]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Introduce new section flag: SEC_ELF_OCTETS
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || shstrtabsize > bfd_get_file_size (abfd)
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%pB: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351 else
352 {
353 /* PR 24273: The string section's contents may have already
354 been loaded elsewhere, eg because a corrupt file has the
355 string section index in the ELF header pointing at a group
356 section. So be paranoid, and test that the last byte of
357 the section is zero. */
358 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
359 return NULL;
360 }
361
362 if (strindex >= hdr->sh_size)
363 {
364 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
365 _bfd_error_handler
366 /* xgettext:c-format */
367 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
368 abfd, strindex, (uint64_t) hdr->sh_size,
369 (shindex == shstrndx && strindex == hdr->sh_name
370 ? ".shstrtab"
371 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
372 return NULL;
373 }
374
375 return ((char *) hdr->contents) + strindex;
376 }
377
378 /* Read and convert symbols to internal format.
379 SYMCOUNT specifies the number of symbols to read, starting from
380 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
381 are non-NULL, they are used to store the internal symbols, external
382 symbols, and symbol section index extensions, respectively.
383 Returns a pointer to the internal symbol buffer (malloced if necessary)
384 or NULL if there were no symbols or some kind of problem. */
385
386 Elf_Internal_Sym *
387 bfd_elf_get_elf_syms (bfd *ibfd,
388 Elf_Internal_Shdr *symtab_hdr,
389 size_t symcount,
390 size_t symoffset,
391 Elf_Internal_Sym *intsym_buf,
392 void *extsym_buf,
393 Elf_External_Sym_Shndx *extshndx_buf)
394 {
395 Elf_Internal_Shdr *shndx_hdr;
396 void *alloc_ext;
397 const bfd_byte *esym;
398 Elf_External_Sym_Shndx *alloc_extshndx;
399 Elf_External_Sym_Shndx *shndx;
400 Elf_Internal_Sym *alloc_intsym;
401 Elf_Internal_Sym *isym;
402 Elf_Internal_Sym *isymend;
403 const struct elf_backend_data *bed;
404 size_t extsym_size;
405 bfd_size_type amt;
406 file_ptr pos;
407
408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
409 abort ();
410
411 if (symcount == 0)
412 return intsym_buf;
413
414 /* Normal syms might have section extension entries. */
415 shndx_hdr = NULL;
416 if (elf_symtab_shndx_list (ibfd) != NULL)
417 {
418 elf_section_list * entry;
419 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
420
421 /* Find an index section that is linked to this symtab section. */
422 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
423 {
424 /* PR 20063. */
425 if (entry->hdr.sh_link >= elf_numsections (ibfd))
426 continue;
427
428 if (sections[entry->hdr.sh_link] == symtab_hdr)
429 {
430 shndx_hdr = & entry->hdr;
431 break;
432 };
433 }
434
435 if (shndx_hdr == NULL)
436 {
437 if (symtab_hdr == & elf_symtab_hdr (ibfd))
438 /* Not really accurate, but this was how the old code used to work. */
439 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
440 /* Otherwise we do nothing. The assumption is that
441 the index table will not be needed. */
442 }
443 }
444
445 /* Read the symbols. */
446 alloc_ext = NULL;
447 alloc_extshndx = NULL;
448 alloc_intsym = NULL;
449 bed = get_elf_backend_data (ibfd);
450 extsym_size = bed->s->sizeof_sym;
451 amt = (bfd_size_type) symcount * extsym_size;
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc2 (symcount, extsym_size);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
471 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
472 if (extshndx_buf == NULL)
473 {
474 alloc_extshndx = (Elf_External_Sym_Shndx *)
475 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
476 extshndx_buf = alloc_extshndx;
477 }
478 if (extshndx_buf == NULL
479 || bfd_seek (ibfd, pos, SEEK_SET) != 0
480 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
481 {
482 intsym_buf = NULL;
483 goto out;
484 }
485 }
486
487 if (intsym_buf == NULL)
488 {
489 alloc_intsym = (Elf_Internal_Sym *)
490 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
491 intsym_buf = alloc_intsym;
492 if (intsym_buf == NULL)
493 goto out;
494 }
495
496 /* Convert the symbols to internal form. */
497 isymend = intsym_buf + symcount;
498 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
499 shndx = extshndx_buf;
500 isym < isymend;
501 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
502 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
503 {
504 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
505 /* xgettext:c-format */
506 _bfd_error_handler (_("%pB symbol number %lu references"
507 " nonexistent SHT_SYMTAB_SHNDX section"),
508 ibfd, (unsigned long) symoffset);
509 if (alloc_intsym != NULL)
510 free (alloc_intsym);
511 intsym_buf = NULL;
512 goto out;
513 }
514
515 out:
516 if (alloc_ext != NULL)
517 free (alloc_ext);
518 if (alloc_extshndx != NULL)
519 free (alloc_extshndx);
520
521 return intsym_buf;
522 }
523
524 /* Look up a symbol name. */
525 const char *
526 bfd_elf_sym_name (bfd *abfd,
527 Elf_Internal_Shdr *symtab_hdr,
528 Elf_Internal_Sym *isym,
529 asection *sym_sec)
530 {
531 const char *name;
532 unsigned int iname = isym->st_name;
533 unsigned int shindex = symtab_hdr->sh_link;
534
535 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
536 /* Check for a bogus st_shndx to avoid crashing. */
537 && isym->st_shndx < elf_numsections (abfd))
538 {
539 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
540 shindex = elf_elfheader (abfd)->e_shstrndx;
541 }
542
543 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
544 if (name == NULL)
545 name = "(null)";
546 else if (sym_sec && *name == '\0')
547 name = bfd_section_name (sym_sec);
548
549 return name;
550 }
551
552 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
553 sections. The first element is the flags, the rest are section
554 pointers. */
555
556 typedef union elf_internal_group {
557 Elf_Internal_Shdr *shdr;
558 unsigned int flags;
559 } Elf_Internal_Group;
560
561 /* Return the name of the group signature symbol. Why isn't the
562 signature just a string? */
563
564 static const char *
565 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
566 {
567 Elf_Internal_Shdr *hdr;
568 unsigned char esym[sizeof (Elf64_External_Sym)];
569 Elf_External_Sym_Shndx eshndx;
570 Elf_Internal_Sym isym;
571
572 /* First we need to ensure the symbol table is available. Make sure
573 that it is a symbol table section. */
574 if (ghdr->sh_link >= elf_numsections (abfd))
575 return NULL;
576 hdr = elf_elfsections (abfd) [ghdr->sh_link];
577 if (hdr->sh_type != SHT_SYMTAB
578 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
579 return NULL;
580
581 /* Go read the symbol. */
582 hdr = &elf_tdata (abfd)->symtab_hdr;
583 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
584 &isym, esym, &eshndx) == NULL)
585 return NULL;
586
587 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
588 }
589
590 /* Set next_in_group list pointer, and group name for NEWSECT. */
591
592 static bfd_boolean
593 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
594 {
595 unsigned int num_group = elf_tdata (abfd)->num_group;
596
597 /* If num_group is zero, read in all SHT_GROUP sections. The count
598 is set to -1 if there are no SHT_GROUP sections. */
599 if (num_group == 0)
600 {
601 unsigned int i, shnum;
602
603 /* First count the number of groups. If we have a SHT_GROUP
604 section with just a flag word (ie. sh_size is 4), ignore it. */
605 shnum = elf_numsections (abfd);
606 num_group = 0;
607
608 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
609 ( (shdr)->sh_type == SHT_GROUP \
610 && (shdr)->sh_size >= minsize \
611 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
612 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
613
614 for (i = 0; i < shnum; i++)
615 {
616 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
617
618 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
619 num_group += 1;
620 }
621
622 if (num_group == 0)
623 {
624 num_group = (unsigned) -1;
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = NULL;
627 }
628 else
629 {
630 /* We keep a list of elf section headers for group sections,
631 so we can find them quickly. */
632 bfd_size_type amt;
633
634 elf_tdata (abfd)->num_group = num_group;
635 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
636 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
637 if (elf_tdata (abfd)->group_sect_ptr == NULL)
638 return FALSE;
639 memset (elf_tdata (abfd)->group_sect_ptr, 0,
640 num_group * sizeof (Elf_Internal_Shdr *));
641 num_group = 0;
642
643 for (i = 0; i < shnum; i++)
644 {
645 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
646
647 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
648 {
649 unsigned char *src;
650 Elf_Internal_Group *dest;
651
652 /* Make sure the group section has a BFD section
653 attached to it. */
654 if (!bfd_section_from_shdr (abfd, i))
655 return FALSE;
656
657 /* Add to list of sections. */
658 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
659 num_group += 1;
660
661 /* Read the raw contents. */
662 BFD_ASSERT (sizeof (*dest) >= 4);
663 amt = shdr->sh_size * sizeof (*dest) / 4;
664 shdr->contents = (unsigned char *)
665 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
666 /* PR binutils/4110: Handle corrupt group headers. */
667 if (shdr->contents == NULL)
668 {
669 _bfd_error_handler
670 /* xgettext:c-format */
671 (_("%pB: corrupt size field in group section"
672 " header: %#" PRIx64),
673 abfd, (uint64_t) shdr->sh_size);
674 bfd_set_error (bfd_error_bad_value);
675 -- num_group;
676 continue;
677 }
678
679 memset (shdr->contents, 0, amt);
680
681 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
682 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
683 != shdr->sh_size))
684 {
685 _bfd_error_handler
686 /* xgettext:c-format */
687 (_("%pB: invalid size field in group section"
688 " header: %#" PRIx64 ""),
689 abfd, (uint64_t) shdr->sh_size);
690 bfd_set_error (bfd_error_bad_value);
691 -- num_group;
692 /* PR 17510: If the group contents are even
693 partially corrupt, do not allow any of the
694 contents to be used. */
695 memset (shdr->contents, 0, amt);
696 continue;
697 }
698
699 /* Translate raw contents, a flag word followed by an
700 array of elf section indices all in target byte order,
701 to the flag word followed by an array of elf section
702 pointers. */
703 src = shdr->contents + shdr->sh_size;
704 dest = (Elf_Internal_Group *) (shdr->contents + amt);
705
706 while (1)
707 {
708 unsigned int idx;
709
710 src -= 4;
711 --dest;
712 idx = H_GET_32 (abfd, src);
713 if (src == shdr->contents)
714 {
715 dest->flags = idx;
716 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
717 shdr->bfd_section->flags
718 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
719 break;
720 }
721 if (idx < shnum)
722 {
723 dest->shdr = elf_elfsections (abfd)[idx];
724 /* PR binutils/23199: All sections in a
725 section group should be marked with
726 SHF_GROUP. But some tools generate
727 broken objects without SHF_GROUP. Fix
728 them up here. */
729 dest->shdr->sh_flags |= SHF_GROUP;
730 }
731 if (idx >= shnum
732 || dest->shdr->sh_type == SHT_GROUP)
733 {
734 _bfd_error_handler
735 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
736 abfd, i);
737 dest->shdr = NULL;
738 }
739 }
740 }
741 }
742
743 /* PR 17510: Corrupt binaries might contain invalid groups. */
744 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
745 {
746 elf_tdata (abfd)->num_group = num_group;
747
748 /* If all groups are invalid then fail. */
749 if (num_group == 0)
750 {
751 elf_tdata (abfd)->group_sect_ptr = NULL;
752 elf_tdata (abfd)->num_group = num_group = -1;
753 _bfd_error_handler
754 (_("%pB: no valid group sections found"), abfd);
755 bfd_set_error (bfd_error_bad_value);
756 }
757 }
758 }
759 }
760
761 if (num_group != (unsigned) -1)
762 {
763 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
764 unsigned int j;
765
766 for (j = 0; j < num_group; j++)
767 {
768 /* Begin search from previous found group. */
769 unsigned i = (j + search_offset) % num_group;
770
771 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
772 Elf_Internal_Group *idx;
773 bfd_size_type n_elt;
774
775 if (shdr == NULL)
776 continue;
777
778 idx = (Elf_Internal_Group *) shdr->contents;
779 if (idx == NULL || shdr->sh_size < 4)
780 {
781 /* See PR 21957 for a reproducer. */
782 /* xgettext:c-format */
783 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
784 abfd, shdr->bfd_section);
785 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
786 bfd_set_error (bfd_error_bad_value);
787 return FALSE;
788 }
789 n_elt = shdr->sh_size / 4;
790
791 /* Look through this group's sections to see if current
792 section is a member. */
793 while (--n_elt != 0)
794 if ((++idx)->shdr == hdr)
795 {
796 asection *s = NULL;
797
798 /* We are a member of this group. Go looking through
799 other members to see if any others are linked via
800 next_in_group. */
801 idx = (Elf_Internal_Group *) shdr->contents;
802 n_elt = shdr->sh_size / 4;
803 while (--n_elt != 0)
804 if ((++idx)->shdr != NULL
805 && (s = idx->shdr->bfd_section) != NULL
806 && elf_next_in_group (s) != NULL)
807 break;
808 if (n_elt != 0)
809 {
810 /* Snarf the group name from other member, and
811 insert current section in circular list. */
812 elf_group_name (newsect) = elf_group_name (s);
813 elf_next_in_group (newsect) = elf_next_in_group (s);
814 elf_next_in_group (s) = newsect;
815 }
816 else
817 {
818 const char *gname;
819
820 gname = group_signature (abfd, shdr);
821 if (gname == NULL)
822 return FALSE;
823 elf_group_name (newsect) = gname;
824
825 /* Start a circular list with one element. */
826 elf_next_in_group (newsect) = newsect;
827 }
828
829 /* If the group section has been created, point to the
830 new member. */
831 if (shdr->bfd_section != NULL)
832 elf_next_in_group (shdr->bfd_section) = newsect;
833
834 elf_tdata (abfd)->group_search_offset = i;
835 j = num_group - 1;
836 break;
837 }
838 }
839 }
840
841 if (elf_group_name (newsect) == NULL)
842 {
843 /* xgettext:c-format */
844 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
845 abfd, newsect);
846 return FALSE;
847 }
848 return TRUE;
849 }
850
851 bfd_boolean
852 _bfd_elf_setup_sections (bfd *abfd)
853 {
854 unsigned int i;
855 unsigned int num_group = elf_tdata (abfd)->num_group;
856 bfd_boolean result = TRUE;
857 asection *s;
858
859 /* Process SHF_LINK_ORDER. */
860 for (s = abfd->sections; s != NULL; s = s->next)
861 {
862 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
863 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
864 {
865 unsigned int elfsec = this_hdr->sh_link;
866 /* FIXME: The old Intel compiler and old strip/objcopy may
867 not set the sh_link or sh_info fields. Hence we could
868 get the situation where elfsec is 0. */
869 if (elfsec == 0)
870 {
871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
872 if (bed->link_order_error_handler)
873 bed->link_order_error_handler
874 /* xgettext:c-format */
875 (_("%pB: warning: sh_link not set for section `%pA'"),
876 abfd, s);
877 }
878 else
879 {
880 asection *linksec = NULL;
881
882 if (elfsec < elf_numsections (abfd))
883 {
884 this_hdr = elf_elfsections (abfd)[elfsec];
885 linksec = this_hdr->bfd_section;
886 }
887
888 /* PR 1991, 2008:
889 Some strip/objcopy may leave an incorrect value in
890 sh_link. We don't want to proceed. */
891 if (linksec == NULL)
892 {
893 _bfd_error_handler
894 /* xgettext:c-format */
895 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
896 s->owner, elfsec, s);
897 result = FALSE;
898 }
899
900 elf_linked_to_section (s) = linksec;
901 }
902 }
903 else if (this_hdr->sh_type == SHT_GROUP
904 && elf_next_in_group (s) == NULL)
905 {
906 _bfd_error_handler
907 /* xgettext:c-format */
908 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
909 abfd, elf_section_data (s)->this_idx);
910 result = FALSE;
911 }
912 }
913
914 /* Process section groups. */
915 if (num_group == (unsigned) -1)
916 return result;
917
918 for (i = 0; i < num_group; i++)
919 {
920 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
921 Elf_Internal_Group *idx;
922 unsigned int n_elt;
923
924 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
925 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
926 {
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%pB: section group entry number %u is corrupt"),
930 abfd, i);
931 result = FALSE;
932 continue;
933 }
934
935 idx = (Elf_Internal_Group *) shdr->contents;
936 n_elt = shdr->sh_size / 4;
937
938 while (--n_elt != 0)
939 {
940 ++ idx;
941
942 if (idx->shdr == NULL)
943 continue;
944 else if (idx->shdr->bfd_section)
945 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
946 else if (idx->shdr->sh_type != SHT_RELA
947 && idx->shdr->sh_type != SHT_REL)
948 {
949 /* There are some unknown sections in the group. */
950 _bfd_error_handler
951 /* xgettext:c-format */
952 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
953 abfd,
954 idx->shdr->sh_type,
955 bfd_elf_string_from_elf_section (abfd,
956 (elf_elfheader (abfd)
957 ->e_shstrndx),
958 idx->shdr->sh_name),
959 shdr->bfd_section);
960 result = FALSE;
961 }
962 }
963 }
964
965 return result;
966 }
967
968 bfd_boolean
969 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
970 {
971 return elf_next_in_group (sec) != NULL;
972 }
973
974 const char *
975 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
976 {
977 if (elf_sec_group (sec) != NULL)
978 return elf_group_name (sec);
979 return NULL;
980 }
981
982 static char *
983 convert_debug_to_zdebug (bfd *abfd, const char *name)
984 {
985 unsigned int len = strlen (name);
986 char *new_name = bfd_alloc (abfd, len + 2);
987 if (new_name == NULL)
988 return NULL;
989 new_name[0] = '.';
990 new_name[1] = 'z';
991 memcpy (new_name + 2, name + 1, len);
992 return new_name;
993 }
994
995 static char *
996 convert_zdebug_to_debug (bfd *abfd, const char *name)
997 {
998 unsigned int len = strlen (name);
999 char *new_name = bfd_alloc (abfd, len);
1000 if (new_name == NULL)
1001 return NULL;
1002 new_name[0] = '.';
1003 memcpy (new_name + 1, name + 2, len - 1);
1004 return new_name;
1005 }
1006
1007 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1008
1009 struct lto_section
1010 {
1011 int16_t major_version;
1012 int16_t minor_version;
1013 unsigned char slim_object;
1014
1015 /* Flags is a private field that is not defined publicly. */
1016 uint16_t flags;
1017 };
1018
1019 /* Make a BFD section from an ELF section. We store a pointer to the
1020 BFD section in the bfd_section field of the header. */
1021
1022 bfd_boolean
1023 _bfd_elf_make_section_from_shdr (bfd *abfd,
1024 Elf_Internal_Shdr *hdr,
1025 const char *name,
1026 int shindex)
1027 {
1028 asection *newsect;
1029 flagword flags;
1030 const struct elf_backend_data *bed;
1031
1032 if (hdr->bfd_section != NULL)
1033 return TRUE;
1034
1035 newsect = bfd_make_section_anyway (abfd, name);
1036 if (newsect == NULL)
1037 return FALSE;
1038
1039 hdr->bfd_section = newsect;
1040 elf_section_data (newsect)->this_hdr = *hdr;
1041 elf_section_data (newsect)->this_idx = shindex;
1042
1043 /* Always use the real type/flags. */
1044 elf_section_type (newsect) = hdr->sh_type;
1045 elf_section_flags (newsect) = hdr->sh_flags;
1046
1047 newsect->filepos = hdr->sh_offset;
1048
1049 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1050 || !bfd_set_section_size (newsect, hdr->sh_size)
1051 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1052 return FALSE;
1053
1054 flags = SEC_NO_FLAGS;
1055 if (hdr->sh_type != SHT_NOBITS)
1056 flags |= SEC_HAS_CONTENTS;
1057 if (hdr->sh_type == SHT_GROUP)
1058 flags |= SEC_GROUP;
1059 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1060 {
1061 flags |= SEC_ALLOC;
1062 if (hdr->sh_type != SHT_NOBITS)
1063 flags |= SEC_LOAD;
1064 }
1065 if ((hdr->sh_flags & SHF_WRITE) == 0)
1066 flags |= SEC_READONLY;
1067 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1068 flags |= SEC_CODE;
1069 else if ((flags & SEC_LOAD) != 0)
1070 flags |= SEC_DATA;
1071 if ((hdr->sh_flags & SHF_MERGE) != 0)
1072 {
1073 flags |= SEC_MERGE;
1074 newsect->entsize = hdr->sh_entsize;
1075 }
1076 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1077 flags |= SEC_STRINGS;
1078 if (hdr->sh_flags & SHF_GROUP)
1079 if (!setup_group (abfd, hdr, newsect))
1080 return FALSE;
1081 if ((hdr->sh_flags & SHF_TLS) != 0)
1082 flags |= SEC_THREAD_LOCAL;
1083 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1084 flags |= SEC_EXCLUDE;
1085
1086 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1087 {
1088 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1089 but binutils as of 2019-07-23 did not set the EI_OSABI header
1090 byte. */
1091 case ELFOSABI_NONE:
1092 case ELFOSABI_GNU:
1093 case ELFOSABI_FREEBSD:
1094 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1095 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1096 break;
1097 }
1098
1099 if ((flags & SEC_ALLOC) == 0)
1100 {
1101 /* The debugging sections appear to be recognized only by name,
1102 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1103 if (name [0] == '.')
1104 {
1105 const char *p;
1106 int n;
1107 if (name[1] == 'd')
1108 p = ".debug", n = 6;
1109 else if (name[1] == 'g' && name[2] == 'n')
1110 p = ".gnu.linkonce.wi.", n = 17;
1111 else if (name[1] == 'g' && name[2] == 'd')
1112 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1113 else if (name[1] == 'l')
1114 p = ".line", n = 5;
1115 else if (name[1] == 's')
1116 p = ".stab", n = 5;
1117 else if (name[1] == 'z')
1118 p = ".zdebug", n = 7;
1119 else
1120 p = NULL, n = 0;
1121 if (p != NULL && strncmp (name, p, n) == 0)
1122 flags |= SEC_DEBUGGING;
1123
1124 /* DWARF debug sections and ELF notes are organized in octets. */
1125 if (strncmp (name, ".debug", 6) == 0 ||
1126 strncmp (name, ".zdebug", 7) == 0 ||
1127 strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0 ||
1128 strncmp (name, ".note.gnu", 9) == 0)
1129 {
1130 flags |= SEC_ELF_OCTETS;
1131 }
1132 }
1133 }
1134
1135 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1136 only link a single copy of the section. This is used to support
1137 g++. g++ will emit each template expansion in its own section.
1138 The symbols will be defined as weak, so that multiple definitions
1139 are permitted. The GNU linker extension is to actually discard
1140 all but one of the sections. */
1141 if (CONST_STRNEQ (name, ".gnu.linkonce")
1142 && elf_next_in_group (newsect) == NULL)
1143 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1144
1145 bed = get_elf_backend_data (abfd);
1146 if (bed->elf_backend_section_flags)
1147 if (! bed->elf_backend_section_flags (&flags, hdr))
1148 return FALSE;
1149
1150 if (!bfd_set_section_flags (newsect, flags))
1151 return FALSE;
1152
1153 /* We do not parse the PT_NOTE segments as we are interested even in the
1154 separate debug info files which may have the segments offsets corrupted.
1155 PT_NOTEs from the core files are currently not parsed using BFD. */
1156 if (hdr->sh_type == SHT_NOTE)
1157 {
1158 bfd_byte *contents;
1159
1160 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1161 return FALSE;
1162
1163 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1164 hdr->sh_offset, hdr->sh_addralign);
1165 free (contents);
1166 }
1167
1168 if ((flags & SEC_ALLOC) != 0)
1169 {
1170 Elf_Internal_Phdr *phdr;
1171 unsigned int i, nload;
1172
1173 /* Some ELF linkers produce binaries with all the program header
1174 p_paddr fields zero. If we have such a binary with more than
1175 one PT_LOAD header, then leave the section lma equal to vma
1176 so that we don't create sections with overlapping lma. */
1177 phdr = elf_tdata (abfd)->phdr;
1178 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1179 if (phdr->p_paddr != 0)
1180 break;
1181 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1182 ++nload;
1183 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1184 return TRUE;
1185
1186 phdr = elf_tdata (abfd)->phdr;
1187 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1188 {
1189 if (((phdr->p_type == PT_LOAD
1190 && (hdr->sh_flags & SHF_TLS) == 0)
1191 || phdr->p_type == PT_TLS)
1192 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1193 {
1194 if ((flags & SEC_LOAD) == 0)
1195 newsect->lma = (phdr->p_paddr
1196 + hdr->sh_addr - phdr->p_vaddr);
1197 else
1198 /* We used to use the same adjustment for SEC_LOAD
1199 sections, but that doesn't work if the segment
1200 is packed with code from multiple VMAs.
1201 Instead we calculate the section LMA based on
1202 the segment LMA. It is assumed that the
1203 segment will contain sections with contiguous
1204 LMAs, even if the VMAs are not. */
1205 newsect->lma = (phdr->p_paddr
1206 + hdr->sh_offset - phdr->p_offset);
1207
1208 /* With contiguous segments, we can't tell from file
1209 offsets whether a section with zero size should
1210 be placed at the end of one segment or the
1211 beginning of the next. Decide based on vaddr. */
1212 if (hdr->sh_addr >= phdr->p_vaddr
1213 && (hdr->sh_addr + hdr->sh_size
1214 <= phdr->p_vaddr + phdr->p_memsz))
1215 break;
1216 }
1217 }
1218 }
1219
1220 /* Compress/decompress DWARF debug sections with names: .debug_* and
1221 .zdebug_*, after the section flags is set. */
1222 if ((flags & SEC_DEBUGGING)
1223 && ((name[1] == 'd' && name[6] == '_')
1224 || (name[1] == 'z' && name[7] == '_')))
1225 {
1226 enum { nothing, compress, decompress } action = nothing;
1227 int compression_header_size;
1228 bfd_size_type uncompressed_size;
1229 unsigned int uncompressed_align_power;
1230 bfd_boolean compressed
1231 = bfd_is_section_compressed_with_header (abfd, newsect,
1232 &compression_header_size,
1233 &uncompressed_size,
1234 &uncompressed_align_power);
1235 if (compressed)
1236 {
1237 /* Compressed section. Check if we should decompress. */
1238 if ((abfd->flags & BFD_DECOMPRESS))
1239 action = decompress;
1240 }
1241
1242 /* Compress the uncompressed section or convert from/to .zdebug*
1243 section. Check if we should compress. */
1244 if (action == nothing)
1245 {
1246 if (newsect->size != 0
1247 && (abfd->flags & BFD_COMPRESS)
1248 && compression_header_size >= 0
1249 && uncompressed_size > 0
1250 && (!compressed
1251 || ((compression_header_size > 0)
1252 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1253 action = compress;
1254 else
1255 return TRUE;
1256 }
1257
1258 if (action == compress)
1259 {
1260 if (!bfd_init_section_compress_status (abfd, newsect))
1261 {
1262 _bfd_error_handler
1263 /* xgettext:c-format */
1264 (_("%pB: unable to initialize compress status for section %s"),
1265 abfd, name);
1266 return FALSE;
1267 }
1268 }
1269 else
1270 {
1271 if (!bfd_init_section_decompress_status (abfd, newsect))
1272 {
1273 _bfd_error_handler
1274 /* xgettext:c-format */
1275 (_("%pB: unable to initialize decompress status for section %s"),
1276 abfd, name);
1277 return FALSE;
1278 }
1279 }
1280
1281 if (abfd->is_linker_input)
1282 {
1283 if (name[1] == 'z'
1284 && (action == decompress
1285 || (action == compress
1286 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1287 {
1288 /* Convert section name from .zdebug_* to .debug_* so
1289 that linker will consider this section as a debug
1290 section. */
1291 char *new_name = convert_zdebug_to_debug (abfd, name);
1292 if (new_name == NULL)
1293 return FALSE;
1294 bfd_rename_section (newsect, new_name);
1295 }
1296 }
1297 else
1298 /* For objdump, don't rename the section. For objcopy, delay
1299 section rename to elf_fake_sections. */
1300 newsect->flags |= SEC_ELF_RENAME;
1301 }
1302
1303 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1304 section. */
1305 const char *lto_section_name = ".gnu.lto_.lto.";
1306 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1307 {
1308 struct lto_section lsection;
1309 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1310 sizeof (struct lto_section)))
1311 abfd->lto_slim_object = lsection.slim_object;
1312 }
1313
1314 return TRUE;
1315 }
1316
1317 const char *const bfd_elf_section_type_names[] =
1318 {
1319 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1320 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1321 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1322 };
1323
1324 /* ELF relocs are against symbols. If we are producing relocatable
1325 output, and the reloc is against an external symbol, and nothing
1326 has given us any additional addend, the resulting reloc will also
1327 be against the same symbol. In such a case, we don't want to
1328 change anything about the way the reloc is handled, since it will
1329 all be done at final link time. Rather than put special case code
1330 into bfd_perform_relocation, all the reloc types use this howto
1331 function. It just short circuits the reloc if producing
1332 relocatable output against an external symbol. */
1333
1334 bfd_reloc_status_type
1335 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1336 arelent *reloc_entry,
1337 asymbol *symbol,
1338 void *data ATTRIBUTE_UNUSED,
1339 asection *input_section,
1340 bfd *output_bfd,
1341 char **error_message ATTRIBUTE_UNUSED)
1342 {
1343 if (output_bfd != NULL
1344 && (symbol->flags & BSF_SECTION_SYM) == 0
1345 && (! reloc_entry->howto->partial_inplace
1346 || reloc_entry->addend == 0))
1347 {
1348 reloc_entry->address += input_section->output_offset;
1349 return bfd_reloc_ok;
1350 }
1351
1352 return bfd_reloc_continue;
1353 }
1354 \f
1355 /* Returns TRUE if section A matches section B.
1356 Names, addresses and links may be different, but everything else
1357 should be the same. */
1358
1359 static bfd_boolean
1360 section_match (const Elf_Internal_Shdr * a,
1361 const Elf_Internal_Shdr * b)
1362 {
1363 if (a->sh_type != b->sh_type
1364 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1365 || a->sh_addralign != b->sh_addralign
1366 || a->sh_entsize != b->sh_entsize)
1367 return FALSE;
1368 if (a->sh_type == SHT_SYMTAB
1369 || a->sh_type == SHT_STRTAB)
1370 return TRUE;
1371 return a->sh_size == b->sh_size;
1372 }
1373
1374 /* Find a section in OBFD that has the same characteristics
1375 as IHEADER. Return the index of this section or SHN_UNDEF if
1376 none can be found. Check's section HINT first, as this is likely
1377 to be the correct section. */
1378
1379 static unsigned int
1380 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1381 const unsigned int hint)
1382 {
1383 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1384 unsigned int i;
1385
1386 BFD_ASSERT (iheader != NULL);
1387
1388 /* See PR 20922 for a reproducer of the NULL test. */
1389 if (hint < elf_numsections (obfd)
1390 && oheaders[hint] != NULL
1391 && section_match (oheaders[hint], iheader))
1392 return hint;
1393
1394 for (i = 1; i < elf_numsections (obfd); i++)
1395 {
1396 Elf_Internal_Shdr * oheader = oheaders[i];
1397
1398 if (oheader == NULL)
1399 continue;
1400 if (section_match (oheader, iheader))
1401 /* FIXME: Do we care if there is a potential for
1402 multiple matches ? */
1403 return i;
1404 }
1405
1406 return SHN_UNDEF;
1407 }
1408
1409 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1410 Processor specific section, based upon a matching input section.
1411 Returns TRUE upon success, FALSE otherwise. */
1412
1413 static bfd_boolean
1414 copy_special_section_fields (const bfd *ibfd,
1415 bfd *obfd,
1416 const Elf_Internal_Shdr *iheader,
1417 Elf_Internal_Shdr *oheader,
1418 const unsigned int secnum)
1419 {
1420 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1421 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1422 bfd_boolean changed = FALSE;
1423 unsigned int sh_link;
1424
1425 if (oheader->sh_type == SHT_NOBITS)
1426 {
1427 /* This is a feature for objcopy --only-keep-debug:
1428 When a section's type is changed to NOBITS, we preserve
1429 the sh_link and sh_info fields so that they can be
1430 matched up with the original.
1431
1432 Note: Strictly speaking these assignments are wrong.
1433 The sh_link and sh_info fields should point to the
1434 relevent sections in the output BFD, which may not be in
1435 the same location as they were in the input BFD. But
1436 the whole point of this action is to preserve the
1437 original values of the sh_link and sh_info fields, so
1438 that they can be matched up with the section headers in
1439 the original file. So strictly speaking we may be
1440 creating an invalid ELF file, but it is only for a file
1441 that just contains debug info and only for sections
1442 without any contents. */
1443 if (oheader->sh_link == 0)
1444 oheader->sh_link = iheader->sh_link;
1445 if (oheader->sh_info == 0)
1446 oheader->sh_info = iheader->sh_info;
1447 return TRUE;
1448 }
1449
1450 /* Allow the target a chance to decide how these fields should be set. */
1451 if (bed->elf_backend_copy_special_section_fields != NULL
1452 && bed->elf_backend_copy_special_section_fields
1453 (ibfd, obfd, iheader, oheader))
1454 return TRUE;
1455
1456 /* We have an iheader which might match oheader, and which has non-zero
1457 sh_info and/or sh_link fields. Attempt to follow those links and find
1458 the section in the output bfd which corresponds to the linked section
1459 in the input bfd. */
1460 if (iheader->sh_link != SHN_UNDEF)
1461 {
1462 /* See PR 20931 for a reproducer. */
1463 if (iheader->sh_link >= elf_numsections (ibfd))
1464 {
1465 _bfd_error_handler
1466 /* xgettext:c-format */
1467 (_("%pB: invalid sh_link field (%d) in section number %d"),
1468 ibfd, iheader->sh_link, secnum);
1469 return FALSE;
1470 }
1471
1472 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1473 if (sh_link != SHN_UNDEF)
1474 {
1475 oheader->sh_link = sh_link;
1476 changed = TRUE;
1477 }
1478 else
1479 /* FIXME: Should we install iheader->sh_link
1480 if we could not find a match ? */
1481 _bfd_error_handler
1482 /* xgettext:c-format */
1483 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1484 }
1485
1486 if (iheader->sh_info)
1487 {
1488 /* The sh_info field can hold arbitrary information, but if the
1489 SHF_LINK_INFO flag is set then it should be interpreted as a
1490 section index. */
1491 if (iheader->sh_flags & SHF_INFO_LINK)
1492 {
1493 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1494 iheader->sh_info);
1495 if (sh_link != SHN_UNDEF)
1496 oheader->sh_flags |= SHF_INFO_LINK;
1497 }
1498 else
1499 /* No idea what it means - just copy it. */
1500 sh_link = iheader->sh_info;
1501
1502 if (sh_link != SHN_UNDEF)
1503 {
1504 oheader->sh_info = sh_link;
1505 changed = TRUE;
1506 }
1507 else
1508 _bfd_error_handler
1509 /* xgettext:c-format */
1510 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1511 }
1512
1513 return changed;
1514 }
1515
1516 /* Copy the program header and other data from one object module to
1517 another. */
1518
1519 bfd_boolean
1520 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1521 {
1522 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1523 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1524 const struct elf_backend_data *bed;
1525 unsigned int i;
1526
1527 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1528 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1529 return TRUE;
1530
1531 if (!elf_flags_init (obfd))
1532 {
1533 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1534 elf_flags_init (obfd) = TRUE;
1535 }
1536
1537 elf_gp (obfd) = elf_gp (ibfd);
1538
1539 /* Also copy the EI_OSABI field. */
1540 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1541 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1542
1543 /* If set, copy the EI_ABIVERSION field. */
1544 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1545 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1546 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1547
1548 /* Copy object attributes. */
1549 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1550
1551 if (iheaders == NULL || oheaders == NULL)
1552 return TRUE;
1553
1554 bed = get_elf_backend_data (obfd);
1555
1556 /* Possibly copy other fields in the section header. */
1557 for (i = 1; i < elf_numsections (obfd); i++)
1558 {
1559 unsigned int j;
1560 Elf_Internal_Shdr * oheader = oheaders[i];
1561
1562 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1563 because of a special case need for generating separate debug info
1564 files. See below for more details. */
1565 if (oheader == NULL
1566 || (oheader->sh_type != SHT_NOBITS
1567 && oheader->sh_type < SHT_LOOS))
1568 continue;
1569
1570 /* Ignore empty sections, and sections whose
1571 fields have already been initialised. */
1572 if (oheader->sh_size == 0
1573 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1574 continue;
1575
1576 /* Scan for the matching section in the input bfd.
1577 First we try for a direct mapping between the input and output sections. */
1578 for (j = 1; j < elf_numsections (ibfd); j++)
1579 {
1580 const Elf_Internal_Shdr * iheader = iheaders[j];
1581
1582 if (iheader == NULL)
1583 continue;
1584
1585 if (oheader->bfd_section != NULL
1586 && iheader->bfd_section != NULL
1587 && iheader->bfd_section->output_section != NULL
1588 && iheader->bfd_section->output_section == oheader->bfd_section)
1589 {
1590 /* We have found a connection from the input section to the
1591 output section. Attempt to copy the header fields. If
1592 this fails then do not try any further sections - there
1593 should only be a one-to-one mapping between input and output. */
1594 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1595 j = elf_numsections (ibfd);
1596 break;
1597 }
1598 }
1599
1600 if (j < elf_numsections (ibfd))
1601 continue;
1602
1603 /* That failed. So try to deduce the corresponding input section.
1604 Unfortunately we cannot compare names as the output string table
1605 is empty, so instead we check size, address and type. */
1606 for (j = 1; j < elf_numsections (ibfd); j++)
1607 {
1608 const Elf_Internal_Shdr * iheader = iheaders[j];
1609
1610 if (iheader == NULL)
1611 continue;
1612
1613 /* Try matching fields in the input section's header.
1614 Since --only-keep-debug turns all non-debug sections into
1615 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1616 input type. */
1617 if ((oheader->sh_type == SHT_NOBITS
1618 || iheader->sh_type == oheader->sh_type)
1619 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1620 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1621 && iheader->sh_addralign == oheader->sh_addralign
1622 && iheader->sh_entsize == oheader->sh_entsize
1623 && iheader->sh_size == oheader->sh_size
1624 && iheader->sh_addr == oheader->sh_addr
1625 && (iheader->sh_info != oheader->sh_info
1626 || iheader->sh_link != oheader->sh_link))
1627 {
1628 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1629 break;
1630 }
1631 }
1632
1633 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1634 {
1635 /* Final attempt. Call the backend copy function
1636 with a NULL input section. */
1637 if (bed->elf_backend_copy_special_section_fields != NULL)
1638 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1639 }
1640 }
1641
1642 return TRUE;
1643 }
1644
1645 static const char *
1646 get_segment_type (unsigned int p_type)
1647 {
1648 const char *pt;
1649 switch (p_type)
1650 {
1651 case PT_NULL: pt = "NULL"; break;
1652 case PT_LOAD: pt = "LOAD"; break;
1653 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1654 case PT_INTERP: pt = "INTERP"; break;
1655 case PT_NOTE: pt = "NOTE"; break;
1656 case PT_SHLIB: pt = "SHLIB"; break;
1657 case PT_PHDR: pt = "PHDR"; break;
1658 case PT_TLS: pt = "TLS"; break;
1659 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1660 case PT_GNU_STACK: pt = "STACK"; break;
1661 case PT_GNU_RELRO: pt = "RELRO"; break;
1662 default: pt = NULL; break;
1663 }
1664 return pt;
1665 }
1666
1667 /* Print out the program headers. */
1668
1669 bfd_boolean
1670 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1671 {
1672 FILE *f = (FILE *) farg;
1673 Elf_Internal_Phdr *p;
1674 asection *s;
1675 bfd_byte *dynbuf = NULL;
1676
1677 p = elf_tdata (abfd)->phdr;
1678 if (p != NULL)
1679 {
1680 unsigned int i, c;
1681
1682 fprintf (f, _("\nProgram Header:\n"));
1683 c = elf_elfheader (abfd)->e_phnum;
1684 for (i = 0; i < c; i++, p++)
1685 {
1686 const char *pt = get_segment_type (p->p_type);
1687 char buf[20];
1688
1689 if (pt == NULL)
1690 {
1691 sprintf (buf, "0x%lx", p->p_type);
1692 pt = buf;
1693 }
1694 fprintf (f, "%8s off 0x", pt);
1695 bfd_fprintf_vma (abfd, f, p->p_offset);
1696 fprintf (f, " vaddr 0x");
1697 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1698 fprintf (f, " paddr 0x");
1699 bfd_fprintf_vma (abfd, f, p->p_paddr);
1700 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1701 fprintf (f, " filesz 0x");
1702 bfd_fprintf_vma (abfd, f, p->p_filesz);
1703 fprintf (f, " memsz 0x");
1704 bfd_fprintf_vma (abfd, f, p->p_memsz);
1705 fprintf (f, " flags %c%c%c",
1706 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1707 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1708 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1709 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1710 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1711 fprintf (f, "\n");
1712 }
1713 }
1714
1715 s = bfd_get_section_by_name (abfd, ".dynamic");
1716 if (s != NULL)
1717 {
1718 unsigned int elfsec;
1719 unsigned long shlink;
1720 bfd_byte *extdyn, *extdynend;
1721 size_t extdynsize;
1722 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1723
1724 fprintf (f, _("\nDynamic Section:\n"));
1725
1726 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1727 goto error_return;
1728
1729 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1730 if (elfsec == SHN_BAD)
1731 goto error_return;
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1733
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1736
1737 extdyn = dynbuf;
1738 /* PR 17512: file: 6f427532. */
1739 if (s->size < extdynsize)
1740 goto error_return;
1741 extdynend = extdyn + s->size;
1742 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1743 Fix range check. */
1744 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1745 {
1746 Elf_Internal_Dyn dyn;
1747 const char *name = "";
1748 char ab[20];
1749 bfd_boolean stringp;
1750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1751
1752 (*swap_dyn_in) (abfd, extdyn, &dyn);
1753
1754 if (dyn.d_tag == DT_NULL)
1755 break;
1756
1757 stringp = FALSE;
1758 switch (dyn.d_tag)
1759 {
1760 default:
1761 if (bed->elf_backend_get_target_dtag)
1762 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1763
1764 if (!strcmp (name, ""))
1765 {
1766 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1767 name = ab;
1768 }
1769 break;
1770
1771 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1772 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1773 case DT_PLTGOT: name = "PLTGOT"; break;
1774 case DT_HASH: name = "HASH"; break;
1775 case DT_STRTAB: name = "STRTAB"; break;
1776 case DT_SYMTAB: name = "SYMTAB"; break;
1777 case DT_RELA: name = "RELA"; break;
1778 case DT_RELASZ: name = "RELASZ"; break;
1779 case DT_RELAENT: name = "RELAENT"; break;
1780 case DT_STRSZ: name = "STRSZ"; break;
1781 case DT_SYMENT: name = "SYMENT"; break;
1782 case DT_INIT: name = "INIT"; break;
1783 case DT_FINI: name = "FINI"; break;
1784 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1785 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1786 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1787 case DT_REL: name = "REL"; break;
1788 case DT_RELSZ: name = "RELSZ"; break;
1789 case DT_RELENT: name = "RELENT"; break;
1790 case DT_PLTREL: name = "PLTREL"; break;
1791 case DT_DEBUG: name = "DEBUG"; break;
1792 case DT_TEXTREL: name = "TEXTREL"; break;
1793 case DT_JMPREL: name = "JMPREL"; break;
1794 case DT_BIND_NOW: name = "BIND_NOW"; break;
1795 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1796 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1797 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1798 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1799 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1800 case DT_FLAGS: name = "FLAGS"; break;
1801 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1802 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1803 case DT_CHECKSUM: name = "CHECKSUM"; break;
1804 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1805 case DT_MOVEENT: name = "MOVEENT"; break;
1806 case DT_MOVESZ: name = "MOVESZ"; break;
1807 case DT_FEATURE: name = "FEATURE"; break;
1808 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1809 case DT_SYMINSZ: name = "SYMINSZ"; break;
1810 case DT_SYMINENT: name = "SYMINENT"; break;
1811 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1812 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1813 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1814 case DT_PLTPAD: name = "PLTPAD"; break;
1815 case DT_MOVETAB: name = "MOVETAB"; break;
1816 case DT_SYMINFO: name = "SYMINFO"; break;
1817 case DT_RELACOUNT: name = "RELACOUNT"; break;
1818 case DT_RELCOUNT: name = "RELCOUNT"; break;
1819 case DT_FLAGS_1: name = "FLAGS_1"; break;
1820 case DT_VERSYM: name = "VERSYM"; break;
1821 case DT_VERDEF: name = "VERDEF"; break;
1822 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1823 case DT_VERNEED: name = "VERNEED"; break;
1824 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1825 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1826 case DT_USED: name = "USED"; break;
1827 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1828 case DT_GNU_HASH: name = "GNU_HASH"; break;
1829 }
1830
1831 fprintf (f, " %-20s ", name);
1832 if (! stringp)
1833 {
1834 fprintf (f, "0x");
1835 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1836 }
1837 else
1838 {
1839 const char *string;
1840 unsigned int tagv = dyn.d_un.d_val;
1841
1842 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1843 if (string == NULL)
1844 goto error_return;
1845 fprintf (f, "%s", string);
1846 }
1847 fprintf (f, "\n");
1848 }
1849
1850 free (dynbuf);
1851 dynbuf = NULL;
1852 }
1853
1854 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1855 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1856 {
1857 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1858 return FALSE;
1859 }
1860
1861 if (elf_dynverdef (abfd) != 0)
1862 {
1863 Elf_Internal_Verdef *t;
1864
1865 fprintf (f, _("\nVersion definitions:\n"));
1866 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1867 {
1868 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1869 t->vd_flags, t->vd_hash,
1870 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1871 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1872 {
1873 Elf_Internal_Verdaux *a;
1874
1875 fprintf (f, "\t");
1876 for (a = t->vd_auxptr->vda_nextptr;
1877 a != NULL;
1878 a = a->vda_nextptr)
1879 fprintf (f, "%s ",
1880 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1881 fprintf (f, "\n");
1882 }
1883 }
1884 }
1885
1886 if (elf_dynverref (abfd) != 0)
1887 {
1888 Elf_Internal_Verneed *t;
1889
1890 fprintf (f, _("\nVersion References:\n"));
1891 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1892 {
1893 Elf_Internal_Vernaux *a;
1894
1895 fprintf (f, _(" required from %s:\n"),
1896 t->vn_filename ? t->vn_filename : "<corrupt>");
1897 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1898 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1899 a->vna_flags, a->vna_other,
1900 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1901 }
1902 }
1903
1904 return TRUE;
1905
1906 error_return:
1907 if (dynbuf != NULL)
1908 free (dynbuf);
1909 return FALSE;
1910 }
1911
1912 /* Get version string. */
1913
1914 const char *
1915 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1916 bfd_boolean *hidden)
1917 {
1918 const char *version_string = NULL;
1919 if (elf_dynversym (abfd) != 0
1920 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1921 {
1922 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1923
1924 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1925 vernum &= VERSYM_VERSION;
1926
1927 if (vernum == 0)
1928 version_string = "";
1929 else if (vernum == 1
1930 && (vernum > elf_tdata (abfd)->cverdefs
1931 || (elf_tdata (abfd)->verdef[0].vd_flags
1932 == VER_FLG_BASE)))
1933 version_string = "Base";
1934 else if (vernum <= elf_tdata (abfd)->cverdefs)
1935 version_string =
1936 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1937 else
1938 {
1939 Elf_Internal_Verneed *t;
1940
1941 version_string = _("<corrupt>");
1942 for (t = elf_tdata (abfd)->verref;
1943 t != NULL;
1944 t = t->vn_nextref)
1945 {
1946 Elf_Internal_Vernaux *a;
1947
1948 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1949 {
1950 if (a->vna_other == vernum)
1951 {
1952 version_string = a->vna_nodename;
1953 break;
1954 }
1955 }
1956 }
1957 }
1958 }
1959 return version_string;
1960 }
1961
1962 /* Display ELF-specific fields of a symbol. */
1963
1964 void
1965 bfd_elf_print_symbol (bfd *abfd,
1966 void *filep,
1967 asymbol *symbol,
1968 bfd_print_symbol_type how)
1969 {
1970 FILE *file = (FILE *) filep;
1971 switch (how)
1972 {
1973 case bfd_print_symbol_name:
1974 fprintf (file, "%s", symbol->name);
1975 break;
1976 case bfd_print_symbol_more:
1977 fprintf (file, "elf ");
1978 bfd_fprintf_vma (abfd, file, symbol->value);
1979 fprintf (file, " %x", symbol->flags);
1980 break;
1981 case bfd_print_symbol_all:
1982 {
1983 const char *section_name;
1984 const char *name = NULL;
1985 const struct elf_backend_data *bed;
1986 unsigned char st_other;
1987 bfd_vma val;
1988 const char *version_string;
1989 bfd_boolean hidden;
1990
1991 section_name = symbol->section ? symbol->section->name : "(*none*)";
1992
1993 bed = get_elf_backend_data (abfd);
1994 if (bed->elf_backend_print_symbol_all)
1995 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1996
1997 if (name == NULL)
1998 {
1999 name = symbol->name;
2000 bfd_print_symbol_vandf (abfd, file, symbol);
2001 }
2002
2003 fprintf (file, " %s\t", section_name);
2004 /* Print the "other" value for a symbol. For common symbols,
2005 we've already printed the size; now print the alignment.
2006 For other symbols, we have no specified alignment, and
2007 we've printed the address; now print the size. */
2008 if (symbol->section && bfd_is_com_section (symbol->section))
2009 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2010 else
2011 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2012 bfd_fprintf_vma (abfd, file, val);
2013
2014 /* If we have version information, print it. */
2015 version_string = _bfd_elf_get_symbol_version_string (abfd,
2016 symbol,
2017 &hidden);
2018 if (version_string)
2019 {
2020 if (!hidden)
2021 fprintf (file, " %-11s", version_string);
2022 else
2023 {
2024 int i;
2025
2026 fprintf (file, " (%s)", version_string);
2027 for (i = 10 - strlen (version_string); i > 0; --i)
2028 putc (' ', file);
2029 }
2030 }
2031
2032 /* If the st_other field is not zero, print it. */
2033 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2034
2035 switch (st_other)
2036 {
2037 case 0: break;
2038 case STV_INTERNAL: fprintf (file, " .internal"); break;
2039 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2040 case STV_PROTECTED: fprintf (file, " .protected"); break;
2041 default:
2042 /* Some other non-defined flags are also present, so print
2043 everything hex. */
2044 fprintf (file, " 0x%02x", (unsigned int) st_other);
2045 }
2046
2047 fprintf (file, " %s", name);
2048 }
2049 break;
2050 }
2051 }
2052 \f
2053 /* ELF .o/exec file reading */
2054
2055 /* Create a new bfd section from an ELF section header. */
2056
2057 bfd_boolean
2058 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2059 {
2060 Elf_Internal_Shdr *hdr;
2061 Elf_Internal_Ehdr *ehdr;
2062 const struct elf_backend_data *bed;
2063 const char *name;
2064 bfd_boolean ret = TRUE;
2065 static bfd_boolean * sections_being_created = NULL;
2066 static bfd * sections_being_created_abfd = NULL;
2067 static unsigned int nesting = 0;
2068
2069 if (shindex >= elf_numsections (abfd))
2070 return FALSE;
2071
2072 if (++ nesting > 3)
2073 {
2074 /* PR17512: A corrupt ELF binary might contain a recursive group of
2075 sections, with each the string indices pointing to the next in the
2076 loop. Detect this here, by refusing to load a section that we are
2077 already in the process of loading. We only trigger this test if
2078 we have nested at least three sections deep as normal ELF binaries
2079 can expect to recurse at least once.
2080
2081 FIXME: It would be better if this array was attached to the bfd,
2082 rather than being held in a static pointer. */
2083
2084 if (sections_being_created_abfd != abfd)
2085 sections_being_created = NULL;
2086 if (sections_being_created == NULL)
2087 {
2088 sections_being_created = (bfd_boolean *)
2089 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2090 sections_being_created_abfd = abfd;
2091 }
2092 if (sections_being_created [shindex])
2093 {
2094 _bfd_error_handler
2095 (_("%pB: warning: loop in section dependencies detected"), abfd);
2096 return FALSE;
2097 }
2098 sections_being_created [shindex] = TRUE;
2099 }
2100
2101 hdr = elf_elfsections (abfd)[shindex];
2102 ehdr = elf_elfheader (abfd);
2103 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2104 hdr->sh_name);
2105 if (name == NULL)
2106 goto fail;
2107
2108 bed = get_elf_backend_data (abfd);
2109 switch (hdr->sh_type)
2110 {
2111 case SHT_NULL:
2112 /* Inactive section. Throw it away. */
2113 goto success;
2114
2115 case SHT_PROGBITS: /* Normal section with contents. */
2116 case SHT_NOBITS: /* .bss section. */
2117 case SHT_HASH: /* .hash section. */
2118 case SHT_NOTE: /* .note section. */
2119 case SHT_INIT_ARRAY: /* .init_array section. */
2120 case SHT_FINI_ARRAY: /* .fini_array section. */
2121 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2122 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2123 case SHT_GNU_HASH: /* .gnu.hash section. */
2124 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2125 goto success;
2126
2127 case SHT_DYNAMIC: /* Dynamic linking information. */
2128 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2129 goto fail;
2130
2131 if (hdr->sh_link > elf_numsections (abfd))
2132 {
2133 /* PR 10478: Accept Solaris binaries with a sh_link
2134 field set to SHN_BEFORE or SHN_AFTER. */
2135 switch (bfd_get_arch (abfd))
2136 {
2137 case bfd_arch_i386:
2138 case bfd_arch_sparc:
2139 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2140 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2141 break;
2142 /* Otherwise fall through. */
2143 default:
2144 goto fail;
2145 }
2146 }
2147 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2148 goto fail;
2149 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2150 {
2151 Elf_Internal_Shdr *dynsymhdr;
2152
2153 /* The shared libraries distributed with hpux11 have a bogus
2154 sh_link field for the ".dynamic" section. Find the
2155 string table for the ".dynsym" section instead. */
2156 if (elf_dynsymtab (abfd) != 0)
2157 {
2158 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2159 hdr->sh_link = dynsymhdr->sh_link;
2160 }
2161 else
2162 {
2163 unsigned int i, num_sec;
2164
2165 num_sec = elf_numsections (abfd);
2166 for (i = 1; i < num_sec; i++)
2167 {
2168 dynsymhdr = elf_elfsections (abfd)[i];
2169 if (dynsymhdr->sh_type == SHT_DYNSYM)
2170 {
2171 hdr->sh_link = dynsymhdr->sh_link;
2172 break;
2173 }
2174 }
2175 }
2176 }
2177 goto success;
2178
2179 case SHT_SYMTAB: /* A symbol table. */
2180 if (elf_onesymtab (abfd) == shindex)
2181 goto success;
2182
2183 if (hdr->sh_entsize != bed->s->sizeof_sym)
2184 goto fail;
2185
2186 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2187 {
2188 if (hdr->sh_size != 0)
2189 goto fail;
2190 /* Some assemblers erroneously set sh_info to one with a
2191 zero sh_size. ld sees this as a global symbol count
2192 of (unsigned) -1. Fix it here. */
2193 hdr->sh_info = 0;
2194 goto success;
2195 }
2196
2197 /* PR 18854: A binary might contain more than one symbol table.
2198 Unusual, but possible. Warn, but continue. */
2199 if (elf_onesymtab (abfd) != 0)
2200 {
2201 _bfd_error_handler
2202 /* xgettext:c-format */
2203 (_("%pB: warning: multiple symbol tables detected"
2204 " - ignoring the table in section %u"),
2205 abfd, shindex);
2206 goto success;
2207 }
2208 elf_onesymtab (abfd) = shindex;
2209 elf_symtab_hdr (abfd) = *hdr;
2210 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2211 abfd->flags |= HAS_SYMS;
2212
2213 /* Sometimes a shared object will map in the symbol table. If
2214 SHF_ALLOC is set, and this is a shared object, then we also
2215 treat this section as a BFD section. We can not base the
2216 decision purely on SHF_ALLOC, because that flag is sometimes
2217 set in a relocatable object file, which would confuse the
2218 linker. */
2219 if ((hdr->sh_flags & SHF_ALLOC) != 0
2220 && (abfd->flags & DYNAMIC) != 0
2221 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2222 shindex))
2223 goto fail;
2224
2225 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2226 can't read symbols without that section loaded as well. It
2227 is most likely specified by the next section header. */
2228 {
2229 elf_section_list * entry;
2230 unsigned int i, num_sec;
2231
2232 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2233 if (entry->hdr.sh_link == shindex)
2234 goto success;
2235
2236 num_sec = elf_numsections (abfd);
2237 for (i = shindex + 1; i < num_sec; i++)
2238 {
2239 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2240
2241 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2242 && hdr2->sh_link == shindex)
2243 break;
2244 }
2245
2246 if (i == num_sec)
2247 for (i = 1; i < shindex; i++)
2248 {
2249 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2250
2251 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2252 && hdr2->sh_link == shindex)
2253 break;
2254 }
2255
2256 if (i != shindex)
2257 ret = bfd_section_from_shdr (abfd, i);
2258 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2259 goto success;
2260 }
2261
2262 case SHT_DYNSYM: /* A dynamic symbol table. */
2263 if (elf_dynsymtab (abfd) == shindex)
2264 goto success;
2265
2266 if (hdr->sh_entsize != bed->s->sizeof_sym)
2267 goto fail;
2268
2269 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2270 {
2271 if (hdr->sh_size != 0)
2272 goto fail;
2273
2274 /* Some linkers erroneously set sh_info to one with a
2275 zero sh_size. ld sees this as a global symbol count
2276 of (unsigned) -1. Fix it here. */
2277 hdr->sh_info = 0;
2278 goto success;
2279 }
2280
2281 /* PR 18854: A binary might contain more than one dynamic symbol table.
2282 Unusual, but possible. Warn, but continue. */
2283 if (elf_dynsymtab (abfd) != 0)
2284 {
2285 _bfd_error_handler
2286 /* xgettext:c-format */
2287 (_("%pB: warning: multiple dynamic symbol tables detected"
2288 " - ignoring the table in section %u"),
2289 abfd, shindex);
2290 goto success;
2291 }
2292 elf_dynsymtab (abfd) = shindex;
2293 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2294 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2295 abfd->flags |= HAS_SYMS;
2296
2297 /* Besides being a symbol table, we also treat this as a regular
2298 section, so that objcopy can handle it. */
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2300 goto success;
2301
2302 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2303 {
2304 elf_section_list * entry;
2305
2306 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2307 if (entry->ndx == shindex)
2308 goto success;
2309
2310 entry = bfd_alloc (abfd, sizeof (*entry));
2311 if (entry == NULL)
2312 goto fail;
2313 entry->ndx = shindex;
2314 entry->hdr = * hdr;
2315 entry->next = elf_symtab_shndx_list (abfd);
2316 elf_symtab_shndx_list (abfd) = entry;
2317 elf_elfsections (abfd)[shindex] = & entry->hdr;
2318 goto success;
2319 }
2320
2321 case SHT_STRTAB: /* A string table. */
2322 if (hdr->bfd_section != NULL)
2323 goto success;
2324
2325 if (ehdr->e_shstrndx == shindex)
2326 {
2327 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2328 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2329 goto success;
2330 }
2331
2332 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2333 {
2334 symtab_strtab:
2335 elf_tdata (abfd)->strtab_hdr = *hdr;
2336 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2337 goto success;
2338 }
2339
2340 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2341 {
2342 dynsymtab_strtab:
2343 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2344 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2345 elf_elfsections (abfd)[shindex] = hdr;
2346 /* We also treat this as a regular section, so that objcopy
2347 can handle it. */
2348 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2349 shindex);
2350 goto success;
2351 }
2352
2353 /* If the string table isn't one of the above, then treat it as a
2354 regular section. We need to scan all the headers to be sure,
2355 just in case this strtab section appeared before the above. */
2356 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2357 {
2358 unsigned int i, num_sec;
2359
2360 num_sec = elf_numsections (abfd);
2361 for (i = 1; i < num_sec; i++)
2362 {
2363 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2364 if (hdr2->sh_link == shindex)
2365 {
2366 /* Prevent endless recursion on broken objects. */
2367 if (i == shindex)
2368 goto fail;
2369 if (! bfd_section_from_shdr (abfd, i))
2370 goto fail;
2371 if (elf_onesymtab (abfd) == i)
2372 goto symtab_strtab;
2373 if (elf_dynsymtab (abfd) == i)
2374 goto dynsymtab_strtab;
2375 }
2376 }
2377 }
2378 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2379 goto success;
2380
2381 case SHT_REL:
2382 case SHT_RELA:
2383 /* *These* do a lot of work -- but build no sections! */
2384 {
2385 asection *target_sect;
2386 Elf_Internal_Shdr *hdr2, **p_hdr;
2387 unsigned int num_sec = elf_numsections (abfd);
2388 struct bfd_elf_section_data *esdt;
2389
2390 if (hdr->sh_entsize
2391 != (bfd_size_type) (hdr->sh_type == SHT_REL
2392 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2393 goto fail;
2394
2395 /* Check for a bogus link to avoid crashing. */
2396 if (hdr->sh_link >= num_sec)
2397 {
2398 _bfd_error_handler
2399 /* xgettext:c-format */
2400 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2401 abfd, hdr->sh_link, name, shindex);
2402 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2403 shindex);
2404 goto success;
2405 }
2406
2407 /* For some incomprehensible reason Oracle distributes
2408 libraries for Solaris in which some of the objects have
2409 bogus sh_link fields. It would be nice if we could just
2410 reject them, but, unfortunately, some people need to use
2411 them. We scan through the section headers; if we find only
2412 one suitable symbol table, we clobber the sh_link to point
2413 to it. I hope this doesn't break anything.
2414
2415 Don't do it on executable nor shared library. */
2416 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2417 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2418 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2419 {
2420 unsigned int scan;
2421 int found;
2422
2423 found = 0;
2424 for (scan = 1; scan < num_sec; scan++)
2425 {
2426 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2427 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2428 {
2429 if (found != 0)
2430 {
2431 found = 0;
2432 break;
2433 }
2434 found = scan;
2435 }
2436 }
2437 if (found != 0)
2438 hdr->sh_link = found;
2439 }
2440
2441 /* Get the symbol table. */
2442 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2443 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2444 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2445 goto fail;
2446
2447 /* If this is an alloc section in an executable or shared
2448 library, or the reloc section does not use the main symbol
2449 table we don't treat it as a reloc section. BFD can't
2450 adequately represent such a section, so at least for now,
2451 we don't try. We just present it as a normal section. We
2452 also can't use it as a reloc section if it points to the
2453 null section, an invalid section, another reloc section, or
2454 its sh_link points to the null section. */
2455 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2456 && (hdr->sh_flags & SHF_ALLOC) != 0)
2457 || hdr->sh_link == SHN_UNDEF
2458 || hdr->sh_link != elf_onesymtab (abfd)
2459 || hdr->sh_info == SHN_UNDEF
2460 || hdr->sh_info >= num_sec
2461 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2462 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2463 {
2464 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2465 shindex);
2466 goto success;
2467 }
2468
2469 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2470 goto fail;
2471
2472 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2473 if (target_sect == NULL)
2474 goto fail;
2475
2476 esdt = elf_section_data (target_sect);
2477 if (hdr->sh_type == SHT_RELA)
2478 p_hdr = &esdt->rela.hdr;
2479 else
2480 p_hdr = &esdt->rel.hdr;
2481
2482 /* PR 17512: file: 0b4f81b7.
2483 Also see PR 24456, for a file which deliberately has two reloc
2484 sections. */
2485 if (*p_hdr != NULL)
2486 {
2487 _bfd_error_handler
2488 /* xgettext:c-format */
2489 (_("%pB: warning: multiple relocation sections for section %pA \
2490 found - ignoring all but the first"),
2491 abfd, target_sect);
2492 goto success;
2493 }
2494 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2495 if (hdr2 == NULL)
2496 goto fail;
2497 *hdr2 = *hdr;
2498 *p_hdr = hdr2;
2499 elf_elfsections (abfd)[shindex] = hdr2;
2500 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2501 * bed->s->int_rels_per_ext_rel);
2502 target_sect->flags |= SEC_RELOC;
2503 target_sect->relocation = NULL;
2504 target_sect->rel_filepos = hdr->sh_offset;
2505 /* In the section to which the relocations apply, mark whether
2506 its relocations are of the REL or RELA variety. */
2507 if (hdr->sh_size != 0)
2508 {
2509 if (hdr->sh_type == SHT_RELA)
2510 target_sect->use_rela_p = 1;
2511 }
2512 abfd->flags |= HAS_RELOC;
2513 goto success;
2514 }
2515
2516 case SHT_GNU_verdef:
2517 elf_dynverdef (abfd) = shindex;
2518 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2520 goto success;
2521
2522 case SHT_GNU_versym:
2523 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2524 goto fail;
2525
2526 elf_dynversym (abfd) = shindex;
2527 elf_tdata (abfd)->dynversym_hdr = *hdr;
2528 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2529 goto success;
2530
2531 case SHT_GNU_verneed:
2532 elf_dynverref (abfd) = shindex;
2533 elf_tdata (abfd)->dynverref_hdr = *hdr;
2534 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2535 goto success;
2536
2537 case SHT_SHLIB:
2538 goto success;
2539
2540 case SHT_GROUP:
2541 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2542 goto fail;
2543
2544 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2545 goto fail;
2546
2547 goto success;
2548
2549 default:
2550 /* Possibly an attributes section. */
2551 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2552 || hdr->sh_type == bed->obj_attrs_section_type)
2553 {
2554 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2555 goto fail;
2556 _bfd_elf_parse_attributes (abfd, hdr);
2557 goto success;
2558 }
2559
2560 /* Check for any processor-specific section types. */
2561 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2562 goto success;
2563
2564 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2565 {
2566 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2567 /* FIXME: How to properly handle allocated section reserved
2568 for applications? */
2569 _bfd_error_handler
2570 /* xgettext:c-format */
2571 (_("%pB: unknown type [%#x] section `%s'"),
2572 abfd, hdr->sh_type, name);
2573 else
2574 {
2575 /* Allow sections reserved for applications. */
2576 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2577 shindex);
2578 goto success;
2579 }
2580 }
2581 else if (hdr->sh_type >= SHT_LOPROC
2582 && hdr->sh_type <= SHT_HIPROC)
2583 /* FIXME: We should handle this section. */
2584 _bfd_error_handler
2585 /* xgettext:c-format */
2586 (_("%pB: unknown type [%#x] section `%s'"),
2587 abfd, hdr->sh_type, name);
2588 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2589 {
2590 /* Unrecognised OS-specific sections. */
2591 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2592 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2593 required to correctly process the section and the file should
2594 be rejected with an error message. */
2595 _bfd_error_handler
2596 /* xgettext:c-format */
2597 (_("%pB: unknown type [%#x] section `%s'"),
2598 abfd, hdr->sh_type, name);
2599 else
2600 {
2601 /* Otherwise it should be processed. */
2602 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2603 goto success;
2604 }
2605 }
2606 else
2607 /* FIXME: We should handle this section. */
2608 _bfd_error_handler
2609 /* xgettext:c-format */
2610 (_("%pB: unknown type [%#x] section `%s'"),
2611 abfd, hdr->sh_type, name);
2612
2613 goto fail;
2614 }
2615
2616 fail:
2617 ret = FALSE;
2618 success:
2619 if (sections_being_created && sections_being_created_abfd == abfd)
2620 sections_being_created [shindex] = FALSE;
2621 if (-- nesting == 0)
2622 {
2623 sections_being_created = NULL;
2624 sections_being_created_abfd = abfd;
2625 }
2626 return ret;
2627 }
2628
2629 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2630
2631 Elf_Internal_Sym *
2632 bfd_sym_from_r_symndx (struct sym_cache *cache,
2633 bfd *abfd,
2634 unsigned long r_symndx)
2635 {
2636 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2637
2638 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2639 {
2640 Elf_Internal_Shdr *symtab_hdr;
2641 unsigned char esym[sizeof (Elf64_External_Sym)];
2642 Elf_External_Sym_Shndx eshndx;
2643
2644 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2645 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2646 &cache->sym[ent], esym, &eshndx) == NULL)
2647 return NULL;
2648
2649 if (cache->abfd != abfd)
2650 {
2651 memset (cache->indx, -1, sizeof (cache->indx));
2652 cache->abfd = abfd;
2653 }
2654 cache->indx[ent] = r_symndx;
2655 }
2656
2657 return &cache->sym[ent];
2658 }
2659
2660 /* Given an ELF section number, retrieve the corresponding BFD
2661 section. */
2662
2663 asection *
2664 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2665 {
2666 if (sec_index >= elf_numsections (abfd))
2667 return NULL;
2668 return elf_elfsections (abfd)[sec_index]->bfd_section;
2669 }
2670
2671 static const struct bfd_elf_special_section special_sections_b[] =
2672 {
2673 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2674 { NULL, 0, 0, 0, 0 }
2675 };
2676
2677 static const struct bfd_elf_special_section special_sections_c[] =
2678 {
2679 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2681 { NULL, 0, 0, 0, 0 }
2682 };
2683
2684 static const struct bfd_elf_special_section special_sections_d[] =
2685 {
2686 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2687 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2688 /* There are more DWARF sections than these, but they needn't be added here
2689 unless you have to cope with broken compilers that don't emit section
2690 attributes or you want to help the user writing assembler. */
2691 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2692 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2693 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2694 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2695 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2696 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2697 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2698 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2699 { NULL, 0, 0, 0, 0 }
2700 };
2701
2702 static const struct bfd_elf_special_section special_sections_f[] =
2703 {
2704 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2705 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2706 { NULL, 0 , 0, 0, 0 }
2707 };
2708
2709 static const struct bfd_elf_special_section special_sections_g[] =
2710 {
2711 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2712 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2713 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2714 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2715 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2716 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2717 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2718 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2719 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_h[] =
2724 {
2725 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_i[] =
2730 {
2731 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2732 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2733 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2734 { NULL, 0, 0, 0, 0 }
2735 };
2736
2737 static const struct bfd_elf_special_section special_sections_l[] =
2738 {
2739 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2740 { NULL, 0, 0, 0, 0 }
2741 };
2742
2743 static const struct bfd_elf_special_section special_sections_n[] =
2744 {
2745 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2746 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2747 { NULL, 0, 0, 0, 0 }
2748 };
2749
2750 static const struct bfd_elf_special_section special_sections_p[] =
2751 {
2752 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2753 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2754 { NULL, 0, 0, 0, 0 }
2755 };
2756
2757 static const struct bfd_elf_special_section special_sections_r[] =
2758 {
2759 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2760 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2761 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2762 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2763 { NULL, 0, 0, 0, 0 }
2764 };
2765
2766 static const struct bfd_elf_special_section special_sections_s[] =
2767 {
2768 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2769 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2770 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2771 /* See struct bfd_elf_special_section declaration for the semantics of
2772 this special case where .prefix_length != strlen (.prefix). */
2773 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_t[] =
2778 {
2779 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2780 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2781 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2782 { NULL, 0, 0, 0, 0 }
2783 };
2784
2785 static const struct bfd_elf_special_section special_sections_z[] =
2786 {
2787 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2788 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2789 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2790 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2791 { NULL, 0, 0, 0, 0 }
2792 };
2793
2794 static const struct bfd_elf_special_section * const special_sections[] =
2795 {
2796 special_sections_b, /* 'b' */
2797 special_sections_c, /* 'c' */
2798 special_sections_d, /* 'd' */
2799 NULL, /* 'e' */
2800 special_sections_f, /* 'f' */
2801 special_sections_g, /* 'g' */
2802 special_sections_h, /* 'h' */
2803 special_sections_i, /* 'i' */
2804 NULL, /* 'j' */
2805 NULL, /* 'k' */
2806 special_sections_l, /* 'l' */
2807 NULL, /* 'm' */
2808 special_sections_n, /* 'n' */
2809 NULL, /* 'o' */
2810 special_sections_p, /* 'p' */
2811 NULL, /* 'q' */
2812 special_sections_r, /* 'r' */
2813 special_sections_s, /* 's' */
2814 special_sections_t, /* 't' */
2815 NULL, /* 'u' */
2816 NULL, /* 'v' */
2817 NULL, /* 'w' */
2818 NULL, /* 'x' */
2819 NULL, /* 'y' */
2820 special_sections_z /* 'z' */
2821 };
2822
2823 const struct bfd_elf_special_section *
2824 _bfd_elf_get_special_section (const char *name,
2825 const struct bfd_elf_special_section *spec,
2826 unsigned int rela)
2827 {
2828 int i;
2829 int len;
2830
2831 len = strlen (name);
2832
2833 for (i = 0; spec[i].prefix != NULL; i++)
2834 {
2835 int suffix_len;
2836 int prefix_len = spec[i].prefix_length;
2837
2838 if (len < prefix_len)
2839 continue;
2840 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2841 continue;
2842
2843 suffix_len = spec[i].suffix_length;
2844 if (suffix_len <= 0)
2845 {
2846 if (name[prefix_len] != 0)
2847 {
2848 if (suffix_len == 0)
2849 continue;
2850 if (name[prefix_len] != '.'
2851 && (suffix_len == -2
2852 || (rela && spec[i].type == SHT_REL)))
2853 continue;
2854 }
2855 }
2856 else
2857 {
2858 if (len < prefix_len + suffix_len)
2859 continue;
2860 if (memcmp (name + len - suffix_len,
2861 spec[i].prefix + prefix_len,
2862 suffix_len) != 0)
2863 continue;
2864 }
2865 return &spec[i];
2866 }
2867
2868 return NULL;
2869 }
2870
2871 const struct bfd_elf_special_section *
2872 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2873 {
2874 int i;
2875 const struct bfd_elf_special_section *spec;
2876 const struct elf_backend_data *bed;
2877
2878 /* See if this is one of the special sections. */
2879 if (sec->name == NULL)
2880 return NULL;
2881
2882 bed = get_elf_backend_data (abfd);
2883 spec = bed->special_sections;
2884 if (spec)
2885 {
2886 spec = _bfd_elf_get_special_section (sec->name,
2887 bed->special_sections,
2888 sec->use_rela_p);
2889 if (spec != NULL)
2890 return spec;
2891 }
2892
2893 if (sec->name[0] != '.')
2894 return NULL;
2895
2896 i = sec->name[1] - 'b';
2897 if (i < 0 || i > 'z' - 'b')
2898 return NULL;
2899
2900 spec = special_sections[i];
2901
2902 if (spec == NULL)
2903 return NULL;
2904
2905 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2906 }
2907
2908 bfd_boolean
2909 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2910 {
2911 struct bfd_elf_section_data *sdata;
2912 const struct elf_backend_data *bed;
2913 const struct bfd_elf_special_section *ssect;
2914
2915 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2916 if (sdata == NULL)
2917 {
2918 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2919 sizeof (*sdata));
2920 if (sdata == NULL)
2921 return FALSE;
2922 sec->used_by_bfd = sdata;
2923 }
2924
2925 /* Indicate whether or not this section should use RELA relocations. */
2926 bed = get_elf_backend_data (abfd);
2927 sec->use_rela_p = bed->default_use_rela_p;
2928
2929 /* When we read a file, we don't need to set ELF section type and
2930 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2931 anyway. We will set ELF section type and flags for all linker
2932 created sections. If user specifies BFD section flags, we will
2933 set ELF section type and flags based on BFD section flags in
2934 elf_fake_sections. Special handling for .init_array/.fini_array
2935 output sections since they may contain .ctors/.dtors input
2936 sections. We don't want _bfd_elf_init_private_section_data to
2937 copy ELF section type from .ctors/.dtors input sections. */
2938 if (abfd->direction != read_direction
2939 || (sec->flags & SEC_LINKER_CREATED) != 0)
2940 {
2941 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2942 if (ssect != NULL
2943 && (!sec->flags
2944 || (sec->flags & SEC_LINKER_CREATED) != 0
2945 || ssect->type == SHT_INIT_ARRAY
2946 || ssect->type == SHT_FINI_ARRAY))
2947 {
2948 elf_section_type (sec) = ssect->type;
2949 elf_section_flags (sec) = ssect->attr;
2950 }
2951 }
2952
2953 return _bfd_generic_new_section_hook (abfd, sec);
2954 }
2955
2956 /* Create a new bfd section from an ELF program header.
2957
2958 Since program segments have no names, we generate a synthetic name
2959 of the form segment<NUM>, where NUM is generally the index in the
2960 program header table. For segments that are split (see below) we
2961 generate the names segment<NUM>a and segment<NUM>b.
2962
2963 Note that some program segments may have a file size that is different than
2964 (less than) the memory size. All this means is that at execution the
2965 system must allocate the amount of memory specified by the memory size,
2966 but only initialize it with the first "file size" bytes read from the
2967 file. This would occur for example, with program segments consisting
2968 of combined data+bss.
2969
2970 To handle the above situation, this routine generates TWO bfd sections
2971 for the single program segment. The first has the length specified by
2972 the file size of the segment, and the second has the length specified
2973 by the difference between the two sizes. In effect, the segment is split
2974 into its initialized and uninitialized parts.
2975
2976 */
2977
2978 bfd_boolean
2979 _bfd_elf_make_section_from_phdr (bfd *abfd,
2980 Elf_Internal_Phdr *hdr,
2981 int hdr_index,
2982 const char *type_name)
2983 {
2984 asection *newsect;
2985 char *name;
2986 char namebuf[64];
2987 size_t len;
2988 int split;
2989
2990 split = ((hdr->p_memsz > 0)
2991 && (hdr->p_filesz > 0)
2992 && (hdr->p_memsz > hdr->p_filesz));
2993
2994 if (hdr->p_filesz > 0)
2995 {
2996 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2997 len = strlen (namebuf) + 1;
2998 name = (char *) bfd_alloc (abfd, len);
2999 if (!name)
3000 return FALSE;
3001 memcpy (name, namebuf, len);
3002 newsect = bfd_make_section (abfd, name);
3003 if (newsect == NULL)
3004 return FALSE;
3005 newsect->vma = hdr->p_vaddr;
3006 newsect->lma = hdr->p_paddr;
3007 newsect->size = hdr->p_filesz;
3008 newsect->filepos = hdr->p_offset;
3009 newsect->flags |= SEC_HAS_CONTENTS;
3010 newsect->alignment_power = bfd_log2 (hdr->p_align);
3011 if (hdr->p_type == PT_LOAD)
3012 {
3013 newsect->flags |= SEC_ALLOC;
3014 newsect->flags |= SEC_LOAD;
3015 if (hdr->p_flags & PF_X)
3016 {
3017 /* FIXME: all we known is that it has execute PERMISSION,
3018 may be data. */
3019 newsect->flags |= SEC_CODE;
3020 }
3021 }
3022 if (!(hdr->p_flags & PF_W))
3023 {
3024 newsect->flags |= SEC_READONLY;
3025 }
3026 }
3027
3028 if (hdr->p_memsz > hdr->p_filesz)
3029 {
3030 bfd_vma align;
3031
3032 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3033 len = strlen (namebuf) + 1;
3034 name = (char *) bfd_alloc (abfd, len);
3035 if (!name)
3036 return FALSE;
3037 memcpy (name, namebuf, len);
3038 newsect = bfd_make_section (abfd, name);
3039 if (newsect == NULL)
3040 return FALSE;
3041 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3042 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3043 newsect->size = hdr->p_memsz - hdr->p_filesz;
3044 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3045 align = newsect->vma & -newsect->vma;
3046 if (align == 0 || align > hdr->p_align)
3047 align = hdr->p_align;
3048 newsect->alignment_power = bfd_log2 (align);
3049 if (hdr->p_type == PT_LOAD)
3050 {
3051 /* Hack for gdb. Segments that have not been modified do
3052 not have their contents written to a core file, on the
3053 assumption that a debugger can find the contents in the
3054 executable. We flag this case by setting the fake
3055 section size to zero. Note that "real" bss sections will
3056 always have their contents dumped to the core file. */
3057 if (bfd_get_format (abfd) == bfd_core)
3058 newsect->size = 0;
3059 newsect->flags |= SEC_ALLOC;
3060 if (hdr->p_flags & PF_X)
3061 newsect->flags |= SEC_CODE;
3062 }
3063 if (!(hdr->p_flags & PF_W))
3064 newsect->flags |= SEC_READONLY;
3065 }
3066
3067 return TRUE;
3068 }
3069
3070 static bfd_boolean
3071 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3072 {
3073 /* The return value is ignored. Build-ids are considered optional. */
3074 if (templ->xvec->flavour == bfd_target_elf_flavour)
3075 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3076 (templ, offset);
3077 return FALSE;
3078 }
3079
3080 bfd_boolean
3081 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3082 {
3083 const struct elf_backend_data *bed;
3084
3085 switch (hdr->p_type)
3086 {
3087 case PT_NULL:
3088 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3089
3090 case PT_LOAD:
3091 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3092 return FALSE;
3093 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3094 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3095 return TRUE;
3096
3097 case PT_DYNAMIC:
3098 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3099
3100 case PT_INTERP:
3101 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3102
3103 case PT_NOTE:
3104 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3105 return FALSE;
3106 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3107 hdr->p_align))
3108 return FALSE;
3109 return TRUE;
3110
3111 case PT_SHLIB:
3112 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3113
3114 case PT_PHDR:
3115 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3116
3117 case PT_GNU_EH_FRAME:
3118 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3119 "eh_frame_hdr");
3120
3121 case PT_GNU_STACK:
3122 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3123
3124 case PT_GNU_RELRO:
3125 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3126
3127 default:
3128 /* Check for any processor-specific program segment types. */
3129 bed = get_elf_backend_data (abfd);
3130 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3131 }
3132 }
3133
3134 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3135 REL or RELA. */
3136
3137 Elf_Internal_Shdr *
3138 _bfd_elf_single_rel_hdr (asection *sec)
3139 {
3140 if (elf_section_data (sec)->rel.hdr)
3141 {
3142 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3143 return elf_section_data (sec)->rel.hdr;
3144 }
3145 else
3146 return elf_section_data (sec)->rela.hdr;
3147 }
3148
3149 static bfd_boolean
3150 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3151 Elf_Internal_Shdr *rel_hdr,
3152 const char *sec_name,
3153 bfd_boolean use_rela_p)
3154 {
3155 char *name = (char *) bfd_alloc (abfd,
3156 sizeof ".rela" + strlen (sec_name));
3157 if (name == NULL)
3158 return FALSE;
3159
3160 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3161 rel_hdr->sh_name =
3162 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3163 FALSE);
3164 if (rel_hdr->sh_name == (unsigned int) -1)
3165 return FALSE;
3166
3167 return TRUE;
3168 }
3169
3170 /* Allocate and initialize a section-header for a new reloc section,
3171 containing relocations against ASECT. It is stored in RELDATA. If
3172 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3173 relocations. */
3174
3175 static bfd_boolean
3176 _bfd_elf_init_reloc_shdr (bfd *abfd,
3177 struct bfd_elf_section_reloc_data *reldata,
3178 const char *sec_name,
3179 bfd_boolean use_rela_p,
3180 bfd_boolean delay_st_name_p)
3181 {
3182 Elf_Internal_Shdr *rel_hdr;
3183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3184
3185 BFD_ASSERT (reldata->hdr == NULL);
3186 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3187 reldata->hdr = rel_hdr;
3188
3189 if (delay_st_name_p)
3190 rel_hdr->sh_name = (unsigned int) -1;
3191 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3192 use_rela_p))
3193 return FALSE;
3194 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3195 rel_hdr->sh_entsize = (use_rela_p
3196 ? bed->s->sizeof_rela
3197 : bed->s->sizeof_rel);
3198 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3199 rel_hdr->sh_flags = 0;
3200 rel_hdr->sh_addr = 0;
3201 rel_hdr->sh_size = 0;
3202 rel_hdr->sh_offset = 0;
3203
3204 return TRUE;
3205 }
3206
3207 /* Return the default section type based on the passed in section flags. */
3208
3209 int
3210 bfd_elf_get_default_section_type (flagword flags)
3211 {
3212 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3213 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3214 return SHT_NOBITS;
3215 return SHT_PROGBITS;
3216 }
3217
3218 struct fake_section_arg
3219 {
3220 struct bfd_link_info *link_info;
3221 bfd_boolean failed;
3222 };
3223
3224 /* Set up an ELF internal section header for a section. */
3225
3226 static void
3227 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3228 {
3229 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3230 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3231 struct bfd_elf_section_data *esd = elf_section_data (asect);
3232 Elf_Internal_Shdr *this_hdr;
3233 unsigned int sh_type;
3234 const char *name = asect->name;
3235 bfd_boolean delay_st_name_p = FALSE;
3236
3237 if (arg->failed)
3238 {
3239 /* We already failed; just get out of the bfd_map_over_sections
3240 loop. */
3241 return;
3242 }
3243
3244 this_hdr = &esd->this_hdr;
3245
3246 if (arg->link_info)
3247 {
3248 /* ld: compress DWARF debug sections with names: .debug_*. */
3249 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3250 && (asect->flags & SEC_DEBUGGING)
3251 && name[1] == 'd'
3252 && name[6] == '_')
3253 {
3254 /* Set SEC_ELF_COMPRESS to indicate this section should be
3255 compressed. */
3256 asect->flags |= SEC_ELF_COMPRESS;
3257
3258 /* If this section will be compressed, delay adding section
3259 name to section name section after it is compressed in
3260 _bfd_elf_assign_file_positions_for_non_load. */
3261 delay_st_name_p = TRUE;
3262 }
3263 }
3264 else if ((asect->flags & SEC_ELF_RENAME))
3265 {
3266 /* objcopy: rename output DWARF debug section. */
3267 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3268 {
3269 /* When we decompress or compress with SHF_COMPRESSED,
3270 convert section name from .zdebug_* to .debug_* if
3271 needed. */
3272 if (name[1] == 'z')
3273 {
3274 char *new_name = convert_zdebug_to_debug (abfd, name);
3275 if (new_name == NULL)
3276 {
3277 arg->failed = TRUE;
3278 return;
3279 }
3280 name = new_name;
3281 }
3282 }
3283 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3284 {
3285 /* PR binutils/18087: Compression does not always make a
3286 section smaller. So only rename the section when
3287 compression has actually taken place. If input section
3288 name is .zdebug_*, we should never compress it again. */
3289 char *new_name = convert_debug_to_zdebug (abfd, name);
3290 if (new_name == NULL)
3291 {
3292 arg->failed = TRUE;
3293 return;
3294 }
3295 BFD_ASSERT (name[1] != 'z');
3296 name = new_name;
3297 }
3298 }
3299
3300 if (delay_st_name_p)
3301 this_hdr->sh_name = (unsigned int) -1;
3302 else
3303 {
3304 this_hdr->sh_name
3305 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3306 name, FALSE);
3307 if (this_hdr->sh_name == (unsigned int) -1)
3308 {
3309 arg->failed = TRUE;
3310 return;
3311 }
3312 }
3313
3314 /* Don't clear sh_flags. Assembler may set additional bits. */
3315
3316 if ((asect->flags & SEC_ALLOC) != 0
3317 || asect->user_set_vma)
3318 this_hdr->sh_addr = asect->vma;
3319 else
3320 this_hdr->sh_addr = 0;
3321
3322 this_hdr->sh_offset = 0;
3323 this_hdr->sh_size = asect->size;
3324 this_hdr->sh_link = 0;
3325 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3326 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3327 {
3328 _bfd_error_handler
3329 /* xgettext:c-format */
3330 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3331 abfd, asect->alignment_power, asect);
3332 arg->failed = TRUE;
3333 return;
3334 }
3335 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3336 /* The sh_entsize and sh_info fields may have been set already by
3337 copy_private_section_data. */
3338
3339 this_hdr->bfd_section = asect;
3340 this_hdr->contents = NULL;
3341
3342 /* If the section type is unspecified, we set it based on
3343 asect->flags. */
3344 if ((asect->flags & SEC_GROUP) != 0)
3345 sh_type = SHT_GROUP;
3346 else
3347 sh_type = bfd_elf_get_default_section_type (asect->flags);
3348
3349 if (this_hdr->sh_type == SHT_NULL)
3350 this_hdr->sh_type = sh_type;
3351 else if (this_hdr->sh_type == SHT_NOBITS
3352 && sh_type == SHT_PROGBITS
3353 && (asect->flags & SEC_ALLOC) != 0)
3354 {
3355 /* Warn if we are changing a NOBITS section to PROGBITS, but
3356 allow the link to proceed. This can happen when users link
3357 non-bss input sections to bss output sections, or emit data
3358 to a bss output section via a linker script. */
3359 _bfd_error_handler
3360 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3361 this_hdr->sh_type = sh_type;
3362 }
3363
3364 switch (this_hdr->sh_type)
3365 {
3366 default:
3367 break;
3368
3369 case SHT_STRTAB:
3370 case SHT_NOTE:
3371 case SHT_NOBITS:
3372 case SHT_PROGBITS:
3373 break;
3374
3375 case SHT_INIT_ARRAY:
3376 case SHT_FINI_ARRAY:
3377 case SHT_PREINIT_ARRAY:
3378 this_hdr->sh_entsize = bed->s->arch_size / 8;
3379 break;
3380
3381 case SHT_HASH:
3382 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3383 break;
3384
3385 case SHT_DYNSYM:
3386 this_hdr->sh_entsize = bed->s->sizeof_sym;
3387 break;
3388
3389 case SHT_DYNAMIC:
3390 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3391 break;
3392
3393 case SHT_RELA:
3394 if (get_elf_backend_data (abfd)->may_use_rela_p)
3395 this_hdr->sh_entsize = bed->s->sizeof_rela;
3396 break;
3397
3398 case SHT_REL:
3399 if (get_elf_backend_data (abfd)->may_use_rel_p)
3400 this_hdr->sh_entsize = bed->s->sizeof_rel;
3401 break;
3402
3403 case SHT_GNU_versym:
3404 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3405 break;
3406
3407 case SHT_GNU_verdef:
3408 this_hdr->sh_entsize = 0;
3409 /* objcopy or strip will copy over sh_info, but may not set
3410 cverdefs. The linker will set cverdefs, but sh_info will be
3411 zero. */
3412 if (this_hdr->sh_info == 0)
3413 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3414 else
3415 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3416 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3417 break;
3418
3419 case SHT_GNU_verneed:
3420 this_hdr->sh_entsize = 0;
3421 /* objcopy or strip will copy over sh_info, but may not set
3422 cverrefs. The linker will set cverrefs, but sh_info will be
3423 zero. */
3424 if (this_hdr->sh_info == 0)
3425 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3426 else
3427 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3428 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3429 break;
3430
3431 case SHT_GROUP:
3432 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3433 break;
3434
3435 case SHT_GNU_HASH:
3436 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3437 break;
3438 }
3439
3440 if ((asect->flags & SEC_ALLOC) != 0)
3441 this_hdr->sh_flags |= SHF_ALLOC;
3442 if ((asect->flags & SEC_READONLY) == 0)
3443 this_hdr->sh_flags |= SHF_WRITE;
3444 if ((asect->flags & SEC_CODE) != 0)
3445 this_hdr->sh_flags |= SHF_EXECINSTR;
3446 if ((asect->flags & SEC_MERGE) != 0)
3447 {
3448 this_hdr->sh_flags |= SHF_MERGE;
3449 this_hdr->sh_entsize = asect->entsize;
3450 }
3451 if ((asect->flags & SEC_STRINGS) != 0)
3452 this_hdr->sh_flags |= SHF_STRINGS;
3453 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3454 this_hdr->sh_flags |= SHF_GROUP;
3455 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3456 {
3457 this_hdr->sh_flags |= SHF_TLS;
3458 if (asect->size == 0
3459 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3460 {
3461 struct bfd_link_order *o = asect->map_tail.link_order;
3462
3463 this_hdr->sh_size = 0;
3464 if (o != NULL)
3465 {
3466 this_hdr->sh_size = o->offset + o->size;
3467 if (this_hdr->sh_size != 0)
3468 this_hdr->sh_type = SHT_NOBITS;
3469 }
3470 }
3471 }
3472 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3473 this_hdr->sh_flags |= SHF_EXCLUDE;
3474
3475 /* If the section has relocs, set up a section header for the
3476 SHT_REL[A] section. If two relocation sections are required for
3477 this section, it is up to the processor-specific back-end to
3478 create the other. */
3479 if ((asect->flags & SEC_RELOC) != 0)
3480 {
3481 /* When doing a relocatable link, create both REL and RELA sections if
3482 needed. */
3483 if (arg->link_info
3484 /* Do the normal setup if we wouldn't create any sections here. */
3485 && esd->rel.count + esd->rela.count > 0
3486 && (bfd_link_relocatable (arg->link_info)
3487 || arg->link_info->emitrelocations))
3488 {
3489 if (esd->rel.count && esd->rel.hdr == NULL
3490 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3491 FALSE, delay_st_name_p))
3492 {
3493 arg->failed = TRUE;
3494 return;
3495 }
3496 if (esd->rela.count && esd->rela.hdr == NULL
3497 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3498 TRUE, delay_st_name_p))
3499 {
3500 arg->failed = TRUE;
3501 return;
3502 }
3503 }
3504 else if (!_bfd_elf_init_reloc_shdr (abfd,
3505 (asect->use_rela_p
3506 ? &esd->rela : &esd->rel),
3507 name,
3508 asect->use_rela_p,
3509 delay_st_name_p))
3510 {
3511 arg->failed = TRUE;
3512 return;
3513 }
3514 }
3515
3516 /* Check for processor-specific section types. */
3517 sh_type = this_hdr->sh_type;
3518 if (bed->elf_backend_fake_sections
3519 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3520 {
3521 arg->failed = TRUE;
3522 return;
3523 }
3524
3525 if (sh_type == SHT_NOBITS && asect->size != 0)
3526 {
3527 /* Don't change the header type from NOBITS if we are being
3528 called for objcopy --only-keep-debug. */
3529 this_hdr->sh_type = sh_type;
3530 }
3531 }
3532
3533 /* Fill in the contents of a SHT_GROUP section. Called from
3534 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3535 when ELF targets use the generic linker, ld. Called for ld -r
3536 from bfd_elf_final_link. */
3537
3538 void
3539 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3540 {
3541 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3542 asection *elt, *first;
3543 unsigned char *loc;
3544 bfd_boolean gas;
3545
3546 /* Ignore linker created group section. See elfNN_ia64_object_p in
3547 elfxx-ia64.c. */
3548 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3549 || sec->size == 0
3550 || *failedptr)
3551 return;
3552
3553 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3554 {
3555 unsigned long symindx = 0;
3556
3557 /* elf_group_id will have been set up by objcopy and the
3558 generic linker. */
3559 if (elf_group_id (sec) != NULL)
3560 symindx = elf_group_id (sec)->udata.i;
3561
3562 if (symindx == 0)
3563 {
3564 /* If called from the assembler, swap_out_syms will have set up
3565 elf_section_syms. */
3566 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3567 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3568 }
3569 elf_section_data (sec)->this_hdr.sh_info = symindx;
3570 }
3571 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3572 {
3573 /* The ELF backend linker sets sh_info to -2 when the group
3574 signature symbol is global, and thus the index can't be
3575 set until all local symbols are output. */
3576 asection *igroup;
3577 struct bfd_elf_section_data *sec_data;
3578 unsigned long symndx;
3579 unsigned long extsymoff;
3580 struct elf_link_hash_entry *h;
3581
3582 /* The point of this little dance to the first SHF_GROUP section
3583 then back to the SHT_GROUP section is that this gets us to
3584 the SHT_GROUP in the input object. */
3585 igroup = elf_sec_group (elf_next_in_group (sec));
3586 sec_data = elf_section_data (igroup);
3587 symndx = sec_data->this_hdr.sh_info;
3588 extsymoff = 0;
3589 if (!elf_bad_symtab (igroup->owner))
3590 {
3591 Elf_Internal_Shdr *symtab_hdr;
3592
3593 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3594 extsymoff = symtab_hdr->sh_info;
3595 }
3596 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3597 while (h->root.type == bfd_link_hash_indirect
3598 || h->root.type == bfd_link_hash_warning)
3599 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3600
3601 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3602 }
3603
3604 /* The contents won't be allocated for "ld -r" or objcopy. */
3605 gas = TRUE;
3606 if (sec->contents == NULL)
3607 {
3608 gas = FALSE;
3609 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3610
3611 /* Arrange for the section to be written out. */
3612 elf_section_data (sec)->this_hdr.contents = sec->contents;
3613 if (sec->contents == NULL)
3614 {
3615 *failedptr = TRUE;
3616 return;
3617 }
3618 }
3619
3620 loc = sec->contents + sec->size;
3621
3622 /* Get the pointer to the first section in the group that gas
3623 squirreled away here. objcopy arranges for this to be set to the
3624 start of the input section group. */
3625 first = elt = elf_next_in_group (sec);
3626
3627 /* First element is a flag word. Rest of section is elf section
3628 indices for all the sections of the group. Write them backwards
3629 just to keep the group in the same order as given in .section
3630 directives, not that it matters. */
3631 while (elt != NULL)
3632 {
3633 asection *s;
3634
3635 s = elt;
3636 if (!gas)
3637 s = s->output_section;
3638 if (s != NULL
3639 && !bfd_is_abs_section (s))
3640 {
3641 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3642 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3643
3644 if (elf_sec->rel.hdr != NULL
3645 && (gas
3646 || (input_elf_sec->rel.hdr != NULL
3647 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3648 {
3649 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3650 loc -= 4;
3651 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3652 }
3653 if (elf_sec->rela.hdr != NULL
3654 && (gas
3655 || (input_elf_sec->rela.hdr != NULL
3656 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3657 {
3658 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3659 loc -= 4;
3660 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3661 }
3662 loc -= 4;
3663 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3664 }
3665 elt = elf_next_in_group (elt);
3666 if (elt == first)
3667 break;
3668 }
3669
3670 loc -= 4;
3671 BFD_ASSERT (loc == sec->contents);
3672
3673 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3674 }
3675
3676 /* Given NAME, the name of a relocation section stripped of its
3677 .rel/.rela prefix, return the section in ABFD to which the
3678 relocations apply. */
3679
3680 asection *
3681 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3682 {
3683 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3684 section likely apply to .got.plt or .got section. */
3685 if (get_elf_backend_data (abfd)->want_got_plt
3686 && strcmp (name, ".plt") == 0)
3687 {
3688 asection *sec;
3689
3690 name = ".got.plt";
3691 sec = bfd_get_section_by_name (abfd, name);
3692 if (sec != NULL)
3693 return sec;
3694 name = ".got";
3695 }
3696
3697 return bfd_get_section_by_name (abfd, name);
3698 }
3699
3700 /* Return the section to which RELOC_SEC applies. */
3701
3702 static asection *
3703 elf_get_reloc_section (asection *reloc_sec)
3704 {
3705 const char *name;
3706 unsigned int type;
3707 bfd *abfd;
3708 const struct elf_backend_data *bed;
3709
3710 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3711 if (type != SHT_REL && type != SHT_RELA)
3712 return NULL;
3713
3714 /* We look up the section the relocs apply to by name. */
3715 name = reloc_sec->name;
3716 if (strncmp (name, ".rel", 4) != 0)
3717 return NULL;
3718 name += 4;
3719 if (type == SHT_RELA && *name++ != 'a')
3720 return NULL;
3721
3722 abfd = reloc_sec->owner;
3723 bed = get_elf_backend_data (abfd);
3724 return bed->get_reloc_section (abfd, name);
3725 }
3726
3727 /* Assign all ELF section numbers. The dummy first section is handled here
3728 too. The link/info pointers for the standard section types are filled
3729 in here too, while we're at it. */
3730
3731 static bfd_boolean
3732 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3733 {
3734 struct elf_obj_tdata *t = elf_tdata (abfd);
3735 asection *sec;
3736 unsigned int section_number;
3737 Elf_Internal_Shdr **i_shdrp;
3738 struct bfd_elf_section_data *d;
3739 bfd_boolean need_symtab;
3740
3741 section_number = 1;
3742
3743 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3744
3745 /* SHT_GROUP sections are in relocatable files only. */
3746 if (link_info == NULL || !link_info->resolve_section_groups)
3747 {
3748 size_t reloc_count = 0;
3749
3750 /* Put SHT_GROUP sections first. */
3751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3752 {
3753 d = elf_section_data (sec);
3754
3755 if (d->this_hdr.sh_type == SHT_GROUP)
3756 {
3757 if (sec->flags & SEC_LINKER_CREATED)
3758 {
3759 /* Remove the linker created SHT_GROUP sections. */
3760 bfd_section_list_remove (abfd, sec);
3761 abfd->section_count--;
3762 }
3763 else
3764 d->this_idx = section_number++;
3765 }
3766
3767 /* Count relocations. */
3768 reloc_count += sec->reloc_count;
3769 }
3770
3771 /* Clear HAS_RELOC if there are no relocations. */
3772 if (reloc_count == 0)
3773 abfd->flags &= ~HAS_RELOC;
3774 }
3775
3776 for (sec = abfd->sections; sec; sec = sec->next)
3777 {
3778 d = elf_section_data (sec);
3779
3780 if (d->this_hdr.sh_type != SHT_GROUP)
3781 d->this_idx = section_number++;
3782 if (d->this_hdr.sh_name != (unsigned int) -1)
3783 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3784 if (d->rel.hdr)
3785 {
3786 d->rel.idx = section_number++;
3787 if (d->rel.hdr->sh_name != (unsigned int) -1)
3788 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3789 }
3790 else
3791 d->rel.idx = 0;
3792
3793 if (d->rela.hdr)
3794 {
3795 d->rela.idx = section_number++;
3796 if (d->rela.hdr->sh_name != (unsigned int) -1)
3797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3798 }
3799 else
3800 d->rela.idx = 0;
3801 }
3802
3803 need_symtab = (bfd_get_symcount (abfd) > 0
3804 || (link_info == NULL
3805 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3806 == HAS_RELOC)));
3807 if (need_symtab)
3808 {
3809 elf_onesymtab (abfd) = section_number++;
3810 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3811 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3812 {
3813 elf_section_list *entry;
3814
3815 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3816
3817 entry = bfd_zalloc (abfd, sizeof (*entry));
3818 entry->ndx = section_number++;
3819 elf_symtab_shndx_list (abfd) = entry;
3820 entry->hdr.sh_name
3821 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3822 ".symtab_shndx", FALSE);
3823 if (entry->hdr.sh_name == (unsigned int) -1)
3824 return FALSE;
3825 }
3826 elf_strtab_sec (abfd) = section_number++;
3827 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3828 }
3829
3830 elf_shstrtab_sec (abfd) = section_number++;
3831 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3832 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3833
3834 if (section_number >= SHN_LORESERVE)
3835 {
3836 /* xgettext:c-format */
3837 _bfd_error_handler (_("%pB: too many sections: %u"),
3838 abfd, section_number);
3839 return FALSE;
3840 }
3841
3842 elf_numsections (abfd) = section_number;
3843 elf_elfheader (abfd)->e_shnum = section_number;
3844
3845 /* Set up the list of section header pointers, in agreement with the
3846 indices. */
3847 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3848 sizeof (Elf_Internal_Shdr *));
3849 if (i_shdrp == NULL)
3850 return FALSE;
3851
3852 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3853 sizeof (Elf_Internal_Shdr));
3854 if (i_shdrp[0] == NULL)
3855 {
3856 bfd_release (abfd, i_shdrp);
3857 return FALSE;
3858 }
3859
3860 elf_elfsections (abfd) = i_shdrp;
3861
3862 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3863 if (need_symtab)
3864 {
3865 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3866 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3867 {
3868 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3869 BFD_ASSERT (entry != NULL);
3870 i_shdrp[entry->ndx] = & entry->hdr;
3871 entry->hdr.sh_link = elf_onesymtab (abfd);
3872 }
3873 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3874 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3875 }
3876
3877 for (sec = abfd->sections; sec; sec = sec->next)
3878 {
3879 asection *s;
3880
3881 d = elf_section_data (sec);
3882
3883 i_shdrp[d->this_idx] = &d->this_hdr;
3884 if (d->rel.idx != 0)
3885 i_shdrp[d->rel.idx] = d->rel.hdr;
3886 if (d->rela.idx != 0)
3887 i_shdrp[d->rela.idx] = d->rela.hdr;
3888
3889 /* Fill in the sh_link and sh_info fields while we're at it. */
3890
3891 /* sh_link of a reloc section is the section index of the symbol
3892 table. sh_info is the section index of the section to which
3893 the relocation entries apply. */
3894 if (d->rel.idx != 0)
3895 {
3896 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3897 d->rel.hdr->sh_info = d->this_idx;
3898 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3899 }
3900 if (d->rela.idx != 0)
3901 {
3902 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3903 d->rela.hdr->sh_info = d->this_idx;
3904 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3905 }
3906
3907 /* We need to set up sh_link for SHF_LINK_ORDER. */
3908 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3909 {
3910 s = elf_linked_to_section (sec);
3911 if (s)
3912 {
3913 /* elf_linked_to_section points to the input section. */
3914 if (link_info != NULL)
3915 {
3916 /* Check discarded linkonce section. */
3917 if (discarded_section (s))
3918 {
3919 asection *kept;
3920 _bfd_error_handler
3921 /* xgettext:c-format */
3922 (_("%pB: sh_link of section `%pA' points to"
3923 " discarded section `%pA' of `%pB'"),
3924 abfd, d->this_hdr.bfd_section,
3925 s, s->owner);
3926 /* Point to the kept section if it has the same
3927 size as the discarded one. */
3928 kept = _bfd_elf_check_kept_section (s, link_info);
3929 if (kept == NULL)
3930 {
3931 bfd_set_error (bfd_error_bad_value);
3932 return FALSE;
3933 }
3934 s = kept;
3935 }
3936
3937 s = s->output_section;
3938 BFD_ASSERT (s != NULL);
3939 }
3940 else
3941 {
3942 /* Handle objcopy. */
3943 if (s->output_section == NULL)
3944 {
3945 _bfd_error_handler
3946 /* xgettext:c-format */
3947 (_("%pB: sh_link of section `%pA' points to"
3948 " removed section `%pA' of `%pB'"),
3949 abfd, d->this_hdr.bfd_section, s, s->owner);
3950 bfd_set_error (bfd_error_bad_value);
3951 return FALSE;
3952 }
3953 s = s->output_section;
3954 }
3955 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3956 }
3957 else
3958 {
3959 /* PR 290:
3960 The Intel C compiler generates SHT_IA_64_UNWIND with
3961 SHF_LINK_ORDER. But it doesn't set the sh_link or
3962 sh_info fields. Hence we could get the situation
3963 where s is NULL. */
3964 const struct elf_backend_data *bed
3965 = get_elf_backend_data (abfd);
3966 if (bed->link_order_error_handler)
3967 bed->link_order_error_handler
3968 /* xgettext:c-format */
3969 (_("%pB: warning: sh_link not set for section `%pA'"),
3970 abfd, sec);
3971 }
3972 }
3973
3974 switch (d->this_hdr.sh_type)
3975 {
3976 case SHT_REL:
3977 case SHT_RELA:
3978 /* A reloc section which we are treating as a normal BFD
3979 section. sh_link is the section index of the symbol
3980 table. sh_info is the section index of the section to
3981 which the relocation entries apply. We assume that an
3982 allocated reloc section uses the dynamic symbol table.
3983 FIXME: How can we be sure? */
3984 s = bfd_get_section_by_name (abfd, ".dynsym");
3985 if (s != NULL)
3986 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3987
3988 s = elf_get_reloc_section (sec);
3989 if (s != NULL)
3990 {
3991 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3992 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3993 }
3994 break;
3995
3996 case SHT_STRTAB:
3997 /* We assume that a section named .stab*str is a stabs
3998 string section. We look for a section with the same name
3999 but without the trailing ``str'', and set its sh_link
4000 field to point to this section. */
4001 if (CONST_STRNEQ (sec->name, ".stab")
4002 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
4003 {
4004 size_t len;
4005 char *alc;
4006
4007 len = strlen (sec->name);
4008 alc = (char *) bfd_malloc (len - 2);
4009 if (alc == NULL)
4010 return FALSE;
4011 memcpy (alc, sec->name, len - 3);
4012 alc[len - 3] = '\0';
4013 s = bfd_get_section_by_name (abfd, alc);
4014 free (alc);
4015 if (s != NULL)
4016 {
4017 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4018
4019 /* This is a .stab section. */
4020 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4021 elf_section_data (s)->this_hdr.sh_entsize
4022 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4023 }
4024 }
4025 break;
4026
4027 case SHT_DYNAMIC:
4028 case SHT_DYNSYM:
4029 case SHT_GNU_verneed:
4030 case SHT_GNU_verdef:
4031 /* sh_link is the section header index of the string table
4032 used for the dynamic entries, or the symbol table, or the
4033 version strings. */
4034 s = bfd_get_section_by_name (abfd, ".dynstr");
4035 if (s != NULL)
4036 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4037 break;
4038
4039 case SHT_GNU_LIBLIST:
4040 /* sh_link is the section header index of the prelink library
4041 list used for the dynamic entries, or the symbol table, or
4042 the version strings. */
4043 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4044 ? ".dynstr" : ".gnu.libstr");
4045 if (s != NULL)
4046 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4047 break;
4048
4049 case SHT_HASH:
4050 case SHT_GNU_HASH:
4051 case SHT_GNU_versym:
4052 /* sh_link is the section header index of the symbol table
4053 this hash table or version table is for. */
4054 s = bfd_get_section_by_name (abfd, ".dynsym");
4055 if (s != NULL)
4056 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4057 break;
4058
4059 case SHT_GROUP:
4060 d->this_hdr.sh_link = elf_onesymtab (abfd);
4061 }
4062 }
4063
4064 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4065 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4066 debug section name from .debug_* to .zdebug_* if needed. */
4067
4068 return TRUE;
4069 }
4070
4071 static bfd_boolean
4072 sym_is_global (bfd *abfd, asymbol *sym)
4073 {
4074 /* If the backend has a special mapping, use it. */
4075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4076 if (bed->elf_backend_sym_is_global)
4077 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4078
4079 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4080 || bfd_is_und_section (bfd_asymbol_section (sym))
4081 || bfd_is_com_section (bfd_asymbol_section (sym)));
4082 }
4083
4084 /* Filter global symbols of ABFD to include in the import library. All
4085 SYMCOUNT symbols of ABFD can be examined from their pointers in
4086 SYMS. Pointers of symbols to keep should be stored contiguously at
4087 the beginning of that array.
4088
4089 Returns the number of symbols to keep. */
4090
4091 unsigned int
4092 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4093 asymbol **syms, long symcount)
4094 {
4095 long src_count, dst_count = 0;
4096
4097 for (src_count = 0; src_count < symcount; src_count++)
4098 {
4099 asymbol *sym = syms[src_count];
4100 char *name = (char *) bfd_asymbol_name (sym);
4101 struct bfd_link_hash_entry *h;
4102
4103 if (!sym_is_global (abfd, sym))
4104 continue;
4105
4106 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4107 if (h == NULL)
4108 continue;
4109 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4110 continue;
4111 if (h->linker_def || h->ldscript_def)
4112 continue;
4113
4114 syms[dst_count++] = sym;
4115 }
4116
4117 syms[dst_count] = NULL;
4118
4119 return dst_count;
4120 }
4121
4122 /* Don't output section symbols for sections that are not going to be
4123 output, that are duplicates or there is no BFD section. */
4124
4125 static bfd_boolean
4126 ignore_section_sym (bfd *abfd, asymbol *sym)
4127 {
4128 elf_symbol_type *type_ptr;
4129
4130 if (sym == NULL)
4131 return FALSE;
4132
4133 if ((sym->flags & BSF_SECTION_SYM) == 0)
4134 return FALSE;
4135
4136 if (sym->section == NULL)
4137 return TRUE;
4138
4139 type_ptr = elf_symbol_from (abfd, sym);
4140 return ((type_ptr != NULL
4141 && type_ptr->internal_elf_sym.st_shndx != 0
4142 && bfd_is_abs_section (sym->section))
4143 || !(sym->section->owner == abfd
4144 || (sym->section->output_section != NULL
4145 && sym->section->output_section->owner == abfd
4146 && sym->section->output_offset == 0)
4147 || bfd_is_abs_section (sym->section)));
4148 }
4149
4150 /* Map symbol from it's internal number to the external number, moving
4151 all local symbols to be at the head of the list. */
4152
4153 static bfd_boolean
4154 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4155 {
4156 unsigned int symcount = bfd_get_symcount (abfd);
4157 asymbol **syms = bfd_get_outsymbols (abfd);
4158 asymbol **sect_syms;
4159 unsigned int num_locals = 0;
4160 unsigned int num_globals = 0;
4161 unsigned int num_locals2 = 0;
4162 unsigned int num_globals2 = 0;
4163 unsigned int max_index = 0;
4164 unsigned int idx;
4165 asection *asect;
4166 asymbol **new_syms;
4167
4168 #ifdef DEBUG
4169 fprintf (stderr, "elf_map_symbols\n");
4170 fflush (stderr);
4171 #endif
4172
4173 for (asect = abfd->sections; asect; asect = asect->next)
4174 {
4175 if (max_index < asect->index)
4176 max_index = asect->index;
4177 }
4178
4179 max_index++;
4180 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4181 if (sect_syms == NULL)
4182 return FALSE;
4183 elf_section_syms (abfd) = sect_syms;
4184 elf_num_section_syms (abfd) = max_index;
4185
4186 /* Init sect_syms entries for any section symbols we have already
4187 decided to output. */
4188 for (idx = 0; idx < symcount; idx++)
4189 {
4190 asymbol *sym = syms[idx];
4191
4192 if ((sym->flags & BSF_SECTION_SYM) != 0
4193 && sym->value == 0
4194 && !ignore_section_sym (abfd, sym)
4195 && !bfd_is_abs_section (sym->section))
4196 {
4197 asection *sec = sym->section;
4198
4199 if (sec->owner != abfd)
4200 sec = sec->output_section;
4201
4202 sect_syms[sec->index] = syms[idx];
4203 }
4204 }
4205
4206 /* Classify all of the symbols. */
4207 for (idx = 0; idx < symcount; idx++)
4208 {
4209 if (sym_is_global (abfd, syms[idx]))
4210 num_globals++;
4211 else if (!ignore_section_sym (abfd, syms[idx]))
4212 num_locals++;
4213 }
4214
4215 /* We will be adding a section symbol for each normal BFD section. Most
4216 sections will already have a section symbol in outsymbols, but
4217 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4218 at least in that case. */
4219 for (asect = abfd->sections; asect; asect = asect->next)
4220 {
4221 if (sect_syms[asect->index] == NULL)
4222 {
4223 if (!sym_is_global (abfd, asect->symbol))
4224 num_locals++;
4225 else
4226 num_globals++;
4227 }
4228 }
4229
4230 /* Now sort the symbols so the local symbols are first. */
4231 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4232 sizeof (asymbol *));
4233
4234 if (new_syms == NULL)
4235 return FALSE;
4236
4237 for (idx = 0; idx < symcount; idx++)
4238 {
4239 asymbol *sym = syms[idx];
4240 unsigned int i;
4241
4242 if (sym_is_global (abfd, sym))
4243 i = num_locals + num_globals2++;
4244 else if (!ignore_section_sym (abfd, sym))
4245 i = num_locals2++;
4246 else
4247 continue;
4248 new_syms[i] = sym;
4249 sym->udata.i = i + 1;
4250 }
4251 for (asect = abfd->sections; asect; asect = asect->next)
4252 {
4253 if (sect_syms[asect->index] == NULL)
4254 {
4255 asymbol *sym = asect->symbol;
4256 unsigned int i;
4257
4258 sect_syms[asect->index] = sym;
4259 if (!sym_is_global (abfd, sym))
4260 i = num_locals2++;
4261 else
4262 i = num_locals + num_globals2++;
4263 new_syms[i] = sym;
4264 sym->udata.i = i + 1;
4265 }
4266 }
4267
4268 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4269
4270 *pnum_locals = num_locals;
4271 return TRUE;
4272 }
4273
4274 /* Align to the maximum file alignment that could be required for any
4275 ELF data structure. */
4276
4277 static inline file_ptr
4278 align_file_position (file_ptr off, int align)
4279 {
4280 return (off + align - 1) & ~(align - 1);
4281 }
4282
4283 /* Assign a file position to a section, optionally aligning to the
4284 required section alignment. */
4285
4286 file_ptr
4287 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4288 file_ptr offset,
4289 bfd_boolean align)
4290 {
4291 if (align && i_shdrp->sh_addralign > 1)
4292 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4293 i_shdrp->sh_offset = offset;
4294 if (i_shdrp->bfd_section != NULL)
4295 i_shdrp->bfd_section->filepos = offset;
4296 if (i_shdrp->sh_type != SHT_NOBITS)
4297 offset += i_shdrp->sh_size;
4298 return offset;
4299 }
4300
4301 /* Compute the file positions we are going to put the sections at, and
4302 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4303 is not NULL, this is being called by the ELF backend linker. */
4304
4305 bfd_boolean
4306 _bfd_elf_compute_section_file_positions (bfd *abfd,
4307 struct bfd_link_info *link_info)
4308 {
4309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4310 struct fake_section_arg fsargs;
4311 bfd_boolean failed;
4312 struct elf_strtab_hash *strtab = NULL;
4313 Elf_Internal_Shdr *shstrtab_hdr;
4314 bfd_boolean need_symtab;
4315
4316 if (abfd->output_has_begun)
4317 return TRUE;
4318
4319 /* Do any elf backend specific processing first. */
4320 if (bed->elf_backend_begin_write_processing)
4321 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4322
4323 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4324 return FALSE;
4325
4326 fsargs.failed = FALSE;
4327 fsargs.link_info = link_info;
4328 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4329 if (fsargs.failed)
4330 return FALSE;
4331
4332 if (!assign_section_numbers (abfd, link_info))
4333 return FALSE;
4334
4335 /* The backend linker builds symbol table information itself. */
4336 need_symtab = (link_info == NULL
4337 && (bfd_get_symcount (abfd) > 0
4338 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4339 == HAS_RELOC)));
4340 if (need_symtab)
4341 {
4342 /* Non-zero if doing a relocatable link. */
4343 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4344
4345 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4346 return FALSE;
4347 }
4348
4349 failed = FALSE;
4350 if (link_info == NULL)
4351 {
4352 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4353 if (failed)
4354 return FALSE;
4355 }
4356
4357 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4358 /* sh_name was set in init_file_header. */
4359 shstrtab_hdr->sh_type = SHT_STRTAB;
4360 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4361 shstrtab_hdr->sh_addr = 0;
4362 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4363 shstrtab_hdr->sh_entsize = 0;
4364 shstrtab_hdr->sh_link = 0;
4365 shstrtab_hdr->sh_info = 0;
4366 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4367 shstrtab_hdr->sh_addralign = 1;
4368
4369 if (!assign_file_positions_except_relocs (abfd, link_info))
4370 return FALSE;
4371
4372 if (need_symtab)
4373 {
4374 file_ptr off;
4375 Elf_Internal_Shdr *hdr;
4376
4377 off = elf_next_file_pos (abfd);
4378
4379 hdr = & elf_symtab_hdr (abfd);
4380 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4381
4382 if (elf_symtab_shndx_list (abfd) != NULL)
4383 {
4384 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4385 if (hdr->sh_size != 0)
4386 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4387 /* FIXME: What about other symtab_shndx sections in the list ? */
4388 }
4389
4390 hdr = &elf_tdata (abfd)->strtab_hdr;
4391 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4392
4393 elf_next_file_pos (abfd) = off;
4394
4395 /* Now that we know where the .strtab section goes, write it
4396 out. */
4397 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4398 || ! _bfd_elf_strtab_emit (abfd, strtab))
4399 return FALSE;
4400 _bfd_elf_strtab_free (strtab);
4401 }
4402
4403 abfd->output_has_begun = TRUE;
4404
4405 return TRUE;
4406 }
4407
4408 /* Make an initial estimate of the size of the program header. If we
4409 get the number wrong here, we'll redo section placement. */
4410
4411 static bfd_size_type
4412 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4413 {
4414 size_t segs;
4415 asection *s;
4416 const struct elf_backend_data *bed;
4417
4418 /* Assume we will need exactly two PT_LOAD segments: one for text
4419 and one for data. */
4420 segs = 2;
4421
4422 s = bfd_get_section_by_name (abfd, ".interp");
4423 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4424 {
4425 /* If we have a loadable interpreter section, we need a
4426 PT_INTERP segment. In this case, assume we also need a
4427 PT_PHDR segment, although that may not be true for all
4428 targets. */
4429 segs += 2;
4430 }
4431
4432 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4433 {
4434 /* We need a PT_DYNAMIC segment. */
4435 ++segs;
4436 }
4437
4438 if (info != NULL && info->relro)
4439 {
4440 /* We need a PT_GNU_RELRO segment. */
4441 ++segs;
4442 }
4443
4444 if (elf_eh_frame_hdr (abfd))
4445 {
4446 /* We need a PT_GNU_EH_FRAME segment. */
4447 ++segs;
4448 }
4449
4450 if (elf_stack_flags (abfd))
4451 {
4452 /* We need a PT_GNU_STACK segment. */
4453 ++segs;
4454 }
4455
4456 s = bfd_get_section_by_name (abfd,
4457 NOTE_GNU_PROPERTY_SECTION_NAME);
4458 if (s != NULL && s->size != 0)
4459 {
4460 /* We need a PT_GNU_PROPERTY segment. */
4461 ++segs;
4462 }
4463
4464 for (s = abfd->sections; s != NULL; s = s->next)
4465 {
4466 if ((s->flags & SEC_LOAD) != 0
4467 && elf_section_type (s) == SHT_NOTE)
4468 {
4469 unsigned int alignment_power;
4470 /* We need a PT_NOTE segment. */
4471 ++segs;
4472 /* Try to create just one PT_NOTE segment for all adjacent
4473 loadable SHT_NOTE sections. gABI requires that within a
4474 PT_NOTE segment (and also inside of each SHT_NOTE section)
4475 each note should have the same alignment. So we check
4476 whether the sections are correctly aligned. */
4477 alignment_power = s->alignment_power;
4478 while (s->next != NULL
4479 && s->next->alignment_power == alignment_power
4480 && (s->next->flags & SEC_LOAD) != 0
4481 && elf_section_type (s->next) == SHT_NOTE)
4482 s = s->next;
4483 }
4484 }
4485
4486 for (s = abfd->sections; s != NULL; s = s->next)
4487 {
4488 if (s->flags & SEC_THREAD_LOCAL)
4489 {
4490 /* We need a PT_TLS segment. */
4491 ++segs;
4492 break;
4493 }
4494 }
4495
4496 bed = get_elf_backend_data (abfd);
4497
4498 if ((abfd->flags & D_PAGED) != 0
4499 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4500 {
4501 /* Add a PT_GNU_MBIND segment for each mbind section. */
4502 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4503 for (s = abfd->sections; s != NULL; s = s->next)
4504 if (elf_section_flags (s) & SHF_GNU_MBIND)
4505 {
4506 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4507 {
4508 _bfd_error_handler
4509 /* xgettext:c-format */
4510 (_("%pB: GNU_MBIND section `%pA' has invalid "
4511 "sh_info field: %d"),
4512 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4513 continue;
4514 }
4515 /* Align mbind section to page size. */
4516 if (s->alignment_power < page_align_power)
4517 s->alignment_power = page_align_power;
4518 segs ++;
4519 }
4520 }
4521
4522 /* Let the backend count up any program headers it might need. */
4523 if (bed->elf_backend_additional_program_headers)
4524 {
4525 int a;
4526
4527 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4528 if (a == -1)
4529 abort ();
4530 segs += a;
4531 }
4532
4533 return segs * bed->s->sizeof_phdr;
4534 }
4535
4536 /* Find the segment that contains the output_section of section. */
4537
4538 Elf_Internal_Phdr *
4539 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4540 {
4541 struct elf_segment_map *m;
4542 Elf_Internal_Phdr *p;
4543
4544 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4545 m != NULL;
4546 m = m->next, p++)
4547 {
4548 int i;
4549
4550 for (i = m->count - 1; i >= 0; i--)
4551 if (m->sections[i] == section)
4552 return p;
4553 }
4554
4555 return NULL;
4556 }
4557
4558 /* Create a mapping from a set of sections to a program segment. */
4559
4560 static struct elf_segment_map *
4561 make_mapping (bfd *abfd,
4562 asection **sections,
4563 unsigned int from,
4564 unsigned int to,
4565 bfd_boolean phdr)
4566 {
4567 struct elf_segment_map *m;
4568 unsigned int i;
4569 asection **hdrpp;
4570 bfd_size_type amt;
4571
4572 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4573 amt += (to - from) * sizeof (asection *);
4574 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4575 if (m == NULL)
4576 return NULL;
4577 m->next = NULL;
4578 m->p_type = PT_LOAD;
4579 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4580 m->sections[i - from] = *hdrpp;
4581 m->count = to - from;
4582
4583 if (from == 0 && phdr)
4584 {
4585 /* Include the headers in the first PT_LOAD segment. */
4586 m->includes_filehdr = 1;
4587 m->includes_phdrs = 1;
4588 }
4589
4590 return m;
4591 }
4592
4593 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4594 on failure. */
4595
4596 struct elf_segment_map *
4597 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4598 {
4599 struct elf_segment_map *m;
4600
4601 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4602 sizeof (struct elf_segment_map));
4603 if (m == NULL)
4604 return NULL;
4605 m->next = NULL;
4606 m->p_type = PT_DYNAMIC;
4607 m->count = 1;
4608 m->sections[0] = dynsec;
4609
4610 return m;
4611 }
4612
4613 /* Possibly add or remove segments from the segment map. */
4614
4615 static bfd_boolean
4616 elf_modify_segment_map (bfd *abfd,
4617 struct bfd_link_info *info,
4618 bfd_boolean remove_empty_load)
4619 {
4620 struct elf_segment_map **m;
4621 const struct elf_backend_data *bed;
4622
4623 /* The placement algorithm assumes that non allocated sections are
4624 not in PT_LOAD segments. We ensure this here by removing such
4625 sections from the segment map. We also remove excluded
4626 sections. Finally, any PT_LOAD segment without sections is
4627 removed. */
4628 m = &elf_seg_map (abfd);
4629 while (*m)
4630 {
4631 unsigned int i, new_count;
4632
4633 for (new_count = 0, i = 0; i < (*m)->count; i++)
4634 {
4635 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4636 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4637 || (*m)->p_type != PT_LOAD))
4638 {
4639 (*m)->sections[new_count] = (*m)->sections[i];
4640 new_count++;
4641 }
4642 }
4643 (*m)->count = new_count;
4644
4645 if (remove_empty_load
4646 && (*m)->p_type == PT_LOAD
4647 && (*m)->count == 0
4648 && !(*m)->includes_phdrs)
4649 *m = (*m)->next;
4650 else
4651 m = &(*m)->next;
4652 }
4653
4654 bed = get_elf_backend_data (abfd);
4655 if (bed->elf_backend_modify_segment_map != NULL)
4656 {
4657 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4658 return FALSE;
4659 }
4660
4661 return TRUE;
4662 }
4663
4664 #define IS_TBSS(s) \
4665 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4666
4667 /* Set up a mapping from BFD sections to program segments. */
4668
4669 bfd_boolean
4670 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4671 {
4672 unsigned int count;
4673 struct elf_segment_map *m;
4674 asection **sections = NULL;
4675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4676 bfd_boolean no_user_phdrs;
4677
4678 no_user_phdrs = elf_seg_map (abfd) == NULL;
4679
4680 if (info != NULL)
4681 info->user_phdrs = !no_user_phdrs;
4682
4683 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4684 {
4685 asection *s;
4686 unsigned int i;
4687 struct elf_segment_map *mfirst;
4688 struct elf_segment_map **pm;
4689 asection *last_hdr;
4690 bfd_vma last_size;
4691 unsigned int hdr_index;
4692 bfd_vma maxpagesize;
4693 asection **hdrpp;
4694 bfd_boolean phdr_in_segment;
4695 bfd_boolean writable;
4696 bfd_boolean executable;
4697 int tls_count = 0;
4698 asection *first_tls = NULL;
4699 asection *first_mbind = NULL;
4700 asection *dynsec, *eh_frame_hdr;
4701 bfd_size_type amt;
4702 bfd_vma addr_mask, wrap_to = 0;
4703 bfd_size_type phdr_size;
4704
4705 /* Select the allocated sections, and sort them. */
4706
4707 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4708 sizeof (asection *));
4709 if (sections == NULL)
4710 goto error_return;
4711
4712 /* Calculate top address, avoiding undefined behaviour of shift
4713 left operator when shift count is equal to size of type
4714 being shifted. */
4715 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4716 addr_mask = (addr_mask << 1) + 1;
4717
4718 i = 0;
4719 for (s = abfd->sections; s != NULL; s = s->next)
4720 {
4721 if ((s->flags & SEC_ALLOC) != 0)
4722 {
4723 /* target_index is unused until bfd_elf_final_link
4724 starts output of section symbols. Use it to make
4725 qsort stable. */
4726 s->target_index = i;
4727 sections[i] = s;
4728 ++i;
4729 /* A wrapping section potentially clashes with header. */
4730 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4731 wrap_to = (s->lma + s->size) & addr_mask;
4732 }
4733 }
4734 BFD_ASSERT (i <= bfd_count_sections (abfd));
4735 count = i;
4736
4737 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4738
4739 phdr_size = elf_program_header_size (abfd);
4740 if (phdr_size == (bfd_size_type) -1)
4741 phdr_size = get_program_header_size (abfd, info);
4742 phdr_size += bed->s->sizeof_ehdr;
4743 maxpagesize = bed->maxpagesize;
4744 if (maxpagesize == 0)
4745 maxpagesize = 1;
4746 phdr_in_segment = info != NULL && info->load_phdrs;
4747 if (count != 0
4748 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4749 >= (phdr_size & (maxpagesize - 1))))
4750 /* For compatibility with old scripts that may not be using
4751 SIZEOF_HEADERS, add headers when it looks like space has
4752 been left for them. */
4753 phdr_in_segment = TRUE;
4754
4755 /* Build the mapping. */
4756 mfirst = NULL;
4757 pm = &mfirst;
4758
4759 /* If we have a .interp section, then create a PT_PHDR segment for
4760 the program headers and a PT_INTERP segment for the .interp
4761 section. */
4762 s = bfd_get_section_by_name (abfd, ".interp");
4763 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4764 {
4765 amt = sizeof (struct elf_segment_map);
4766 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4767 if (m == NULL)
4768 goto error_return;
4769 m->next = NULL;
4770 m->p_type = PT_PHDR;
4771 m->p_flags = PF_R;
4772 m->p_flags_valid = 1;
4773 m->includes_phdrs = 1;
4774 phdr_in_segment = TRUE;
4775 *pm = m;
4776 pm = &m->next;
4777
4778 amt = sizeof (struct elf_segment_map);
4779 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4780 if (m == NULL)
4781 goto error_return;
4782 m->next = NULL;
4783 m->p_type = PT_INTERP;
4784 m->count = 1;
4785 m->sections[0] = s;
4786
4787 *pm = m;
4788 pm = &m->next;
4789 }
4790
4791 /* Look through the sections. We put sections in the same program
4792 segment when the start of the second section can be placed within
4793 a few bytes of the end of the first section. */
4794 last_hdr = NULL;
4795 last_size = 0;
4796 hdr_index = 0;
4797 writable = FALSE;
4798 executable = FALSE;
4799 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4800 if (dynsec != NULL
4801 && (dynsec->flags & SEC_LOAD) == 0)
4802 dynsec = NULL;
4803
4804 if ((abfd->flags & D_PAGED) == 0)
4805 phdr_in_segment = FALSE;
4806
4807 /* Deal with -Ttext or something similar such that the first section
4808 is not adjacent to the program headers. This is an
4809 approximation, since at this point we don't know exactly how many
4810 program headers we will need. */
4811 if (phdr_in_segment && count > 0)
4812 {
4813 bfd_vma phdr_lma;
4814 bfd_boolean separate_phdr = FALSE;
4815
4816 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4817 if (info != NULL
4818 && info->separate_code
4819 && (sections[0]->flags & SEC_CODE) != 0)
4820 {
4821 /* If data sections should be separate from code and
4822 thus not executable, and the first section is
4823 executable then put the file and program headers in
4824 their own PT_LOAD. */
4825 separate_phdr = TRUE;
4826 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4827 == (sections[0]->lma & addr_mask & -maxpagesize)))
4828 {
4829 /* The file and program headers are currently on the
4830 same page as the first section. Put them on the
4831 previous page if we can. */
4832 if (phdr_lma >= maxpagesize)
4833 phdr_lma -= maxpagesize;
4834 else
4835 separate_phdr = FALSE;
4836 }
4837 }
4838 if ((sections[0]->lma & addr_mask) < phdr_lma
4839 || (sections[0]->lma & addr_mask) < phdr_size)
4840 /* If file and program headers would be placed at the end
4841 of memory then it's probably better to omit them. */
4842 phdr_in_segment = FALSE;
4843 else if (phdr_lma < wrap_to)
4844 /* If a section wraps around to where we'll be placing
4845 file and program headers, then the headers will be
4846 overwritten. */
4847 phdr_in_segment = FALSE;
4848 else if (separate_phdr)
4849 {
4850 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4851 if (m == NULL)
4852 goto error_return;
4853 m->p_paddr = phdr_lma;
4854 m->p_vaddr_offset
4855 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4856 m->p_paddr_valid = 1;
4857 *pm = m;
4858 pm = &m->next;
4859 phdr_in_segment = FALSE;
4860 }
4861 }
4862
4863 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4864 {
4865 asection *hdr;
4866 bfd_boolean new_segment;
4867
4868 hdr = *hdrpp;
4869
4870 /* See if this section and the last one will fit in the same
4871 segment. */
4872
4873 if (last_hdr == NULL)
4874 {
4875 /* If we don't have a segment yet, then we don't need a new
4876 one (we build the last one after this loop). */
4877 new_segment = FALSE;
4878 }
4879 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4880 {
4881 /* If this section has a different relation between the
4882 virtual address and the load address, then we need a new
4883 segment. */
4884 new_segment = TRUE;
4885 }
4886 else if (hdr->lma < last_hdr->lma + last_size
4887 || last_hdr->lma + last_size < last_hdr->lma)
4888 {
4889 /* If this section has a load address that makes it overlap
4890 the previous section, then we need a new segment. */
4891 new_segment = TRUE;
4892 }
4893 else if ((abfd->flags & D_PAGED) != 0
4894 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4895 == (hdr->lma & -maxpagesize)))
4896 {
4897 /* If we are demand paged then we can't map two disk
4898 pages onto the same memory page. */
4899 new_segment = FALSE;
4900 }
4901 /* In the next test we have to be careful when last_hdr->lma is close
4902 to the end of the address space. If the aligned address wraps
4903 around to the start of the address space, then there are no more
4904 pages left in memory and it is OK to assume that the current
4905 section can be included in the current segment. */
4906 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4907 + maxpagesize > last_hdr->lma)
4908 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4909 + maxpagesize <= hdr->lma))
4910 {
4911 /* If putting this section in this segment would force us to
4912 skip a page in the segment, then we need a new segment. */
4913 new_segment = TRUE;
4914 }
4915 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4916 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4917 {
4918 /* We don't want to put a loaded section after a
4919 nonloaded (ie. bss style) section in the same segment
4920 as that will force the non-loaded section to be loaded.
4921 Consider .tbss sections as loaded for this purpose. */
4922 new_segment = TRUE;
4923 }
4924 else if ((abfd->flags & D_PAGED) == 0)
4925 {
4926 /* If the file is not demand paged, which means that we
4927 don't require the sections to be correctly aligned in the
4928 file, then there is no other reason for a new segment. */
4929 new_segment = FALSE;
4930 }
4931 else if (info != NULL
4932 && info->separate_code
4933 && executable != ((hdr->flags & SEC_CODE) != 0))
4934 {
4935 new_segment = TRUE;
4936 }
4937 else if (! writable
4938 && (hdr->flags & SEC_READONLY) == 0)
4939 {
4940 /* We don't want to put a writable section in a read only
4941 segment. */
4942 new_segment = TRUE;
4943 }
4944 else
4945 {
4946 /* Otherwise, we can use the same segment. */
4947 new_segment = FALSE;
4948 }
4949
4950 /* Allow interested parties a chance to override our decision. */
4951 if (last_hdr != NULL
4952 && info != NULL
4953 && info->callbacks->override_segment_assignment != NULL)
4954 new_segment
4955 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4956 last_hdr,
4957 new_segment);
4958
4959 if (! new_segment)
4960 {
4961 if ((hdr->flags & SEC_READONLY) == 0)
4962 writable = TRUE;
4963 if ((hdr->flags & SEC_CODE) != 0)
4964 executable = TRUE;
4965 last_hdr = hdr;
4966 /* .tbss sections effectively have zero size. */
4967 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4968 continue;
4969 }
4970
4971 /* We need a new program segment. We must create a new program
4972 header holding all the sections from hdr_index until hdr. */
4973
4974 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4975 if (m == NULL)
4976 goto error_return;
4977
4978 *pm = m;
4979 pm = &m->next;
4980
4981 if ((hdr->flags & SEC_READONLY) == 0)
4982 writable = TRUE;
4983 else
4984 writable = FALSE;
4985
4986 if ((hdr->flags & SEC_CODE) == 0)
4987 executable = FALSE;
4988 else
4989 executable = TRUE;
4990
4991 last_hdr = hdr;
4992 /* .tbss sections effectively have zero size. */
4993 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4994 hdr_index = i;
4995 phdr_in_segment = FALSE;
4996 }
4997
4998 /* Create a final PT_LOAD program segment, but not if it's just
4999 for .tbss. */
5000 if (last_hdr != NULL
5001 && (i - hdr_index != 1
5002 || !IS_TBSS (last_hdr)))
5003 {
5004 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
5005 if (m == NULL)
5006 goto error_return;
5007
5008 *pm = m;
5009 pm = &m->next;
5010 }
5011
5012 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5013 if (dynsec != NULL)
5014 {
5015 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5016 if (m == NULL)
5017 goto error_return;
5018 *pm = m;
5019 pm = &m->next;
5020 }
5021
5022 /* For each batch of consecutive loadable SHT_NOTE sections,
5023 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5024 because if we link together nonloadable .note sections and
5025 loadable .note sections, we will generate two .note sections
5026 in the output file. */
5027 for (s = abfd->sections; s != NULL; s = s->next)
5028 {
5029 if ((s->flags & SEC_LOAD) != 0
5030 && elf_section_type (s) == SHT_NOTE)
5031 {
5032 asection *s2;
5033 unsigned int alignment_power = s->alignment_power;
5034
5035 count = 1;
5036 for (s2 = s; s2->next != NULL; s2 = s2->next)
5037 {
5038 if (s2->next->alignment_power == alignment_power
5039 && (s2->next->flags & SEC_LOAD) != 0
5040 && elf_section_type (s2->next) == SHT_NOTE
5041 && align_power (s2->lma + s2->size,
5042 alignment_power)
5043 == s2->next->lma)
5044 count++;
5045 else
5046 break;
5047 }
5048 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5049 amt += count * sizeof (asection *);
5050 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5051 if (m == NULL)
5052 goto error_return;
5053 m->next = NULL;
5054 m->p_type = PT_NOTE;
5055 m->count = count;
5056 while (count > 1)
5057 {
5058 m->sections[m->count - count--] = s;
5059 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5060 s = s->next;
5061 }
5062 m->sections[m->count - 1] = s;
5063 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5064 *pm = m;
5065 pm = &m->next;
5066 }
5067 if (s->flags & SEC_THREAD_LOCAL)
5068 {
5069 if (! tls_count)
5070 first_tls = s;
5071 tls_count++;
5072 }
5073 if (first_mbind == NULL
5074 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5075 first_mbind = s;
5076 }
5077
5078 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5079 if (tls_count > 0)
5080 {
5081 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5082 amt += tls_count * sizeof (asection *);
5083 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5084 if (m == NULL)
5085 goto error_return;
5086 m->next = NULL;
5087 m->p_type = PT_TLS;
5088 m->count = tls_count;
5089 /* Mandated PF_R. */
5090 m->p_flags = PF_R;
5091 m->p_flags_valid = 1;
5092 s = first_tls;
5093 for (i = 0; i < (unsigned int) tls_count; ++i)
5094 {
5095 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5096 {
5097 _bfd_error_handler
5098 (_("%pB: TLS sections are not adjacent:"), abfd);
5099 s = first_tls;
5100 i = 0;
5101 while (i < (unsigned int) tls_count)
5102 {
5103 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5104 {
5105 _bfd_error_handler (_(" TLS: %pA"), s);
5106 i++;
5107 }
5108 else
5109 _bfd_error_handler (_(" non-TLS: %pA"), s);
5110 s = s->next;
5111 }
5112 bfd_set_error (bfd_error_bad_value);
5113 goto error_return;
5114 }
5115 m->sections[i] = s;
5116 s = s->next;
5117 }
5118
5119 *pm = m;
5120 pm = &m->next;
5121 }
5122
5123 if (first_mbind
5124 && (abfd->flags & D_PAGED) != 0
5125 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5126 for (s = first_mbind; s != NULL; s = s->next)
5127 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5128 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5129 {
5130 /* Mandated PF_R. */
5131 unsigned long p_flags = PF_R;
5132 if ((s->flags & SEC_READONLY) == 0)
5133 p_flags |= PF_W;
5134 if ((s->flags & SEC_CODE) != 0)
5135 p_flags |= PF_X;
5136
5137 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5138 m = bfd_zalloc (abfd, amt);
5139 if (m == NULL)
5140 goto error_return;
5141 m->next = NULL;
5142 m->p_type = (PT_GNU_MBIND_LO
5143 + elf_section_data (s)->this_hdr.sh_info);
5144 m->count = 1;
5145 m->p_flags_valid = 1;
5146 m->sections[0] = s;
5147 m->p_flags = p_flags;
5148
5149 *pm = m;
5150 pm = &m->next;
5151 }
5152
5153 s = bfd_get_section_by_name (abfd,
5154 NOTE_GNU_PROPERTY_SECTION_NAME);
5155 if (s != NULL && s->size != 0)
5156 {
5157 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5158 m = bfd_zalloc (abfd, amt);
5159 if (m == NULL)
5160 goto error_return;
5161 m->next = NULL;
5162 m->p_type = PT_GNU_PROPERTY;
5163 m->count = 1;
5164 m->p_flags_valid = 1;
5165 m->sections[0] = s;
5166 m->p_flags = PF_R;
5167 *pm = m;
5168 pm = &m->next;
5169 }
5170
5171 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5172 segment. */
5173 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5174 if (eh_frame_hdr != NULL
5175 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5176 {
5177 amt = sizeof (struct elf_segment_map);
5178 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5179 if (m == NULL)
5180 goto error_return;
5181 m->next = NULL;
5182 m->p_type = PT_GNU_EH_FRAME;
5183 m->count = 1;
5184 m->sections[0] = eh_frame_hdr->output_section;
5185
5186 *pm = m;
5187 pm = &m->next;
5188 }
5189
5190 if (elf_stack_flags (abfd))
5191 {
5192 amt = sizeof (struct elf_segment_map);
5193 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5194 if (m == NULL)
5195 goto error_return;
5196 m->next = NULL;
5197 m->p_type = PT_GNU_STACK;
5198 m->p_flags = elf_stack_flags (abfd);
5199 m->p_align = bed->stack_align;
5200 m->p_flags_valid = 1;
5201 m->p_align_valid = m->p_align != 0;
5202 if (info->stacksize > 0)
5203 {
5204 m->p_size = info->stacksize;
5205 m->p_size_valid = 1;
5206 }
5207
5208 *pm = m;
5209 pm = &m->next;
5210 }
5211
5212 if (info != NULL && info->relro)
5213 {
5214 for (m = mfirst; m != NULL; m = m->next)
5215 {
5216 if (m->p_type == PT_LOAD
5217 && m->count != 0
5218 && m->sections[0]->vma >= info->relro_start
5219 && m->sections[0]->vma < info->relro_end)
5220 {
5221 i = m->count;
5222 while (--i != (unsigned) -1)
5223 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5224 == (SEC_LOAD | SEC_HAS_CONTENTS))
5225 break;
5226
5227 if (i != (unsigned) -1)
5228 break;
5229 }
5230 }
5231
5232 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5233 if (m != NULL)
5234 {
5235 amt = sizeof (struct elf_segment_map);
5236 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5237 if (m == NULL)
5238 goto error_return;
5239 m->next = NULL;
5240 m->p_type = PT_GNU_RELRO;
5241 *pm = m;
5242 pm = &m->next;
5243 }
5244 }
5245
5246 free (sections);
5247 elf_seg_map (abfd) = mfirst;
5248 }
5249
5250 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5251 return FALSE;
5252
5253 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5254 ++count;
5255 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5256
5257 return TRUE;
5258
5259 error_return:
5260 if (sections != NULL)
5261 free (sections);
5262 return FALSE;
5263 }
5264
5265 /* Sort sections by address. */
5266
5267 static int
5268 elf_sort_sections (const void *arg1, const void *arg2)
5269 {
5270 const asection *sec1 = *(const asection **) arg1;
5271 const asection *sec2 = *(const asection **) arg2;
5272 bfd_size_type size1, size2;
5273
5274 /* Sort by LMA first, since this is the address used to
5275 place the section into a segment. */
5276 if (sec1->lma < sec2->lma)
5277 return -1;
5278 else if (sec1->lma > sec2->lma)
5279 return 1;
5280
5281 /* Then sort by VMA. Normally the LMA and the VMA will be
5282 the same, and this will do nothing. */
5283 if (sec1->vma < sec2->vma)
5284 return -1;
5285 else if (sec1->vma > sec2->vma)
5286 return 1;
5287
5288 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5289
5290 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5291
5292 if (TOEND (sec1))
5293 {
5294 if (!TOEND (sec2))
5295 return 1;
5296 }
5297 else if (TOEND (sec2))
5298 return -1;
5299
5300 #undef TOEND
5301
5302 /* Sort by size, to put zero sized sections
5303 before others at the same address. */
5304
5305 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5306 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5307
5308 if (size1 < size2)
5309 return -1;
5310 if (size1 > size2)
5311 return 1;
5312
5313 return sec1->target_index - sec2->target_index;
5314 }
5315
5316 /* This qsort comparison functions sorts PT_LOAD segments first and
5317 by p_paddr, for assign_file_positions_for_load_sections. */
5318
5319 static int
5320 elf_sort_segments (const void *arg1, const void *arg2)
5321 {
5322 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5323 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5324
5325 if (m1->p_type != m2->p_type)
5326 {
5327 if (m1->p_type == PT_NULL)
5328 return 1;
5329 if (m2->p_type == PT_NULL)
5330 return -1;
5331 return m1->p_type < m2->p_type ? -1 : 1;
5332 }
5333 if (m1->includes_filehdr != m2->includes_filehdr)
5334 return m1->includes_filehdr ? -1 : 1;
5335 if (m1->no_sort_lma != m2->no_sort_lma)
5336 return m1->no_sort_lma ? -1 : 1;
5337 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5338 {
5339 bfd_vma lma1, lma2;
5340 lma1 = 0;
5341 if (m1->p_paddr_valid)
5342 lma1 = m1->p_paddr;
5343 else if (m1->count != 0)
5344 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5345 lma2 = 0;
5346 if (m2->p_paddr_valid)
5347 lma2 = m2->p_paddr;
5348 else if (m2->count != 0)
5349 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5350 if (lma1 != lma2)
5351 return lma1 < lma2 ? -1 : 1;
5352 }
5353 if (m1->idx != m2->idx)
5354 return m1->idx < m2->idx ? -1 : 1;
5355 return 0;
5356 }
5357
5358 /* Ian Lance Taylor writes:
5359
5360 We shouldn't be using % with a negative signed number. That's just
5361 not good. We have to make sure either that the number is not
5362 negative, or that the number has an unsigned type. When the types
5363 are all the same size they wind up as unsigned. When file_ptr is a
5364 larger signed type, the arithmetic winds up as signed long long,
5365 which is wrong.
5366
5367 What we're trying to say here is something like ``increase OFF by
5368 the least amount that will cause it to be equal to the VMA modulo
5369 the page size.'' */
5370 /* In other words, something like:
5371
5372 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5373 off_offset = off % bed->maxpagesize;
5374 if (vma_offset < off_offset)
5375 adjustment = vma_offset + bed->maxpagesize - off_offset;
5376 else
5377 adjustment = vma_offset - off_offset;
5378
5379 which can be collapsed into the expression below. */
5380
5381 static file_ptr
5382 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5383 {
5384 /* PR binutils/16199: Handle an alignment of zero. */
5385 if (maxpagesize == 0)
5386 maxpagesize = 1;
5387 return ((vma - off) % maxpagesize);
5388 }
5389
5390 static void
5391 print_segment_map (const struct elf_segment_map *m)
5392 {
5393 unsigned int j;
5394 const char *pt = get_segment_type (m->p_type);
5395 char buf[32];
5396
5397 if (pt == NULL)
5398 {
5399 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5400 sprintf (buf, "LOPROC+%7.7x",
5401 (unsigned int) (m->p_type - PT_LOPROC));
5402 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5403 sprintf (buf, "LOOS+%7.7x",
5404 (unsigned int) (m->p_type - PT_LOOS));
5405 else
5406 snprintf (buf, sizeof (buf), "%8.8x",
5407 (unsigned int) m->p_type);
5408 pt = buf;
5409 }
5410 fflush (stdout);
5411 fprintf (stderr, "%s:", pt);
5412 for (j = 0; j < m->count; j++)
5413 fprintf (stderr, " %s", m->sections [j]->name);
5414 putc ('\n',stderr);
5415 fflush (stderr);
5416 }
5417
5418 static bfd_boolean
5419 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5420 {
5421 void *buf;
5422 bfd_boolean ret;
5423
5424 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5425 return FALSE;
5426 buf = bfd_zmalloc (len);
5427 if (buf == NULL)
5428 return FALSE;
5429 ret = bfd_bwrite (buf, len, abfd) == len;
5430 free (buf);
5431 return ret;
5432 }
5433
5434 /* Assign file positions to the sections based on the mapping from
5435 sections to segments. This function also sets up some fields in
5436 the file header. */
5437
5438 static bfd_boolean
5439 assign_file_positions_for_load_sections (bfd *abfd,
5440 struct bfd_link_info *link_info)
5441 {
5442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5443 struct elf_segment_map *m;
5444 struct elf_segment_map *phdr_load_seg;
5445 Elf_Internal_Phdr *phdrs;
5446 Elf_Internal_Phdr *p;
5447 file_ptr off;
5448 bfd_size_type maxpagesize;
5449 unsigned int alloc, actual;
5450 unsigned int i, j;
5451 struct elf_segment_map **sorted_seg_map;
5452
5453 if (link_info == NULL
5454 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5455 return FALSE;
5456
5457 alloc = 0;
5458 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5459 m->idx = alloc++;
5460
5461 if (alloc)
5462 {
5463 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5464 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5465 }
5466 else
5467 {
5468 /* PR binutils/12467. */
5469 elf_elfheader (abfd)->e_phoff = 0;
5470 elf_elfheader (abfd)->e_phentsize = 0;
5471 }
5472
5473 elf_elfheader (abfd)->e_phnum = alloc;
5474
5475 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5476 {
5477 actual = alloc;
5478 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5479 }
5480 else
5481 {
5482 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5483 BFD_ASSERT (elf_program_header_size (abfd)
5484 == actual * bed->s->sizeof_phdr);
5485 BFD_ASSERT (actual >= alloc);
5486 }
5487
5488 if (alloc == 0)
5489 {
5490 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5491 return TRUE;
5492 }
5493
5494 /* We're writing the size in elf_program_header_size (abfd),
5495 see assign_file_positions_except_relocs, so make sure we have
5496 that amount allocated, with trailing space cleared.
5497 The variable alloc contains the computed need, while
5498 elf_program_header_size (abfd) contains the size used for the
5499 layout.
5500 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5501 where the layout is forced to according to a larger size in the
5502 last iterations for the testcase ld-elf/header. */
5503 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5504 + alloc * sizeof (*sorted_seg_map)));
5505 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5506 elf_tdata (abfd)->phdr = phdrs;
5507 if (phdrs == NULL)
5508 return FALSE;
5509
5510 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5511 {
5512 sorted_seg_map[j] = m;
5513 /* If elf_segment_map is not from map_sections_to_segments, the
5514 sections may not be correctly ordered. NOTE: sorting should
5515 not be done to the PT_NOTE section of a corefile, which may
5516 contain several pseudo-sections artificially created by bfd.
5517 Sorting these pseudo-sections breaks things badly. */
5518 if (m->count > 1
5519 && !(elf_elfheader (abfd)->e_type == ET_CORE
5520 && m->p_type == PT_NOTE))
5521 {
5522 for (i = 0; i < m->count; i++)
5523 m->sections[i]->target_index = i;
5524 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5525 elf_sort_sections);
5526 }
5527 }
5528 if (alloc > 1)
5529 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5530 elf_sort_segments);
5531
5532 maxpagesize = 1;
5533 if ((abfd->flags & D_PAGED) != 0)
5534 maxpagesize = bed->maxpagesize;
5535
5536 /* Sections must map to file offsets past the ELF file header. */
5537 off = bed->s->sizeof_ehdr;
5538 /* And if one of the PT_LOAD headers doesn't include the program
5539 headers then we'll be mapping program headers in the usual
5540 position after the ELF file header. */
5541 phdr_load_seg = NULL;
5542 for (j = 0; j < alloc; j++)
5543 {
5544 m = sorted_seg_map[j];
5545 if (m->p_type != PT_LOAD)
5546 break;
5547 if (m->includes_phdrs)
5548 {
5549 phdr_load_seg = m;
5550 break;
5551 }
5552 }
5553 if (phdr_load_seg == NULL)
5554 off += actual * bed->s->sizeof_phdr;
5555
5556 for (j = 0; j < alloc; j++)
5557 {
5558 asection **secpp;
5559 bfd_vma off_adjust;
5560 bfd_boolean no_contents;
5561
5562 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5563 number of sections with contents contributing to both p_filesz
5564 and p_memsz, followed by a number of sections with no contents
5565 that just contribute to p_memsz. In this loop, OFF tracks next
5566 available file offset for PT_LOAD and PT_NOTE segments. */
5567 m = sorted_seg_map[j];
5568 p = phdrs + m->idx;
5569 p->p_type = m->p_type;
5570 p->p_flags = m->p_flags;
5571
5572 if (m->count == 0)
5573 p->p_vaddr = m->p_vaddr_offset;
5574 else
5575 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5576
5577 if (m->p_paddr_valid)
5578 p->p_paddr = m->p_paddr;
5579 else if (m->count == 0)
5580 p->p_paddr = 0;
5581 else
5582 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5583
5584 if (p->p_type == PT_LOAD
5585 && (abfd->flags & D_PAGED) != 0)
5586 {
5587 /* p_align in demand paged PT_LOAD segments effectively stores
5588 the maximum page size. When copying an executable with
5589 objcopy, we set m->p_align from the input file. Use this
5590 value for maxpagesize rather than bed->maxpagesize, which
5591 may be different. Note that we use maxpagesize for PT_TLS
5592 segment alignment later in this function, so we are relying
5593 on at least one PT_LOAD segment appearing before a PT_TLS
5594 segment. */
5595 if (m->p_align_valid)
5596 maxpagesize = m->p_align;
5597
5598 p->p_align = maxpagesize;
5599 }
5600 else if (m->p_align_valid)
5601 p->p_align = m->p_align;
5602 else if (m->count == 0)
5603 p->p_align = 1 << bed->s->log_file_align;
5604
5605 if (m == phdr_load_seg)
5606 {
5607 if (!m->includes_filehdr)
5608 p->p_offset = off;
5609 off += actual * bed->s->sizeof_phdr;
5610 }
5611
5612 no_contents = FALSE;
5613 off_adjust = 0;
5614 if (p->p_type == PT_LOAD
5615 && m->count > 0)
5616 {
5617 bfd_size_type align;
5618 unsigned int align_power = 0;
5619
5620 if (m->p_align_valid)
5621 align = p->p_align;
5622 else
5623 {
5624 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5625 {
5626 unsigned int secalign;
5627
5628 secalign = bfd_section_alignment (*secpp);
5629 if (secalign > align_power)
5630 align_power = secalign;
5631 }
5632 align = (bfd_size_type) 1 << align_power;
5633 if (align < maxpagesize)
5634 align = maxpagesize;
5635 }
5636
5637 for (i = 0; i < m->count; i++)
5638 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5639 /* If we aren't making room for this section, then
5640 it must be SHT_NOBITS regardless of what we've
5641 set via struct bfd_elf_special_section. */
5642 elf_section_type (m->sections[i]) = SHT_NOBITS;
5643
5644 /* Find out whether this segment contains any loadable
5645 sections. */
5646 no_contents = TRUE;
5647 for (i = 0; i < m->count; i++)
5648 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5649 {
5650 no_contents = FALSE;
5651 break;
5652 }
5653
5654 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5655
5656 /* Broken hardware and/or kernel require that files do not
5657 map the same page with different permissions on some hppa
5658 processors. */
5659 if (j != 0
5660 && (abfd->flags & D_PAGED) != 0
5661 && bed->no_page_alias
5662 && (off & (maxpagesize - 1)) != 0
5663 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5664 off_adjust += maxpagesize;
5665 off += off_adjust;
5666 if (no_contents)
5667 {
5668 /* We shouldn't need to align the segment on disk since
5669 the segment doesn't need file space, but the gABI
5670 arguably requires the alignment and glibc ld.so
5671 checks it. So to comply with the alignment
5672 requirement but not waste file space, we adjust
5673 p_offset for just this segment. (OFF_ADJUST is
5674 subtracted from OFF later.) This may put p_offset
5675 past the end of file, but that shouldn't matter. */
5676 }
5677 else
5678 off_adjust = 0;
5679 }
5680 /* Make sure the .dynamic section is the first section in the
5681 PT_DYNAMIC segment. */
5682 else if (p->p_type == PT_DYNAMIC
5683 && m->count > 1
5684 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5685 {
5686 _bfd_error_handler
5687 (_("%pB: The first section in the PT_DYNAMIC segment"
5688 " is not the .dynamic section"),
5689 abfd);
5690 bfd_set_error (bfd_error_bad_value);
5691 return FALSE;
5692 }
5693 /* Set the note section type to SHT_NOTE. */
5694 else if (p->p_type == PT_NOTE)
5695 for (i = 0; i < m->count; i++)
5696 elf_section_type (m->sections[i]) = SHT_NOTE;
5697
5698 if (m->includes_filehdr)
5699 {
5700 if (!m->p_flags_valid)
5701 p->p_flags |= PF_R;
5702 p->p_filesz = bed->s->sizeof_ehdr;
5703 p->p_memsz = bed->s->sizeof_ehdr;
5704 if (p->p_type == PT_LOAD)
5705 {
5706 if (m->count > 0)
5707 {
5708 if (p->p_vaddr < (bfd_vma) off
5709 || (!m->p_paddr_valid
5710 && p->p_paddr < (bfd_vma) off))
5711 {
5712 _bfd_error_handler
5713 (_("%pB: not enough room for program headers,"
5714 " try linking with -N"),
5715 abfd);
5716 bfd_set_error (bfd_error_bad_value);
5717 return FALSE;
5718 }
5719 p->p_vaddr -= off;
5720 if (!m->p_paddr_valid)
5721 p->p_paddr -= off;
5722 }
5723 }
5724 else if (sorted_seg_map[0]->includes_filehdr)
5725 {
5726 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5727 p->p_vaddr = filehdr->p_vaddr;
5728 if (!m->p_paddr_valid)
5729 p->p_paddr = filehdr->p_paddr;
5730 }
5731 }
5732
5733 if (m->includes_phdrs)
5734 {
5735 if (!m->p_flags_valid)
5736 p->p_flags |= PF_R;
5737 p->p_filesz += actual * bed->s->sizeof_phdr;
5738 p->p_memsz += actual * bed->s->sizeof_phdr;
5739 if (!m->includes_filehdr)
5740 {
5741 if (p->p_type == PT_LOAD)
5742 {
5743 elf_elfheader (abfd)->e_phoff = p->p_offset;
5744 if (m->count > 0)
5745 {
5746 p->p_vaddr -= off - p->p_offset;
5747 if (!m->p_paddr_valid)
5748 p->p_paddr -= off - p->p_offset;
5749 }
5750 }
5751 else if (phdr_load_seg != NULL)
5752 {
5753 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5754 bfd_vma phdr_off = 0;
5755 if (phdr_load_seg->includes_filehdr)
5756 phdr_off = bed->s->sizeof_ehdr;
5757 p->p_vaddr = phdr->p_vaddr + phdr_off;
5758 if (!m->p_paddr_valid)
5759 p->p_paddr = phdr->p_paddr + phdr_off;
5760 p->p_offset = phdr->p_offset + phdr_off;
5761 }
5762 else
5763 p->p_offset = bed->s->sizeof_ehdr;
5764 }
5765 }
5766
5767 if (p->p_type == PT_LOAD
5768 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5769 {
5770 if (!m->includes_filehdr && !m->includes_phdrs)
5771 p->p_offset = off;
5772 else
5773 {
5774 file_ptr adjust;
5775
5776 adjust = off - (p->p_offset + p->p_filesz);
5777 if (!no_contents)
5778 p->p_filesz += adjust;
5779 p->p_memsz += adjust;
5780 }
5781 }
5782
5783 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5784 maps. Set filepos for sections in PT_LOAD segments, and in
5785 core files, for sections in PT_NOTE segments.
5786 assign_file_positions_for_non_load_sections will set filepos
5787 for other sections and update p_filesz for other segments. */
5788 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5789 {
5790 asection *sec;
5791 bfd_size_type align;
5792 Elf_Internal_Shdr *this_hdr;
5793
5794 sec = *secpp;
5795 this_hdr = &elf_section_data (sec)->this_hdr;
5796 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5797
5798 if ((p->p_type == PT_LOAD
5799 || p->p_type == PT_TLS)
5800 && (this_hdr->sh_type != SHT_NOBITS
5801 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5802 && ((this_hdr->sh_flags & SHF_TLS) == 0
5803 || p->p_type == PT_TLS))))
5804 {
5805 bfd_vma p_start = p->p_paddr;
5806 bfd_vma p_end = p_start + p->p_memsz;
5807 bfd_vma s_start = sec->lma;
5808 bfd_vma adjust = s_start - p_end;
5809
5810 if (adjust != 0
5811 && (s_start < p_end
5812 || p_end < p_start))
5813 {
5814 _bfd_error_handler
5815 /* xgettext:c-format */
5816 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5817 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5818 adjust = 0;
5819 sec->lma = p_end;
5820 }
5821 p->p_memsz += adjust;
5822
5823 if (this_hdr->sh_type != SHT_NOBITS)
5824 {
5825 if (p->p_type == PT_LOAD)
5826 {
5827 if (p->p_filesz + adjust < p->p_memsz)
5828 {
5829 /* We have a PROGBITS section following NOBITS ones.
5830 Allocate file space for the NOBITS section(s) and
5831 zero it. */
5832 adjust = p->p_memsz - p->p_filesz;
5833 if (!write_zeros (abfd, off, adjust))
5834 return FALSE;
5835 }
5836 off += adjust;
5837 }
5838 p->p_filesz += adjust;
5839 }
5840 }
5841
5842 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5843 {
5844 /* The section at i == 0 is the one that actually contains
5845 everything. */
5846 if (i == 0)
5847 {
5848 this_hdr->sh_offset = sec->filepos = off;
5849 off += this_hdr->sh_size;
5850 p->p_filesz = this_hdr->sh_size;
5851 p->p_memsz = 0;
5852 p->p_align = 1;
5853 }
5854 else
5855 {
5856 /* The rest are fake sections that shouldn't be written. */
5857 sec->filepos = 0;
5858 sec->size = 0;
5859 sec->flags = 0;
5860 continue;
5861 }
5862 }
5863 else
5864 {
5865 if (p->p_type == PT_LOAD)
5866 {
5867 this_hdr->sh_offset = sec->filepos = off;
5868 if (this_hdr->sh_type != SHT_NOBITS)
5869 off += this_hdr->sh_size;
5870 }
5871 else if (this_hdr->sh_type == SHT_NOBITS
5872 && (this_hdr->sh_flags & SHF_TLS) != 0
5873 && this_hdr->sh_offset == 0)
5874 {
5875 /* This is a .tbss section that didn't get a PT_LOAD.
5876 (See _bfd_elf_map_sections_to_segments "Create a
5877 final PT_LOAD".) Set sh_offset to the value it
5878 would have if we had created a zero p_filesz and
5879 p_memsz PT_LOAD header for the section. This
5880 also makes the PT_TLS header have the same
5881 p_offset value. */
5882 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5883 off, align);
5884 this_hdr->sh_offset = sec->filepos = off + adjust;
5885 }
5886
5887 if (this_hdr->sh_type != SHT_NOBITS)
5888 {
5889 p->p_filesz += this_hdr->sh_size;
5890 /* A load section without SHF_ALLOC is something like
5891 a note section in a PT_NOTE segment. These take
5892 file space but are not loaded into memory. */
5893 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5894 p->p_memsz += this_hdr->sh_size;
5895 }
5896 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5897 {
5898 if (p->p_type == PT_TLS)
5899 p->p_memsz += this_hdr->sh_size;
5900
5901 /* .tbss is special. It doesn't contribute to p_memsz of
5902 normal segments. */
5903 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5904 p->p_memsz += this_hdr->sh_size;
5905 }
5906
5907 if (align > p->p_align
5908 && !m->p_align_valid
5909 && (p->p_type != PT_LOAD
5910 || (abfd->flags & D_PAGED) == 0))
5911 p->p_align = align;
5912 }
5913
5914 if (!m->p_flags_valid)
5915 {
5916 p->p_flags |= PF_R;
5917 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5918 p->p_flags |= PF_X;
5919 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5920 p->p_flags |= PF_W;
5921 }
5922 }
5923
5924 off -= off_adjust;
5925
5926 /* PR ld/20815 - Check that the program header segment, if
5927 present, will be loaded into memory. */
5928 if (p->p_type == PT_PHDR
5929 && phdr_load_seg == NULL
5930 && !(bed->elf_backend_allow_non_load_phdr != NULL
5931 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5932 {
5933 /* The fix for this error is usually to edit the linker script being
5934 used and set up the program headers manually. Either that or
5935 leave room for the headers at the start of the SECTIONS. */
5936 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5937 " by LOAD segment"),
5938 abfd);
5939 return FALSE;
5940 }
5941
5942 /* Check that all sections are in a PT_LOAD segment.
5943 Don't check funky gdb generated core files. */
5944 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5945 {
5946 bfd_boolean check_vma = TRUE;
5947
5948 for (i = 1; i < m->count; i++)
5949 if (m->sections[i]->vma == m->sections[i - 1]->vma
5950 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5951 ->this_hdr), p) != 0
5952 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5953 ->this_hdr), p) != 0)
5954 {
5955 /* Looks like we have overlays packed into the segment. */
5956 check_vma = FALSE;
5957 break;
5958 }
5959
5960 for (i = 0; i < m->count; i++)
5961 {
5962 Elf_Internal_Shdr *this_hdr;
5963 asection *sec;
5964
5965 sec = m->sections[i];
5966 this_hdr = &(elf_section_data(sec)->this_hdr);
5967 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5968 && !ELF_TBSS_SPECIAL (this_hdr, p))
5969 {
5970 _bfd_error_handler
5971 /* xgettext:c-format */
5972 (_("%pB: section `%pA' can't be allocated in segment %d"),
5973 abfd, sec, j);
5974 print_segment_map (m);
5975 }
5976 }
5977 }
5978 }
5979
5980 elf_next_file_pos (abfd) = off;
5981
5982 if (link_info != NULL
5983 && phdr_load_seg != NULL
5984 && phdr_load_seg->includes_filehdr)
5985 {
5986 /* There is a segment that contains both the file headers and the
5987 program headers, so provide a symbol __ehdr_start pointing there.
5988 A program can use this to examine itself robustly. */
5989
5990 struct elf_link_hash_entry *hash
5991 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5992 FALSE, FALSE, TRUE);
5993 /* If the symbol was referenced and not defined, define it. */
5994 if (hash != NULL
5995 && (hash->root.type == bfd_link_hash_new
5996 || hash->root.type == bfd_link_hash_undefined
5997 || hash->root.type == bfd_link_hash_undefweak
5998 || hash->root.type == bfd_link_hash_common))
5999 {
6000 asection *s = NULL;
6001 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
6002
6003 if (phdr_load_seg->count != 0)
6004 /* The segment contains sections, so use the first one. */
6005 s = phdr_load_seg->sections[0];
6006 else
6007 /* Use the first (i.e. lowest-addressed) section in any segment. */
6008 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6009 if (m->p_type == PT_LOAD && m->count != 0)
6010 {
6011 s = m->sections[0];
6012 break;
6013 }
6014
6015 if (s != NULL)
6016 {
6017 hash->root.u.def.value = filehdr_vaddr - s->vma;
6018 hash->root.u.def.section = s;
6019 }
6020 else
6021 {
6022 hash->root.u.def.value = filehdr_vaddr;
6023 hash->root.u.def.section = bfd_abs_section_ptr;
6024 }
6025
6026 hash->root.type = bfd_link_hash_defined;
6027 hash->def_regular = 1;
6028 hash->non_elf = 0;
6029 }
6030 }
6031
6032 return TRUE;
6033 }
6034
6035 /* Determine if a bfd is a debuginfo file. Unfortunately there
6036 is no defined method for detecting such files, so we have to
6037 use heuristics instead. */
6038
6039 bfd_boolean
6040 is_debuginfo_file (bfd *abfd)
6041 {
6042 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6043 return FALSE;
6044
6045 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6046 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6047 Elf_Internal_Shdr **headerp;
6048
6049 for (headerp = start_headers; headerp < end_headers; headerp ++)
6050 {
6051 Elf_Internal_Shdr *header = * headerp;
6052
6053 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6054 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6055 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6056 && header->sh_type != SHT_NOBITS
6057 && header->sh_type != SHT_NOTE)
6058 return FALSE;
6059 }
6060
6061 return TRUE;
6062 }
6063
6064 /* Assign file positions for the other sections, except for compressed debugging
6065 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6066
6067 static bfd_boolean
6068 assign_file_positions_for_non_load_sections (bfd *abfd,
6069 struct bfd_link_info *link_info)
6070 {
6071 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6072 Elf_Internal_Shdr **i_shdrpp;
6073 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6074 Elf_Internal_Phdr *phdrs;
6075 Elf_Internal_Phdr *p;
6076 struct elf_segment_map *m;
6077 file_ptr off;
6078
6079 i_shdrpp = elf_elfsections (abfd);
6080 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6081 off = elf_next_file_pos (abfd);
6082 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6083 {
6084 Elf_Internal_Shdr *hdr;
6085
6086 hdr = *hdrpp;
6087 if (hdr->bfd_section != NULL
6088 && (hdr->bfd_section->filepos != 0
6089 || (hdr->sh_type == SHT_NOBITS
6090 && hdr->contents == NULL)))
6091 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6092 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6093 {
6094 if (hdr->sh_size != 0
6095 /* PR 24717 - debuginfo files are known to be not strictly
6096 compliant with the ELF standard. In particular they often
6097 have .note.gnu.property sections that are outside of any
6098 loadable segment. This is not a problem for such files,
6099 so do not warn about them. */
6100 && ! is_debuginfo_file (abfd))
6101 _bfd_error_handler
6102 /* xgettext:c-format */
6103 (_("%pB: warning: allocated section `%s' not in segment"),
6104 abfd,
6105 (hdr->bfd_section == NULL
6106 ? "*unknown*"
6107 : hdr->bfd_section->name));
6108 /* We don't need to page align empty sections. */
6109 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6110 off += vma_page_aligned_bias (hdr->sh_addr, off,
6111 bed->maxpagesize);
6112 else
6113 off += vma_page_aligned_bias (hdr->sh_addr, off,
6114 hdr->sh_addralign);
6115 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6116 FALSE);
6117 }
6118 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6119 && hdr->bfd_section == NULL)
6120 /* We don't know the offset of these sections yet: their size has
6121 not been decided. */
6122 || (hdr->bfd_section != NULL
6123 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6124 || (bfd_section_is_ctf (hdr->bfd_section)
6125 && abfd->is_linker_output)))
6126 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6127 || (elf_symtab_shndx_list (abfd) != NULL
6128 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6129 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6130 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6131 hdr->sh_offset = -1;
6132 else
6133 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6134 }
6135 elf_next_file_pos (abfd) = off;
6136
6137 /* Now that we have set the section file positions, we can set up
6138 the file positions for the non PT_LOAD segments. */
6139 phdrs = elf_tdata (abfd)->phdr;
6140 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6141 {
6142 if (p->p_type == PT_GNU_RELRO)
6143 {
6144 bfd_vma start, end;
6145 bfd_boolean ok;
6146
6147 if (link_info != NULL)
6148 {
6149 /* During linking the range of the RELRO segment is passed
6150 in link_info. Note that there may be padding between
6151 relro_start and the first RELRO section. */
6152 start = link_info->relro_start;
6153 end = link_info->relro_end;
6154 }
6155 else if (m->count != 0)
6156 {
6157 if (!m->p_size_valid)
6158 abort ();
6159 start = m->sections[0]->vma;
6160 end = start + m->p_size;
6161 }
6162 else
6163 {
6164 start = 0;
6165 end = 0;
6166 }
6167
6168 ok = FALSE;
6169 if (start < end)
6170 {
6171 struct elf_segment_map *lm;
6172 const Elf_Internal_Phdr *lp;
6173 unsigned int i;
6174
6175 /* Find a LOAD segment containing a section in the RELRO
6176 segment. */
6177 for (lm = elf_seg_map (abfd), lp = phdrs;
6178 lm != NULL;
6179 lm = lm->next, lp++)
6180 {
6181 if (lp->p_type == PT_LOAD
6182 && lm->count != 0
6183 && (lm->sections[lm->count - 1]->vma
6184 + (!IS_TBSS (lm->sections[lm->count - 1])
6185 ? lm->sections[lm->count - 1]->size
6186 : 0)) > start
6187 && lm->sections[0]->vma < end)
6188 break;
6189 }
6190
6191 if (lm != NULL)
6192 {
6193 /* Find the section starting the RELRO segment. */
6194 for (i = 0; i < lm->count; i++)
6195 {
6196 asection *s = lm->sections[i];
6197 if (s->vma >= start
6198 && s->vma < end
6199 && s->size != 0)
6200 break;
6201 }
6202
6203 if (i < lm->count)
6204 {
6205 p->p_vaddr = lm->sections[i]->vma;
6206 p->p_paddr = lm->sections[i]->lma;
6207 p->p_offset = lm->sections[i]->filepos;
6208 p->p_memsz = end - p->p_vaddr;
6209 p->p_filesz = p->p_memsz;
6210
6211 /* The RELRO segment typically ends a few bytes
6212 into .got.plt but other layouts are possible.
6213 In cases where the end does not match any
6214 loaded section (for instance is in file
6215 padding), trim p_filesz back to correspond to
6216 the end of loaded section contents. */
6217 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6218 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6219
6220 /* Preserve the alignment and flags if they are
6221 valid. The gold linker generates RW/4 for
6222 the PT_GNU_RELRO section. It is better for
6223 objcopy/strip to honor these attributes
6224 otherwise gdb will choke when using separate
6225 debug files. */
6226 if (!m->p_align_valid)
6227 p->p_align = 1;
6228 if (!m->p_flags_valid)
6229 p->p_flags = PF_R;
6230 ok = TRUE;
6231 }
6232 }
6233 }
6234 if (link_info != NULL)
6235 BFD_ASSERT (ok);
6236 if (!ok)
6237 memset (p, 0, sizeof *p);
6238 }
6239 else if (p->p_type == PT_GNU_STACK)
6240 {
6241 if (m->p_size_valid)
6242 p->p_memsz = m->p_size;
6243 }
6244 else if (m->count != 0)
6245 {
6246 unsigned int i;
6247
6248 if (p->p_type != PT_LOAD
6249 && (p->p_type != PT_NOTE
6250 || bfd_get_format (abfd) != bfd_core))
6251 {
6252 /* A user specified segment layout may include a PHDR
6253 segment that overlaps with a LOAD segment... */
6254 if (p->p_type == PT_PHDR)
6255 {
6256 m->count = 0;
6257 continue;
6258 }
6259
6260 if (m->includes_filehdr || m->includes_phdrs)
6261 {
6262 /* PR 17512: file: 2195325e. */
6263 _bfd_error_handler
6264 (_("%pB: error: non-load segment %d includes file header "
6265 "and/or program header"),
6266 abfd, (int) (p - phdrs));
6267 return FALSE;
6268 }
6269
6270 p->p_filesz = 0;
6271 p->p_offset = m->sections[0]->filepos;
6272 for (i = m->count; i-- != 0;)
6273 {
6274 asection *sect = m->sections[i];
6275 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6276 if (hdr->sh_type != SHT_NOBITS)
6277 {
6278 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6279 + hdr->sh_size);
6280 break;
6281 }
6282 }
6283 }
6284 }
6285 }
6286
6287 return TRUE;
6288 }
6289
6290 static elf_section_list *
6291 find_section_in_list (unsigned int i, elf_section_list * list)
6292 {
6293 for (;list != NULL; list = list->next)
6294 if (list->ndx == i)
6295 break;
6296 return list;
6297 }
6298
6299 /* Work out the file positions of all the sections. This is called by
6300 _bfd_elf_compute_section_file_positions. All the section sizes and
6301 VMAs must be known before this is called.
6302
6303 Reloc sections come in two flavours: Those processed specially as
6304 "side-channel" data attached to a section to which they apply, and those that
6305 bfd doesn't process as relocations. The latter sort are stored in a normal
6306 bfd section by bfd_section_from_shdr. We don't consider the former sort
6307 here, unless they form part of the loadable image. Reloc sections not
6308 assigned here (and compressed debugging sections and CTF sections which
6309 nothing else in the file can rely upon) will be handled later by
6310 assign_file_positions_for_relocs.
6311
6312 We also don't set the positions of the .symtab and .strtab here. */
6313
6314 static bfd_boolean
6315 assign_file_positions_except_relocs (bfd *abfd,
6316 struct bfd_link_info *link_info)
6317 {
6318 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6319 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6321 unsigned int alloc;
6322
6323 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6324 && bfd_get_format (abfd) != bfd_core)
6325 {
6326 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6327 unsigned int num_sec = elf_numsections (abfd);
6328 Elf_Internal_Shdr **hdrpp;
6329 unsigned int i;
6330 file_ptr off;
6331
6332 /* Start after the ELF header. */
6333 off = i_ehdrp->e_ehsize;
6334
6335 /* We are not creating an executable, which means that we are
6336 not creating a program header, and that the actual order of
6337 the sections in the file is unimportant. */
6338 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6339 {
6340 Elf_Internal_Shdr *hdr;
6341
6342 hdr = *hdrpp;
6343 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6344 && hdr->bfd_section == NULL)
6345 /* Do not assign offsets for these sections yet: we don't know
6346 their sizes. */
6347 || (hdr->bfd_section != NULL
6348 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6349 || (bfd_section_is_ctf (hdr->bfd_section)
6350 && abfd->is_linker_output)))
6351 || i == elf_onesymtab (abfd)
6352 || (elf_symtab_shndx_list (abfd) != NULL
6353 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6354 || i == elf_strtab_sec (abfd)
6355 || i == elf_shstrtab_sec (abfd))
6356 {
6357 hdr->sh_offset = -1;
6358 }
6359 else
6360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6361 }
6362
6363 elf_next_file_pos (abfd) = off;
6364 elf_program_header_size (abfd) = 0;
6365 }
6366 else
6367 {
6368 /* Assign file positions for the loaded sections based on the
6369 assignment of sections to segments. */
6370 if (!assign_file_positions_for_load_sections (abfd, link_info))
6371 return FALSE;
6372
6373 /* And for non-load sections. */
6374 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6375 return FALSE;
6376 }
6377
6378 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6379 return FALSE;
6380
6381 /* Write out the program headers. */
6382 alloc = i_ehdrp->e_phnum;
6383 if (alloc != 0)
6384 {
6385 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6386 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6387 return FALSE;
6388 }
6389
6390 return TRUE;
6391 }
6392
6393 bfd_boolean
6394 _bfd_elf_init_file_header (bfd *abfd,
6395 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6396 {
6397 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6398 struct elf_strtab_hash *shstrtab;
6399 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6400
6401 i_ehdrp = elf_elfheader (abfd);
6402
6403 shstrtab = _bfd_elf_strtab_init ();
6404 if (shstrtab == NULL)
6405 return FALSE;
6406
6407 elf_shstrtab (abfd) = shstrtab;
6408
6409 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6410 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6411 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6412 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6413
6414 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6415 i_ehdrp->e_ident[EI_DATA] =
6416 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6417 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6418
6419 if ((abfd->flags & DYNAMIC) != 0)
6420 i_ehdrp->e_type = ET_DYN;
6421 else if ((abfd->flags & EXEC_P) != 0)
6422 i_ehdrp->e_type = ET_EXEC;
6423 else if (bfd_get_format (abfd) == bfd_core)
6424 i_ehdrp->e_type = ET_CORE;
6425 else
6426 i_ehdrp->e_type = ET_REL;
6427
6428 switch (bfd_get_arch (abfd))
6429 {
6430 case bfd_arch_unknown:
6431 i_ehdrp->e_machine = EM_NONE;
6432 break;
6433
6434 /* There used to be a long list of cases here, each one setting
6435 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6436 in the corresponding bfd definition. To avoid duplication,
6437 the switch was removed. Machines that need special handling
6438 can generally do it in elf_backend_final_write_processing(),
6439 unless they need the information earlier than the final write.
6440 Such need can generally be supplied by replacing the tests for
6441 e_machine with the conditions used to determine it. */
6442 default:
6443 i_ehdrp->e_machine = bed->elf_machine_code;
6444 }
6445
6446 i_ehdrp->e_version = bed->s->ev_current;
6447 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6448
6449 /* No program header, for now. */
6450 i_ehdrp->e_phoff = 0;
6451 i_ehdrp->e_phentsize = 0;
6452 i_ehdrp->e_phnum = 0;
6453
6454 /* Each bfd section is section header entry. */
6455 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6456 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6457
6458 elf_tdata (abfd)->symtab_hdr.sh_name =
6459 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6460 elf_tdata (abfd)->strtab_hdr.sh_name =
6461 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6462 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6463 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6464 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6465 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6466 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6467 return FALSE;
6468
6469 return TRUE;
6470 }
6471
6472 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6473
6474 FIXME: We used to have code here to sort the PT_LOAD segments into
6475 ascending order, as per the ELF spec. But this breaks some programs,
6476 including the Linux kernel. But really either the spec should be
6477 changed or the programs updated. */
6478
6479 bfd_boolean
6480 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6481 {
6482 if (link_info != NULL && bfd_link_pie (link_info))
6483 {
6484 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6485 unsigned int num_segments = i_ehdrp->e_phnum;
6486 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6487 Elf_Internal_Phdr *segment = tdata->phdr;
6488 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6489
6490 /* Find the lowest p_vaddr in PT_LOAD segments. */
6491 bfd_vma p_vaddr = (bfd_vma) -1;
6492 for (; segment < end_segment; segment++)
6493 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6494 p_vaddr = segment->p_vaddr;
6495
6496 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6497 segments is non-zero. */
6498 if (p_vaddr)
6499 i_ehdrp->e_type = ET_EXEC;
6500 }
6501 return TRUE;
6502 }
6503
6504 /* Assign file positions for all the reloc sections which are not part
6505 of the loadable file image, and the file position of section headers. */
6506
6507 static bfd_boolean
6508 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6509 {
6510 file_ptr off;
6511 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6512 Elf_Internal_Shdr *shdrp;
6513 Elf_Internal_Ehdr *i_ehdrp;
6514 const struct elf_backend_data *bed;
6515
6516 off = elf_next_file_pos (abfd);
6517
6518 shdrpp = elf_elfsections (abfd);
6519 end_shdrpp = shdrpp + elf_numsections (abfd);
6520 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6521 {
6522 shdrp = *shdrpp;
6523 if (shdrp->sh_offset == -1)
6524 {
6525 asection *sec = shdrp->bfd_section;
6526 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6527 || shdrp->sh_type == SHT_RELA);
6528 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6529 if (is_rel
6530 || is_ctf
6531 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6532 {
6533 if (!is_rel && !is_ctf)
6534 {
6535 const char *name = sec->name;
6536 struct bfd_elf_section_data *d;
6537
6538 /* Compress DWARF debug sections. */
6539 if (!bfd_compress_section (abfd, sec,
6540 shdrp->contents))
6541 return FALSE;
6542
6543 if (sec->compress_status == COMPRESS_SECTION_DONE
6544 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6545 {
6546 /* If section is compressed with zlib-gnu, convert
6547 section name from .debug_* to .zdebug_*. */
6548 char *new_name
6549 = convert_debug_to_zdebug (abfd, name);
6550 if (new_name == NULL)
6551 return FALSE;
6552 name = new_name;
6553 }
6554 /* Add section name to section name section. */
6555 if (shdrp->sh_name != (unsigned int) -1)
6556 abort ();
6557 shdrp->sh_name
6558 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6559 name, FALSE);
6560 d = elf_section_data (sec);
6561
6562 /* Add reloc section name to section name section. */
6563 if (d->rel.hdr
6564 && !_bfd_elf_set_reloc_sh_name (abfd,
6565 d->rel.hdr,
6566 name, FALSE))
6567 return FALSE;
6568 if (d->rela.hdr
6569 && !_bfd_elf_set_reloc_sh_name (abfd,
6570 d->rela.hdr,
6571 name, TRUE))
6572 return FALSE;
6573
6574 /* Update section size and contents. */
6575 shdrp->sh_size = sec->size;
6576 shdrp->contents = sec->contents;
6577 shdrp->bfd_section->contents = NULL;
6578 }
6579 else if (is_ctf)
6580 {
6581 /* Update section size and contents. */
6582 shdrp->sh_size = sec->size;
6583 shdrp->contents = sec->contents;
6584 }
6585
6586 off = _bfd_elf_assign_file_position_for_section (shdrp,
6587 off,
6588 TRUE);
6589 }
6590 }
6591 }
6592
6593 /* Place section name section after DWARF debug sections have been
6594 compressed. */
6595 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6596 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6597 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6598 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6599
6600 /* Place the section headers. */
6601 i_ehdrp = elf_elfheader (abfd);
6602 bed = get_elf_backend_data (abfd);
6603 off = align_file_position (off, 1 << bed->s->log_file_align);
6604 i_ehdrp->e_shoff = off;
6605 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6606 elf_next_file_pos (abfd) = off;
6607
6608 return TRUE;
6609 }
6610
6611 bfd_boolean
6612 _bfd_elf_write_object_contents (bfd *abfd)
6613 {
6614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6615 Elf_Internal_Shdr **i_shdrp;
6616 bfd_boolean failed;
6617 unsigned int count, num_sec;
6618 struct elf_obj_tdata *t;
6619
6620 if (! abfd->output_has_begun
6621 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6622 return FALSE;
6623 /* Do not rewrite ELF data when the BFD has been opened for update.
6624 abfd->output_has_begun was set to TRUE on opening, so creation of new
6625 sections, and modification of existing section sizes was restricted.
6626 This means the ELF header, program headers and section headers can't have
6627 changed.
6628 If the contents of any sections has been modified, then those changes have
6629 already been written to the BFD. */
6630 else if (abfd->direction == both_direction)
6631 {
6632 BFD_ASSERT (abfd->output_has_begun);
6633 return TRUE;
6634 }
6635
6636 i_shdrp = elf_elfsections (abfd);
6637
6638 failed = FALSE;
6639 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6640 if (failed)
6641 return FALSE;
6642
6643 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6644 return FALSE;
6645
6646 /* After writing the headers, we need to write the sections too... */
6647 num_sec = elf_numsections (abfd);
6648 for (count = 1; count < num_sec; count++)
6649 {
6650 i_shdrp[count]->sh_name
6651 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6652 i_shdrp[count]->sh_name);
6653 if (bed->elf_backend_section_processing)
6654 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6655 return FALSE;
6656 if (i_shdrp[count]->contents)
6657 {
6658 bfd_size_type amt = i_shdrp[count]->sh_size;
6659
6660 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6661 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6662 return FALSE;
6663 }
6664 }
6665
6666 /* Write out the section header names. */
6667 t = elf_tdata (abfd);
6668 if (elf_shstrtab (abfd) != NULL
6669 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6670 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6671 return FALSE;
6672
6673 if (!(*bed->elf_backend_final_write_processing) (abfd))
6674 return FALSE;
6675
6676 if (!bed->s->write_shdrs_and_ehdr (abfd))
6677 return FALSE;
6678
6679 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6680 if (t->o->build_id.after_write_object_contents != NULL)
6681 return (*t->o->build_id.after_write_object_contents) (abfd);
6682
6683 return TRUE;
6684 }
6685
6686 bfd_boolean
6687 _bfd_elf_write_corefile_contents (bfd *abfd)
6688 {
6689 /* Hopefully this can be done just like an object file. */
6690 return _bfd_elf_write_object_contents (abfd);
6691 }
6692
6693 /* Given a section, search the header to find them. */
6694
6695 unsigned int
6696 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6697 {
6698 const struct elf_backend_data *bed;
6699 unsigned int sec_index;
6700
6701 if (elf_section_data (asect) != NULL
6702 && elf_section_data (asect)->this_idx != 0)
6703 return elf_section_data (asect)->this_idx;
6704
6705 if (bfd_is_abs_section (asect))
6706 sec_index = SHN_ABS;
6707 else if (bfd_is_com_section (asect))
6708 sec_index = SHN_COMMON;
6709 else if (bfd_is_und_section (asect))
6710 sec_index = SHN_UNDEF;
6711 else
6712 sec_index = SHN_BAD;
6713
6714 bed = get_elf_backend_data (abfd);
6715 if (bed->elf_backend_section_from_bfd_section)
6716 {
6717 int retval = sec_index;
6718
6719 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6720 return retval;
6721 }
6722
6723 if (sec_index == SHN_BAD)
6724 bfd_set_error (bfd_error_nonrepresentable_section);
6725
6726 return sec_index;
6727 }
6728
6729 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6730 on error. */
6731
6732 int
6733 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6734 {
6735 asymbol *asym_ptr = *asym_ptr_ptr;
6736 int idx;
6737 flagword flags = asym_ptr->flags;
6738
6739 /* When gas creates relocations against local labels, it creates its
6740 own symbol for the section, but does put the symbol into the
6741 symbol chain, so udata is 0. When the linker is generating
6742 relocatable output, this section symbol may be for one of the
6743 input sections rather than the output section. */
6744 if (asym_ptr->udata.i == 0
6745 && (flags & BSF_SECTION_SYM)
6746 && asym_ptr->section)
6747 {
6748 asection *sec;
6749 int indx;
6750
6751 sec = asym_ptr->section;
6752 if (sec->owner != abfd && sec->output_section != NULL)
6753 sec = sec->output_section;
6754 if (sec->owner == abfd
6755 && (indx = sec->index) < elf_num_section_syms (abfd)
6756 && elf_section_syms (abfd)[indx] != NULL)
6757 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6758 }
6759
6760 idx = asym_ptr->udata.i;
6761
6762 if (idx == 0)
6763 {
6764 /* This case can occur when using --strip-symbol on a symbol
6765 which is used in a relocation entry. */
6766 _bfd_error_handler
6767 /* xgettext:c-format */
6768 (_("%pB: symbol `%s' required but not present"),
6769 abfd, bfd_asymbol_name (asym_ptr));
6770 bfd_set_error (bfd_error_no_symbols);
6771 return -1;
6772 }
6773
6774 #if DEBUG & 4
6775 {
6776 fprintf (stderr,
6777 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6778 (long) asym_ptr, asym_ptr->name, idx, flags);
6779 fflush (stderr);
6780 }
6781 #endif
6782
6783 return idx;
6784 }
6785
6786 /* Rewrite program header information. */
6787
6788 static bfd_boolean
6789 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6790 {
6791 Elf_Internal_Ehdr *iehdr;
6792 struct elf_segment_map *map;
6793 struct elf_segment_map *map_first;
6794 struct elf_segment_map **pointer_to_map;
6795 Elf_Internal_Phdr *segment;
6796 asection *section;
6797 unsigned int i;
6798 unsigned int num_segments;
6799 bfd_boolean phdr_included = FALSE;
6800 bfd_boolean p_paddr_valid;
6801 bfd_vma maxpagesize;
6802 struct elf_segment_map *phdr_adjust_seg = NULL;
6803 unsigned int phdr_adjust_num = 0;
6804 const struct elf_backend_data *bed;
6805
6806 bed = get_elf_backend_data (ibfd);
6807 iehdr = elf_elfheader (ibfd);
6808
6809 map_first = NULL;
6810 pointer_to_map = &map_first;
6811
6812 num_segments = elf_elfheader (ibfd)->e_phnum;
6813 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6814
6815 /* Returns the end address of the segment + 1. */
6816 #define SEGMENT_END(segment, start) \
6817 (start + (segment->p_memsz > segment->p_filesz \
6818 ? segment->p_memsz : segment->p_filesz))
6819
6820 #define SECTION_SIZE(section, segment) \
6821 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6822 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6823 ? section->size : 0)
6824
6825 /* Returns TRUE if the given section is contained within
6826 the given segment. VMA addresses are compared. */
6827 #define IS_CONTAINED_BY_VMA(section, segment) \
6828 (section->vma >= segment->p_vaddr \
6829 && (section->vma + SECTION_SIZE (section, segment) \
6830 <= (SEGMENT_END (segment, segment->p_vaddr))))
6831
6832 /* Returns TRUE if the given section is contained within
6833 the given segment. LMA addresses are compared. */
6834 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6835 (section->lma >= base \
6836 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6837 && (section->lma + SECTION_SIZE (section, segment) \
6838 <= SEGMENT_END (segment, base)))
6839
6840 /* Handle PT_NOTE segment. */
6841 #define IS_NOTE(p, s) \
6842 (p->p_type == PT_NOTE \
6843 && elf_section_type (s) == SHT_NOTE \
6844 && (bfd_vma) s->filepos >= p->p_offset \
6845 && ((bfd_vma) s->filepos + s->size \
6846 <= p->p_offset + p->p_filesz))
6847
6848 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6849 etc. */
6850 #define IS_COREFILE_NOTE(p, s) \
6851 (IS_NOTE (p, s) \
6852 && bfd_get_format (ibfd) == bfd_core \
6853 && s->vma == 0 \
6854 && s->lma == 0)
6855
6856 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6857 linker, which generates a PT_INTERP section with p_vaddr and
6858 p_memsz set to 0. */
6859 #define IS_SOLARIS_PT_INTERP(p, s) \
6860 (p->p_vaddr == 0 \
6861 && p->p_paddr == 0 \
6862 && p->p_memsz == 0 \
6863 && p->p_filesz > 0 \
6864 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6865 && s->size > 0 \
6866 && (bfd_vma) s->filepos >= p->p_offset \
6867 && ((bfd_vma) s->filepos + s->size \
6868 <= p->p_offset + p->p_filesz))
6869
6870 /* Decide if the given section should be included in the given segment.
6871 A section will be included if:
6872 1. It is within the address space of the segment -- we use the LMA
6873 if that is set for the segment and the VMA otherwise,
6874 2. It is an allocated section or a NOTE section in a PT_NOTE
6875 segment.
6876 3. There is an output section associated with it,
6877 4. The section has not already been allocated to a previous segment.
6878 5. PT_GNU_STACK segments do not include any sections.
6879 6. PT_TLS segment includes only SHF_TLS sections.
6880 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6881 8. PT_DYNAMIC should not contain empty sections at the beginning
6882 (with the possible exception of .dynamic). */
6883 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6884 ((((segment->p_paddr \
6885 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6886 : IS_CONTAINED_BY_VMA (section, segment)) \
6887 && (section->flags & SEC_ALLOC) != 0) \
6888 || IS_NOTE (segment, section)) \
6889 && segment->p_type != PT_GNU_STACK \
6890 && (segment->p_type != PT_TLS \
6891 || (section->flags & SEC_THREAD_LOCAL)) \
6892 && (segment->p_type == PT_LOAD \
6893 || segment->p_type == PT_TLS \
6894 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6895 && (segment->p_type != PT_DYNAMIC \
6896 || SECTION_SIZE (section, segment) > 0 \
6897 || (segment->p_paddr \
6898 ? segment->p_paddr != section->lma \
6899 : segment->p_vaddr != section->vma) \
6900 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6901 && (segment->p_type != PT_LOAD || !section->segment_mark))
6902
6903 /* If the output section of a section in the input segment is NULL,
6904 it is removed from the corresponding output segment. */
6905 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6906 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6907 && section->output_section != NULL)
6908
6909 /* Returns TRUE iff seg1 starts after the end of seg2. */
6910 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6911 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6912
6913 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6914 their VMA address ranges and their LMA address ranges overlap.
6915 It is possible to have overlapping VMA ranges without overlapping LMA
6916 ranges. RedBoot images for example can have both .data and .bss mapped
6917 to the same VMA range, but with the .data section mapped to a different
6918 LMA. */
6919 #define SEGMENT_OVERLAPS(seg1, seg2) \
6920 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6921 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6922 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6923 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6924
6925 /* Initialise the segment mark field. */
6926 for (section = ibfd->sections; section != NULL; section = section->next)
6927 section->segment_mark = FALSE;
6928
6929 /* The Solaris linker creates program headers in which all the
6930 p_paddr fields are zero. When we try to objcopy or strip such a
6931 file, we get confused. Check for this case, and if we find it
6932 don't set the p_paddr_valid fields. */
6933 p_paddr_valid = FALSE;
6934 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6935 i < num_segments;
6936 i++, segment++)
6937 if (segment->p_paddr != 0)
6938 {
6939 p_paddr_valid = TRUE;
6940 break;
6941 }
6942
6943 /* Scan through the segments specified in the program header
6944 of the input BFD. For this first scan we look for overlaps
6945 in the loadable segments. These can be created by weird
6946 parameters to objcopy. Also, fix some solaris weirdness. */
6947 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6948 i < num_segments;
6949 i++, segment++)
6950 {
6951 unsigned int j;
6952 Elf_Internal_Phdr *segment2;
6953
6954 if (segment->p_type == PT_INTERP)
6955 for (section = ibfd->sections; section; section = section->next)
6956 if (IS_SOLARIS_PT_INTERP (segment, section))
6957 {
6958 /* Mininal change so that the normal section to segment
6959 assignment code will work. */
6960 segment->p_vaddr = section->vma;
6961 break;
6962 }
6963
6964 if (segment->p_type != PT_LOAD)
6965 {
6966 /* Remove PT_GNU_RELRO segment. */
6967 if (segment->p_type == PT_GNU_RELRO)
6968 segment->p_type = PT_NULL;
6969 continue;
6970 }
6971
6972 /* Determine if this segment overlaps any previous segments. */
6973 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6974 {
6975 bfd_signed_vma extra_length;
6976
6977 if (segment2->p_type != PT_LOAD
6978 || !SEGMENT_OVERLAPS (segment, segment2))
6979 continue;
6980
6981 /* Merge the two segments together. */
6982 if (segment2->p_vaddr < segment->p_vaddr)
6983 {
6984 /* Extend SEGMENT2 to include SEGMENT and then delete
6985 SEGMENT. */
6986 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6987 - SEGMENT_END (segment2, segment2->p_vaddr));
6988
6989 if (extra_length > 0)
6990 {
6991 segment2->p_memsz += extra_length;
6992 segment2->p_filesz += extra_length;
6993 }
6994
6995 segment->p_type = PT_NULL;
6996
6997 /* Since we have deleted P we must restart the outer loop. */
6998 i = 0;
6999 segment = elf_tdata (ibfd)->phdr;
7000 break;
7001 }
7002 else
7003 {
7004 /* Extend SEGMENT to include SEGMENT2 and then delete
7005 SEGMENT2. */
7006 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7007 - SEGMENT_END (segment, segment->p_vaddr));
7008
7009 if (extra_length > 0)
7010 {
7011 segment->p_memsz += extra_length;
7012 segment->p_filesz += extra_length;
7013 }
7014
7015 segment2->p_type = PT_NULL;
7016 }
7017 }
7018 }
7019
7020 /* The second scan attempts to assign sections to segments. */
7021 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7022 i < num_segments;
7023 i++, segment++)
7024 {
7025 unsigned int section_count;
7026 asection **sections;
7027 asection *output_section;
7028 unsigned int isec;
7029 asection *matching_lma;
7030 asection *suggested_lma;
7031 unsigned int j;
7032 bfd_size_type amt;
7033 asection *first_section;
7034
7035 if (segment->p_type == PT_NULL)
7036 continue;
7037
7038 first_section = NULL;
7039 /* Compute how many sections might be placed into this segment. */
7040 for (section = ibfd->sections, section_count = 0;
7041 section != NULL;
7042 section = section->next)
7043 {
7044 /* Find the first section in the input segment, which may be
7045 removed from the corresponding output segment. */
7046 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7047 {
7048 if (first_section == NULL)
7049 first_section = section;
7050 if (section->output_section != NULL)
7051 ++section_count;
7052 }
7053 }
7054
7055 /* Allocate a segment map big enough to contain
7056 all of the sections we have selected. */
7057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7058 amt += (bfd_size_type) section_count * sizeof (asection *);
7059 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7060 if (map == NULL)
7061 return FALSE;
7062
7063 /* Initialise the fields of the segment map. Default to
7064 using the physical address of the segment in the input BFD. */
7065 map->next = NULL;
7066 map->p_type = segment->p_type;
7067 map->p_flags = segment->p_flags;
7068 map->p_flags_valid = 1;
7069
7070 /* If the first section in the input segment is removed, there is
7071 no need to preserve segment physical address in the corresponding
7072 output segment. */
7073 if (!first_section || first_section->output_section != NULL)
7074 {
7075 map->p_paddr = segment->p_paddr;
7076 map->p_paddr_valid = p_paddr_valid;
7077 }
7078
7079 /* Determine if this segment contains the ELF file header
7080 and if it contains the program headers themselves. */
7081 map->includes_filehdr = (segment->p_offset == 0
7082 && segment->p_filesz >= iehdr->e_ehsize);
7083 map->includes_phdrs = 0;
7084
7085 if (!phdr_included || segment->p_type != PT_LOAD)
7086 {
7087 map->includes_phdrs =
7088 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7089 && (segment->p_offset + segment->p_filesz
7090 >= ((bfd_vma) iehdr->e_phoff
7091 + iehdr->e_phnum * iehdr->e_phentsize)));
7092
7093 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7094 phdr_included = TRUE;
7095 }
7096
7097 if (section_count == 0)
7098 {
7099 /* Special segments, such as the PT_PHDR segment, may contain
7100 no sections, but ordinary, loadable segments should contain
7101 something. They are allowed by the ELF spec however, so only
7102 a warning is produced.
7103 There is however the valid use case of embedded systems which
7104 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7105 flash memory with zeros. No warning is shown for that case. */
7106 if (segment->p_type == PT_LOAD
7107 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7108 /* xgettext:c-format */
7109 _bfd_error_handler
7110 (_("%pB: warning: empty loadable segment detected"
7111 " at vaddr=%#" PRIx64 ", is this intentional?"),
7112 ibfd, (uint64_t) segment->p_vaddr);
7113
7114 map->p_vaddr_offset = segment->p_vaddr;
7115 map->count = 0;
7116 *pointer_to_map = map;
7117 pointer_to_map = &map->next;
7118
7119 continue;
7120 }
7121
7122 /* Now scan the sections in the input BFD again and attempt
7123 to add their corresponding output sections to the segment map.
7124 The problem here is how to handle an output section which has
7125 been moved (ie had its LMA changed). There are four possibilities:
7126
7127 1. None of the sections have been moved.
7128 In this case we can continue to use the segment LMA from the
7129 input BFD.
7130
7131 2. All of the sections have been moved by the same amount.
7132 In this case we can change the segment's LMA to match the LMA
7133 of the first section.
7134
7135 3. Some of the sections have been moved, others have not.
7136 In this case those sections which have not been moved can be
7137 placed in the current segment which will have to have its size,
7138 and possibly its LMA changed, and a new segment or segments will
7139 have to be created to contain the other sections.
7140
7141 4. The sections have been moved, but not by the same amount.
7142 In this case we can change the segment's LMA to match the LMA
7143 of the first section and we will have to create a new segment
7144 or segments to contain the other sections.
7145
7146 In order to save time, we allocate an array to hold the section
7147 pointers that we are interested in. As these sections get assigned
7148 to a segment, they are removed from this array. */
7149
7150 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7151 if (sections == NULL)
7152 return FALSE;
7153
7154 /* Step One: Scan for segment vs section LMA conflicts.
7155 Also add the sections to the section array allocated above.
7156 Also add the sections to the current segment. In the common
7157 case, where the sections have not been moved, this means that
7158 we have completely filled the segment, and there is nothing
7159 more to do. */
7160 isec = 0;
7161 matching_lma = NULL;
7162 suggested_lma = NULL;
7163
7164 for (section = first_section, j = 0;
7165 section != NULL;
7166 section = section->next)
7167 {
7168 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7169 {
7170 output_section = section->output_section;
7171
7172 sections[j++] = section;
7173
7174 /* The Solaris native linker always sets p_paddr to 0.
7175 We try to catch that case here, and set it to the
7176 correct value. Note - some backends require that
7177 p_paddr be left as zero. */
7178 if (!p_paddr_valid
7179 && segment->p_vaddr != 0
7180 && !bed->want_p_paddr_set_to_zero
7181 && isec == 0
7182 && output_section->lma != 0
7183 && (align_power (segment->p_vaddr
7184 + (map->includes_filehdr
7185 ? iehdr->e_ehsize : 0)
7186 + (map->includes_phdrs
7187 ? iehdr->e_phnum * iehdr->e_phentsize
7188 : 0),
7189 output_section->alignment_power)
7190 == output_section->vma))
7191 map->p_paddr = segment->p_vaddr;
7192
7193 /* Match up the physical address of the segment with the
7194 LMA address of the output section. */
7195 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7196 || IS_COREFILE_NOTE (segment, section)
7197 || (bed->want_p_paddr_set_to_zero
7198 && IS_CONTAINED_BY_VMA (output_section, segment)))
7199 {
7200 if (matching_lma == NULL
7201 || output_section->lma < matching_lma->lma)
7202 matching_lma = output_section;
7203
7204 /* We assume that if the section fits within the segment
7205 then it does not overlap any other section within that
7206 segment. */
7207 map->sections[isec++] = output_section;
7208 }
7209 else if (suggested_lma == NULL)
7210 suggested_lma = output_section;
7211
7212 if (j == section_count)
7213 break;
7214 }
7215 }
7216
7217 BFD_ASSERT (j == section_count);
7218
7219 /* Step Two: Adjust the physical address of the current segment,
7220 if necessary. */
7221 if (isec == section_count)
7222 {
7223 /* All of the sections fitted within the segment as currently
7224 specified. This is the default case. Add the segment to
7225 the list of built segments and carry on to process the next
7226 program header in the input BFD. */
7227 map->count = section_count;
7228 *pointer_to_map = map;
7229 pointer_to_map = &map->next;
7230
7231 if (p_paddr_valid
7232 && !bed->want_p_paddr_set_to_zero)
7233 {
7234 bfd_vma hdr_size = 0;
7235 if (map->includes_filehdr)
7236 hdr_size = iehdr->e_ehsize;
7237 if (map->includes_phdrs)
7238 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7239
7240 /* Account for padding before the first section in the
7241 segment. */
7242 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7243 }
7244
7245 free (sections);
7246 continue;
7247 }
7248 else
7249 {
7250 /* Change the current segment's physical address to match
7251 the LMA of the first section that fitted, or if no
7252 section fitted, the first section. */
7253 if (matching_lma == NULL)
7254 matching_lma = suggested_lma;
7255
7256 map->p_paddr = matching_lma->lma;
7257
7258 /* Offset the segment physical address from the lma
7259 to allow for space taken up by elf headers. */
7260 if (map->includes_phdrs)
7261 {
7262 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7263
7264 /* iehdr->e_phnum is just an estimate of the number
7265 of program headers that we will need. Make a note
7266 here of the number we used and the segment we chose
7267 to hold these headers, so that we can adjust the
7268 offset when we know the correct value. */
7269 phdr_adjust_num = iehdr->e_phnum;
7270 phdr_adjust_seg = map;
7271 }
7272
7273 if (map->includes_filehdr)
7274 {
7275 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7276 map->p_paddr -= iehdr->e_ehsize;
7277 /* We've subtracted off the size of headers from the
7278 first section lma, but there may have been some
7279 alignment padding before that section too. Try to
7280 account for that by adjusting the segment lma down to
7281 the same alignment. */
7282 if (segment->p_align != 0 && segment->p_align < align)
7283 align = segment->p_align;
7284 map->p_paddr &= -align;
7285 }
7286 }
7287
7288 /* Step Three: Loop over the sections again, this time assigning
7289 those that fit to the current segment and removing them from the
7290 sections array; but making sure not to leave large gaps. Once all
7291 possible sections have been assigned to the current segment it is
7292 added to the list of built segments and if sections still remain
7293 to be assigned, a new segment is constructed before repeating
7294 the loop. */
7295 isec = 0;
7296 do
7297 {
7298 map->count = 0;
7299 suggested_lma = NULL;
7300
7301 /* Fill the current segment with sections that fit. */
7302 for (j = 0; j < section_count; j++)
7303 {
7304 section = sections[j];
7305
7306 if (section == NULL)
7307 continue;
7308
7309 output_section = section->output_section;
7310
7311 BFD_ASSERT (output_section != NULL);
7312
7313 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7314 || IS_COREFILE_NOTE (segment, section))
7315 {
7316 if (map->count == 0)
7317 {
7318 /* If the first section in a segment does not start at
7319 the beginning of the segment, then something is
7320 wrong. */
7321 if (align_power (map->p_paddr
7322 + (map->includes_filehdr
7323 ? iehdr->e_ehsize : 0)
7324 + (map->includes_phdrs
7325 ? iehdr->e_phnum * iehdr->e_phentsize
7326 : 0),
7327 output_section->alignment_power)
7328 != output_section->lma)
7329 goto sorry;
7330 }
7331 else
7332 {
7333 asection *prev_sec;
7334
7335 prev_sec = map->sections[map->count - 1];
7336
7337 /* If the gap between the end of the previous section
7338 and the start of this section is more than
7339 maxpagesize then we need to start a new segment. */
7340 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7341 maxpagesize)
7342 < BFD_ALIGN (output_section->lma, maxpagesize))
7343 || (prev_sec->lma + prev_sec->size
7344 > output_section->lma))
7345 {
7346 if (suggested_lma == NULL)
7347 suggested_lma = output_section;
7348
7349 continue;
7350 }
7351 }
7352
7353 map->sections[map->count++] = output_section;
7354 ++isec;
7355 sections[j] = NULL;
7356 if (segment->p_type == PT_LOAD)
7357 section->segment_mark = TRUE;
7358 }
7359 else if (suggested_lma == NULL)
7360 suggested_lma = output_section;
7361 }
7362
7363 /* PR 23932. A corrupt input file may contain sections that cannot
7364 be assigned to any segment - because for example they have a
7365 negative size - or segments that do not contain any sections. */
7366 if (map->count == 0)
7367 {
7368 sorry:
7369 bfd_set_error (bfd_error_sorry);
7370 free (sections);
7371 return FALSE;
7372 }
7373
7374 /* Add the current segment to the list of built segments. */
7375 *pointer_to_map = map;
7376 pointer_to_map = &map->next;
7377
7378 if (isec < section_count)
7379 {
7380 /* We still have not allocated all of the sections to
7381 segments. Create a new segment here, initialise it
7382 and carry on looping. */
7383 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7384 amt += (bfd_size_type) section_count * sizeof (asection *);
7385 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7386 if (map == NULL)
7387 {
7388 free (sections);
7389 return FALSE;
7390 }
7391
7392 /* Initialise the fields of the segment map. Set the physical
7393 physical address to the LMA of the first section that has
7394 not yet been assigned. */
7395 map->next = NULL;
7396 map->p_type = segment->p_type;
7397 map->p_flags = segment->p_flags;
7398 map->p_flags_valid = 1;
7399 map->p_paddr = suggested_lma->lma;
7400 map->p_paddr_valid = p_paddr_valid;
7401 map->includes_filehdr = 0;
7402 map->includes_phdrs = 0;
7403 }
7404 }
7405 while (isec < section_count);
7406
7407 free (sections);
7408 }
7409
7410 elf_seg_map (obfd) = map_first;
7411
7412 /* If we had to estimate the number of program headers that were
7413 going to be needed, then check our estimate now and adjust
7414 the offset if necessary. */
7415 if (phdr_adjust_seg != NULL)
7416 {
7417 unsigned int count;
7418
7419 for (count = 0, map = map_first; map != NULL; map = map->next)
7420 count++;
7421
7422 if (count > phdr_adjust_num)
7423 phdr_adjust_seg->p_paddr
7424 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7425
7426 for (map = map_first; map != NULL; map = map->next)
7427 if (map->p_type == PT_PHDR)
7428 {
7429 bfd_vma adjust
7430 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7431 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7432 break;
7433 }
7434 }
7435
7436 #undef SEGMENT_END
7437 #undef SECTION_SIZE
7438 #undef IS_CONTAINED_BY_VMA
7439 #undef IS_CONTAINED_BY_LMA
7440 #undef IS_NOTE
7441 #undef IS_COREFILE_NOTE
7442 #undef IS_SOLARIS_PT_INTERP
7443 #undef IS_SECTION_IN_INPUT_SEGMENT
7444 #undef INCLUDE_SECTION_IN_SEGMENT
7445 #undef SEGMENT_AFTER_SEGMENT
7446 #undef SEGMENT_OVERLAPS
7447 return TRUE;
7448 }
7449
7450 /* Copy ELF program header information. */
7451
7452 static bfd_boolean
7453 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7454 {
7455 Elf_Internal_Ehdr *iehdr;
7456 struct elf_segment_map *map;
7457 struct elf_segment_map *map_first;
7458 struct elf_segment_map **pointer_to_map;
7459 Elf_Internal_Phdr *segment;
7460 unsigned int i;
7461 unsigned int num_segments;
7462 bfd_boolean phdr_included = FALSE;
7463 bfd_boolean p_paddr_valid;
7464
7465 iehdr = elf_elfheader (ibfd);
7466
7467 map_first = NULL;
7468 pointer_to_map = &map_first;
7469
7470 /* If all the segment p_paddr fields are zero, don't set
7471 map->p_paddr_valid. */
7472 p_paddr_valid = FALSE;
7473 num_segments = elf_elfheader (ibfd)->e_phnum;
7474 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7475 i < num_segments;
7476 i++, segment++)
7477 if (segment->p_paddr != 0)
7478 {
7479 p_paddr_valid = TRUE;
7480 break;
7481 }
7482
7483 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7484 i < num_segments;
7485 i++, segment++)
7486 {
7487 asection *section;
7488 unsigned int section_count;
7489 bfd_size_type amt;
7490 Elf_Internal_Shdr *this_hdr;
7491 asection *first_section = NULL;
7492 asection *lowest_section;
7493
7494 /* Compute how many sections are in this segment. */
7495 for (section = ibfd->sections, section_count = 0;
7496 section != NULL;
7497 section = section->next)
7498 {
7499 this_hdr = &(elf_section_data(section)->this_hdr);
7500 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7501 {
7502 if (first_section == NULL)
7503 first_section = section;
7504 section_count++;
7505 }
7506 }
7507
7508 /* Allocate a segment map big enough to contain
7509 all of the sections we have selected. */
7510 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7511 amt += (bfd_size_type) section_count * sizeof (asection *);
7512 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7513 if (map == NULL)
7514 return FALSE;
7515
7516 /* Initialize the fields of the output segment map with the
7517 input segment. */
7518 map->next = NULL;
7519 map->p_type = segment->p_type;
7520 map->p_flags = segment->p_flags;
7521 map->p_flags_valid = 1;
7522 map->p_paddr = segment->p_paddr;
7523 map->p_paddr_valid = p_paddr_valid;
7524 map->p_align = segment->p_align;
7525 map->p_align_valid = 1;
7526 map->p_vaddr_offset = 0;
7527
7528 if (map->p_type == PT_GNU_RELRO
7529 || map->p_type == PT_GNU_STACK)
7530 {
7531 /* The PT_GNU_RELRO segment may contain the first a few
7532 bytes in the .got.plt section even if the whole .got.plt
7533 section isn't in the PT_GNU_RELRO segment. We won't
7534 change the size of the PT_GNU_RELRO segment.
7535 Similarly, PT_GNU_STACK size is significant on uclinux
7536 systems. */
7537 map->p_size = segment->p_memsz;
7538 map->p_size_valid = 1;
7539 }
7540
7541 /* Determine if this segment contains the ELF file header
7542 and if it contains the program headers themselves. */
7543 map->includes_filehdr = (segment->p_offset == 0
7544 && segment->p_filesz >= iehdr->e_ehsize);
7545
7546 map->includes_phdrs = 0;
7547 if (! phdr_included || segment->p_type != PT_LOAD)
7548 {
7549 map->includes_phdrs =
7550 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7551 && (segment->p_offset + segment->p_filesz
7552 >= ((bfd_vma) iehdr->e_phoff
7553 + iehdr->e_phnum * iehdr->e_phentsize)));
7554
7555 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7556 phdr_included = TRUE;
7557 }
7558
7559 lowest_section = NULL;
7560 if (section_count != 0)
7561 {
7562 unsigned int isec = 0;
7563
7564 for (section = first_section;
7565 section != NULL;
7566 section = section->next)
7567 {
7568 this_hdr = &(elf_section_data(section)->this_hdr);
7569 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7570 {
7571 map->sections[isec++] = section->output_section;
7572 if ((section->flags & SEC_ALLOC) != 0)
7573 {
7574 bfd_vma seg_off;
7575
7576 if (lowest_section == NULL
7577 || section->lma < lowest_section->lma)
7578 lowest_section = section;
7579
7580 /* Section lmas are set up from PT_LOAD header
7581 p_paddr in _bfd_elf_make_section_from_shdr.
7582 If this header has a p_paddr that disagrees
7583 with the section lma, flag the p_paddr as
7584 invalid. */
7585 if ((section->flags & SEC_LOAD) != 0)
7586 seg_off = this_hdr->sh_offset - segment->p_offset;
7587 else
7588 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7589 if (section->lma - segment->p_paddr != seg_off)
7590 map->p_paddr_valid = FALSE;
7591 }
7592 if (isec == section_count)
7593 break;
7594 }
7595 }
7596 }
7597
7598 if (section_count == 0)
7599 map->p_vaddr_offset = segment->p_vaddr;
7600 else if (map->p_paddr_valid)
7601 {
7602 /* Account for padding before the first section in the segment. */
7603 bfd_vma hdr_size = 0;
7604 if (map->includes_filehdr)
7605 hdr_size = iehdr->e_ehsize;
7606 if (map->includes_phdrs)
7607 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7608
7609 map->p_vaddr_offset = (map->p_paddr + hdr_size
7610 - (lowest_section ? lowest_section->lma : 0));
7611 }
7612
7613 map->count = section_count;
7614 *pointer_to_map = map;
7615 pointer_to_map = &map->next;
7616 }
7617
7618 elf_seg_map (obfd) = map_first;
7619 return TRUE;
7620 }
7621
7622 /* Copy private BFD data. This copies or rewrites ELF program header
7623 information. */
7624
7625 static bfd_boolean
7626 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7627 {
7628 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7629 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7630 return TRUE;
7631
7632 if (elf_tdata (ibfd)->phdr == NULL)
7633 return TRUE;
7634
7635 if (ibfd->xvec == obfd->xvec)
7636 {
7637 /* Check to see if any sections in the input BFD
7638 covered by ELF program header have changed. */
7639 Elf_Internal_Phdr *segment;
7640 asection *section, *osec;
7641 unsigned int i, num_segments;
7642 Elf_Internal_Shdr *this_hdr;
7643 const struct elf_backend_data *bed;
7644
7645 bed = get_elf_backend_data (ibfd);
7646
7647 /* Regenerate the segment map if p_paddr is set to 0. */
7648 if (bed->want_p_paddr_set_to_zero)
7649 goto rewrite;
7650
7651 /* Initialize the segment mark field. */
7652 for (section = obfd->sections; section != NULL;
7653 section = section->next)
7654 section->segment_mark = FALSE;
7655
7656 num_segments = elf_elfheader (ibfd)->e_phnum;
7657 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7658 i < num_segments;
7659 i++, segment++)
7660 {
7661 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7662 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7663 which severly confuses things, so always regenerate the segment
7664 map in this case. */
7665 if (segment->p_paddr == 0
7666 && segment->p_memsz == 0
7667 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7668 goto rewrite;
7669
7670 for (section = ibfd->sections;
7671 section != NULL; section = section->next)
7672 {
7673 /* We mark the output section so that we know it comes
7674 from the input BFD. */
7675 osec = section->output_section;
7676 if (osec)
7677 osec->segment_mark = TRUE;
7678
7679 /* Check if this section is covered by the segment. */
7680 this_hdr = &(elf_section_data(section)->this_hdr);
7681 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7682 {
7683 /* FIXME: Check if its output section is changed or
7684 removed. What else do we need to check? */
7685 if (osec == NULL
7686 || section->flags != osec->flags
7687 || section->lma != osec->lma
7688 || section->vma != osec->vma
7689 || section->size != osec->size
7690 || section->rawsize != osec->rawsize
7691 || section->alignment_power != osec->alignment_power)
7692 goto rewrite;
7693 }
7694 }
7695 }
7696
7697 /* Check to see if any output section do not come from the
7698 input BFD. */
7699 for (section = obfd->sections; section != NULL;
7700 section = section->next)
7701 {
7702 if (!section->segment_mark)
7703 goto rewrite;
7704 else
7705 section->segment_mark = FALSE;
7706 }
7707
7708 return copy_elf_program_header (ibfd, obfd);
7709 }
7710
7711 rewrite:
7712 if (ibfd->xvec == obfd->xvec)
7713 {
7714 /* When rewriting program header, set the output maxpagesize to
7715 the maximum alignment of input PT_LOAD segments. */
7716 Elf_Internal_Phdr *segment;
7717 unsigned int i;
7718 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7719 bfd_vma maxpagesize = 0;
7720
7721 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7722 i < num_segments;
7723 i++, segment++)
7724 if (segment->p_type == PT_LOAD
7725 && maxpagesize < segment->p_align)
7726 {
7727 /* PR 17512: file: f17299af. */
7728 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7729 /* xgettext:c-format */
7730 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7731 PRIx64 " is too large"),
7732 ibfd, (uint64_t) segment->p_align);
7733 else
7734 maxpagesize = segment->p_align;
7735 }
7736
7737 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7738 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7739 }
7740
7741 return rewrite_elf_program_header (ibfd, obfd);
7742 }
7743
7744 /* Initialize private output section information from input section. */
7745
7746 bfd_boolean
7747 _bfd_elf_init_private_section_data (bfd *ibfd,
7748 asection *isec,
7749 bfd *obfd,
7750 asection *osec,
7751 struct bfd_link_info *link_info)
7752
7753 {
7754 Elf_Internal_Shdr *ihdr, *ohdr;
7755 bfd_boolean final_link = (link_info != NULL
7756 && !bfd_link_relocatable (link_info));
7757
7758 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7759 || obfd->xvec->flavour != bfd_target_elf_flavour)
7760 return TRUE;
7761
7762 BFD_ASSERT (elf_section_data (osec) != NULL);
7763
7764 /* For objcopy and relocatable link, don't copy the output ELF
7765 section type from input if the output BFD section flags have been
7766 set to something different. For a final link allow some flags
7767 that the linker clears to differ. */
7768 if (elf_section_type (osec) == SHT_NULL
7769 && (osec->flags == isec->flags
7770 || (final_link
7771 && ((osec->flags ^ isec->flags)
7772 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7773 elf_section_type (osec) = elf_section_type (isec);
7774
7775 /* FIXME: Is this correct for all OS/PROC specific flags? */
7776 elf_section_flags (osec) |= (elf_section_flags (isec)
7777 & (SHF_MASKOS | SHF_MASKPROC));
7778
7779 /* Copy sh_info from input for mbind section. */
7780 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7781 && elf_section_flags (isec) & SHF_GNU_MBIND)
7782 elf_section_data (osec)->this_hdr.sh_info
7783 = elf_section_data (isec)->this_hdr.sh_info;
7784
7785 /* Set things up for objcopy and relocatable link. The output
7786 SHT_GROUP section will have its elf_next_in_group pointing back
7787 to the input group members. Ignore linker created group section.
7788 See elfNN_ia64_object_p in elfxx-ia64.c. */
7789 if ((link_info == NULL
7790 || !link_info->resolve_section_groups)
7791 && (elf_sec_group (isec) == NULL
7792 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7793 {
7794 if (elf_section_flags (isec) & SHF_GROUP)
7795 elf_section_flags (osec) |= SHF_GROUP;
7796 elf_next_in_group (osec) = elf_next_in_group (isec);
7797 elf_section_data (osec)->group = elf_section_data (isec)->group;
7798 }
7799
7800 /* If not decompress, preserve SHF_COMPRESSED. */
7801 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7802 elf_section_flags (osec) |= (elf_section_flags (isec)
7803 & SHF_COMPRESSED);
7804
7805 ihdr = &elf_section_data (isec)->this_hdr;
7806
7807 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7808 don't use the output section of the linked-to section since it
7809 may be NULL at this point. */
7810 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7811 {
7812 ohdr = &elf_section_data (osec)->this_hdr;
7813 ohdr->sh_flags |= SHF_LINK_ORDER;
7814 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7815 }
7816
7817 osec->use_rela_p = isec->use_rela_p;
7818
7819 return TRUE;
7820 }
7821
7822 /* Copy private section information. This copies over the entsize
7823 field, and sometimes the info field. */
7824
7825 bfd_boolean
7826 _bfd_elf_copy_private_section_data (bfd *ibfd,
7827 asection *isec,
7828 bfd *obfd,
7829 asection *osec)
7830 {
7831 Elf_Internal_Shdr *ihdr, *ohdr;
7832
7833 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7834 || obfd->xvec->flavour != bfd_target_elf_flavour)
7835 return TRUE;
7836
7837 ihdr = &elf_section_data (isec)->this_hdr;
7838 ohdr = &elf_section_data (osec)->this_hdr;
7839
7840 ohdr->sh_entsize = ihdr->sh_entsize;
7841
7842 if (ihdr->sh_type == SHT_SYMTAB
7843 || ihdr->sh_type == SHT_DYNSYM
7844 || ihdr->sh_type == SHT_GNU_verneed
7845 || ihdr->sh_type == SHT_GNU_verdef)
7846 ohdr->sh_info = ihdr->sh_info;
7847
7848 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7849 NULL);
7850 }
7851
7852 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7853 necessary if we are removing either the SHT_GROUP section or any of
7854 the group member sections. DISCARDED is the value that a section's
7855 output_section has if the section will be discarded, NULL when this
7856 function is called from objcopy, bfd_abs_section_ptr when called
7857 from the linker. */
7858
7859 bfd_boolean
7860 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7861 {
7862 asection *isec;
7863
7864 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7865 if (elf_section_type (isec) == SHT_GROUP)
7866 {
7867 asection *first = elf_next_in_group (isec);
7868 asection *s = first;
7869 bfd_size_type removed = 0;
7870
7871 while (s != NULL)
7872 {
7873 /* If this member section is being output but the
7874 SHT_GROUP section is not, then clear the group info
7875 set up by _bfd_elf_copy_private_section_data. */
7876 if (s->output_section != discarded
7877 && isec->output_section == discarded)
7878 {
7879 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7880 elf_group_name (s->output_section) = NULL;
7881 }
7882 /* Conversely, if the member section is not being output
7883 but the SHT_GROUP section is, then adjust its size. */
7884 else if (s->output_section == discarded
7885 && isec->output_section != discarded)
7886 {
7887 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7888 removed += 4;
7889 if (elf_sec->rel.hdr != NULL
7890 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7891 removed += 4;
7892 if (elf_sec->rela.hdr != NULL
7893 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7894 removed += 4;
7895 }
7896 s = elf_next_in_group (s);
7897 if (s == first)
7898 break;
7899 }
7900 if (removed != 0)
7901 {
7902 if (discarded != NULL)
7903 {
7904 /* If we've been called for ld -r, then we need to
7905 adjust the input section size. */
7906 if (isec->rawsize == 0)
7907 isec->rawsize = isec->size;
7908 isec->size = isec->rawsize - removed;
7909 if (isec->size <= 4)
7910 {
7911 isec->size = 0;
7912 isec->flags |= SEC_EXCLUDE;
7913 }
7914 }
7915 else
7916 {
7917 /* Adjust the output section size when called from
7918 objcopy. */
7919 isec->output_section->size -= removed;
7920 if (isec->output_section->size <= 4)
7921 {
7922 isec->output_section->size = 0;
7923 isec->output_section->flags |= SEC_EXCLUDE;
7924 }
7925 }
7926 }
7927 }
7928
7929 return TRUE;
7930 }
7931
7932 /* Copy private header information. */
7933
7934 bfd_boolean
7935 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7936 {
7937 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7938 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7939 return TRUE;
7940
7941 /* Copy over private BFD data if it has not already been copied.
7942 This must be done here, rather than in the copy_private_bfd_data
7943 entry point, because the latter is called after the section
7944 contents have been set, which means that the program headers have
7945 already been worked out. */
7946 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7947 {
7948 if (! copy_private_bfd_data (ibfd, obfd))
7949 return FALSE;
7950 }
7951
7952 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7953 }
7954
7955 /* Copy private symbol information. If this symbol is in a section
7956 which we did not map into a BFD section, try to map the section
7957 index correctly. We use special macro definitions for the mapped
7958 section indices; these definitions are interpreted by the
7959 swap_out_syms function. */
7960
7961 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7962 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7963 #define MAP_STRTAB (SHN_HIOS + 3)
7964 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7965 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7966
7967 bfd_boolean
7968 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7969 asymbol *isymarg,
7970 bfd *obfd,
7971 asymbol *osymarg)
7972 {
7973 elf_symbol_type *isym, *osym;
7974
7975 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7976 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7977 return TRUE;
7978
7979 isym = elf_symbol_from (ibfd, isymarg);
7980 osym = elf_symbol_from (obfd, osymarg);
7981
7982 if (isym != NULL
7983 && isym->internal_elf_sym.st_shndx != 0
7984 && osym != NULL
7985 && bfd_is_abs_section (isym->symbol.section))
7986 {
7987 unsigned int shndx;
7988
7989 shndx = isym->internal_elf_sym.st_shndx;
7990 if (shndx == elf_onesymtab (ibfd))
7991 shndx = MAP_ONESYMTAB;
7992 else if (shndx == elf_dynsymtab (ibfd))
7993 shndx = MAP_DYNSYMTAB;
7994 else if (shndx == elf_strtab_sec (ibfd))
7995 shndx = MAP_STRTAB;
7996 else if (shndx == elf_shstrtab_sec (ibfd))
7997 shndx = MAP_SHSTRTAB;
7998 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7999 shndx = MAP_SYM_SHNDX;
8000 osym->internal_elf_sym.st_shndx = shndx;
8001 }
8002
8003 return TRUE;
8004 }
8005
8006 /* Swap out the symbols. */
8007
8008 static bfd_boolean
8009 swap_out_syms (bfd *abfd,
8010 struct elf_strtab_hash **sttp,
8011 int relocatable_p)
8012 {
8013 const struct elf_backend_data *bed;
8014 int symcount;
8015 asymbol **syms;
8016 struct elf_strtab_hash *stt;
8017 Elf_Internal_Shdr *symtab_hdr;
8018 Elf_Internal_Shdr *symtab_shndx_hdr;
8019 Elf_Internal_Shdr *symstrtab_hdr;
8020 struct elf_sym_strtab *symstrtab;
8021 bfd_byte *outbound_syms;
8022 bfd_byte *outbound_shndx;
8023 unsigned long outbound_syms_index;
8024 unsigned long outbound_shndx_index;
8025 int idx;
8026 unsigned int num_locals;
8027 bfd_size_type amt;
8028 bfd_boolean name_local_sections;
8029
8030 if (!elf_map_symbols (abfd, &num_locals))
8031 return FALSE;
8032
8033 /* Dump out the symtabs. */
8034 stt = _bfd_elf_strtab_init ();
8035 if (stt == NULL)
8036 return FALSE;
8037
8038 bed = get_elf_backend_data (abfd);
8039 symcount = bfd_get_symcount (abfd);
8040 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8041 symtab_hdr->sh_type = SHT_SYMTAB;
8042 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8043 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8044 symtab_hdr->sh_info = num_locals + 1;
8045 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8046
8047 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8048 symstrtab_hdr->sh_type = SHT_STRTAB;
8049
8050 /* Allocate buffer to swap out the .strtab section. */
8051 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8052 sizeof (*symstrtab));
8053 if (symstrtab == NULL)
8054 {
8055 _bfd_elf_strtab_free (stt);
8056 return FALSE;
8057 }
8058
8059 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8060 bed->s->sizeof_sym);
8061 if (outbound_syms == NULL)
8062 {
8063 error_return:
8064 _bfd_elf_strtab_free (stt);
8065 free (symstrtab);
8066 return FALSE;
8067 }
8068 symtab_hdr->contents = outbound_syms;
8069 outbound_syms_index = 0;
8070
8071 outbound_shndx = NULL;
8072 outbound_shndx_index = 0;
8073
8074 if (elf_symtab_shndx_list (abfd))
8075 {
8076 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8077 if (symtab_shndx_hdr->sh_name != 0)
8078 {
8079 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8080 outbound_shndx = (bfd_byte *)
8081 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8082 if (outbound_shndx == NULL)
8083 goto error_return;
8084
8085 symtab_shndx_hdr->contents = outbound_shndx;
8086 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8087 symtab_shndx_hdr->sh_size = amt;
8088 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8089 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8090 }
8091 /* FIXME: What about any other headers in the list ? */
8092 }
8093
8094 /* Now generate the data (for "contents"). */
8095 {
8096 /* Fill in zeroth symbol and swap it out. */
8097 Elf_Internal_Sym sym;
8098 sym.st_name = 0;
8099 sym.st_value = 0;
8100 sym.st_size = 0;
8101 sym.st_info = 0;
8102 sym.st_other = 0;
8103 sym.st_shndx = SHN_UNDEF;
8104 sym.st_target_internal = 0;
8105 symstrtab[0].sym = sym;
8106 symstrtab[0].dest_index = outbound_syms_index;
8107 symstrtab[0].destshndx_index = outbound_shndx_index;
8108 outbound_syms_index++;
8109 if (outbound_shndx != NULL)
8110 outbound_shndx_index++;
8111 }
8112
8113 name_local_sections
8114 = (bed->elf_backend_name_local_section_symbols
8115 && bed->elf_backend_name_local_section_symbols (abfd));
8116
8117 syms = bfd_get_outsymbols (abfd);
8118 for (idx = 0; idx < symcount;)
8119 {
8120 Elf_Internal_Sym sym;
8121 bfd_vma value = syms[idx]->value;
8122 elf_symbol_type *type_ptr;
8123 flagword flags = syms[idx]->flags;
8124 int type;
8125
8126 if (!name_local_sections
8127 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8128 {
8129 /* Local section symbols have no name. */
8130 sym.st_name = (unsigned long) -1;
8131 }
8132 else
8133 {
8134 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8135 to get the final offset for st_name. */
8136 sym.st_name
8137 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8138 FALSE);
8139 if (sym.st_name == (unsigned long) -1)
8140 goto error_return;
8141 }
8142
8143 type_ptr = elf_symbol_from (abfd, syms[idx]);
8144
8145 if ((flags & BSF_SECTION_SYM) == 0
8146 && bfd_is_com_section (syms[idx]->section))
8147 {
8148 /* ELF common symbols put the alignment into the `value' field,
8149 and the size into the `size' field. This is backwards from
8150 how BFD handles it, so reverse it here. */
8151 sym.st_size = value;
8152 if (type_ptr == NULL
8153 || type_ptr->internal_elf_sym.st_value == 0)
8154 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8155 else
8156 sym.st_value = type_ptr->internal_elf_sym.st_value;
8157 sym.st_shndx = _bfd_elf_section_from_bfd_section
8158 (abfd, syms[idx]->section);
8159 }
8160 else
8161 {
8162 asection *sec = syms[idx]->section;
8163 unsigned int shndx;
8164
8165 if (sec->output_section)
8166 {
8167 value += sec->output_offset;
8168 sec = sec->output_section;
8169 }
8170
8171 /* Don't add in the section vma for relocatable output. */
8172 if (! relocatable_p)
8173 value += sec->vma;
8174 sym.st_value = value;
8175 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8176
8177 if (bfd_is_abs_section (sec)
8178 && type_ptr != NULL
8179 && type_ptr->internal_elf_sym.st_shndx != 0)
8180 {
8181 /* This symbol is in a real ELF section which we did
8182 not create as a BFD section. Undo the mapping done
8183 by copy_private_symbol_data. */
8184 shndx = type_ptr->internal_elf_sym.st_shndx;
8185 switch (shndx)
8186 {
8187 case MAP_ONESYMTAB:
8188 shndx = elf_onesymtab (abfd);
8189 break;
8190 case MAP_DYNSYMTAB:
8191 shndx = elf_dynsymtab (abfd);
8192 break;
8193 case MAP_STRTAB:
8194 shndx = elf_strtab_sec (abfd);
8195 break;
8196 case MAP_SHSTRTAB:
8197 shndx = elf_shstrtab_sec (abfd);
8198 break;
8199 case MAP_SYM_SHNDX:
8200 if (elf_symtab_shndx_list (abfd))
8201 shndx = elf_symtab_shndx_list (abfd)->ndx;
8202 break;
8203 default:
8204 shndx = SHN_ABS;
8205 break;
8206 }
8207 }
8208 else
8209 {
8210 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8211
8212 if (shndx == SHN_BAD)
8213 {
8214 asection *sec2;
8215
8216 /* Writing this would be a hell of a lot easier if
8217 we had some decent documentation on bfd, and
8218 knew what to expect of the library, and what to
8219 demand of applications. For example, it
8220 appears that `objcopy' might not set the
8221 section of a symbol to be a section that is
8222 actually in the output file. */
8223 sec2 = bfd_get_section_by_name (abfd, sec->name);
8224 if (sec2 != NULL)
8225 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8226 if (shndx == SHN_BAD)
8227 {
8228 /* xgettext:c-format */
8229 _bfd_error_handler
8230 (_("unable to find equivalent output section"
8231 " for symbol '%s' from section '%s'"),
8232 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8233 sec->name);
8234 bfd_set_error (bfd_error_invalid_operation);
8235 goto error_return;
8236 }
8237 }
8238 }
8239
8240 sym.st_shndx = shndx;
8241 }
8242
8243 if ((flags & BSF_THREAD_LOCAL) != 0)
8244 type = STT_TLS;
8245 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8246 type = STT_GNU_IFUNC;
8247 else if ((flags & BSF_FUNCTION) != 0)
8248 type = STT_FUNC;
8249 else if ((flags & BSF_OBJECT) != 0)
8250 type = STT_OBJECT;
8251 else if ((flags & BSF_RELC) != 0)
8252 type = STT_RELC;
8253 else if ((flags & BSF_SRELC) != 0)
8254 type = STT_SRELC;
8255 else
8256 type = STT_NOTYPE;
8257
8258 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8259 type = STT_TLS;
8260
8261 /* Processor-specific types. */
8262 if (type_ptr != NULL
8263 && bed->elf_backend_get_symbol_type)
8264 type = ((*bed->elf_backend_get_symbol_type)
8265 (&type_ptr->internal_elf_sym, type));
8266
8267 if (flags & BSF_SECTION_SYM)
8268 {
8269 if (flags & BSF_GLOBAL)
8270 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8271 else
8272 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8273 }
8274 else if (bfd_is_com_section (syms[idx]->section))
8275 {
8276 if (type != STT_TLS)
8277 {
8278 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8279 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8280 ? STT_COMMON : STT_OBJECT);
8281 else
8282 type = ((flags & BSF_ELF_COMMON) != 0
8283 ? STT_COMMON : STT_OBJECT);
8284 }
8285 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8286 }
8287 else if (bfd_is_und_section (syms[idx]->section))
8288 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8289 ? STB_WEAK
8290 : STB_GLOBAL),
8291 type);
8292 else if (flags & BSF_FILE)
8293 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8294 else
8295 {
8296 int bind = STB_LOCAL;
8297
8298 if (flags & BSF_LOCAL)
8299 bind = STB_LOCAL;
8300 else if (flags & BSF_GNU_UNIQUE)
8301 bind = STB_GNU_UNIQUE;
8302 else if (flags & BSF_WEAK)
8303 bind = STB_WEAK;
8304 else if (flags & BSF_GLOBAL)
8305 bind = STB_GLOBAL;
8306
8307 sym.st_info = ELF_ST_INFO (bind, type);
8308 }
8309
8310 if (type_ptr != NULL)
8311 {
8312 sym.st_other = type_ptr->internal_elf_sym.st_other;
8313 sym.st_target_internal
8314 = type_ptr->internal_elf_sym.st_target_internal;
8315 }
8316 else
8317 {
8318 sym.st_other = 0;
8319 sym.st_target_internal = 0;
8320 }
8321
8322 idx++;
8323 symstrtab[idx].sym = sym;
8324 symstrtab[idx].dest_index = outbound_syms_index;
8325 symstrtab[idx].destshndx_index = outbound_shndx_index;
8326
8327 outbound_syms_index++;
8328 if (outbound_shndx != NULL)
8329 outbound_shndx_index++;
8330 }
8331
8332 /* Finalize the .strtab section. */
8333 _bfd_elf_strtab_finalize (stt);
8334
8335 /* Swap out the .strtab section. */
8336 for (idx = 0; idx <= symcount; idx++)
8337 {
8338 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8339 if (elfsym->sym.st_name == (unsigned long) -1)
8340 elfsym->sym.st_name = 0;
8341 else
8342 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8343 elfsym->sym.st_name);
8344 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8345 (outbound_syms
8346 + (elfsym->dest_index
8347 * bed->s->sizeof_sym)),
8348 (outbound_shndx
8349 + (elfsym->destshndx_index
8350 * sizeof (Elf_External_Sym_Shndx))));
8351 }
8352 free (symstrtab);
8353
8354 *sttp = stt;
8355 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8356 symstrtab_hdr->sh_type = SHT_STRTAB;
8357 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8358 symstrtab_hdr->sh_addr = 0;
8359 symstrtab_hdr->sh_entsize = 0;
8360 symstrtab_hdr->sh_link = 0;
8361 symstrtab_hdr->sh_info = 0;
8362 symstrtab_hdr->sh_addralign = 1;
8363
8364 return TRUE;
8365 }
8366
8367 /* Return the number of bytes required to hold the symtab vector.
8368
8369 Note that we base it on the count plus 1, since we will null terminate
8370 the vector allocated based on this size. However, the ELF symbol table
8371 always has a dummy entry as symbol #0, so it ends up even. */
8372
8373 long
8374 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8375 {
8376 bfd_size_type symcount;
8377 long symtab_size;
8378 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8379
8380 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8381 if (symcount >= LONG_MAX / sizeof (asymbol *))
8382 {
8383 bfd_set_error (bfd_error_file_too_big);
8384 return -1;
8385 }
8386 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8387 if (symcount > 0)
8388 symtab_size -= sizeof (asymbol *);
8389
8390 return symtab_size;
8391 }
8392
8393 long
8394 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8395 {
8396 bfd_size_type symcount;
8397 long symtab_size;
8398 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8399
8400 if (elf_dynsymtab (abfd) == 0)
8401 {
8402 bfd_set_error (bfd_error_invalid_operation);
8403 return -1;
8404 }
8405
8406 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8407 if (symcount >= LONG_MAX / sizeof (asymbol *))
8408 {
8409 bfd_set_error (bfd_error_file_too_big);
8410 return -1;
8411 }
8412 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8413 if (symcount > 0)
8414 symtab_size -= sizeof (asymbol *);
8415
8416 return symtab_size;
8417 }
8418
8419 long
8420 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8421 sec_ptr asect)
8422 {
8423 #if SIZEOF_LONG == SIZEOF_INT
8424 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8425 {
8426 bfd_set_error (bfd_error_file_too_big);
8427 return -1;
8428 }
8429 #endif
8430 return (asect->reloc_count + 1) * sizeof (arelent *);
8431 }
8432
8433 /* Canonicalize the relocs. */
8434
8435 long
8436 _bfd_elf_canonicalize_reloc (bfd *abfd,
8437 sec_ptr section,
8438 arelent **relptr,
8439 asymbol **symbols)
8440 {
8441 arelent *tblptr;
8442 unsigned int i;
8443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8444
8445 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8446 return -1;
8447
8448 tblptr = section->relocation;
8449 for (i = 0; i < section->reloc_count; i++)
8450 *relptr++ = tblptr++;
8451
8452 *relptr = NULL;
8453
8454 return section->reloc_count;
8455 }
8456
8457 long
8458 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8459 {
8460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8461 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8462
8463 if (symcount >= 0)
8464 abfd->symcount = symcount;
8465 return symcount;
8466 }
8467
8468 long
8469 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8470 asymbol **allocation)
8471 {
8472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8473 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8474
8475 if (symcount >= 0)
8476 abfd->dynsymcount = symcount;
8477 return symcount;
8478 }
8479
8480 /* Return the size required for the dynamic reloc entries. Any loadable
8481 section that was actually installed in the BFD, and has type SHT_REL
8482 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8483 dynamic reloc section. */
8484
8485 long
8486 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8487 {
8488 bfd_size_type count;
8489 asection *s;
8490
8491 if (elf_dynsymtab (abfd) == 0)
8492 {
8493 bfd_set_error (bfd_error_invalid_operation);
8494 return -1;
8495 }
8496
8497 count = 1;
8498 for (s = abfd->sections; s != NULL; s = s->next)
8499 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8500 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8501 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8502 {
8503 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8504 if (count > LONG_MAX / sizeof (arelent *))
8505 {
8506 bfd_set_error (bfd_error_file_too_big);
8507 return -1;
8508 }
8509 }
8510 return count * sizeof (arelent *);
8511 }
8512
8513 /* Canonicalize the dynamic relocation entries. Note that we return the
8514 dynamic relocations as a single block, although they are actually
8515 associated with particular sections; the interface, which was
8516 designed for SunOS style shared libraries, expects that there is only
8517 one set of dynamic relocs. Any loadable section that was actually
8518 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8519 dynamic symbol table, is considered to be a dynamic reloc section. */
8520
8521 long
8522 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8523 arelent **storage,
8524 asymbol **syms)
8525 {
8526 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8527 asection *s;
8528 long ret;
8529
8530 if (elf_dynsymtab (abfd) == 0)
8531 {
8532 bfd_set_error (bfd_error_invalid_operation);
8533 return -1;
8534 }
8535
8536 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8537 ret = 0;
8538 for (s = abfd->sections; s != NULL; s = s->next)
8539 {
8540 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8541 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8542 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8543 {
8544 arelent *p;
8545 long count, i;
8546
8547 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8548 return -1;
8549 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8550 p = s->relocation;
8551 for (i = 0; i < count; i++)
8552 *storage++ = p++;
8553 ret += count;
8554 }
8555 }
8556
8557 *storage = NULL;
8558
8559 return ret;
8560 }
8561 \f
8562 /* Read in the version information. */
8563
8564 bfd_boolean
8565 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8566 {
8567 bfd_byte *contents = NULL;
8568 unsigned int freeidx = 0;
8569
8570 if (elf_dynverref (abfd) != 0)
8571 {
8572 Elf_Internal_Shdr *hdr;
8573 Elf_External_Verneed *everneed;
8574 Elf_Internal_Verneed *iverneed;
8575 unsigned int i;
8576 bfd_byte *contents_end;
8577
8578 hdr = &elf_tdata (abfd)->dynverref_hdr;
8579
8580 if (hdr->sh_info == 0
8581 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8582 {
8583 error_return_bad_verref:
8584 _bfd_error_handler
8585 (_("%pB: .gnu.version_r invalid entry"), abfd);
8586 bfd_set_error (bfd_error_bad_value);
8587 error_return_verref:
8588 elf_tdata (abfd)->verref = NULL;
8589 elf_tdata (abfd)->cverrefs = 0;
8590 goto error_return;
8591 }
8592
8593 ufile_ptr filesize = bfd_get_file_size (abfd);
8594 if (filesize > 0 && filesize < hdr->sh_size)
8595 {
8596 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8597 of memory. */
8598 bfd_set_error (bfd_error_no_memory);
8599 _bfd_error_handler
8600 /* xgettext:c-format */
8601 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8602 abfd, (uint64_t) hdr->sh_size);
8603 goto error_return_verref;
8604 }
8605 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8606 if (contents == NULL)
8607 goto error_return_verref;
8608
8609 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8610 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8611 goto error_return_verref;
8612
8613 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8614 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8615
8616 if (elf_tdata (abfd)->verref == NULL)
8617 goto error_return_verref;
8618
8619 BFD_ASSERT (sizeof (Elf_External_Verneed)
8620 == sizeof (Elf_External_Vernaux));
8621 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8622 everneed = (Elf_External_Verneed *) contents;
8623 iverneed = elf_tdata (abfd)->verref;
8624 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8625 {
8626 Elf_External_Vernaux *evernaux;
8627 Elf_Internal_Vernaux *ivernaux;
8628 unsigned int j;
8629
8630 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8631
8632 iverneed->vn_bfd = abfd;
8633
8634 iverneed->vn_filename =
8635 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8636 iverneed->vn_file);
8637 if (iverneed->vn_filename == NULL)
8638 goto error_return_bad_verref;
8639
8640 if (iverneed->vn_cnt == 0)
8641 iverneed->vn_auxptr = NULL;
8642 else
8643 {
8644 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8645 bfd_alloc2 (abfd, iverneed->vn_cnt,
8646 sizeof (Elf_Internal_Vernaux));
8647 if (iverneed->vn_auxptr == NULL)
8648 goto error_return_verref;
8649 }
8650
8651 if (iverneed->vn_aux
8652 > (size_t) (contents_end - (bfd_byte *) everneed))
8653 goto error_return_bad_verref;
8654
8655 evernaux = ((Elf_External_Vernaux *)
8656 ((bfd_byte *) everneed + iverneed->vn_aux));
8657 ivernaux = iverneed->vn_auxptr;
8658 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8659 {
8660 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8661
8662 ivernaux->vna_nodename =
8663 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8664 ivernaux->vna_name);
8665 if (ivernaux->vna_nodename == NULL)
8666 goto error_return_bad_verref;
8667
8668 if (ivernaux->vna_other > freeidx)
8669 freeidx = ivernaux->vna_other;
8670
8671 ivernaux->vna_nextptr = NULL;
8672 if (ivernaux->vna_next == 0)
8673 {
8674 iverneed->vn_cnt = j + 1;
8675 break;
8676 }
8677 if (j + 1 < iverneed->vn_cnt)
8678 ivernaux->vna_nextptr = ivernaux + 1;
8679
8680 if (ivernaux->vna_next
8681 > (size_t) (contents_end - (bfd_byte *) evernaux))
8682 goto error_return_bad_verref;
8683
8684 evernaux = ((Elf_External_Vernaux *)
8685 ((bfd_byte *) evernaux + ivernaux->vna_next));
8686 }
8687
8688 iverneed->vn_nextref = NULL;
8689 if (iverneed->vn_next == 0)
8690 break;
8691 if (i + 1 < hdr->sh_info)
8692 iverneed->vn_nextref = iverneed + 1;
8693
8694 if (iverneed->vn_next
8695 > (size_t) (contents_end - (bfd_byte *) everneed))
8696 goto error_return_bad_verref;
8697
8698 everneed = ((Elf_External_Verneed *)
8699 ((bfd_byte *) everneed + iverneed->vn_next));
8700 }
8701 elf_tdata (abfd)->cverrefs = i;
8702
8703 free (contents);
8704 contents = NULL;
8705 }
8706
8707 if (elf_dynverdef (abfd) != 0)
8708 {
8709 Elf_Internal_Shdr *hdr;
8710 Elf_External_Verdef *everdef;
8711 Elf_Internal_Verdef *iverdef;
8712 Elf_Internal_Verdef *iverdefarr;
8713 Elf_Internal_Verdef iverdefmem;
8714 unsigned int i;
8715 unsigned int maxidx;
8716 bfd_byte *contents_end_def, *contents_end_aux;
8717
8718 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8719
8720 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8721 {
8722 error_return_bad_verdef:
8723 _bfd_error_handler
8724 (_("%pB: .gnu.version_d invalid entry"), abfd);
8725 bfd_set_error (bfd_error_bad_value);
8726 error_return_verdef:
8727 elf_tdata (abfd)->verdef = NULL;
8728 elf_tdata (abfd)->cverdefs = 0;
8729 goto error_return;
8730 }
8731
8732 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8733 if (contents == NULL)
8734 goto error_return_verdef;
8735 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8736 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8737 goto error_return_verdef;
8738
8739 BFD_ASSERT (sizeof (Elf_External_Verdef)
8740 >= sizeof (Elf_External_Verdaux));
8741 contents_end_def = contents + hdr->sh_size
8742 - sizeof (Elf_External_Verdef);
8743 contents_end_aux = contents + hdr->sh_size
8744 - sizeof (Elf_External_Verdaux);
8745
8746 /* We know the number of entries in the section but not the maximum
8747 index. Therefore we have to run through all entries and find
8748 the maximum. */
8749 everdef = (Elf_External_Verdef *) contents;
8750 maxidx = 0;
8751 for (i = 0; i < hdr->sh_info; ++i)
8752 {
8753 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8754
8755 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8756 goto error_return_bad_verdef;
8757 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8758 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8759
8760 if (iverdefmem.vd_next == 0)
8761 break;
8762
8763 if (iverdefmem.vd_next
8764 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8765 goto error_return_bad_verdef;
8766
8767 everdef = ((Elf_External_Verdef *)
8768 ((bfd_byte *) everdef + iverdefmem.vd_next));
8769 }
8770
8771 if (default_imported_symver)
8772 {
8773 if (freeidx > maxidx)
8774 maxidx = ++freeidx;
8775 else
8776 freeidx = ++maxidx;
8777 }
8778
8779 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8780 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8781 if (elf_tdata (abfd)->verdef == NULL)
8782 goto error_return_verdef;
8783
8784 elf_tdata (abfd)->cverdefs = maxidx;
8785
8786 everdef = (Elf_External_Verdef *) contents;
8787 iverdefarr = elf_tdata (abfd)->verdef;
8788 for (i = 0; i < hdr->sh_info; i++)
8789 {
8790 Elf_External_Verdaux *everdaux;
8791 Elf_Internal_Verdaux *iverdaux;
8792 unsigned int j;
8793
8794 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8795
8796 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8797 goto error_return_bad_verdef;
8798
8799 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8800 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8801
8802 iverdef->vd_bfd = abfd;
8803
8804 if (iverdef->vd_cnt == 0)
8805 iverdef->vd_auxptr = NULL;
8806 else
8807 {
8808 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8809 bfd_alloc2 (abfd, iverdef->vd_cnt,
8810 sizeof (Elf_Internal_Verdaux));
8811 if (iverdef->vd_auxptr == NULL)
8812 goto error_return_verdef;
8813 }
8814
8815 if (iverdef->vd_aux
8816 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8817 goto error_return_bad_verdef;
8818
8819 everdaux = ((Elf_External_Verdaux *)
8820 ((bfd_byte *) everdef + iverdef->vd_aux));
8821 iverdaux = iverdef->vd_auxptr;
8822 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8823 {
8824 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8825
8826 iverdaux->vda_nodename =
8827 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8828 iverdaux->vda_name);
8829 if (iverdaux->vda_nodename == NULL)
8830 goto error_return_bad_verdef;
8831
8832 iverdaux->vda_nextptr = NULL;
8833 if (iverdaux->vda_next == 0)
8834 {
8835 iverdef->vd_cnt = j + 1;
8836 break;
8837 }
8838 if (j + 1 < iverdef->vd_cnt)
8839 iverdaux->vda_nextptr = iverdaux + 1;
8840
8841 if (iverdaux->vda_next
8842 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8843 goto error_return_bad_verdef;
8844
8845 everdaux = ((Elf_External_Verdaux *)
8846 ((bfd_byte *) everdaux + iverdaux->vda_next));
8847 }
8848
8849 iverdef->vd_nodename = NULL;
8850 if (iverdef->vd_cnt)
8851 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8852
8853 iverdef->vd_nextdef = NULL;
8854 if (iverdef->vd_next == 0)
8855 break;
8856 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8857 iverdef->vd_nextdef = iverdef + 1;
8858
8859 everdef = ((Elf_External_Verdef *)
8860 ((bfd_byte *) everdef + iverdef->vd_next));
8861 }
8862
8863 free (contents);
8864 contents = NULL;
8865 }
8866 else if (default_imported_symver)
8867 {
8868 if (freeidx < 3)
8869 freeidx = 3;
8870 else
8871 freeidx++;
8872
8873 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8874 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8875 if (elf_tdata (abfd)->verdef == NULL)
8876 goto error_return;
8877
8878 elf_tdata (abfd)->cverdefs = freeidx;
8879 }
8880
8881 /* Create a default version based on the soname. */
8882 if (default_imported_symver)
8883 {
8884 Elf_Internal_Verdef *iverdef;
8885 Elf_Internal_Verdaux *iverdaux;
8886
8887 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8888
8889 iverdef->vd_version = VER_DEF_CURRENT;
8890 iverdef->vd_flags = 0;
8891 iverdef->vd_ndx = freeidx;
8892 iverdef->vd_cnt = 1;
8893
8894 iverdef->vd_bfd = abfd;
8895
8896 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8897 if (iverdef->vd_nodename == NULL)
8898 goto error_return_verdef;
8899 iverdef->vd_nextdef = NULL;
8900 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8901 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8902 if (iverdef->vd_auxptr == NULL)
8903 goto error_return_verdef;
8904
8905 iverdaux = iverdef->vd_auxptr;
8906 iverdaux->vda_nodename = iverdef->vd_nodename;
8907 }
8908
8909 return TRUE;
8910
8911 error_return:
8912 if (contents != NULL)
8913 free (contents);
8914 return FALSE;
8915 }
8916 \f
8917 asymbol *
8918 _bfd_elf_make_empty_symbol (bfd *abfd)
8919 {
8920 elf_symbol_type *newsym;
8921
8922 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8923 if (!newsym)
8924 return NULL;
8925 newsym->symbol.the_bfd = abfd;
8926 return &newsym->symbol;
8927 }
8928
8929 void
8930 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8931 asymbol *symbol,
8932 symbol_info *ret)
8933 {
8934 bfd_symbol_info (symbol, ret);
8935 }
8936
8937 /* Return whether a symbol name implies a local symbol. Most targets
8938 use this function for the is_local_label_name entry point, but some
8939 override it. */
8940
8941 bfd_boolean
8942 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8943 const char *name)
8944 {
8945 /* Normal local symbols start with ``.L''. */
8946 if (name[0] == '.' && name[1] == 'L')
8947 return TRUE;
8948
8949 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8950 DWARF debugging symbols starting with ``..''. */
8951 if (name[0] == '.' && name[1] == '.')
8952 return TRUE;
8953
8954 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8955 emitting DWARF debugging output. I suspect this is actually a
8956 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8957 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8958 underscore to be emitted on some ELF targets). For ease of use,
8959 we treat such symbols as local. */
8960 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8961 return TRUE;
8962
8963 /* Treat assembler generated fake symbols, dollar local labels and
8964 forward-backward labels (aka local labels) as locals.
8965 These labels have the form:
8966
8967 L0^A.* (fake symbols)
8968
8969 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8970
8971 Versions which start with .L will have already been matched above,
8972 so we only need to match the rest. */
8973 if (name[0] == 'L' && ISDIGIT (name[1]))
8974 {
8975 bfd_boolean ret = FALSE;
8976 const char * p;
8977 char c;
8978
8979 for (p = name + 2; (c = *p); p++)
8980 {
8981 if (c == 1 || c == 2)
8982 {
8983 if (c == 1 && p == name + 2)
8984 /* A fake symbol. */
8985 return TRUE;
8986
8987 /* FIXME: We are being paranoid here and treating symbols like
8988 L0^Bfoo as if there were non-local, on the grounds that the
8989 assembler will never generate them. But can any symbol
8990 containing an ASCII value in the range 1-31 ever be anything
8991 other than some kind of local ? */
8992 ret = TRUE;
8993 }
8994
8995 if (! ISDIGIT (c))
8996 {
8997 ret = FALSE;
8998 break;
8999 }
9000 }
9001 return ret;
9002 }
9003
9004 return FALSE;
9005 }
9006
9007 alent *
9008 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9009 asymbol *symbol ATTRIBUTE_UNUSED)
9010 {
9011 abort ();
9012 return NULL;
9013 }
9014
9015 bfd_boolean
9016 _bfd_elf_set_arch_mach (bfd *abfd,
9017 enum bfd_architecture arch,
9018 unsigned long machine)
9019 {
9020 /* If this isn't the right architecture for this backend, and this
9021 isn't the generic backend, fail. */
9022 if (arch != get_elf_backend_data (abfd)->arch
9023 && arch != bfd_arch_unknown
9024 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9025 return FALSE;
9026
9027 return bfd_default_set_arch_mach (abfd, arch, machine);
9028 }
9029
9030 /* Find the nearest line to a particular section and offset,
9031 for error reporting. */
9032
9033 bfd_boolean
9034 _bfd_elf_find_nearest_line (bfd *abfd,
9035 asymbol **symbols,
9036 asection *section,
9037 bfd_vma offset,
9038 const char **filename_ptr,
9039 const char **functionname_ptr,
9040 unsigned int *line_ptr,
9041 unsigned int *discriminator_ptr)
9042 {
9043 bfd_boolean found;
9044
9045 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9046 filename_ptr, functionname_ptr,
9047 line_ptr, discriminator_ptr,
9048 dwarf_debug_sections,
9049 &elf_tdata (abfd)->dwarf2_find_line_info)
9050 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9051 filename_ptr, functionname_ptr,
9052 line_ptr))
9053 {
9054 if (!*functionname_ptr)
9055 _bfd_elf_find_function (abfd, symbols, section, offset,
9056 *filename_ptr ? NULL : filename_ptr,
9057 functionname_ptr);
9058 return TRUE;
9059 }
9060
9061 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9062 &found, filename_ptr,
9063 functionname_ptr, line_ptr,
9064 &elf_tdata (abfd)->line_info))
9065 return FALSE;
9066 if (found && (*functionname_ptr || *line_ptr))
9067 return TRUE;
9068
9069 if (symbols == NULL)
9070 return FALSE;
9071
9072 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9073 filename_ptr, functionname_ptr))
9074 return FALSE;
9075
9076 *line_ptr = 0;
9077 return TRUE;
9078 }
9079
9080 /* Find the line for a symbol. */
9081
9082 bfd_boolean
9083 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9084 const char **filename_ptr, unsigned int *line_ptr)
9085 {
9086 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9087 filename_ptr, NULL, line_ptr, NULL,
9088 dwarf_debug_sections,
9089 &elf_tdata (abfd)->dwarf2_find_line_info);
9090 }
9091
9092 /* After a call to bfd_find_nearest_line, successive calls to
9093 bfd_find_inliner_info can be used to get source information about
9094 each level of function inlining that terminated at the address
9095 passed to bfd_find_nearest_line. Currently this is only supported
9096 for DWARF2 with appropriate DWARF3 extensions. */
9097
9098 bfd_boolean
9099 _bfd_elf_find_inliner_info (bfd *abfd,
9100 const char **filename_ptr,
9101 const char **functionname_ptr,
9102 unsigned int *line_ptr)
9103 {
9104 bfd_boolean found;
9105 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9106 functionname_ptr, line_ptr,
9107 & elf_tdata (abfd)->dwarf2_find_line_info);
9108 return found;
9109 }
9110
9111 int
9112 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9113 {
9114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9115 int ret = bed->s->sizeof_ehdr;
9116
9117 if (!bfd_link_relocatable (info))
9118 {
9119 bfd_size_type phdr_size = elf_program_header_size (abfd);
9120
9121 if (phdr_size == (bfd_size_type) -1)
9122 {
9123 struct elf_segment_map *m;
9124
9125 phdr_size = 0;
9126 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9127 phdr_size += bed->s->sizeof_phdr;
9128
9129 if (phdr_size == 0)
9130 phdr_size = get_program_header_size (abfd, info);
9131 }
9132
9133 elf_program_header_size (abfd) = phdr_size;
9134 ret += phdr_size;
9135 }
9136
9137 return ret;
9138 }
9139
9140 bfd_boolean
9141 _bfd_elf_set_section_contents (bfd *abfd,
9142 sec_ptr section,
9143 const void *location,
9144 file_ptr offset,
9145 bfd_size_type count)
9146 {
9147 Elf_Internal_Shdr *hdr;
9148 file_ptr pos;
9149
9150 if (! abfd->output_has_begun
9151 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9152 return FALSE;
9153
9154 if (!count)
9155 return TRUE;
9156
9157 hdr = &elf_section_data (section)->this_hdr;
9158 if (hdr->sh_offset == (file_ptr) -1)
9159 {
9160 if (bfd_section_is_ctf (section))
9161 /* Nothing to do with this section: the contents are generated
9162 later. */
9163 return TRUE;
9164
9165 /* We must compress this section. Write output to the buffer. */
9166 unsigned char *contents = hdr->contents;
9167 if ((offset + count) > hdr->sh_size
9168 || (section->flags & SEC_ELF_COMPRESS) == 0
9169 || contents == NULL)
9170 abort ();
9171 memcpy (contents + offset, location, count);
9172 return TRUE;
9173 }
9174 pos = hdr->sh_offset + offset;
9175 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9176 || bfd_bwrite (location, count, abfd) != count)
9177 return FALSE;
9178
9179 return TRUE;
9180 }
9181
9182 bfd_boolean
9183 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9184 arelent *cache_ptr ATTRIBUTE_UNUSED,
9185 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9186 {
9187 abort ();
9188 return FALSE;
9189 }
9190
9191 /* Try to convert a non-ELF reloc into an ELF one. */
9192
9193 bfd_boolean
9194 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9195 {
9196 /* Check whether we really have an ELF howto. */
9197
9198 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9199 {
9200 bfd_reloc_code_real_type code;
9201 reloc_howto_type *howto;
9202
9203 /* Alien reloc: Try to determine its type to replace it with an
9204 equivalent ELF reloc. */
9205
9206 if (areloc->howto->pc_relative)
9207 {
9208 switch (areloc->howto->bitsize)
9209 {
9210 case 8:
9211 code = BFD_RELOC_8_PCREL;
9212 break;
9213 case 12:
9214 code = BFD_RELOC_12_PCREL;
9215 break;
9216 case 16:
9217 code = BFD_RELOC_16_PCREL;
9218 break;
9219 case 24:
9220 code = BFD_RELOC_24_PCREL;
9221 break;
9222 case 32:
9223 code = BFD_RELOC_32_PCREL;
9224 break;
9225 case 64:
9226 code = BFD_RELOC_64_PCREL;
9227 break;
9228 default:
9229 goto fail;
9230 }
9231
9232 howto = bfd_reloc_type_lookup (abfd, code);
9233
9234 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9235 {
9236 if (howto->pcrel_offset)
9237 areloc->addend += areloc->address;
9238 else
9239 areloc->addend -= areloc->address; /* addend is unsigned!! */
9240 }
9241 }
9242 else
9243 {
9244 switch (areloc->howto->bitsize)
9245 {
9246 case 8:
9247 code = BFD_RELOC_8;
9248 break;
9249 case 14:
9250 code = BFD_RELOC_14;
9251 break;
9252 case 16:
9253 code = BFD_RELOC_16;
9254 break;
9255 case 26:
9256 code = BFD_RELOC_26;
9257 break;
9258 case 32:
9259 code = BFD_RELOC_32;
9260 break;
9261 case 64:
9262 code = BFD_RELOC_64;
9263 break;
9264 default:
9265 goto fail;
9266 }
9267
9268 howto = bfd_reloc_type_lookup (abfd, code);
9269 }
9270
9271 if (howto)
9272 areloc->howto = howto;
9273 else
9274 goto fail;
9275 }
9276
9277 return TRUE;
9278
9279 fail:
9280 /* xgettext:c-format */
9281 _bfd_error_handler (_("%pB: %s unsupported"),
9282 abfd, areloc->howto->name);
9283 bfd_set_error (bfd_error_sorry);
9284 return FALSE;
9285 }
9286
9287 bfd_boolean
9288 _bfd_elf_close_and_cleanup (bfd *abfd)
9289 {
9290 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9291 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9292 {
9293 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9294 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9295 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9296 }
9297
9298 return _bfd_generic_close_and_cleanup (abfd);
9299 }
9300
9301 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9302 in the relocation's offset. Thus we cannot allow any sort of sanity
9303 range-checking to interfere. There is nothing else to do in processing
9304 this reloc. */
9305
9306 bfd_reloc_status_type
9307 _bfd_elf_rel_vtable_reloc_fn
9308 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9309 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9310 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9311 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9312 {
9313 return bfd_reloc_ok;
9314 }
9315 \f
9316 /* Elf core file support. Much of this only works on native
9317 toolchains, since we rely on knowing the
9318 machine-dependent procfs structure in order to pick
9319 out details about the corefile. */
9320
9321 #ifdef HAVE_SYS_PROCFS_H
9322 /* Needed for new procfs interface on sparc-solaris. */
9323 # define _STRUCTURED_PROC 1
9324 # include <sys/procfs.h>
9325 #endif
9326
9327 /* Return a PID that identifies a "thread" for threaded cores, or the
9328 PID of the main process for non-threaded cores. */
9329
9330 static int
9331 elfcore_make_pid (bfd *abfd)
9332 {
9333 int pid;
9334
9335 pid = elf_tdata (abfd)->core->lwpid;
9336 if (pid == 0)
9337 pid = elf_tdata (abfd)->core->pid;
9338
9339 return pid;
9340 }
9341
9342 /* If there isn't a section called NAME, make one, using
9343 data from SECT. Note, this function will generate a
9344 reference to NAME, so you shouldn't deallocate or
9345 overwrite it. */
9346
9347 static bfd_boolean
9348 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9349 {
9350 asection *sect2;
9351
9352 if (bfd_get_section_by_name (abfd, name) != NULL)
9353 return TRUE;
9354
9355 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9356 if (sect2 == NULL)
9357 return FALSE;
9358
9359 sect2->size = sect->size;
9360 sect2->filepos = sect->filepos;
9361 sect2->alignment_power = sect->alignment_power;
9362 return TRUE;
9363 }
9364
9365 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9366 actually creates up to two pseudosections:
9367 - For the single-threaded case, a section named NAME, unless
9368 such a section already exists.
9369 - For the multi-threaded case, a section named "NAME/PID", where
9370 PID is elfcore_make_pid (abfd).
9371 Both pseudosections have identical contents. */
9372 bfd_boolean
9373 _bfd_elfcore_make_pseudosection (bfd *abfd,
9374 char *name,
9375 size_t size,
9376 ufile_ptr filepos)
9377 {
9378 char buf[100];
9379 char *threaded_name;
9380 size_t len;
9381 asection *sect;
9382
9383 /* Build the section name. */
9384
9385 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9386 len = strlen (buf) + 1;
9387 threaded_name = (char *) bfd_alloc (abfd, len);
9388 if (threaded_name == NULL)
9389 return FALSE;
9390 memcpy (threaded_name, buf, len);
9391
9392 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9393 SEC_HAS_CONTENTS);
9394 if (sect == NULL)
9395 return FALSE;
9396 sect->size = size;
9397 sect->filepos = filepos;
9398 sect->alignment_power = 2;
9399
9400 return elfcore_maybe_make_sect (abfd, name, sect);
9401 }
9402
9403 static bfd_boolean
9404 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9405 size_t offs)
9406 {
9407 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9408 SEC_HAS_CONTENTS);
9409
9410 if (sect == NULL)
9411 return FALSE;
9412
9413 sect->size = note->descsz - offs;
9414 sect->filepos = note->descpos + offs;
9415 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9416
9417 return TRUE;
9418 }
9419
9420 /* prstatus_t exists on:
9421 solaris 2.5+
9422 linux 2.[01] + glibc
9423 unixware 4.2
9424 */
9425
9426 #if defined (HAVE_PRSTATUS_T)
9427
9428 static bfd_boolean
9429 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9430 {
9431 size_t size;
9432 int offset;
9433
9434 if (note->descsz == sizeof (prstatus_t))
9435 {
9436 prstatus_t prstat;
9437
9438 size = sizeof (prstat.pr_reg);
9439 offset = offsetof (prstatus_t, pr_reg);
9440 memcpy (&prstat, note->descdata, sizeof (prstat));
9441
9442 /* Do not overwrite the core signal if it
9443 has already been set by another thread. */
9444 if (elf_tdata (abfd)->core->signal == 0)
9445 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9446 if (elf_tdata (abfd)->core->pid == 0)
9447 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9448
9449 /* pr_who exists on:
9450 solaris 2.5+
9451 unixware 4.2
9452 pr_who doesn't exist on:
9453 linux 2.[01]
9454 */
9455 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9456 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9457 #else
9458 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9459 #endif
9460 }
9461 #if defined (HAVE_PRSTATUS32_T)
9462 else if (note->descsz == sizeof (prstatus32_t))
9463 {
9464 /* 64-bit host, 32-bit corefile */
9465 prstatus32_t prstat;
9466
9467 size = sizeof (prstat.pr_reg);
9468 offset = offsetof (prstatus32_t, pr_reg);
9469 memcpy (&prstat, note->descdata, sizeof (prstat));
9470
9471 /* Do not overwrite the core signal if it
9472 has already been set by another thread. */
9473 if (elf_tdata (abfd)->core->signal == 0)
9474 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9475 if (elf_tdata (abfd)->core->pid == 0)
9476 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9477
9478 /* pr_who exists on:
9479 solaris 2.5+
9480 unixware 4.2
9481 pr_who doesn't exist on:
9482 linux 2.[01]
9483 */
9484 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9485 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9486 #else
9487 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9488 #endif
9489 }
9490 #endif /* HAVE_PRSTATUS32_T */
9491 else
9492 {
9493 /* Fail - we don't know how to handle any other
9494 note size (ie. data object type). */
9495 return TRUE;
9496 }
9497
9498 /* Make a ".reg/999" section and a ".reg" section. */
9499 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9500 size, note->descpos + offset);
9501 }
9502 #endif /* defined (HAVE_PRSTATUS_T) */
9503
9504 /* Create a pseudosection containing the exact contents of NOTE. */
9505 static bfd_boolean
9506 elfcore_make_note_pseudosection (bfd *abfd,
9507 char *name,
9508 Elf_Internal_Note *note)
9509 {
9510 return _bfd_elfcore_make_pseudosection (abfd, name,
9511 note->descsz, note->descpos);
9512 }
9513
9514 /* There isn't a consistent prfpregset_t across platforms,
9515 but it doesn't matter, because we don't have to pick this
9516 data structure apart. */
9517
9518 static bfd_boolean
9519 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9520 {
9521 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9522 }
9523
9524 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9525 type of NT_PRXFPREG. Just include the whole note's contents
9526 literally. */
9527
9528 static bfd_boolean
9529 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9530 {
9531 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9532 }
9533
9534 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9535 with a note type of NT_X86_XSTATE. Just include the whole note's
9536 contents literally. */
9537
9538 static bfd_boolean
9539 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9540 {
9541 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9542 }
9543
9544 static bfd_boolean
9545 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9546 {
9547 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9548 }
9549
9550 static bfd_boolean
9551 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9552 {
9553 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9554 }
9555
9556 static bfd_boolean
9557 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9558 {
9559 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9560 }
9561
9562 static bfd_boolean
9563 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9564 {
9565 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9566 }
9567
9568 static bfd_boolean
9569 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9570 {
9571 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9572 }
9573
9574 static bfd_boolean
9575 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9576 {
9577 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9578 }
9579
9580 static bfd_boolean
9581 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9582 {
9583 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9584 }
9585
9586 static bfd_boolean
9587 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9588 {
9589 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9590 }
9591
9592 static bfd_boolean
9593 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9594 {
9595 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9596 }
9597
9598 static bfd_boolean
9599 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9600 {
9601 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9602 }
9603
9604 static bfd_boolean
9605 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9606 {
9607 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9608 }
9609
9610 static bfd_boolean
9611 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9612 {
9613 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9614 }
9615
9616 static bfd_boolean
9617 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9618 {
9619 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9620 }
9621
9622 static bfd_boolean
9623 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9624 {
9625 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9626 }
9627
9628 static bfd_boolean
9629 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9630 {
9631 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9632 }
9633
9634 static bfd_boolean
9635 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9636 {
9637 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9638 }
9639
9640 static bfd_boolean
9641 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9642 {
9643 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9644 }
9645
9646 static bfd_boolean
9647 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9648 {
9649 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9650 }
9651
9652 static bfd_boolean
9653 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9654 {
9655 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9656 }
9657
9658 static bfd_boolean
9659 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9660 {
9661 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9662 }
9663
9664 static bfd_boolean
9665 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9666 {
9667 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9668 }
9669
9670 static bfd_boolean
9671 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9672 {
9673 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9674 }
9675
9676 static bfd_boolean
9677 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9678 {
9679 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9680 }
9681
9682 static bfd_boolean
9683 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9684 {
9685 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9686 }
9687
9688 static bfd_boolean
9689 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9690 {
9691 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9692 }
9693
9694 static bfd_boolean
9695 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9696 {
9697 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9698 }
9699
9700 static bfd_boolean
9701 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9702 {
9703 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9704 }
9705
9706 static bfd_boolean
9707 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9708 {
9709 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9710 }
9711
9712 static bfd_boolean
9713 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9714 {
9715 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9716 }
9717
9718 static bfd_boolean
9719 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9720 {
9721 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9722 }
9723
9724 static bfd_boolean
9725 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9726 {
9727 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9728 }
9729
9730 static bfd_boolean
9731 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9732 {
9733 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9734 }
9735
9736 static bfd_boolean
9737 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9738 {
9739 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9740 }
9741
9742 static bfd_boolean
9743 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9744 {
9745 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9746 }
9747
9748 #if defined (HAVE_PRPSINFO_T)
9749 typedef prpsinfo_t elfcore_psinfo_t;
9750 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9751 typedef prpsinfo32_t elfcore_psinfo32_t;
9752 #endif
9753 #endif
9754
9755 #if defined (HAVE_PSINFO_T)
9756 typedef psinfo_t elfcore_psinfo_t;
9757 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9758 typedef psinfo32_t elfcore_psinfo32_t;
9759 #endif
9760 #endif
9761
9762 /* return a malloc'ed copy of a string at START which is at
9763 most MAX bytes long, possibly without a terminating '\0'.
9764 the copy will always have a terminating '\0'. */
9765
9766 char *
9767 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9768 {
9769 char *dups;
9770 char *end = (char *) memchr (start, '\0', max);
9771 size_t len;
9772
9773 if (end == NULL)
9774 len = max;
9775 else
9776 len = end - start;
9777
9778 dups = (char *) bfd_alloc (abfd, len + 1);
9779 if (dups == NULL)
9780 return NULL;
9781
9782 memcpy (dups, start, len);
9783 dups[len] = '\0';
9784
9785 return dups;
9786 }
9787
9788 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9789 static bfd_boolean
9790 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9791 {
9792 if (note->descsz == sizeof (elfcore_psinfo_t))
9793 {
9794 elfcore_psinfo_t psinfo;
9795
9796 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9797
9798 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9799 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9800 #endif
9801 elf_tdata (abfd)->core->program
9802 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9803 sizeof (psinfo.pr_fname));
9804
9805 elf_tdata (abfd)->core->command
9806 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9807 sizeof (psinfo.pr_psargs));
9808 }
9809 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9810 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9811 {
9812 /* 64-bit host, 32-bit corefile */
9813 elfcore_psinfo32_t psinfo;
9814
9815 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9816
9817 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9818 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9819 #endif
9820 elf_tdata (abfd)->core->program
9821 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9822 sizeof (psinfo.pr_fname));
9823
9824 elf_tdata (abfd)->core->command
9825 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9826 sizeof (psinfo.pr_psargs));
9827 }
9828 #endif
9829
9830 else
9831 {
9832 /* Fail - we don't know how to handle any other
9833 note size (ie. data object type). */
9834 return TRUE;
9835 }
9836
9837 /* Note that for some reason, a spurious space is tacked
9838 onto the end of the args in some (at least one anyway)
9839 implementations, so strip it off if it exists. */
9840
9841 {
9842 char *command = elf_tdata (abfd)->core->command;
9843 int n = strlen (command);
9844
9845 if (0 < n && command[n - 1] == ' ')
9846 command[n - 1] = '\0';
9847 }
9848
9849 return TRUE;
9850 }
9851 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9852
9853 #if defined (HAVE_PSTATUS_T)
9854 static bfd_boolean
9855 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9856 {
9857 if (note->descsz == sizeof (pstatus_t)
9858 #if defined (HAVE_PXSTATUS_T)
9859 || note->descsz == sizeof (pxstatus_t)
9860 #endif
9861 )
9862 {
9863 pstatus_t pstat;
9864
9865 memcpy (&pstat, note->descdata, sizeof (pstat));
9866
9867 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9868 }
9869 #if defined (HAVE_PSTATUS32_T)
9870 else if (note->descsz == sizeof (pstatus32_t))
9871 {
9872 /* 64-bit host, 32-bit corefile */
9873 pstatus32_t pstat;
9874
9875 memcpy (&pstat, note->descdata, sizeof (pstat));
9876
9877 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9878 }
9879 #endif
9880 /* Could grab some more details from the "representative"
9881 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9882 NT_LWPSTATUS note, presumably. */
9883
9884 return TRUE;
9885 }
9886 #endif /* defined (HAVE_PSTATUS_T) */
9887
9888 #if defined (HAVE_LWPSTATUS_T)
9889 static bfd_boolean
9890 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9891 {
9892 lwpstatus_t lwpstat;
9893 char buf[100];
9894 char *name;
9895 size_t len;
9896 asection *sect;
9897
9898 if (note->descsz != sizeof (lwpstat)
9899 #if defined (HAVE_LWPXSTATUS_T)
9900 && note->descsz != sizeof (lwpxstatus_t)
9901 #endif
9902 )
9903 return TRUE;
9904
9905 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9906
9907 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9908 /* Do not overwrite the core signal if it has already been set by
9909 another thread. */
9910 if (elf_tdata (abfd)->core->signal == 0)
9911 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9912
9913 /* Make a ".reg/999" section. */
9914
9915 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9916 len = strlen (buf) + 1;
9917 name = bfd_alloc (abfd, len);
9918 if (name == NULL)
9919 return FALSE;
9920 memcpy (name, buf, len);
9921
9922 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9923 if (sect == NULL)
9924 return FALSE;
9925
9926 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9927 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9928 sect->filepos = note->descpos
9929 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9930 #endif
9931
9932 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9933 sect->size = sizeof (lwpstat.pr_reg);
9934 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9935 #endif
9936
9937 sect->alignment_power = 2;
9938
9939 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9940 return FALSE;
9941
9942 /* Make a ".reg2/999" section */
9943
9944 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9945 len = strlen (buf) + 1;
9946 name = bfd_alloc (abfd, len);
9947 if (name == NULL)
9948 return FALSE;
9949 memcpy (name, buf, len);
9950
9951 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9952 if (sect == NULL)
9953 return FALSE;
9954
9955 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9956 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9957 sect->filepos = note->descpos
9958 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9959 #endif
9960
9961 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9962 sect->size = sizeof (lwpstat.pr_fpreg);
9963 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9964 #endif
9965
9966 sect->alignment_power = 2;
9967
9968 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9969 }
9970 #endif /* defined (HAVE_LWPSTATUS_T) */
9971
9972 static bfd_boolean
9973 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9974 {
9975 char buf[30];
9976 char *name;
9977 size_t len;
9978 asection *sect;
9979 int type;
9980 int is_active_thread;
9981 bfd_vma base_addr;
9982
9983 if (note->descsz < 728)
9984 return TRUE;
9985
9986 if (! CONST_STRNEQ (note->namedata, "win32"))
9987 return TRUE;
9988
9989 type = bfd_get_32 (abfd, note->descdata);
9990
9991 switch (type)
9992 {
9993 case 1 /* NOTE_INFO_PROCESS */:
9994 /* FIXME: need to add ->core->command. */
9995 /* process_info.pid */
9996 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9997 /* process_info.signal */
9998 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9999 break;
10000
10001 case 2 /* NOTE_INFO_THREAD */:
10002 /* Make a ".reg/999" section. */
10003 /* thread_info.tid */
10004 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10005
10006 len = strlen (buf) + 1;
10007 name = (char *) bfd_alloc (abfd, len);
10008 if (name == NULL)
10009 return FALSE;
10010
10011 memcpy (name, buf, len);
10012
10013 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10014 if (sect == NULL)
10015 return FALSE;
10016
10017 /* sizeof (thread_info.thread_context) */
10018 sect->size = 716;
10019 /* offsetof (thread_info.thread_context) */
10020 sect->filepos = note->descpos + 12;
10021 sect->alignment_power = 2;
10022
10023 /* thread_info.is_active_thread */
10024 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10025
10026 if (is_active_thread)
10027 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10028 return FALSE;
10029 break;
10030
10031 case 3 /* NOTE_INFO_MODULE */:
10032 /* Make a ".module/xxxxxxxx" section. */
10033 /* module_info.base_address */
10034 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10035 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10036
10037 len = strlen (buf) + 1;
10038 name = (char *) bfd_alloc (abfd, len);
10039 if (name == NULL)
10040 return FALSE;
10041
10042 memcpy (name, buf, len);
10043
10044 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10045
10046 if (sect == NULL)
10047 return FALSE;
10048
10049 sect->size = note->descsz;
10050 sect->filepos = note->descpos;
10051 sect->alignment_power = 2;
10052 break;
10053
10054 default:
10055 return TRUE;
10056 }
10057
10058 return TRUE;
10059 }
10060
10061 static bfd_boolean
10062 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10063 {
10064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10065
10066 switch (note->type)
10067 {
10068 default:
10069 return TRUE;
10070
10071 case NT_PRSTATUS:
10072 if (bed->elf_backend_grok_prstatus)
10073 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10074 return TRUE;
10075 #if defined (HAVE_PRSTATUS_T)
10076 return elfcore_grok_prstatus (abfd, note);
10077 #else
10078 return TRUE;
10079 #endif
10080
10081 #if defined (HAVE_PSTATUS_T)
10082 case NT_PSTATUS:
10083 return elfcore_grok_pstatus (abfd, note);
10084 #endif
10085
10086 #if defined (HAVE_LWPSTATUS_T)
10087 case NT_LWPSTATUS:
10088 return elfcore_grok_lwpstatus (abfd, note);
10089 #endif
10090
10091 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10092 return elfcore_grok_prfpreg (abfd, note);
10093
10094 case NT_WIN32PSTATUS:
10095 return elfcore_grok_win32pstatus (abfd, note);
10096
10097 case NT_PRXFPREG: /* Linux SSE extension */
10098 if (note->namesz == 6
10099 && strcmp (note->namedata, "LINUX") == 0)
10100 return elfcore_grok_prxfpreg (abfd, note);
10101 else
10102 return TRUE;
10103
10104 case NT_X86_XSTATE: /* Linux XSAVE extension */
10105 if (note->namesz == 6
10106 && strcmp (note->namedata, "LINUX") == 0)
10107 return elfcore_grok_xstatereg (abfd, note);
10108 else
10109 return TRUE;
10110
10111 case NT_PPC_VMX:
10112 if (note->namesz == 6
10113 && strcmp (note->namedata, "LINUX") == 0)
10114 return elfcore_grok_ppc_vmx (abfd, note);
10115 else
10116 return TRUE;
10117
10118 case NT_PPC_VSX:
10119 if (note->namesz == 6
10120 && strcmp (note->namedata, "LINUX") == 0)
10121 return elfcore_grok_ppc_vsx (abfd, note);
10122 else
10123 return TRUE;
10124
10125 case NT_PPC_TAR:
10126 if (note->namesz == 6
10127 && strcmp (note->namedata, "LINUX") == 0)
10128 return elfcore_grok_ppc_tar (abfd, note);
10129 else
10130 return TRUE;
10131
10132 case NT_PPC_PPR:
10133 if (note->namesz == 6
10134 && strcmp (note->namedata, "LINUX") == 0)
10135 return elfcore_grok_ppc_ppr (abfd, note);
10136 else
10137 return TRUE;
10138
10139 case NT_PPC_DSCR:
10140 if (note->namesz == 6
10141 && strcmp (note->namedata, "LINUX") == 0)
10142 return elfcore_grok_ppc_dscr (abfd, note);
10143 else
10144 return TRUE;
10145
10146 case NT_PPC_EBB:
10147 if (note->namesz == 6
10148 && strcmp (note->namedata, "LINUX") == 0)
10149 return elfcore_grok_ppc_ebb (abfd, note);
10150 else
10151 return TRUE;
10152
10153 case NT_PPC_PMU:
10154 if (note->namesz == 6
10155 && strcmp (note->namedata, "LINUX") == 0)
10156 return elfcore_grok_ppc_pmu (abfd, note);
10157 else
10158 return TRUE;
10159
10160 case NT_PPC_TM_CGPR:
10161 if (note->namesz == 6
10162 && strcmp (note->namedata, "LINUX") == 0)
10163 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10164 else
10165 return TRUE;
10166
10167 case NT_PPC_TM_CFPR:
10168 if (note->namesz == 6
10169 && strcmp (note->namedata, "LINUX") == 0)
10170 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10171 else
10172 return TRUE;
10173
10174 case NT_PPC_TM_CVMX:
10175 if (note->namesz == 6
10176 && strcmp (note->namedata, "LINUX") == 0)
10177 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10178 else
10179 return TRUE;
10180
10181 case NT_PPC_TM_CVSX:
10182 if (note->namesz == 6
10183 && strcmp (note->namedata, "LINUX") == 0)
10184 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10185 else
10186 return TRUE;
10187
10188 case NT_PPC_TM_SPR:
10189 if (note->namesz == 6
10190 && strcmp (note->namedata, "LINUX") == 0)
10191 return elfcore_grok_ppc_tm_spr (abfd, note);
10192 else
10193 return TRUE;
10194
10195 case NT_PPC_TM_CTAR:
10196 if (note->namesz == 6
10197 && strcmp (note->namedata, "LINUX") == 0)
10198 return elfcore_grok_ppc_tm_ctar (abfd, note);
10199 else
10200 return TRUE;
10201
10202 case NT_PPC_TM_CPPR:
10203 if (note->namesz == 6
10204 && strcmp (note->namedata, "LINUX") == 0)
10205 return elfcore_grok_ppc_tm_cppr (abfd, note);
10206 else
10207 return TRUE;
10208
10209 case NT_PPC_TM_CDSCR:
10210 if (note->namesz == 6
10211 && strcmp (note->namedata, "LINUX") == 0)
10212 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10213 else
10214 return TRUE;
10215
10216 case NT_S390_HIGH_GPRS:
10217 if (note->namesz == 6
10218 && strcmp (note->namedata, "LINUX") == 0)
10219 return elfcore_grok_s390_high_gprs (abfd, note);
10220 else
10221 return TRUE;
10222
10223 case NT_S390_TIMER:
10224 if (note->namesz == 6
10225 && strcmp (note->namedata, "LINUX") == 0)
10226 return elfcore_grok_s390_timer (abfd, note);
10227 else
10228 return TRUE;
10229
10230 case NT_S390_TODCMP:
10231 if (note->namesz == 6
10232 && strcmp (note->namedata, "LINUX") == 0)
10233 return elfcore_grok_s390_todcmp (abfd, note);
10234 else
10235 return TRUE;
10236
10237 case NT_S390_TODPREG:
10238 if (note->namesz == 6
10239 && strcmp (note->namedata, "LINUX") == 0)
10240 return elfcore_grok_s390_todpreg (abfd, note);
10241 else
10242 return TRUE;
10243
10244 case NT_S390_CTRS:
10245 if (note->namesz == 6
10246 && strcmp (note->namedata, "LINUX") == 0)
10247 return elfcore_grok_s390_ctrs (abfd, note);
10248 else
10249 return TRUE;
10250
10251 case NT_S390_PREFIX:
10252 if (note->namesz == 6
10253 && strcmp (note->namedata, "LINUX") == 0)
10254 return elfcore_grok_s390_prefix (abfd, note);
10255 else
10256 return TRUE;
10257
10258 case NT_S390_LAST_BREAK:
10259 if (note->namesz == 6
10260 && strcmp (note->namedata, "LINUX") == 0)
10261 return elfcore_grok_s390_last_break (abfd, note);
10262 else
10263 return TRUE;
10264
10265 case NT_S390_SYSTEM_CALL:
10266 if (note->namesz == 6
10267 && strcmp (note->namedata, "LINUX") == 0)
10268 return elfcore_grok_s390_system_call (abfd, note);
10269 else
10270 return TRUE;
10271
10272 case NT_S390_TDB:
10273 if (note->namesz == 6
10274 && strcmp (note->namedata, "LINUX") == 0)
10275 return elfcore_grok_s390_tdb (abfd, note);
10276 else
10277 return TRUE;
10278
10279 case NT_S390_VXRS_LOW:
10280 if (note->namesz == 6
10281 && strcmp (note->namedata, "LINUX") == 0)
10282 return elfcore_grok_s390_vxrs_low (abfd, note);
10283 else
10284 return TRUE;
10285
10286 case NT_S390_VXRS_HIGH:
10287 if (note->namesz == 6
10288 && strcmp (note->namedata, "LINUX") == 0)
10289 return elfcore_grok_s390_vxrs_high (abfd, note);
10290 else
10291 return TRUE;
10292
10293 case NT_S390_GS_CB:
10294 if (note->namesz == 6
10295 && strcmp (note->namedata, "LINUX") == 0)
10296 return elfcore_grok_s390_gs_cb (abfd, note);
10297 else
10298 return TRUE;
10299
10300 case NT_S390_GS_BC:
10301 if (note->namesz == 6
10302 && strcmp (note->namedata, "LINUX") == 0)
10303 return elfcore_grok_s390_gs_bc (abfd, note);
10304 else
10305 return TRUE;
10306
10307 case NT_ARM_VFP:
10308 if (note->namesz == 6
10309 && strcmp (note->namedata, "LINUX") == 0)
10310 return elfcore_grok_arm_vfp (abfd, note);
10311 else
10312 return TRUE;
10313
10314 case NT_ARM_TLS:
10315 if (note->namesz == 6
10316 && strcmp (note->namedata, "LINUX") == 0)
10317 return elfcore_grok_aarch_tls (abfd, note);
10318 else
10319 return TRUE;
10320
10321 case NT_ARM_HW_BREAK:
10322 if (note->namesz == 6
10323 && strcmp (note->namedata, "LINUX") == 0)
10324 return elfcore_grok_aarch_hw_break (abfd, note);
10325 else
10326 return TRUE;
10327
10328 case NT_ARM_HW_WATCH:
10329 if (note->namesz == 6
10330 && strcmp (note->namedata, "LINUX") == 0)
10331 return elfcore_grok_aarch_hw_watch (abfd, note);
10332 else
10333 return TRUE;
10334
10335 case NT_ARM_SVE:
10336 if (note->namesz == 6
10337 && strcmp (note->namedata, "LINUX") == 0)
10338 return elfcore_grok_aarch_sve (abfd, note);
10339 else
10340 return TRUE;
10341
10342 case NT_ARM_PAC_MASK:
10343 if (note->namesz == 6
10344 && strcmp (note->namedata, "LINUX") == 0)
10345 return elfcore_grok_aarch_pauth (abfd, note);
10346 else
10347 return TRUE;
10348
10349 case NT_PRPSINFO:
10350 case NT_PSINFO:
10351 if (bed->elf_backend_grok_psinfo)
10352 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10353 return TRUE;
10354 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10355 return elfcore_grok_psinfo (abfd, note);
10356 #else
10357 return TRUE;
10358 #endif
10359
10360 case NT_AUXV:
10361 return elfcore_make_auxv_note_section (abfd, note, 0);
10362
10363 case NT_FILE:
10364 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10365 note);
10366
10367 case NT_SIGINFO:
10368 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10369 note);
10370
10371 }
10372 }
10373
10374 static bfd_boolean
10375 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10376 {
10377 struct bfd_build_id* build_id;
10378
10379 if (note->descsz == 0)
10380 return FALSE;
10381
10382 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10383 if (build_id == NULL)
10384 return FALSE;
10385
10386 build_id->size = note->descsz;
10387 memcpy (build_id->data, note->descdata, note->descsz);
10388 abfd->build_id = build_id;
10389
10390 return TRUE;
10391 }
10392
10393 static bfd_boolean
10394 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10395 {
10396 switch (note->type)
10397 {
10398 default:
10399 return TRUE;
10400
10401 case NT_GNU_PROPERTY_TYPE_0:
10402 return _bfd_elf_parse_gnu_properties (abfd, note);
10403
10404 case NT_GNU_BUILD_ID:
10405 return elfobj_grok_gnu_build_id (abfd, note);
10406 }
10407 }
10408
10409 static bfd_boolean
10410 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10411 {
10412 struct sdt_note *cur =
10413 (struct sdt_note *) bfd_alloc (abfd,
10414 sizeof (struct sdt_note) + note->descsz);
10415
10416 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10417 cur->size = (bfd_size_type) note->descsz;
10418 memcpy (cur->data, note->descdata, note->descsz);
10419
10420 elf_tdata (abfd)->sdt_note_head = cur;
10421
10422 return TRUE;
10423 }
10424
10425 static bfd_boolean
10426 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10427 {
10428 switch (note->type)
10429 {
10430 case NT_STAPSDT:
10431 return elfobj_grok_stapsdt_note_1 (abfd, note);
10432
10433 default:
10434 return TRUE;
10435 }
10436 }
10437
10438 static bfd_boolean
10439 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10440 {
10441 size_t offset;
10442
10443 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10444 {
10445 case ELFCLASS32:
10446 if (note->descsz < 108)
10447 return FALSE;
10448 break;
10449
10450 case ELFCLASS64:
10451 if (note->descsz < 120)
10452 return FALSE;
10453 break;
10454
10455 default:
10456 return FALSE;
10457 }
10458
10459 /* Check for version 1 in pr_version. */
10460 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10461 return FALSE;
10462
10463 offset = 4;
10464
10465 /* Skip over pr_psinfosz. */
10466 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10467 offset += 4;
10468 else
10469 {
10470 offset += 4; /* Padding before pr_psinfosz. */
10471 offset += 8;
10472 }
10473
10474 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10475 elf_tdata (abfd)->core->program
10476 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10477 offset += 17;
10478
10479 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10480 elf_tdata (abfd)->core->command
10481 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10482 offset += 81;
10483
10484 /* Padding before pr_pid. */
10485 offset += 2;
10486
10487 /* The pr_pid field was added in version "1a". */
10488 if (note->descsz < offset + 4)
10489 return TRUE;
10490
10491 elf_tdata (abfd)->core->pid
10492 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10493
10494 return TRUE;
10495 }
10496
10497 static bfd_boolean
10498 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10499 {
10500 size_t offset;
10501 size_t size;
10502 size_t min_size;
10503
10504 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10505 Also compute minimum size of this note. */
10506 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10507 {
10508 case ELFCLASS32:
10509 offset = 4 + 4;
10510 min_size = offset + (4 * 2) + 4 + 4 + 4;
10511 break;
10512
10513 case ELFCLASS64:
10514 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10515 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10516 break;
10517
10518 default:
10519 return FALSE;
10520 }
10521
10522 if (note->descsz < min_size)
10523 return FALSE;
10524
10525 /* Check for version 1 in pr_version. */
10526 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10527 return FALSE;
10528
10529 /* Extract size of pr_reg from pr_gregsetsz. */
10530 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10531 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10532 {
10533 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10534 offset += 4 * 2;
10535 }
10536 else
10537 {
10538 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10539 offset += 8 * 2;
10540 }
10541
10542 /* Skip over pr_osreldate. */
10543 offset += 4;
10544
10545 /* Read signal from pr_cursig. */
10546 if (elf_tdata (abfd)->core->signal == 0)
10547 elf_tdata (abfd)->core->signal
10548 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10549 offset += 4;
10550
10551 /* Read TID from pr_pid. */
10552 elf_tdata (abfd)->core->lwpid
10553 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10554 offset += 4;
10555
10556 /* Padding before pr_reg. */
10557 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10558 offset += 4;
10559
10560 /* Make sure that there is enough data remaining in the note. */
10561 if ((note->descsz - offset) < size)
10562 return FALSE;
10563
10564 /* Make a ".reg/999" section and a ".reg" section. */
10565 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10566 size, note->descpos + offset);
10567 }
10568
10569 static bfd_boolean
10570 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10571 {
10572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10573
10574 switch (note->type)
10575 {
10576 case NT_PRSTATUS:
10577 if (bed->elf_backend_grok_freebsd_prstatus)
10578 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10579 return TRUE;
10580 return elfcore_grok_freebsd_prstatus (abfd, note);
10581
10582 case NT_FPREGSET:
10583 return elfcore_grok_prfpreg (abfd, note);
10584
10585 case NT_PRPSINFO:
10586 return elfcore_grok_freebsd_psinfo (abfd, note);
10587
10588 case NT_FREEBSD_THRMISC:
10589 if (note->namesz == 8)
10590 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10591 else
10592 return TRUE;
10593
10594 case NT_FREEBSD_PROCSTAT_PROC:
10595 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10596 note);
10597
10598 case NT_FREEBSD_PROCSTAT_FILES:
10599 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10600 note);
10601
10602 case NT_FREEBSD_PROCSTAT_VMMAP:
10603 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10604 note);
10605
10606 case NT_FREEBSD_PROCSTAT_AUXV:
10607 return elfcore_make_auxv_note_section (abfd, note, 4);
10608
10609 case NT_X86_XSTATE:
10610 if (note->namesz == 8)
10611 return elfcore_grok_xstatereg (abfd, note);
10612 else
10613 return TRUE;
10614
10615 case NT_FREEBSD_PTLWPINFO:
10616 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10617 note);
10618
10619 case NT_ARM_VFP:
10620 return elfcore_grok_arm_vfp (abfd, note);
10621
10622 default:
10623 return TRUE;
10624 }
10625 }
10626
10627 static bfd_boolean
10628 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10629 {
10630 char *cp;
10631
10632 cp = strchr (note->namedata, '@');
10633 if (cp != NULL)
10634 {
10635 *lwpidp = atoi(cp + 1);
10636 return TRUE;
10637 }
10638 return FALSE;
10639 }
10640
10641 static bfd_boolean
10642 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10643 {
10644 if (note->descsz <= 0x7c + 31)
10645 return FALSE;
10646
10647 /* Signal number at offset 0x08. */
10648 elf_tdata (abfd)->core->signal
10649 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10650
10651 /* Process ID at offset 0x50. */
10652 elf_tdata (abfd)->core->pid
10653 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10654
10655 /* Command name at 0x7c (max 32 bytes, including nul). */
10656 elf_tdata (abfd)->core->command
10657 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10658
10659 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10660 note);
10661 }
10662
10663 static bfd_boolean
10664 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10665 {
10666 int lwp;
10667
10668 if (elfcore_netbsd_get_lwpid (note, &lwp))
10669 elf_tdata (abfd)->core->lwpid = lwp;
10670
10671 switch (note->type)
10672 {
10673 case NT_NETBSDCORE_PROCINFO:
10674 /* NetBSD-specific core "procinfo". Note that we expect to
10675 find this note before any of the others, which is fine,
10676 since the kernel writes this note out first when it
10677 creates a core file. */
10678 return elfcore_grok_netbsd_procinfo (abfd, note);
10679 #ifdef NT_NETBSDCORE_AUXV
10680 case NT_NETBSDCORE_AUXV:
10681 /* NetBSD-specific Elf Auxiliary Vector data. */
10682 return elfcore_make_auxv_note_section (abfd, note, 4);
10683 #endif
10684 default:
10685 break;
10686 }
10687
10688 /* As of March 2017 there are no other machine-independent notes
10689 defined for NetBSD core files. If the note type is less
10690 than the start of the machine-dependent note types, we don't
10691 understand it. */
10692
10693 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10694 return TRUE;
10695
10696
10697 switch (bfd_get_arch (abfd))
10698 {
10699 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10700 PT_GETFPREGS == mach+2. */
10701
10702 case bfd_arch_alpha:
10703 case bfd_arch_sparc:
10704 switch (note->type)
10705 {
10706 case NT_NETBSDCORE_FIRSTMACH+0:
10707 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10708
10709 case NT_NETBSDCORE_FIRSTMACH+2:
10710 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10711
10712 default:
10713 return TRUE;
10714 }
10715
10716 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10717 There's also old PT___GETREGS40 == mach + 1 for old reg
10718 structure which lacks GBR. */
10719
10720 case bfd_arch_sh:
10721 switch (note->type)
10722 {
10723 case NT_NETBSDCORE_FIRSTMACH+3:
10724 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10725
10726 case NT_NETBSDCORE_FIRSTMACH+5:
10727 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10728
10729 default:
10730 return TRUE;
10731 }
10732
10733 /* On all other arch's, PT_GETREGS == mach+1 and
10734 PT_GETFPREGS == mach+3. */
10735
10736 default:
10737 switch (note->type)
10738 {
10739 case NT_NETBSDCORE_FIRSTMACH+1:
10740 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10741
10742 case NT_NETBSDCORE_FIRSTMACH+3:
10743 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10744
10745 default:
10746 return TRUE;
10747 }
10748 }
10749 /* NOTREACHED */
10750 }
10751
10752 static bfd_boolean
10753 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10754 {
10755 if (note->descsz <= 0x48 + 31)
10756 return FALSE;
10757
10758 /* Signal number at offset 0x08. */
10759 elf_tdata (abfd)->core->signal
10760 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10761
10762 /* Process ID at offset 0x20. */
10763 elf_tdata (abfd)->core->pid
10764 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10765
10766 /* Command name at 0x48 (max 32 bytes, including nul). */
10767 elf_tdata (abfd)->core->command
10768 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10769
10770 return TRUE;
10771 }
10772
10773 static bfd_boolean
10774 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10775 {
10776 if (note->type == NT_OPENBSD_PROCINFO)
10777 return elfcore_grok_openbsd_procinfo (abfd, note);
10778
10779 if (note->type == NT_OPENBSD_REGS)
10780 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10781
10782 if (note->type == NT_OPENBSD_FPREGS)
10783 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10784
10785 if (note->type == NT_OPENBSD_XFPREGS)
10786 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10787
10788 if (note->type == NT_OPENBSD_AUXV)
10789 return elfcore_make_auxv_note_section (abfd, note, 0);
10790
10791 if (note->type == NT_OPENBSD_WCOOKIE)
10792 {
10793 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10794 SEC_HAS_CONTENTS);
10795
10796 if (sect == NULL)
10797 return FALSE;
10798 sect->size = note->descsz;
10799 sect->filepos = note->descpos;
10800 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10801
10802 return TRUE;
10803 }
10804
10805 return TRUE;
10806 }
10807
10808 static bfd_boolean
10809 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10810 {
10811 void *ddata = note->descdata;
10812 char buf[100];
10813 char *name;
10814 asection *sect;
10815 short sig;
10816 unsigned flags;
10817
10818 if (note->descsz < 16)
10819 return FALSE;
10820
10821 /* nto_procfs_status 'pid' field is at offset 0. */
10822 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10823
10824 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10825 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10826
10827 /* nto_procfs_status 'flags' field is at offset 8. */
10828 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10829
10830 /* nto_procfs_status 'what' field is at offset 14. */
10831 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10832 {
10833 elf_tdata (abfd)->core->signal = sig;
10834 elf_tdata (abfd)->core->lwpid = *tid;
10835 }
10836
10837 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10838 do not come from signals so we make sure we set the current
10839 thread just in case. */
10840 if (flags & 0x00000080)
10841 elf_tdata (abfd)->core->lwpid = *tid;
10842
10843 /* Make a ".qnx_core_status/%d" section. */
10844 sprintf (buf, ".qnx_core_status/%ld", *tid);
10845
10846 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10847 if (name == NULL)
10848 return FALSE;
10849 strcpy (name, buf);
10850
10851 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10852 if (sect == NULL)
10853 return FALSE;
10854
10855 sect->size = note->descsz;
10856 sect->filepos = note->descpos;
10857 sect->alignment_power = 2;
10858
10859 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10860 }
10861
10862 static bfd_boolean
10863 elfcore_grok_nto_regs (bfd *abfd,
10864 Elf_Internal_Note *note,
10865 long tid,
10866 char *base)
10867 {
10868 char buf[100];
10869 char *name;
10870 asection *sect;
10871
10872 /* Make a "(base)/%d" section. */
10873 sprintf (buf, "%s/%ld", base, tid);
10874
10875 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10876 if (name == NULL)
10877 return FALSE;
10878 strcpy (name, buf);
10879
10880 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10881 if (sect == NULL)
10882 return FALSE;
10883
10884 sect->size = note->descsz;
10885 sect->filepos = note->descpos;
10886 sect->alignment_power = 2;
10887
10888 /* This is the current thread. */
10889 if (elf_tdata (abfd)->core->lwpid == tid)
10890 return elfcore_maybe_make_sect (abfd, base, sect);
10891
10892 return TRUE;
10893 }
10894
10895 #define BFD_QNT_CORE_INFO 7
10896 #define BFD_QNT_CORE_STATUS 8
10897 #define BFD_QNT_CORE_GREG 9
10898 #define BFD_QNT_CORE_FPREG 10
10899
10900 static bfd_boolean
10901 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10902 {
10903 /* Every GREG section has a STATUS section before it. Store the
10904 tid from the previous call to pass down to the next gregs
10905 function. */
10906 static long tid = 1;
10907
10908 switch (note->type)
10909 {
10910 case BFD_QNT_CORE_INFO:
10911 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10912 case BFD_QNT_CORE_STATUS:
10913 return elfcore_grok_nto_status (abfd, note, &tid);
10914 case BFD_QNT_CORE_GREG:
10915 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10916 case BFD_QNT_CORE_FPREG:
10917 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10918 default:
10919 return TRUE;
10920 }
10921 }
10922
10923 static bfd_boolean
10924 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10925 {
10926 char *name;
10927 asection *sect;
10928 size_t len;
10929
10930 /* Use note name as section name. */
10931 len = note->namesz;
10932 name = (char *) bfd_alloc (abfd, len);
10933 if (name == NULL)
10934 return FALSE;
10935 memcpy (name, note->namedata, len);
10936 name[len - 1] = '\0';
10937
10938 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10939 if (sect == NULL)
10940 return FALSE;
10941
10942 sect->size = note->descsz;
10943 sect->filepos = note->descpos;
10944 sect->alignment_power = 1;
10945
10946 return TRUE;
10947 }
10948
10949 /* Function: elfcore_write_note
10950
10951 Inputs:
10952 buffer to hold note, and current size of buffer
10953 name of note
10954 type of note
10955 data for note
10956 size of data for note
10957
10958 Writes note to end of buffer. ELF64 notes are written exactly as
10959 for ELF32, despite the current (as of 2006) ELF gabi specifying
10960 that they ought to have 8-byte namesz and descsz field, and have
10961 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10962
10963 Return:
10964 Pointer to realloc'd buffer, *BUFSIZ updated. */
10965
10966 char *
10967 elfcore_write_note (bfd *abfd,
10968 char *buf,
10969 int *bufsiz,
10970 const char *name,
10971 int type,
10972 const void *input,
10973 int size)
10974 {
10975 Elf_External_Note *xnp;
10976 size_t namesz;
10977 size_t newspace;
10978 char *dest;
10979
10980 namesz = 0;
10981 if (name != NULL)
10982 namesz = strlen (name) + 1;
10983
10984 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10985
10986 buf = (char *) realloc (buf, *bufsiz + newspace);
10987 if (buf == NULL)
10988 return buf;
10989 dest = buf + *bufsiz;
10990 *bufsiz += newspace;
10991 xnp = (Elf_External_Note *) dest;
10992 H_PUT_32 (abfd, namesz, xnp->namesz);
10993 H_PUT_32 (abfd, size, xnp->descsz);
10994 H_PUT_32 (abfd, type, xnp->type);
10995 dest = xnp->name;
10996 if (name != NULL)
10997 {
10998 memcpy (dest, name, namesz);
10999 dest += namesz;
11000 while (namesz & 3)
11001 {
11002 *dest++ = '\0';
11003 ++namesz;
11004 }
11005 }
11006 memcpy (dest, input, size);
11007 dest += size;
11008 while (size & 3)
11009 {
11010 *dest++ = '\0';
11011 ++size;
11012 }
11013 return buf;
11014 }
11015
11016 /* gcc-8 warns (*) on all the strncpy calls in this function about
11017 possible string truncation. The "truncation" is not a bug. We
11018 have an external representation of structs with fields that are not
11019 necessarily NULL terminated and corresponding internal
11020 representation fields that are one larger so that they can always
11021 be NULL terminated.
11022 gcc versions between 4.2 and 4.6 do not allow pragma control of
11023 diagnostics inside functions, giving a hard error if you try to use
11024 the finer control available with later versions.
11025 gcc prior to 4.2 warns about diagnostic push and pop.
11026 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11027 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11028 (*) Depending on your system header files! */
11029 #if GCC_VERSION >= 8000
11030 # pragma GCC diagnostic push
11031 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11032 #endif
11033 char *
11034 elfcore_write_prpsinfo (bfd *abfd,
11035 char *buf,
11036 int *bufsiz,
11037 const char *fname,
11038 const char *psargs)
11039 {
11040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11041
11042 if (bed->elf_backend_write_core_note != NULL)
11043 {
11044 char *ret;
11045 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11046 NT_PRPSINFO, fname, psargs);
11047 if (ret != NULL)
11048 return ret;
11049 }
11050
11051 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11052 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11053 if (bed->s->elfclass == ELFCLASS32)
11054 {
11055 # if defined (HAVE_PSINFO32_T)
11056 psinfo32_t data;
11057 int note_type = NT_PSINFO;
11058 # else
11059 prpsinfo32_t data;
11060 int note_type = NT_PRPSINFO;
11061 # endif
11062
11063 memset (&data, 0, sizeof (data));
11064 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11065 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11066 return elfcore_write_note (abfd, buf, bufsiz,
11067 "CORE", note_type, &data, sizeof (data));
11068 }
11069 else
11070 # endif
11071 {
11072 # if defined (HAVE_PSINFO_T)
11073 psinfo_t data;
11074 int note_type = NT_PSINFO;
11075 # else
11076 prpsinfo_t data;
11077 int note_type = NT_PRPSINFO;
11078 # endif
11079
11080 memset (&data, 0, sizeof (data));
11081 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11082 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11083 return elfcore_write_note (abfd, buf, bufsiz,
11084 "CORE", note_type, &data, sizeof (data));
11085 }
11086 #endif /* PSINFO_T or PRPSINFO_T */
11087
11088 free (buf);
11089 return NULL;
11090 }
11091 #if GCC_VERSION >= 8000
11092 # pragma GCC diagnostic pop
11093 #endif
11094
11095 char *
11096 elfcore_write_linux_prpsinfo32
11097 (bfd *abfd, char *buf, int *bufsiz,
11098 const struct elf_internal_linux_prpsinfo *prpsinfo)
11099 {
11100 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11101 {
11102 struct elf_external_linux_prpsinfo32_ugid16 data;
11103
11104 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11105 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11106 &data, sizeof (data));
11107 }
11108 else
11109 {
11110 struct elf_external_linux_prpsinfo32_ugid32 data;
11111
11112 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11113 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11114 &data, sizeof (data));
11115 }
11116 }
11117
11118 char *
11119 elfcore_write_linux_prpsinfo64
11120 (bfd *abfd, char *buf, int *bufsiz,
11121 const struct elf_internal_linux_prpsinfo *prpsinfo)
11122 {
11123 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11124 {
11125 struct elf_external_linux_prpsinfo64_ugid16 data;
11126
11127 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11128 return elfcore_write_note (abfd, buf, bufsiz,
11129 "CORE", NT_PRPSINFO, &data, sizeof (data));
11130 }
11131 else
11132 {
11133 struct elf_external_linux_prpsinfo64_ugid32 data;
11134
11135 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11136 return elfcore_write_note (abfd, buf, bufsiz,
11137 "CORE", NT_PRPSINFO, &data, sizeof (data));
11138 }
11139 }
11140
11141 char *
11142 elfcore_write_prstatus (bfd *abfd,
11143 char *buf,
11144 int *bufsiz,
11145 long pid,
11146 int cursig,
11147 const void *gregs)
11148 {
11149 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11150
11151 if (bed->elf_backend_write_core_note != NULL)
11152 {
11153 char *ret;
11154 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11155 NT_PRSTATUS,
11156 pid, cursig, gregs);
11157 if (ret != NULL)
11158 return ret;
11159 }
11160
11161 #if defined (HAVE_PRSTATUS_T)
11162 #if defined (HAVE_PRSTATUS32_T)
11163 if (bed->s->elfclass == ELFCLASS32)
11164 {
11165 prstatus32_t prstat;
11166
11167 memset (&prstat, 0, sizeof (prstat));
11168 prstat.pr_pid = pid;
11169 prstat.pr_cursig = cursig;
11170 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11171 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11172 NT_PRSTATUS, &prstat, sizeof (prstat));
11173 }
11174 else
11175 #endif
11176 {
11177 prstatus_t prstat;
11178
11179 memset (&prstat, 0, sizeof (prstat));
11180 prstat.pr_pid = pid;
11181 prstat.pr_cursig = cursig;
11182 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11183 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11184 NT_PRSTATUS, &prstat, sizeof (prstat));
11185 }
11186 #endif /* HAVE_PRSTATUS_T */
11187
11188 free (buf);
11189 return NULL;
11190 }
11191
11192 #if defined (HAVE_LWPSTATUS_T)
11193 char *
11194 elfcore_write_lwpstatus (bfd *abfd,
11195 char *buf,
11196 int *bufsiz,
11197 long pid,
11198 int cursig,
11199 const void *gregs)
11200 {
11201 lwpstatus_t lwpstat;
11202 const char *note_name = "CORE";
11203
11204 memset (&lwpstat, 0, sizeof (lwpstat));
11205 lwpstat.pr_lwpid = pid >> 16;
11206 lwpstat.pr_cursig = cursig;
11207 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11208 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11209 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11210 #if !defined(gregs)
11211 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11212 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11213 #else
11214 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11215 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11216 #endif
11217 #endif
11218 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11219 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11220 }
11221 #endif /* HAVE_LWPSTATUS_T */
11222
11223 #if defined (HAVE_PSTATUS_T)
11224 char *
11225 elfcore_write_pstatus (bfd *abfd,
11226 char *buf,
11227 int *bufsiz,
11228 long pid,
11229 int cursig ATTRIBUTE_UNUSED,
11230 const void *gregs ATTRIBUTE_UNUSED)
11231 {
11232 const char *note_name = "CORE";
11233 #if defined (HAVE_PSTATUS32_T)
11234 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11235
11236 if (bed->s->elfclass == ELFCLASS32)
11237 {
11238 pstatus32_t pstat;
11239
11240 memset (&pstat, 0, sizeof (pstat));
11241 pstat.pr_pid = pid & 0xffff;
11242 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11243 NT_PSTATUS, &pstat, sizeof (pstat));
11244 return buf;
11245 }
11246 else
11247 #endif
11248 {
11249 pstatus_t pstat;
11250
11251 memset (&pstat, 0, sizeof (pstat));
11252 pstat.pr_pid = pid & 0xffff;
11253 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11254 NT_PSTATUS, &pstat, sizeof (pstat));
11255 return buf;
11256 }
11257 }
11258 #endif /* HAVE_PSTATUS_T */
11259
11260 char *
11261 elfcore_write_prfpreg (bfd *abfd,
11262 char *buf,
11263 int *bufsiz,
11264 const void *fpregs,
11265 int size)
11266 {
11267 const char *note_name = "CORE";
11268 return elfcore_write_note (abfd, buf, bufsiz,
11269 note_name, NT_FPREGSET, fpregs, size);
11270 }
11271
11272 char *
11273 elfcore_write_prxfpreg (bfd *abfd,
11274 char *buf,
11275 int *bufsiz,
11276 const void *xfpregs,
11277 int size)
11278 {
11279 char *note_name = "LINUX";
11280 return elfcore_write_note (abfd, buf, bufsiz,
11281 note_name, NT_PRXFPREG, xfpregs, size);
11282 }
11283
11284 char *
11285 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11286 const void *xfpregs, int size)
11287 {
11288 char *note_name;
11289 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11290 note_name = "FreeBSD";
11291 else
11292 note_name = "LINUX";
11293 return elfcore_write_note (abfd, buf, bufsiz,
11294 note_name, NT_X86_XSTATE, xfpregs, size);
11295 }
11296
11297 char *
11298 elfcore_write_ppc_vmx (bfd *abfd,
11299 char *buf,
11300 int *bufsiz,
11301 const void *ppc_vmx,
11302 int size)
11303 {
11304 char *note_name = "LINUX";
11305 return elfcore_write_note (abfd, buf, bufsiz,
11306 note_name, NT_PPC_VMX, ppc_vmx, size);
11307 }
11308
11309 char *
11310 elfcore_write_ppc_vsx (bfd *abfd,
11311 char *buf,
11312 int *bufsiz,
11313 const void *ppc_vsx,
11314 int size)
11315 {
11316 char *note_name = "LINUX";
11317 return elfcore_write_note (abfd, buf, bufsiz,
11318 note_name, NT_PPC_VSX, ppc_vsx, size);
11319 }
11320
11321 char *
11322 elfcore_write_ppc_tar (bfd *abfd,
11323 char *buf,
11324 int *bufsiz,
11325 const void *ppc_tar,
11326 int size)
11327 {
11328 char *note_name = "LINUX";
11329 return elfcore_write_note (abfd, buf, bufsiz,
11330 note_name, NT_PPC_TAR, ppc_tar, size);
11331 }
11332
11333 char *
11334 elfcore_write_ppc_ppr (bfd *abfd,
11335 char *buf,
11336 int *bufsiz,
11337 const void *ppc_ppr,
11338 int size)
11339 {
11340 char *note_name = "LINUX";
11341 return elfcore_write_note (abfd, buf, bufsiz,
11342 note_name, NT_PPC_PPR, ppc_ppr, size);
11343 }
11344
11345 char *
11346 elfcore_write_ppc_dscr (bfd *abfd,
11347 char *buf,
11348 int *bufsiz,
11349 const void *ppc_dscr,
11350 int size)
11351 {
11352 char *note_name = "LINUX";
11353 return elfcore_write_note (abfd, buf, bufsiz,
11354 note_name, NT_PPC_DSCR, ppc_dscr, size);
11355 }
11356
11357 char *
11358 elfcore_write_ppc_ebb (bfd *abfd,
11359 char *buf,
11360 int *bufsiz,
11361 const void *ppc_ebb,
11362 int size)
11363 {
11364 char *note_name = "LINUX";
11365 return elfcore_write_note (abfd, buf, bufsiz,
11366 note_name, NT_PPC_EBB, ppc_ebb, size);
11367 }
11368
11369 char *
11370 elfcore_write_ppc_pmu (bfd *abfd,
11371 char *buf,
11372 int *bufsiz,
11373 const void *ppc_pmu,
11374 int size)
11375 {
11376 char *note_name = "LINUX";
11377 return elfcore_write_note (abfd, buf, bufsiz,
11378 note_name, NT_PPC_PMU, ppc_pmu, size);
11379 }
11380
11381 char *
11382 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11383 char *buf,
11384 int *bufsiz,
11385 const void *ppc_tm_cgpr,
11386 int size)
11387 {
11388 char *note_name = "LINUX";
11389 return elfcore_write_note (abfd, buf, bufsiz,
11390 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11391 }
11392
11393 char *
11394 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11395 char *buf,
11396 int *bufsiz,
11397 const void *ppc_tm_cfpr,
11398 int size)
11399 {
11400 char *note_name = "LINUX";
11401 return elfcore_write_note (abfd, buf, bufsiz,
11402 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11403 }
11404
11405 char *
11406 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11407 char *buf,
11408 int *bufsiz,
11409 const void *ppc_tm_cvmx,
11410 int size)
11411 {
11412 char *note_name = "LINUX";
11413 return elfcore_write_note (abfd, buf, bufsiz,
11414 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11415 }
11416
11417 char *
11418 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11419 char *buf,
11420 int *bufsiz,
11421 const void *ppc_tm_cvsx,
11422 int size)
11423 {
11424 char *note_name = "LINUX";
11425 return elfcore_write_note (abfd, buf, bufsiz,
11426 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11427 }
11428
11429 char *
11430 elfcore_write_ppc_tm_spr (bfd *abfd,
11431 char *buf,
11432 int *bufsiz,
11433 const void *ppc_tm_spr,
11434 int size)
11435 {
11436 char *note_name = "LINUX";
11437 return elfcore_write_note (abfd, buf, bufsiz,
11438 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11439 }
11440
11441 char *
11442 elfcore_write_ppc_tm_ctar (bfd *abfd,
11443 char *buf,
11444 int *bufsiz,
11445 const void *ppc_tm_ctar,
11446 int size)
11447 {
11448 char *note_name = "LINUX";
11449 return elfcore_write_note (abfd, buf, bufsiz,
11450 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11451 }
11452
11453 char *
11454 elfcore_write_ppc_tm_cppr (bfd *abfd,
11455 char *buf,
11456 int *bufsiz,
11457 const void *ppc_tm_cppr,
11458 int size)
11459 {
11460 char *note_name = "LINUX";
11461 return elfcore_write_note (abfd, buf, bufsiz,
11462 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11463 }
11464
11465 char *
11466 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11467 char *buf,
11468 int *bufsiz,
11469 const void *ppc_tm_cdscr,
11470 int size)
11471 {
11472 char *note_name = "LINUX";
11473 return elfcore_write_note (abfd, buf, bufsiz,
11474 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11475 }
11476
11477 static char *
11478 elfcore_write_s390_high_gprs (bfd *abfd,
11479 char *buf,
11480 int *bufsiz,
11481 const void *s390_high_gprs,
11482 int size)
11483 {
11484 char *note_name = "LINUX";
11485 return elfcore_write_note (abfd, buf, bufsiz,
11486 note_name, NT_S390_HIGH_GPRS,
11487 s390_high_gprs, size);
11488 }
11489
11490 char *
11491 elfcore_write_s390_timer (bfd *abfd,
11492 char *buf,
11493 int *bufsiz,
11494 const void *s390_timer,
11495 int size)
11496 {
11497 char *note_name = "LINUX";
11498 return elfcore_write_note (abfd, buf, bufsiz,
11499 note_name, NT_S390_TIMER, s390_timer, size);
11500 }
11501
11502 char *
11503 elfcore_write_s390_todcmp (bfd *abfd,
11504 char *buf,
11505 int *bufsiz,
11506 const void *s390_todcmp,
11507 int size)
11508 {
11509 char *note_name = "LINUX";
11510 return elfcore_write_note (abfd, buf, bufsiz,
11511 note_name, NT_S390_TODCMP, s390_todcmp, size);
11512 }
11513
11514 char *
11515 elfcore_write_s390_todpreg (bfd *abfd,
11516 char *buf,
11517 int *bufsiz,
11518 const void *s390_todpreg,
11519 int size)
11520 {
11521 char *note_name = "LINUX";
11522 return elfcore_write_note (abfd, buf, bufsiz,
11523 note_name, NT_S390_TODPREG, s390_todpreg, size);
11524 }
11525
11526 char *
11527 elfcore_write_s390_ctrs (bfd *abfd,
11528 char *buf,
11529 int *bufsiz,
11530 const void *s390_ctrs,
11531 int size)
11532 {
11533 char *note_name = "LINUX";
11534 return elfcore_write_note (abfd, buf, bufsiz,
11535 note_name, NT_S390_CTRS, s390_ctrs, size);
11536 }
11537
11538 char *
11539 elfcore_write_s390_prefix (bfd *abfd,
11540 char *buf,
11541 int *bufsiz,
11542 const void *s390_prefix,
11543 int size)
11544 {
11545 char *note_name = "LINUX";
11546 return elfcore_write_note (abfd, buf, bufsiz,
11547 note_name, NT_S390_PREFIX, s390_prefix, size);
11548 }
11549
11550 char *
11551 elfcore_write_s390_last_break (bfd *abfd,
11552 char *buf,
11553 int *bufsiz,
11554 const void *s390_last_break,
11555 int size)
11556 {
11557 char *note_name = "LINUX";
11558 return elfcore_write_note (abfd, buf, bufsiz,
11559 note_name, NT_S390_LAST_BREAK,
11560 s390_last_break, size);
11561 }
11562
11563 char *
11564 elfcore_write_s390_system_call (bfd *abfd,
11565 char *buf,
11566 int *bufsiz,
11567 const void *s390_system_call,
11568 int size)
11569 {
11570 char *note_name = "LINUX";
11571 return elfcore_write_note (abfd, buf, bufsiz,
11572 note_name, NT_S390_SYSTEM_CALL,
11573 s390_system_call, size);
11574 }
11575
11576 char *
11577 elfcore_write_s390_tdb (bfd *abfd,
11578 char *buf,
11579 int *bufsiz,
11580 const void *s390_tdb,
11581 int size)
11582 {
11583 char *note_name = "LINUX";
11584 return elfcore_write_note (abfd, buf, bufsiz,
11585 note_name, NT_S390_TDB, s390_tdb, size);
11586 }
11587
11588 char *
11589 elfcore_write_s390_vxrs_low (bfd *abfd,
11590 char *buf,
11591 int *bufsiz,
11592 const void *s390_vxrs_low,
11593 int size)
11594 {
11595 char *note_name = "LINUX";
11596 return elfcore_write_note (abfd, buf, bufsiz,
11597 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11598 }
11599
11600 char *
11601 elfcore_write_s390_vxrs_high (bfd *abfd,
11602 char *buf,
11603 int *bufsiz,
11604 const void *s390_vxrs_high,
11605 int size)
11606 {
11607 char *note_name = "LINUX";
11608 return elfcore_write_note (abfd, buf, bufsiz,
11609 note_name, NT_S390_VXRS_HIGH,
11610 s390_vxrs_high, size);
11611 }
11612
11613 char *
11614 elfcore_write_s390_gs_cb (bfd *abfd,
11615 char *buf,
11616 int *bufsiz,
11617 const void *s390_gs_cb,
11618 int size)
11619 {
11620 char *note_name = "LINUX";
11621 return elfcore_write_note (abfd, buf, bufsiz,
11622 note_name, NT_S390_GS_CB,
11623 s390_gs_cb, size);
11624 }
11625
11626 char *
11627 elfcore_write_s390_gs_bc (bfd *abfd,
11628 char *buf,
11629 int *bufsiz,
11630 const void *s390_gs_bc,
11631 int size)
11632 {
11633 char *note_name = "LINUX";
11634 return elfcore_write_note (abfd, buf, bufsiz,
11635 note_name, NT_S390_GS_BC,
11636 s390_gs_bc, size);
11637 }
11638
11639 char *
11640 elfcore_write_arm_vfp (bfd *abfd,
11641 char *buf,
11642 int *bufsiz,
11643 const void *arm_vfp,
11644 int size)
11645 {
11646 char *note_name = "LINUX";
11647 return elfcore_write_note (abfd, buf, bufsiz,
11648 note_name, NT_ARM_VFP, arm_vfp, size);
11649 }
11650
11651 char *
11652 elfcore_write_aarch_tls (bfd *abfd,
11653 char *buf,
11654 int *bufsiz,
11655 const void *aarch_tls,
11656 int size)
11657 {
11658 char *note_name = "LINUX";
11659 return elfcore_write_note (abfd, buf, bufsiz,
11660 note_name, NT_ARM_TLS, aarch_tls, size);
11661 }
11662
11663 char *
11664 elfcore_write_aarch_hw_break (bfd *abfd,
11665 char *buf,
11666 int *bufsiz,
11667 const void *aarch_hw_break,
11668 int size)
11669 {
11670 char *note_name = "LINUX";
11671 return elfcore_write_note (abfd, buf, bufsiz,
11672 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11673 }
11674
11675 char *
11676 elfcore_write_aarch_hw_watch (bfd *abfd,
11677 char *buf,
11678 int *bufsiz,
11679 const void *aarch_hw_watch,
11680 int size)
11681 {
11682 char *note_name = "LINUX";
11683 return elfcore_write_note (abfd, buf, bufsiz,
11684 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11685 }
11686
11687 char *
11688 elfcore_write_aarch_sve (bfd *abfd,
11689 char *buf,
11690 int *bufsiz,
11691 const void *aarch_sve,
11692 int size)
11693 {
11694 char *note_name = "LINUX";
11695 return elfcore_write_note (abfd, buf, bufsiz,
11696 note_name, NT_ARM_SVE, aarch_sve, size);
11697 }
11698
11699 char *
11700 elfcore_write_aarch_pauth (bfd *abfd,
11701 char *buf,
11702 int *bufsiz,
11703 const void *aarch_pauth,
11704 int size)
11705 {
11706 char *note_name = "LINUX";
11707 return elfcore_write_note (abfd, buf, bufsiz,
11708 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11709 }
11710
11711 char *
11712 elfcore_write_register_note (bfd *abfd,
11713 char *buf,
11714 int *bufsiz,
11715 const char *section,
11716 const void *data,
11717 int size)
11718 {
11719 if (strcmp (section, ".reg2") == 0)
11720 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11721 if (strcmp (section, ".reg-xfp") == 0)
11722 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11723 if (strcmp (section, ".reg-xstate") == 0)
11724 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11725 if (strcmp (section, ".reg-ppc-vmx") == 0)
11726 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11727 if (strcmp (section, ".reg-ppc-vsx") == 0)
11728 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11729 if (strcmp (section, ".reg-ppc-tar") == 0)
11730 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11731 if (strcmp (section, ".reg-ppc-ppr") == 0)
11732 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11733 if (strcmp (section, ".reg-ppc-dscr") == 0)
11734 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11735 if (strcmp (section, ".reg-ppc-ebb") == 0)
11736 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11737 if (strcmp (section, ".reg-ppc-pmu") == 0)
11738 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11739 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11740 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11741 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11742 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11744 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11746 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11748 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11750 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11752 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11753 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11754 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11755 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11756 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11757 if (strcmp (section, ".reg-s390-timer") == 0)
11758 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11759 if (strcmp (section, ".reg-s390-todcmp") == 0)
11760 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11761 if (strcmp (section, ".reg-s390-todpreg") == 0)
11762 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11763 if (strcmp (section, ".reg-s390-ctrs") == 0)
11764 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11765 if (strcmp (section, ".reg-s390-prefix") == 0)
11766 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11767 if (strcmp (section, ".reg-s390-last-break") == 0)
11768 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11769 if (strcmp (section, ".reg-s390-system-call") == 0)
11770 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11771 if (strcmp (section, ".reg-s390-tdb") == 0)
11772 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11773 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11774 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11775 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11776 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11777 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11778 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11779 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11780 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11781 if (strcmp (section, ".reg-arm-vfp") == 0)
11782 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11783 if (strcmp (section, ".reg-aarch-tls") == 0)
11784 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11785 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11786 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11787 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11788 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11789 if (strcmp (section, ".reg-aarch-sve") == 0)
11790 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11791 if (strcmp (section, ".reg-aarch-pauth") == 0)
11792 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11793 return NULL;
11794 }
11795
11796 static bfd_boolean
11797 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11798 size_t align)
11799 {
11800 char *p;
11801
11802 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11803 gABI specifies that PT_NOTE alignment should be aligned to 4
11804 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11805 align is less than 4, we use 4 byte alignment. */
11806 if (align < 4)
11807 align = 4;
11808 if (align != 4 && align != 8)
11809 return FALSE;
11810
11811 p = buf;
11812 while (p < buf + size)
11813 {
11814 Elf_External_Note *xnp = (Elf_External_Note *) p;
11815 Elf_Internal_Note in;
11816
11817 if (offsetof (Elf_External_Note, name) > buf - p + size)
11818 return FALSE;
11819
11820 in.type = H_GET_32 (abfd, xnp->type);
11821
11822 in.namesz = H_GET_32 (abfd, xnp->namesz);
11823 in.namedata = xnp->name;
11824 if (in.namesz > buf - in.namedata + size)
11825 return FALSE;
11826
11827 in.descsz = H_GET_32 (abfd, xnp->descsz);
11828 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11829 in.descpos = offset + (in.descdata - buf);
11830 if (in.descsz != 0
11831 && (in.descdata >= buf + size
11832 || in.descsz > buf - in.descdata + size))
11833 return FALSE;
11834
11835 switch (bfd_get_format (abfd))
11836 {
11837 default:
11838 return TRUE;
11839
11840 case bfd_core:
11841 {
11842 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11843 struct
11844 {
11845 const char * string;
11846 size_t len;
11847 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11848 }
11849 grokers[] =
11850 {
11851 GROKER_ELEMENT ("", elfcore_grok_note),
11852 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11853 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11854 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11855 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11856 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11857 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11858 };
11859 #undef GROKER_ELEMENT
11860 int i;
11861
11862 for (i = ARRAY_SIZE (grokers); i--;)
11863 {
11864 if (in.namesz >= grokers[i].len
11865 && strncmp (in.namedata, grokers[i].string,
11866 grokers[i].len) == 0)
11867 {
11868 if (! grokers[i].func (abfd, & in))
11869 return FALSE;
11870 break;
11871 }
11872 }
11873 break;
11874 }
11875
11876 case bfd_object:
11877 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11878 {
11879 if (! elfobj_grok_gnu_note (abfd, &in))
11880 return FALSE;
11881 }
11882 else if (in.namesz == sizeof "stapsdt"
11883 && strcmp (in.namedata, "stapsdt") == 0)
11884 {
11885 if (! elfobj_grok_stapsdt_note (abfd, &in))
11886 return FALSE;
11887 }
11888 break;
11889 }
11890
11891 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11892 }
11893
11894 return TRUE;
11895 }
11896
11897 bfd_boolean
11898 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11899 size_t align)
11900 {
11901 char *buf;
11902
11903 if (size == 0 || (size + 1) == 0)
11904 return TRUE;
11905
11906 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11907 return FALSE;
11908
11909 buf = (char *) bfd_malloc (size + 1);
11910 if (buf == NULL)
11911 return FALSE;
11912
11913 /* PR 17512: file: ec08f814
11914 0-termintate the buffer so that string searches will not overflow. */
11915 buf[size] = 0;
11916
11917 if (bfd_bread (buf, size, abfd) != size
11918 || !elf_parse_notes (abfd, buf, size, offset, align))
11919 {
11920 free (buf);
11921 return FALSE;
11922 }
11923
11924 free (buf);
11925 return TRUE;
11926 }
11927 \f
11928 /* Providing external access to the ELF program header table. */
11929
11930 /* Return an upper bound on the number of bytes required to store a
11931 copy of ABFD's program header table entries. Return -1 if an error
11932 occurs; bfd_get_error will return an appropriate code. */
11933
11934 long
11935 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11936 {
11937 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11938 {
11939 bfd_set_error (bfd_error_wrong_format);
11940 return -1;
11941 }
11942
11943 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11944 }
11945
11946 /* Copy ABFD's program header table entries to *PHDRS. The entries
11947 will be stored as an array of Elf_Internal_Phdr structures, as
11948 defined in include/elf/internal.h. To find out how large the
11949 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11950
11951 Return the number of program header table entries read, or -1 if an
11952 error occurs; bfd_get_error will return an appropriate code. */
11953
11954 int
11955 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11956 {
11957 int num_phdrs;
11958
11959 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11960 {
11961 bfd_set_error (bfd_error_wrong_format);
11962 return -1;
11963 }
11964
11965 num_phdrs = elf_elfheader (abfd)->e_phnum;
11966 if (num_phdrs != 0)
11967 memcpy (phdrs, elf_tdata (abfd)->phdr,
11968 num_phdrs * sizeof (Elf_Internal_Phdr));
11969
11970 return num_phdrs;
11971 }
11972
11973 enum elf_reloc_type_class
11974 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11975 const asection *rel_sec ATTRIBUTE_UNUSED,
11976 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11977 {
11978 return reloc_class_normal;
11979 }
11980
11981 /* For RELA architectures, return the relocation value for a
11982 relocation against a local symbol. */
11983
11984 bfd_vma
11985 _bfd_elf_rela_local_sym (bfd *abfd,
11986 Elf_Internal_Sym *sym,
11987 asection **psec,
11988 Elf_Internal_Rela *rel)
11989 {
11990 asection *sec = *psec;
11991 bfd_vma relocation;
11992
11993 relocation = (sec->output_section->vma
11994 + sec->output_offset
11995 + sym->st_value);
11996 if ((sec->flags & SEC_MERGE)
11997 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11998 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11999 {
12000 rel->r_addend =
12001 _bfd_merged_section_offset (abfd, psec,
12002 elf_section_data (sec)->sec_info,
12003 sym->st_value + rel->r_addend);
12004 if (sec != *psec)
12005 {
12006 /* If we have changed the section, and our original section is
12007 marked with SEC_EXCLUDE, it means that the original
12008 SEC_MERGE section has been completely subsumed in some
12009 other SEC_MERGE section. In this case, we need to leave
12010 some info around for --emit-relocs. */
12011 if ((sec->flags & SEC_EXCLUDE) != 0)
12012 sec->kept_section = *psec;
12013 sec = *psec;
12014 }
12015 rel->r_addend -= relocation;
12016 rel->r_addend += sec->output_section->vma + sec->output_offset;
12017 }
12018 return relocation;
12019 }
12020
12021 bfd_vma
12022 _bfd_elf_rel_local_sym (bfd *abfd,
12023 Elf_Internal_Sym *sym,
12024 asection **psec,
12025 bfd_vma addend)
12026 {
12027 asection *sec = *psec;
12028
12029 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12030 return sym->st_value + addend;
12031
12032 return _bfd_merged_section_offset (abfd, psec,
12033 elf_section_data (sec)->sec_info,
12034 sym->st_value + addend);
12035 }
12036
12037 /* Adjust an address within a section. Given OFFSET within SEC, return
12038 the new offset within the section, based upon changes made to the
12039 section. Returns -1 if the offset is now invalid.
12040 The offset (in abnd out) is in target sized bytes, however big a
12041 byte may be. */
12042
12043 bfd_vma
12044 _bfd_elf_section_offset (bfd *abfd,
12045 struct bfd_link_info *info,
12046 asection *sec,
12047 bfd_vma offset)
12048 {
12049 switch (sec->sec_info_type)
12050 {
12051 case SEC_INFO_TYPE_STABS:
12052 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12053 offset);
12054 case SEC_INFO_TYPE_EH_FRAME:
12055 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12056
12057 default:
12058 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12059 {
12060 /* Reverse the offset. */
12061 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12062 bfd_size_type address_size = bed->s->arch_size / 8;
12063
12064 /* address_size and sec->size are in octets. Convert
12065 to bytes before subtracting the original offset. */
12066 offset = ((sec->size - address_size)
12067 / bfd_octets_per_byte (abfd, NULL) - offset);
12068 }
12069 return offset;
12070 }
12071 }
12072 \f
12073 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12074 reconstruct an ELF file by reading the segments out of remote memory
12075 based on the ELF file header at EHDR_VMA and the ELF program headers it
12076 points to. If not null, *LOADBASEP is filled in with the difference
12077 between the VMAs from which the segments were read, and the VMAs the
12078 file headers (and hence BFD's idea of each section's VMA) put them at.
12079
12080 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12081 remote memory at target address VMA into the local buffer at MYADDR; it
12082 should return zero on success or an `errno' code on failure. TEMPL must
12083 be a BFD for an ELF target with the word size and byte order found in
12084 the remote memory. */
12085
12086 bfd *
12087 bfd_elf_bfd_from_remote_memory
12088 (bfd *templ,
12089 bfd_vma ehdr_vma,
12090 bfd_size_type size,
12091 bfd_vma *loadbasep,
12092 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12093 {
12094 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12095 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12096 }
12097 \f
12098 long
12099 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12100 long symcount ATTRIBUTE_UNUSED,
12101 asymbol **syms ATTRIBUTE_UNUSED,
12102 long dynsymcount,
12103 asymbol **dynsyms,
12104 asymbol **ret)
12105 {
12106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12107 asection *relplt;
12108 asymbol *s;
12109 const char *relplt_name;
12110 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12111 arelent *p;
12112 long count, i, n;
12113 size_t size;
12114 Elf_Internal_Shdr *hdr;
12115 char *names;
12116 asection *plt;
12117
12118 *ret = NULL;
12119
12120 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12121 return 0;
12122
12123 if (dynsymcount <= 0)
12124 return 0;
12125
12126 if (!bed->plt_sym_val)
12127 return 0;
12128
12129 relplt_name = bed->relplt_name;
12130 if (relplt_name == NULL)
12131 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12132 relplt = bfd_get_section_by_name (abfd, relplt_name);
12133 if (relplt == NULL)
12134 return 0;
12135
12136 hdr = &elf_section_data (relplt)->this_hdr;
12137 if (hdr->sh_link != elf_dynsymtab (abfd)
12138 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12139 return 0;
12140
12141 plt = bfd_get_section_by_name (abfd, ".plt");
12142 if (plt == NULL)
12143 return 0;
12144
12145 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12146 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12147 return -1;
12148
12149 count = relplt->size / hdr->sh_entsize;
12150 size = count * sizeof (asymbol);
12151 p = relplt->relocation;
12152 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12153 {
12154 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12155 if (p->addend != 0)
12156 {
12157 #ifdef BFD64
12158 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12159 #else
12160 size += sizeof ("+0x") - 1 + 8;
12161 #endif
12162 }
12163 }
12164
12165 s = *ret = (asymbol *) bfd_malloc (size);
12166 if (s == NULL)
12167 return -1;
12168
12169 names = (char *) (s + count);
12170 p = relplt->relocation;
12171 n = 0;
12172 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12173 {
12174 size_t len;
12175 bfd_vma addr;
12176
12177 addr = bed->plt_sym_val (i, plt, p);
12178 if (addr == (bfd_vma) -1)
12179 continue;
12180
12181 *s = **p->sym_ptr_ptr;
12182 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12183 we are defining a symbol, ensure one of them is set. */
12184 if ((s->flags & BSF_LOCAL) == 0)
12185 s->flags |= BSF_GLOBAL;
12186 s->flags |= BSF_SYNTHETIC;
12187 s->section = plt;
12188 s->value = addr - plt->vma;
12189 s->name = names;
12190 s->udata.p = NULL;
12191 len = strlen ((*p->sym_ptr_ptr)->name);
12192 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12193 names += len;
12194 if (p->addend != 0)
12195 {
12196 char buf[30], *a;
12197
12198 memcpy (names, "+0x", sizeof ("+0x") - 1);
12199 names += sizeof ("+0x") - 1;
12200 bfd_sprintf_vma (abfd, buf, p->addend);
12201 for (a = buf; *a == '0'; ++a)
12202 ;
12203 len = strlen (a);
12204 memcpy (names, a, len);
12205 names += len;
12206 }
12207 memcpy (names, "@plt", sizeof ("@plt"));
12208 names += sizeof ("@plt");
12209 ++s, ++n;
12210 }
12211
12212 return n;
12213 }
12214
12215 /* It is only used by x86-64 so far.
12216 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12217 but current usage would allow all of _bfd_std_section to be zero. */
12218 static const asymbol lcomm_sym
12219 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12220 asection _bfd_elf_large_com_section
12221 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12222 "LARGE_COMMON", 0, SEC_IS_COMMON);
12223
12224 bfd_boolean
12225 _bfd_elf_final_write_processing (bfd *abfd)
12226 {
12227 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12228
12229 i_ehdrp = elf_elfheader (abfd);
12230
12231 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12232 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12233
12234 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12235 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12236 STB_GNU_UNIQUE binding. */
12237 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12238 {
12239 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12240 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12241 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12242 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12243 {
12244 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12245 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12246 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12247 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12248 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12249 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12250 bfd_set_error (bfd_error_sorry);
12251 return FALSE;
12252 }
12253 }
12254 return TRUE;
12255 }
12256
12257
12258 /* Return TRUE for ELF symbol types that represent functions.
12259 This is the default version of this function, which is sufficient for
12260 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12261
12262 bfd_boolean
12263 _bfd_elf_is_function_type (unsigned int type)
12264 {
12265 return (type == STT_FUNC
12266 || type == STT_GNU_IFUNC);
12267 }
12268
12269 /* If the ELF symbol SYM might be a function in SEC, return the
12270 function size and set *CODE_OFF to the function's entry point,
12271 otherwise return zero. */
12272
12273 bfd_size_type
12274 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12275 bfd_vma *code_off)
12276 {
12277 bfd_size_type size;
12278
12279 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12280 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12281 || sym->section != sec)
12282 return 0;
12283
12284 *code_off = sym->value;
12285 size = 0;
12286 if (!(sym->flags & BSF_SYNTHETIC))
12287 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12288 if (size == 0)
12289 size = 1;
12290 return size;
12291 }