]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
gdb/
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 if (name [0] == '.')
884 {
885 const char *p;
886 int n;
887 if (name[1] == 'd')
888 p = ".debug", n = 6;
889 else if (name[1] == 'g' && name[2] == 'n')
890 p = ".gnu.linkonce.wi.", n = 17;
891 else if (name[1] == 'g' && name[2] == 'd')
892 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
893 else if (name[1] == 'l')
894 p = ".line", n = 5;
895 else if (name[1] == 's')
896 p = ".stab", n = 5;
897 else if (name[1] == 'z')
898 p = ".zdebug", n = 7;
899 else
900 p = NULL, n = 0;
901 if (p != NULL && strncmp (name, p, n) == 0)
902 flags |= SEC_DEBUGGING;
903 }
904 }
905
906 /* As a GNU extension, if the name begins with .gnu.linkonce, we
907 only link a single copy of the section. This is used to support
908 g++. g++ will emit each template expansion in its own section.
909 The symbols will be defined as weak, so that multiple definitions
910 are permitted. The GNU linker extension is to actually discard
911 all but one of the sections. */
912 if (CONST_STRNEQ (name, ".gnu.linkonce")
913 && elf_next_in_group (newsect) == NULL)
914 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
915
916 bed = get_elf_backend_data (abfd);
917 if (bed->elf_backend_section_flags)
918 if (! bed->elf_backend_section_flags (&flags, hdr))
919 return FALSE;
920
921 if (! bfd_set_section_flags (abfd, newsect, flags))
922 return FALSE;
923
924 /* We do not parse the PT_NOTE segments as we are interested even in the
925 separate debug info files which may have the segments offsets corrupted.
926 PT_NOTEs from the core files are currently not parsed using BFD. */
927 if (hdr->sh_type == SHT_NOTE)
928 {
929 bfd_byte *contents;
930
931 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
932 return FALSE;
933
934 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
935 free (contents);
936 }
937
938 if ((flags & SEC_ALLOC) != 0)
939 {
940 Elf_Internal_Phdr *phdr;
941 unsigned int i, nload;
942
943 /* Some ELF linkers produce binaries with all the program header
944 p_paddr fields zero. If we have such a binary with more than
945 one PT_LOAD header, then leave the section lma equal to vma
946 so that we don't create sections with overlapping lma. */
947 phdr = elf_tdata (abfd)->phdr;
948 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
949 if (phdr->p_paddr != 0)
950 break;
951 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
952 ++nload;
953 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
954 return TRUE;
955
956 phdr = elf_tdata (abfd)->phdr;
957 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 {
959 if (((phdr->p_type == PT_LOAD
960 && (hdr->sh_flags & SHF_TLS) == 0)
961 || phdr->p_type == PT_TLS)
962 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
963 {
964 if ((flags & SEC_LOAD) == 0)
965 newsect->lma = (phdr->p_paddr
966 + hdr->sh_addr - phdr->p_vaddr);
967 else
968 /* We used to use the same adjustment for SEC_LOAD
969 sections, but that doesn't work if the segment
970 is packed with code from multiple VMAs.
971 Instead we calculate the section LMA based on
972 the segment LMA. It is assumed that the
973 segment will contain sections with contiguous
974 LMAs, even if the VMAs are not. */
975 newsect->lma = (phdr->p_paddr
976 + hdr->sh_offset - phdr->p_offset);
977
978 /* With contiguous segments, we can't tell from file
979 offsets whether a section with zero size should
980 be placed at the end of one segment or the
981 beginning of the next. Decide based on vaddr. */
982 if (hdr->sh_addr >= phdr->p_vaddr
983 && (hdr->sh_addr + hdr->sh_size
984 <= phdr->p_vaddr + phdr->p_memsz))
985 break;
986 }
987 }
988 }
989
990 /* Compress/decompress DWARF debug sections with names: .debug_* and
991 .zdebug_*, after the section flags is set. */
992 if ((flags & SEC_DEBUGGING)
993 && ((name[1] == 'd' && name[6] == '_')
994 || (name[1] == 'z' && name[7] == '_')))
995 {
996 enum { nothing, compress, decompress } action = nothing;
997 char *new_name;
998
999 if (bfd_is_section_compressed (abfd, newsect))
1000 {
1001 /* Compressed section. Check if we should decompress. */
1002 if ((abfd->flags & BFD_DECOMPRESS))
1003 action = decompress;
1004 }
1005 else
1006 {
1007 /* Normal section. Check if we should compress. */
1008 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1009 action = compress;
1010 }
1011
1012 new_name = NULL;
1013 switch (action)
1014 {
1015 case nothing:
1016 break;
1017 case compress:
1018 if (!bfd_init_section_compress_status (abfd, newsect))
1019 {
1020 (*_bfd_error_handler)
1021 (_("%B: unable to initialize compress status for section %s"),
1022 abfd, name);
1023 return FALSE;
1024 }
1025 if (name[1] != 'z')
1026 {
1027 unsigned int len = strlen (name);
1028
1029 new_name = bfd_alloc (abfd, len + 2);
1030 if (new_name == NULL)
1031 return FALSE;
1032 new_name[0] = '.';
1033 new_name[1] = 'z';
1034 memcpy (new_name + 2, name + 1, len);
1035 }
1036 break;
1037 case decompress:
1038 if (!bfd_init_section_decompress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize decompress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] == 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 memcpy (new_name + 1, name + 2, len - 1);
1054 }
1055 break;
1056 }
1057 if (new_name != NULL)
1058 bfd_rename_section (abfd, newsect, new_name);
1059 }
1060
1061 return TRUE;
1062 }
1063
1064 const char *const bfd_elf_section_type_names[] = {
1065 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1066 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1067 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1068 };
1069
1070 /* ELF relocs are against symbols. If we are producing relocatable
1071 output, and the reloc is against an external symbol, and nothing
1072 has given us any additional addend, the resulting reloc will also
1073 be against the same symbol. In such a case, we don't want to
1074 change anything about the way the reloc is handled, since it will
1075 all be done at final link time. Rather than put special case code
1076 into bfd_perform_relocation, all the reloc types use this howto
1077 function. It just short circuits the reloc if producing
1078 relocatable output against an external symbol. */
1079
1080 bfd_reloc_status_type
1081 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1082 arelent *reloc_entry,
1083 asymbol *symbol,
1084 void *data ATTRIBUTE_UNUSED,
1085 asection *input_section,
1086 bfd *output_bfd,
1087 char **error_message ATTRIBUTE_UNUSED)
1088 {
1089 if (output_bfd != NULL
1090 && (symbol->flags & BSF_SECTION_SYM) == 0
1091 && (! reloc_entry->howto->partial_inplace
1092 || reloc_entry->addend == 0))
1093 {
1094 reloc_entry->address += input_section->output_offset;
1095 return bfd_reloc_ok;
1096 }
1097
1098 return bfd_reloc_continue;
1099 }
1100 \f
1101 /* Copy the program header and other data from one object module to
1102 another. */
1103
1104 bfd_boolean
1105 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1106 {
1107 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1108 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1109 return TRUE;
1110
1111 BFD_ASSERT (!elf_flags_init (obfd)
1112 || (elf_elfheader (obfd)->e_flags
1113 == elf_elfheader (ibfd)->e_flags));
1114
1115 elf_gp (obfd) = elf_gp (ibfd);
1116 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1117 elf_flags_init (obfd) = TRUE;
1118
1119 /* Copy object attributes. */
1120 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1121 return TRUE;
1122 }
1123
1124 static const char *
1125 get_segment_type (unsigned int p_type)
1126 {
1127 const char *pt;
1128 switch (p_type)
1129 {
1130 case PT_NULL: pt = "NULL"; break;
1131 case PT_LOAD: pt = "LOAD"; break;
1132 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1133 case PT_INTERP: pt = "INTERP"; break;
1134 case PT_NOTE: pt = "NOTE"; break;
1135 case PT_SHLIB: pt = "SHLIB"; break;
1136 case PT_PHDR: pt = "PHDR"; break;
1137 case PT_TLS: pt = "TLS"; break;
1138 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1139 case PT_GNU_STACK: pt = "STACK"; break;
1140 case PT_GNU_RELRO: pt = "RELRO"; break;
1141 default: pt = NULL; break;
1142 }
1143 return pt;
1144 }
1145
1146 /* Print out the program headers. */
1147
1148 bfd_boolean
1149 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1150 {
1151 FILE *f = (FILE *) farg;
1152 Elf_Internal_Phdr *p;
1153 asection *s;
1154 bfd_byte *dynbuf = NULL;
1155
1156 p = elf_tdata (abfd)->phdr;
1157 if (p != NULL)
1158 {
1159 unsigned int i, c;
1160
1161 fprintf (f, _("\nProgram Header:\n"));
1162 c = elf_elfheader (abfd)->e_phnum;
1163 for (i = 0; i < c; i++, p++)
1164 {
1165 const char *pt = get_segment_type (p->p_type);
1166 char buf[20];
1167
1168 if (pt == NULL)
1169 {
1170 sprintf (buf, "0x%lx", p->p_type);
1171 pt = buf;
1172 }
1173 fprintf (f, "%8s off 0x", pt);
1174 bfd_fprintf_vma (abfd, f, p->p_offset);
1175 fprintf (f, " vaddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1177 fprintf (f, " paddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_paddr);
1179 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1180 fprintf (f, " filesz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_filesz);
1182 fprintf (f, " memsz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_memsz);
1184 fprintf (f, " flags %c%c%c",
1185 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1186 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1187 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1188 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1189 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1190 fprintf (f, "\n");
1191 }
1192 }
1193
1194 s = bfd_get_section_by_name (abfd, ".dynamic");
1195 if (s != NULL)
1196 {
1197 unsigned int elfsec;
1198 unsigned long shlink;
1199 bfd_byte *extdyn, *extdynend;
1200 size_t extdynsize;
1201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1202
1203 fprintf (f, _("\nDynamic Section:\n"));
1204
1205 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1206 goto error_return;
1207
1208 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1209 if (elfsec == SHN_BAD)
1210 goto error_return;
1211 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1212
1213 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1214 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1215
1216 extdyn = dynbuf;
1217 extdynend = extdyn + s->size;
1218 for (; extdyn < extdynend; extdyn += extdynsize)
1219 {
1220 Elf_Internal_Dyn dyn;
1221 const char *name = "";
1222 char ab[20];
1223 bfd_boolean stringp;
1224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1225
1226 (*swap_dyn_in) (abfd, extdyn, &dyn);
1227
1228 if (dyn.d_tag == DT_NULL)
1229 break;
1230
1231 stringp = FALSE;
1232 switch (dyn.d_tag)
1233 {
1234 default:
1235 if (bed->elf_backend_get_target_dtag)
1236 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1237
1238 if (!strcmp (name, ""))
1239 {
1240 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1241 name = ab;
1242 }
1243 break;
1244
1245 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1246 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1247 case DT_PLTGOT: name = "PLTGOT"; break;
1248 case DT_HASH: name = "HASH"; break;
1249 case DT_STRTAB: name = "STRTAB"; break;
1250 case DT_SYMTAB: name = "SYMTAB"; break;
1251 case DT_RELA: name = "RELA"; break;
1252 case DT_RELASZ: name = "RELASZ"; break;
1253 case DT_RELAENT: name = "RELAENT"; break;
1254 case DT_STRSZ: name = "STRSZ"; break;
1255 case DT_SYMENT: name = "SYMENT"; break;
1256 case DT_INIT: name = "INIT"; break;
1257 case DT_FINI: name = "FINI"; break;
1258 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1259 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1260 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1261 case DT_REL: name = "REL"; break;
1262 case DT_RELSZ: name = "RELSZ"; break;
1263 case DT_RELENT: name = "RELENT"; break;
1264 case DT_PLTREL: name = "PLTREL"; break;
1265 case DT_DEBUG: name = "DEBUG"; break;
1266 case DT_TEXTREL: name = "TEXTREL"; break;
1267 case DT_JMPREL: name = "JMPREL"; break;
1268 case DT_BIND_NOW: name = "BIND_NOW"; break;
1269 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1270 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1271 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1272 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1273 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1274 case DT_FLAGS: name = "FLAGS"; break;
1275 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1276 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1277 case DT_CHECKSUM: name = "CHECKSUM"; break;
1278 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1279 case DT_MOVEENT: name = "MOVEENT"; break;
1280 case DT_MOVESZ: name = "MOVESZ"; break;
1281 case DT_FEATURE: name = "FEATURE"; break;
1282 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1283 case DT_SYMINSZ: name = "SYMINSZ"; break;
1284 case DT_SYMINENT: name = "SYMINENT"; break;
1285 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1286 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1287 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1288 case DT_PLTPAD: name = "PLTPAD"; break;
1289 case DT_MOVETAB: name = "MOVETAB"; break;
1290 case DT_SYMINFO: name = "SYMINFO"; break;
1291 case DT_RELACOUNT: name = "RELACOUNT"; break;
1292 case DT_RELCOUNT: name = "RELCOUNT"; break;
1293 case DT_FLAGS_1: name = "FLAGS_1"; break;
1294 case DT_VERSYM: name = "VERSYM"; break;
1295 case DT_VERDEF: name = "VERDEF"; break;
1296 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1297 case DT_VERNEED: name = "VERNEED"; break;
1298 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1299 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1300 case DT_USED: name = "USED"; break;
1301 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1302 case DT_GNU_HASH: name = "GNU_HASH"; break;
1303 }
1304
1305 fprintf (f, " %-20s ", name);
1306 if (! stringp)
1307 {
1308 fprintf (f, "0x");
1309 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1310 }
1311 else
1312 {
1313 const char *string;
1314 unsigned int tagv = dyn.d_un.d_val;
1315
1316 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1317 if (string == NULL)
1318 goto error_return;
1319 fprintf (f, "%s", string);
1320 }
1321 fprintf (f, "\n");
1322 }
1323
1324 free (dynbuf);
1325 dynbuf = NULL;
1326 }
1327
1328 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1329 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1330 {
1331 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1332 return FALSE;
1333 }
1334
1335 if (elf_dynverdef (abfd) != 0)
1336 {
1337 Elf_Internal_Verdef *t;
1338
1339 fprintf (f, _("\nVersion definitions:\n"));
1340 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1341 {
1342 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1343 t->vd_flags, t->vd_hash,
1344 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1345 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1346 {
1347 Elf_Internal_Verdaux *a;
1348
1349 fprintf (f, "\t");
1350 for (a = t->vd_auxptr->vda_nextptr;
1351 a != NULL;
1352 a = a->vda_nextptr)
1353 fprintf (f, "%s ",
1354 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1355 fprintf (f, "\n");
1356 }
1357 }
1358 }
1359
1360 if (elf_dynverref (abfd) != 0)
1361 {
1362 Elf_Internal_Verneed *t;
1363
1364 fprintf (f, _("\nVersion References:\n"));
1365 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1366 {
1367 Elf_Internal_Vernaux *a;
1368
1369 fprintf (f, _(" required from %s:\n"),
1370 t->vn_filename ? t->vn_filename : "<corrupt>");
1371 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1372 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1373 a->vna_flags, a->vna_other,
1374 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1375 }
1376 }
1377
1378 return TRUE;
1379
1380 error_return:
1381 if (dynbuf != NULL)
1382 free (dynbuf);
1383 return FALSE;
1384 }
1385
1386 /* Display ELF-specific fields of a symbol. */
1387
1388 void
1389 bfd_elf_print_symbol (bfd *abfd,
1390 void *filep,
1391 asymbol *symbol,
1392 bfd_print_symbol_type how)
1393 {
1394 FILE *file = (FILE *) filep;
1395 switch (how)
1396 {
1397 case bfd_print_symbol_name:
1398 fprintf (file, "%s", symbol->name);
1399 break;
1400 case bfd_print_symbol_more:
1401 fprintf (file, "elf ");
1402 bfd_fprintf_vma (abfd, file, symbol->value);
1403 fprintf (file, " %lx", (unsigned long) symbol->flags);
1404 break;
1405 case bfd_print_symbol_all:
1406 {
1407 const char *section_name;
1408 const char *name = NULL;
1409 const struct elf_backend_data *bed;
1410 unsigned char st_other;
1411 bfd_vma val;
1412
1413 section_name = symbol->section ? symbol->section->name : "(*none*)";
1414
1415 bed = get_elf_backend_data (abfd);
1416 if (bed->elf_backend_print_symbol_all)
1417 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1418
1419 if (name == NULL)
1420 {
1421 name = symbol->name;
1422 bfd_print_symbol_vandf (abfd, file, symbol);
1423 }
1424
1425 fprintf (file, " %s\t", section_name);
1426 /* Print the "other" value for a symbol. For common symbols,
1427 we've already printed the size; now print the alignment.
1428 For other symbols, we have no specified alignment, and
1429 we've printed the address; now print the size. */
1430 if (symbol->section && bfd_is_com_section (symbol->section))
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1432 else
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1434 bfd_fprintf_vma (abfd, file, val);
1435
1436 /* If we have version information, print it. */
1437 if (elf_tdata (abfd)->dynversym_section != 0
1438 && (elf_tdata (abfd)->dynverdef_section != 0
1439 || elf_tdata (abfd)->dynverref_section != 0))
1440 {
1441 unsigned int vernum;
1442 const char *version_string;
1443
1444 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1445
1446 if (vernum == 0)
1447 version_string = "";
1448 else if (vernum == 1)
1449 version_string = "Base";
1450 else if (vernum <= elf_tdata (abfd)->cverdefs)
1451 version_string =
1452 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1453 else
1454 {
1455 Elf_Internal_Verneed *t;
1456
1457 version_string = "";
1458 for (t = elf_tdata (abfd)->verref;
1459 t != NULL;
1460 t = t->vn_nextref)
1461 {
1462 Elf_Internal_Vernaux *a;
1463
1464 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1465 {
1466 if (a->vna_other == vernum)
1467 {
1468 version_string = a->vna_nodename;
1469 break;
1470 }
1471 }
1472 }
1473 }
1474
1475 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1476 fprintf (file, " %-11s", version_string);
1477 else
1478 {
1479 int i;
1480
1481 fprintf (file, " (%s)", version_string);
1482 for (i = 10 - strlen (version_string); i > 0; --i)
1483 putc (' ', file);
1484 }
1485 }
1486
1487 /* If the st_other field is not zero, print it. */
1488 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1489
1490 switch (st_other)
1491 {
1492 case 0: break;
1493 case STV_INTERNAL: fprintf (file, " .internal"); break;
1494 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1495 case STV_PROTECTED: fprintf (file, " .protected"); break;
1496 default:
1497 /* Some other non-defined flags are also present, so print
1498 everything hex. */
1499 fprintf (file, " 0x%02x", (unsigned int) st_other);
1500 }
1501
1502 fprintf (file, " %s", name);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Allocate an ELF string table--force the first byte to be zero. */
1509
1510 struct bfd_strtab_hash *
1511 _bfd_elf_stringtab_init (void)
1512 {
1513 struct bfd_strtab_hash *ret;
1514
1515 ret = _bfd_stringtab_init ();
1516 if (ret != NULL)
1517 {
1518 bfd_size_type loc;
1519
1520 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1521 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1522 if (loc == (bfd_size_type) -1)
1523 {
1524 _bfd_stringtab_free (ret);
1525 ret = NULL;
1526 }
1527 }
1528 return ret;
1529 }
1530 \f
1531 /* ELF .o/exec file reading */
1532
1533 /* Create a new bfd section from an ELF section header. */
1534
1535 bfd_boolean
1536 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1537 {
1538 Elf_Internal_Shdr *hdr;
1539 Elf_Internal_Ehdr *ehdr;
1540 const struct elf_backend_data *bed;
1541 const char *name;
1542
1543 if (shindex >= elf_numsections (abfd))
1544 return FALSE;
1545
1546 hdr = elf_elfsections (abfd)[shindex];
1547 ehdr = elf_elfheader (abfd);
1548 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1549 hdr->sh_name);
1550 if (name == NULL)
1551 return FALSE;
1552
1553 bed = get_elf_backend_data (abfd);
1554 switch (hdr->sh_type)
1555 {
1556 case SHT_NULL:
1557 /* Inactive section. Throw it away. */
1558 return TRUE;
1559
1560 case SHT_PROGBITS: /* Normal section with contents. */
1561 case SHT_NOBITS: /* .bss section. */
1562 case SHT_HASH: /* .hash section. */
1563 case SHT_NOTE: /* .note section. */
1564 case SHT_INIT_ARRAY: /* .init_array section. */
1565 case SHT_FINI_ARRAY: /* .fini_array section. */
1566 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1567 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1568 case SHT_GNU_HASH: /* .gnu.hash section. */
1569 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1570
1571 case SHT_DYNAMIC: /* Dynamic linking information. */
1572 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1573 return FALSE;
1574 if (hdr->sh_link > elf_numsections (abfd))
1575 {
1576 /* PR 10478: Accept Solaris binaries with a sh_link
1577 field set to SHN_BEFORE or SHN_AFTER. */
1578 switch (bfd_get_arch (abfd))
1579 {
1580 case bfd_arch_i386:
1581 case bfd_arch_sparc:
1582 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1583 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1584 break;
1585 /* Otherwise fall through. */
1586 default:
1587 return FALSE;
1588 }
1589 }
1590 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1591 return FALSE;
1592 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1593 {
1594 Elf_Internal_Shdr *dynsymhdr;
1595
1596 /* The shared libraries distributed with hpux11 have a bogus
1597 sh_link field for the ".dynamic" section. Find the
1598 string table for the ".dynsym" section instead. */
1599 if (elf_dynsymtab (abfd) != 0)
1600 {
1601 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1602 hdr->sh_link = dynsymhdr->sh_link;
1603 }
1604 else
1605 {
1606 unsigned int i, num_sec;
1607
1608 num_sec = elf_numsections (abfd);
1609 for (i = 1; i < num_sec; i++)
1610 {
1611 dynsymhdr = elf_elfsections (abfd)[i];
1612 if (dynsymhdr->sh_type == SHT_DYNSYM)
1613 {
1614 hdr->sh_link = dynsymhdr->sh_link;
1615 break;
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case SHT_SYMTAB: /* A symbol table */
1623 if (elf_onesymtab (abfd) == shindex)
1624 return TRUE;
1625
1626 if (hdr->sh_entsize != bed->s->sizeof_sym)
1627 return FALSE;
1628 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1629 {
1630 if (hdr->sh_size != 0)
1631 return FALSE;
1632 /* Some assemblers erroneously set sh_info to one with a
1633 zero sh_size. ld sees this as a global symbol count
1634 of (unsigned) -1. Fix it here. */
1635 hdr->sh_info = 0;
1636 return TRUE;
1637 }
1638 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1639 elf_onesymtab (abfd) = shindex;
1640 elf_tdata (abfd)->symtab_hdr = *hdr;
1641 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1642 abfd->flags |= HAS_SYMS;
1643
1644 /* Sometimes a shared object will map in the symbol table. If
1645 SHF_ALLOC is set, and this is a shared object, then we also
1646 treat this section as a BFD section. We can not base the
1647 decision purely on SHF_ALLOC, because that flag is sometimes
1648 set in a relocatable object file, which would confuse the
1649 linker. */
1650 if ((hdr->sh_flags & SHF_ALLOC) != 0
1651 && (abfd->flags & DYNAMIC) != 0
1652 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1653 shindex))
1654 return FALSE;
1655
1656 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1657 can't read symbols without that section loaded as well. It
1658 is most likely specified by the next section header. */
1659 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1660 {
1661 unsigned int i, num_sec;
1662
1663 num_sec = elf_numsections (abfd);
1664 for (i = shindex + 1; i < num_sec; i++)
1665 {
1666 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1667 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1668 && hdr2->sh_link == shindex)
1669 break;
1670 }
1671 if (i == num_sec)
1672 for (i = 1; i < shindex; i++)
1673 {
1674 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1675 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1676 && hdr2->sh_link == shindex)
1677 break;
1678 }
1679 if (i != shindex)
1680 return bfd_section_from_shdr (abfd, i);
1681 }
1682 return TRUE;
1683
1684 case SHT_DYNSYM: /* A dynamic symbol table */
1685 if (elf_dynsymtab (abfd) == shindex)
1686 return TRUE;
1687
1688 if (hdr->sh_entsize != bed->s->sizeof_sym)
1689 return FALSE;
1690 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1691 {
1692 if (hdr->sh_size != 0)
1693 return FALSE;
1694 /* Some linkers erroneously set sh_info to one with a
1695 zero sh_size. ld sees this as a global symbol count
1696 of (unsigned) -1. Fix it here. */
1697 hdr->sh_info = 0;
1698 return TRUE;
1699 }
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2065 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2066 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2070 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2071 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2072 { NULL, 0, 0, 0, 0 }
2073 };
2074
2075 static const struct bfd_elf_special_section special_sections_f[] =
2076 {
2077 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2078 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2079 { NULL, 0, 0, 0, 0 }
2080 };
2081
2082 static const struct bfd_elf_special_section special_sections_g[] =
2083 {
2084 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2085 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2086 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2088 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2089 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2090 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2092 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2093 { NULL, 0, 0, 0, 0 }
2094 };
2095
2096 static const struct bfd_elf_special_section special_sections_h[] =
2097 {
2098 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_i[] =
2103 {
2104 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2105 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2106 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2107 { NULL, 0, 0, 0, 0 }
2108 };
2109
2110 static const struct bfd_elf_special_section special_sections_l[] =
2111 {
2112 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_n[] =
2117 {
2118 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2119 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2120 { NULL, 0, 0, 0, 0 }
2121 };
2122
2123 static const struct bfd_elf_special_section special_sections_p[] =
2124 {
2125 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_r[] =
2131 {
2132 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2133 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2134 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2135 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_s[] =
2140 {
2141 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2142 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2143 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2144 /* See struct bfd_elf_special_section declaration for the semantics of
2145 this special case where .prefix_length != strlen (.prefix). */
2146 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_t[] =
2151 {
2152 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2153 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2154 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2155 { NULL, 0, 0, 0, 0 }
2156 };
2157
2158 static const struct bfd_elf_special_section special_sections_z[] =
2159 {
2160 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2161 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2162 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2164 { NULL, 0, 0, 0, 0 }
2165 };
2166
2167 static const struct bfd_elf_special_section * const special_sections[] =
2168 {
2169 special_sections_b, /* 'b' */
2170 special_sections_c, /* 'c' */
2171 special_sections_d, /* 'd' */
2172 NULL, /* 'e' */
2173 special_sections_f, /* 'f' */
2174 special_sections_g, /* 'g' */
2175 special_sections_h, /* 'h' */
2176 special_sections_i, /* 'i' */
2177 NULL, /* 'j' */
2178 NULL, /* 'k' */
2179 special_sections_l, /* 'l' */
2180 NULL, /* 'm' */
2181 special_sections_n, /* 'n' */
2182 NULL, /* 'o' */
2183 special_sections_p, /* 'p' */
2184 NULL, /* 'q' */
2185 special_sections_r, /* 'r' */
2186 special_sections_s, /* 's' */
2187 special_sections_t, /* 't' */
2188 NULL, /* 'u' */
2189 NULL, /* 'v' */
2190 NULL, /* 'w' */
2191 NULL, /* 'x' */
2192 NULL, /* 'y' */
2193 special_sections_z /* 'z' */
2194 };
2195
2196 const struct bfd_elf_special_section *
2197 _bfd_elf_get_special_section (const char *name,
2198 const struct bfd_elf_special_section *spec,
2199 unsigned int rela)
2200 {
2201 int i;
2202 int len;
2203
2204 len = strlen (name);
2205
2206 for (i = 0; spec[i].prefix != NULL; i++)
2207 {
2208 int suffix_len;
2209 int prefix_len = spec[i].prefix_length;
2210
2211 if (len < prefix_len)
2212 continue;
2213 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2214 continue;
2215
2216 suffix_len = spec[i].suffix_length;
2217 if (suffix_len <= 0)
2218 {
2219 if (name[prefix_len] != 0)
2220 {
2221 if (suffix_len == 0)
2222 continue;
2223 if (name[prefix_len] != '.'
2224 && (suffix_len == -2
2225 || (rela && spec[i].type == SHT_REL)))
2226 continue;
2227 }
2228 }
2229 else
2230 {
2231 if (len < prefix_len + suffix_len)
2232 continue;
2233 if (memcmp (name + len - suffix_len,
2234 spec[i].prefix + prefix_len,
2235 suffix_len) != 0)
2236 continue;
2237 }
2238 return &spec[i];
2239 }
2240
2241 return NULL;
2242 }
2243
2244 const struct bfd_elf_special_section *
2245 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2246 {
2247 int i;
2248 const struct bfd_elf_special_section *spec;
2249 const struct elf_backend_data *bed;
2250
2251 /* See if this is one of the special sections. */
2252 if (sec->name == NULL)
2253 return NULL;
2254
2255 bed = get_elf_backend_data (abfd);
2256 spec = bed->special_sections;
2257 if (spec)
2258 {
2259 spec = _bfd_elf_get_special_section (sec->name,
2260 bed->special_sections,
2261 sec->use_rela_p);
2262 if (spec != NULL)
2263 return spec;
2264 }
2265
2266 if (sec->name[0] != '.')
2267 return NULL;
2268
2269 i = sec->name[1] - 'b';
2270 if (i < 0 || i > 'z' - 'b')
2271 return NULL;
2272
2273 spec = special_sections[i];
2274
2275 if (spec == NULL)
2276 return NULL;
2277
2278 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2279 }
2280
2281 bfd_boolean
2282 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2283 {
2284 struct bfd_elf_section_data *sdata;
2285 const struct elf_backend_data *bed;
2286 const struct bfd_elf_special_section *ssect;
2287
2288 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2289 if (sdata == NULL)
2290 {
2291 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2292 sizeof (*sdata));
2293 if (sdata == NULL)
2294 return FALSE;
2295 sec->used_by_bfd = sdata;
2296 }
2297
2298 /* Indicate whether or not this section should use RELA relocations. */
2299 bed = get_elf_backend_data (abfd);
2300 sec->use_rela_p = bed->default_use_rela_p;
2301
2302 /* When we read a file, we don't need to set ELF section type and
2303 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2304 anyway. We will set ELF section type and flags for all linker
2305 created sections. If user specifies BFD section flags, we will
2306 set ELF section type and flags based on BFD section flags in
2307 elf_fake_sections. Special handling for .init_array/.fini_array
2308 output sections since they may contain .ctors/.dtors input
2309 sections. We don't want _bfd_elf_init_private_section_data to
2310 copy ELF section type from .ctors/.dtors input sections. */
2311 if (abfd->direction != read_direction
2312 || (sec->flags & SEC_LINKER_CREATED) != 0)
2313 {
2314 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2315 if (ssect != NULL
2316 && (!sec->flags
2317 || (sec->flags & SEC_LINKER_CREATED) != 0
2318 || ssect->type == SHT_INIT_ARRAY
2319 || ssect->type == SHT_FINI_ARRAY))
2320 {
2321 elf_section_type (sec) = ssect->type;
2322 elf_section_flags (sec) = ssect->attr;
2323 }
2324 }
2325
2326 return _bfd_generic_new_section_hook (abfd, sec);
2327 }
2328
2329 /* Create a new bfd section from an ELF program header.
2330
2331 Since program segments have no names, we generate a synthetic name
2332 of the form segment<NUM>, where NUM is generally the index in the
2333 program header table. For segments that are split (see below) we
2334 generate the names segment<NUM>a and segment<NUM>b.
2335
2336 Note that some program segments may have a file size that is different than
2337 (less than) the memory size. All this means is that at execution the
2338 system must allocate the amount of memory specified by the memory size,
2339 but only initialize it with the first "file size" bytes read from the
2340 file. This would occur for example, with program segments consisting
2341 of combined data+bss.
2342
2343 To handle the above situation, this routine generates TWO bfd sections
2344 for the single program segment. The first has the length specified by
2345 the file size of the segment, and the second has the length specified
2346 by the difference between the two sizes. In effect, the segment is split
2347 into its initialized and uninitialized parts.
2348
2349 */
2350
2351 bfd_boolean
2352 _bfd_elf_make_section_from_phdr (bfd *abfd,
2353 Elf_Internal_Phdr *hdr,
2354 int hdr_index,
2355 const char *type_name)
2356 {
2357 asection *newsect;
2358 char *name;
2359 char namebuf[64];
2360 size_t len;
2361 int split;
2362
2363 split = ((hdr->p_memsz > 0)
2364 && (hdr->p_filesz > 0)
2365 && (hdr->p_memsz > hdr->p_filesz));
2366
2367 if (hdr->p_filesz > 0)
2368 {
2369 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2370 len = strlen (namebuf) + 1;
2371 name = (char *) bfd_alloc (abfd, len);
2372 if (!name)
2373 return FALSE;
2374 memcpy (name, namebuf, len);
2375 newsect = bfd_make_section (abfd, name);
2376 if (newsect == NULL)
2377 return FALSE;
2378 newsect->vma = hdr->p_vaddr;
2379 newsect->lma = hdr->p_paddr;
2380 newsect->size = hdr->p_filesz;
2381 newsect->filepos = hdr->p_offset;
2382 newsect->flags |= SEC_HAS_CONTENTS;
2383 newsect->alignment_power = bfd_log2 (hdr->p_align);
2384 if (hdr->p_type == PT_LOAD)
2385 {
2386 newsect->flags |= SEC_ALLOC;
2387 newsect->flags |= SEC_LOAD;
2388 if (hdr->p_flags & PF_X)
2389 {
2390 /* FIXME: all we known is that it has execute PERMISSION,
2391 may be data. */
2392 newsect->flags |= SEC_CODE;
2393 }
2394 }
2395 if (!(hdr->p_flags & PF_W))
2396 {
2397 newsect->flags |= SEC_READONLY;
2398 }
2399 }
2400
2401 if (hdr->p_memsz > hdr->p_filesz)
2402 {
2403 bfd_vma align;
2404
2405 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2406 len = strlen (namebuf) + 1;
2407 name = (char *) bfd_alloc (abfd, len);
2408 if (!name)
2409 return FALSE;
2410 memcpy (name, namebuf, len);
2411 newsect = bfd_make_section (abfd, name);
2412 if (newsect == NULL)
2413 return FALSE;
2414 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2415 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2416 newsect->size = hdr->p_memsz - hdr->p_filesz;
2417 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2418 align = newsect->vma & -newsect->vma;
2419 if (align == 0 || align > hdr->p_align)
2420 align = hdr->p_align;
2421 newsect->alignment_power = bfd_log2 (align);
2422 if (hdr->p_type == PT_LOAD)
2423 {
2424 /* Hack for gdb. Segments that have not been modified do
2425 not have their contents written to a core file, on the
2426 assumption that a debugger can find the contents in the
2427 executable. We flag this case by setting the fake
2428 section size to zero. Note that "real" bss sections will
2429 always have their contents dumped to the core file. */
2430 if (bfd_get_format (abfd) == bfd_core)
2431 newsect->size = 0;
2432 newsect->flags |= SEC_ALLOC;
2433 if (hdr->p_flags & PF_X)
2434 newsect->flags |= SEC_CODE;
2435 }
2436 if (!(hdr->p_flags & PF_W))
2437 newsect->flags |= SEC_READONLY;
2438 }
2439
2440 return TRUE;
2441 }
2442
2443 bfd_boolean
2444 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2445 {
2446 const struct elf_backend_data *bed;
2447
2448 switch (hdr->p_type)
2449 {
2450 case PT_NULL:
2451 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2452
2453 case PT_LOAD:
2454 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2455
2456 case PT_DYNAMIC:
2457 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2458
2459 case PT_INTERP:
2460 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2461
2462 case PT_NOTE:
2463 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2464 return FALSE;
2465 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2466 return FALSE;
2467 return TRUE;
2468
2469 case PT_SHLIB:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2471
2472 case PT_PHDR:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2474
2475 case PT_GNU_EH_FRAME:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2477 "eh_frame_hdr");
2478
2479 case PT_GNU_STACK:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2481
2482 case PT_GNU_RELRO:
2483 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2484
2485 default:
2486 /* Check for any processor-specific program segment types. */
2487 bed = get_elf_backend_data (abfd);
2488 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2489 }
2490 }
2491
2492 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2493 REL or RELA. */
2494
2495 Elf_Internal_Shdr *
2496 _bfd_elf_single_rel_hdr (asection *sec)
2497 {
2498 if (elf_section_data (sec)->rel.hdr)
2499 {
2500 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2501 return elf_section_data (sec)->rel.hdr;
2502 }
2503 else
2504 return elf_section_data (sec)->rela.hdr;
2505 }
2506
2507 /* Allocate and initialize a section-header for a new reloc section,
2508 containing relocations against ASECT. It is stored in RELDATA. If
2509 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2510 relocations. */
2511
2512 bfd_boolean
2513 _bfd_elf_init_reloc_shdr (bfd *abfd,
2514 struct bfd_elf_section_reloc_data *reldata,
2515 asection *asect,
2516 bfd_boolean use_rela_p)
2517 {
2518 Elf_Internal_Shdr *rel_hdr;
2519 char *name;
2520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2521 bfd_size_type amt;
2522
2523 amt = sizeof (Elf_Internal_Shdr);
2524 BFD_ASSERT (reldata->hdr == NULL);
2525 rel_hdr = bfd_zalloc (abfd, amt);
2526 reldata->hdr = rel_hdr;
2527
2528 amt = sizeof ".rela" + strlen (asect->name);
2529 name = (char *) bfd_alloc (abfd, amt);
2530 if (name == NULL)
2531 return FALSE;
2532 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2533 rel_hdr->sh_name =
2534 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2535 FALSE);
2536 if (rel_hdr->sh_name == (unsigned int) -1)
2537 return FALSE;
2538 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2539 rel_hdr->sh_entsize = (use_rela_p
2540 ? bed->s->sizeof_rela
2541 : bed->s->sizeof_rel);
2542 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2543 rel_hdr->sh_flags = 0;
2544 rel_hdr->sh_addr = 0;
2545 rel_hdr->sh_size = 0;
2546 rel_hdr->sh_offset = 0;
2547
2548 return TRUE;
2549 }
2550
2551 /* Return the default section type based on the passed in section flags. */
2552
2553 int
2554 bfd_elf_get_default_section_type (flagword flags)
2555 {
2556 if ((flags & SEC_ALLOC) != 0
2557 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2558 return SHT_NOBITS;
2559 return SHT_PROGBITS;
2560 }
2561
2562 struct fake_section_arg
2563 {
2564 struct bfd_link_info *link_info;
2565 bfd_boolean failed;
2566 };
2567
2568 /* Set up an ELF internal section header for a section. */
2569
2570 static void
2571 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2572 {
2573 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2575 struct bfd_elf_section_data *esd = elf_section_data (asect);
2576 Elf_Internal_Shdr *this_hdr;
2577 unsigned int sh_type;
2578
2579 if (arg->failed)
2580 {
2581 /* We already failed; just get out of the bfd_map_over_sections
2582 loop. */
2583 return;
2584 }
2585
2586 this_hdr = &esd->this_hdr;
2587
2588 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2589 asect->name, FALSE);
2590 if (this_hdr->sh_name == (unsigned int) -1)
2591 {
2592 arg->failed = TRUE;
2593 return;
2594 }
2595
2596 /* Don't clear sh_flags. Assembler may set additional bits. */
2597
2598 if ((asect->flags & SEC_ALLOC) != 0
2599 || asect->user_set_vma)
2600 this_hdr->sh_addr = asect->vma;
2601 else
2602 this_hdr->sh_addr = 0;
2603
2604 this_hdr->sh_offset = 0;
2605 this_hdr->sh_size = asect->size;
2606 this_hdr->sh_link = 0;
2607 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2608 /* The sh_entsize and sh_info fields may have been set already by
2609 copy_private_section_data. */
2610
2611 this_hdr->bfd_section = asect;
2612 this_hdr->contents = NULL;
2613
2614 /* If the section type is unspecified, we set it based on
2615 asect->flags. */
2616 if ((asect->flags & SEC_GROUP) != 0)
2617 sh_type = SHT_GROUP;
2618 else
2619 sh_type = bfd_elf_get_default_section_type (asect->flags);
2620
2621 if (this_hdr->sh_type == SHT_NULL)
2622 this_hdr->sh_type = sh_type;
2623 else if (this_hdr->sh_type == SHT_NOBITS
2624 && sh_type == SHT_PROGBITS
2625 && (asect->flags & SEC_ALLOC) != 0)
2626 {
2627 /* Warn if we are changing a NOBITS section to PROGBITS, but
2628 allow the link to proceed. This can happen when users link
2629 non-bss input sections to bss output sections, or emit data
2630 to a bss output section via a linker script. */
2631 (*_bfd_error_handler)
2632 (_("warning: section `%A' type changed to PROGBITS"), asect);
2633 this_hdr->sh_type = sh_type;
2634 }
2635
2636 switch (this_hdr->sh_type)
2637 {
2638 default:
2639 break;
2640
2641 case SHT_STRTAB:
2642 case SHT_INIT_ARRAY:
2643 case SHT_FINI_ARRAY:
2644 case SHT_PREINIT_ARRAY:
2645 case SHT_NOTE:
2646 case SHT_NOBITS:
2647 case SHT_PROGBITS:
2648 break;
2649
2650 case SHT_HASH:
2651 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2652 break;
2653
2654 case SHT_DYNSYM:
2655 this_hdr->sh_entsize = bed->s->sizeof_sym;
2656 break;
2657
2658 case SHT_DYNAMIC:
2659 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2660 break;
2661
2662 case SHT_RELA:
2663 if (get_elf_backend_data (abfd)->may_use_rela_p)
2664 this_hdr->sh_entsize = bed->s->sizeof_rela;
2665 break;
2666
2667 case SHT_REL:
2668 if (get_elf_backend_data (abfd)->may_use_rel_p)
2669 this_hdr->sh_entsize = bed->s->sizeof_rel;
2670 break;
2671
2672 case SHT_GNU_versym:
2673 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2674 break;
2675
2676 case SHT_GNU_verdef:
2677 this_hdr->sh_entsize = 0;
2678 /* objcopy or strip will copy over sh_info, but may not set
2679 cverdefs. The linker will set cverdefs, but sh_info will be
2680 zero. */
2681 if (this_hdr->sh_info == 0)
2682 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2683 else
2684 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2685 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2686 break;
2687
2688 case SHT_GNU_verneed:
2689 this_hdr->sh_entsize = 0;
2690 /* objcopy or strip will copy over sh_info, but may not set
2691 cverrefs. The linker will set cverrefs, but sh_info will be
2692 zero. */
2693 if (this_hdr->sh_info == 0)
2694 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2695 else
2696 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2697 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2698 break;
2699
2700 case SHT_GROUP:
2701 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2702 break;
2703
2704 case SHT_GNU_HASH:
2705 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2706 break;
2707 }
2708
2709 if ((asect->flags & SEC_ALLOC) != 0)
2710 this_hdr->sh_flags |= SHF_ALLOC;
2711 if ((asect->flags & SEC_READONLY) == 0)
2712 this_hdr->sh_flags |= SHF_WRITE;
2713 if ((asect->flags & SEC_CODE) != 0)
2714 this_hdr->sh_flags |= SHF_EXECINSTR;
2715 if ((asect->flags & SEC_MERGE) != 0)
2716 {
2717 this_hdr->sh_flags |= SHF_MERGE;
2718 this_hdr->sh_entsize = asect->entsize;
2719 if ((asect->flags & SEC_STRINGS) != 0)
2720 this_hdr->sh_flags |= SHF_STRINGS;
2721 }
2722 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2723 this_hdr->sh_flags |= SHF_GROUP;
2724 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2725 {
2726 this_hdr->sh_flags |= SHF_TLS;
2727 if (asect->size == 0
2728 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2729 {
2730 struct bfd_link_order *o = asect->map_tail.link_order;
2731
2732 this_hdr->sh_size = 0;
2733 if (o != NULL)
2734 {
2735 this_hdr->sh_size = o->offset + o->size;
2736 if (this_hdr->sh_size != 0)
2737 this_hdr->sh_type = SHT_NOBITS;
2738 }
2739 }
2740 }
2741 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2742 this_hdr->sh_flags |= SHF_EXCLUDE;
2743
2744 /* If the section has relocs, set up a section header for the
2745 SHT_REL[A] section. If two relocation sections are required for
2746 this section, it is up to the processor-specific back-end to
2747 create the other. */
2748 if ((asect->flags & SEC_RELOC) != 0)
2749 {
2750 /* When doing a relocatable link, create both REL and RELA sections if
2751 needed. */
2752 if (arg->link_info
2753 /* Do the normal setup if we wouldn't create any sections here. */
2754 && esd->rel.count + esd->rela.count > 0
2755 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2756 {
2757 if (esd->rel.count && esd->rel.hdr == NULL
2758 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2759 {
2760 arg->failed = TRUE;
2761 return;
2762 }
2763 if (esd->rela.count && esd->rela.hdr == NULL
2764 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2765 {
2766 arg->failed = TRUE;
2767 return;
2768 }
2769 }
2770 else if (!_bfd_elf_init_reloc_shdr (abfd,
2771 (asect->use_rela_p
2772 ? &esd->rela : &esd->rel),
2773 asect,
2774 asect->use_rela_p))
2775 arg->failed = TRUE;
2776 }
2777
2778 /* Check for processor-specific section types. */
2779 sh_type = this_hdr->sh_type;
2780 if (bed->elf_backend_fake_sections
2781 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2782 arg->failed = TRUE;
2783
2784 if (sh_type == SHT_NOBITS && asect->size != 0)
2785 {
2786 /* Don't change the header type from NOBITS if we are being
2787 called for objcopy --only-keep-debug. */
2788 this_hdr->sh_type = sh_type;
2789 }
2790 }
2791
2792 /* Fill in the contents of a SHT_GROUP section. Called from
2793 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2794 when ELF targets use the generic linker, ld. Called for ld -r
2795 from bfd_elf_final_link. */
2796
2797 void
2798 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2799 {
2800 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2801 asection *elt, *first;
2802 unsigned char *loc;
2803 bfd_boolean gas;
2804
2805 /* Ignore linker created group section. See elfNN_ia64_object_p in
2806 elfxx-ia64.c. */
2807 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2808 || *failedptr)
2809 return;
2810
2811 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2812 {
2813 unsigned long symindx = 0;
2814
2815 /* elf_group_id will have been set up by objcopy and the
2816 generic linker. */
2817 if (elf_group_id (sec) != NULL)
2818 symindx = elf_group_id (sec)->udata.i;
2819
2820 if (symindx == 0)
2821 {
2822 /* If called from the assembler, swap_out_syms will have set up
2823 elf_section_syms. */
2824 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2825 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2826 }
2827 elf_section_data (sec)->this_hdr.sh_info = symindx;
2828 }
2829 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2830 {
2831 /* The ELF backend linker sets sh_info to -2 when the group
2832 signature symbol is global, and thus the index can't be
2833 set until all local symbols are output. */
2834 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2835 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2836 unsigned long symndx = sec_data->this_hdr.sh_info;
2837 unsigned long extsymoff = 0;
2838 struct elf_link_hash_entry *h;
2839
2840 if (!elf_bad_symtab (igroup->owner))
2841 {
2842 Elf_Internal_Shdr *symtab_hdr;
2843
2844 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2845 extsymoff = symtab_hdr->sh_info;
2846 }
2847 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2848 while (h->root.type == bfd_link_hash_indirect
2849 || h->root.type == bfd_link_hash_warning)
2850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2851
2852 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2853 }
2854
2855 /* The contents won't be allocated for "ld -r" or objcopy. */
2856 gas = TRUE;
2857 if (sec->contents == NULL)
2858 {
2859 gas = FALSE;
2860 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2861
2862 /* Arrange for the section to be written out. */
2863 elf_section_data (sec)->this_hdr.contents = sec->contents;
2864 if (sec->contents == NULL)
2865 {
2866 *failedptr = TRUE;
2867 return;
2868 }
2869 }
2870
2871 loc = sec->contents + sec->size;
2872
2873 /* Get the pointer to the first section in the group that gas
2874 squirreled away here. objcopy arranges for this to be set to the
2875 start of the input section group. */
2876 first = elt = elf_next_in_group (sec);
2877
2878 /* First element is a flag word. Rest of section is elf section
2879 indices for all the sections of the group. Write them backwards
2880 just to keep the group in the same order as given in .section
2881 directives, not that it matters. */
2882 while (elt != NULL)
2883 {
2884 asection *s;
2885
2886 s = elt;
2887 if (!gas)
2888 s = s->output_section;
2889 if (s != NULL
2890 && !bfd_is_abs_section (s))
2891 {
2892 unsigned int idx = elf_section_data (s)->this_idx;
2893
2894 loc -= 4;
2895 H_PUT_32 (abfd, idx, loc);
2896 }
2897 elt = elf_next_in_group (elt);
2898 if (elt == first)
2899 break;
2900 }
2901
2902 if ((loc -= 4) != sec->contents)
2903 abort ();
2904
2905 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2906 }
2907
2908 /* Assign all ELF section numbers. The dummy first section is handled here
2909 too. The link/info pointers for the standard section types are filled
2910 in here too, while we're at it. */
2911
2912 static bfd_boolean
2913 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2914 {
2915 struct elf_obj_tdata *t = elf_tdata (abfd);
2916 asection *sec;
2917 unsigned int section_number, secn;
2918 Elf_Internal_Shdr **i_shdrp;
2919 struct bfd_elf_section_data *d;
2920 bfd_boolean need_symtab;
2921
2922 section_number = 1;
2923
2924 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2925
2926 /* SHT_GROUP sections are in relocatable files only. */
2927 if (link_info == NULL || link_info->relocatable)
2928 {
2929 /* Put SHT_GROUP sections first. */
2930 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2931 {
2932 d = elf_section_data (sec);
2933
2934 if (d->this_hdr.sh_type == SHT_GROUP)
2935 {
2936 if (sec->flags & SEC_LINKER_CREATED)
2937 {
2938 /* Remove the linker created SHT_GROUP sections. */
2939 bfd_section_list_remove (abfd, sec);
2940 abfd->section_count--;
2941 }
2942 else
2943 d->this_idx = section_number++;
2944 }
2945 }
2946 }
2947
2948 for (sec = abfd->sections; sec; sec = sec->next)
2949 {
2950 d = elf_section_data (sec);
2951
2952 if (d->this_hdr.sh_type != SHT_GROUP)
2953 d->this_idx = section_number++;
2954 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2955 if (d->rel.hdr)
2956 {
2957 d->rel.idx = section_number++;
2958 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2959 }
2960 else
2961 d->rel.idx = 0;
2962
2963 if (d->rela.hdr)
2964 {
2965 d->rela.idx = section_number++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2967 }
2968 else
2969 d->rela.idx = 0;
2970 }
2971
2972 t->shstrtab_section = section_number++;
2973 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2974 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2975
2976 need_symtab = (bfd_get_symcount (abfd) > 0
2977 || (link_info == NULL
2978 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2979 == HAS_RELOC)));
2980 if (need_symtab)
2981 {
2982 t->symtab_section = section_number++;
2983 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2984 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2985 {
2986 t->symtab_shndx_section = section_number++;
2987 t->symtab_shndx_hdr.sh_name
2988 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2989 ".symtab_shndx", FALSE);
2990 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2991 return FALSE;
2992 }
2993 t->strtab_section = section_number++;
2994 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2995 }
2996
2997 if (section_number >= SHN_LORESERVE)
2998 {
2999 _bfd_error_handler (_("%B: too many sections: %u"),
3000 abfd, section_number);
3001 return FALSE;
3002 }
3003
3004 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3005 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3006
3007 elf_numsections (abfd) = section_number;
3008 elf_elfheader (abfd)->e_shnum = section_number;
3009
3010 /* Set up the list of section header pointers, in agreement with the
3011 indices. */
3012 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3013 sizeof (Elf_Internal_Shdr *));
3014 if (i_shdrp == NULL)
3015 return FALSE;
3016
3017 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3018 sizeof (Elf_Internal_Shdr));
3019 if (i_shdrp[0] == NULL)
3020 {
3021 bfd_release (abfd, i_shdrp);
3022 return FALSE;
3023 }
3024
3025 elf_elfsections (abfd) = i_shdrp;
3026
3027 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3028 if (need_symtab)
3029 {
3030 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3031 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3032 {
3033 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3034 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3035 }
3036 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3037 t->symtab_hdr.sh_link = t->strtab_section;
3038 }
3039
3040 for (sec = abfd->sections; sec; sec = sec->next)
3041 {
3042 asection *s;
3043 const char *name;
3044
3045 d = elf_section_data (sec);
3046
3047 i_shdrp[d->this_idx] = &d->this_hdr;
3048 if (d->rel.idx != 0)
3049 i_shdrp[d->rel.idx] = d->rel.hdr;
3050 if (d->rela.idx != 0)
3051 i_shdrp[d->rela.idx] = d->rela.hdr;
3052
3053 /* Fill in the sh_link and sh_info fields while we're at it. */
3054
3055 /* sh_link of a reloc section is the section index of the symbol
3056 table. sh_info is the section index of the section to which
3057 the relocation entries apply. */
3058 if (d->rel.idx != 0)
3059 {
3060 d->rel.hdr->sh_link = t->symtab_section;
3061 d->rel.hdr->sh_info = d->this_idx;
3062 }
3063 if (d->rela.idx != 0)
3064 {
3065 d->rela.hdr->sh_link = t->symtab_section;
3066 d->rela.hdr->sh_info = d->this_idx;
3067 }
3068
3069 /* We need to set up sh_link for SHF_LINK_ORDER. */
3070 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3071 {
3072 s = elf_linked_to_section (sec);
3073 if (s)
3074 {
3075 /* elf_linked_to_section points to the input section. */
3076 if (link_info != NULL)
3077 {
3078 /* Check discarded linkonce section. */
3079 if (discarded_section (s))
3080 {
3081 asection *kept;
3082 (*_bfd_error_handler)
3083 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3084 abfd, d->this_hdr.bfd_section,
3085 s, s->owner);
3086 /* Point to the kept section if it has the same
3087 size as the discarded one. */
3088 kept = _bfd_elf_check_kept_section (s, link_info);
3089 if (kept == NULL)
3090 {
3091 bfd_set_error (bfd_error_bad_value);
3092 return FALSE;
3093 }
3094 s = kept;
3095 }
3096
3097 s = s->output_section;
3098 BFD_ASSERT (s != NULL);
3099 }
3100 else
3101 {
3102 /* Handle objcopy. */
3103 if (s->output_section == NULL)
3104 {
3105 (*_bfd_error_handler)
3106 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3107 abfd, d->this_hdr.bfd_section, s, s->owner);
3108 bfd_set_error (bfd_error_bad_value);
3109 return FALSE;
3110 }
3111 s = s->output_section;
3112 }
3113 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3114 }
3115 else
3116 {
3117 /* PR 290:
3118 The Intel C compiler generates SHT_IA_64_UNWIND with
3119 SHF_LINK_ORDER. But it doesn't set the sh_link or
3120 sh_info fields. Hence we could get the situation
3121 where s is NULL. */
3122 const struct elf_backend_data *bed
3123 = get_elf_backend_data (abfd);
3124 if (bed->link_order_error_handler)
3125 bed->link_order_error_handler
3126 (_("%B: warning: sh_link not set for section `%A'"),
3127 abfd, sec);
3128 }
3129 }
3130
3131 switch (d->this_hdr.sh_type)
3132 {
3133 case SHT_REL:
3134 case SHT_RELA:
3135 /* A reloc section which we are treating as a normal BFD
3136 section. sh_link is the section index of the symbol
3137 table. sh_info is the section index of the section to
3138 which the relocation entries apply. We assume that an
3139 allocated reloc section uses the dynamic symbol table.
3140 FIXME: How can we be sure? */
3141 s = bfd_get_section_by_name (abfd, ".dynsym");
3142 if (s != NULL)
3143 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3144
3145 /* We look up the section the relocs apply to by name. */
3146 name = sec->name;
3147 if (d->this_hdr.sh_type == SHT_REL)
3148 name += 4;
3149 else
3150 name += 5;
3151 s = bfd_get_section_by_name (abfd, name);
3152 if (s != NULL)
3153 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3154 break;
3155
3156 case SHT_STRTAB:
3157 /* We assume that a section named .stab*str is a stabs
3158 string section. We look for a section with the same name
3159 but without the trailing ``str'', and set its sh_link
3160 field to point to this section. */
3161 if (CONST_STRNEQ (sec->name, ".stab")
3162 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3163 {
3164 size_t len;
3165 char *alc;
3166
3167 len = strlen (sec->name);
3168 alc = (char *) bfd_malloc (len - 2);
3169 if (alc == NULL)
3170 return FALSE;
3171 memcpy (alc, sec->name, len - 3);
3172 alc[len - 3] = '\0';
3173 s = bfd_get_section_by_name (abfd, alc);
3174 free (alc);
3175 if (s != NULL)
3176 {
3177 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3178
3179 /* This is a .stab section. */
3180 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3181 elf_section_data (s)->this_hdr.sh_entsize
3182 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3183 }
3184 }
3185 break;
3186
3187 case SHT_DYNAMIC:
3188 case SHT_DYNSYM:
3189 case SHT_GNU_verneed:
3190 case SHT_GNU_verdef:
3191 /* sh_link is the section header index of the string table
3192 used for the dynamic entries, or the symbol table, or the
3193 version strings. */
3194 s = bfd_get_section_by_name (abfd, ".dynstr");
3195 if (s != NULL)
3196 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3197 break;
3198
3199 case SHT_GNU_LIBLIST:
3200 /* sh_link is the section header index of the prelink library
3201 list used for the dynamic entries, or the symbol table, or
3202 the version strings. */
3203 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3204 ? ".dynstr" : ".gnu.libstr");
3205 if (s != NULL)
3206 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3207 break;
3208
3209 case SHT_HASH:
3210 case SHT_GNU_HASH:
3211 case SHT_GNU_versym:
3212 /* sh_link is the section header index of the symbol table
3213 this hash table or version table is for. */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217 break;
3218
3219 case SHT_GROUP:
3220 d->this_hdr.sh_link = t->symtab_section;
3221 }
3222 }
3223
3224 for (secn = 1; secn < section_number; ++secn)
3225 if (i_shdrp[secn] == NULL)
3226 i_shdrp[secn] = i_shdrp[0];
3227 else
3228 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3229 i_shdrp[secn]->sh_name);
3230 return TRUE;
3231 }
3232
3233 static bfd_boolean
3234 sym_is_global (bfd *abfd, asymbol *sym)
3235 {
3236 /* If the backend has a special mapping, use it. */
3237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3238 if (bed->elf_backend_sym_is_global)
3239 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3240
3241 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3242 || bfd_is_und_section (bfd_get_section (sym))
3243 || bfd_is_com_section (bfd_get_section (sym)));
3244 }
3245
3246 /* Don't output section symbols for sections that are not going to be
3247 output, that are duplicates or there is no BFD section. */
3248
3249 static bfd_boolean
3250 ignore_section_sym (bfd *abfd, asymbol *sym)
3251 {
3252 elf_symbol_type *type_ptr;
3253
3254 if ((sym->flags & BSF_SECTION_SYM) == 0)
3255 return FALSE;
3256
3257 type_ptr = elf_symbol_from (abfd, sym);
3258 return ((type_ptr != NULL
3259 && type_ptr->internal_elf_sym.st_shndx != 0
3260 && bfd_is_abs_section (sym->section))
3261 || !(sym->section->owner == abfd
3262 || (sym->section->output_section->owner == abfd
3263 && sym->section->output_offset == 0)
3264 || bfd_is_abs_section (sym->section)));
3265 }
3266
3267 /* Map symbol from it's internal number to the external number, moving
3268 all local symbols to be at the head of the list. */
3269
3270 static bfd_boolean
3271 elf_map_symbols (bfd *abfd)
3272 {
3273 unsigned int symcount = bfd_get_symcount (abfd);
3274 asymbol **syms = bfd_get_outsymbols (abfd);
3275 asymbol **sect_syms;
3276 unsigned int num_locals = 0;
3277 unsigned int num_globals = 0;
3278 unsigned int num_locals2 = 0;
3279 unsigned int num_globals2 = 0;
3280 int max_index = 0;
3281 unsigned int idx;
3282 asection *asect;
3283 asymbol **new_syms;
3284
3285 #ifdef DEBUG
3286 fprintf (stderr, "elf_map_symbols\n");
3287 fflush (stderr);
3288 #endif
3289
3290 for (asect = abfd->sections; asect; asect = asect->next)
3291 {
3292 if (max_index < asect->index)
3293 max_index = asect->index;
3294 }
3295
3296 max_index++;
3297 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3298 if (sect_syms == NULL)
3299 return FALSE;
3300 elf_section_syms (abfd) = sect_syms;
3301 elf_num_section_syms (abfd) = max_index;
3302
3303 /* Init sect_syms entries for any section symbols we have already
3304 decided to output. */
3305 for (idx = 0; idx < symcount; idx++)
3306 {
3307 asymbol *sym = syms[idx];
3308
3309 if ((sym->flags & BSF_SECTION_SYM) != 0
3310 && sym->value == 0
3311 && !ignore_section_sym (abfd, sym)
3312 && !bfd_is_abs_section (sym->section))
3313 {
3314 asection *sec = sym->section;
3315
3316 if (sec->owner != abfd)
3317 sec = sec->output_section;
3318
3319 sect_syms[sec->index] = syms[idx];
3320 }
3321 }
3322
3323 /* Classify all of the symbols. */
3324 for (idx = 0; idx < symcount; idx++)
3325 {
3326 if (sym_is_global (abfd, syms[idx]))
3327 num_globals++;
3328 else if (!ignore_section_sym (abfd, syms[idx]))
3329 num_locals++;
3330 }
3331
3332 /* We will be adding a section symbol for each normal BFD section. Most
3333 sections will already have a section symbol in outsymbols, but
3334 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3335 at least in that case. */
3336 for (asect = abfd->sections; asect; asect = asect->next)
3337 {
3338 if (sect_syms[asect->index] == NULL)
3339 {
3340 if (!sym_is_global (abfd, asect->symbol))
3341 num_locals++;
3342 else
3343 num_globals++;
3344 }
3345 }
3346
3347 /* Now sort the symbols so the local symbols are first. */
3348 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3349 sizeof (asymbol *));
3350
3351 if (new_syms == NULL)
3352 return FALSE;
3353
3354 for (idx = 0; idx < symcount; idx++)
3355 {
3356 asymbol *sym = syms[idx];
3357 unsigned int i;
3358
3359 if (sym_is_global (abfd, sym))
3360 i = num_locals + num_globals2++;
3361 else if (!ignore_section_sym (abfd, sym))
3362 i = num_locals2++;
3363 else
3364 continue;
3365 new_syms[i] = sym;
3366 sym->udata.i = i + 1;
3367 }
3368 for (asect = abfd->sections; asect; asect = asect->next)
3369 {
3370 if (sect_syms[asect->index] == NULL)
3371 {
3372 asymbol *sym = asect->symbol;
3373 unsigned int i;
3374
3375 sect_syms[asect->index] = sym;
3376 if (!sym_is_global (abfd, sym))
3377 i = num_locals2++;
3378 else
3379 i = num_locals + num_globals2++;
3380 new_syms[i] = sym;
3381 sym->udata.i = i + 1;
3382 }
3383 }
3384
3385 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3386
3387 elf_num_locals (abfd) = num_locals;
3388 elf_num_globals (abfd) = num_globals;
3389 return TRUE;
3390 }
3391
3392 /* Align to the maximum file alignment that could be required for any
3393 ELF data structure. */
3394
3395 static inline file_ptr
3396 align_file_position (file_ptr off, int align)
3397 {
3398 return (off + align - 1) & ~(align - 1);
3399 }
3400
3401 /* Assign a file position to a section, optionally aligning to the
3402 required section alignment. */
3403
3404 file_ptr
3405 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3406 file_ptr offset,
3407 bfd_boolean align)
3408 {
3409 if (align && i_shdrp->sh_addralign > 1)
3410 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3411 i_shdrp->sh_offset = offset;
3412 if (i_shdrp->bfd_section != NULL)
3413 i_shdrp->bfd_section->filepos = offset;
3414 if (i_shdrp->sh_type != SHT_NOBITS)
3415 offset += i_shdrp->sh_size;
3416 return offset;
3417 }
3418
3419 /* Compute the file positions we are going to put the sections at, and
3420 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3421 is not NULL, this is being called by the ELF backend linker. */
3422
3423 bfd_boolean
3424 _bfd_elf_compute_section_file_positions (bfd *abfd,
3425 struct bfd_link_info *link_info)
3426 {
3427 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3428 struct fake_section_arg fsargs;
3429 bfd_boolean failed;
3430 struct bfd_strtab_hash *strtab = NULL;
3431 Elf_Internal_Shdr *shstrtab_hdr;
3432 bfd_boolean need_symtab;
3433
3434 if (abfd->output_has_begun)
3435 return TRUE;
3436
3437 /* Do any elf backend specific processing first. */
3438 if (bed->elf_backend_begin_write_processing)
3439 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3440
3441 if (! prep_headers (abfd))
3442 return FALSE;
3443
3444 /* Post process the headers if necessary. */
3445 if (bed->elf_backend_post_process_headers)
3446 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3447
3448 fsargs.failed = FALSE;
3449 fsargs.link_info = link_info;
3450 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3451 if (fsargs.failed)
3452 return FALSE;
3453
3454 if (!assign_section_numbers (abfd, link_info))
3455 return FALSE;
3456
3457 /* The backend linker builds symbol table information itself. */
3458 need_symtab = (link_info == NULL
3459 && (bfd_get_symcount (abfd) > 0
3460 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3461 == HAS_RELOC)));
3462 if (need_symtab)
3463 {
3464 /* Non-zero if doing a relocatable link. */
3465 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3466
3467 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3468 return FALSE;
3469 }
3470
3471 failed = FALSE;
3472 if (link_info == NULL)
3473 {
3474 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3475 if (failed)
3476 return FALSE;
3477 }
3478
3479 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3480 /* sh_name was set in prep_headers. */
3481 shstrtab_hdr->sh_type = SHT_STRTAB;
3482 shstrtab_hdr->sh_flags = 0;
3483 shstrtab_hdr->sh_addr = 0;
3484 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3485 shstrtab_hdr->sh_entsize = 0;
3486 shstrtab_hdr->sh_link = 0;
3487 shstrtab_hdr->sh_info = 0;
3488 /* sh_offset is set in assign_file_positions_except_relocs. */
3489 shstrtab_hdr->sh_addralign = 1;
3490
3491 if (!assign_file_positions_except_relocs (abfd, link_info))
3492 return FALSE;
3493
3494 if (need_symtab)
3495 {
3496 file_ptr off;
3497 Elf_Internal_Shdr *hdr;
3498
3499 off = elf_tdata (abfd)->next_file_pos;
3500
3501 hdr = &elf_tdata (abfd)->symtab_hdr;
3502 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3503
3504 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3505 if (hdr->sh_size != 0)
3506 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3507
3508 hdr = &elf_tdata (abfd)->strtab_hdr;
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3510
3511 elf_tdata (abfd)->next_file_pos = off;
3512
3513 /* Now that we know where the .strtab section goes, write it
3514 out. */
3515 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3516 || ! _bfd_stringtab_emit (abfd, strtab))
3517 return FALSE;
3518 _bfd_stringtab_free (strtab);
3519 }
3520
3521 abfd->output_has_begun = TRUE;
3522
3523 return TRUE;
3524 }
3525
3526 /* Make an initial estimate of the size of the program header. If we
3527 get the number wrong here, we'll redo section placement. */
3528
3529 static bfd_size_type
3530 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3531 {
3532 size_t segs;
3533 asection *s;
3534 const struct elf_backend_data *bed;
3535
3536 /* Assume we will need exactly two PT_LOAD segments: one for text
3537 and one for data. */
3538 segs = 2;
3539
3540 s = bfd_get_section_by_name (abfd, ".interp");
3541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3542 {
3543 /* If we have a loadable interpreter section, we need a
3544 PT_INTERP segment. In this case, assume we also need a
3545 PT_PHDR segment, although that may not be true for all
3546 targets. */
3547 segs += 2;
3548 }
3549
3550 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3551 {
3552 /* We need a PT_DYNAMIC segment. */
3553 ++segs;
3554 }
3555
3556 if (info != NULL && info->relro)
3557 {
3558 /* We need a PT_GNU_RELRO segment. */
3559 ++segs;
3560 }
3561
3562 if (elf_tdata (abfd)->eh_frame_hdr)
3563 {
3564 /* We need a PT_GNU_EH_FRAME segment. */
3565 ++segs;
3566 }
3567
3568 if (elf_tdata (abfd)->stack_flags)
3569 {
3570 /* We need a PT_GNU_STACK segment. */
3571 ++segs;
3572 }
3573
3574 for (s = abfd->sections; s != NULL; s = s->next)
3575 {
3576 if ((s->flags & SEC_LOAD) != 0
3577 && CONST_STRNEQ (s->name, ".note"))
3578 {
3579 /* We need a PT_NOTE segment. */
3580 ++segs;
3581 /* Try to create just one PT_NOTE segment
3582 for all adjacent loadable .note* sections.
3583 gABI requires that within a PT_NOTE segment
3584 (and also inside of each SHT_NOTE section)
3585 each note is padded to a multiple of 4 size,
3586 so we check whether the sections are correctly
3587 aligned. */
3588 if (s->alignment_power == 2)
3589 while (s->next != NULL
3590 && s->next->alignment_power == 2
3591 && (s->next->flags & SEC_LOAD) != 0
3592 && CONST_STRNEQ (s->next->name, ".note"))
3593 s = s->next;
3594 }
3595 }
3596
3597 for (s = abfd->sections; s != NULL; s = s->next)
3598 {
3599 if (s->flags & SEC_THREAD_LOCAL)
3600 {
3601 /* We need a PT_TLS segment. */
3602 ++segs;
3603 break;
3604 }
3605 }
3606
3607 /* Let the backend count up any program headers it might need. */
3608 bed = get_elf_backend_data (abfd);
3609 if (bed->elf_backend_additional_program_headers)
3610 {
3611 int a;
3612
3613 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3614 if (a == -1)
3615 abort ();
3616 segs += a;
3617 }
3618
3619 return segs * bed->s->sizeof_phdr;
3620 }
3621
3622 /* Find the segment that contains the output_section of section. */
3623
3624 Elf_Internal_Phdr *
3625 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3626 {
3627 struct elf_segment_map *m;
3628 Elf_Internal_Phdr *p;
3629
3630 for (m = elf_tdata (abfd)->segment_map,
3631 p = elf_tdata (abfd)->phdr;
3632 m != NULL;
3633 m = m->next, p++)
3634 {
3635 int i;
3636
3637 for (i = m->count - 1; i >= 0; i--)
3638 if (m->sections[i] == section)
3639 return p;
3640 }
3641
3642 return NULL;
3643 }
3644
3645 /* Create a mapping from a set of sections to a program segment. */
3646
3647 static struct elf_segment_map *
3648 make_mapping (bfd *abfd,
3649 asection **sections,
3650 unsigned int from,
3651 unsigned int to,
3652 bfd_boolean phdr)
3653 {
3654 struct elf_segment_map *m;
3655 unsigned int i;
3656 asection **hdrpp;
3657 bfd_size_type amt;
3658
3659 amt = sizeof (struct elf_segment_map);
3660 amt += (to - from - 1) * sizeof (asection *);
3661 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3662 if (m == NULL)
3663 return NULL;
3664 m->next = NULL;
3665 m->p_type = PT_LOAD;
3666 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3667 m->sections[i - from] = *hdrpp;
3668 m->count = to - from;
3669
3670 if (from == 0 && phdr)
3671 {
3672 /* Include the headers in the first PT_LOAD segment. */
3673 m->includes_filehdr = 1;
3674 m->includes_phdrs = 1;
3675 }
3676
3677 return m;
3678 }
3679
3680 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3681 on failure. */
3682
3683 struct elf_segment_map *
3684 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3685 {
3686 struct elf_segment_map *m;
3687
3688 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3689 sizeof (struct elf_segment_map));
3690 if (m == NULL)
3691 return NULL;
3692 m->next = NULL;
3693 m->p_type = PT_DYNAMIC;
3694 m->count = 1;
3695 m->sections[0] = dynsec;
3696
3697 return m;
3698 }
3699
3700 /* Possibly add or remove segments from the segment map. */
3701
3702 static bfd_boolean
3703 elf_modify_segment_map (bfd *abfd,
3704 struct bfd_link_info *info,
3705 bfd_boolean remove_empty_load)
3706 {
3707 struct elf_segment_map **m;
3708 const struct elf_backend_data *bed;
3709
3710 /* The placement algorithm assumes that non allocated sections are
3711 not in PT_LOAD segments. We ensure this here by removing such
3712 sections from the segment map. We also remove excluded
3713 sections. Finally, any PT_LOAD segment without sections is
3714 removed. */
3715 m = &elf_tdata (abfd)->segment_map;
3716 while (*m)
3717 {
3718 unsigned int i, new_count;
3719
3720 for (new_count = 0, i = 0; i < (*m)->count; i++)
3721 {
3722 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3723 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3724 || (*m)->p_type != PT_LOAD))
3725 {
3726 (*m)->sections[new_count] = (*m)->sections[i];
3727 new_count++;
3728 }
3729 }
3730 (*m)->count = new_count;
3731
3732 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3733 *m = (*m)->next;
3734 else
3735 m = &(*m)->next;
3736 }
3737
3738 bed = get_elf_backend_data (abfd);
3739 if (bed->elf_backend_modify_segment_map != NULL)
3740 {
3741 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3742 return FALSE;
3743 }
3744
3745 return TRUE;
3746 }
3747
3748 /* Set up a mapping from BFD sections to program segments. */
3749
3750 bfd_boolean
3751 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3752 {
3753 unsigned int count;
3754 struct elf_segment_map *m;
3755 asection **sections = NULL;
3756 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3757 bfd_boolean no_user_phdrs;
3758
3759 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3760
3761 if (info != NULL)
3762 info->user_phdrs = !no_user_phdrs;
3763
3764 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3765 {
3766 asection *s;
3767 unsigned int i;
3768 struct elf_segment_map *mfirst;
3769 struct elf_segment_map **pm;
3770 asection *last_hdr;
3771 bfd_vma last_size;
3772 unsigned int phdr_index;
3773 bfd_vma maxpagesize;
3774 asection **hdrpp;
3775 bfd_boolean phdr_in_segment = TRUE;
3776 bfd_boolean writable;
3777 int tls_count = 0;
3778 asection *first_tls = NULL;
3779 asection *dynsec, *eh_frame_hdr;
3780 bfd_size_type amt;
3781 bfd_vma addr_mask, wrap_to = 0;
3782
3783 /* Select the allocated sections, and sort them. */
3784
3785 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3786 sizeof (asection *));
3787 if (sections == NULL)
3788 goto error_return;
3789
3790 /* Calculate top address, avoiding undefined behaviour of shift
3791 left operator when shift count is equal to size of type
3792 being shifted. */
3793 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3794 addr_mask = (addr_mask << 1) + 1;
3795
3796 i = 0;
3797 for (s = abfd->sections; s != NULL; s = s->next)
3798 {
3799 if ((s->flags & SEC_ALLOC) != 0)
3800 {
3801 sections[i] = s;
3802 ++i;
3803 /* A wrapping section potentially clashes with header. */
3804 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3805 wrap_to = (s->lma + s->size) & addr_mask;
3806 }
3807 }
3808 BFD_ASSERT (i <= bfd_count_sections (abfd));
3809 count = i;
3810
3811 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3812
3813 /* Build the mapping. */
3814
3815 mfirst = NULL;
3816 pm = &mfirst;
3817
3818 /* If we have a .interp section, then create a PT_PHDR segment for
3819 the program headers and a PT_INTERP segment for the .interp
3820 section. */
3821 s = bfd_get_section_by_name (abfd, ".interp");
3822 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3823 {
3824 amt = sizeof (struct elf_segment_map);
3825 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3826 if (m == NULL)
3827 goto error_return;
3828 m->next = NULL;
3829 m->p_type = PT_PHDR;
3830 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3831 m->p_flags = PF_R | PF_X;
3832 m->p_flags_valid = 1;
3833 m->includes_phdrs = 1;
3834
3835 *pm = m;
3836 pm = &m->next;
3837
3838 amt = sizeof (struct elf_segment_map);
3839 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3840 if (m == NULL)
3841 goto error_return;
3842 m->next = NULL;
3843 m->p_type = PT_INTERP;
3844 m->count = 1;
3845 m->sections[0] = s;
3846
3847 *pm = m;
3848 pm = &m->next;
3849 }
3850
3851 /* Look through the sections. We put sections in the same program
3852 segment when the start of the second section can be placed within
3853 a few bytes of the end of the first section. */
3854 last_hdr = NULL;
3855 last_size = 0;
3856 phdr_index = 0;
3857 maxpagesize = bed->maxpagesize;
3858 writable = FALSE;
3859 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3860 if (dynsec != NULL
3861 && (dynsec->flags & SEC_LOAD) == 0)
3862 dynsec = NULL;
3863
3864 /* Deal with -Ttext or something similar such that the first section
3865 is not adjacent to the program headers. This is an
3866 approximation, since at this point we don't know exactly how many
3867 program headers we will need. */
3868 if (count > 0)
3869 {
3870 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3871
3872 if (phdr_size == (bfd_size_type) -1)
3873 phdr_size = get_program_header_size (abfd, info);
3874 if ((abfd->flags & D_PAGED) == 0
3875 || (sections[0]->lma & addr_mask) < phdr_size
3876 || ((sections[0]->lma & addr_mask) % maxpagesize
3877 < phdr_size % maxpagesize)
3878 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3879 phdr_in_segment = FALSE;
3880 }
3881
3882 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3883 {
3884 asection *hdr;
3885 bfd_boolean new_segment;
3886
3887 hdr = *hdrpp;
3888
3889 /* See if this section and the last one will fit in the same
3890 segment. */
3891
3892 if (last_hdr == NULL)
3893 {
3894 /* If we don't have a segment yet, then we don't need a new
3895 one (we build the last one after this loop). */
3896 new_segment = FALSE;
3897 }
3898 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3899 {
3900 /* If this section has a different relation between the
3901 virtual address and the load address, then we need a new
3902 segment. */
3903 new_segment = TRUE;
3904 }
3905 else if (hdr->lma < last_hdr->lma + last_size
3906 || last_hdr->lma + last_size < last_hdr->lma)
3907 {
3908 /* If this section has a load address that makes it overlap
3909 the previous section, then we need a new segment. */
3910 new_segment = TRUE;
3911 }
3912 /* In the next test we have to be careful when last_hdr->lma is close
3913 to the end of the address space. If the aligned address wraps
3914 around to the start of the address space, then there are no more
3915 pages left in memory and it is OK to assume that the current
3916 section can be included in the current segment. */
3917 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3918 > last_hdr->lma)
3919 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3920 <= hdr->lma))
3921 {
3922 /* If putting this section in this segment would force us to
3923 skip a page in the segment, then we need a new segment. */
3924 new_segment = TRUE;
3925 }
3926 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3927 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3928 {
3929 /* We don't want to put a loadable section after a
3930 nonloadable section in the same segment.
3931 Consider .tbss sections as loadable for this purpose. */
3932 new_segment = TRUE;
3933 }
3934 else if ((abfd->flags & D_PAGED) == 0)
3935 {
3936 /* If the file is not demand paged, which means that we
3937 don't require the sections to be correctly aligned in the
3938 file, then there is no other reason for a new segment. */
3939 new_segment = FALSE;
3940 }
3941 else if (! writable
3942 && (hdr->flags & SEC_READONLY) == 0
3943 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3944 != (hdr->lma & -maxpagesize)))
3945 {
3946 /* We don't want to put a writable section in a read only
3947 segment, unless they are on the same page in memory
3948 anyhow. We already know that the last section does not
3949 bring us past the current section on the page, so the
3950 only case in which the new section is not on the same
3951 page as the previous section is when the previous section
3952 ends precisely on a page boundary. */
3953 new_segment = TRUE;
3954 }
3955 else
3956 {
3957 /* Otherwise, we can use the same segment. */
3958 new_segment = FALSE;
3959 }
3960
3961 /* Allow interested parties a chance to override our decision. */
3962 if (last_hdr != NULL
3963 && info != NULL
3964 && info->callbacks->override_segment_assignment != NULL)
3965 new_segment
3966 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3967 last_hdr,
3968 new_segment);
3969
3970 if (! new_segment)
3971 {
3972 if ((hdr->flags & SEC_READONLY) == 0)
3973 writable = TRUE;
3974 last_hdr = hdr;
3975 /* .tbss sections effectively have zero size. */
3976 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3977 != SEC_THREAD_LOCAL)
3978 last_size = hdr->size;
3979 else
3980 last_size = 0;
3981 continue;
3982 }
3983
3984 /* We need a new program segment. We must create a new program
3985 header holding all the sections from phdr_index until hdr. */
3986
3987 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3988 if (m == NULL)
3989 goto error_return;
3990
3991 *pm = m;
3992 pm = &m->next;
3993
3994 if ((hdr->flags & SEC_READONLY) == 0)
3995 writable = TRUE;
3996 else
3997 writable = FALSE;
3998
3999 last_hdr = hdr;
4000 /* .tbss sections effectively have zero size. */
4001 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4002 last_size = hdr->size;
4003 else
4004 last_size = 0;
4005 phdr_index = i;
4006 phdr_in_segment = FALSE;
4007 }
4008
4009 /* Create a final PT_LOAD program segment, but not if it's just
4010 for .tbss. */
4011 if (last_hdr != NULL
4012 && (i - phdr_index != 1
4013 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4014 != SEC_THREAD_LOCAL)))
4015 {
4016 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4017 if (m == NULL)
4018 goto error_return;
4019
4020 *pm = m;
4021 pm = &m->next;
4022 }
4023
4024 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4025 if (dynsec != NULL)
4026 {
4027 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4028 if (m == NULL)
4029 goto error_return;
4030 *pm = m;
4031 pm = &m->next;
4032 }
4033
4034 /* For each batch of consecutive loadable .note sections,
4035 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4036 because if we link together nonloadable .note sections and
4037 loadable .note sections, we will generate two .note sections
4038 in the output file. FIXME: Using names for section types is
4039 bogus anyhow. */
4040 for (s = abfd->sections; s != NULL; s = s->next)
4041 {
4042 if ((s->flags & SEC_LOAD) != 0
4043 && CONST_STRNEQ (s->name, ".note"))
4044 {
4045 asection *s2;
4046
4047 count = 1;
4048 amt = sizeof (struct elf_segment_map);
4049 if (s->alignment_power == 2)
4050 for (s2 = s; s2->next != NULL; s2 = s2->next)
4051 {
4052 if (s2->next->alignment_power == 2
4053 && (s2->next->flags & SEC_LOAD) != 0
4054 && CONST_STRNEQ (s2->next->name, ".note")
4055 && align_power (s2->lma + s2->size, 2)
4056 == s2->next->lma)
4057 count++;
4058 else
4059 break;
4060 }
4061 amt += (count - 1) * sizeof (asection *);
4062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4063 if (m == NULL)
4064 goto error_return;
4065 m->next = NULL;
4066 m->p_type = PT_NOTE;
4067 m->count = count;
4068 while (count > 1)
4069 {
4070 m->sections[m->count - count--] = s;
4071 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4072 s = s->next;
4073 }
4074 m->sections[m->count - 1] = s;
4075 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4076 *pm = m;
4077 pm = &m->next;
4078 }
4079 if (s->flags & SEC_THREAD_LOCAL)
4080 {
4081 if (! tls_count)
4082 first_tls = s;
4083 tls_count++;
4084 }
4085 }
4086
4087 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4088 if (tls_count > 0)
4089 {
4090 amt = sizeof (struct elf_segment_map);
4091 amt += (tls_count - 1) * sizeof (asection *);
4092 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4093 if (m == NULL)
4094 goto error_return;
4095 m->next = NULL;
4096 m->p_type = PT_TLS;
4097 m->count = tls_count;
4098 /* Mandated PF_R. */
4099 m->p_flags = PF_R;
4100 m->p_flags_valid = 1;
4101 for (i = 0; i < (unsigned int) tls_count; ++i)
4102 {
4103 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4104 m->sections[i] = first_tls;
4105 first_tls = first_tls->next;
4106 }
4107
4108 *pm = m;
4109 pm = &m->next;
4110 }
4111
4112 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4113 segment. */
4114 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4115 if (eh_frame_hdr != NULL
4116 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4117 {
4118 amt = sizeof (struct elf_segment_map);
4119 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4120 if (m == NULL)
4121 goto error_return;
4122 m->next = NULL;
4123 m->p_type = PT_GNU_EH_FRAME;
4124 m->count = 1;
4125 m->sections[0] = eh_frame_hdr->output_section;
4126
4127 *pm = m;
4128 pm = &m->next;
4129 }
4130
4131 if (elf_tdata (abfd)->stack_flags)
4132 {
4133 amt = sizeof (struct elf_segment_map);
4134 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4135 if (m == NULL)
4136 goto error_return;
4137 m->next = NULL;
4138 m->p_type = PT_GNU_STACK;
4139 m->p_flags = elf_tdata (abfd)->stack_flags;
4140 m->p_flags_valid = 1;
4141
4142 *pm = m;
4143 pm = &m->next;
4144 }
4145
4146 if (info != NULL && info->relro)
4147 {
4148 for (m = mfirst; m != NULL; m = m->next)
4149 {
4150 if (m->p_type == PT_LOAD
4151 && m->count != 0
4152 && m->sections[0]->vma >= info->relro_start
4153 && m->sections[0]->vma < info->relro_end)
4154 {
4155 i = m->count;
4156 while (--i != (unsigned) -1)
4157 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4158 == (SEC_LOAD | SEC_HAS_CONTENTS))
4159 break;
4160
4161 if (i == (unsigned) -1)
4162 continue;
4163
4164 if (m->sections[i]->vma + m->sections[i]->size
4165 >= info->relro_end)
4166 break;
4167 }
4168 }
4169
4170 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4171 if (m != NULL)
4172 {
4173 amt = sizeof (struct elf_segment_map);
4174 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4175 if (m == NULL)
4176 goto error_return;
4177 m->next = NULL;
4178 m->p_type = PT_GNU_RELRO;
4179 m->p_flags = PF_R;
4180 m->p_flags_valid = 1;
4181
4182 *pm = m;
4183 pm = &m->next;
4184 }
4185 }
4186
4187 free (sections);
4188 elf_tdata (abfd)->segment_map = mfirst;
4189 }
4190
4191 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4192 return FALSE;
4193
4194 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4195 ++count;
4196 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4197
4198 return TRUE;
4199
4200 error_return:
4201 if (sections != NULL)
4202 free (sections);
4203 return FALSE;
4204 }
4205
4206 /* Sort sections by address. */
4207
4208 static int
4209 elf_sort_sections (const void *arg1, const void *arg2)
4210 {
4211 const asection *sec1 = *(const asection **) arg1;
4212 const asection *sec2 = *(const asection **) arg2;
4213 bfd_size_type size1, size2;
4214
4215 /* Sort by LMA first, since this is the address used to
4216 place the section into a segment. */
4217 if (sec1->lma < sec2->lma)
4218 return -1;
4219 else if (sec1->lma > sec2->lma)
4220 return 1;
4221
4222 /* Then sort by VMA. Normally the LMA and the VMA will be
4223 the same, and this will do nothing. */
4224 if (sec1->vma < sec2->vma)
4225 return -1;
4226 else if (sec1->vma > sec2->vma)
4227 return 1;
4228
4229 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4230
4231 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4232
4233 if (TOEND (sec1))
4234 {
4235 if (TOEND (sec2))
4236 {
4237 /* If the indicies are the same, do not return 0
4238 here, but continue to try the next comparison. */
4239 if (sec1->target_index - sec2->target_index != 0)
4240 return sec1->target_index - sec2->target_index;
4241 }
4242 else
4243 return 1;
4244 }
4245 else if (TOEND (sec2))
4246 return -1;
4247
4248 #undef TOEND
4249
4250 /* Sort by size, to put zero sized sections
4251 before others at the same address. */
4252
4253 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4254 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4255
4256 if (size1 < size2)
4257 return -1;
4258 if (size1 > size2)
4259 return 1;
4260
4261 return sec1->target_index - sec2->target_index;
4262 }
4263
4264 /* Ian Lance Taylor writes:
4265
4266 We shouldn't be using % with a negative signed number. That's just
4267 not good. We have to make sure either that the number is not
4268 negative, or that the number has an unsigned type. When the types
4269 are all the same size they wind up as unsigned. When file_ptr is a
4270 larger signed type, the arithmetic winds up as signed long long,
4271 which is wrong.
4272
4273 What we're trying to say here is something like ``increase OFF by
4274 the least amount that will cause it to be equal to the VMA modulo
4275 the page size.'' */
4276 /* In other words, something like:
4277
4278 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4279 off_offset = off % bed->maxpagesize;
4280 if (vma_offset < off_offset)
4281 adjustment = vma_offset + bed->maxpagesize - off_offset;
4282 else
4283 adjustment = vma_offset - off_offset;
4284
4285 which can can be collapsed into the expression below. */
4286
4287 static file_ptr
4288 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4289 {
4290 return ((vma - off) % maxpagesize);
4291 }
4292
4293 static void
4294 print_segment_map (const struct elf_segment_map *m)
4295 {
4296 unsigned int j;
4297 const char *pt = get_segment_type (m->p_type);
4298 char buf[32];
4299
4300 if (pt == NULL)
4301 {
4302 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4303 sprintf (buf, "LOPROC+%7.7x",
4304 (unsigned int) (m->p_type - PT_LOPROC));
4305 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4306 sprintf (buf, "LOOS+%7.7x",
4307 (unsigned int) (m->p_type - PT_LOOS));
4308 else
4309 snprintf (buf, sizeof (buf), "%8.8x",
4310 (unsigned int) m->p_type);
4311 pt = buf;
4312 }
4313 fflush (stdout);
4314 fprintf (stderr, "%s:", pt);
4315 for (j = 0; j < m->count; j++)
4316 fprintf (stderr, " %s", m->sections [j]->name);
4317 putc ('\n',stderr);
4318 fflush (stderr);
4319 }
4320
4321 static bfd_boolean
4322 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4323 {
4324 void *buf;
4325 bfd_boolean ret;
4326
4327 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4328 return FALSE;
4329 buf = bfd_zmalloc (len);
4330 if (buf == NULL)
4331 return FALSE;
4332 ret = bfd_bwrite (buf, len, abfd) == len;
4333 free (buf);
4334 return ret;
4335 }
4336
4337 /* Assign file positions to the sections based on the mapping from
4338 sections to segments. This function also sets up some fields in
4339 the file header. */
4340
4341 static bfd_boolean
4342 assign_file_positions_for_load_sections (bfd *abfd,
4343 struct bfd_link_info *link_info)
4344 {
4345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4346 struct elf_segment_map *m;
4347 Elf_Internal_Phdr *phdrs;
4348 Elf_Internal_Phdr *p;
4349 file_ptr off;
4350 bfd_size_type maxpagesize;
4351 unsigned int alloc;
4352 unsigned int i, j;
4353 bfd_vma header_pad = 0;
4354
4355 if (link_info == NULL
4356 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4357 return FALSE;
4358
4359 alloc = 0;
4360 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4361 {
4362 ++alloc;
4363 if (m->header_size)
4364 header_pad = m->header_size;
4365 }
4366
4367 if (alloc)
4368 {
4369 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4370 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4371 }
4372 else
4373 {
4374 /* PR binutils/12467. */
4375 elf_elfheader (abfd)->e_phoff = 0;
4376 elf_elfheader (abfd)->e_phentsize = 0;
4377 }
4378
4379 elf_elfheader (abfd)->e_phnum = alloc;
4380
4381 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4382 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4383 else
4384 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4385 >= alloc * bed->s->sizeof_phdr);
4386
4387 if (alloc == 0)
4388 {
4389 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4390 return TRUE;
4391 }
4392
4393 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4394 see assign_file_positions_except_relocs, so make sure we have
4395 that amount allocated, with trailing space cleared.
4396 The variable alloc contains the computed need, while elf_tdata
4397 (abfd)->program_header_size contains the size used for the
4398 layout.
4399 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4400 where the layout is forced to according to a larger size in the
4401 last iterations for the testcase ld-elf/header. */
4402 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4403 == 0);
4404 phdrs = (Elf_Internal_Phdr *)
4405 bfd_zalloc2 (abfd,
4406 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4407 sizeof (Elf_Internal_Phdr));
4408 elf_tdata (abfd)->phdr = phdrs;
4409 if (phdrs == NULL)
4410 return FALSE;
4411
4412 maxpagesize = 1;
4413 if ((abfd->flags & D_PAGED) != 0)
4414 maxpagesize = bed->maxpagesize;
4415
4416 off = bed->s->sizeof_ehdr;
4417 off += alloc * bed->s->sizeof_phdr;
4418 if (header_pad < (bfd_vma) off)
4419 header_pad = 0;
4420 else
4421 header_pad -= off;
4422 off += header_pad;
4423
4424 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4425 m != NULL;
4426 m = m->next, p++, j++)
4427 {
4428 asection **secpp;
4429 bfd_vma off_adjust;
4430 bfd_boolean no_contents;
4431
4432 /* If elf_segment_map is not from map_sections_to_segments, the
4433 sections may not be correctly ordered. NOTE: sorting should
4434 not be done to the PT_NOTE section of a corefile, which may
4435 contain several pseudo-sections artificially created by bfd.
4436 Sorting these pseudo-sections breaks things badly. */
4437 if (m->count > 1
4438 && !(elf_elfheader (abfd)->e_type == ET_CORE
4439 && m->p_type == PT_NOTE))
4440 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4441 elf_sort_sections);
4442
4443 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4444 number of sections with contents contributing to both p_filesz
4445 and p_memsz, followed by a number of sections with no contents
4446 that just contribute to p_memsz. In this loop, OFF tracks next
4447 available file offset for PT_LOAD and PT_NOTE segments. */
4448 p->p_type = m->p_type;
4449 p->p_flags = m->p_flags;
4450
4451 if (m->count == 0)
4452 p->p_vaddr = 0;
4453 else
4454 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4455
4456 if (m->p_paddr_valid)
4457 p->p_paddr = m->p_paddr;
4458 else if (m->count == 0)
4459 p->p_paddr = 0;
4460 else
4461 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4462
4463 if (p->p_type == PT_LOAD
4464 && (abfd->flags & D_PAGED) != 0)
4465 {
4466 /* p_align in demand paged PT_LOAD segments effectively stores
4467 the maximum page size. When copying an executable with
4468 objcopy, we set m->p_align from the input file. Use this
4469 value for maxpagesize rather than bed->maxpagesize, which
4470 may be different. Note that we use maxpagesize for PT_TLS
4471 segment alignment later in this function, so we are relying
4472 on at least one PT_LOAD segment appearing before a PT_TLS
4473 segment. */
4474 if (m->p_align_valid)
4475 maxpagesize = m->p_align;
4476
4477 p->p_align = maxpagesize;
4478 }
4479 else if (m->p_align_valid)
4480 p->p_align = m->p_align;
4481 else if (m->count == 0)
4482 p->p_align = 1 << bed->s->log_file_align;
4483 else
4484 p->p_align = 0;
4485
4486 no_contents = FALSE;
4487 off_adjust = 0;
4488 if (p->p_type == PT_LOAD
4489 && m->count > 0)
4490 {
4491 bfd_size_type align;
4492 unsigned int align_power = 0;
4493
4494 if (m->p_align_valid)
4495 align = p->p_align;
4496 else
4497 {
4498 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4499 {
4500 unsigned int secalign;
4501
4502 secalign = bfd_get_section_alignment (abfd, *secpp);
4503 if (secalign > align_power)
4504 align_power = secalign;
4505 }
4506 align = (bfd_size_type) 1 << align_power;
4507 if (align < maxpagesize)
4508 align = maxpagesize;
4509 }
4510
4511 for (i = 0; i < m->count; i++)
4512 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4513 /* If we aren't making room for this section, then
4514 it must be SHT_NOBITS regardless of what we've
4515 set via struct bfd_elf_special_section. */
4516 elf_section_type (m->sections[i]) = SHT_NOBITS;
4517
4518 /* Find out whether this segment contains any loadable
4519 sections. */
4520 no_contents = TRUE;
4521 for (i = 0; i < m->count; i++)
4522 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4523 {
4524 no_contents = FALSE;
4525 break;
4526 }
4527
4528 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4529 off += off_adjust;
4530 if (no_contents)
4531 {
4532 /* We shouldn't need to align the segment on disk since
4533 the segment doesn't need file space, but the gABI
4534 arguably requires the alignment and glibc ld.so
4535 checks it. So to comply with the alignment
4536 requirement but not waste file space, we adjust
4537 p_offset for just this segment. (OFF_ADJUST is
4538 subtracted from OFF later.) This may put p_offset
4539 past the end of file, but that shouldn't matter. */
4540 }
4541 else
4542 off_adjust = 0;
4543 }
4544 /* Make sure the .dynamic section is the first section in the
4545 PT_DYNAMIC segment. */
4546 else if (p->p_type == PT_DYNAMIC
4547 && m->count > 1
4548 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4549 {
4550 _bfd_error_handler
4551 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4552 abfd);
4553 bfd_set_error (bfd_error_bad_value);
4554 return FALSE;
4555 }
4556 /* Set the note section type to SHT_NOTE. */
4557 else if (p->p_type == PT_NOTE)
4558 for (i = 0; i < m->count; i++)
4559 elf_section_type (m->sections[i]) = SHT_NOTE;
4560
4561 p->p_offset = 0;
4562 p->p_filesz = 0;
4563 p->p_memsz = 0;
4564
4565 if (m->includes_filehdr)
4566 {
4567 if (!m->p_flags_valid)
4568 p->p_flags |= PF_R;
4569 p->p_filesz = bed->s->sizeof_ehdr;
4570 p->p_memsz = bed->s->sizeof_ehdr;
4571 if (m->count > 0)
4572 {
4573 if (p->p_vaddr < (bfd_vma) off)
4574 {
4575 (*_bfd_error_handler)
4576 (_("%B: Not enough room for program headers, try linking with -N"),
4577 abfd);
4578 bfd_set_error (bfd_error_bad_value);
4579 return FALSE;
4580 }
4581
4582 p->p_vaddr -= off;
4583 if (!m->p_paddr_valid)
4584 p->p_paddr -= off;
4585 }
4586 }
4587
4588 if (m->includes_phdrs)
4589 {
4590 if (!m->p_flags_valid)
4591 p->p_flags |= PF_R;
4592
4593 if (!m->includes_filehdr)
4594 {
4595 p->p_offset = bed->s->sizeof_ehdr;
4596
4597 if (m->count > 0)
4598 {
4599 p->p_vaddr -= off - p->p_offset;
4600 if (!m->p_paddr_valid)
4601 p->p_paddr -= off - p->p_offset;
4602 }
4603 }
4604
4605 p->p_filesz += alloc * bed->s->sizeof_phdr;
4606 p->p_memsz += alloc * bed->s->sizeof_phdr;
4607 if (m->count)
4608 {
4609 p->p_filesz += header_pad;
4610 p->p_memsz += header_pad;
4611 }
4612 }
4613
4614 if (p->p_type == PT_LOAD
4615 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4616 {
4617 if (!m->includes_filehdr && !m->includes_phdrs)
4618 p->p_offset = off;
4619 else
4620 {
4621 file_ptr adjust;
4622
4623 adjust = off - (p->p_offset + p->p_filesz);
4624 if (!no_contents)
4625 p->p_filesz += adjust;
4626 p->p_memsz += adjust;
4627 }
4628 }
4629
4630 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4631 maps. Set filepos for sections in PT_LOAD segments, and in
4632 core files, for sections in PT_NOTE segments.
4633 assign_file_positions_for_non_load_sections will set filepos
4634 for other sections and update p_filesz for other segments. */
4635 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4636 {
4637 asection *sec;
4638 bfd_size_type align;
4639 Elf_Internal_Shdr *this_hdr;
4640
4641 sec = *secpp;
4642 this_hdr = &elf_section_data (sec)->this_hdr;
4643 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4644
4645 if ((p->p_type == PT_LOAD
4646 || p->p_type == PT_TLS)
4647 && (this_hdr->sh_type != SHT_NOBITS
4648 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4649 && ((this_hdr->sh_flags & SHF_TLS) == 0
4650 || p->p_type == PT_TLS))))
4651 {
4652 bfd_vma p_start = p->p_paddr;
4653 bfd_vma p_end = p_start + p->p_memsz;
4654 bfd_vma s_start = sec->lma;
4655 bfd_vma adjust = s_start - p_end;
4656
4657 if (adjust != 0
4658 && (s_start < p_end
4659 || p_end < p_start))
4660 {
4661 (*_bfd_error_handler)
4662 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4663 (unsigned long) s_start, (unsigned long) p_end);
4664 adjust = 0;
4665 sec->lma = p_end;
4666 }
4667 p->p_memsz += adjust;
4668
4669 if (this_hdr->sh_type != SHT_NOBITS)
4670 {
4671 if (p->p_filesz + adjust < p->p_memsz)
4672 {
4673 /* We have a PROGBITS section following NOBITS ones.
4674 Allocate file space for the NOBITS section(s) and
4675 zero it. */
4676 adjust = p->p_memsz - p->p_filesz;
4677 if (!write_zeros (abfd, off, adjust))
4678 return FALSE;
4679 }
4680 off += adjust;
4681 p->p_filesz += adjust;
4682 }
4683 }
4684
4685 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4686 {
4687 /* The section at i == 0 is the one that actually contains
4688 everything. */
4689 if (i == 0)
4690 {
4691 this_hdr->sh_offset = sec->filepos = off;
4692 off += this_hdr->sh_size;
4693 p->p_filesz = this_hdr->sh_size;
4694 p->p_memsz = 0;
4695 p->p_align = 1;
4696 }
4697 else
4698 {
4699 /* The rest are fake sections that shouldn't be written. */
4700 sec->filepos = 0;
4701 sec->size = 0;
4702 sec->flags = 0;
4703 continue;
4704 }
4705 }
4706 else
4707 {
4708 if (p->p_type == PT_LOAD)
4709 {
4710 this_hdr->sh_offset = sec->filepos = off;
4711 if (this_hdr->sh_type != SHT_NOBITS)
4712 off += this_hdr->sh_size;
4713 }
4714 else if (this_hdr->sh_type == SHT_NOBITS
4715 && (this_hdr->sh_flags & SHF_TLS) != 0
4716 && this_hdr->sh_offset == 0)
4717 {
4718 /* This is a .tbss section that didn't get a PT_LOAD.
4719 (See _bfd_elf_map_sections_to_segments "Create a
4720 final PT_LOAD".) Set sh_offset to the value it
4721 would have if we had created a zero p_filesz and
4722 p_memsz PT_LOAD header for the section. This
4723 also makes the PT_TLS header have the same
4724 p_offset value. */
4725 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4726 off, align);
4727 this_hdr->sh_offset = sec->filepos = off + adjust;
4728 }
4729
4730 if (this_hdr->sh_type != SHT_NOBITS)
4731 {
4732 p->p_filesz += this_hdr->sh_size;
4733 /* A load section without SHF_ALLOC is something like
4734 a note section in a PT_NOTE segment. These take
4735 file space but are not loaded into memory. */
4736 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4737 p->p_memsz += this_hdr->sh_size;
4738 }
4739 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4740 {
4741 if (p->p_type == PT_TLS)
4742 p->p_memsz += this_hdr->sh_size;
4743
4744 /* .tbss is special. It doesn't contribute to p_memsz of
4745 normal segments. */
4746 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4747 p->p_memsz += this_hdr->sh_size;
4748 }
4749
4750 if (align > p->p_align
4751 && !m->p_align_valid
4752 && (p->p_type != PT_LOAD
4753 || (abfd->flags & D_PAGED) == 0))
4754 p->p_align = align;
4755 }
4756
4757 if (!m->p_flags_valid)
4758 {
4759 p->p_flags |= PF_R;
4760 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4761 p->p_flags |= PF_X;
4762 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4763 p->p_flags |= PF_W;
4764 }
4765 }
4766 off -= off_adjust;
4767
4768 /* Check that all sections are in a PT_LOAD segment.
4769 Don't check funky gdb generated core files. */
4770 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4771 {
4772 bfd_boolean check_vma = TRUE;
4773
4774 for (i = 1; i < m->count; i++)
4775 if (m->sections[i]->vma == m->sections[i - 1]->vma
4776 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4777 ->this_hdr), p) != 0
4778 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4779 ->this_hdr), p) != 0)
4780 {
4781 /* Looks like we have overlays packed into the segment. */
4782 check_vma = FALSE;
4783 break;
4784 }
4785
4786 for (i = 0; i < m->count; i++)
4787 {
4788 Elf_Internal_Shdr *this_hdr;
4789 asection *sec;
4790
4791 sec = m->sections[i];
4792 this_hdr = &(elf_section_data(sec)->this_hdr);
4793 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4794 && !ELF_TBSS_SPECIAL (this_hdr, p))
4795 {
4796 (*_bfd_error_handler)
4797 (_("%B: section `%A' can't be allocated in segment %d"),
4798 abfd, sec, j);
4799 print_segment_map (m);
4800 }
4801 }
4802 }
4803 }
4804
4805 elf_tdata (abfd)->next_file_pos = off;
4806 return TRUE;
4807 }
4808
4809 /* Assign file positions for the other sections. */
4810
4811 static bfd_boolean
4812 assign_file_positions_for_non_load_sections (bfd *abfd,
4813 struct bfd_link_info *link_info)
4814 {
4815 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4816 Elf_Internal_Shdr **i_shdrpp;
4817 Elf_Internal_Shdr **hdrpp;
4818 Elf_Internal_Phdr *phdrs;
4819 Elf_Internal_Phdr *p;
4820 struct elf_segment_map *m;
4821 struct elf_segment_map *hdrs_segment;
4822 bfd_vma filehdr_vaddr, filehdr_paddr;
4823 bfd_vma phdrs_vaddr, phdrs_paddr;
4824 file_ptr off;
4825 unsigned int num_sec;
4826 unsigned int i;
4827 unsigned int count;
4828
4829 i_shdrpp = elf_elfsections (abfd);
4830 num_sec = elf_numsections (abfd);
4831 off = elf_tdata (abfd)->next_file_pos;
4832 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4833 {
4834 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4835 Elf_Internal_Shdr *hdr;
4836
4837 hdr = *hdrpp;
4838 if (hdr->bfd_section != NULL
4839 && (hdr->bfd_section->filepos != 0
4840 || (hdr->sh_type == SHT_NOBITS
4841 && hdr->contents == NULL)))
4842 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4843 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4844 {
4845 if (hdr->sh_size != 0)
4846 (*_bfd_error_handler)
4847 (_("%B: warning: allocated section `%s' not in segment"),
4848 abfd,
4849 (hdr->bfd_section == NULL
4850 ? "*unknown*"
4851 : hdr->bfd_section->name));
4852 /* We don't need to page align empty sections. */
4853 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4854 off += vma_page_aligned_bias (hdr->sh_addr, off,
4855 bed->maxpagesize);
4856 else
4857 off += vma_page_aligned_bias (hdr->sh_addr, off,
4858 hdr->sh_addralign);
4859 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4860 FALSE);
4861 }
4862 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4863 && hdr->bfd_section == NULL)
4864 || hdr == i_shdrpp[tdata->symtab_section]
4865 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4866 || hdr == i_shdrpp[tdata->strtab_section])
4867 hdr->sh_offset = -1;
4868 else
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4870 }
4871
4872 /* Now that we have set the section file positions, we can set up
4873 the file positions for the non PT_LOAD segments. */
4874 count = 0;
4875 filehdr_vaddr = 0;
4876 filehdr_paddr = 0;
4877 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4878 phdrs_paddr = 0;
4879 hdrs_segment = NULL;
4880 phdrs = elf_tdata (abfd)->phdr;
4881 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4882 m != NULL;
4883 m = m->next, p++)
4884 {
4885 ++count;
4886 if (p->p_type != PT_LOAD)
4887 continue;
4888
4889 if (m->includes_filehdr)
4890 {
4891 filehdr_vaddr = p->p_vaddr;
4892 filehdr_paddr = p->p_paddr;
4893 }
4894 if (m->includes_phdrs)
4895 {
4896 phdrs_vaddr = p->p_vaddr;
4897 phdrs_paddr = p->p_paddr;
4898 if (m->includes_filehdr)
4899 {
4900 hdrs_segment = m;
4901 phdrs_vaddr += bed->s->sizeof_ehdr;
4902 phdrs_paddr += bed->s->sizeof_ehdr;
4903 }
4904 }
4905 }
4906
4907 if (hdrs_segment != NULL && link_info != NULL)
4908 {
4909 /* There is a segment that contains both the file headers and the
4910 program headers, so provide a symbol __ehdr_start pointing there.
4911 A program can use this to examine itself robustly. */
4912
4913 struct elf_link_hash_entry *hash
4914 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4915 FALSE, FALSE, TRUE);
4916 /* If the symbol was referenced and not defined, define it. */
4917 if (hash != NULL
4918 && (hash->root.type == bfd_link_hash_new
4919 || hash->root.type == bfd_link_hash_undefined
4920 || hash->root.type == bfd_link_hash_undefweak
4921 || hash->root.type == bfd_link_hash_common))
4922 {
4923 asection *s = NULL;
4924 if (hdrs_segment->count != 0)
4925 /* The segment contains sections, so use the first one. */
4926 s = hdrs_segment->sections[0];
4927 else
4928 /* Use the first (i.e. lowest-addressed) section in any segment. */
4929 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4930 if (m->count != 0)
4931 {
4932 s = m->sections[0];
4933 break;
4934 }
4935
4936 if (s != NULL)
4937 {
4938 hash->root.u.def.value = filehdr_vaddr - s->vma;
4939 hash->root.u.def.section = s;
4940 }
4941 else
4942 {
4943 hash->root.u.def.value = filehdr_vaddr;
4944 hash->root.u.def.section = bfd_abs_section_ptr;
4945 }
4946
4947 hash->root.type = bfd_link_hash_defined;
4948 hash->def_regular = 1;
4949 hash->non_elf = 0;
4950 }
4951 }
4952
4953 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4954 m != NULL;
4955 m = m->next, p++)
4956 {
4957 if (p->p_type == PT_GNU_RELRO)
4958 {
4959 const Elf_Internal_Phdr *lp;
4960 struct elf_segment_map *lm;
4961
4962 if (link_info != NULL)
4963 {
4964 /* During linking the range of the RELRO segment is passed
4965 in link_info. */
4966 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4967 lm != NULL;
4968 lm = lm->next, lp++)
4969 {
4970 if (lp->p_type == PT_LOAD
4971 && lp->p_vaddr < link_info->relro_end
4972 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4973 && lm->count != 0
4974 && lm->sections[0]->vma >= link_info->relro_start)
4975 break;
4976 }
4977
4978 /* PR ld/14207. If the RELRO segment doesn't fit in the
4979 LOAD segment, it should be removed. */
4980 BFD_ASSERT (lm != NULL);
4981 }
4982 else
4983 {
4984 /* Otherwise we are copying an executable or shared
4985 library, but we need to use the same linker logic. */
4986 for (lp = phdrs; lp < phdrs + count; ++lp)
4987 {
4988 if (lp->p_type == PT_LOAD
4989 && lp->p_paddr == p->p_paddr)
4990 break;
4991 }
4992 }
4993
4994 if (lp < phdrs + count)
4995 {
4996 p->p_vaddr = lp->p_vaddr;
4997 p->p_paddr = lp->p_paddr;
4998 p->p_offset = lp->p_offset;
4999 if (link_info != NULL)
5000 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5001 else if (m->p_size_valid)
5002 p->p_filesz = m->p_size;
5003 else
5004 abort ();
5005 p->p_memsz = p->p_filesz;
5006 /* Preserve the alignment and flags if they are valid. The
5007 gold linker generates RW/4 for the PT_GNU_RELRO section.
5008 It is better for objcopy/strip to honor these attributes
5009 otherwise gdb will choke when using separate debug files.
5010 */
5011 if (!m->p_align_valid)
5012 p->p_align = 1;
5013 if (!m->p_flags_valid)
5014 p->p_flags = (lp->p_flags & ~PF_W);
5015 }
5016 else
5017 {
5018 memset (p, 0, sizeof *p);
5019 p->p_type = PT_NULL;
5020 }
5021 }
5022 else if (m->count != 0)
5023 {
5024 if (p->p_type != PT_LOAD
5025 && (p->p_type != PT_NOTE
5026 || bfd_get_format (abfd) != bfd_core))
5027 {
5028 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5029
5030 p->p_filesz = 0;
5031 p->p_offset = m->sections[0]->filepos;
5032 for (i = m->count; i-- != 0;)
5033 {
5034 asection *sect = m->sections[i];
5035 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5036 if (hdr->sh_type != SHT_NOBITS)
5037 {
5038 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5039 + hdr->sh_size);
5040 break;
5041 }
5042 }
5043 }
5044 }
5045 else if (m->includes_filehdr)
5046 {
5047 p->p_vaddr = filehdr_vaddr;
5048 if (! m->p_paddr_valid)
5049 p->p_paddr = filehdr_paddr;
5050 }
5051 else if (m->includes_phdrs)
5052 {
5053 p->p_vaddr = phdrs_vaddr;
5054 if (! m->p_paddr_valid)
5055 p->p_paddr = phdrs_paddr;
5056 }
5057 }
5058
5059 elf_tdata (abfd)->next_file_pos = off;
5060
5061 return TRUE;
5062 }
5063
5064 /* Work out the file positions of all the sections. This is called by
5065 _bfd_elf_compute_section_file_positions. All the section sizes and
5066 VMAs must be known before this is called.
5067
5068 Reloc sections come in two flavours: Those processed specially as
5069 "side-channel" data attached to a section to which they apply, and
5070 those that bfd doesn't process as relocations. The latter sort are
5071 stored in a normal bfd section by bfd_section_from_shdr. We don't
5072 consider the former sort here, unless they form part of the loadable
5073 image. Reloc sections not assigned here will be handled later by
5074 assign_file_positions_for_relocs.
5075
5076 We also don't set the positions of the .symtab and .strtab here. */
5077
5078 static bfd_boolean
5079 assign_file_positions_except_relocs (bfd *abfd,
5080 struct bfd_link_info *link_info)
5081 {
5082 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5083 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5084 file_ptr off;
5085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5086
5087 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5088 && bfd_get_format (abfd) != bfd_core)
5089 {
5090 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5091 unsigned int num_sec = elf_numsections (abfd);
5092 Elf_Internal_Shdr **hdrpp;
5093 unsigned int i;
5094
5095 /* Start after the ELF header. */
5096 off = i_ehdrp->e_ehsize;
5097
5098 /* We are not creating an executable, which means that we are
5099 not creating a program header, and that the actual order of
5100 the sections in the file is unimportant. */
5101 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5102 {
5103 Elf_Internal_Shdr *hdr;
5104
5105 hdr = *hdrpp;
5106 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5107 && hdr->bfd_section == NULL)
5108 || i == tdata->symtab_section
5109 || i == tdata->symtab_shndx_section
5110 || i == tdata->strtab_section)
5111 {
5112 hdr->sh_offset = -1;
5113 }
5114 else
5115 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5116 }
5117 }
5118 else
5119 {
5120 unsigned int alloc;
5121
5122 /* Assign file positions for the loaded sections based on the
5123 assignment of sections to segments. */
5124 if (!assign_file_positions_for_load_sections (abfd, link_info))
5125 return FALSE;
5126
5127 /* And for non-load sections. */
5128 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5129 return FALSE;
5130
5131 if (bed->elf_backend_modify_program_headers != NULL)
5132 {
5133 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5134 return FALSE;
5135 }
5136
5137 /* Write out the program headers. */
5138 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5139 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5140 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5141 return FALSE;
5142
5143 off = tdata->next_file_pos;
5144 }
5145
5146 /* Place the section headers. */
5147 off = align_file_position (off, 1 << bed->s->log_file_align);
5148 i_ehdrp->e_shoff = off;
5149 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5150
5151 tdata->next_file_pos = off;
5152
5153 return TRUE;
5154 }
5155
5156 static bfd_boolean
5157 prep_headers (bfd *abfd)
5158 {
5159 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5160 struct elf_strtab_hash *shstrtab;
5161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5162
5163 i_ehdrp = elf_elfheader (abfd);
5164
5165 shstrtab = _bfd_elf_strtab_init ();
5166 if (shstrtab == NULL)
5167 return FALSE;
5168
5169 elf_shstrtab (abfd) = shstrtab;
5170
5171 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5172 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5173 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5174 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5175
5176 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5177 i_ehdrp->e_ident[EI_DATA] =
5178 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5179 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5180
5181 if ((abfd->flags & DYNAMIC) != 0)
5182 i_ehdrp->e_type = ET_DYN;
5183 else if ((abfd->flags & EXEC_P) != 0)
5184 i_ehdrp->e_type = ET_EXEC;
5185 else if (bfd_get_format (abfd) == bfd_core)
5186 i_ehdrp->e_type = ET_CORE;
5187 else
5188 i_ehdrp->e_type = ET_REL;
5189
5190 switch (bfd_get_arch (abfd))
5191 {
5192 case bfd_arch_unknown:
5193 i_ehdrp->e_machine = EM_NONE;
5194 break;
5195
5196 /* There used to be a long list of cases here, each one setting
5197 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5198 in the corresponding bfd definition. To avoid duplication,
5199 the switch was removed. Machines that need special handling
5200 can generally do it in elf_backend_final_write_processing(),
5201 unless they need the information earlier than the final write.
5202 Such need can generally be supplied by replacing the tests for
5203 e_machine with the conditions used to determine it. */
5204 default:
5205 i_ehdrp->e_machine = bed->elf_machine_code;
5206 }
5207
5208 i_ehdrp->e_version = bed->s->ev_current;
5209 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5210
5211 /* No program header, for now. */
5212 i_ehdrp->e_phoff = 0;
5213 i_ehdrp->e_phentsize = 0;
5214 i_ehdrp->e_phnum = 0;
5215
5216 /* Each bfd section is section header entry. */
5217 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5218 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5219
5220 /* If we're building an executable, we'll need a program header table. */
5221 if (abfd->flags & EXEC_P)
5222 /* It all happens later. */
5223 ;
5224 else
5225 {
5226 i_ehdrp->e_phentsize = 0;
5227 i_ehdrp->e_phoff = 0;
5228 }
5229
5230 elf_tdata (abfd)->symtab_hdr.sh_name =
5231 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5232 elf_tdata (abfd)->strtab_hdr.sh_name =
5233 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5234 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5235 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5236 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5237 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5238 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5239 return FALSE;
5240
5241 return TRUE;
5242 }
5243
5244 /* Assign file positions for all the reloc sections which are not part
5245 of the loadable file image. */
5246
5247 void
5248 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5249 {
5250 file_ptr off;
5251 unsigned int i, num_sec;
5252 Elf_Internal_Shdr **shdrpp;
5253
5254 off = elf_tdata (abfd)->next_file_pos;
5255
5256 num_sec = elf_numsections (abfd);
5257 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5258 {
5259 Elf_Internal_Shdr *shdrp;
5260
5261 shdrp = *shdrpp;
5262 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5263 && shdrp->sh_offset == -1)
5264 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5265 }
5266
5267 elf_tdata (abfd)->next_file_pos = off;
5268 }
5269
5270 bfd_boolean
5271 _bfd_elf_write_object_contents (bfd *abfd)
5272 {
5273 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5274 Elf_Internal_Shdr **i_shdrp;
5275 bfd_boolean failed;
5276 unsigned int count, num_sec;
5277
5278 if (! abfd->output_has_begun
5279 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5280 return FALSE;
5281
5282 i_shdrp = elf_elfsections (abfd);
5283
5284 failed = FALSE;
5285 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5286 if (failed)
5287 return FALSE;
5288
5289 _bfd_elf_assign_file_positions_for_relocs (abfd);
5290
5291 /* After writing the headers, we need to write the sections too... */
5292 num_sec = elf_numsections (abfd);
5293 for (count = 1; count < num_sec; count++)
5294 {
5295 if (bed->elf_backend_section_processing)
5296 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5297 if (i_shdrp[count]->contents)
5298 {
5299 bfd_size_type amt = i_shdrp[count]->sh_size;
5300
5301 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5302 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5303 return FALSE;
5304 }
5305 }
5306
5307 /* Write out the section header names. */
5308 if (elf_shstrtab (abfd) != NULL
5309 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5310 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5311 return FALSE;
5312
5313 if (bed->elf_backend_final_write_processing)
5314 (*bed->elf_backend_final_write_processing) (abfd,
5315 elf_tdata (abfd)->linker);
5316
5317 if (!bed->s->write_shdrs_and_ehdr (abfd))
5318 return FALSE;
5319
5320 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5321 if (elf_tdata (abfd)->after_write_object_contents)
5322 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5323
5324 return TRUE;
5325 }
5326
5327 bfd_boolean
5328 _bfd_elf_write_corefile_contents (bfd *abfd)
5329 {
5330 /* Hopefully this can be done just like an object file. */
5331 return _bfd_elf_write_object_contents (abfd);
5332 }
5333
5334 /* Given a section, search the header to find them. */
5335
5336 unsigned int
5337 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5338 {
5339 const struct elf_backend_data *bed;
5340 unsigned int sec_index;
5341
5342 if (elf_section_data (asect) != NULL
5343 && elf_section_data (asect)->this_idx != 0)
5344 return elf_section_data (asect)->this_idx;
5345
5346 if (bfd_is_abs_section (asect))
5347 sec_index = SHN_ABS;
5348 else if (bfd_is_com_section (asect))
5349 sec_index = SHN_COMMON;
5350 else if (bfd_is_und_section (asect))
5351 sec_index = SHN_UNDEF;
5352 else
5353 sec_index = SHN_BAD;
5354
5355 bed = get_elf_backend_data (abfd);
5356 if (bed->elf_backend_section_from_bfd_section)
5357 {
5358 int retval = sec_index;
5359
5360 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5361 return retval;
5362 }
5363
5364 if (sec_index == SHN_BAD)
5365 bfd_set_error (bfd_error_nonrepresentable_section);
5366
5367 return sec_index;
5368 }
5369
5370 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5371 on error. */
5372
5373 int
5374 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5375 {
5376 asymbol *asym_ptr = *asym_ptr_ptr;
5377 int idx;
5378 flagword flags = asym_ptr->flags;
5379
5380 /* When gas creates relocations against local labels, it creates its
5381 own symbol for the section, but does put the symbol into the
5382 symbol chain, so udata is 0. When the linker is generating
5383 relocatable output, this section symbol may be for one of the
5384 input sections rather than the output section. */
5385 if (asym_ptr->udata.i == 0
5386 && (flags & BSF_SECTION_SYM)
5387 && asym_ptr->section)
5388 {
5389 asection *sec;
5390 int indx;
5391
5392 sec = asym_ptr->section;
5393 if (sec->owner != abfd && sec->output_section != NULL)
5394 sec = sec->output_section;
5395 if (sec->owner == abfd
5396 && (indx = sec->index) < elf_num_section_syms (abfd)
5397 && elf_section_syms (abfd)[indx] != NULL)
5398 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5399 }
5400
5401 idx = asym_ptr->udata.i;
5402
5403 if (idx == 0)
5404 {
5405 /* This case can occur when using --strip-symbol on a symbol
5406 which is used in a relocation entry. */
5407 (*_bfd_error_handler)
5408 (_("%B: symbol `%s' required but not present"),
5409 abfd, bfd_asymbol_name (asym_ptr));
5410 bfd_set_error (bfd_error_no_symbols);
5411 return -1;
5412 }
5413
5414 #if DEBUG & 4
5415 {
5416 fprintf (stderr,
5417 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5418 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5419 fflush (stderr);
5420 }
5421 #endif
5422
5423 return idx;
5424 }
5425
5426 /* Rewrite program header information. */
5427
5428 static bfd_boolean
5429 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5430 {
5431 Elf_Internal_Ehdr *iehdr;
5432 struct elf_segment_map *map;
5433 struct elf_segment_map *map_first;
5434 struct elf_segment_map **pointer_to_map;
5435 Elf_Internal_Phdr *segment;
5436 asection *section;
5437 unsigned int i;
5438 unsigned int num_segments;
5439 bfd_boolean phdr_included = FALSE;
5440 bfd_boolean p_paddr_valid;
5441 bfd_vma maxpagesize;
5442 struct elf_segment_map *phdr_adjust_seg = NULL;
5443 unsigned int phdr_adjust_num = 0;
5444 const struct elf_backend_data *bed;
5445
5446 bed = get_elf_backend_data (ibfd);
5447 iehdr = elf_elfheader (ibfd);
5448
5449 map_first = NULL;
5450 pointer_to_map = &map_first;
5451
5452 num_segments = elf_elfheader (ibfd)->e_phnum;
5453 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5454
5455 /* Returns the end address of the segment + 1. */
5456 #define SEGMENT_END(segment, start) \
5457 (start + (segment->p_memsz > segment->p_filesz \
5458 ? segment->p_memsz : segment->p_filesz))
5459
5460 #define SECTION_SIZE(section, segment) \
5461 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5462 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5463 ? section->size : 0)
5464
5465 /* Returns TRUE if the given section is contained within
5466 the given segment. VMA addresses are compared. */
5467 #define IS_CONTAINED_BY_VMA(section, segment) \
5468 (section->vma >= segment->p_vaddr \
5469 && (section->vma + SECTION_SIZE (section, segment) \
5470 <= (SEGMENT_END (segment, segment->p_vaddr))))
5471
5472 /* Returns TRUE if the given section is contained within
5473 the given segment. LMA addresses are compared. */
5474 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5475 (section->lma >= base \
5476 && (section->lma + SECTION_SIZE (section, segment) \
5477 <= SEGMENT_END (segment, base)))
5478
5479 /* Handle PT_NOTE segment. */
5480 #define IS_NOTE(p, s) \
5481 (p->p_type == PT_NOTE \
5482 && elf_section_type (s) == SHT_NOTE \
5483 && (bfd_vma) s->filepos >= p->p_offset \
5484 && ((bfd_vma) s->filepos + s->size \
5485 <= p->p_offset + p->p_filesz))
5486
5487 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5488 etc. */
5489 #define IS_COREFILE_NOTE(p, s) \
5490 (IS_NOTE (p, s) \
5491 && bfd_get_format (ibfd) == bfd_core \
5492 && s->vma == 0 \
5493 && s->lma == 0)
5494
5495 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5496 linker, which generates a PT_INTERP section with p_vaddr and
5497 p_memsz set to 0. */
5498 #define IS_SOLARIS_PT_INTERP(p, s) \
5499 (p->p_vaddr == 0 \
5500 && p->p_paddr == 0 \
5501 && p->p_memsz == 0 \
5502 && p->p_filesz > 0 \
5503 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5504 && s->size > 0 \
5505 && (bfd_vma) s->filepos >= p->p_offset \
5506 && ((bfd_vma) s->filepos + s->size \
5507 <= p->p_offset + p->p_filesz))
5508
5509 /* Decide if the given section should be included in the given segment.
5510 A section will be included if:
5511 1. It is within the address space of the segment -- we use the LMA
5512 if that is set for the segment and the VMA otherwise,
5513 2. It is an allocated section or a NOTE section in a PT_NOTE
5514 segment.
5515 3. There is an output section associated with it,
5516 4. The section has not already been allocated to a previous segment.
5517 5. PT_GNU_STACK segments do not include any sections.
5518 6. PT_TLS segment includes only SHF_TLS sections.
5519 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5520 8. PT_DYNAMIC should not contain empty sections at the beginning
5521 (with the possible exception of .dynamic). */
5522 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5523 ((((segment->p_paddr \
5524 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5525 : IS_CONTAINED_BY_VMA (section, segment)) \
5526 && (section->flags & SEC_ALLOC) != 0) \
5527 || IS_NOTE (segment, section)) \
5528 && segment->p_type != PT_GNU_STACK \
5529 && (segment->p_type != PT_TLS \
5530 || (section->flags & SEC_THREAD_LOCAL)) \
5531 && (segment->p_type == PT_LOAD \
5532 || segment->p_type == PT_TLS \
5533 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5534 && (segment->p_type != PT_DYNAMIC \
5535 || SECTION_SIZE (section, segment) > 0 \
5536 || (segment->p_paddr \
5537 ? segment->p_paddr != section->lma \
5538 : segment->p_vaddr != section->vma) \
5539 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5540 == 0)) \
5541 && !section->segment_mark)
5542
5543 /* If the output section of a section in the input segment is NULL,
5544 it is removed from the corresponding output segment. */
5545 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5546 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5547 && section->output_section != NULL)
5548
5549 /* Returns TRUE iff seg1 starts after the end of seg2. */
5550 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5551 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5552
5553 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5554 their VMA address ranges and their LMA address ranges overlap.
5555 It is possible to have overlapping VMA ranges without overlapping LMA
5556 ranges. RedBoot images for example can have both .data and .bss mapped
5557 to the same VMA range, but with the .data section mapped to a different
5558 LMA. */
5559 #define SEGMENT_OVERLAPS(seg1, seg2) \
5560 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5561 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5562 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5563 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5564
5565 /* Initialise the segment mark field. */
5566 for (section = ibfd->sections; section != NULL; section = section->next)
5567 section->segment_mark = FALSE;
5568
5569 /* The Solaris linker creates program headers in which all the
5570 p_paddr fields are zero. When we try to objcopy or strip such a
5571 file, we get confused. Check for this case, and if we find it
5572 don't set the p_paddr_valid fields. */
5573 p_paddr_valid = FALSE;
5574 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5575 i < num_segments;
5576 i++, segment++)
5577 if (segment->p_paddr != 0)
5578 {
5579 p_paddr_valid = TRUE;
5580 break;
5581 }
5582
5583 /* Scan through the segments specified in the program header
5584 of the input BFD. For this first scan we look for overlaps
5585 in the loadable segments. These can be created by weird
5586 parameters to objcopy. Also, fix some solaris weirdness. */
5587 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5588 i < num_segments;
5589 i++, segment++)
5590 {
5591 unsigned int j;
5592 Elf_Internal_Phdr *segment2;
5593
5594 if (segment->p_type == PT_INTERP)
5595 for (section = ibfd->sections; section; section = section->next)
5596 if (IS_SOLARIS_PT_INTERP (segment, section))
5597 {
5598 /* Mininal change so that the normal section to segment
5599 assignment code will work. */
5600 segment->p_vaddr = section->vma;
5601 break;
5602 }
5603
5604 if (segment->p_type != PT_LOAD)
5605 {
5606 /* Remove PT_GNU_RELRO segment. */
5607 if (segment->p_type == PT_GNU_RELRO)
5608 segment->p_type = PT_NULL;
5609 continue;
5610 }
5611
5612 /* Determine if this segment overlaps any previous segments. */
5613 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5614 {
5615 bfd_signed_vma extra_length;
5616
5617 if (segment2->p_type != PT_LOAD
5618 || !SEGMENT_OVERLAPS (segment, segment2))
5619 continue;
5620
5621 /* Merge the two segments together. */
5622 if (segment2->p_vaddr < segment->p_vaddr)
5623 {
5624 /* Extend SEGMENT2 to include SEGMENT and then delete
5625 SEGMENT. */
5626 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5627 - SEGMENT_END (segment2, segment2->p_vaddr));
5628
5629 if (extra_length > 0)
5630 {
5631 segment2->p_memsz += extra_length;
5632 segment2->p_filesz += extra_length;
5633 }
5634
5635 segment->p_type = PT_NULL;
5636
5637 /* Since we have deleted P we must restart the outer loop. */
5638 i = 0;
5639 segment = elf_tdata (ibfd)->phdr;
5640 break;
5641 }
5642 else
5643 {
5644 /* Extend SEGMENT to include SEGMENT2 and then delete
5645 SEGMENT2. */
5646 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5647 - SEGMENT_END (segment, segment->p_vaddr));
5648
5649 if (extra_length > 0)
5650 {
5651 segment->p_memsz += extra_length;
5652 segment->p_filesz += extra_length;
5653 }
5654
5655 segment2->p_type = PT_NULL;
5656 }
5657 }
5658 }
5659
5660 /* The second scan attempts to assign sections to segments. */
5661 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5662 i < num_segments;
5663 i++, segment++)
5664 {
5665 unsigned int section_count;
5666 asection **sections;
5667 asection *output_section;
5668 unsigned int isec;
5669 bfd_vma matching_lma;
5670 bfd_vma suggested_lma;
5671 unsigned int j;
5672 bfd_size_type amt;
5673 asection *first_section;
5674 bfd_boolean first_matching_lma;
5675 bfd_boolean first_suggested_lma;
5676
5677 if (segment->p_type == PT_NULL)
5678 continue;
5679
5680 first_section = NULL;
5681 /* Compute how many sections might be placed into this segment. */
5682 for (section = ibfd->sections, section_count = 0;
5683 section != NULL;
5684 section = section->next)
5685 {
5686 /* Find the first section in the input segment, which may be
5687 removed from the corresponding output segment. */
5688 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5689 {
5690 if (first_section == NULL)
5691 first_section = section;
5692 if (section->output_section != NULL)
5693 ++section_count;
5694 }
5695 }
5696
5697 /* Allocate a segment map big enough to contain
5698 all of the sections we have selected. */
5699 amt = sizeof (struct elf_segment_map);
5700 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5701 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5702 if (map == NULL)
5703 return FALSE;
5704
5705 /* Initialise the fields of the segment map. Default to
5706 using the physical address of the segment in the input BFD. */
5707 map->next = NULL;
5708 map->p_type = segment->p_type;
5709 map->p_flags = segment->p_flags;
5710 map->p_flags_valid = 1;
5711
5712 /* If the first section in the input segment is removed, there is
5713 no need to preserve segment physical address in the corresponding
5714 output segment. */
5715 if (!first_section || first_section->output_section != NULL)
5716 {
5717 map->p_paddr = segment->p_paddr;
5718 map->p_paddr_valid = p_paddr_valid;
5719 }
5720
5721 /* Determine if this segment contains the ELF file header
5722 and if it contains the program headers themselves. */
5723 map->includes_filehdr = (segment->p_offset == 0
5724 && segment->p_filesz >= iehdr->e_ehsize);
5725 map->includes_phdrs = 0;
5726
5727 if (!phdr_included || segment->p_type != PT_LOAD)
5728 {
5729 map->includes_phdrs =
5730 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5731 && (segment->p_offset + segment->p_filesz
5732 >= ((bfd_vma) iehdr->e_phoff
5733 + iehdr->e_phnum * iehdr->e_phentsize)));
5734
5735 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5736 phdr_included = TRUE;
5737 }
5738
5739 if (section_count == 0)
5740 {
5741 /* Special segments, such as the PT_PHDR segment, may contain
5742 no sections, but ordinary, loadable segments should contain
5743 something. They are allowed by the ELF spec however, so only
5744 a warning is produced. */
5745 if (segment->p_type == PT_LOAD)
5746 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5747 " detected, is this intentional ?\n"),
5748 ibfd);
5749
5750 map->count = 0;
5751 *pointer_to_map = map;
5752 pointer_to_map = &map->next;
5753
5754 continue;
5755 }
5756
5757 /* Now scan the sections in the input BFD again and attempt
5758 to add their corresponding output sections to the segment map.
5759 The problem here is how to handle an output section which has
5760 been moved (ie had its LMA changed). There are four possibilities:
5761
5762 1. None of the sections have been moved.
5763 In this case we can continue to use the segment LMA from the
5764 input BFD.
5765
5766 2. All of the sections have been moved by the same amount.
5767 In this case we can change the segment's LMA to match the LMA
5768 of the first section.
5769
5770 3. Some of the sections have been moved, others have not.
5771 In this case those sections which have not been moved can be
5772 placed in the current segment which will have to have its size,
5773 and possibly its LMA changed, and a new segment or segments will
5774 have to be created to contain the other sections.
5775
5776 4. The sections have been moved, but not by the same amount.
5777 In this case we can change the segment's LMA to match the LMA
5778 of the first section and we will have to create a new segment
5779 or segments to contain the other sections.
5780
5781 In order to save time, we allocate an array to hold the section
5782 pointers that we are interested in. As these sections get assigned
5783 to a segment, they are removed from this array. */
5784
5785 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5786 if (sections == NULL)
5787 return FALSE;
5788
5789 /* Step One: Scan for segment vs section LMA conflicts.
5790 Also add the sections to the section array allocated above.
5791 Also add the sections to the current segment. In the common
5792 case, where the sections have not been moved, this means that
5793 we have completely filled the segment, and there is nothing
5794 more to do. */
5795 isec = 0;
5796 matching_lma = 0;
5797 suggested_lma = 0;
5798 first_matching_lma = TRUE;
5799 first_suggested_lma = TRUE;
5800
5801 for (section = ibfd->sections;
5802 section != NULL;
5803 section = section->next)
5804 if (section == first_section)
5805 break;
5806
5807 for (j = 0; section != NULL; section = section->next)
5808 {
5809 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5810 {
5811 output_section = section->output_section;
5812
5813 sections[j++] = section;
5814
5815 /* The Solaris native linker always sets p_paddr to 0.
5816 We try to catch that case here, and set it to the
5817 correct value. Note - some backends require that
5818 p_paddr be left as zero. */
5819 if (!p_paddr_valid
5820 && segment->p_vaddr != 0
5821 && !bed->want_p_paddr_set_to_zero
5822 && isec == 0
5823 && output_section->lma != 0
5824 && output_section->vma == (segment->p_vaddr
5825 + (map->includes_filehdr
5826 ? iehdr->e_ehsize
5827 : 0)
5828 + (map->includes_phdrs
5829 ? (iehdr->e_phnum
5830 * iehdr->e_phentsize)
5831 : 0)))
5832 map->p_paddr = segment->p_vaddr;
5833
5834 /* Match up the physical address of the segment with the
5835 LMA address of the output section. */
5836 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5837 || IS_COREFILE_NOTE (segment, section)
5838 || (bed->want_p_paddr_set_to_zero
5839 && IS_CONTAINED_BY_VMA (output_section, segment)))
5840 {
5841 if (first_matching_lma || output_section->lma < matching_lma)
5842 {
5843 matching_lma = output_section->lma;
5844 first_matching_lma = FALSE;
5845 }
5846
5847 /* We assume that if the section fits within the segment
5848 then it does not overlap any other section within that
5849 segment. */
5850 map->sections[isec++] = output_section;
5851 }
5852 else if (first_suggested_lma)
5853 {
5854 suggested_lma = output_section->lma;
5855 first_suggested_lma = FALSE;
5856 }
5857
5858 if (j == section_count)
5859 break;
5860 }
5861 }
5862
5863 BFD_ASSERT (j == section_count);
5864
5865 /* Step Two: Adjust the physical address of the current segment,
5866 if necessary. */
5867 if (isec == section_count)
5868 {
5869 /* All of the sections fitted within the segment as currently
5870 specified. This is the default case. Add the segment to
5871 the list of built segments and carry on to process the next
5872 program header in the input BFD. */
5873 map->count = section_count;
5874 *pointer_to_map = map;
5875 pointer_to_map = &map->next;
5876
5877 if (p_paddr_valid
5878 && !bed->want_p_paddr_set_to_zero
5879 && matching_lma != map->p_paddr
5880 && !map->includes_filehdr
5881 && !map->includes_phdrs)
5882 /* There is some padding before the first section in the
5883 segment. So, we must account for that in the output
5884 segment's vma. */
5885 map->p_vaddr_offset = matching_lma - map->p_paddr;
5886
5887 free (sections);
5888 continue;
5889 }
5890 else
5891 {
5892 if (!first_matching_lma)
5893 {
5894 /* At least one section fits inside the current segment.
5895 Keep it, but modify its physical address to match the
5896 LMA of the first section that fitted. */
5897 map->p_paddr = matching_lma;
5898 }
5899 else
5900 {
5901 /* None of the sections fitted inside the current segment.
5902 Change the current segment's physical address to match
5903 the LMA of the first section. */
5904 map->p_paddr = suggested_lma;
5905 }
5906
5907 /* Offset the segment physical address from the lma
5908 to allow for space taken up by elf headers. */
5909 if (map->includes_filehdr)
5910 {
5911 if (map->p_paddr >= iehdr->e_ehsize)
5912 map->p_paddr -= iehdr->e_ehsize;
5913 else
5914 {
5915 map->includes_filehdr = FALSE;
5916 map->includes_phdrs = FALSE;
5917 }
5918 }
5919
5920 if (map->includes_phdrs)
5921 {
5922 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5923 {
5924 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5925
5926 /* iehdr->e_phnum is just an estimate of the number
5927 of program headers that we will need. Make a note
5928 here of the number we used and the segment we chose
5929 to hold these headers, so that we can adjust the
5930 offset when we know the correct value. */
5931 phdr_adjust_num = iehdr->e_phnum;
5932 phdr_adjust_seg = map;
5933 }
5934 else
5935 map->includes_phdrs = FALSE;
5936 }
5937 }
5938
5939 /* Step Three: Loop over the sections again, this time assigning
5940 those that fit to the current segment and removing them from the
5941 sections array; but making sure not to leave large gaps. Once all
5942 possible sections have been assigned to the current segment it is
5943 added to the list of built segments and if sections still remain
5944 to be assigned, a new segment is constructed before repeating
5945 the loop. */
5946 isec = 0;
5947 do
5948 {
5949 map->count = 0;
5950 suggested_lma = 0;
5951 first_suggested_lma = TRUE;
5952
5953 /* Fill the current segment with sections that fit. */
5954 for (j = 0; j < section_count; j++)
5955 {
5956 section = sections[j];
5957
5958 if (section == NULL)
5959 continue;
5960
5961 output_section = section->output_section;
5962
5963 BFD_ASSERT (output_section != NULL);
5964
5965 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5966 || IS_COREFILE_NOTE (segment, section))
5967 {
5968 if (map->count == 0)
5969 {
5970 /* If the first section in a segment does not start at
5971 the beginning of the segment, then something is
5972 wrong. */
5973 if (output_section->lma
5974 != (map->p_paddr
5975 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5976 + (map->includes_phdrs
5977 ? iehdr->e_phnum * iehdr->e_phentsize
5978 : 0)))
5979 abort ();
5980 }
5981 else
5982 {
5983 asection *prev_sec;
5984
5985 prev_sec = map->sections[map->count - 1];
5986
5987 /* If the gap between the end of the previous section
5988 and the start of this section is more than
5989 maxpagesize then we need to start a new segment. */
5990 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5991 maxpagesize)
5992 < BFD_ALIGN (output_section->lma, maxpagesize))
5993 || (prev_sec->lma + prev_sec->size
5994 > output_section->lma))
5995 {
5996 if (first_suggested_lma)
5997 {
5998 suggested_lma = output_section->lma;
5999 first_suggested_lma = FALSE;
6000 }
6001
6002 continue;
6003 }
6004 }
6005
6006 map->sections[map->count++] = output_section;
6007 ++isec;
6008 sections[j] = NULL;
6009 section->segment_mark = TRUE;
6010 }
6011 else if (first_suggested_lma)
6012 {
6013 suggested_lma = output_section->lma;
6014 first_suggested_lma = FALSE;
6015 }
6016 }
6017
6018 BFD_ASSERT (map->count > 0);
6019
6020 /* Add the current segment to the list of built segments. */
6021 *pointer_to_map = map;
6022 pointer_to_map = &map->next;
6023
6024 if (isec < section_count)
6025 {
6026 /* We still have not allocated all of the sections to
6027 segments. Create a new segment here, initialise it
6028 and carry on looping. */
6029 amt = sizeof (struct elf_segment_map);
6030 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6031 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
6032 if (map == NULL)
6033 {
6034 free (sections);
6035 return FALSE;
6036 }
6037
6038 /* Initialise the fields of the segment map. Set the physical
6039 physical address to the LMA of the first section that has
6040 not yet been assigned. */
6041 map->next = NULL;
6042 map->p_type = segment->p_type;
6043 map->p_flags = segment->p_flags;
6044 map->p_flags_valid = 1;
6045 map->p_paddr = suggested_lma;
6046 map->p_paddr_valid = p_paddr_valid;
6047 map->includes_filehdr = 0;
6048 map->includes_phdrs = 0;
6049 }
6050 }
6051 while (isec < section_count);
6052
6053 free (sections);
6054 }
6055
6056 elf_tdata (obfd)->segment_map = map_first;
6057
6058 /* If we had to estimate the number of program headers that were
6059 going to be needed, then check our estimate now and adjust
6060 the offset if necessary. */
6061 if (phdr_adjust_seg != NULL)
6062 {
6063 unsigned int count;
6064
6065 for (count = 0, map = map_first; map != NULL; map = map->next)
6066 count++;
6067
6068 if (count > phdr_adjust_num)
6069 phdr_adjust_seg->p_paddr
6070 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6071 }
6072
6073 #undef SEGMENT_END
6074 #undef SECTION_SIZE
6075 #undef IS_CONTAINED_BY_VMA
6076 #undef IS_CONTAINED_BY_LMA
6077 #undef IS_NOTE
6078 #undef IS_COREFILE_NOTE
6079 #undef IS_SOLARIS_PT_INTERP
6080 #undef IS_SECTION_IN_INPUT_SEGMENT
6081 #undef INCLUDE_SECTION_IN_SEGMENT
6082 #undef SEGMENT_AFTER_SEGMENT
6083 #undef SEGMENT_OVERLAPS
6084 return TRUE;
6085 }
6086
6087 /* Copy ELF program header information. */
6088
6089 static bfd_boolean
6090 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6091 {
6092 Elf_Internal_Ehdr *iehdr;
6093 struct elf_segment_map *map;
6094 struct elf_segment_map *map_first;
6095 struct elf_segment_map **pointer_to_map;
6096 Elf_Internal_Phdr *segment;
6097 unsigned int i;
6098 unsigned int num_segments;
6099 bfd_boolean phdr_included = FALSE;
6100 bfd_boolean p_paddr_valid;
6101
6102 iehdr = elf_elfheader (ibfd);
6103
6104 map_first = NULL;
6105 pointer_to_map = &map_first;
6106
6107 /* If all the segment p_paddr fields are zero, don't set
6108 map->p_paddr_valid. */
6109 p_paddr_valid = FALSE;
6110 num_segments = elf_elfheader (ibfd)->e_phnum;
6111 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6112 i < num_segments;
6113 i++, segment++)
6114 if (segment->p_paddr != 0)
6115 {
6116 p_paddr_valid = TRUE;
6117 break;
6118 }
6119
6120 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6121 i < num_segments;
6122 i++, segment++)
6123 {
6124 asection *section;
6125 unsigned int section_count;
6126 bfd_size_type amt;
6127 Elf_Internal_Shdr *this_hdr;
6128 asection *first_section = NULL;
6129 asection *lowest_section;
6130
6131 /* Compute how many sections are in this segment. */
6132 for (section = ibfd->sections, section_count = 0;
6133 section != NULL;
6134 section = section->next)
6135 {
6136 this_hdr = &(elf_section_data(section)->this_hdr);
6137 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6138 {
6139 if (first_section == NULL)
6140 first_section = section;
6141 section_count++;
6142 }
6143 }
6144
6145 /* Allocate a segment map big enough to contain
6146 all of the sections we have selected. */
6147 amt = sizeof (struct elf_segment_map);
6148 if (section_count != 0)
6149 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6150 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6151 if (map == NULL)
6152 return FALSE;
6153
6154 /* Initialize the fields of the output segment map with the
6155 input segment. */
6156 map->next = NULL;
6157 map->p_type = segment->p_type;
6158 map->p_flags = segment->p_flags;
6159 map->p_flags_valid = 1;
6160 map->p_paddr = segment->p_paddr;
6161 map->p_paddr_valid = p_paddr_valid;
6162 map->p_align = segment->p_align;
6163 map->p_align_valid = 1;
6164 map->p_vaddr_offset = 0;
6165
6166 if (map->p_type == PT_GNU_RELRO)
6167 {
6168 /* The PT_GNU_RELRO segment may contain the first a few
6169 bytes in the .got.plt section even if the whole .got.plt
6170 section isn't in the PT_GNU_RELRO segment. We won't
6171 change the size of the PT_GNU_RELRO segment. */
6172 map->p_size = segment->p_memsz;
6173 map->p_size_valid = 1;
6174 }
6175
6176 /* Determine if this segment contains the ELF file header
6177 and if it contains the program headers themselves. */
6178 map->includes_filehdr = (segment->p_offset == 0
6179 && segment->p_filesz >= iehdr->e_ehsize);
6180
6181 map->includes_phdrs = 0;
6182 if (! phdr_included || segment->p_type != PT_LOAD)
6183 {
6184 map->includes_phdrs =
6185 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6186 && (segment->p_offset + segment->p_filesz
6187 >= ((bfd_vma) iehdr->e_phoff
6188 + iehdr->e_phnum * iehdr->e_phentsize)));
6189
6190 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6191 phdr_included = TRUE;
6192 }
6193
6194 lowest_section = first_section;
6195 if (section_count != 0)
6196 {
6197 unsigned int isec = 0;
6198
6199 for (section = first_section;
6200 section != NULL;
6201 section = section->next)
6202 {
6203 this_hdr = &(elf_section_data(section)->this_hdr);
6204 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6205 {
6206 map->sections[isec++] = section->output_section;
6207 if (section->lma < lowest_section->lma)
6208 lowest_section = section;
6209 if ((section->flags & SEC_ALLOC) != 0)
6210 {
6211 bfd_vma seg_off;
6212
6213 /* Section lmas are set up from PT_LOAD header
6214 p_paddr in _bfd_elf_make_section_from_shdr.
6215 If this header has a p_paddr that disagrees
6216 with the section lma, flag the p_paddr as
6217 invalid. */
6218 if ((section->flags & SEC_LOAD) != 0)
6219 seg_off = this_hdr->sh_offset - segment->p_offset;
6220 else
6221 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6222 if (section->lma - segment->p_paddr != seg_off)
6223 map->p_paddr_valid = FALSE;
6224 }
6225 if (isec == section_count)
6226 break;
6227 }
6228 }
6229 }
6230
6231 if (map->includes_filehdr && lowest_section != NULL)
6232 /* We need to keep the space used by the headers fixed. */
6233 map->header_size = lowest_section->vma - segment->p_vaddr;
6234
6235 if (!map->includes_phdrs
6236 && !map->includes_filehdr
6237 && map->p_paddr_valid)
6238 /* There is some other padding before the first section. */
6239 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6240 - segment->p_paddr);
6241
6242 map->count = section_count;
6243 *pointer_to_map = map;
6244 pointer_to_map = &map->next;
6245 }
6246
6247 elf_tdata (obfd)->segment_map = map_first;
6248 return TRUE;
6249 }
6250
6251 /* Copy private BFD data. This copies or rewrites ELF program header
6252 information. */
6253
6254 static bfd_boolean
6255 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6256 {
6257 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6258 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6259 return TRUE;
6260
6261 if (elf_tdata (ibfd)->phdr == NULL)
6262 return TRUE;
6263
6264 if (ibfd->xvec == obfd->xvec)
6265 {
6266 /* Check to see if any sections in the input BFD
6267 covered by ELF program header have changed. */
6268 Elf_Internal_Phdr *segment;
6269 asection *section, *osec;
6270 unsigned int i, num_segments;
6271 Elf_Internal_Shdr *this_hdr;
6272 const struct elf_backend_data *bed;
6273
6274 bed = get_elf_backend_data (ibfd);
6275
6276 /* Regenerate the segment map if p_paddr is set to 0. */
6277 if (bed->want_p_paddr_set_to_zero)
6278 goto rewrite;
6279
6280 /* Initialize the segment mark field. */
6281 for (section = obfd->sections; section != NULL;
6282 section = section->next)
6283 section->segment_mark = FALSE;
6284
6285 num_segments = elf_elfheader (ibfd)->e_phnum;
6286 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6287 i < num_segments;
6288 i++, segment++)
6289 {
6290 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6291 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6292 which severly confuses things, so always regenerate the segment
6293 map in this case. */
6294 if (segment->p_paddr == 0
6295 && segment->p_memsz == 0
6296 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6297 goto rewrite;
6298
6299 for (section = ibfd->sections;
6300 section != NULL; section = section->next)
6301 {
6302 /* We mark the output section so that we know it comes
6303 from the input BFD. */
6304 osec = section->output_section;
6305 if (osec)
6306 osec->segment_mark = TRUE;
6307
6308 /* Check if this section is covered by the segment. */
6309 this_hdr = &(elf_section_data(section)->this_hdr);
6310 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6311 {
6312 /* FIXME: Check if its output section is changed or
6313 removed. What else do we need to check? */
6314 if (osec == NULL
6315 || section->flags != osec->flags
6316 || section->lma != osec->lma
6317 || section->vma != osec->vma
6318 || section->size != osec->size
6319 || section->rawsize != osec->rawsize
6320 || section->alignment_power != osec->alignment_power)
6321 goto rewrite;
6322 }
6323 }
6324 }
6325
6326 /* Check to see if any output section do not come from the
6327 input BFD. */
6328 for (section = obfd->sections; section != NULL;
6329 section = section->next)
6330 {
6331 if (section->segment_mark == FALSE)
6332 goto rewrite;
6333 else
6334 section->segment_mark = FALSE;
6335 }
6336
6337 return copy_elf_program_header (ibfd, obfd);
6338 }
6339
6340 rewrite:
6341 return rewrite_elf_program_header (ibfd, obfd);
6342 }
6343
6344 /* Initialize private output section information from input section. */
6345
6346 bfd_boolean
6347 _bfd_elf_init_private_section_data (bfd *ibfd,
6348 asection *isec,
6349 bfd *obfd,
6350 asection *osec,
6351 struct bfd_link_info *link_info)
6352
6353 {
6354 Elf_Internal_Shdr *ihdr, *ohdr;
6355 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6356
6357 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6358 || obfd->xvec->flavour != bfd_target_elf_flavour)
6359 return TRUE;
6360
6361 BFD_ASSERT (elf_section_data (osec) != NULL);
6362
6363 /* For objcopy and relocatable link, don't copy the output ELF
6364 section type from input if the output BFD section flags have been
6365 set to something different. For a final link allow some flags
6366 that the linker clears to differ. */
6367 if (elf_section_type (osec) == SHT_NULL
6368 && (osec->flags == isec->flags
6369 || (final_link
6370 && ((osec->flags ^ isec->flags)
6371 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6372 elf_section_type (osec) = elf_section_type (isec);
6373
6374 /* FIXME: Is this correct for all OS/PROC specific flags? */
6375 elf_section_flags (osec) |= (elf_section_flags (isec)
6376 & (SHF_MASKOS | SHF_MASKPROC));
6377
6378 /* Set things up for objcopy and relocatable link. The output
6379 SHT_GROUP section will have its elf_next_in_group pointing back
6380 to the input group members. Ignore linker created group section.
6381 See elfNN_ia64_object_p in elfxx-ia64.c. */
6382 if (!final_link)
6383 {
6384 if (elf_sec_group (isec) == NULL
6385 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6386 {
6387 if (elf_section_flags (isec) & SHF_GROUP)
6388 elf_section_flags (osec) |= SHF_GROUP;
6389 elf_next_in_group (osec) = elf_next_in_group (isec);
6390 elf_section_data (osec)->group = elf_section_data (isec)->group;
6391 }
6392 }
6393
6394 ihdr = &elf_section_data (isec)->this_hdr;
6395
6396 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6397 don't use the output section of the linked-to section since it
6398 may be NULL at this point. */
6399 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6400 {
6401 ohdr = &elf_section_data (osec)->this_hdr;
6402 ohdr->sh_flags |= SHF_LINK_ORDER;
6403 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6404 }
6405
6406 osec->use_rela_p = isec->use_rela_p;
6407
6408 return TRUE;
6409 }
6410
6411 /* Copy private section information. This copies over the entsize
6412 field, and sometimes the info field. */
6413
6414 bfd_boolean
6415 _bfd_elf_copy_private_section_data (bfd *ibfd,
6416 asection *isec,
6417 bfd *obfd,
6418 asection *osec)
6419 {
6420 Elf_Internal_Shdr *ihdr, *ohdr;
6421
6422 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6423 || obfd->xvec->flavour != bfd_target_elf_flavour)
6424 return TRUE;
6425
6426 ihdr = &elf_section_data (isec)->this_hdr;
6427 ohdr = &elf_section_data (osec)->this_hdr;
6428
6429 ohdr->sh_entsize = ihdr->sh_entsize;
6430
6431 if (ihdr->sh_type == SHT_SYMTAB
6432 || ihdr->sh_type == SHT_DYNSYM
6433 || ihdr->sh_type == SHT_GNU_verneed
6434 || ihdr->sh_type == SHT_GNU_verdef)
6435 ohdr->sh_info = ihdr->sh_info;
6436
6437 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6438 NULL);
6439 }
6440
6441 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6442 necessary if we are removing either the SHT_GROUP section or any of
6443 the group member sections. DISCARDED is the value that a section's
6444 output_section has if the section will be discarded, NULL when this
6445 function is called from objcopy, bfd_abs_section_ptr when called
6446 from the linker. */
6447
6448 bfd_boolean
6449 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6450 {
6451 asection *isec;
6452
6453 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6454 if (elf_section_type (isec) == SHT_GROUP)
6455 {
6456 asection *first = elf_next_in_group (isec);
6457 asection *s = first;
6458 bfd_size_type removed = 0;
6459
6460 while (s != NULL)
6461 {
6462 /* If this member section is being output but the
6463 SHT_GROUP section is not, then clear the group info
6464 set up by _bfd_elf_copy_private_section_data. */
6465 if (s->output_section != discarded
6466 && isec->output_section == discarded)
6467 {
6468 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6469 elf_group_name (s->output_section) = NULL;
6470 }
6471 /* Conversely, if the member section is not being output
6472 but the SHT_GROUP section is, then adjust its size. */
6473 else if (s->output_section == discarded
6474 && isec->output_section != discarded)
6475 removed += 4;
6476 s = elf_next_in_group (s);
6477 if (s == first)
6478 break;
6479 }
6480 if (removed != 0)
6481 {
6482 if (discarded != NULL)
6483 {
6484 /* If we've been called for ld -r, then we need to
6485 adjust the input section size. This function may
6486 be called multiple times, so save the original
6487 size. */
6488 if (isec->rawsize == 0)
6489 isec->rawsize = isec->size;
6490 isec->size = isec->rawsize - removed;
6491 }
6492 else
6493 {
6494 /* Adjust the output section size when called from
6495 objcopy. */
6496 isec->output_section->size -= removed;
6497 }
6498 }
6499 }
6500
6501 return TRUE;
6502 }
6503
6504 /* Copy private header information. */
6505
6506 bfd_boolean
6507 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6508 {
6509 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6510 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6511 return TRUE;
6512
6513 /* Copy over private BFD data if it has not already been copied.
6514 This must be done here, rather than in the copy_private_bfd_data
6515 entry point, because the latter is called after the section
6516 contents have been set, which means that the program headers have
6517 already been worked out. */
6518 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6519 {
6520 if (! copy_private_bfd_data (ibfd, obfd))
6521 return FALSE;
6522 }
6523
6524 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6525 }
6526
6527 /* Copy private symbol information. If this symbol is in a section
6528 which we did not map into a BFD section, try to map the section
6529 index correctly. We use special macro definitions for the mapped
6530 section indices; these definitions are interpreted by the
6531 swap_out_syms function. */
6532
6533 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6534 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6535 #define MAP_STRTAB (SHN_HIOS + 3)
6536 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6537 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6538
6539 bfd_boolean
6540 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6541 asymbol *isymarg,
6542 bfd *obfd,
6543 asymbol *osymarg)
6544 {
6545 elf_symbol_type *isym, *osym;
6546
6547 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6548 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6549 return TRUE;
6550
6551 isym = elf_symbol_from (ibfd, isymarg);
6552 osym = elf_symbol_from (obfd, osymarg);
6553
6554 if (isym != NULL
6555 && isym->internal_elf_sym.st_shndx != 0
6556 && osym != NULL
6557 && bfd_is_abs_section (isym->symbol.section))
6558 {
6559 unsigned int shndx;
6560
6561 shndx = isym->internal_elf_sym.st_shndx;
6562 if (shndx == elf_onesymtab (ibfd))
6563 shndx = MAP_ONESYMTAB;
6564 else if (shndx == elf_dynsymtab (ibfd))
6565 shndx = MAP_DYNSYMTAB;
6566 else if (shndx == elf_tdata (ibfd)->strtab_section)
6567 shndx = MAP_STRTAB;
6568 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6569 shndx = MAP_SHSTRTAB;
6570 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6571 shndx = MAP_SYM_SHNDX;
6572 osym->internal_elf_sym.st_shndx = shndx;
6573 }
6574
6575 return TRUE;
6576 }
6577
6578 /* Swap out the symbols. */
6579
6580 static bfd_boolean
6581 swap_out_syms (bfd *abfd,
6582 struct bfd_strtab_hash **sttp,
6583 int relocatable_p)
6584 {
6585 const struct elf_backend_data *bed;
6586 int symcount;
6587 asymbol **syms;
6588 struct bfd_strtab_hash *stt;
6589 Elf_Internal_Shdr *symtab_hdr;
6590 Elf_Internal_Shdr *symtab_shndx_hdr;
6591 Elf_Internal_Shdr *symstrtab_hdr;
6592 bfd_byte *outbound_syms;
6593 bfd_byte *outbound_shndx;
6594 int idx;
6595 bfd_size_type amt;
6596 bfd_boolean name_local_sections;
6597
6598 if (!elf_map_symbols (abfd))
6599 return FALSE;
6600
6601 /* Dump out the symtabs. */
6602 stt = _bfd_elf_stringtab_init ();
6603 if (stt == NULL)
6604 return FALSE;
6605
6606 bed = get_elf_backend_data (abfd);
6607 symcount = bfd_get_symcount (abfd);
6608 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6609 symtab_hdr->sh_type = SHT_SYMTAB;
6610 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6611 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6612 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6613 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6614
6615 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6616 symstrtab_hdr->sh_type = SHT_STRTAB;
6617
6618 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6619 bed->s->sizeof_sym);
6620 if (outbound_syms == NULL)
6621 {
6622 _bfd_stringtab_free (stt);
6623 return FALSE;
6624 }
6625 symtab_hdr->contents = outbound_syms;
6626
6627 outbound_shndx = NULL;
6628 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6629 if (symtab_shndx_hdr->sh_name != 0)
6630 {
6631 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6632 outbound_shndx = (bfd_byte *)
6633 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6634 if (outbound_shndx == NULL)
6635 {
6636 _bfd_stringtab_free (stt);
6637 return FALSE;
6638 }
6639
6640 symtab_shndx_hdr->contents = outbound_shndx;
6641 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6642 symtab_shndx_hdr->sh_size = amt;
6643 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6644 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6645 }
6646
6647 /* Now generate the data (for "contents"). */
6648 {
6649 /* Fill in zeroth symbol and swap it out. */
6650 Elf_Internal_Sym sym;
6651 sym.st_name = 0;
6652 sym.st_value = 0;
6653 sym.st_size = 0;
6654 sym.st_info = 0;
6655 sym.st_other = 0;
6656 sym.st_shndx = SHN_UNDEF;
6657 sym.st_target_internal = 0;
6658 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6659 outbound_syms += bed->s->sizeof_sym;
6660 if (outbound_shndx != NULL)
6661 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6662 }
6663
6664 name_local_sections
6665 = (bed->elf_backend_name_local_section_symbols
6666 && bed->elf_backend_name_local_section_symbols (abfd));
6667
6668 syms = bfd_get_outsymbols (abfd);
6669 for (idx = 0; idx < symcount; idx++)
6670 {
6671 Elf_Internal_Sym sym;
6672 bfd_vma value = syms[idx]->value;
6673 elf_symbol_type *type_ptr;
6674 flagword flags = syms[idx]->flags;
6675 int type;
6676
6677 if (!name_local_sections
6678 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6679 {
6680 /* Local section symbols have no name. */
6681 sym.st_name = 0;
6682 }
6683 else
6684 {
6685 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6686 syms[idx]->name,
6687 TRUE, FALSE);
6688 if (sym.st_name == (unsigned long) -1)
6689 {
6690 _bfd_stringtab_free (stt);
6691 return FALSE;
6692 }
6693 }
6694
6695 type_ptr = elf_symbol_from (abfd, syms[idx]);
6696
6697 if ((flags & BSF_SECTION_SYM) == 0
6698 && bfd_is_com_section (syms[idx]->section))
6699 {
6700 /* ELF common symbols put the alignment into the `value' field,
6701 and the size into the `size' field. This is backwards from
6702 how BFD handles it, so reverse it here. */
6703 sym.st_size = value;
6704 if (type_ptr == NULL
6705 || type_ptr->internal_elf_sym.st_value == 0)
6706 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6707 else
6708 sym.st_value = type_ptr->internal_elf_sym.st_value;
6709 sym.st_shndx = _bfd_elf_section_from_bfd_section
6710 (abfd, syms[idx]->section);
6711 }
6712 else
6713 {
6714 asection *sec = syms[idx]->section;
6715 unsigned int shndx;
6716
6717 if (sec->output_section)
6718 {
6719 value += sec->output_offset;
6720 sec = sec->output_section;
6721 }
6722
6723 /* Don't add in the section vma for relocatable output. */
6724 if (! relocatable_p)
6725 value += sec->vma;
6726 sym.st_value = value;
6727 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6728
6729 if (bfd_is_abs_section (sec)
6730 && type_ptr != NULL
6731 && type_ptr->internal_elf_sym.st_shndx != 0)
6732 {
6733 /* This symbol is in a real ELF section which we did
6734 not create as a BFD section. Undo the mapping done
6735 by copy_private_symbol_data. */
6736 shndx = type_ptr->internal_elf_sym.st_shndx;
6737 switch (shndx)
6738 {
6739 case MAP_ONESYMTAB:
6740 shndx = elf_onesymtab (abfd);
6741 break;
6742 case MAP_DYNSYMTAB:
6743 shndx = elf_dynsymtab (abfd);
6744 break;
6745 case MAP_STRTAB:
6746 shndx = elf_tdata (abfd)->strtab_section;
6747 break;
6748 case MAP_SHSTRTAB:
6749 shndx = elf_tdata (abfd)->shstrtab_section;
6750 break;
6751 case MAP_SYM_SHNDX:
6752 shndx = elf_tdata (abfd)->symtab_shndx_section;
6753 break;
6754 default:
6755 break;
6756 }
6757 }
6758 else
6759 {
6760 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6761
6762 if (shndx == SHN_BAD)
6763 {
6764 asection *sec2;
6765
6766 /* Writing this would be a hell of a lot easier if
6767 we had some decent documentation on bfd, and
6768 knew what to expect of the library, and what to
6769 demand of applications. For example, it
6770 appears that `objcopy' might not set the
6771 section of a symbol to be a section that is
6772 actually in the output file. */
6773 sec2 = bfd_get_section_by_name (abfd, sec->name);
6774 if (sec2 == NULL)
6775 {
6776 _bfd_error_handler (_("\
6777 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6778 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6779 sec->name);
6780 bfd_set_error (bfd_error_invalid_operation);
6781 _bfd_stringtab_free (stt);
6782 return FALSE;
6783 }
6784
6785 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6786 BFD_ASSERT (shndx != SHN_BAD);
6787 }
6788 }
6789
6790 sym.st_shndx = shndx;
6791 }
6792
6793 if ((flags & BSF_THREAD_LOCAL) != 0)
6794 type = STT_TLS;
6795 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6796 type = STT_GNU_IFUNC;
6797 else if ((flags & BSF_FUNCTION) != 0)
6798 type = STT_FUNC;
6799 else if ((flags & BSF_OBJECT) != 0)
6800 type = STT_OBJECT;
6801 else if ((flags & BSF_RELC) != 0)
6802 type = STT_RELC;
6803 else if ((flags & BSF_SRELC) != 0)
6804 type = STT_SRELC;
6805 else
6806 type = STT_NOTYPE;
6807
6808 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6809 type = STT_TLS;
6810
6811 /* Processor-specific types. */
6812 if (type_ptr != NULL
6813 && bed->elf_backend_get_symbol_type)
6814 type = ((*bed->elf_backend_get_symbol_type)
6815 (&type_ptr->internal_elf_sym, type));
6816
6817 if (flags & BSF_SECTION_SYM)
6818 {
6819 if (flags & BSF_GLOBAL)
6820 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6821 else
6822 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6823 }
6824 else if (bfd_is_com_section (syms[idx]->section))
6825 {
6826 #ifdef USE_STT_COMMON
6827 if (type == STT_OBJECT)
6828 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6829 else
6830 #endif
6831 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6832 }
6833 else if (bfd_is_und_section (syms[idx]->section))
6834 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6835 ? STB_WEAK
6836 : STB_GLOBAL),
6837 type);
6838 else if (flags & BSF_FILE)
6839 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6840 else
6841 {
6842 int bind = STB_LOCAL;
6843
6844 if (flags & BSF_LOCAL)
6845 bind = STB_LOCAL;
6846 else if (flags & BSF_GNU_UNIQUE)
6847 bind = STB_GNU_UNIQUE;
6848 else if (flags & BSF_WEAK)
6849 bind = STB_WEAK;
6850 else if (flags & BSF_GLOBAL)
6851 bind = STB_GLOBAL;
6852
6853 sym.st_info = ELF_ST_INFO (bind, type);
6854 }
6855
6856 if (type_ptr != NULL)
6857 {
6858 sym.st_other = type_ptr->internal_elf_sym.st_other;
6859 sym.st_target_internal
6860 = type_ptr->internal_elf_sym.st_target_internal;
6861 }
6862 else
6863 {
6864 sym.st_other = 0;
6865 sym.st_target_internal = 0;
6866 }
6867
6868 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6869 outbound_syms += bed->s->sizeof_sym;
6870 if (outbound_shndx != NULL)
6871 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6872 }
6873
6874 *sttp = stt;
6875 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6876 symstrtab_hdr->sh_type = SHT_STRTAB;
6877
6878 symstrtab_hdr->sh_flags = 0;
6879 symstrtab_hdr->sh_addr = 0;
6880 symstrtab_hdr->sh_entsize = 0;
6881 symstrtab_hdr->sh_link = 0;
6882 symstrtab_hdr->sh_info = 0;
6883 symstrtab_hdr->sh_addralign = 1;
6884
6885 return TRUE;
6886 }
6887
6888 /* Return the number of bytes required to hold the symtab vector.
6889
6890 Note that we base it on the count plus 1, since we will null terminate
6891 the vector allocated based on this size. However, the ELF symbol table
6892 always has a dummy entry as symbol #0, so it ends up even. */
6893
6894 long
6895 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6896 {
6897 long symcount;
6898 long symtab_size;
6899 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6900
6901 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6902 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6903 if (symcount > 0)
6904 symtab_size -= sizeof (asymbol *);
6905
6906 return symtab_size;
6907 }
6908
6909 long
6910 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6911 {
6912 long symcount;
6913 long symtab_size;
6914 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6915
6916 if (elf_dynsymtab (abfd) == 0)
6917 {
6918 bfd_set_error (bfd_error_invalid_operation);
6919 return -1;
6920 }
6921
6922 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6923 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6924 if (symcount > 0)
6925 symtab_size -= sizeof (asymbol *);
6926
6927 return symtab_size;
6928 }
6929
6930 long
6931 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6932 sec_ptr asect)
6933 {
6934 return (asect->reloc_count + 1) * sizeof (arelent *);
6935 }
6936
6937 /* Canonicalize the relocs. */
6938
6939 long
6940 _bfd_elf_canonicalize_reloc (bfd *abfd,
6941 sec_ptr section,
6942 arelent **relptr,
6943 asymbol **symbols)
6944 {
6945 arelent *tblptr;
6946 unsigned int i;
6947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6948
6949 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6950 return -1;
6951
6952 tblptr = section->relocation;
6953 for (i = 0; i < section->reloc_count; i++)
6954 *relptr++ = tblptr++;
6955
6956 *relptr = NULL;
6957
6958 return section->reloc_count;
6959 }
6960
6961 long
6962 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6963 {
6964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6965 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6966
6967 if (symcount >= 0)
6968 bfd_get_symcount (abfd) = symcount;
6969 return symcount;
6970 }
6971
6972 long
6973 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6974 asymbol **allocation)
6975 {
6976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6977 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6978
6979 if (symcount >= 0)
6980 bfd_get_dynamic_symcount (abfd) = symcount;
6981 return symcount;
6982 }
6983
6984 /* Return the size required for the dynamic reloc entries. Any loadable
6985 section that was actually installed in the BFD, and has type SHT_REL
6986 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6987 dynamic reloc section. */
6988
6989 long
6990 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6991 {
6992 long ret;
6993 asection *s;
6994
6995 if (elf_dynsymtab (abfd) == 0)
6996 {
6997 bfd_set_error (bfd_error_invalid_operation);
6998 return -1;
6999 }
7000
7001 ret = sizeof (arelent *);
7002 for (s = abfd->sections; s != NULL; s = s->next)
7003 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7004 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7005 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7006 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7007 * sizeof (arelent *));
7008
7009 return ret;
7010 }
7011
7012 /* Canonicalize the dynamic relocation entries. Note that we return the
7013 dynamic relocations as a single block, although they are actually
7014 associated with particular sections; the interface, which was
7015 designed for SunOS style shared libraries, expects that there is only
7016 one set of dynamic relocs. Any loadable section that was actually
7017 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7018 dynamic symbol table, is considered to be a dynamic reloc section. */
7019
7020 long
7021 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7022 arelent **storage,
7023 asymbol **syms)
7024 {
7025 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7026 asection *s;
7027 long ret;
7028
7029 if (elf_dynsymtab (abfd) == 0)
7030 {
7031 bfd_set_error (bfd_error_invalid_operation);
7032 return -1;
7033 }
7034
7035 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7036 ret = 0;
7037 for (s = abfd->sections; s != NULL; s = s->next)
7038 {
7039 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7040 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7041 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7042 {
7043 arelent *p;
7044 long count, i;
7045
7046 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7047 return -1;
7048 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7049 p = s->relocation;
7050 for (i = 0; i < count; i++)
7051 *storage++ = p++;
7052 ret += count;
7053 }
7054 }
7055
7056 *storage = NULL;
7057
7058 return ret;
7059 }
7060 \f
7061 /* Read in the version information. */
7062
7063 bfd_boolean
7064 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7065 {
7066 bfd_byte *contents = NULL;
7067 unsigned int freeidx = 0;
7068
7069 if (elf_dynverref (abfd) != 0)
7070 {
7071 Elf_Internal_Shdr *hdr;
7072 Elf_External_Verneed *everneed;
7073 Elf_Internal_Verneed *iverneed;
7074 unsigned int i;
7075 bfd_byte *contents_end;
7076
7077 hdr = &elf_tdata (abfd)->dynverref_hdr;
7078
7079 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7080 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7081 if (elf_tdata (abfd)->verref == NULL)
7082 goto error_return;
7083
7084 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7085
7086 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7087 if (contents == NULL)
7088 {
7089 error_return_verref:
7090 elf_tdata (abfd)->verref = NULL;
7091 elf_tdata (abfd)->cverrefs = 0;
7092 goto error_return;
7093 }
7094 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7095 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7096 goto error_return_verref;
7097
7098 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7099 goto error_return_verref;
7100
7101 BFD_ASSERT (sizeof (Elf_External_Verneed)
7102 == sizeof (Elf_External_Vernaux));
7103 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7104 everneed = (Elf_External_Verneed *) contents;
7105 iverneed = elf_tdata (abfd)->verref;
7106 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7107 {
7108 Elf_External_Vernaux *evernaux;
7109 Elf_Internal_Vernaux *ivernaux;
7110 unsigned int j;
7111
7112 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7113
7114 iverneed->vn_bfd = abfd;
7115
7116 iverneed->vn_filename =
7117 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7118 iverneed->vn_file);
7119 if (iverneed->vn_filename == NULL)
7120 goto error_return_verref;
7121
7122 if (iverneed->vn_cnt == 0)
7123 iverneed->vn_auxptr = NULL;
7124 else
7125 {
7126 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7127 bfd_alloc2 (abfd, iverneed->vn_cnt,
7128 sizeof (Elf_Internal_Vernaux));
7129 if (iverneed->vn_auxptr == NULL)
7130 goto error_return_verref;
7131 }
7132
7133 if (iverneed->vn_aux
7134 > (size_t) (contents_end - (bfd_byte *) everneed))
7135 goto error_return_verref;
7136
7137 evernaux = ((Elf_External_Vernaux *)
7138 ((bfd_byte *) everneed + iverneed->vn_aux));
7139 ivernaux = iverneed->vn_auxptr;
7140 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7141 {
7142 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7143
7144 ivernaux->vna_nodename =
7145 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7146 ivernaux->vna_name);
7147 if (ivernaux->vna_nodename == NULL)
7148 goto error_return_verref;
7149
7150 if (j + 1 < iverneed->vn_cnt)
7151 ivernaux->vna_nextptr = ivernaux + 1;
7152 else
7153 ivernaux->vna_nextptr = NULL;
7154
7155 if (ivernaux->vna_next
7156 > (size_t) (contents_end - (bfd_byte *) evernaux))
7157 goto error_return_verref;
7158
7159 evernaux = ((Elf_External_Vernaux *)
7160 ((bfd_byte *) evernaux + ivernaux->vna_next));
7161
7162 if (ivernaux->vna_other > freeidx)
7163 freeidx = ivernaux->vna_other;
7164 }
7165
7166 if (i + 1 < hdr->sh_info)
7167 iverneed->vn_nextref = iverneed + 1;
7168 else
7169 iverneed->vn_nextref = NULL;
7170
7171 if (iverneed->vn_next
7172 > (size_t) (contents_end - (bfd_byte *) everneed))
7173 goto error_return_verref;
7174
7175 everneed = ((Elf_External_Verneed *)
7176 ((bfd_byte *) everneed + iverneed->vn_next));
7177 }
7178
7179 free (contents);
7180 contents = NULL;
7181 }
7182
7183 if (elf_dynverdef (abfd) != 0)
7184 {
7185 Elf_Internal_Shdr *hdr;
7186 Elf_External_Verdef *everdef;
7187 Elf_Internal_Verdef *iverdef;
7188 Elf_Internal_Verdef *iverdefarr;
7189 Elf_Internal_Verdef iverdefmem;
7190 unsigned int i;
7191 unsigned int maxidx;
7192 bfd_byte *contents_end_def, *contents_end_aux;
7193
7194 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7195
7196 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7197 if (contents == NULL)
7198 goto error_return;
7199 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7200 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7201 goto error_return;
7202
7203 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7204 goto error_return;
7205
7206 BFD_ASSERT (sizeof (Elf_External_Verdef)
7207 >= sizeof (Elf_External_Verdaux));
7208 contents_end_def = contents + hdr->sh_size
7209 - sizeof (Elf_External_Verdef);
7210 contents_end_aux = contents + hdr->sh_size
7211 - sizeof (Elf_External_Verdaux);
7212
7213 /* We know the number of entries in the section but not the maximum
7214 index. Therefore we have to run through all entries and find
7215 the maximum. */
7216 everdef = (Elf_External_Verdef *) contents;
7217 maxidx = 0;
7218 for (i = 0; i < hdr->sh_info; ++i)
7219 {
7220 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7221
7222 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7223 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7224
7225 if (iverdefmem.vd_next
7226 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7227 goto error_return;
7228
7229 everdef = ((Elf_External_Verdef *)
7230 ((bfd_byte *) everdef + iverdefmem.vd_next));
7231 }
7232
7233 if (default_imported_symver)
7234 {
7235 if (freeidx > maxidx)
7236 maxidx = ++freeidx;
7237 else
7238 freeidx = ++maxidx;
7239 }
7240 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7241 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7242 if (elf_tdata (abfd)->verdef == NULL)
7243 goto error_return;
7244
7245 elf_tdata (abfd)->cverdefs = maxidx;
7246
7247 everdef = (Elf_External_Verdef *) contents;
7248 iverdefarr = elf_tdata (abfd)->verdef;
7249 for (i = 0; i < hdr->sh_info; i++)
7250 {
7251 Elf_External_Verdaux *everdaux;
7252 Elf_Internal_Verdaux *iverdaux;
7253 unsigned int j;
7254
7255 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7256
7257 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7258 {
7259 error_return_verdef:
7260 elf_tdata (abfd)->verdef = NULL;
7261 elf_tdata (abfd)->cverdefs = 0;
7262 goto error_return;
7263 }
7264
7265 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7266 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7267
7268 iverdef->vd_bfd = abfd;
7269
7270 if (iverdef->vd_cnt == 0)
7271 iverdef->vd_auxptr = NULL;
7272 else
7273 {
7274 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7275 bfd_alloc2 (abfd, iverdef->vd_cnt,
7276 sizeof (Elf_Internal_Verdaux));
7277 if (iverdef->vd_auxptr == NULL)
7278 goto error_return_verdef;
7279 }
7280
7281 if (iverdef->vd_aux
7282 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7283 goto error_return_verdef;
7284
7285 everdaux = ((Elf_External_Verdaux *)
7286 ((bfd_byte *) everdef + iverdef->vd_aux));
7287 iverdaux = iverdef->vd_auxptr;
7288 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7289 {
7290 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7291
7292 iverdaux->vda_nodename =
7293 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7294 iverdaux->vda_name);
7295 if (iverdaux->vda_nodename == NULL)
7296 goto error_return_verdef;
7297
7298 if (j + 1 < iverdef->vd_cnt)
7299 iverdaux->vda_nextptr = iverdaux + 1;
7300 else
7301 iverdaux->vda_nextptr = NULL;
7302
7303 if (iverdaux->vda_next
7304 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7305 goto error_return_verdef;
7306
7307 everdaux = ((Elf_External_Verdaux *)
7308 ((bfd_byte *) everdaux + iverdaux->vda_next));
7309 }
7310
7311 if (iverdef->vd_cnt)
7312 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7313
7314 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7315 iverdef->vd_nextdef = iverdef + 1;
7316 else
7317 iverdef->vd_nextdef = NULL;
7318
7319 everdef = ((Elf_External_Verdef *)
7320 ((bfd_byte *) everdef + iverdef->vd_next));
7321 }
7322
7323 free (contents);
7324 contents = NULL;
7325 }
7326 else if (default_imported_symver)
7327 {
7328 if (freeidx < 3)
7329 freeidx = 3;
7330 else
7331 freeidx++;
7332
7333 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7334 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7335 if (elf_tdata (abfd)->verdef == NULL)
7336 goto error_return;
7337
7338 elf_tdata (abfd)->cverdefs = freeidx;
7339 }
7340
7341 /* Create a default version based on the soname. */
7342 if (default_imported_symver)
7343 {
7344 Elf_Internal_Verdef *iverdef;
7345 Elf_Internal_Verdaux *iverdaux;
7346
7347 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7348
7349 iverdef->vd_version = VER_DEF_CURRENT;
7350 iverdef->vd_flags = 0;
7351 iverdef->vd_ndx = freeidx;
7352 iverdef->vd_cnt = 1;
7353
7354 iverdef->vd_bfd = abfd;
7355
7356 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7357 if (iverdef->vd_nodename == NULL)
7358 goto error_return_verdef;
7359 iverdef->vd_nextdef = NULL;
7360 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7361 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7362 if (iverdef->vd_auxptr == NULL)
7363 goto error_return_verdef;
7364
7365 iverdaux = iverdef->vd_auxptr;
7366 iverdaux->vda_nodename = iverdef->vd_nodename;
7367 iverdaux->vda_nextptr = NULL;
7368 }
7369
7370 return TRUE;
7371
7372 error_return:
7373 if (contents != NULL)
7374 free (contents);
7375 return FALSE;
7376 }
7377 \f
7378 asymbol *
7379 _bfd_elf_make_empty_symbol (bfd *abfd)
7380 {
7381 elf_symbol_type *newsym;
7382 bfd_size_type amt = sizeof (elf_symbol_type);
7383
7384 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7385 if (!newsym)
7386 return NULL;
7387 else
7388 {
7389 newsym->symbol.the_bfd = abfd;
7390 return &newsym->symbol;
7391 }
7392 }
7393
7394 void
7395 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7396 asymbol *symbol,
7397 symbol_info *ret)
7398 {
7399 bfd_symbol_info (symbol, ret);
7400 }
7401
7402 /* Return whether a symbol name implies a local symbol. Most targets
7403 use this function for the is_local_label_name entry point, but some
7404 override it. */
7405
7406 bfd_boolean
7407 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7408 const char *name)
7409 {
7410 /* Normal local symbols start with ``.L''. */
7411 if (name[0] == '.' && name[1] == 'L')
7412 return TRUE;
7413
7414 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7415 DWARF debugging symbols starting with ``..''. */
7416 if (name[0] == '.' && name[1] == '.')
7417 return TRUE;
7418
7419 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7420 emitting DWARF debugging output. I suspect this is actually a
7421 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7422 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7423 underscore to be emitted on some ELF targets). For ease of use,
7424 we treat such symbols as local. */
7425 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7426 return TRUE;
7427
7428 return FALSE;
7429 }
7430
7431 alent *
7432 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7433 asymbol *symbol ATTRIBUTE_UNUSED)
7434 {
7435 abort ();
7436 return NULL;
7437 }
7438
7439 bfd_boolean
7440 _bfd_elf_set_arch_mach (bfd *abfd,
7441 enum bfd_architecture arch,
7442 unsigned long machine)
7443 {
7444 /* If this isn't the right architecture for this backend, and this
7445 isn't the generic backend, fail. */
7446 if (arch != get_elf_backend_data (abfd)->arch
7447 && arch != bfd_arch_unknown
7448 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7449 return FALSE;
7450
7451 return bfd_default_set_arch_mach (abfd, arch, machine);
7452 }
7453
7454 /* Find the function to a particular section and offset,
7455 for error reporting. */
7456
7457 static bfd_boolean
7458 elf_find_function (bfd *abfd,
7459 asection *section,
7460 asymbol **symbols,
7461 bfd_vma offset,
7462 const char **filename_ptr,
7463 const char **functionname_ptr)
7464 {
7465 static asection *last_section;
7466 static asymbol *func;
7467 static const char *filename;
7468 static bfd_size_type func_size;
7469
7470 if (symbols == NULL)
7471 return FALSE;
7472
7473 if (last_section != section
7474 || func == NULL
7475 || offset < func->value
7476 || offset >= func->value + func_size)
7477 {
7478 asymbol *file;
7479 bfd_vma low_func;
7480 asymbol **p;
7481 /* ??? Given multiple file symbols, it is impossible to reliably
7482 choose the right file name for global symbols. File symbols are
7483 local symbols, and thus all file symbols must sort before any
7484 global symbols. The ELF spec may be interpreted to say that a
7485 file symbol must sort before other local symbols, but currently
7486 ld -r doesn't do this. So, for ld -r output, it is possible to
7487 make a better choice of file name for local symbols by ignoring
7488 file symbols appearing after a given local symbol. */
7489 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7491
7492 filename = NULL;
7493 func = NULL;
7494 file = NULL;
7495 low_func = 0;
7496 state = nothing_seen;
7497 func_size = 0;
7498 last_section = section;
7499
7500 for (p = symbols; *p != NULL; p++)
7501 {
7502 asymbol *sym = *p;
7503 bfd_vma code_off;
7504 bfd_size_type size;
7505
7506 if ((sym->flags & BSF_FILE) != 0)
7507 {
7508 file = sym;
7509 if (state == symbol_seen)
7510 state = file_after_symbol_seen;
7511 continue;
7512 }
7513
7514 size = bed->maybe_function_sym (sym, section, &code_off);
7515 if (size != 0
7516 && code_off <= offset
7517 && (code_off > low_func
7518 || (code_off == low_func
7519 && size > func_size)))
7520 {
7521 func = sym;
7522 func_size = size;
7523 low_func = code_off;
7524 filename = NULL;
7525 if (file != NULL
7526 && ((sym->flags & BSF_LOCAL) != 0
7527 || state != file_after_symbol_seen))
7528 filename = bfd_asymbol_name (file);
7529 }
7530 if (state == nothing_seen)
7531 state = symbol_seen;
7532 }
7533 }
7534
7535 if (func == NULL)
7536 return FALSE;
7537
7538 if (filename_ptr)
7539 *filename_ptr = filename;
7540 if (functionname_ptr)
7541 *functionname_ptr = bfd_asymbol_name (func);
7542
7543 return TRUE;
7544 }
7545
7546 /* Find the nearest line to a particular section and offset,
7547 for error reporting. */
7548
7549 bfd_boolean
7550 _bfd_elf_find_nearest_line (bfd *abfd,
7551 asection *section,
7552 asymbol **symbols,
7553 bfd_vma offset,
7554 const char **filename_ptr,
7555 const char **functionname_ptr,
7556 unsigned int *line_ptr)
7557 {
7558 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7559 offset, filename_ptr,
7560 functionname_ptr,
7561 line_ptr,
7562 NULL);
7563 }
7564
7565 bfd_boolean
7566 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7567 asection *section,
7568 asymbol **symbols,
7569 bfd_vma offset,
7570 const char **filename_ptr,
7571 const char **functionname_ptr,
7572 unsigned int *line_ptr,
7573 unsigned int *discriminator_ptr)
7574 {
7575 bfd_boolean found;
7576
7577 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7578 filename_ptr, functionname_ptr,
7579 line_ptr))
7580 {
7581 if (!*functionname_ptr)
7582 elf_find_function (abfd, section, symbols, offset,
7583 *filename_ptr ? NULL : filename_ptr,
7584 functionname_ptr);
7585
7586 return TRUE;
7587 }
7588
7589 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7590 section, symbols, offset,
7591 filename_ptr, functionname_ptr,
7592 line_ptr, discriminator_ptr, 0,
7593 &elf_tdata (abfd)->dwarf2_find_line_info))
7594 {
7595 if (!*functionname_ptr)
7596 elf_find_function (abfd, section, symbols, offset,
7597 *filename_ptr ? NULL : filename_ptr,
7598 functionname_ptr);
7599
7600 return TRUE;
7601 }
7602
7603 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7604 &found, filename_ptr,
7605 functionname_ptr, line_ptr,
7606 &elf_tdata (abfd)->line_info))
7607 return FALSE;
7608 if (found && (*functionname_ptr || *line_ptr))
7609 return TRUE;
7610
7611 if (symbols == NULL)
7612 return FALSE;
7613
7614 if (! elf_find_function (abfd, section, symbols, offset,
7615 filename_ptr, functionname_ptr))
7616 return FALSE;
7617
7618 *line_ptr = 0;
7619 return TRUE;
7620 }
7621
7622 /* Find the line for a symbol. */
7623
7624 bfd_boolean
7625 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7626 const char **filename_ptr, unsigned int *line_ptr)
7627 {
7628 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7629 filename_ptr, line_ptr,
7630 NULL);
7631 }
7632
7633 bfd_boolean
7634 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7635 const char **filename_ptr,
7636 unsigned int *line_ptr,
7637 unsigned int *discriminator_ptr)
7638 {
7639 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7640 filename_ptr, line_ptr, discriminator_ptr, 0,
7641 &elf_tdata (abfd)->dwarf2_find_line_info);
7642 }
7643
7644 /* After a call to bfd_find_nearest_line, successive calls to
7645 bfd_find_inliner_info can be used to get source information about
7646 each level of function inlining that terminated at the address
7647 passed to bfd_find_nearest_line. Currently this is only supported
7648 for DWARF2 with appropriate DWARF3 extensions. */
7649
7650 bfd_boolean
7651 _bfd_elf_find_inliner_info (bfd *abfd,
7652 const char **filename_ptr,
7653 const char **functionname_ptr,
7654 unsigned int *line_ptr)
7655 {
7656 bfd_boolean found;
7657 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7658 functionname_ptr, line_ptr,
7659 & elf_tdata (abfd)->dwarf2_find_line_info);
7660 return found;
7661 }
7662
7663 int
7664 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7665 {
7666 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7667 int ret = bed->s->sizeof_ehdr;
7668
7669 if (!info->relocatable)
7670 {
7671 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7672
7673 if (phdr_size == (bfd_size_type) -1)
7674 {
7675 struct elf_segment_map *m;
7676
7677 phdr_size = 0;
7678 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7679 phdr_size += bed->s->sizeof_phdr;
7680
7681 if (phdr_size == 0)
7682 phdr_size = get_program_header_size (abfd, info);
7683 }
7684
7685 elf_tdata (abfd)->program_header_size = phdr_size;
7686 ret += phdr_size;
7687 }
7688
7689 return ret;
7690 }
7691
7692 bfd_boolean
7693 _bfd_elf_set_section_contents (bfd *abfd,
7694 sec_ptr section,
7695 const void *location,
7696 file_ptr offset,
7697 bfd_size_type count)
7698 {
7699 Elf_Internal_Shdr *hdr;
7700 bfd_signed_vma pos;
7701
7702 if (! abfd->output_has_begun
7703 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7704 return FALSE;
7705
7706 hdr = &elf_section_data (section)->this_hdr;
7707 pos = hdr->sh_offset + offset;
7708 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7709 || bfd_bwrite (location, count, abfd) != count)
7710 return FALSE;
7711
7712 return TRUE;
7713 }
7714
7715 void
7716 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7717 arelent *cache_ptr ATTRIBUTE_UNUSED,
7718 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7719 {
7720 abort ();
7721 }
7722
7723 /* Try to convert a non-ELF reloc into an ELF one. */
7724
7725 bfd_boolean
7726 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7727 {
7728 /* Check whether we really have an ELF howto. */
7729
7730 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7731 {
7732 bfd_reloc_code_real_type code;
7733 reloc_howto_type *howto;
7734
7735 /* Alien reloc: Try to determine its type to replace it with an
7736 equivalent ELF reloc. */
7737
7738 if (areloc->howto->pc_relative)
7739 {
7740 switch (areloc->howto->bitsize)
7741 {
7742 case 8:
7743 code = BFD_RELOC_8_PCREL;
7744 break;
7745 case 12:
7746 code = BFD_RELOC_12_PCREL;
7747 break;
7748 case 16:
7749 code = BFD_RELOC_16_PCREL;
7750 break;
7751 case 24:
7752 code = BFD_RELOC_24_PCREL;
7753 break;
7754 case 32:
7755 code = BFD_RELOC_32_PCREL;
7756 break;
7757 case 64:
7758 code = BFD_RELOC_64_PCREL;
7759 break;
7760 default:
7761 goto fail;
7762 }
7763
7764 howto = bfd_reloc_type_lookup (abfd, code);
7765
7766 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7767 {
7768 if (howto->pcrel_offset)
7769 areloc->addend += areloc->address;
7770 else
7771 areloc->addend -= areloc->address; /* addend is unsigned!! */
7772 }
7773 }
7774 else
7775 {
7776 switch (areloc->howto->bitsize)
7777 {
7778 case 8:
7779 code = BFD_RELOC_8;
7780 break;
7781 case 14:
7782 code = BFD_RELOC_14;
7783 break;
7784 case 16:
7785 code = BFD_RELOC_16;
7786 break;
7787 case 26:
7788 code = BFD_RELOC_26;
7789 break;
7790 case 32:
7791 code = BFD_RELOC_32;
7792 break;
7793 case 64:
7794 code = BFD_RELOC_64;
7795 break;
7796 default:
7797 goto fail;
7798 }
7799
7800 howto = bfd_reloc_type_lookup (abfd, code);
7801 }
7802
7803 if (howto)
7804 areloc->howto = howto;
7805 else
7806 goto fail;
7807 }
7808
7809 return TRUE;
7810
7811 fail:
7812 (*_bfd_error_handler)
7813 (_("%B: unsupported relocation type %s"),
7814 abfd, areloc->howto->name);
7815 bfd_set_error (bfd_error_bad_value);
7816 return FALSE;
7817 }
7818
7819 bfd_boolean
7820 _bfd_elf_close_and_cleanup (bfd *abfd)
7821 {
7822 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7823 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7824 {
7825 if (elf_shstrtab (abfd) != NULL)
7826 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7827 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7828 }
7829
7830 return _bfd_generic_close_and_cleanup (abfd);
7831 }
7832
7833 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7834 in the relocation's offset. Thus we cannot allow any sort of sanity
7835 range-checking to interfere. There is nothing else to do in processing
7836 this reloc. */
7837
7838 bfd_reloc_status_type
7839 _bfd_elf_rel_vtable_reloc_fn
7840 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7841 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7842 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7843 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7844 {
7845 return bfd_reloc_ok;
7846 }
7847 \f
7848 /* Elf core file support. Much of this only works on native
7849 toolchains, since we rely on knowing the
7850 machine-dependent procfs structure in order to pick
7851 out details about the corefile. */
7852
7853 #ifdef HAVE_SYS_PROCFS_H
7854 /* Needed for new procfs interface on sparc-solaris. */
7855 # define _STRUCTURED_PROC 1
7856 # include <sys/procfs.h>
7857 #endif
7858
7859 /* Return a PID that identifies a "thread" for threaded cores, or the
7860 PID of the main process for non-threaded cores. */
7861
7862 static int
7863 elfcore_make_pid (bfd *abfd)
7864 {
7865 int pid;
7866
7867 pid = elf_tdata (abfd)->core_lwpid;
7868 if (pid == 0)
7869 pid = elf_tdata (abfd)->core_pid;
7870
7871 return pid;
7872 }
7873
7874 /* If there isn't a section called NAME, make one, using
7875 data from SECT. Note, this function will generate a
7876 reference to NAME, so you shouldn't deallocate or
7877 overwrite it. */
7878
7879 static bfd_boolean
7880 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7881 {
7882 asection *sect2;
7883
7884 if (bfd_get_section_by_name (abfd, name) != NULL)
7885 return TRUE;
7886
7887 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7888 if (sect2 == NULL)
7889 return FALSE;
7890
7891 sect2->size = sect->size;
7892 sect2->filepos = sect->filepos;
7893 sect2->alignment_power = sect->alignment_power;
7894 return TRUE;
7895 }
7896
7897 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7898 actually creates up to two pseudosections:
7899 - For the single-threaded case, a section named NAME, unless
7900 such a section already exists.
7901 - For the multi-threaded case, a section named "NAME/PID", where
7902 PID is elfcore_make_pid (abfd).
7903 Both pseudosections have identical contents. */
7904 bfd_boolean
7905 _bfd_elfcore_make_pseudosection (bfd *abfd,
7906 char *name,
7907 size_t size,
7908 ufile_ptr filepos)
7909 {
7910 char buf[100];
7911 char *threaded_name;
7912 size_t len;
7913 asection *sect;
7914
7915 /* Build the section name. */
7916
7917 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7918 len = strlen (buf) + 1;
7919 threaded_name = (char *) bfd_alloc (abfd, len);
7920 if (threaded_name == NULL)
7921 return FALSE;
7922 memcpy (threaded_name, buf, len);
7923
7924 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7925 SEC_HAS_CONTENTS);
7926 if (sect == NULL)
7927 return FALSE;
7928 sect->size = size;
7929 sect->filepos = filepos;
7930 sect->alignment_power = 2;
7931
7932 return elfcore_maybe_make_sect (abfd, name, sect);
7933 }
7934
7935 /* prstatus_t exists on:
7936 solaris 2.5+
7937 linux 2.[01] + glibc
7938 unixware 4.2
7939 */
7940
7941 #if defined (HAVE_PRSTATUS_T)
7942
7943 static bfd_boolean
7944 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7945 {
7946 size_t size;
7947 int offset;
7948
7949 if (note->descsz == sizeof (prstatus_t))
7950 {
7951 prstatus_t prstat;
7952
7953 size = sizeof (prstat.pr_reg);
7954 offset = offsetof (prstatus_t, pr_reg);
7955 memcpy (&prstat, note->descdata, sizeof (prstat));
7956
7957 /* Do not overwrite the core signal if it
7958 has already been set by another thread. */
7959 if (elf_tdata (abfd)->core_signal == 0)
7960 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7961 if (elf_tdata (abfd)->core_pid == 0)
7962 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7963
7964 /* pr_who exists on:
7965 solaris 2.5+
7966 unixware 4.2
7967 pr_who doesn't exist on:
7968 linux 2.[01]
7969 */
7970 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7971 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7972 #else
7973 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7974 #endif
7975 }
7976 #if defined (HAVE_PRSTATUS32_T)
7977 else if (note->descsz == sizeof (prstatus32_t))
7978 {
7979 /* 64-bit host, 32-bit corefile */
7980 prstatus32_t prstat;
7981
7982 size = sizeof (prstat.pr_reg);
7983 offset = offsetof (prstatus32_t, pr_reg);
7984 memcpy (&prstat, note->descdata, sizeof (prstat));
7985
7986 /* Do not overwrite the core signal if it
7987 has already been set by another thread. */
7988 if (elf_tdata (abfd)->core_signal == 0)
7989 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7990 if (elf_tdata (abfd)->core_pid == 0)
7991 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7992
7993 /* pr_who exists on:
7994 solaris 2.5+
7995 unixware 4.2
7996 pr_who doesn't exist on:
7997 linux 2.[01]
7998 */
7999 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8000 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8001 #else
8002 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8003 #endif
8004 }
8005 #endif /* HAVE_PRSTATUS32_T */
8006 else
8007 {
8008 /* Fail - we don't know how to handle any other
8009 note size (ie. data object type). */
8010 return TRUE;
8011 }
8012
8013 /* Make a ".reg/999" section and a ".reg" section. */
8014 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8015 size, note->descpos + offset);
8016 }
8017 #endif /* defined (HAVE_PRSTATUS_T) */
8018
8019 /* Create a pseudosection containing the exact contents of NOTE. */
8020 static bfd_boolean
8021 elfcore_make_note_pseudosection (bfd *abfd,
8022 char *name,
8023 Elf_Internal_Note *note)
8024 {
8025 return _bfd_elfcore_make_pseudosection (abfd, name,
8026 note->descsz, note->descpos);
8027 }
8028
8029 /* There isn't a consistent prfpregset_t across platforms,
8030 but it doesn't matter, because we don't have to pick this
8031 data structure apart. */
8032
8033 static bfd_boolean
8034 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8035 {
8036 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8037 }
8038
8039 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8040 type of NT_PRXFPREG. Just include the whole note's contents
8041 literally. */
8042
8043 static bfd_boolean
8044 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8045 {
8046 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8047 }
8048
8049 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8050 with a note type of NT_X86_XSTATE. Just include the whole note's
8051 contents literally. */
8052
8053 static bfd_boolean
8054 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8055 {
8056 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8057 }
8058
8059 static bfd_boolean
8060 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8061 {
8062 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8063 }
8064
8065 static bfd_boolean
8066 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8067 {
8068 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8069 }
8070
8071 static bfd_boolean
8072 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8073 {
8074 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8075 }
8076
8077 static bfd_boolean
8078 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8079 {
8080 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8081 }
8082
8083 static bfd_boolean
8084 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8085 {
8086 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8087 }
8088
8089 static bfd_boolean
8090 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8091 {
8092 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8093 }
8094
8095 static bfd_boolean
8096 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8097 {
8098 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8099 }
8100
8101 static bfd_boolean
8102 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8103 {
8104 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8105 }
8106
8107 static bfd_boolean
8108 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8109 {
8110 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8111 }
8112
8113 static bfd_boolean
8114 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8117 }
8118
8119 static bfd_boolean
8120 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8121 {
8122 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8123 }
8124
8125 #if defined (HAVE_PRPSINFO_T)
8126 typedef prpsinfo_t elfcore_psinfo_t;
8127 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8128 typedef prpsinfo32_t elfcore_psinfo32_t;
8129 #endif
8130 #endif
8131
8132 #if defined (HAVE_PSINFO_T)
8133 typedef psinfo_t elfcore_psinfo_t;
8134 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8135 typedef psinfo32_t elfcore_psinfo32_t;
8136 #endif
8137 #endif
8138
8139 /* return a malloc'ed copy of a string at START which is at
8140 most MAX bytes long, possibly without a terminating '\0'.
8141 the copy will always have a terminating '\0'. */
8142
8143 char *
8144 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8145 {
8146 char *dups;
8147 char *end = (char *) memchr (start, '\0', max);
8148 size_t len;
8149
8150 if (end == NULL)
8151 len = max;
8152 else
8153 len = end - start;
8154
8155 dups = (char *) bfd_alloc (abfd, len + 1);
8156 if (dups == NULL)
8157 return NULL;
8158
8159 memcpy (dups, start, len);
8160 dups[len] = '\0';
8161
8162 return dups;
8163 }
8164
8165 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8166 static bfd_boolean
8167 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8168 {
8169 if (note->descsz == sizeof (elfcore_psinfo_t))
8170 {
8171 elfcore_psinfo_t psinfo;
8172
8173 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8174
8175 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8176 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8177 #endif
8178 elf_tdata (abfd)->core_program
8179 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8180 sizeof (psinfo.pr_fname));
8181
8182 elf_tdata (abfd)->core_command
8183 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8184 sizeof (psinfo.pr_psargs));
8185 }
8186 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8187 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8188 {
8189 /* 64-bit host, 32-bit corefile */
8190 elfcore_psinfo32_t psinfo;
8191
8192 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8193
8194 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8195 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8196 #endif
8197 elf_tdata (abfd)->core_program
8198 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8199 sizeof (psinfo.pr_fname));
8200
8201 elf_tdata (abfd)->core_command
8202 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8203 sizeof (psinfo.pr_psargs));
8204 }
8205 #endif
8206
8207 else
8208 {
8209 /* Fail - we don't know how to handle any other
8210 note size (ie. data object type). */
8211 return TRUE;
8212 }
8213
8214 /* Note that for some reason, a spurious space is tacked
8215 onto the end of the args in some (at least one anyway)
8216 implementations, so strip it off if it exists. */
8217
8218 {
8219 char *command = elf_tdata (abfd)->core_command;
8220 int n = strlen (command);
8221
8222 if (0 < n && command[n - 1] == ' ')
8223 command[n - 1] = '\0';
8224 }
8225
8226 return TRUE;
8227 }
8228 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8229
8230 #if defined (HAVE_PSTATUS_T)
8231 static bfd_boolean
8232 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8233 {
8234 if (note->descsz == sizeof (pstatus_t)
8235 #if defined (HAVE_PXSTATUS_T)
8236 || note->descsz == sizeof (pxstatus_t)
8237 #endif
8238 )
8239 {
8240 pstatus_t pstat;
8241
8242 memcpy (&pstat, note->descdata, sizeof (pstat));
8243
8244 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8245 }
8246 #if defined (HAVE_PSTATUS32_T)
8247 else if (note->descsz == sizeof (pstatus32_t))
8248 {
8249 /* 64-bit host, 32-bit corefile */
8250 pstatus32_t pstat;
8251
8252 memcpy (&pstat, note->descdata, sizeof (pstat));
8253
8254 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8255 }
8256 #endif
8257 /* Could grab some more details from the "representative"
8258 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8259 NT_LWPSTATUS note, presumably. */
8260
8261 return TRUE;
8262 }
8263 #endif /* defined (HAVE_PSTATUS_T) */
8264
8265 #if defined (HAVE_LWPSTATUS_T)
8266 static bfd_boolean
8267 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8268 {
8269 lwpstatus_t lwpstat;
8270 char buf[100];
8271 char *name;
8272 size_t len;
8273 asection *sect;
8274
8275 if (note->descsz != sizeof (lwpstat)
8276 #if defined (HAVE_LWPXSTATUS_T)
8277 && note->descsz != sizeof (lwpxstatus_t)
8278 #endif
8279 )
8280 return TRUE;
8281
8282 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8283
8284 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8285 /* Do not overwrite the core signal if it has already been set by
8286 another thread. */
8287 if (elf_tdata (abfd)->core_signal == 0)
8288 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8289
8290 /* Make a ".reg/999" section. */
8291
8292 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8293 len = strlen (buf) + 1;
8294 name = bfd_alloc (abfd, len);
8295 if (name == NULL)
8296 return FALSE;
8297 memcpy (name, buf, len);
8298
8299 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8300 if (sect == NULL)
8301 return FALSE;
8302
8303 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8304 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8305 sect->filepos = note->descpos
8306 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8307 #endif
8308
8309 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8310 sect->size = sizeof (lwpstat.pr_reg);
8311 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8312 #endif
8313
8314 sect->alignment_power = 2;
8315
8316 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8317 return FALSE;
8318
8319 /* Make a ".reg2/999" section */
8320
8321 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8322 len = strlen (buf) + 1;
8323 name = bfd_alloc (abfd, len);
8324 if (name == NULL)
8325 return FALSE;
8326 memcpy (name, buf, len);
8327
8328 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8329 if (sect == NULL)
8330 return FALSE;
8331
8332 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8333 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8334 sect->filepos = note->descpos
8335 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8336 #endif
8337
8338 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8339 sect->size = sizeof (lwpstat.pr_fpreg);
8340 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8341 #endif
8342
8343 sect->alignment_power = 2;
8344
8345 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8346 }
8347 #endif /* defined (HAVE_LWPSTATUS_T) */
8348
8349 static bfd_boolean
8350 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8351 {
8352 char buf[30];
8353 char *name;
8354 size_t len;
8355 asection *sect;
8356 int type;
8357 int is_active_thread;
8358 bfd_vma base_addr;
8359
8360 if (note->descsz < 728)
8361 return TRUE;
8362
8363 if (! CONST_STRNEQ (note->namedata, "win32"))
8364 return TRUE;
8365
8366 type = bfd_get_32 (abfd, note->descdata);
8367
8368 switch (type)
8369 {
8370 case 1 /* NOTE_INFO_PROCESS */:
8371 /* FIXME: need to add ->core_command. */
8372 /* process_info.pid */
8373 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8374 /* process_info.signal */
8375 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8376 break;
8377
8378 case 2 /* NOTE_INFO_THREAD */:
8379 /* Make a ".reg/999" section. */
8380 /* thread_info.tid */
8381 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8382
8383 len = strlen (buf) + 1;
8384 name = (char *) bfd_alloc (abfd, len);
8385 if (name == NULL)
8386 return FALSE;
8387
8388 memcpy (name, buf, len);
8389
8390 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8391 if (sect == NULL)
8392 return FALSE;
8393
8394 /* sizeof (thread_info.thread_context) */
8395 sect->size = 716;
8396 /* offsetof (thread_info.thread_context) */
8397 sect->filepos = note->descpos + 12;
8398 sect->alignment_power = 2;
8399
8400 /* thread_info.is_active_thread */
8401 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8402
8403 if (is_active_thread)
8404 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8405 return FALSE;
8406 break;
8407
8408 case 3 /* NOTE_INFO_MODULE */:
8409 /* Make a ".module/xxxxxxxx" section. */
8410 /* module_info.base_address */
8411 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8412 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8413
8414 len = strlen (buf) + 1;
8415 name = (char *) bfd_alloc (abfd, len);
8416 if (name == NULL)
8417 return FALSE;
8418
8419 memcpy (name, buf, len);
8420
8421 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8422
8423 if (sect == NULL)
8424 return FALSE;
8425
8426 sect->size = note->descsz;
8427 sect->filepos = note->descpos;
8428 sect->alignment_power = 2;
8429 break;
8430
8431 default:
8432 return TRUE;
8433 }
8434
8435 return TRUE;
8436 }
8437
8438 static bfd_boolean
8439 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8440 {
8441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8442
8443 switch (note->type)
8444 {
8445 default:
8446 return TRUE;
8447
8448 case NT_PRSTATUS:
8449 if (bed->elf_backend_grok_prstatus)
8450 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8451 return TRUE;
8452 #if defined (HAVE_PRSTATUS_T)
8453 return elfcore_grok_prstatus (abfd, note);
8454 #else
8455 return TRUE;
8456 #endif
8457
8458 #if defined (HAVE_PSTATUS_T)
8459 case NT_PSTATUS:
8460 return elfcore_grok_pstatus (abfd, note);
8461 #endif
8462
8463 #if defined (HAVE_LWPSTATUS_T)
8464 case NT_LWPSTATUS:
8465 return elfcore_grok_lwpstatus (abfd, note);
8466 #endif
8467
8468 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8469 return elfcore_grok_prfpreg (abfd, note);
8470
8471 case NT_WIN32PSTATUS:
8472 return elfcore_grok_win32pstatus (abfd, note);
8473
8474 case NT_PRXFPREG: /* Linux SSE extension */
8475 if (note->namesz == 6
8476 && strcmp (note->namedata, "LINUX") == 0)
8477 return elfcore_grok_prxfpreg (abfd, note);
8478 else
8479 return TRUE;
8480
8481 case NT_X86_XSTATE: /* Linux XSAVE extension */
8482 if (note->namesz == 6
8483 && strcmp (note->namedata, "LINUX") == 0)
8484 return elfcore_grok_xstatereg (abfd, note);
8485 else
8486 return TRUE;
8487
8488 case NT_PPC_VMX:
8489 if (note->namesz == 6
8490 && strcmp (note->namedata, "LINUX") == 0)
8491 return elfcore_grok_ppc_vmx (abfd, note);
8492 else
8493 return TRUE;
8494
8495 case NT_PPC_VSX:
8496 if (note->namesz == 6
8497 && strcmp (note->namedata, "LINUX") == 0)
8498 return elfcore_grok_ppc_vsx (abfd, note);
8499 else
8500 return TRUE;
8501
8502 case NT_S390_HIGH_GPRS:
8503 if (note->namesz == 6
8504 && strcmp (note->namedata, "LINUX") == 0)
8505 return elfcore_grok_s390_high_gprs (abfd, note);
8506 else
8507 return TRUE;
8508
8509 case NT_S390_TIMER:
8510 if (note->namesz == 6
8511 && strcmp (note->namedata, "LINUX") == 0)
8512 return elfcore_grok_s390_timer (abfd, note);
8513 else
8514 return TRUE;
8515
8516 case NT_S390_TODCMP:
8517 if (note->namesz == 6
8518 && strcmp (note->namedata, "LINUX") == 0)
8519 return elfcore_grok_s390_todcmp (abfd, note);
8520 else
8521 return TRUE;
8522
8523 case NT_S390_TODPREG:
8524 if (note->namesz == 6
8525 && strcmp (note->namedata, "LINUX") == 0)
8526 return elfcore_grok_s390_todpreg (abfd, note);
8527 else
8528 return TRUE;
8529
8530 case NT_S390_CTRS:
8531 if (note->namesz == 6
8532 && strcmp (note->namedata, "LINUX") == 0)
8533 return elfcore_grok_s390_ctrs (abfd, note);
8534 else
8535 return TRUE;
8536
8537 case NT_S390_PREFIX:
8538 if (note->namesz == 6
8539 && strcmp (note->namedata, "LINUX") == 0)
8540 return elfcore_grok_s390_prefix (abfd, note);
8541 else
8542 return TRUE;
8543
8544 case NT_S390_LAST_BREAK:
8545 if (note->namesz == 6
8546 && strcmp (note->namedata, "LINUX") == 0)
8547 return elfcore_grok_s390_last_break (abfd, note);
8548 else
8549 return TRUE;
8550
8551 case NT_S390_SYSTEM_CALL:
8552 if (note->namesz == 6
8553 && strcmp (note->namedata, "LINUX") == 0)
8554 return elfcore_grok_s390_system_call (abfd, note);
8555 else
8556 return TRUE;
8557
8558 case NT_ARM_VFP:
8559 if (note->namesz == 6
8560 && strcmp (note->namedata, "LINUX") == 0)
8561 return elfcore_grok_arm_vfp (abfd, note);
8562 else
8563 return TRUE;
8564
8565 case NT_PRPSINFO:
8566 case NT_PSINFO:
8567 if (bed->elf_backend_grok_psinfo)
8568 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8569 return TRUE;
8570 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8571 return elfcore_grok_psinfo (abfd, note);
8572 #else
8573 return TRUE;
8574 #endif
8575
8576 case NT_AUXV:
8577 {
8578 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8579 SEC_HAS_CONTENTS);
8580
8581 if (sect == NULL)
8582 return FALSE;
8583 sect->size = note->descsz;
8584 sect->filepos = note->descpos;
8585 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8586
8587 return TRUE;
8588 }
8589 }
8590 }
8591
8592 static bfd_boolean
8593 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8594 {
8595 elf_tdata (abfd)->build_id_size = note->descsz;
8596 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8597 if (elf_tdata (abfd)->build_id == NULL)
8598 return FALSE;
8599
8600 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8601
8602 return TRUE;
8603 }
8604
8605 static bfd_boolean
8606 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8607 {
8608 switch (note->type)
8609 {
8610 default:
8611 return TRUE;
8612
8613 case NT_GNU_BUILD_ID:
8614 return elfobj_grok_gnu_build_id (abfd, note);
8615 }
8616 }
8617
8618 static bfd_boolean
8619 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8620 {
8621 struct sdt_note *cur =
8622 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8623 + note->descsz);
8624
8625 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8626 cur->size = (bfd_size_type) note->descsz;
8627 memcpy (cur->data, note->descdata, note->descsz);
8628
8629 elf_tdata (abfd)->sdt_note_head = cur;
8630
8631 return TRUE;
8632 }
8633
8634 static bfd_boolean
8635 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8636 {
8637 switch (note->type)
8638 {
8639 case NT_STAPSDT:
8640 return elfobj_grok_stapsdt_note_1 (abfd, note);
8641
8642 default:
8643 return TRUE;
8644 }
8645 }
8646
8647 static bfd_boolean
8648 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8649 {
8650 char *cp;
8651
8652 cp = strchr (note->namedata, '@');
8653 if (cp != NULL)
8654 {
8655 *lwpidp = atoi(cp + 1);
8656 return TRUE;
8657 }
8658 return FALSE;
8659 }
8660
8661 static bfd_boolean
8662 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8663 {
8664 /* Signal number at offset 0x08. */
8665 elf_tdata (abfd)->core_signal
8666 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8667
8668 /* Process ID at offset 0x50. */
8669 elf_tdata (abfd)->core_pid
8670 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8671
8672 /* Command name at 0x7c (max 32 bytes, including nul). */
8673 elf_tdata (abfd)->core_command
8674 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8675
8676 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8677 note);
8678 }
8679
8680 static bfd_boolean
8681 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8682 {
8683 int lwp;
8684
8685 if (elfcore_netbsd_get_lwpid (note, &lwp))
8686 elf_tdata (abfd)->core_lwpid = lwp;
8687
8688 if (note->type == NT_NETBSDCORE_PROCINFO)
8689 {
8690 /* NetBSD-specific core "procinfo". Note that we expect to
8691 find this note before any of the others, which is fine,
8692 since the kernel writes this note out first when it
8693 creates a core file. */
8694
8695 return elfcore_grok_netbsd_procinfo (abfd, note);
8696 }
8697
8698 /* As of Jan 2002 there are no other machine-independent notes
8699 defined for NetBSD core files. If the note type is less
8700 than the start of the machine-dependent note types, we don't
8701 understand it. */
8702
8703 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8704 return TRUE;
8705
8706
8707 switch (bfd_get_arch (abfd))
8708 {
8709 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8710 PT_GETFPREGS == mach+2. */
8711
8712 case bfd_arch_alpha:
8713 case bfd_arch_sparc:
8714 switch (note->type)
8715 {
8716 case NT_NETBSDCORE_FIRSTMACH+0:
8717 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8718
8719 case NT_NETBSDCORE_FIRSTMACH+2:
8720 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8721
8722 default:
8723 return TRUE;
8724 }
8725
8726 /* On all other arch's, PT_GETREGS == mach+1 and
8727 PT_GETFPREGS == mach+3. */
8728
8729 default:
8730 switch (note->type)
8731 {
8732 case NT_NETBSDCORE_FIRSTMACH+1:
8733 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8734
8735 case NT_NETBSDCORE_FIRSTMACH+3:
8736 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8737
8738 default:
8739 return TRUE;
8740 }
8741 }
8742 /* NOTREACHED */
8743 }
8744
8745 static bfd_boolean
8746 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8747 {
8748 /* Signal number at offset 0x08. */
8749 elf_tdata (abfd)->core_signal
8750 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8751
8752 /* Process ID at offset 0x20. */
8753 elf_tdata (abfd)->core_pid
8754 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8755
8756 /* Command name at 0x48 (max 32 bytes, including nul). */
8757 elf_tdata (abfd)->core_command
8758 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8759
8760 return TRUE;
8761 }
8762
8763 static bfd_boolean
8764 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8765 {
8766 if (note->type == NT_OPENBSD_PROCINFO)
8767 return elfcore_grok_openbsd_procinfo (abfd, note);
8768
8769 if (note->type == NT_OPENBSD_REGS)
8770 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8771
8772 if (note->type == NT_OPENBSD_FPREGS)
8773 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8774
8775 if (note->type == NT_OPENBSD_XFPREGS)
8776 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8777
8778 if (note->type == NT_OPENBSD_AUXV)
8779 {
8780 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8781 SEC_HAS_CONTENTS);
8782
8783 if (sect == NULL)
8784 return FALSE;
8785 sect->size = note->descsz;
8786 sect->filepos = note->descpos;
8787 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8788
8789 return TRUE;
8790 }
8791
8792 if (note->type == NT_OPENBSD_WCOOKIE)
8793 {
8794 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8795 SEC_HAS_CONTENTS);
8796
8797 if (sect == NULL)
8798 return FALSE;
8799 sect->size = note->descsz;
8800 sect->filepos = note->descpos;
8801 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8802
8803 return TRUE;
8804 }
8805
8806 return TRUE;
8807 }
8808
8809 static bfd_boolean
8810 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8811 {
8812 void *ddata = note->descdata;
8813 char buf[100];
8814 char *name;
8815 asection *sect;
8816 short sig;
8817 unsigned flags;
8818
8819 /* nto_procfs_status 'pid' field is at offset 0. */
8820 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8821
8822 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8823 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8824
8825 /* nto_procfs_status 'flags' field is at offset 8. */
8826 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8827
8828 /* nto_procfs_status 'what' field is at offset 14. */
8829 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8830 {
8831 elf_tdata (abfd)->core_signal = sig;
8832 elf_tdata (abfd)->core_lwpid = *tid;
8833 }
8834
8835 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8836 do not come from signals so we make sure we set the current
8837 thread just in case. */
8838 if (flags & 0x00000080)
8839 elf_tdata (abfd)->core_lwpid = *tid;
8840
8841 /* Make a ".qnx_core_status/%d" section. */
8842 sprintf (buf, ".qnx_core_status/%ld", *tid);
8843
8844 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8845 if (name == NULL)
8846 return FALSE;
8847 strcpy (name, buf);
8848
8849 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8850 if (sect == NULL)
8851 return FALSE;
8852
8853 sect->size = note->descsz;
8854 sect->filepos = note->descpos;
8855 sect->alignment_power = 2;
8856
8857 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8858 }
8859
8860 static bfd_boolean
8861 elfcore_grok_nto_regs (bfd *abfd,
8862 Elf_Internal_Note *note,
8863 long tid,
8864 char *base)
8865 {
8866 char buf[100];
8867 char *name;
8868 asection *sect;
8869
8870 /* Make a "(base)/%d" section. */
8871 sprintf (buf, "%s/%ld", base, tid);
8872
8873 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8874 if (name == NULL)
8875 return FALSE;
8876 strcpy (name, buf);
8877
8878 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8879 if (sect == NULL)
8880 return FALSE;
8881
8882 sect->size = note->descsz;
8883 sect->filepos = note->descpos;
8884 sect->alignment_power = 2;
8885
8886 /* This is the current thread. */
8887 if (elf_tdata (abfd)->core_lwpid == tid)
8888 return elfcore_maybe_make_sect (abfd, base, sect);
8889
8890 return TRUE;
8891 }
8892
8893 #define BFD_QNT_CORE_INFO 7
8894 #define BFD_QNT_CORE_STATUS 8
8895 #define BFD_QNT_CORE_GREG 9
8896 #define BFD_QNT_CORE_FPREG 10
8897
8898 static bfd_boolean
8899 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8900 {
8901 /* Every GREG section has a STATUS section before it. Store the
8902 tid from the previous call to pass down to the next gregs
8903 function. */
8904 static long tid = 1;
8905
8906 switch (note->type)
8907 {
8908 case BFD_QNT_CORE_INFO:
8909 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8910 case BFD_QNT_CORE_STATUS:
8911 return elfcore_grok_nto_status (abfd, note, &tid);
8912 case BFD_QNT_CORE_GREG:
8913 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8914 case BFD_QNT_CORE_FPREG:
8915 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8916 default:
8917 return TRUE;
8918 }
8919 }
8920
8921 static bfd_boolean
8922 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8923 {
8924 char *name;
8925 asection *sect;
8926 size_t len;
8927
8928 /* Use note name as section name. */
8929 len = note->namesz;
8930 name = (char *) bfd_alloc (abfd, len);
8931 if (name == NULL)
8932 return FALSE;
8933 memcpy (name, note->namedata, len);
8934 name[len - 1] = '\0';
8935
8936 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8937 if (sect == NULL)
8938 return FALSE;
8939
8940 sect->size = note->descsz;
8941 sect->filepos = note->descpos;
8942 sect->alignment_power = 1;
8943
8944 return TRUE;
8945 }
8946
8947 /* Function: elfcore_write_note
8948
8949 Inputs:
8950 buffer to hold note, and current size of buffer
8951 name of note
8952 type of note
8953 data for note
8954 size of data for note
8955
8956 Writes note to end of buffer. ELF64 notes are written exactly as
8957 for ELF32, despite the current (as of 2006) ELF gabi specifying
8958 that they ought to have 8-byte namesz and descsz field, and have
8959 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8960
8961 Return:
8962 Pointer to realloc'd buffer, *BUFSIZ updated. */
8963
8964 char *
8965 elfcore_write_note (bfd *abfd,
8966 char *buf,
8967 int *bufsiz,
8968 const char *name,
8969 int type,
8970 const void *input,
8971 int size)
8972 {
8973 Elf_External_Note *xnp;
8974 size_t namesz;
8975 size_t newspace;
8976 char *dest;
8977
8978 namesz = 0;
8979 if (name != NULL)
8980 namesz = strlen (name) + 1;
8981
8982 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8983
8984 buf = (char *) realloc (buf, *bufsiz + newspace);
8985 if (buf == NULL)
8986 return buf;
8987 dest = buf + *bufsiz;
8988 *bufsiz += newspace;
8989 xnp = (Elf_External_Note *) dest;
8990 H_PUT_32 (abfd, namesz, xnp->namesz);
8991 H_PUT_32 (abfd, size, xnp->descsz);
8992 H_PUT_32 (abfd, type, xnp->type);
8993 dest = xnp->name;
8994 if (name != NULL)
8995 {
8996 memcpy (dest, name, namesz);
8997 dest += namesz;
8998 while (namesz & 3)
8999 {
9000 *dest++ = '\0';
9001 ++namesz;
9002 }
9003 }
9004 memcpy (dest, input, size);
9005 dest += size;
9006 while (size & 3)
9007 {
9008 *dest++ = '\0';
9009 ++size;
9010 }
9011 return buf;
9012 }
9013
9014 char *
9015 elfcore_write_prpsinfo (bfd *abfd,
9016 char *buf,
9017 int *bufsiz,
9018 const char *fname,
9019 const char *psargs)
9020 {
9021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9022
9023 if (bed->elf_backend_write_core_note != NULL)
9024 {
9025 char *ret;
9026 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9027 NT_PRPSINFO, fname, psargs);
9028 if (ret != NULL)
9029 return ret;
9030 }
9031
9032 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9033 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9034 if (bed->s->elfclass == ELFCLASS32)
9035 {
9036 #if defined (HAVE_PSINFO32_T)
9037 psinfo32_t data;
9038 int note_type = NT_PSINFO;
9039 #else
9040 prpsinfo32_t data;
9041 int note_type = NT_PRPSINFO;
9042 #endif
9043
9044 memset (&data, 0, sizeof (data));
9045 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9046 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9047 return elfcore_write_note (abfd, buf, bufsiz,
9048 "CORE", note_type, &data, sizeof (data));
9049 }
9050 else
9051 #endif
9052 {
9053 #if defined (HAVE_PSINFO_T)
9054 psinfo_t data;
9055 int note_type = NT_PSINFO;
9056 #else
9057 prpsinfo_t data;
9058 int note_type = NT_PRPSINFO;
9059 #endif
9060
9061 memset (&data, 0, sizeof (data));
9062 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9063 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9064 return elfcore_write_note (abfd, buf, bufsiz,
9065 "CORE", note_type, &data, sizeof (data));
9066 }
9067 #endif /* PSINFO_T or PRPSINFO_T */
9068
9069 free (buf);
9070 return NULL;
9071 }
9072
9073 char *
9074 elfcore_write_prstatus (bfd *abfd,
9075 char *buf,
9076 int *bufsiz,
9077 long pid,
9078 int cursig,
9079 const void *gregs)
9080 {
9081 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9082
9083 if (bed->elf_backend_write_core_note != NULL)
9084 {
9085 char *ret;
9086 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9087 NT_PRSTATUS,
9088 pid, cursig, gregs);
9089 if (ret != NULL)
9090 return ret;
9091 }
9092
9093 #if defined (HAVE_PRSTATUS_T)
9094 #if defined (HAVE_PRSTATUS32_T)
9095 if (bed->s->elfclass == ELFCLASS32)
9096 {
9097 prstatus32_t prstat;
9098
9099 memset (&prstat, 0, sizeof (prstat));
9100 prstat.pr_pid = pid;
9101 prstat.pr_cursig = cursig;
9102 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9103 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9104 NT_PRSTATUS, &prstat, sizeof (prstat));
9105 }
9106 else
9107 #endif
9108 {
9109 prstatus_t prstat;
9110
9111 memset (&prstat, 0, sizeof (prstat));
9112 prstat.pr_pid = pid;
9113 prstat.pr_cursig = cursig;
9114 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9115 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9116 NT_PRSTATUS, &prstat, sizeof (prstat));
9117 }
9118 #endif /* HAVE_PRSTATUS_T */
9119
9120 free (buf);
9121 return NULL;
9122 }
9123
9124 #if defined (HAVE_LWPSTATUS_T)
9125 char *
9126 elfcore_write_lwpstatus (bfd *abfd,
9127 char *buf,
9128 int *bufsiz,
9129 long pid,
9130 int cursig,
9131 const void *gregs)
9132 {
9133 lwpstatus_t lwpstat;
9134 const char *note_name = "CORE";
9135
9136 memset (&lwpstat, 0, sizeof (lwpstat));
9137 lwpstat.pr_lwpid = pid >> 16;
9138 lwpstat.pr_cursig = cursig;
9139 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9140 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9141 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9142 #if !defined(gregs)
9143 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9144 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9145 #else
9146 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9147 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9148 #endif
9149 #endif
9150 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9151 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9152 }
9153 #endif /* HAVE_LWPSTATUS_T */
9154
9155 #if defined (HAVE_PSTATUS_T)
9156 char *
9157 elfcore_write_pstatus (bfd *abfd,
9158 char *buf,
9159 int *bufsiz,
9160 long pid,
9161 int cursig ATTRIBUTE_UNUSED,
9162 const void *gregs ATTRIBUTE_UNUSED)
9163 {
9164 const char *note_name = "CORE";
9165 #if defined (HAVE_PSTATUS32_T)
9166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9167
9168 if (bed->s->elfclass == ELFCLASS32)
9169 {
9170 pstatus32_t pstat;
9171
9172 memset (&pstat, 0, sizeof (pstat));
9173 pstat.pr_pid = pid & 0xffff;
9174 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9175 NT_PSTATUS, &pstat, sizeof (pstat));
9176 return buf;
9177 }
9178 else
9179 #endif
9180 {
9181 pstatus_t pstat;
9182
9183 memset (&pstat, 0, sizeof (pstat));
9184 pstat.pr_pid = pid & 0xffff;
9185 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9186 NT_PSTATUS, &pstat, sizeof (pstat));
9187 return buf;
9188 }
9189 }
9190 #endif /* HAVE_PSTATUS_T */
9191
9192 char *
9193 elfcore_write_prfpreg (bfd *abfd,
9194 char *buf,
9195 int *bufsiz,
9196 const void *fpregs,
9197 int size)
9198 {
9199 const char *note_name = "CORE";
9200 return elfcore_write_note (abfd, buf, bufsiz,
9201 note_name, NT_FPREGSET, fpregs, size);
9202 }
9203
9204 char *
9205 elfcore_write_prxfpreg (bfd *abfd,
9206 char *buf,
9207 int *bufsiz,
9208 const void *xfpregs,
9209 int size)
9210 {
9211 char *note_name = "LINUX";
9212 return elfcore_write_note (abfd, buf, bufsiz,
9213 note_name, NT_PRXFPREG, xfpregs, size);
9214 }
9215
9216 char *
9217 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9218 const void *xfpregs, int size)
9219 {
9220 char *note_name = "LINUX";
9221 return elfcore_write_note (abfd, buf, bufsiz,
9222 note_name, NT_X86_XSTATE, xfpregs, size);
9223 }
9224
9225 char *
9226 elfcore_write_ppc_vmx (bfd *abfd,
9227 char *buf,
9228 int *bufsiz,
9229 const void *ppc_vmx,
9230 int size)
9231 {
9232 char *note_name = "LINUX";
9233 return elfcore_write_note (abfd, buf, bufsiz,
9234 note_name, NT_PPC_VMX, ppc_vmx, size);
9235 }
9236
9237 char *
9238 elfcore_write_ppc_vsx (bfd *abfd,
9239 char *buf,
9240 int *bufsiz,
9241 const void *ppc_vsx,
9242 int size)
9243 {
9244 char *note_name = "LINUX";
9245 return elfcore_write_note (abfd, buf, bufsiz,
9246 note_name, NT_PPC_VSX, ppc_vsx, size);
9247 }
9248
9249 static char *
9250 elfcore_write_s390_high_gprs (bfd *abfd,
9251 char *buf,
9252 int *bufsiz,
9253 const void *s390_high_gprs,
9254 int size)
9255 {
9256 char *note_name = "LINUX";
9257 return elfcore_write_note (abfd, buf, bufsiz,
9258 note_name, NT_S390_HIGH_GPRS,
9259 s390_high_gprs, size);
9260 }
9261
9262 char *
9263 elfcore_write_s390_timer (bfd *abfd,
9264 char *buf,
9265 int *bufsiz,
9266 const void *s390_timer,
9267 int size)
9268 {
9269 char *note_name = "LINUX";
9270 return elfcore_write_note (abfd, buf, bufsiz,
9271 note_name, NT_S390_TIMER, s390_timer, size);
9272 }
9273
9274 char *
9275 elfcore_write_s390_todcmp (bfd *abfd,
9276 char *buf,
9277 int *bufsiz,
9278 const void *s390_todcmp,
9279 int size)
9280 {
9281 char *note_name = "LINUX";
9282 return elfcore_write_note (abfd, buf, bufsiz,
9283 note_name, NT_S390_TODCMP, s390_todcmp, size);
9284 }
9285
9286 char *
9287 elfcore_write_s390_todpreg (bfd *abfd,
9288 char *buf,
9289 int *bufsiz,
9290 const void *s390_todpreg,
9291 int size)
9292 {
9293 char *note_name = "LINUX";
9294 return elfcore_write_note (abfd, buf, bufsiz,
9295 note_name, NT_S390_TODPREG, s390_todpreg, size);
9296 }
9297
9298 char *
9299 elfcore_write_s390_ctrs (bfd *abfd,
9300 char *buf,
9301 int *bufsiz,
9302 const void *s390_ctrs,
9303 int size)
9304 {
9305 char *note_name = "LINUX";
9306 return elfcore_write_note (abfd, buf, bufsiz,
9307 note_name, NT_S390_CTRS, s390_ctrs, size);
9308 }
9309
9310 char *
9311 elfcore_write_s390_prefix (bfd *abfd,
9312 char *buf,
9313 int *bufsiz,
9314 const void *s390_prefix,
9315 int size)
9316 {
9317 char *note_name = "LINUX";
9318 return elfcore_write_note (abfd, buf, bufsiz,
9319 note_name, NT_S390_PREFIX, s390_prefix, size);
9320 }
9321
9322 char *
9323 elfcore_write_s390_last_break (bfd *abfd,
9324 char *buf,
9325 int *bufsiz,
9326 const void *s390_last_break,
9327 int size)
9328 {
9329 char *note_name = "LINUX";
9330 return elfcore_write_note (abfd, buf, bufsiz,
9331 note_name, NT_S390_LAST_BREAK,
9332 s390_last_break, size);
9333 }
9334
9335 char *
9336 elfcore_write_s390_system_call (bfd *abfd,
9337 char *buf,
9338 int *bufsiz,
9339 const void *s390_system_call,
9340 int size)
9341 {
9342 char *note_name = "LINUX";
9343 return elfcore_write_note (abfd, buf, bufsiz,
9344 note_name, NT_S390_SYSTEM_CALL,
9345 s390_system_call, size);
9346 }
9347
9348 char *
9349 elfcore_write_arm_vfp (bfd *abfd,
9350 char *buf,
9351 int *bufsiz,
9352 const void *arm_vfp,
9353 int size)
9354 {
9355 char *note_name = "LINUX";
9356 return elfcore_write_note (abfd, buf, bufsiz,
9357 note_name, NT_ARM_VFP, arm_vfp, size);
9358 }
9359
9360 char *
9361 elfcore_write_register_note (bfd *abfd,
9362 char *buf,
9363 int *bufsiz,
9364 const char *section,
9365 const void *data,
9366 int size)
9367 {
9368 if (strcmp (section, ".reg2") == 0)
9369 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9370 if (strcmp (section, ".reg-xfp") == 0)
9371 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9372 if (strcmp (section, ".reg-xstate") == 0)
9373 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9374 if (strcmp (section, ".reg-ppc-vmx") == 0)
9375 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9376 if (strcmp (section, ".reg-ppc-vsx") == 0)
9377 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9378 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9379 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9380 if (strcmp (section, ".reg-s390-timer") == 0)
9381 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9382 if (strcmp (section, ".reg-s390-todcmp") == 0)
9383 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9384 if (strcmp (section, ".reg-s390-todpreg") == 0)
9385 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9386 if (strcmp (section, ".reg-s390-ctrs") == 0)
9387 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9388 if (strcmp (section, ".reg-s390-prefix") == 0)
9389 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9390 if (strcmp (section, ".reg-s390-last-break") == 0)
9391 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9392 if (strcmp (section, ".reg-s390-system-call") == 0)
9393 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9394 if (strcmp (section, ".reg-arm-vfp") == 0)
9395 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9396 return NULL;
9397 }
9398
9399 static bfd_boolean
9400 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9401 {
9402 char *p;
9403
9404 p = buf;
9405 while (p < buf + size)
9406 {
9407 /* FIXME: bad alignment assumption. */
9408 Elf_External_Note *xnp = (Elf_External_Note *) p;
9409 Elf_Internal_Note in;
9410
9411 if (offsetof (Elf_External_Note, name) > buf - p + size)
9412 return FALSE;
9413
9414 in.type = H_GET_32 (abfd, xnp->type);
9415
9416 in.namesz = H_GET_32 (abfd, xnp->namesz);
9417 in.namedata = xnp->name;
9418 if (in.namesz > buf - in.namedata + size)
9419 return FALSE;
9420
9421 in.descsz = H_GET_32 (abfd, xnp->descsz);
9422 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9423 in.descpos = offset + (in.descdata - buf);
9424 if (in.descsz != 0
9425 && (in.descdata >= buf + size
9426 || in.descsz > buf - in.descdata + size))
9427 return FALSE;
9428
9429 switch (bfd_get_format (abfd))
9430 {
9431 default:
9432 return TRUE;
9433
9434 case bfd_core:
9435 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9436 {
9437 if (! elfcore_grok_netbsd_note (abfd, &in))
9438 return FALSE;
9439 }
9440 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9441 {
9442 if (! elfcore_grok_openbsd_note (abfd, &in))
9443 return FALSE;
9444 }
9445 else if (CONST_STRNEQ (in.namedata, "QNX"))
9446 {
9447 if (! elfcore_grok_nto_note (abfd, &in))
9448 return FALSE;
9449 }
9450 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9451 {
9452 if (! elfcore_grok_spu_note (abfd, &in))
9453 return FALSE;
9454 }
9455 else
9456 {
9457 if (! elfcore_grok_note (abfd, &in))
9458 return FALSE;
9459 }
9460 break;
9461
9462 case bfd_object:
9463 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9464 {
9465 if (! elfobj_grok_gnu_note (abfd, &in))
9466 return FALSE;
9467 }
9468 else if (in.namesz == sizeof "stapsdt"
9469 && strcmp (in.namedata, "stapsdt") == 0)
9470 {
9471 if (! elfobj_grok_stapsdt_note (abfd, &in))
9472 return FALSE;
9473 }
9474 break;
9475 }
9476
9477 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9478 }
9479
9480 return TRUE;
9481 }
9482
9483 static bfd_boolean
9484 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9485 {
9486 char *buf;
9487
9488 if (size <= 0)
9489 return TRUE;
9490
9491 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9492 return FALSE;
9493
9494 buf = (char *) bfd_malloc (size);
9495 if (buf == NULL)
9496 return FALSE;
9497
9498 if (bfd_bread (buf, size, abfd) != size
9499 || !elf_parse_notes (abfd, buf, size, offset))
9500 {
9501 free (buf);
9502 return FALSE;
9503 }
9504
9505 free (buf);
9506 return TRUE;
9507 }
9508 \f
9509 /* Providing external access to the ELF program header table. */
9510
9511 /* Return an upper bound on the number of bytes required to store a
9512 copy of ABFD's program header table entries. Return -1 if an error
9513 occurs; bfd_get_error will return an appropriate code. */
9514
9515 long
9516 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9517 {
9518 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9519 {
9520 bfd_set_error (bfd_error_wrong_format);
9521 return -1;
9522 }
9523
9524 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9525 }
9526
9527 /* Copy ABFD's program header table entries to *PHDRS. The entries
9528 will be stored as an array of Elf_Internal_Phdr structures, as
9529 defined in include/elf/internal.h. To find out how large the
9530 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9531
9532 Return the number of program header table entries read, or -1 if an
9533 error occurs; bfd_get_error will return an appropriate code. */
9534
9535 int
9536 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9537 {
9538 int num_phdrs;
9539
9540 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9541 {
9542 bfd_set_error (bfd_error_wrong_format);
9543 return -1;
9544 }
9545
9546 num_phdrs = elf_elfheader (abfd)->e_phnum;
9547 memcpy (phdrs, elf_tdata (abfd)->phdr,
9548 num_phdrs * sizeof (Elf_Internal_Phdr));
9549
9550 return num_phdrs;
9551 }
9552
9553 enum elf_reloc_type_class
9554 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9555 {
9556 return reloc_class_normal;
9557 }
9558
9559 /* For RELA architectures, return the relocation value for a
9560 relocation against a local symbol. */
9561
9562 bfd_vma
9563 _bfd_elf_rela_local_sym (bfd *abfd,
9564 Elf_Internal_Sym *sym,
9565 asection **psec,
9566 Elf_Internal_Rela *rel)
9567 {
9568 asection *sec = *psec;
9569 bfd_vma relocation;
9570
9571 relocation = (sec->output_section->vma
9572 + sec->output_offset
9573 + sym->st_value);
9574 if ((sec->flags & SEC_MERGE)
9575 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9576 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9577 {
9578 rel->r_addend =
9579 _bfd_merged_section_offset (abfd, psec,
9580 elf_section_data (sec)->sec_info,
9581 sym->st_value + rel->r_addend);
9582 if (sec != *psec)
9583 {
9584 /* If we have changed the section, and our original section is
9585 marked with SEC_EXCLUDE, it means that the original
9586 SEC_MERGE section has been completely subsumed in some
9587 other SEC_MERGE section. In this case, we need to leave
9588 some info around for --emit-relocs. */
9589 if ((sec->flags & SEC_EXCLUDE) != 0)
9590 sec->kept_section = *psec;
9591 sec = *psec;
9592 }
9593 rel->r_addend -= relocation;
9594 rel->r_addend += sec->output_section->vma + sec->output_offset;
9595 }
9596 return relocation;
9597 }
9598
9599 bfd_vma
9600 _bfd_elf_rel_local_sym (bfd *abfd,
9601 Elf_Internal_Sym *sym,
9602 asection **psec,
9603 bfd_vma addend)
9604 {
9605 asection *sec = *psec;
9606
9607 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9608 return sym->st_value + addend;
9609
9610 return _bfd_merged_section_offset (abfd, psec,
9611 elf_section_data (sec)->sec_info,
9612 sym->st_value + addend);
9613 }
9614
9615 bfd_vma
9616 _bfd_elf_section_offset (bfd *abfd,
9617 struct bfd_link_info *info,
9618 asection *sec,
9619 bfd_vma offset)
9620 {
9621 switch (sec->sec_info_type)
9622 {
9623 case SEC_INFO_TYPE_STABS:
9624 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9625 offset);
9626 case SEC_INFO_TYPE_EH_FRAME:
9627 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9628 default:
9629 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9630 {
9631 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9632 bfd_size_type address_size = bed->s->arch_size / 8;
9633 offset = sec->size - offset - address_size;
9634 }
9635 return offset;
9636 }
9637 }
9638 \f
9639 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9640 reconstruct an ELF file by reading the segments out of remote memory
9641 based on the ELF file header at EHDR_VMA and the ELF program headers it
9642 points to. If not null, *LOADBASEP is filled in with the difference
9643 between the VMAs from which the segments were read, and the VMAs the
9644 file headers (and hence BFD's idea of each section's VMA) put them at.
9645
9646 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9647 remote memory at target address VMA into the local buffer at MYADDR; it
9648 should return zero on success or an `errno' code on failure. TEMPL must
9649 be a BFD for an ELF target with the word size and byte order found in
9650 the remote memory. */
9651
9652 bfd *
9653 bfd_elf_bfd_from_remote_memory
9654 (bfd *templ,
9655 bfd_vma ehdr_vma,
9656 bfd_vma *loadbasep,
9657 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9658 {
9659 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9660 (templ, ehdr_vma, loadbasep, target_read_memory);
9661 }
9662 \f
9663 long
9664 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9665 long symcount ATTRIBUTE_UNUSED,
9666 asymbol **syms ATTRIBUTE_UNUSED,
9667 long dynsymcount,
9668 asymbol **dynsyms,
9669 asymbol **ret)
9670 {
9671 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9672 asection *relplt;
9673 asymbol *s;
9674 const char *relplt_name;
9675 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9676 arelent *p;
9677 long count, i, n;
9678 size_t size;
9679 Elf_Internal_Shdr *hdr;
9680 char *names;
9681 asection *plt;
9682
9683 *ret = NULL;
9684
9685 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9686 return 0;
9687
9688 if (dynsymcount <= 0)
9689 return 0;
9690
9691 if (!bed->plt_sym_val)
9692 return 0;
9693
9694 relplt_name = bed->relplt_name;
9695 if (relplt_name == NULL)
9696 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9697 relplt = bfd_get_section_by_name (abfd, relplt_name);
9698 if (relplt == NULL)
9699 return 0;
9700
9701 hdr = &elf_section_data (relplt)->this_hdr;
9702 if (hdr->sh_link != elf_dynsymtab (abfd)
9703 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9704 return 0;
9705
9706 plt = bfd_get_section_by_name (abfd, ".plt");
9707 if (plt == NULL)
9708 return 0;
9709
9710 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9711 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9712 return -1;
9713
9714 count = relplt->size / hdr->sh_entsize;
9715 size = count * sizeof (asymbol);
9716 p = relplt->relocation;
9717 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9718 {
9719 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9720 if (p->addend != 0)
9721 {
9722 #ifdef BFD64
9723 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9724 #else
9725 size += sizeof ("+0x") - 1 + 8;
9726 #endif
9727 }
9728 }
9729
9730 s = *ret = (asymbol *) bfd_malloc (size);
9731 if (s == NULL)
9732 return -1;
9733
9734 names = (char *) (s + count);
9735 p = relplt->relocation;
9736 n = 0;
9737 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9738 {
9739 size_t len;
9740 bfd_vma addr;
9741
9742 addr = bed->plt_sym_val (i, plt, p);
9743 if (addr == (bfd_vma) -1)
9744 continue;
9745
9746 *s = **p->sym_ptr_ptr;
9747 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9748 we are defining a symbol, ensure one of them is set. */
9749 if ((s->flags & BSF_LOCAL) == 0)
9750 s->flags |= BSF_GLOBAL;
9751 s->flags |= BSF_SYNTHETIC;
9752 s->section = plt;
9753 s->value = addr - plt->vma;
9754 s->name = names;
9755 s->udata.p = NULL;
9756 len = strlen ((*p->sym_ptr_ptr)->name);
9757 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9758 names += len;
9759 if (p->addend != 0)
9760 {
9761 char buf[30], *a;
9762
9763 memcpy (names, "+0x", sizeof ("+0x") - 1);
9764 names += sizeof ("+0x") - 1;
9765 bfd_sprintf_vma (abfd, buf, p->addend);
9766 for (a = buf; *a == '0'; ++a)
9767 ;
9768 len = strlen (a);
9769 memcpy (names, a, len);
9770 names += len;
9771 }
9772 memcpy (names, "@plt", sizeof ("@plt"));
9773 names += sizeof ("@plt");
9774 ++s, ++n;
9775 }
9776
9777 return n;
9778 }
9779
9780 /* It is only used by x86-64 so far. */
9781 asection _bfd_elf_large_com_section
9782 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9783 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9784
9785 void
9786 _bfd_elf_set_osabi (bfd * abfd,
9787 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9788 {
9789 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9790
9791 i_ehdrp = elf_elfheader (abfd);
9792
9793 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9794
9795 /* To make things simpler for the loader on Linux systems we set the
9796 osabi field to ELFOSABI_GNU if the binary contains symbols of
9797 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9798 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9799 && elf_tdata (abfd)->has_gnu_symbols)
9800 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9801 }
9802
9803
9804 /* Return TRUE for ELF symbol types that represent functions.
9805 This is the default version of this function, which is sufficient for
9806 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9807
9808 bfd_boolean
9809 _bfd_elf_is_function_type (unsigned int type)
9810 {
9811 return (type == STT_FUNC
9812 || type == STT_GNU_IFUNC);
9813 }
9814
9815 /* If the ELF symbol SYM might be a function in SEC, return the
9816 function size and set *CODE_OFF to the function's entry point,
9817 otherwise return zero. */
9818
9819 bfd_size_type
9820 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9821 bfd_vma *code_off)
9822 {
9823 bfd_size_type size;
9824
9825 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9826 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9827 || sym->section != sec)
9828 return 0;
9829
9830 *code_off = sym->value;
9831 size = 0;
9832 if (!(sym->flags & BSF_SYNTHETIC))
9833 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9834 if (size == 0)
9835 size = 1;
9836 return size;
9837 }