
2667 input_bfd != NULL;
2668 input_bfd = input_bfd->link.next)
2669 {
2670 /* We're going to need all the symbols for each bfd. */
2671 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2672 if (symtab_hdr->sh_info != 0)
2673 {
2674 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2675 if (isymbuf == NULL)
2676 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2677 symtab_hdr->sh_info, 0,
2678 NULL, NULL, NULL);
2679 if (isymbuf == NULL)
2680 goto error_return;
2681 }
2682
2683 /* Iterate over each section in this bfd. */
2684 for (section = input_bfd->sections;
2685 section != NULL;
2686 section = section->next)
2687 {
2688 struct elf32_mn10300_link_hash_entry *hash;
2689 asection *sym_sec = NULL;
2690 const char *sym_name;
2691 char *new_name;
2692
2693 /* If there's nothing to do in this section, skip it. */
2694 if (! ((section->flags & SEC_RELOC) != 0
2695 && section->reloc_count != 0))
2696 continue;
2697 if ((section->flags & SEC_ALLOC) == 0)
2698 continue;
2699
2700 /* Get cached copy of section contents if it exists. */
2701 if (elf_section_data (section)->this_hdr.contents != NULL)
2702 contents = elf_section_data (section)->this_hdr.contents;
2703 else if (section->size != 0)
2704 {
2705 /* Go get them off disk. */
2706 if (!bfd_malloc_and_get_section (input_bfd, section,
2707 &contents))
2708 goto error_return;
2709 }
2710 else
2711 contents = NULL;
2712
2713 /* If there aren't any relocs, then there's nothing to do. */
2714 if ((section->flags & SEC_RELOC) != 0
2715 && section->reloc_count != 0)
2716 {
2717 /* Get a copy of the native relocations. */
2718 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
2719 NULL, NULL,
2720 link_info->keep_memory);
2721 if (internal_relocs == NULL)
2722 goto error_return;
2723
2724 /* Now examine each relocation. */
2725 irel = internal_relocs;
2726 irelend = irel + section->reloc_count;
2727 for (; irel < irelend; irel++)
2728 {
2729 long r_type;
2730 unsigned long r_index;
2731 unsigned char code;
2732
2733 r_type = ELF32_R_TYPE (irel->r_info);
2734 r_index = ELF32_R_SYM (irel->r_info);
2735
2736 if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
2737 goto error_return;
2738
2739 /* We need the name and hash table entry of the target
2740 symbol! */
2741 hash = NULL;
2742 sym_sec = NULL;
2743
2744 if (r_index < symtab_hdr->sh_info)
2745 {
2746 /* A local symbol. */
2747 Elf_Internal_Sym *isym;
2748 struct elf_link_hash_table *elftab;
2749 size_t amt;
2750
2751 isym = isymbuf + r_index;
2752 if (isym->st_shndx == SHN_UNDEF)
2753 sym_sec = bfd_und_section_ptr;
2754 else if (isym->st_shndx == SHN_ABS)
2755 sym_sec = bfd_abs_section_ptr;
2756 else if (isym->st_shndx == SHN_COMMON)
2757 sym_sec = bfd_com_section_ptr;
2758 else
2759 sym_sec
2760 = bfd_section_from_elf_index (input_bfd,
2761 isym->st_shndx);
2762
2763 sym_name
2764 = bfd_elf_string_from_elf_section (input_bfd,
2765 (symtab_hdr
2766 ->sh_link),
2767 isym->st_name);
2768
2769 /* If it isn't a function, then we don't care
2770 about it. */
2771 if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
2772 continue;
2773
2774 /* Tack on an ID so we can uniquely identify this
2775 local symbol in the global hash table. */
2776 amt = strlen (sym_name) + 10;
2777 new_name = bfd_malloc (amt);
2778 if (new_name == NULL)
2779 goto error_return;
2780
2781 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2782 sym_name = new_name;
2783
2784 elftab = &hash_table->static_hash_table->root;
2785 hash = ((struct elf32_mn10300_link_hash_entry *)
2786 elf_link_hash_lookup (elftab, sym_name,
2787 true, true, false));
2788 free (new_name);
2789 }
2790 else
2791 {
2792 r_index -= symtab_hdr->sh_info;
2793 hash = (struct elf32_mn10300_link_hash_entry *)
2794 elf_sym_hashes (input_bfd)[r_index];
2795 }
2796
2797 sym_name = hash->root.root.root.string;
2798 if ((section->flags & SEC_CODE) != 0)
2799 {
2800 /* If this is not a "call" instruction, then we
2801 should convert "call" instructions to "calls"
2802 instructions. */
2803 code = bfd_get_8 (input_bfd,
2804 contents + irel->r_offset - 1);
2805 if (code != 0xdd && code != 0xcd)
2806 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2807 }
2808
2809 /* If this is a jump/call, then bump the
2810 direct_calls counter. Else force "call" to
2811 "calls" conversions. */
2812 if (r_type == R_MN10300_PCREL32
2813 || r_type == R_MN10300_PLT32
2814 || r_type == R_MN10300_PLT16
2815 || r_type == R_MN10300_PCREL16)
2816 hash->direct_calls++;
2817 else
2818 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2819 }
2820 }
2821
2822 /* Now look at the actual contents to get the stack size,
2823 and a list of what registers were saved in the prologue
2824 (ie movm_args). */
2825 if ((section->flags & SEC_CODE) != 0)
2826 {
2827 Elf_Internal_Sym *isym, *isymend;
2828 unsigned int sec_shndx;
2829 struct elf_link_hash_entry **hashes;
2830 struct elf_link_hash_entry **end_hashes;
2831 unsigned int symcount;
2832
2833 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
2834 section);
2835
2836 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2837 - symtab_hdr->sh_info);
2838 hashes = elf_sym_hashes (input_bfd);
2839 end_hashes = hashes + symcount;
2840
2841 /* Look at each function defined in this section and
2842 update info for that function. */
2843 isymend = isymbuf + symtab_hdr->sh_info;
2844 for (isym = isymbuf; isym < isymend; isym++)
2845 {
2846 if (isym->st_shndx == sec_shndx
2847 && ELF_ST_TYPE (isym->st_info) == STT_FUNC)
2848 {
2849 struct elf_link_hash_table *elftab;
2850 size_t amt;
2851 struct elf_link_hash_entry **lhashes = hashes;
2852
2853 /* Skip a local symbol if it aliases a
2854 global one. */
2855 for (; lhashes < end_hashes; lhashes++)
2856 {
2857 hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
2858 if ((hash->root.root.type == bfd_link_hash_defined
2859 || hash->root.root.type == bfd_link_hash_defweak)
2860 && hash->root.root.u.def.section == section
2861 && hash->root.type == STT_FUNC
2862 && hash->root.root.u.def.value == isym->st_value)
2863 break;
2864 }
2865 if (lhashes != end_hashes)
2866 continue;
2867
2868 if (isym->st_shndx == SHN_UNDEF)
2869 sym_sec = bfd_und_section_ptr;
2870 else if (isym->st_shndx == SHN_ABS)
2871 sym_sec = bfd_abs_section_ptr;
2872 else if (isym->st_shndx == SHN_COMMON)
2873 sym_sec = bfd_com_section_ptr;
2874 else
2875 sym_sec
2876 = bfd_section_from_elf_index (input_bfd,
2877 isym->st_shndx);
2878
2879 sym_name = (bfd_elf_string_from_elf_section
2880 (input_bfd, symtab_hdr->sh_link,
2881 isym->st_name));
2882
2883 /* Tack on an ID so we can uniquely identify this
2884 local symbol in the global hash table. */
2885 amt = strlen (sym_name) + 10;
2886 new_name = bfd_malloc (amt);
2887 if (new_name == NULL)
2888 goto error_return;
2889
2890 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2891 sym_name = new_name;
2892
2893 elftab = &hash_table->static_hash_table->root;
2894 hash = ((struct elf32_mn10300_link_hash_entry *)
2895 elf_link_hash_lookup (elftab, sym_name,
2896 true, true, false));
2897 free (new_name);
2898 compute_function_info (input_bfd, hash,
2899 isym->st_value, contents);
2900 hash->value = isym->st_value;
2901 }
2902 }
2903
2904 for (; hashes < end_hashes; hashes++)
2905 {
2906 hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
2907 if ((hash->root.root.type == bfd_link_hash_defined
2908 || hash->root.root.type == bfd_link_hash_defweak)
2909 && hash->root.root.u.def.section == section
2910 && hash->root.type == STT_FUNC)
2911 compute_function_info (input_bfd, hash,
2912 (hash)->root.root.u.def.value,
2913 contents);
2914 }
2915 }
2916
2917 /* Cache or free any memory we allocated for the relocs. */
2918 if (elf_section_data (section)->relocs != internal_relocs)
2919 free (internal_relocs);
2920 internal_relocs = NULL;
2921
2922 /* Cache or free any memory we allocated for the contents. */
2923 if (contents != NULL
2924 && elf_section_data (section)->this_hdr.contents != contents)
2925 {
2926 if (! link_info->keep_memory)
2927 free (contents);
2928 else
2929 {
2930 /* Cache the section contents for elf_link_input_bfd. */
2931 elf_section_data (section)->this_hdr.contents = contents;
2932 }
2933 }
2934 contents = NULL;
2935 }
2936
2937 /* Cache or free any memory we allocated for the symbols. */
2938 if (isymbuf != NULL
2939 && symtab_hdr->contents != (unsigned char *) isymbuf)
2940 {
2941 if (! link_info->keep_memory)
2942 free (isymbuf);
2943 else
2944 {
2945 /* Cache the symbols for elf_link_input_bfd. */
2946 symtab_hdr->contents = (unsigned char *) isymbuf;
2947 }
2948 }
2949 isymbuf = NULL;
2950 }
2951
2952 /* Now iterate on each symbol in the hash table and perform
2953 the final initialization steps on each. */
2954 elf32_mn10300_link_hash_traverse (hash_table,
2955 elf32_mn10300_finish_hash_table_entry,
2956 link_info);
2957 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2958 elf32_mn10300_finish_hash_table_entry,
2959 link_info);
2960
2961 {
2962 /* This section of code collects all our local symbols, sorts
2963 them by value, and looks for multiple symbols referring to
2964 the same address. For those symbols, the flags are merged.
2965 At this point, the only flag that can be set is
2966 MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
2967 together. */
2968 int static_count = 0, i;
2969 struct elf32_mn10300_link_hash_entry **entries;
2970 struct elf32_mn10300_link_hash_entry **ptr;
2971
2972 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2973 elf32_mn10300_count_hash_table_entries,
2974 &static_count);
2975
2976 entries = bfd_malloc (static_count * sizeof (* ptr));
2977
2978 ptr = entries;
2979 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2980 elf32_mn10300_list_hash_table_entries,
2981 & ptr);
2982
2983 qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
2984
2985 for (i = 0; i < static_count - 1; i++)
2986 if (entries[i]->value && entries[i]->value == entries[i+1]->value)
2987 {
2988 int v = entries[i]->flags;
2989 int j;
2990
2991 for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
2992 v |= entries[j]->flags;
2993
2994 for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
2995 entries[j]->flags = v;
2996
2997 i = j - 1;
2998 }
2999 }
3000
3001 /* All entries in the hash table are fully initialized. */
3002 hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
3003
3004 /* Now that everything has been initialized, go through each
3005 code section and delete any prologue insns which will be
3006 redundant because their operations will be performed by
3007 a "call" instruction. */
3008 for (input_bfd = link_info->input_bfds;
3009 input_bfd != NULL;
3010 input_bfd = input_bfd->link.next)
3011 {
3012 /* We're going to need all the local symbols for each bfd. */
3013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3014 if (symtab_hdr->sh_info != 0)
3015 {
3016 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3017 if (isymbuf == NULL)
3018 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3019 symtab_hdr->sh_info, 0,
3020 NULL, NULL, NULL);
3021 if (isymbuf == NULL)
3022 goto error_return;
3023 }
3024
3025 /* Walk over each section in this bfd. */
3026 for (section = input_bfd->sections;
3027 section != NULL;
3028 section = section->next)
3029 {
3030 unsigned int sec_shndx;
3031 Elf_Internal_Sym *isym, *isymend;
3032 struct elf_link_hash_entry **hashes;
3033 struct elf_link_hash_entry **end_hashes;
3034 unsigned int symcount;
3035
3036 /* Skip non-code sections and empty sections. */
3037 if ((section->flags & SEC_CODE) == 0 || section->size == 0)
3038 continue;
3039
3040 if (section->reloc_count != 0)
3041 {
3042 /* Get a copy of the native relocations. */
3043 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
3044 NULL, NULL,
3045 link_info->keep_memory);
3046 if (internal_relocs == NULL)
3047 goto error_return;
3048 }
3049
3050 /* Get cached copy of section contents if it exists. */
3051 if (elf_section_data (section)->this_hdr.contents != NULL)
3052 contents = elf_section_data (section)->this_hdr.contents;
3053 else
3054 {
3055 /* Go get them off disk. */
3056 if (!bfd_malloc_and_get_section (input_bfd, section,
3057 &contents))
3058 goto error_return;
3059 }
3060
3061 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
3062 section);
3063
3064 /* Now look for any function in this section which needs
3065 insns deleted from its prologue. */
3066 isymend = isymbuf + symtab_hdr->sh_info;
3067 for (isym = isymbuf; isym < isymend; isym++)
3068 {
3069 struct elf32_mn10300_link_hash_entry *sym_hash;
3070 asection *sym_sec = NULL;
3071 const char *sym_name;
3072 char *new_name;
3073 struct elf_link_hash_table *elftab;
3074 size_t amt;
3075
3076 if (isym->st_shndx != sec_shndx)
3077 continue;
3078
3079 if (isym->st_shndx == SHN_UNDEF)
3080 sym_sec = bfd_und_section_ptr;
3081 else if (isym->st_shndx == SHN_ABS)
3082 sym_sec = bfd_abs_section_ptr;
3083 else if (isym->st_shndx == SHN_COMMON)
3084 sym_sec = bfd_com_section_ptr;
3085 else
3086 sym_sec
3087 = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3088
3089 sym_name
3090 = bfd_elf_string_from_elf_section (input_bfd,
3091 symtab_hdr->sh_link,
3092 isym->st_name);
3093
3094 /* Tack on an ID so we can uniquely identify this
3095 local symbol in the global hash table. */
3096 amt = strlen (sym_name) + 10;
3097 new_name = bfd_malloc (amt);
3098 if (new_name == NULL)
3099 goto error_return;
3100 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3101 sym_name = new_name;
3102
3103 elftab = & hash_table->static_hash_table->root;
3104 sym_hash = (struct elf32_mn10300_link_hash_entry *)
3105 elf_link_hash_lookup (elftab, sym_name,
3106 false, false, false);
3107
3108 free (new_name);
3109 if (sym_hash == NULL)
3110 continue;
3111
3112 if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3113 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3114 {
3115 int bytes = 0;
3116
3117 /* Note that we've changed things. */
3118 elf_section_data (section)->relocs = internal_relocs;
3119 elf_section_data (section)->this_hdr.contents = contents;
3120 symtab_hdr->contents = (unsigned char *) isymbuf;
3121
3122 /* Count how many bytes we're going to delete. */
3123 if (sym_hash->movm_args)
3124 bytes += 2;
3125
3126 if (sym_hash->stack_size > 0)
3127 {
3128 if (sym_hash->stack_size <= 128)
3129 bytes += 3;
3130 else
3131 bytes += 4;
3132 }
3133
3134 /* Note that we've deleted prologue bytes for this
3135 function. */
3136 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3137
3138 /* Actually delete the bytes. */
3139 if (!mn10300_elf_relax_delete_bytes (input_bfd,
3140 section,
3141 isym->st_value,
3142 bytes))
3143 goto error_return;
3144
3145 /* Something changed. Not strictly necessary, but
3146 may lead to more relaxing opportunities. */
3147 *again = true;
3148 }
3149 }
3150
3151 /* Look for any global functions in this section which
3152 need insns deleted from their prologues. */
3153 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
3154 - symtab_hdr->sh_info);
3155 hashes = elf_sym_hashes (input_bfd);
3156 end_hashes = hashes + symcount;
3157 for (; hashes < end_hashes; hashes++)
3158 {
3159 struct elf32_mn10300_link_hash_entry *sym_hash;
3160
3161 sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
3162 if ((sym_hash->root.root.type == bfd_link_hash_defined
3163 || sym_hash->root.root.type == bfd_link_hash_defweak)
3164 && sym_hash->root.root.u.def.section == section
3165 && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3166 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3167 {
3168 int bytes = 0;
3169 bfd_vma symval;
3170 struct elf_link_hash_entry **hh;
3171
3172 /* Note that we've changed things. */
3173 elf_section_data (section)->relocs = internal_relocs;
3174 elf_section_data (section)->this_hdr.contents = contents;
3175 symtab_hdr->contents = (unsigned char *) isymbuf;
3176
3177 /* Count how many bytes we're going to delete. */
3178 if (sym_hash->movm_args)
3179 bytes += 2;
3180
3181 if (sym_hash->stack_size > 0)
3182 {
3183 if (sym_hash->stack_size <= 128)
3184 bytes += 3;
3185 else
3186 bytes += 4;
3187 }
3188
3189 /* Note that we've deleted prologue bytes for this
3190 function. */
3191 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3192
3193 /* Actually delete the bytes. */
3194 symval = sym_hash->root.root.u.def.value;
3195 if (!mn10300_elf_relax_delete_bytes (input_bfd,
3196 section,
3197 symval,
3198 bytes))
3199 goto error_return;
3200
3201 /* There may be other C++ functions symbols with the same
3202 address. If so then mark these as having had their
3203 prologue bytes deleted as well. */
3204 for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++)
3205 {
3206 struct elf32_mn10300_link_hash_entry *h;
3207
3208 h = (struct elf32_mn10300_link_hash_entry *) * hh;
3209
3210 if (h != sym_hash
3211 && (h->root.root.type == bfd_link_hash_defined
3212 || h->root.root.type == bfd_link_hash_defweak)
3213 && h->root.root.u.def.section == section
3214 && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS)
3215 && h->root.root.u.def.value == symval
3216 && h->root.type == STT_FUNC)
3217 h->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3218 }
3219
3220 /* Something changed. Not strictly necessary, but
3221 may lead to more relaxing opportunities. */
3222 *again = true;
3223 }
3224 }
3225
3226 /* Cache or free any memory we allocated for the relocs. */
3227 if (elf_section_data (section)->relocs != internal_relocs)
3228 free (internal_relocs);
3229 internal_relocs = NULL;
3230
3231 /* Cache or free any memory we allocated for the contents. */
3232 if (contents != NULL
3233 && elf_section_data (section)->this_hdr.contents != contents)
3234 {
3235 if (! link_info->keep_memory)
3236 free (contents);
3237 else
3238 /* Cache the section contents for elf_link_input_bfd. */
3239 elf_section_data (section)->this_hdr.contents = contents;
3240 }
3241 contents = NULL;
3242 }
3243
3244 /* Cache or free any memory we allocated for the symbols. */
3245 if (isymbuf != NULL
3246 && symtab_hdr->contents != (unsigned char *) isymbuf)
3247 {
3248 if (! link_info->keep_memory)
3249 free (isymbuf);
3250 else
3251 /* Cache the symbols for elf_link_input_bfd. */
3252 symtab_hdr->contents = (unsigned char *) isymbuf;
3253 }
3254 isymbuf = NULL;
3255 }
3256 }
3257
3258 /* (Re)initialize for the basic instruction shortening/relaxing pass. */
3259 contents = NULL;
3260 internal_relocs = NULL;
3261 isymbuf = NULL;
3262 /* For error_return. */
3263 section = sec;
3264
3265 /* We don't have to do anything for a relocatable link, if
3266 this section does not have relocs, or if this is not a
3267 code section. */
3268 if (bfd_link_relocatable (link_info)
3269 || (sec->flags & SEC_RELOC) == 0
3270 || sec->reloc_count == 0
3271 || (sec->flags & SEC_CODE) == 0)
3272 return true;
3273
3274 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3275
3276 /* Get a copy of the native relocations. */
3277 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3278 link_info->keep_memory);
3279 if (internal_relocs == NULL)
3280 goto error_return;
3281
3282 /* Scan for worst case alignment gap changes. Note that this logic
3283 is not ideal; what we should do is run this scan for every
3284 opcode/address range and adjust accordingly, but that's
3285 expensive. Worst case is that for an alignment of N bytes, we
3286 move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
3287 all before it. Plus, this still doesn't cover cross-section
3288 jumps with section alignment. */
3289 irelend = internal_relocs + sec->reloc_count;
3290 align_gap_adjustment = 0;
3291 for (irel = internal_relocs; irel < irelend; irel++)
3292 {
3293 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
3294 {
3295 bfd_vma adj = 1 << irel->r_addend;
3296 bfd_vma aend = irel->r_offset;
3297
3298 aend = BFD_ALIGN (aend, 1 << irel->r_addend);
3299 adj = 2 * adj - adj - 1;
3300
3301 /* Record the biggest adjustmnet. Skip any alignment at the
3302 end of our section. */
3303 if (align_gap_adjustment < adj
3304 && aend < sec->output_section->vma + sec->output_offset + sec->size)
3305 align_gap_adjustment = adj;
3306 }
3307 }
3308
3309 /* Walk through them looking for relaxing opportunities. */
3310 irelend = internal_relocs + sec->reloc_count;
3311 for (irel = internal_relocs; irel < irelend; irel++)
3312 {
3313 bfd_vma symval;
3314 bfd_signed_vma jump_offset;
3315 asection *sym_sec = NULL;
3316 struct elf32_mn10300_link_hash_entry *h = NULL;
3317
3318 /* If this isn't something that can be relaxed, then ignore
3319 this reloc. */
3320 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
3321 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
3322 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
3323 continue;
3324
3325 /* Get the section contents if we haven't done so already. */
3326 if (contents == NULL)
3327 {
3328 /* Get cached copy if it exists. */
3329 if (elf_section_data (sec)->this_hdr.contents != NULL)
3330 contents = elf_section_data (sec)->this_hdr.contents;
3331 else
3332 {
3333 /* Go get them off disk. */
3334 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
3335 goto error_return;
3336 }
3337 }
3338
3339 /* Read this BFD's symbols if we haven't done so already. */
3340 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
3341 {
3342 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3343 if (isymbuf == NULL)
3344 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3345 symtab_hdr->sh_info, 0,
3346 NULL, NULL, NULL);
3347 if (isymbuf == NULL)
3348 goto error_return;
3349 }
3350
3351 /* Get the value of the symbol referred to by the reloc. */
3352 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
3353 {
3354 Elf_Internal_Sym *isym;
3355 const char *sym_name;
3356 char *new_name;
3357
3358 /* A local symbol. */
3359 isym = isymbuf + ELF32_R_SYM (irel->r_info);
3360 if (isym->st_shndx == SHN_UNDEF)
3361 sym_sec = bfd_und_section_ptr;
3362 else if (isym->st_shndx == SHN_ABS)
3363 sym_sec = bfd_abs_section_ptr;
3364 else if (isym->st_shndx == SHN_COMMON)
3365 sym_sec = bfd_com_section_ptr;
3366 else
3367 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3368
3369 sym_name = bfd_elf_string_from_elf_section (abfd,
3370 symtab_hdr->sh_link,
3371 isym->st_name);
3372
3373 if ((sym_sec->flags & SEC_MERGE)
3374 && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3375 {
3376 symval = isym->st_value;
3377
3378 /* GAS may reduce relocations against symbols in SEC_MERGE
3379 sections to a relocation against the section symbol when
3380 the original addend was zero. When the reloc is against
3381 a section symbol we should include the addend in the
3382 offset passed to _bfd_merged_section_offset, since the
3383 location of interest is the original symbol. On the
3384 other hand, an access to "sym+addend" where "sym" is not
3385 a section symbol should not include the addend; Such an
3386 access is presumed to be an offset from "sym"; The
3387 location of interest is just "sym". */
3388 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3389 symval += irel->r_addend;
3390
3391 symval = _bfd_merged_section_offset (abfd, & sym_sec,
3392 elf_section_data (sym_sec)->sec_info,
3393 symval);
3394
3395 if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
3396 symval += irel->r_addend;
3397
3398 symval += sym_sec->output_section->vma
3399 + sym_sec->output_offset - irel->r_addend;
3400 }
3401 else
3402 symval = (isym->st_value
3403 + sym_sec->output_section->vma
3404 + sym_sec->output_offset);
3405
3406 /* Tack on an ID so we can uniquely identify this
3407 local symbol in the global hash table. */
3408 new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
3409 if (new_name == NULL)
3410 goto error_return;
3411 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3412 sym_name = new_name;
3413
3414 h = (struct elf32_mn10300_link_hash_entry *)
3415 elf_link_hash_lookup (&hash_table->static_hash_table->root,
3416 sym_name, false, false, false);
3417 free (new_name);
3418 }
3419 else
3420 {
3421 unsigned long indx;
3422
3423 /* An external symbol. */
3424 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
3425 h = (struct elf32_mn10300_link_hash_entry *)
3426 (elf_sym_hashes (abfd)[indx]);
3427 BFD_ASSERT (h != NULL);
3428 if (h->root.root.type != bfd_link_hash_defined
3429 && h->root.root.type != bfd_link_hash_defweak)
3430 /* This appears to be a reference to an undefined
3431 symbol. Just ignore it--it will be caught by the
3432 regular reloc processing. */
3433 continue;
3434
3435 /* Check for a reference to a discarded symbol and ignore it. */
3436 if (h->root.root.u.def.section->output_section == NULL)
3437 continue;
3438
3439 sym_sec = h->root.root.u.def.section->output_section;
3440
3441 symval = (h->root.root.u.def.value
3442 + h->root.root.u.def.section->output_section->vma
3443 + h->root.root.u.def.section->output_offset);
3444 }
3445
3446 /* For simplicity of coding, we are going to modify the section
3447 contents, the section relocs, and the BFD symbol table. We
3448 must tell the rest of the code not to free up this
3449 information. It would be possible to instead create a table
3450 of changes which have to be made, as is done in coff-mips.c;
3451 that would be more work, but would require less memory when
3452 the linker is run. */
3453
3454 /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
3455 branch/call, also deal with "call" -> "calls" conversions and
3456 insertion of prologue data into "call" instructions. */
3457 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
3458 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
3459 {
3460 bfd_vma value = symval;
3461
3462 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
3463 && h != NULL
3464 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
3465 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
3466 && h->root.plt.offset != (bfd_vma) -1)
3467 {
3468 asection * splt;
3469
3470 splt = hash_table->root.splt;
3471 value = ((splt->output_section->vma
3472 + splt->output_offset
3473 + h->root.plt.offset)
3474 - (sec->output_section->vma
3475 + sec->output_offset
3476 + irel->r_offset));
3477 }
3478
3479 /* If we've got a "call" instruction that needs to be turned
3480 into a "calls" instruction, do so now. It saves a byte. */
3481 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3482 {
3483 unsigned char code;
3484
3485 /* Get the opcode. */
3486 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3487
3488 /* Make sure we're working with a "call" instruction! */
3489 if (code == 0xdd)
3490 {
3491 /* Note that we've changed the relocs, section contents,
3492 etc. */
3493 elf_section_data (sec)->relocs = internal_relocs;
3494 elf_section_data (sec)->this_hdr.contents = contents;
3495 symtab_hdr->contents = (unsigned char *) isymbuf;
3496
3497 /* Fix the opcode. */
3498 bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
3499 bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3500
3501 /* Fix irel->r_offset and irel->r_addend. */
3502 irel->r_offset += 1;
3503 irel->r_addend += 1;
3504
3505 /* Delete one byte of data. */
3506 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3507 irel->r_offset + 3, 1))
3508 goto error_return;
3509
3510 /* That will change things, so, we should relax again.
3511 Note that this is not required, and it may be slow. */
3512 *again = true;
3513 }
3514 }
3515 else if (h)
3516 {
3517 /* We've got a "call" instruction which needs some data
3518 from target function filled in. */
3519 unsigned char code;
3520
3521 /* Get the opcode. */
3522 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3523
3524 /* Insert data from the target function into the "call"
3525 instruction if needed. */
3526 if (code == 0xdd)
3527 {
3528 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
3529 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3530 contents + irel->r_offset + 5);
3531 }
3532 }
3533
3534 /* Deal with pc-relative gunk. */
3535 value -= (sec->output_section->vma + sec->output_offset);
3536 value -= irel->r_offset;
3537 value += irel->r_addend;
3538
3539 /* See if the value will fit in 16 bits, note the high value is
3540 0x7fff + 2 as the target will be two bytes closer if we are
3541 able to relax, if it's in the same section. */
3542 if (sec->output_section == sym_sec->output_section)
3543 jump_offset = 0x8001;
3544 else
3545 jump_offset = 0x7fff;
3546
3547 /* Account for jumps across alignment boundaries using
3548 align_gap_adjustment. */
3549 if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
3550 && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
3551 {
3552 unsigned char code;
3553
3554 /* Get the opcode. */
3555 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3556
3557 if (code != 0xdc && code != 0xdd && code != 0xff)
3558 continue;
3559
3560 /* Note that we've changed the relocs, section contents, etc. */
3561 elf_section_data (sec)->relocs = internal_relocs;
3562 elf_section_data (sec)->this_hdr.contents = contents;
3563 symtab_hdr->contents = (unsigned char *) isymbuf;
3564
3565 /* Fix the opcode. */
3566 if (code == 0xdc)
3567 bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
3568 else if (code == 0xdd)
3569 bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
3570 else if (code == 0xff)
3571 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
3572
3573 /* Fix the relocation's type. */
3574 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3575 (ELF32_R_TYPE (irel->r_info)
3576 == (int) R_MN10300_PLT32)
3577 ? R_MN10300_PLT16 :
3578 R_MN10300_PCREL16);
3579
3580 /* Delete two bytes of data. */
3581 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3582 irel->r_offset + 1, 2))
3583 goto error_return;
3584
3585 /* That will change things, so, we should relax again.
3586 Note that this is not required, and it may be slow. */
3587 *again = true;
3588 }
3589 }
3590
3591 /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
3592 branch. */
3593 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
3594 {
3595 bfd_vma value = symval;
3596
3597 /* If we've got a "call" instruction that needs to be turned
3598 into a "calls" instruction, do so now. It saves a byte. */
3599 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3600 {
3601 unsigned char code;
3602
3603 /* Get the opcode. */
3604 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3605
3606 /* Make sure we're working with a "call" instruction! */
3607 if (code == 0xcd)
3608 {
3609 /* Note that we've changed the relocs, section contents,
3610 etc. */
3611 elf_section_data (sec)->relocs = internal_relocs;
3612 elf_section_data (sec)->this_hdr.contents = contents;
3613 symtab_hdr->contents = (unsigned char *) isymbuf;
3614
3615 /* Fix the opcode. */
3616 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
3617 bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3618
3619 /* Fix irel->r_offset and irel->r_addend. */
3620 irel->r_offset += 1;
3621 irel->r_addend += 1;
3622
3623 /* Delete one byte of data. */
3624 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3625 irel->r_offset + 1, 1))
3626 goto error_return;
3627
3628 /* That will change things, so, we should relax again.
3629 Note that this is not required, and it may be slow. */
3630 *again = true;
3631 }
3632 }
3633 else if (h)
3634 {
3635 unsigned char code;
3636
3637 /* Get the opcode. */
3638 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3639
3640 /* Insert data from the target function into the "call"
3641 instruction if needed. */
3642 if (code == 0xcd)
3643 {
3644 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
3645 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3646 contents + irel->r_offset + 3);
3647 }
3648 }
3649
3650 /* Deal with pc-relative gunk. */
3651 value -= (sec->output_section->vma + sec->output_offset);
3652 value -= irel->r_offset;
3653 value += irel->r_addend;
3654
3655 /* See if the value will fit in 8 bits, note the high value is
3656 0x7f + 1 as the target will be one bytes closer if we are
3657 able to relax. */
3658 if ((long) value < 0x80 && (long) value > -0x80)
3659 {
3660 unsigned char code;
3661
3662 /* Get the opcode. */
3663 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3664
3665 if (code != 0xcc)
3666 continue;
3667
3668 /* Note that we've changed the relocs, section contents, etc. */
3669 elf_section_data (sec)->relocs = internal_relocs;
3670 elf_section_data (sec)->this_hdr.contents = contents;
3671 symtab_hdr->contents = (unsigned char *) isymbuf;
3672
3673 /* Fix the opcode. */
3674 bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
3675
3676 /* Fix the relocation's type. */
3677 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3678 R_MN10300_PCREL8);
3679
3680 /* Delete one byte of data. */
3681 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3682 irel->r_offset + 1, 1))
3683 goto error_return;
3684
3685 /* That will change things, so, we should relax again.
3686 Note that this is not required, and it may be slow. */
3687 *again = true;
3688 }
3689 }
3690
3691 /* Try to eliminate an unconditional 8 bit pc-relative branch
3692 which immediately follows a conditional 8 bit pc-relative
3693 branch around the unconditional branch.
3694
3695 original: new:
3696 bCC lab1 bCC' lab2
3697 bra lab2
3698 lab1: lab1:
3699
3700 This happens when the bCC can't reach lab2 at assembly time,
3701 but due to other relaxations it can reach at link time. */
3702 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
3703 {
3704 Elf_Internal_Rela *nrel;
3705 unsigned char code;
3706
3707 /* Do nothing if this reloc is the last byte in the section. */
3708 if (irel->r_offset == sec->size)
3709 continue;
3710
3711 /* See if the next instruction is an unconditional pc-relative
3712 branch, more often than not this test will fail, so we
3713 test it first to speed things up. */
3714 code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
3715 if (code != 0xca)
3716 continue;
3717
3718 /* Also make sure the next relocation applies to the next
3719 instruction and that it's a pc-relative 8 bit branch. */
3720 nrel = irel + 1;
3721 if (nrel == irelend
3722 || irel->r_offset + 2 != nrel->r_offset
3723 || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
3724 continue;
3725
3726 /* Make sure our destination immediately follows the
3727 unconditional branch. */
3728 if (symval != (sec->output_section->vma + sec->output_offset
3729 + irel->r_offset + 3))
3730 continue;
3731
3732 /* Now make sure we are a conditional branch. This may not
3733 be necessary, but why take the chance.
3734
3735 Note these checks assume that R_MN10300_PCREL8 relocs
3736 only occur on bCC and bCCx insns. If they occured
3737 elsewhere, we'd need to know the start of this insn
3738 for this check to be accurate. */
3739 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3740 if (code != 0xc0 && code != 0xc1 && code != 0xc2
3741 && code != 0xc3 && code != 0xc4 && code != 0xc5
3742 && code != 0xc6 && code != 0xc7 && code != 0xc8
3743 && code != 0xc9 && code != 0xe8 && code != 0xe9
3744 && code != 0xea && code != 0xeb)
3745 continue;
3746
3747 /* We also have to be sure there is no symbol/label
3748 at the unconditional branch. */
3749 if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
3750 irel->r_offset + 1))
3751 continue;
3752
3753 /* Note that we've changed the relocs, section contents, etc. */
3754 elf_section_data (sec)->relocs = internal_relocs;
3755 elf_section_data (sec)->this_hdr.contents = contents;
3756 symtab_hdr->contents = (unsigned char *) isymbuf;
3757
3758 /* Reverse the condition of the first branch. */
3759 switch (code)
3760 {
3761 case 0xc8:
3762 code = 0xc9;
3763 break;
3764 case 0xc9:
3765 code = 0xc8;
3766 break;
3767 case 0xc0:
3768 code = 0xc2;
3769 break;
3770 case 0xc2:
3771 code = 0xc0;
3772 break;
3773 case 0xc3:
3774 code = 0xc1;
3775 break;
3776 case 0xc1:
3777 code = 0xc3;
3778 break;
3779 case 0xc4:
3780 code = 0xc6;
3781 break;
3782 case 0xc6:
3783 code = 0xc4;
3784 break;
3785 case 0xc7:
3786 code = 0xc5;
3787 break;
3788 case 0xc5:
3789 code = 0xc7;
3790 break;
3791 case 0xe8:
3792 code = 0xe9;
3793 break;
3794 case 0x9d:
3795 code = 0xe8;
3796 break;
3797 case 0xea:
3798 code = 0xeb;
3799 break;
3800 case 0xeb:
3801 code = 0xea;
3802 break;
3803 }
3804 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
3805
3806 /* Set the reloc type and symbol for the first branch
3807 from the second branch. */
3808 irel->r_info = nrel->r_info;
3809
3810 /* Make the reloc for the second branch a null reloc. */
3811 nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
3812 R_MN10300_NONE);
3813
3814 /* Delete two bytes of data. */
3815 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3816 irel->r_offset + 1, 2))
3817 goto error_return;
3818
3819 /* That will change things, so, we should relax again.
3820 Note that this is not required, and it may be slow. */
3821 *again = true;
3822 }
3823
3824 /* Try to turn a 24 immediate, displacement or absolute address
3825 into a 8 immediate, displacement or absolute address. */
3826 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
3827 {
3828 bfd_vma value = symval;
3829 value += irel->r_addend;
3830
3831 /* See if the value will fit in 8 bits. */
3832 if ((long) value < 0x7f && (long) value > -0x80)
3833 {
3834 unsigned char code;
3835
3836 /* AM33 insns which have 24 operands are 6 bytes long and
3837 will have 0xfd as the first byte. */
3838
3839 /* Get the first opcode. */
3840 code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3841
3842 if (code == 0xfd)
3843 {
3844 /* Get the second opcode. */
3845 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3846
3847 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3848 equivalent instructions exists. */
3849 if (code != 0x6b && code != 0x7b
3850 && code != 0x8b && code != 0x9b
3851 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3852 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3853 || (code & 0x0f) == 0x0e))
3854 {
3855 /* Not safe if the high bit is on as relaxing may
3856 move the value out of high mem and thus not fit
3857 in a signed 8bit value. This is currently over
3858 conservative. */
3859 if ((value & 0x80) == 0)
3860 {
3861 /* Note that we've changed the relocation contents,
3862 etc. */
3863 elf_section_data (sec)->relocs = internal_relocs;
3864 elf_section_data (sec)->this_hdr.contents = contents;
3865 symtab_hdr->contents = (unsigned char *) isymbuf;
3866
3867 /* Fix the opcode. */
3868 bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
3869 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3870
3871 /* Fix the relocation's type. */
3872 irel->r_info =
3873 ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3874 R_MN10300_8);
3875
3876 /* Delete two bytes of data. */
3877 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3878 irel->r_offset + 1, 2))
3879 goto error_return;
3880
3881 /* That will change things, so, we should relax
3882 again. Note that this is not required, and it
3883 may be slow. */
3884 *again = true;
3885 break;
3886 }
3887 }
3888 }
3889 }
3890 }
3891
3892 /* Try to turn a 32bit immediate, displacement or absolute address
3893 into a 16bit immediate, displacement or absolute address. */
3894 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
3895 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
3896 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3897 {
3898 bfd_vma value = symval;
3899
3900 if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
3901 {
3902 asection * sgot;
3903
3904 sgot = hash_table->root.sgot;
3905 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
3906 {
3907 value = sgot->output_offset;
3908
3909 if (h)
3910 value += h->root.got.offset;
3911 else
3912 value += (elf_local_got_offsets
3913 (abfd)[ELF32_R_SYM (irel->r_info)]);
3914 }
3915 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3916 value -= sgot->output_section->vma;
3917 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
3918 value = (sgot->output_section->vma
3919 - (sec->output_section->vma
3920 + sec->output_offset
3921 + irel->r_offset));
3922 else
3923 abort ();
3924 }
3925
3926 value += irel->r_addend;
3927
3928 /* See if the value will fit in 24 bits.
3929 We allow any 16bit match here. We prune those we can't
3930 handle below. */
3931 if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3)
3932 {
3933 unsigned char code;
3934
3935 /* AM33 insns which have 32bit operands are 7 bytes long and
3936 will have 0xfe as the first byte. */
3937
3938 /* Get the first opcode. */
3939 code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3940
3941 if (code == 0xfe)
3942 {
3943 /* Get the second opcode. */
3944 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3945
3946 /* All the am33 32 -> 24 relaxing possibilities. */
3947 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3948 equivalent instructions exists. */
3949 if (code != 0x6b && code != 0x7b
3950 && code != 0x8b && code != 0x9b
3951 && (ELF32_R_TYPE (irel->r_info)
3952 != (int) R_MN10300_GOTPC32)
3953 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3954 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3955 || (code & 0x0f) == 0x0e))
3956 {
3957 /* Not safe if the high bit is on as relaxing may
3958 move the value out of high mem and thus not fit
3959 in a signed 16bit value. This is currently over
3960 conservative. */
3961 if ((value & 0x8000) == 0)
3962 {
3963 /* Note that we've changed the relocation contents,
3964 etc. */
3965 elf_section_data (sec)->relocs = internal_relocs;
3966 elf_section_data (sec)->this_hdr.contents = contents;
3967 symtab_hdr->contents = (unsigned char *) isymbuf;
3968
3969 /* Fix the opcode. */
3970 bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
3971 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3972
3973 /* Fix the relocation's type. */
3974 irel->r_info =
3975 ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3976 (ELF32_R_TYPE (irel->r_info)
3977 == (int) R_MN10300_GOTOFF32)
3978 ? R_MN10300_GOTOFF24
3979 : (ELF32_R_TYPE (irel->r_info)
3980 == (int) R_MN10300_GOT32)
3981 ? R_MN10300_GOT24 :
3982 R_MN10300_24);
3983
3984 /* Delete one byte of data. */
3985 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3986 irel->r_offset + 3, 1))
3987 goto error_return;
3988
3989 /* That will change things, so, we should relax
3990 again. Note that this is not required, and it
3991 may be slow. */
3992 *again = true;
3993 break;
3994 }
3995 }
3996 }
3997 }
3998
3999 /* See if the value will fit in 16 bits.
4000 We allow any 16bit match here. We prune those we can't
4001 handle below. */
4002 if (value + 0x8000 < 0x10000 && irel->r_offset >= 2)
4003 {
4004 unsigned char code;
4005
4006 /* Most insns which have 32bit operands are 6 bytes long;
4007 exceptions are pcrel insns and bit insns.
4008
4009 We handle pcrel insns above. We don't bother trying
4010 to handle the bit insns here.
4011
4012 The first byte of the remaining insns will be 0xfc. */
4013
4014 /* Get the first opcode. */
4015 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
4016
4017 if (code != 0xfc)
4018 continue;
4019
4020 /* Get the second opcode. */
4021 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
4022
4023 if ((code & 0xf0) < 0x80)
4024 switch (code & 0xf0)
4025 {
4026 /* mov (d32,am),dn -> mov (d32,am),dn
4027 mov dm,(d32,am) -> mov dn,(d32,am)
4028 mov (d32,am),an -> mov (d32,am),an
4029 mov dm,(d32,am) -> mov dn,(d32,am)
4030 movbu (d32,am),dn -> movbu (d32,am),dn
4031 movbu dm,(d32,am) -> movbu dn,(d32,am)
4032 movhu (d32,am),dn -> movhu (d32,am),dn
4033 movhu dm,(d32,am) -> movhu dn,(d32,am) */
4034 case 0x00:
4035 case 0x10:
4036 case 0x20:
4037 case 0x30:
4038 case 0x40:
4039 case 0x50:
4040 case 0x60:
4041 case 0x70:
4042 /* Not safe if the high bit is on as relaxing may
4043 move the value out of high mem and thus not fit
4044 in a signed 16bit value. */
4045 if (code == 0xcc
4046 && (value & 0x8000))
4047 continue;
4048
4049 /* Note that we've changed the relocation contents, etc. */
4050 elf_section_data (sec)->relocs = internal_relocs;
4051 elf_section_data (sec)->this_hdr.contents = contents;
4052 symtab_hdr->contents = (unsigned char *) isymbuf;
4053
4054 /* Fix the opcode. */
4055 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4056 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4057
4058 /* Fix the relocation's type. */
4059 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4060 (ELF32_R_TYPE (irel->r_info)
4061 == (int) R_MN10300_GOTOFF32)
4062 ? R_MN10300_GOTOFF16
4063 : (ELF32_R_TYPE (irel->r_info)
4064 == (int) R_MN10300_GOT32)
4065 ? R_MN10300_GOT16
4066 : (ELF32_R_TYPE (irel->r_info)
4067 == (int) R_MN10300_GOTPC32)
4068 ? R_MN10300_GOTPC16 :
4069 R_MN10300_16);
4070
4071 /* Delete two bytes of data. */
4072 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4073 irel->r_offset + 2, 2))
4074 goto error_return;
4075
4076 /* That will change things, so, we should relax again.
4077 Note that this is not required, and it may be slow. */
4078 *again = true;
4079 break;
4080 }
4081 else if ((code & 0xf0) == 0x80
4082 || (code & 0xf0) == 0x90)
4083 switch (code & 0xf3)
4084 {
4085 /* mov dn,(abs32) -> mov dn,(abs16)
4086 movbu dn,(abs32) -> movbu dn,(abs16)
4087 movhu dn,(abs32) -> movhu dn,(abs16) */
4088 case 0x81:
4089 case 0x82:
4090 case 0x83:
4091 /* Note that we've changed the relocation contents, etc. */
4092 elf_section_data (sec)->relocs = internal_relocs;
4093 elf_section_data (sec)->this_hdr.contents = contents;
4094 symtab_hdr->contents = (unsigned char *) isymbuf;
4095
4096 if ((code & 0xf3) == 0x81)
4097 code = 0x01 + (code & 0x0c);
4098 else if ((code & 0xf3) == 0x82)
4099 code = 0x02 + (code & 0x0c);
4100 else if ((code & 0xf3) == 0x83)
4101 code = 0x03 + (code & 0x0c);
4102 else
4103 abort ();
4104
4105 /* Fix the opcode. */
4106 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4107
4108 /* Fix the relocation's type. */
4109 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4110 (ELF32_R_TYPE (irel->r_info)
4111 == (int) R_MN10300_GOTOFF32)
4112 ? R_MN10300_GOTOFF16
4113 : (ELF32_R_TYPE (irel->r_info)
4114 == (int) R_MN10300_GOT32)
4115 ? R_MN10300_GOT16
4116 : (ELF32_R_TYPE (irel->r_info)
4117 == (int) R_MN10300_GOTPC32)
4118 ? R_MN10300_GOTPC16 :
4119 R_MN10300_16);
4120
4121 /* The opcode got shorter too, so we have to fix the
4122 addend and offset too! */
4123 irel->r_offset -= 1;
4124
4125 /* Delete three bytes of data. */
4126 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4127 irel->r_offset + 1, 3))
4128 goto error_return;
4129
4130 /* That will change things, so, we should relax again.
4131 Note that this is not required, and it may be slow. */
4132 *again = true;
4133 break;
4134
4135 /* mov am,(abs32) -> mov am,(abs16)
4136 mov am,(d32,sp) -> mov am,(d16,sp)
4137 mov dm,(d32,sp) -> mov dm,(d32,sp)
4138 movbu dm,(d32,sp) -> movbu dm,(d32,sp)
4139 movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
4140 case 0x80:
4141 case 0x90:
4142 case 0x91:
4143 case 0x92:
4144 case 0x93:
4145 /* sp-based offsets are zero-extended. */
4146 if (code >= 0x90 && code <= 0x93
4147 && (long) value < 0)
4148 continue;
4149
4150 /* Note that we've changed the relocation contents, etc. */
4151 elf_section_data (sec)->relocs = internal_relocs;
4152 elf_section_data (sec)->this_hdr.contents = contents;
4153 symtab_hdr->contents = (unsigned char *) isymbuf;
4154
4155 /* Fix the opcode. */
4156 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4157 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4158
4159 /* Fix the relocation's type. */
4160 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4161 (ELF32_R_TYPE (irel->r_info)
4162 == (int) R_MN10300_GOTOFF32)
4163 ? R_MN10300_GOTOFF16
4164 : (ELF32_R_TYPE (irel->r_info)
4165 == (int) R_MN10300_GOT32)
4166 ? R_MN10300_GOT16
4167 : (ELF32_R_TYPE (irel->r_info)
4168 == (int) R_MN10300_GOTPC32)
4169 ? R_MN10300_GOTPC16 :
4170 R_MN10300_16);
4171
4172 /* Delete two bytes of data. */
4173 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4174 irel->r_offset + 2, 2))
4175 goto error_return;
4176
4177 /* That will change things, so, we should relax again.
4178 Note that this is not required, and it may be slow. */
4179 *again = true;
4180 break;
4181 }
4182 else if ((code & 0xf0) < 0xf0)
4183 switch (code & 0xfc)
4184 {
4185 /* mov imm32,dn -> mov imm16,dn
4186 mov imm32,an -> mov imm16,an
4187 mov (abs32),dn -> mov (abs16),dn
4188 movbu (abs32),dn -> movbu (abs16),dn
4189 movhu (abs32),dn -> movhu (abs16),dn */
4190 case 0xcc:
4191 case 0xdc:
4192 case 0xa4:
4193 case 0xa8:
4194 case 0xac:
4195 /* Not safe if the high bit is on as relaxing may
4196 move the value out of high mem and thus not fit
4197 in a signed 16bit value. */
4198 if (code == 0xcc
4199 && (value & 0x8000))
4200 continue;
4201
4202 /* "mov imm16, an" zero-extends the immediate. */
4203 if ((code & 0xfc) == 0xdc
4204 && (long) value < 0)
4205 continue;
4206
4207 /* Note that we've changed the relocation contents, etc. */
4208 elf_section_data (sec)->relocs = internal_relocs;
4209 elf_section_data (sec)->this_hdr.contents = contents;
4210 symtab_hdr->contents = (unsigned char *) isymbuf;
4211
4212 if ((code & 0xfc) == 0xcc)
4213 code = 0x2c + (code & 0x03);
4214 else if ((code & 0xfc) == 0xdc)
4215 code = 0x24 + (code & 0x03);
4216 else if ((code & 0xfc) == 0xa4)
4217 code = 0x30 + (code & 0x03);
4218 else if ((code & 0xfc) == 0xa8)
4219 code = 0x34 + (code & 0x03);
4220 else if ((code & 0xfc) == 0xac)
4221 code = 0x38 + (code & 0x03);
4222 else
4223 abort ();
4224
4225 /* Fix the opcode. */
4226 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4227
4228 /* Fix the relocation's type. */
4229 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4230 (ELF32_R_TYPE (irel->r_info)
4231 == (int) R_MN10300_GOTOFF32)
4232 ? R_MN10300_GOTOFF16
4233 : (ELF32_R_TYPE (irel->r_info)
4234 == (int) R_MN10300_GOT32)
4235 ? R_MN10300_GOT16
4236 : (ELF32_R_TYPE (irel->r_info)
4237 == (int) R_MN10300_GOTPC32)
4238 ? R_MN10300_GOTPC16 :
4239 R_MN10300_16);
4240
4241 /* The opcode got shorter too, so we have to fix the
4242 addend and offset too! */
4243 irel->r_offset -= 1;
4244
4245 /* Delete three bytes of data. */
4246 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4247 irel->r_offset + 1, 3))
4248 goto error_return;
4249
4250 /* That will change things, so, we should relax again.
4251 Note that this is not required, and it may be slow. */
4252 *again = true;
4253 break;
4254
4255 /* mov (abs32),an -> mov (abs16),an
4256 mov (d32,sp),an -> mov (d16,sp),an
4257 mov (d32,sp),dn -> mov (d16,sp),dn
4258 movbu (d32,sp),dn -> movbu (d16,sp),dn
4259 movhu (d32,sp),dn -> movhu (d16,sp),dn
4260 add imm32,dn -> add imm16,dn
4261 cmp imm32,dn -> cmp imm16,dn
4262 add imm32,an -> add imm16,an
4263 cmp imm32,an -> cmp imm16,an
4264 and imm32,dn -> and imm16,dn
4265 or imm32,dn -> or imm16,dn
4266 xor imm32,dn -> xor imm16,dn
4267 btst imm32,dn -> btst imm16,dn */
4268
4269 case 0xa0:
4270 case 0xb0:
4271 case 0xb1:
4272 case 0xb2:
4273 case 0xb3:
4274 case 0xc0:
4275 case 0xc8:
4276
4277 case 0xd0:
4278 case 0xd8:
4279 case 0xe0:
4280 case 0xe1:
4281 case 0xe2:
4282 case 0xe3:
4283 /* cmp imm16, an zero-extends the immediate. */
4284 if (code == 0xdc
4285 && (long) value < 0)
4286 continue;
4287
4288 /* So do sp-based offsets. */
4289 if (code >= 0xb0 && code <= 0xb3
4290 && (long) value < 0)
4291 continue;
4292
4293 /* Note that we've changed the relocation contents, etc. */
4294 elf_section_data (sec)->relocs = internal_relocs;
4295 elf_section_data (sec)->this_hdr.contents = contents;
4296 symtab_hdr->contents = (unsigned char *) isymbuf;
4297
4298 /* Fix the opcode. */
4299 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4300 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4301
4302 /* Fix the relocation's type. */
4303 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4304 (ELF32_R_TYPE (irel->r_info)
4305 == (int) R_MN10300_GOTOFF32)
4306 ? R_MN10300_GOTOFF16
4307 : (ELF32_R_TYPE (irel->r_info)
4308 == (int) R_MN10300_GOT32)
4309 ? R_MN10300_GOT16
4310 : (ELF32_R_TYPE (irel->r_info)
4311 == (int) R_MN10300_GOTPC32)
4312 ? R_MN10300_GOTPC16 :
4313 R_MN10300_16);
4314
4315 /* Delete two bytes of data. */
4316 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4317 irel->r_offset + 2, 2))
4318 goto error_return;
4319
4320 /* That will change things, so, we should relax again.
4321 Note that this is not required, and it may be slow. */
4322 *again = true;
4323 break;
4324 }
4325 else if (code == 0xfe)
4326 {
4327 /* add imm32,sp -> add imm16,sp */
4328
4329 /* Note that we've changed the relocation contents, etc. */
4330 elf_section_data (sec)->relocs = internal_relocs;
4331 elf_section_data (sec)->this_hdr.contents = contents;
4332 symtab_hdr->contents = (unsigned char *) isymbuf;
4333
4334 /* Fix the opcode. */
4335 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4336 bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
4337
4338 /* Fix the relocation's type. */
4339 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4340 (ELF32_R_TYPE (irel->r_info)
4341 == (int) R_MN10300_GOT32)
4342 ? R_MN10300_GOT16
4343 : (ELF32_R_TYPE (irel->r_info)
4344 == (int) R_MN10300_GOTOFF32)
4345 ? R_MN10300_GOTOFF16
4346 : (ELF32_R_TYPE (irel->r_info)
4347 == (int) R_MN10300_GOTPC32)
4348 ? R_MN10300_GOTPC16 :
4349 R_MN10300_16);
4350
4351 /* Delete two bytes of data. */
4352 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4353 irel->r_offset + 2, 2))
4354 goto error_return;
4355
4356 /* That will change things, so, we should relax again.
4357 Note that this is not required, and it may be slow. */
4358 *again = true;
4359 break;
4360 }
4361 }
4362 }
4363 }
4364
4365 if (isymbuf != NULL
4366 && symtab_hdr->contents != (unsigned char *) isymbuf)
4367 {
4368 if (! link_info->keep_memory)
4369 free (isymbuf);
4370 else
4371 {
4372 /* Cache the symbols for elf_link_input_bfd. */
4373 symtab_hdr->contents = (unsigned char *) isymbuf;
4374 }
4375 }
4376
4377 if (contents != NULL
4378 && elf_section_data (sec)->this_hdr.contents != contents)
4379 {
4380 if (! link_info->keep_memory)
4381 free (contents);
4382 else
4383 {
4384 /* Cache the section contents for elf_link_input_bfd. */
4385 elf_section_data (sec)->this_hdr.contents = contents;
4386 }
4387 }
4388
4389 if (elf_section_data (sec)->relocs != internal_relocs)
4390 free (internal_relocs);
4391
4392 return true;
4393
4394 error_return:
4395 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4396 free (isymbuf);
4397 if (elf_section_data (section)->this_hdr.contents != contents)
4398 free (contents);
4399 if (elf_section_data (section)->relocs != internal_relocs)
4400 free (internal_relocs);
4401
4402 return false;
4403 }
4404
4405 /* This is a version of bfd_generic_get_relocated_section_contents
4406 which uses mn10300_elf_relocate_section. */
4407
4408 static bfd_byte *
4409 mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
4410 struct bfd_link_info *link_info,
4411 struct bfd_link_order *link_order,
4412 bfd_byte *data,
4413 bool relocatable,
4414 asymbol **symbols)
4415 {
4416 Elf_Internal_Shdr *symtab_hdr;
4417 asection *input_section = link_order->u.indirect.section;
4418 bfd *input_bfd = input_section->owner;
4419 asection **sections = NULL;
4420 Elf_Internal_Rela *internal_relocs = NULL;
4421 Elf_Internal_Sym *isymbuf = NULL;
4422
4423 /* We only need to handle the case of relaxing, or of having a
4424 particular set of section contents, specially. */
4425 if (relocatable
4426 || elf_section_data (input_section)->this_hdr.contents == NULL)
4427 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4428 link_order, data,
4429 relocatable,
4430 symbols);
4431
4432 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4433
4434 bfd_byte *orig_data = data;
4435 if (data == NULL)
4436 {
4437 data = bfd_malloc (input_section->size);
4438 if (data == NULL)
4439 return NULL;
4440 }
4441 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4442 (size_t) input_section->size);
4443
4444 if ((input_section->flags & SEC_RELOC) != 0
4445 && input_section->reloc_count > 0)
4446 {
4447 asection **secpp;
4448 Elf_Internal_Sym *isym, *isymend;
4449 bfd_size_type amt;
4450
4451 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
4452 NULL, NULL, false);
4453 if (internal_relocs == NULL)
4454 goto error_return;
4455
4456 if (symtab_hdr->sh_info != 0)
4457 {
4458 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4459 if (isymbuf == NULL)
4460 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4461 symtab_hdr->sh_info, 0,
4462 NULL, NULL, NULL);
4463 if (isymbuf == NULL)
4464 goto error_return;
4465 }
4466
4467 amt = symtab_hdr->sh_info;
4468 amt *= sizeof (asection *);
4469 sections = bfd_malloc (amt);
4470 if (sections == NULL && amt != 0)
4471 goto error_return;
4472
4473 isymend = isymbuf + symtab_hdr->sh_info;
4474 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4475 {
4476 asection *isec;
4477
4478 if (isym->st_shndx == SHN_UNDEF)
4479 isec = bfd_und_section_ptr;
4480 else if (isym->st_shndx == SHN_ABS)
4481 isec = bfd_abs_section_ptr;
4482 else if (isym->st_shndx == SHN_COMMON)
4483 isec = bfd_com_section_ptr;
4484 else
4485 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4486
4487 *secpp = isec;
4488 }
4489
4490 if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
4491 input_section, data, internal_relocs,
4492 isymbuf, sections))
4493 goto error_return;
4494
4495 free (sections);
4496 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4497 free (isymbuf);
4498 if (internal_relocs != elf_section_data (input_section)->relocs)
4499 free (internal_relocs);
4500 }
4501
4502 return data;
4503
4504 error_return:
4505 free (sections);
4506 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4507 free (isymbuf);
4508 if (internal_relocs != elf_section_data (input_section)->relocs)
4509 free (internal_relocs);
4510 if (orig_data == NULL)
4511 free (data);
4512 return NULL;
4513 }
4514
4515 /* Assorted hash table functions. */
4516
4517 /* Initialize an entry in the link hash table. */
4518
4519 /* Create an entry in an MN10300 ELF linker hash table. */
4520
4521 static struct bfd_hash_entry *
4522 elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
4523 struct bfd_hash_table *table,
4524 const char *string)
4525 {
4526 struct elf32_mn10300_link_hash_entry *ret =
4527 (struct elf32_mn10300_link_hash_entry *) entry;
4528
4529 /* Allocate the structure if it has not already been allocated by a
4530 subclass. */
4531 if (ret == NULL)
4532 ret = (struct elf32_mn10300_link_hash_entry *)
4533 bfd_hash_allocate (table, sizeof (* ret));
4534 if (ret == NULL)
4535 return (struct bfd_hash_entry *) ret;
4536
4537 /* Call the allocation method of the superclass. */
4538 ret = (struct elf32_mn10300_link_hash_entry *)
4539 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4540 table, string);
4541 if (ret != NULL)
4542 {
4543 ret->direct_calls = 0;
4544 ret->stack_size = 0;
4545 ret->movm_args = 0;
4546 ret->movm_stack_size = 0;
4547 ret->flags = 0;
4548 ret->value = 0;
4549 ret->tls_type = GOT_UNKNOWN;
4550 }
4551
4552 return (struct bfd_hash_entry *) ret;
4553 }
4554
4555 static void
4556 _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info,
4557 struct elf_link_hash_entry * dir,
4558 struct elf_link_hash_entry * ind)
4559 {
4560 struct elf32_mn10300_link_hash_entry * edir;
4561 struct elf32_mn10300_link_hash_entry * eind;
4562
4563 edir = elf_mn10300_hash_entry (dir);
4564 eind = elf_mn10300_hash_entry (ind);
4565
4566 if (ind->root.type == bfd_link_hash_indirect
4567 && dir->got.refcount <= 0)
4568 {
4569 edir->tls_type = eind->tls_type;
4570 eind->tls_type = GOT_UNKNOWN;
4571 }
4572 edir->direct_calls = eind->direct_calls;
4573 edir->stack_size = eind->stack_size;
4574 edir->movm_args = eind->movm_args;
4575 edir->movm_stack_size = eind->movm_stack_size;
4576 edir->flags = eind->flags;
4577
4578 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4579 }
4580
4581 /* Destroy an mn10300 ELF linker hash table. */
4582
4583 static void
4584 elf32_mn10300_link_hash_table_free (bfd *obfd)
4585 {
4586 struct elf32_mn10300_link_hash_table *ret
4587 = (struct elf32_mn10300_link_hash_table *) obfd->link.hash;
4588
4589 obfd->link.hash = &ret->static_hash_table->root.root;
4590 _bfd_elf_link_hash_table_free (obfd);
4591 obfd->is_linker_output = true;
4592 obfd->link.hash = &ret->root.root;
4593 _bfd_elf_link_hash_table_free (obfd);
4594 }
4595
4596 /* Create an mn10300 ELF linker hash table. */
4597
4598 static struct bfd_link_hash_table *
4599 elf32_mn10300_link_hash_table_create (bfd *abfd)
4600 {
4601 struct elf32_mn10300_link_hash_table *ret;
4602 size_t amt = sizeof (* ret);
4603
4604 ret = bfd_zmalloc (amt);
4605 if (ret == NULL)
4606 return NULL;
4607
4608 amt = sizeof (struct elf_link_hash_table);
4609 ret->static_hash_table = bfd_zmalloc (amt);
4610 if (ret->static_hash_table == NULL)
4611 {
4612 free (ret);
4613 return NULL;
4614 }
4615
4616 if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
4617 elf32_mn10300_link_hash_newfunc,
4618 sizeof (struct elf32_mn10300_link_hash_entry),
4619 MN10300_ELF_DATA))
4620 {
4621 free (ret->static_hash_table);
4622 free (ret);
4623 return NULL;
4624 }
4625
4626 abfd->is_linker_output = false;
4627 abfd->link.hash = NULL;
4628 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
4629 elf32_mn10300_link_hash_newfunc,
4630 sizeof (struct elf32_mn10300_link_hash_entry),
4631 MN10300_ELF_DATA))
4632 {
4633 abfd->is_linker_output = true;
4634 abfd->link.hash = &ret->static_hash_table->root.root;
4635 _bfd_elf_link_hash_table_free (abfd);
4636 free (ret);
4637 return NULL;
4638 }
4639 ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free;
4640
4641 ret->tls_ldm_got.offset = -1;
4642
4643 return & ret->root.root;
4644 }
4645
4646 static unsigned long
4647 elf_mn10300_mach (flagword flags)
4648 {
4649 switch (flags & EF_MN10300_MACH)
4650 {
4651 case E_MN10300_MACH_MN10300:
4652 default:
4653 return bfd_mach_mn10300;
4654
4655 case E_MN10300_MACH_AM33:
4656 return bfd_mach_am33;
4657
4658 case E_MN10300_MACH_AM33_2:
4659 return bfd_mach_am33_2;
4660 }
4661 }
4662
4663 /* The final processing done just before writing out a MN10300 ELF object
4664 file. This gets the MN10300 architecture right based on the machine
4665 number. */
4666
4667 static bool
4668 _bfd_mn10300_elf_final_write_processing (bfd *abfd)
4669 {
4670 unsigned long val;
4671
4672 switch (bfd_get_mach (abfd))
4673 {
4674 default:
4675 case bfd_mach_mn10300:
4676 val = E_MN10300_MACH_MN10300;
4677 break;
4678
4679 case bfd_mach_am33:
4680 val = E_MN10300_MACH_AM33;
4681 break;
4682
4683 case bfd_mach_am33_2:
4684 val = E_MN10300_MACH_AM33_2;
4685 break;
4686 }
4687
4688 elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
4689 elf_elfheader (abfd)->e_flags |= val;
4690 return _bfd_elf_final_write_processing (abfd);
4691 }
4692
4693 static bool
4694 _bfd_mn10300_elf_object_p (bfd *abfd)
4695 {
4696 bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
4697 elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
4698 return true;
4699 }
4700
4701 /* Merge backend specific data from an object file to the output
4702 object file when linking. */
4703
4704 static bool
4705 _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
4706 {
4707 bfd *obfd = info->output_bfd;
4708
4709 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4710 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4711 return true;
4712
4713 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4714 && bfd_get_mach (obfd) < bfd_get_mach (ibfd))
4715 {
4716 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4717 bfd_get_mach (ibfd)))
4718 return false;
4719 }
4720
4721 return true;
4722 }
4723
4724 #define PLT0_ENTRY_SIZE 15
4725 #define PLT_ENTRY_SIZE 20
4726 #define PIC_PLT_ENTRY_SIZE 24
4727
4728 static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
4729 {
4730 0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */
4731 0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */
4732 0xf0, 0xf4, /* jmp (a0) */
4733 };
4734
4735 static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
4736 {
4737 0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */
4738 0xf0, 0xf4, /* jmp (a0) */
4739 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
4740 0xdc, 0, 0, 0, 0, /* jmp .plt0 */
4741 };
4742
4743 static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
4744 {
4745 0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */
4746 0xf0, 0xf4, /* jmp (a0) */
4747 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
4748 0xf8, 0x22, 8, /* mov (8,a2),a0 */
4749 0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */
4750 0xf0, 0xf4, /* jmp (a0) */
4751 };
4752
4753 /* Return size of the first PLT entry. */
4754 #define elf_mn10300_sizeof_plt0(info) \
4755 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
4756
4757 /* Return size of a PLT entry. */
4758 #define elf_mn10300_sizeof_plt(info) \
4759 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
4760
4761 /* Return offset of the PLT0 address in an absolute PLT entry. */
4762 #define elf_mn10300_plt_plt0_offset(info) 16
4763
4764 /* Return offset of the linker in PLT0 entry. */
4765 #define elf_mn10300_plt0_linker_offset(info) 2
4766
4767 /* Return offset of the GOT id in PLT0 entry. */
4768 #define elf_mn10300_plt0_gotid_offset(info) 9
4769
4770 /* Return offset of the temporary in PLT entry. */
4771 #define elf_mn10300_plt_temp_offset(info) 8
4772
4773 /* Return offset of the symbol in PLT entry. */
4774 #define elf_mn10300_plt_symbol_offset(info) 2
4775
4776 /* Return offset of the relocation in PLT entry. */
4777 #define elf_mn10300_plt_reloc_offset(info) 11
4778
4779 /* The name of the dynamic interpreter. This is put in the .interp
4780 section. */
4781
4782 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
4783
4784 /* Create dynamic sections when linking against a dynamic object. */
4785
4786 static bool
4787 _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4788 {
4789 flagword flags;
4790 asection * s;
4791 const struct elf_backend_data * bed = get_elf_backend_data (abfd);
4792 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4793 int ptralign = 0;
4794
4795 switch (bed->s->arch_size)
4796 {
4797 case 32:
4798 ptralign = 2;
4799 break;
4800
4801 case 64:
4802 ptralign = 3;
4803 break;
4804
4805 default:
4806 bfd_set_error (bfd_error_bad_value);
4807 return false;
4808 }
4809
4810 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
4811 .rel[a].bss sections. */
4812 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4813 | SEC_LINKER_CREATED);
4814
4815 s = bfd_make_section_anyway_with_flags (abfd,
4816 (bed->default_use_rela_p
4817 ? ".rela.plt" : ".rel.plt"),
4818 flags | SEC_READONLY);
4819 htab->root.srelplt = s;
4820 if (s == NULL
4821 || !bfd_set_section_alignment (s, ptralign))
4822 return false;
4823
4824 if (! _bfd_mn10300_elf_create_got_section (abfd, info))
4825 return false;
4826
4827 if (bed->want_dynbss)
4828 {
4829 /* The .dynbss section is a place to put symbols which are defined
4830 by dynamic objects, are referenced by regular objects, and are
4831 not functions. We must allocate space for them in the process
4832 image and use a R_*_COPY reloc to tell the dynamic linker to
4833 initialize them at run time. The linker script puts the .dynbss
4834 section into the .bss section of the final image. */
4835 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
4836 SEC_ALLOC | SEC_LINKER_CREATED);
4837 if (s == NULL)
4838 return false;
4839
4840 /* The .rel[a].bss section holds copy relocs. This section is not
4841 normally needed. We need to create it here, though, so that the
4842 linker will map it to an output section. We can't just create it
4843 only if we need it, because we will not know whether we need it
4844 until we have seen all the input files, and the first time the
4845 main linker code calls BFD after examining all the input files
4846 (size_dynamic_sections) the input sections have already been
4847 mapped to the output sections. If the section turns out not to
4848 be needed, we can discard it later. We will never need this
4849 section when generating a shared object, since they do not use
4850 copy relocs. */
4851 if (! bfd_link_pic (info))
4852 {
4853 s = bfd_make_section_anyway_with_flags (abfd,
4854 (bed->default_use_rela_p
4855 ? ".rela.bss" : ".rel.bss"),
4856 flags | SEC_READONLY);
4857 if (s == NULL
4858 || !bfd_set_section_alignment (s, ptralign))
4859 return false;
4860 }
4861 }
4862
4863 return true;
4864 }
4865 \f
4866 /* Adjust a symbol defined by a dynamic object and referenced by a
4867 regular object. The current definition is in some section of the
4868 dynamic object, but we're not including those sections. We have to
4869 change the definition to something the rest of the link can
4870 understand. */
4871
4872 static bool
4873 _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
4874 struct elf_link_hash_entry * h)
4875 {
4876 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4877 bfd * dynobj;
4878 asection * s;
4879
4880 dynobj = htab->root.dynobj;
4881
4882 /* Make sure we know what is going on here. */
4883 BFD_ASSERT (dynobj != NULL
4884 && (h->needs_plt
4885 || h->is_weakalias
4886 || (h->def_dynamic
4887 && h->ref_regular
4888 && !h->def_regular)));
4889
4890 /* If this is a function, put it in the procedure linkage table. We
4891 will fill in the contents of the procedure linkage table later,
4892 when we know the address of the .got section. */
4893 if (h->type == STT_FUNC
4894 || h->needs_plt)
4895 {
4896 if (! bfd_link_pic (info)
4897 && !h->def_dynamic
4898 && !h->ref_dynamic)
4899 {
4900 /* This case can occur if we saw a PLT reloc in an input
4901 file, but the symbol was never referred to by a dynamic
4902 object. In such a case, we don't actually need to build
4903 a procedure linkage table, and we can just do a REL32
4904 reloc instead. */
4905 BFD_ASSERT (h->needs_plt);
4906 return true;
4907 }
4908
4909 /* Make sure this symbol is output as a dynamic symbol. */
4910 if (h->dynindx == -1)
4911 {
4912 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4913 return false;
4914 }
4915
4916 s = htab->root.splt;
4917 BFD_ASSERT (s != NULL);
4918
4919 /* If this is the first .plt entry, make room for the special
4920 first entry. */
4921 if (s->size == 0)
4922 s->size += elf_mn10300_sizeof_plt0 (info);
4923
4924 /* If this symbol is not defined in a regular file, and we are
4925 not generating a shared library, then set the symbol to this
4926 location in the .plt. This is required to make function
4927 pointers compare as equal between the normal executable and
4928 the shared library. */
4929 if (! bfd_link_pic (info)
4930 && !h->def_regular)
4931 {
4932 h->root.u.def.section = s;
4933 h->root.u.def.value = s->size;
4934 }
4935
4936 h->plt.offset = s->size;
4937
4938 /* Make room for this entry. */
4939 s->size += elf_mn10300_sizeof_plt (info);
4940
4941 /* We also need to make an entry in the .got.plt section, which
4942 will be placed in the .got section by the linker script. */
4943 s = htab->root.sgotplt;
4944 BFD_ASSERT (s != NULL);
4945 s->size += 4;
4946
4947 /* We also need to make an entry in the .rela.plt section. */
4948 s = htab->root.srelplt;
4949 BFD_ASSERT (s != NULL);
4950 s->size += sizeof (Elf32_External_Rela);
4951
4952 return true;
4953 }
4954
4955 /* If this is a weak symbol, and there is a real definition, the
4956 processor independent code will have arranged for us to see the
4957 real definition first, and we can just use the same value. */
4958 if (h->is_weakalias)
4959 {
4960 struct elf_link_hash_entry *def = weakdef (h);
4961 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
4962 h->root.u.def.section = def->root.u.def.section;
4963 h->root.u.def.value = def->root.u.def.value;
4964 return true;
4965 }
4966
4967 /* This is a reference to a symbol defined by a dynamic object which
4968 is not a function. */
4969
4970 /* If we are creating a shared library, we must presume that the
4971 only references to the symbol are via the global offset table.
4972 For such cases we need not do anything here; the relocations will
4973 be handled correctly by relocate_section. */
4974 if (bfd_link_pic (info))
4975 return true;
4976
4977 /* If there are no references to this symbol that do not use the
4978 GOT, we don't need to generate a copy reloc. */
4979 if (!h->non_got_ref)
4980 return true;
4981
4982 /* We must allocate the symbol in our .dynbss section, which will
4983 become part of the .bss section of the executable. There will be
4984 an entry for this symbol in the .dynsym section. The dynamic
4985 object will contain position independent code, so all references
4986 from the dynamic object to this symbol will go through the global
4987 offset table. The dynamic linker will use the .dynsym entry to
4988 determine the address it must put in the global offset table, so
4989 both the dynamic object and the regular object will refer to the
4990 same memory location for the variable. */
4991
4992 s = bfd_get_linker_section (dynobj, ".dynbss");
4993 BFD_ASSERT (s != NULL);
4994
4995 /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
4996 copy the initial value out of the dynamic object and into the
4997 runtime process image. We need to remember the offset into the
4998 .rela.bss section we are going to use. */
4999 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
5000 {
5001 asection * srel;
5002
5003 srel = bfd_get_linker_section (dynobj, ".rela.bss");
5004 BFD_ASSERT (srel != NULL);
5005 srel->size += sizeof (Elf32_External_Rela);
5006 h->needs_copy = 1;
5007 }
5008
5009 return _bfd_elf_adjust_dynamic_copy (info, h, s);
5010 }
5011
5012 /* Set the sizes of the dynamic sections. */
5013
5014 static bool
5015 _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
5016 struct bfd_link_info * info)
5017 {
5018 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5019 bfd * dynobj;
5020 asection * s;
5021 bool relocs;
5022
5023 dynobj = htab->root.dynobj;
5024 BFD_ASSERT (dynobj != NULL);
5025
5026 if (elf_hash_table (info)->dynamic_sections_created)
5027 {
5028 /* Set the contents of the .interp section to the interpreter. */
5029 if (bfd_link_executable (info) && !info->nointerp)
5030 {
5031 s = bfd_get_linker_section (dynobj, ".interp");
5032 BFD_ASSERT (s != NULL);
5033 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5034 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5035 }
5036 }
5037 else
5038 {
5039 /* We may have created entries in the .rela.got section.
5040 However, if we are not creating the dynamic sections, we will
5041 not actually use these entries. Reset the size of .rela.got,
5042 which will cause it to get stripped from the output file
5043 below. */
5044 s = htab->root.sgot;
5045 if (s != NULL)
5046 s->size = 0;
5047 }
5048
5049 if (htab->tls_ldm_got.refcount > 0)
5050 {
5051 s = htab->root.srelgot;
5052 BFD_ASSERT (s != NULL);
5053 s->size += sizeof (Elf32_External_Rela);
5054 }
5055
5056 /* The check_relocs and adjust_dynamic_symbol entry points have
5057 determined the sizes of the various dynamic sections. Allocate
5058 memory for them. */
5059 relocs = false;
5060 for (s = dynobj->sections; s != NULL; s = s->next)
5061 {
5062 const char * name;
5063
5064 if ((s->flags & SEC_LINKER_CREATED) == 0)
5065 continue;
5066
5067 /* It's OK to base decisions on the section name, because none
5068 of the dynobj section names depend upon the input files. */
5069 name = bfd_section_name (s);
5070
5071 if (streq (name, ".plt"))
5072 {
5073 /* Remember whether there is a PLT. */
5074 ;
5075 }
5076 else if (startswith (name, ".rela"))
5077 {
5078 if (s->size != 0)
5079 {
5080 /* Remember whether there are any reloc sections other
5081 than .rela.plt. */
5082 if (! streq (name, ".rela.plt"))
5083 relocs = true;
5084
5085 /* We use the reloc_count field as a counter if we need
5086 to copy relocs into the output file. */
5087 s->reloc_count = 0;
5088 }
5089 }
5090 else if (! startswith (name, ".got")
5091 && ! streq (name, ".dynbss"))
5092 /* It's not one of our sections, so don't allocate space. */
5093 continue;
5094
5095 if (s->size == 0)
5096 {
5097 /* If we don't need this section, strip it from the
5098 output file. This is mostly to handle .rela.bss and
5099 .rela.plt. We must create both sections in
5100 create_dynamic_sections, because they must be created
5101 before the linker maps input sections to output
5102 sections. The linker does that before
5103 adjust_dynamic_symbol is called, and it is that
5104 function which decides whether anything needs to go
5105 into these sections. */
5106 s->flags |= SEC_EXCLUDE;
5107 continue;
5108 }
5109
5110 if ((s->flags & SEC_HAS_CONTENTS) == 0)
5111 continue;
5112
5113 /* Allocate memory for the section contents. We use bfd_zalloc
5114 here in case unused entries are not reclaimed before the
5115 section's contents are written out. This should not happen,
5116 but this way if it does, we get a R_MN10300_NONE reloc
5117 instead of garbage. */
5118 s->contents = bfd_zalloc (dynobj, s->size);
5119 if (s->contents == NULL)
5120 return false;
5121 }
5122
5123 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
5124 }
5125
5126 /* Finish up dynamic symbol handling. We set the contents of various
5127 dynamic sections here. */
5128
5129 static bool
5130 _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
5131 struct bfd_link_info * info,
5132 struct elf_link_hash_entry * h,
5133 Elf_Internal_Sym * sym)
5134 {
5135 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5136 bfd * dynobj;
5137
5138 dynobj = htab->root.dynobj;
5139
5140 if (h->plt.offset != (bfd_vma) -1)
5141 {
5142 asection * splt;
5143 asection * sgot;
5144 asection * srel;
5145 bfd_vma plt_index;
5146 bfd_vma got_offset;
5147 Elf_Internal_Rela rel;
5148
5149 /* This symbol has an entry in the procedure linkage table. Set
5150 it up. */
5151
5152 BFD_ASSERT (h->dynindx != -1);
5153
5154 splt = htab->root.splt;
5155 sgot = htab->root.sgotplt;
5156 srel = htab->root.srelplt;
5157 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5158
5159 /* Get the index in the procedure linkage table which
5160 corresponds to this symbol. This is the index of this symbol
5161 in all the symbols for which we are making plt entries. The
5162 first entry in the procedure linkage table is reserved. */
5163 plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
5164 / elf_mn10300_sizeof_plt (info));
5165
5166 /* Get the offset into the .got table of the entry that
5167 corresponds to this function. Each .got entry is 4 bytes.
5168 The first three are reserved. */
5169 got_offset = (plt_index + 3) * 4;
5170
5171 /* Fill in the entry in the procedure linkage table. */
5172 if (! bfd_link_pic (info))
5173 {
5174 memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
5175 elf_mn10300_sizeof_plt (info));
5176 bfd_put_32 (output_bfd,
5177 (sgot->output_section->vma
5178 + sgot->output_offset
5179 + got_offset),
5180 (splt->contents + h->plt.offset
5181 + elf_mn10300_plt_symbol_offset (info)));
5182
5183 bfd_put_32 (output_bfd,
5184 (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
5185 (splt->contents + h->plt.offset
5186 + elf_mn10300_plt_plt0_offset (info)));
5187 }
5188 else
5189 {
5190 memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
5191 elf_mn10300_sizeof_plt (info));
5192
5193 bfd_put_32 (output_bfd, got_offset,
5194 (splt->contents + h->plt.offset
5195 + elf_mn10300_plt_symbol_offset (info)));
5196 }
5197
5198 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
5199 (splt->contents + h->plt.offset
5200 + elf_mn10300_plt_reloc_offset (info)));
5201
5202 /* Fill in the entry in the global offset table. */
5203 bfd_put_32 (output_bfd,
5204 (splt->output_section->vma
5205 + splt->output_offset
5206 + h->plt.offset
5207 + elf_mn10300_plt_temp_offset (info)),
5208 sgot->contents + got_offset);
5209
5210 /* Fill in the entry in the .rela.plt section. */
5211 rel.r_offset = (sgot->output_section->vma
5212 + sgot->output_offset
5213 + got_offset);
5214 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
5215 rel.r_addend = 0;
5216 bfd_elf32_swap_reloca_out (output_bfd, &rel,
5217 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5218 + plt_index));
5219
5220 if (!h->def_regular)
5221 /* Mark the symbol as undefined, rather than as defined in
5222 the .plt section. Leave the value alone. */
5223 sym->st_shndx = SHN_UNDEF;
5224 }
5225
5226 if (h->got.offset != (bfd_vma) -1)
5227 {
5228 asection * sgot;
5229 asection * srel;
5230 Elf_Internal_Rela rel;
5231
5232 /* This symbol has an entry in the global offset table. Set it up. */
5233 sgot = htab->root.sgot;
5234 srel = htab->root.srelgot;
5235 BFD_ASSERT (sgot != NULL && srel != NULL);
5236
5237 rel.r_offset = (sgot->output_section->vma
5238 + sgot->output_offset
5239 + (h->got.offset & ~1));
5240
5241 switch (elf_mn10300_hash_entry (h)->tls_type)
5242 {
5243 case GOT_TLS_GD:
5244 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5245 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4);
5246 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD);
5247 rel.r_addend = 0;
5248 bfd_elf32_swap_reloca_out (output_bfd, & rel,
5249 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5250 + srel->reloc_count));
5251 ++ srel->reloc_count;
5252 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF);
5253 rel.r_offset += 4;
5254 rel.r_addend = 0;
5255 break;
5256
5257 case GOT_TLS_IE:
5258 /* We originally stored the addend in the GOT, but at this
5259 point, we want to move it to the reloc instead as that's
5260 where the dynamic linker wants it. */
5261 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset);
5262 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5263 if (h->dynindx == -1)
5264 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
5265 else
5266 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF);
5267 break;
5268
5269 default:
5270 /* If this is a -Bsymbolic link, and the symbol is defined
5271 locally, we just want to emit a RELATIVE reloc. Likewise if
5272 the symbol was forced to be local because of a version file.
5273 The entry in the global offset table will already have been
5274 initialized in the relocate_section function. */
5275 if (bfd_link_pic (info)
5276 && (info->symbolic || h->dynindx == -1)
5277 && h->def_regular)
5278 {
5279 rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
5280 rel.r_addend = (h->root.u.def.value
5281 + h->root.u.def.section->output_section->vma
5282 + h->root.u.def.section->output_offset);
5283 }
5284 else
5285 {
5286 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5287 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
5288 rel.r_addend = 0;
5289 }
5290 }
5291
5292 if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE)
5293 {
5294 bfd_elf32_swap_reloca_out (output_bfd, &rel,
5295 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5296 + srel->reloc_count));
5297 ++ srel->reloc_count;
5298 }
5299 }
5300
5301 if (h->needs_copy)
5302 {
5303 asection * s;
5304 Elf_Internal_Rela rel;
5305
5306 /* This symbol needs a copy reloc. Set it up. */
5307 BFD_ASSERT (h->dynindx != -1
5308 && (h->root.type == bfd_link_hash_defined
5309 || h->root.type == bfd_link_hash_defweak));
5310
5311 s = bfd_get_linker_section (dynobj, ".rela.bss");
5312 BFD_ASSERT (s != NULL);
5313
5314 rel.r_offset = (h->root.u.def.value
5315 + h->root.u.def.section->output_section->vma
5316 + h->root.u.def.section->output_offset);
5317 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
5318 rel.r_addend = 0;
5319 bfd_elf32_swap_reloca_out (output_bfd, & rel,
5320 (bfd_byte *) ((Elf32_External_Rela *) s->contents
5321 + s->reloc_count));
5322 ++ s->reloc_count;
5323 }
5324
5325 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
5326 if (h == elf_hash_table (info)->hdynamic
5327 || h == elf_hash_table (info)->hgot)
5328 sym->st_shndx = SHN_ABS;
5329
5330 return true;
5331 }
5332
5333 /* Finish up the dynamic sections. */
5334
5335 static bool
5336 _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
5337 struct bfd_link_info * info)
5338 {
5339 bfd * dynobj;
5340 asection * sgot;
5341 asection * sdyn;
5342 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5343
5344 dynobj = htab->root.dynobj;
5345 sgot = htab->root.sgotplt;
5346 BFD_ASSERT (sgot != NULL);
5347 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5348
5349 if (elf_hash_table (info)->dynamic_sections_created)
5350 {
5351 asection * splt;
5352 Elf32_External_Dyn * dyncon;
5353 Elf32_External_Dyn * dynconend;
5354
5355 BFD_ASSERT (sdyn != NULL);
5356
5357 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5358 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5359
5360 for (; dyncon < dynconend; dyncon++)
5361 {
5362 Elf_Internal_Dyn dyn;
5363 asection * s;
5364
5365 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
5366
5367 switch (dyn.d_tag)
5368 {
5369 default:
5370 break;
5371
5372 case DT_PLTGOT:
5373 s = htab->root.sgot;
5374 goto get_vma;
5375
5376 case DT_JMPREL:
5377 s = htab->root.srelplt;
5378 get_vma:
5379 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5380 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5381 break;
5382
5383 case DT_PLTRELSZ:
5384 s = htab->root.srelplt;
5385 dyn.d_un.d_val = s->size;
5386 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5387 break;
5388 }
5389 }
5390
5391 /* Fill in the first entry in the procedure linkage table. */
5392 splt = htab->root.splt;
5393 if (splt && splt->size > 0)
5394 {
5395 if (bfd_link_pic (info))
5396 {
5397 memcpy (splt->contents, elf_mn10300_pic_plt_entry,
5398 elf_mn10300_sizeof_plt (info));
5399 }
5400 else
5401 {
5402 memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
5403 bfd_put_32 (output_bfd,
5404 sgot->output_section->vma + sgot->output_offset + 4,
5405 splt->contents + elf_mn10300_plt0_gotid_offset (info));
5406 bfd_put_32 (output_bfd,
5407 sgot->output_section->vma + sgot->output_offset + 8,
5408 splt->contents + elf_mn10300_plt0_linker_offset (info));
5409 }
5410
5411 /* UnixWare sets the entsize of .plt to 4, although that doesn't
5412 really seem like the right value. */
5413 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5414
5415 /* UnixWare sets the entsize of .plt to 4, but this is incorrect
5416 as it means that the size of the PLT0 section (15 bytes) is not
5417 a multiple of the sh_entsize. Some ELF tools flag this as an
5418 error. We could pad PLT0 to 16 bytes, but that would introduce
5419 compatibilty issues with previous toolchains, so instead we
5420 just set the entry size to 1. */
5421 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1;
5422 }
5423 }
5424
5425 /* Fill in the first three entries in the global offset table. */
5426 if (sgot->size > 0)
5427 {
5428 if (sdyn == NULL)
5429 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5430 else
5431 bfd_put_32 (output_bfd,
5432 sdyn->output_section->vma + sdyn->output_offset,
5433 sgot->contents);
5434 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5435 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5436 }
5437
5438 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5439
5440 return true;
5441 }
5442
5443 /* Classify relocation types, such that combreloc can sort them
5444 properly. */
5445
5446 static enum elf_reloc_type_class
5447 _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5448 const asection *rel_sec ATTRIBUTE_UNUSED,
5449 const Elf_Internal_Rela *rela)
5450 {
5451 switch ((int) ELF32_R_TYPE (rela->r_info))
5452 {
5453 case R_MN10300_RELATIVE: return reloc_class_relative;
5454 case R_MN10300_JMP_SLOT: return reloc_class_plt;
5455 case R_MN10300_COPY: return reloc_class_copy;
5456 default: return reloc_class_normal;
5457 }
5458 }
5459
5460 /* Allocate space for an MN10300 extension to the bfd elf data structure. */
5461
5462 static bool
5463 mn10300_elf_mkobject (bfd *abfd)
5464 {
5465 return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata),
5466 MN10300_ELF_DATA);
5467 }
5468
5469 #define bfd_elf32_mkobject mn10300_elf_mkobject
5470
5471 #ifndef ELF_ARCH
5472 #define TARGET_LITTLE_SYM mn10300_elf32_vec
5473 #define TARGET_LITTLE_NAME "elf32-mn10300"
5474 #define ELF_ARCH bfd_arch_mn10300
5475 #define ELF_TARGET_ID MN10300_ELF_DATA
5476 #define ELF_MACHINE_CODE EM_MN10300
5477 #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300
5478 #define ELF_MAXPAGESIZE 0x1000
5479 #endif
5480
5481 #define elf_info_to_howto mn10300_info_to_howto
5482 #define elf_info_to_howto_rel NULL
5483 #define elf_backend_can_gc_sections 1
5484 #define elf_backend_rela_normal 1
5485 #define elf_backend_check_relocs mn10300_elf_check_relocs
5486 #define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
5487 #define elf_backend_relocate_section mn10300_elf_relocate_section
5488 #define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
5489 #define bfd_elf32_bfd_get_relocated_section_contents \
5490 mn10300_elf_get_relocated_section_contents
5491 #define bfd_elf32_bfd_link_hash_table_create \
5492 elf32_mn10300_link_hash_table_create
5493
5494 #ifndef elf_symbol_leading_char
5495 #define elf_symbol_leading_char '_'
5496 #endif
5497
5498 /* So we can set bits in e_flags. */
5499 #define elf_backend_final_write_processing \
5500 _bfd_mn10300_elf_final_write_processing
5501 #define elf_backend_object_p _bfd_mn10300_elf_object_p
5502
5503 #define bfd_elf32_bfd_merge_private_bfd_data \
5504 _bfd_mn10300_elf_merge_private_bfd_data
5505
5506 #define elf_backend_can_gc_sections 1
5507 #define elf_backend_create_dynamic_sections \
5508 _bfd_mn10300_elf_create_dynamic_sections
5509 #define elf_backend_adjust_dynamic_symbol \
5510 _bfd_mn10300_elf_adjust_dynamic_symbol
5511 #define elf_backend_size_dynamic_sections \
5512 _bfd_mn10300_elf_size_dynamic_sections
5513 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
5514 #define elf_backend_finish_dynamic_symbol \
5515 _bfd_mn10300_elf_finish_dynamic_symbol
5516 #define elf_backend_finish_dynamic_sections \
5517 _bfd_mn10300_elf_finish_dynamic_sections
5518 #define elf_backend_copy_indirect_symbol \
5519 _bfd_mn10300_copy_indirect_symbol
5520 #define elf_backend_reloc_type_class \
5521 _bfd_mn10300_elf_reloc_type_class
5522
5523 #define elf_backend_want_got_plt 1
5524 #define elf_backend_plt_readonly 1
5525 #define elf_backend_want_plt_sym 0
5526 #define elf_backend_got_header_size 12
5527 #define elf_backend_dtrel_excludes_plt 1
5528
5529 #include "elf32-target.h"