]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Fix spelling typos.
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351
352 if (strindex >= hdr->sh_size)
353 {
354 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
355 _bfd_error_handler
356 /* xgettext:c-format */
357 (_("%B: invalid string offset %u >= %Lu for section `%s'"),
358 abfd, strindex, hdr->sh_size,
359 (shindex == shstrndx && strindex == hdr->sh_name
360 ? ".shstrtab"
361 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
362 return NULL;
363 }
364
365 return ((char *) hdr->contents) + strindex;
366 }
367
368 /* Read and convert symbols to internal format.
369 SYMCOUNT specifies the number of symbols to read, starting from
370 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
371 are non-NULL, they are used to store the internal symbols, external
372 symbols, and symbol section index extensions, respectively.
373 Returns a pointer to the internal symbol buffer (malloced if necessary)
374 or NULL if there were no symbols or some kind of problem. */
375
376 Elf_Internal_Sym *
377 bfd_elf_get_elf_syms (bfd *ibfd,
378 Elf_Internal_Shdr *symtab_hdr,
379 size_t symcount,
380 size_t symoffset,
381 Elf_Internal_Sym *intsym_buf,
382 void *extsym_buf,
383 Elf_External_Sym_Shndx *extshndx_buf)
384 {
385 Elf_Internal_Shdr *shndx_hdr;
386 void *alloc_ext;
387 const bfd_byte *esym;
388 Elf_External_Sym_Shndx *alloc_extshndx;
389 Elf_External_Sym_Shndx *shndx;
390 Elf_Internal_Sym *alloc_intsym;
391 Elf_Internal_Sym *isym;
392 Elf_Internal_Sym *isymend;
393 const struct elf_backend_data *bed;
394 size_t extsym_size;
395 bfd_size_type amt;
396 file_ptr pos;
397
398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
399 abort ();
400
401 if (symcount == 0)
402 return intsym_buf;
403
404 /* Normal syms might have section extension entries. */
405 shndx_hdr = NULL;
406 if (elf_symtab_shndx_list (ibfd) != NULL)
407 {
408 elf_section_list * entry;
409 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
410
411 /* Find an index section that is linked to this symtab section. */
412 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
413 {
414 /* PR 20063. */
415 if (entry->hdr.sh_link >= elf_numsections (ibfd))
416 continue;
417
418 if (sections[entry->hdr.sh_link] == symtab_hdr)
419 {
420 shndx_hdr = & entry->hdr;
421 break;
422 };
423 }
424
425 if (shndx_hdr == NULL)
426 {
427 if (symtab_hdr == & elf_symtab_hdr (ibfd))
428 /* Not really accurate, but this was how the old code used to work. */
429 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
430 /* Otherwise we do nothing. The assumption is that
431 the index table will not be needed. */
432 }
433 }
434
435 /* Read the symbols. */
436 alloc_ext = NULL;
437 alloc_extshndx = NULL;
438 alloc_intsym = NULL;
439 bed = get_elf_backend_data (ibfd);
440 extsym_size = bed->s->sizeof_sym;
441 amt = (bfd_size_type) symcount * extsym_size;
442 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
443 if (extsym_buf == NULL)
444 {
445 alloc_ext = bfd_malloc2 (symcount, extsym_size);
446 extsym_buf = alloc_ext;
447 }
448 if (extsym_buf == NULL
449 || bfd_seek (ibfd, pos, SEEK_SET) != 0
450 || bfd_bread (extsym_buf, amt, ibfd) != amt)
451 {
452 intsym_buf = NULL;
453 goto out;
454 }
455
456 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
457 extshndx_buf = NULL;
458 else
459 {
460 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
461 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
462 if (extshndx_buf == NULL)
463 {
464 alloc_extshndx = (Elf_External_Sym_Shndx *)
465 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
466 extshndx_buf = alloc_extshndx;
467 }
468 if (extshndx_buf == NULL
469 || bfd_seek (ibfd, pos, SEEK_SET) != 0
470 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
471 {
472 intsym_buf = NULL;
473 goto out;
474 }
475 }
476
477 if (intsym_buf == NULL)
478 {
479 alloc_intsym = (Elf_Internal_Sym *)
480 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
481 intsym_buf = alloc_intsym;
482 if (intsym_buf == NULL)
483 goto out;
484 }
485
486 /* Convert the symbols to internal form. */
487 isymend = intsym_buf + symcount;
488 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
489 shndx = extshndx_buf;
490 isym < isymend;
491 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
492 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
493 {
494 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
495 /* xgettext:c-format */
496 _bfd_error_handler (_("%B symbol number %lu references"
497 " nonexistent SHT_SYMTAB_SHNDX section"),
498 ibfd, (unsigned long) symoffset);
499 if (alloc_intsym != NULL)
500 free (alloc_intsym);
501 intsym_buf = NULL;
502 goto out;
503 }
504
505 out:
506 if (alloc_ext != NULL)
507 free (alloc_ext);
508 if (alloc_extshndx != NULL)
509 free (alloc_extshndx);
510
511 return intsym_buf;
512 }
513
514 /* Look up a symbol name. */
515 const char *
516 bfd_elf_sym_name (bfd *abfd,
517 Elf_Internal_Shdr *symtab_hdr,
518 Elf_Internal_Sym *isym,
519 asection *sym_sec)
520 {
521 const char *name;
522 unsigned int iname = isym->st_name;
523 unsigned int shindex = symtab_hdr->sh_link;
524
525 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
526 /* Check for a bogus st_shndx to avoid crashing. */
527 && isym->st_shndx < elf_numsections (abfd))
528 {
529 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
530 shindex = elf_elfheader (abfd)->e_shstrndx;
531 }
532
533 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
534 if (name == NULL)
535 name = "(null)";
536 else if (sym_sec && *name == '\0')
537 name = bfd_section_name (abfd, sym_sec);
538
539 return name;
540 }
541
542 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
543 sections. The first element is the flags, the rest are section
544 pointers. */
545
546 typedef union elf_internal_group {
547 Elf_Internal_Shdr *shdr;
548 unsigned int flags;
549 } Elf_Internal_Group;
550
551 /* Return the name of the group signature symbol. Why isn't the
552 signature just a string? */
553
554 static const char *
555 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
556 {
557 Elf_Internal_Shdr *hdr;
558 unsigned char esym[sizeof (Elf64_External_Sym)];
559 Elf_External_Sym_Shndx eshndx;
560 Elf_Internal_Sym isym;
561
562 /* First we need to ensure the symbol table is available. Make sure
563 that it is a symbol table section. */
564 if (ghdr->sh_link >= elf_numsections (abfd))
565 return NULL;
566 hdr = elf_elfsections (abfd) [ghdr->sh_link];
567 if (hdr->sh_type != SHT_SYMTAB
568 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
569 return NULL;
570
571 /* Go read the symbol. */
572 hdr = &elf_tdata (abfd)->symtab_hdr;
573 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
574 &isym, esym, &eshndx) == NULL)
575 return NULL;
576
577 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
578 }
579
580 /* Set next_in_group list pointer, and group name for NEWSECT. */
581
582 static bfd_boolean
583 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
584 {
585 unsigned int num_group = elf_tdata (abfd)->num_group;
586
587 /* If num_group is zero, read in all SHT_GROUP sections. The count
588 is set to -1 if there are no SHT_GROUP sections. */
589 if (num_group == 0)
590 {
591 unsigned int i, shnum;
592
593 /* First count the number of groups. If we have a SHT_GROUP
594 section with just a flag word (ie. sh_size is 4), ignore it. */
595 shnum = elf_numsections (abfd);
596 num_group = 0;
597
598 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
599 ( (shdr)->sh_type == SHT_GROUP \
600 && (shdr)->sh_size >= minsize \
601 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
602 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
603
604 for (i = 0; i < shnum; i++)
605 {
606 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
607
608 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
609 num_group += 1;
610 }
611
612 if (num_group == 0)
613 {
614 num_group = (unsigned) -1;
615 elf_tdata (abfd)->num_group = num_group;
616 elf_tdata (abfd)->group_sect_ptr = NULL;
617 }
618 else
619 {
620 /* We keep a list of elf section headers for group sections,
621 so we can find them quickly. */
622 bfd_size_type amt;
623
624 elf_tdata (abfd)->num_group = num_group;
625 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
626 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
627 if (elf_tdata (abfd)->group_sect_ptr == NULL)
628 return FALSE;
629 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
630 num_group = 0;
631
632 for (i = 0; i < shnum; i++)
633 {
634 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
635
636 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
637 {
638 unsigned char *src;
639 Elf_Internal_Group *dest;
640
641 /* Make sure the group section has a BFD section
642 attached to it. */
643 if (!bfd_section_from_shdr (abfd, i))
644 return FALSE;
645
646 /* Add to list of sections. */
647 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
648 num_group += 1;
649
650 /* Read the raw contents. */
651 BFD_ASSERT (sizeof (*dest) >= 4);
652 amt = shdr->sh_size * sizeof (*dest) / 4;
653 shdr->contents = (unsigned char *)
654 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
655 /* PR binutils/4110: Handle corrupt group headers. */
656 if (shdr->contents == NULL)
657 {
658 _bfd_error_handler
659 /* xgettext:c-format */
660 (_("%B: corrupt size field in group section"
661 " header: %#Lx"), abfd, shdr->sh_size);
662 bfd_set_error (bfd_error_bad_value);
663 -- num_group;
664 continue;
665 }
666
667 memset (shdr->contents, 0, amt);
668
669 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
670 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
671 != shdr->sh_size))
672 {
673 _bfd_error_handler
674 /* xgettext:c-format */
675 (_("%B: invalid size field in group section"
676 " header: %#Lx"), abfd, shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 /* PR 17510: If the group contents are even
680 partially corrupt, do not allow any of the
681 contents to be used. */
682 memset (shdr->contents, 0, amt);
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->flags = idx;
703 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
704 shdr->bfd_section->flags
705 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
706 break;
707 }
708 if (idx >= shnum)
709 {
710 _bfd_error_handler
711 (_("%B: invalid SHT_GROUP entry"), abfd);
712 idx = 0;
713 }
714 dest->shdr = elf_elfsections (abfd)[idx];
715 }
716 }
717 }
718
719 /* PR 17510: Corrupt binaries might contain invalid groups. */
720 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
721 {
722 elf_tdata (abfd)->num_group = num_group;
723
724 /* If all groups are invalid then fail. */
725 if (num_group == 0)
726 {
727 elf_tdata (abfd)->group_sect_ptr = NULL;
728 elf_tdata (abfd)->num_group = num_group = -1;
729 _bfd_error_handler
730 (_("%B: no valid group sections found"), abfd);
731 bfd_set_error (bfd_error_bad_value);
732 }
733 }
734 }
735 }
736
737 if (num_group != (unsigned) -1)
738 {
739 unsigned int i;
740
741 for (i = 0; i < num_group; i++)
742 {
743 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
744 Elf_Internal_Group *idx;
745 unsigned int n_elt;
746
747 if (shdr == NULL)
748 continue;
749
750 idx = (Elf_Internal_Group *) shdr->contents;
751 n_elt = shdr->sh_size / 4;
752
753 /* Look through this group's sections to see if current
754 section is a member. */
755 while (--n_elt != 0)
756 if ((++idx)->shdr == hdr)
757 {
758 asection *s = NULL;
759
760 /* We are a member of this group. Go looking through
761 other members to see if any others are linked via
762 next_in_group. */
763 idx = (Elf_Internal_Group *) shdr->contents;
764 n_elt = shdr->sh_size / 4;
765 while (--n_elt != 0)
766 if ((s = (++idx)->shdr->bfd_section) != NULL
767 && elf_next_in_group (s) != NULL)
768 break;
769 if (n_elt != 0)
770 {
771 /* Snarf the group name from other member, and
772 insert current section in circular list. */
773 elf_group_name (newsect) = elf_group_name (s);
774 elf_next_in_group (newsect) = elf_next_in_group (s);
775 elf_next_in_group (s) = newsect;
776 }
777 else
778 {
779 const char *gname;
780
781 gname = group_signature (abfd, shdr);
782 if (gname == NULL)
783 return FALSE;
784 elf_group_name (newsect) = gname;
785
786 /* Start a circular list with one element. */
787 elf_next_in_group (newsect) = newsect;
788 }
789
790 /* If the group section has been created, point to the
791 new member. */
792 if (shdr->bfd_section != NULL)
793 elf_next_in_group (shdr->bfd_section) = newsect;
794
795 i = num_group - 1;
796 break;
797 }
798 }
799 }
800
801 if (elf_group_name (newsect) == NULL)
802 {
803 /* xgettext:c-format */
804 _bfd_error_handler (_("%B: no group info for section %A"),
805 abfd, newsect);
806 return FALSE;
807 }
808 return TRUE;
809 }
810
811 bfd_boolean
812 _bfd_elf_setup_sections (bfd *abfd)
813 {
814 unsigned int i;
815 unsigned int num_group = elf_tdata (abfd)->num_group;
816 bfd_boolean result = TRUE;
817 asection *s;
818
819 /* Process SHF_LINK_ORDER. */
820 for (s = abfd->sections; s != NULL; s = s->next)
821 {
822 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
823 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
824 {
825 unsigned int elfsec = this_hdr->sh_link;
826 /* FIXME: The old Intel compiler and old strip/objcopy may
827 not set the sh_link or sh_info fields. Hence we could
828 get the situation where elfsec is 0. */
829 if (elfsec == 0)
830 {
831 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
832 if (bed->link_order_error_handler)
833 bed->link_order_error_handler
834 /* xgettext:c-format */
835 (_("%B: warning: sh_link not set for section `%A'"),
836 abfd, s);
837 }
838 else
839 {
840 asection *linksec = NULL;
841
842 if (elfsec < elf_numsections (abfd))
843 {
844 this_hdr = elf_elfsections (abfd)[elfsec];
845 linksec = this_hdr->bfd_section;
846 }
847
848 /* PR 1991, 2008:
849 Some strip/objcopy may leave an incorrect value in
850 sh_link. We don't want to proceed. */
851 if (linksec == NULL)
852 {
853 _bfd_error_handler
854 /* xgettext:c-format */
855 (_("%B: sh_link [%d] in section `%A' is incorrect"),
856 s->owner, elfsec, s);
857 result = FALSE;
858 }
859
860 elf_linked_to_section (s) = linksec;
861 }
862 }
863 else if (this_hdr->sh_type == SHT_GROUP
864 && elf_next_in_group (s) == NULL)
865 {
866 _bfd_error_handler
867 /* xgettext:c-format */
868 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
869 abfd, elf_section_data (s)->this_idx);
870 result = FALSE;
871 }
872 }
873
874 /* Process section groups. */
875 if (num_group == (unsigned) -1)
876 return result;
877
878 for (i = 0; i < num_group; i++)
879 {
880 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
881 Elf_Internal_Group *idx;
882 unsigned int n_elt;
883
884 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
885 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
886 {
887 _bfd_error_handler
888 /* xgettext:c-format */
889 (_("%B: section group entry number %u is corrupt"),
890 abfd, i);
891 result = FALSE;
892 continue;
893 }
894
895 idx = (Elf_Internal_Group *) shdr->contents;
896 n_elt = shdr->sh_size / 4;
897
898 while (--n_elt != 0)
899 if ((++idx)->shdr->bfd_section)
900 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
901 else if (idx->shdr->sh_type == SHT_RELA
902 || idx->shdr->sh_type == SHT_REL)
903 /* We won't include relocation sections in section groups in
904 output object files. We adjust the group section size here
905 so that relocatable link will work correctly when
906 relocation sections are in section group in input object
907 files. */
908 shdr->bfd_section->size -= 4;
909 else
910 {
911 /* There are some unknown sections in the group. */
912 _bfd_error_handler
913 /* xgettext:c-format */
914 (_("%B: unknown type [%#x] section `%s' in group [%A]"),
915 abfd,
916 idx->shdr->sh_type,
917 bfd_elf_string_from_elf_section (abfd,
918 (elf_elfheader (abfd)
919 ->e_shstrndx),
920 idx->shdr->sh_name),
921 shdr->bfd_section);
922 result = FALSE;
923 }
924 }
925 return result;
926 }
927
928 bfd_boolean
929 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
930 {
931 return elf_next_in_group (sec) != NULL;
932 }
933
934 static char *
935 convert_debug_to_zdebug (bfd *abfd, const char *name)
936 {
937 unsigned int len = strlen (name);
938 char *new_name = bfd_alloc (abfd, len + 2);
939 if (new_name == NULL)
940 return NULL;
941 new_name[0] = '.';
942 new_name[1] = 'z';
943 memcpy (new_name + 2, name + 1, len);
944 return new_name;
945 }
946
947 static char *
948 convert_zdebug_to_debug (bfd *abfd, const char *name)
949 {
950 unsigned int len = strlen (name);
951 char *new_name = bfd_alloc (abfd, len);
952 if (new_name == NULL)
953 return NULL;
954 new_name[0] = '.';
955 memcpy (new_name + 1, name + 2, len - 1);
956 return new_name;
957 }
958
959 /* Make a BFD section from an ELF section. We store a pointer to the
960 BFD section in the bfd_section field of the header. */
961
962 bfd_boolean
963 _bfd_elf_make_section_from_shdr (bfd *abfd,
964 Elf_Internal_Shdr *hdr,
965 const char *name,
966 int shindex)
967 {
968 asection *newsect;
969 flagword flags;
970 const struct elf_backend_data *bed;
971
972 if (hdr->bfd_section != NULL)
973 return TRUE;
974
975 newsect = bfd_make_section_anyway (abfd, name);
976 if (newsect == NULL)
977 return FALSE;
978
979 hdr->bfd_section = newsect;
980 elf_section_data (newsect)->this_hdr = *hdr;
981 elf_section_data (newsect)->this_idx = shindex;
982
983 /* Always use the real type/flags. */
984 elf_section_type (newsect) = hdr->sh_type;
985 elf_section_flags (newsect) = hdr->sh_flags;
986
987 newsect->filepos = hdr->sh_offset;
988
989 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
990 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
991 || ! bfd_set_section_alignment (abfd, newsect,
992 bfd_log2 (hdr->sh_addralign)))
993 return FALSE;
994
995 flags = SEC_NO_FLAGS;
996 if (hdr->sh_type != SHT_NOBITS)
997 flags |= SEC_HAS_CONTENTS;
998 if (hdr->sh_type == SHT_GROUP)
999 flags |= SEC_GROUP;
1000 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1001 {
1002 flags |= SEC_ALLOC;
1003 if (hdr->sh_type != SHT_NOBITS)
1004 flags |= SEC_LOAD;
1005 }
1006 if ((hdr->sh_flags & SHF_WRITE) == 0)
1007 flags |= SEC_READONLY;
1008 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1009 flags |= SEC_CODE;
1010 else if ((flags & SEC_LOAD) != 0)
1011 flags |= SEC_DATA;
1012 if ((hdr->sh_flags & SHF_MERGE) != 0)
1013 {
1014 flags |= SEC_MERGE;
1015 newsect->entsize = hdr->sh_entsize;
1016 }
1017 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1018 flags |= SEC_STRINGS;
1019 if (hdr->sh_flags & SHF_GROUP)
1020 if (!setup_group (abfd, hdr, newsect))
1021 return FALSE;
1022 if ((hdr->sh_flags & SHF_TLS) != 0)
1023 flags |= SEC_THREAD_LOCAL;
1024 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1025 flags |= SEC_EXCLUDE;
1026
1027 if ((flags & SEC_ALLOC) == 0)
1028 {
1029 /* The debugging sections appear to be recognized only by name,
1030 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1031 if (name [0] == '.')
1032 {
1033 const char *p;
1034 int n;
1035 if (name[1] == 'd')
1036 p = ".debug", n = 6;
1037 else if (name[1] == 'g' && name[2] == 'n')
1038 p = ".gnu.linkonce.wi.", n = 17;
1039 else if (name[1] == 'g' && name[2] == 'd')
1040 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1041 else if (name[1] == 'l')
1042 p = ".line", n = 5;
1043 else if (name[1] == 's')
1044 p = ".stab", n = 5;
1045 else if (name[1] == 'z')
1046 p = ".zdebug", n = 7;
1047 else
1048 p = NULL, n = 0;
1049 if (p != NULL && strncmp (name, p, n) == 0)
1050 flags |= SEC_DEBUGGING;
1051 }
1052 }
1053
1054 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1055 only link a single copy of the section. This is used to support
1056 g++. g++ will emit each template expansion in its own section.
1057 The symbols will be defined as weak, so that multiple definitions
1058 are permitted. The GNU linker extension is to actually discard
1059 all but one of the sections. */
1060 if (CONST_STRNEQ (name, ".gnu.linkonce")
1061 && elf_next_in_group (newsect) == NULL)
1062 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1063
1064 bed = get_elf_backend_data (abfd);
1065 if (bed->elf_backend_section_flags)
1066 if (! bed->elf_backend_section_flags (&flags, hdr))
1067 return FALSE;
1068
1069 if (! bfd_set_section_flags (abfd, newsect, flags))
1070 return FALSE;
1071
1072 /* We do not parse the PT_NOTE segments as we are interested even in the
1073 separate debug info files which may have the segments offsets corrupted.
1074 PT_NOTEs from the core files are currently not parsed using BFD. */
1075 if (hdr->sh_type == SHT_NOTE)
1076 {
1077 bfd_byte *contents;
1078
1079 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1080 return FALSE;
1081
1082 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1083 free (contents);
1084 }
1085
1086 if ((flags & SEC_ALLOC) != 0)
1087 {
1088 Elf_Internal_Phdr *phdr;
1089 unsigned int i, nload;
1090
1091 /* Some ELF linkers produce binaries with all the program header
1092 p_paddr fields zero. If we have such a binary with more than
1093 one PT_LOAD header, then leave the section lma equal to vma
1094 so that we don't create sections with overlapping lma. */
1095 phdr = elf_tdata (abfd)->phdr;
1096 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1097 if (phdr->p_paddr != 0)
1098 break;
1099 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1100 ++nload;
1101 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1102 return TRUE;
1103
1104 phdr = elf_tdata (abfd)->phdr;
1105 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1106 {
1107 if (((phdr->p_type == PT_LOAD
1108 && (hdr->sh_flags & SHF_TLS) == 0)
1109 || phdr->p_type == PT_TLS)
1110 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1111 {
1112 if ((flags & SEC_LOAD) == 0)
1113 newsect->lma = (phdr->p_paddr
1114 + hdr->sh_addr - phdr->p_vaddr);
1115 else
1116 /* We used to use the same adjustment for SEC_LOAD
1117 sections, but that doesn't work if the segment
1118 is packed with code from multiple VMAs.
1119 Instead we calculate the section LMA based on
1120 the segment LMA. It is assumed that the
1121 segment will contain sections with contiguous
1122 LMAs, even if the VMAs are not. */
1123 newsect->lma = (phdr->p_paddr
1124 + hdr->sh_offset - phdr->p_offset);
1125
1126 /* With contiguous segments, we can't tell from file
1127 offsets whether a section with zero size should
1128 be placed at the end of one segment or the
1129 beginning of the next. Decide based on vaddr. */
1130 if (hdr->sh_addr >= phdr->p_vaddr
1131 && (hdr->sh_addr + hdr->sh_size
1132 <= phdr->p_vaddr + phdr->p_memsz))
1133 break;
1134 }
1135 }
1136 }
1137
1138 /* Compress/decompress DWARF debug sections with names: .debug_* and
1139 .zdebug_*, after the section flags is set. */
1140 if ((flags & SEC_DEBUGGING)
1141 && ((name[1] == 'd' && name[6] == '_')
1142 || (name[1] == 'z' && name[7] == '_')))
1143 {
1144 enum { nothing, compress, decompress } action = nothing;
1145 int compression_header_size;
1146 bfd_size_type uncompressed_size;
1147 bfd_boolean compressed
1148 = bfd_is_section_compressed_with_header (abfd, newsect,
1149 &compression_header_size,
1150 &uncompressed_size);
1151
1152 if (compressed)
1153 {
1154 /* Compressed section. Check if we should decompress. */
1155 if ((abfd->flags & BFD_DECOMPRESS))
1156 action = decompress;
1157 }
1158
1159 /* Compress the uncompressed section or convert from/to .zdebug*
1160 section. Check if we should compress. */
1161 if (action == nothing)
1162 {
1163 if (newsect->size != 0
1164 && (abfd->flags & BFD_COMPRESS)
1165 && compression_header_size >= 0
1166 && uncompressed_size > 0
1167 && (!compressed
1168 || ((compression_header_size > 0)
1169 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1170 action = compress;
1171 else
1172 return TRUE;
1173 }
1174
1175 if (action == compress)
1176 {
1177 if (!bfd_init_section_compress_status (abfd, newsect))
1178 {
1179 _bfd_error_handler
1180 /* xgettext:c-format */
1181 (_("%B: unable to initialize compress status for section %s"),
1182 abfd, name);
1183 return FALSE;
1184 }
1185 }
1186 else
1187 {
1188 if (!bfd_init_section_decompress_status (abfd, newsect))
1189 {
1190 _bfd_error_handler
1191 /* xgettext:c-format */
1192 (_("%B: unable to initialize decompress status for section %s"),
1193 abfd, name);
1194 return FALSE;
1195 }
1196 }
1197
1198 if (abfd->is_linker_input)
1199 {
1200 if (name[1] == 'z'
1201 && (action == decompress
1202 || (action == compress
1203 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1204 {
1205 /* Convert section name from .zdebug_* to .debug_* so
1206 that linker will consider this section as a debug
1207 section. */
1208 char *new_name = convert_zdebug_to_debug (abfd, name);
1209 if (new_name == NULL)
1210 return FALSE;
1211 bfd_rename_section (abfd, newsect, new_name);
1212 }
1213 }
1214 else
1215 /* For objdump, don't rename the section. For objcopy, delay
1216 section rename to elf_fake_sections. */
1217 newsect->flags |= SEC_ELF_RENAME;
1218 }
1219
1220 return TRUE;
1221 }
1222
1223 const char *const bfd_elf_section_type_names[] =
1224 {
1225 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1226 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1227 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1228 };
1229
1230 /* ELF relocs are against symbols. If we are producing relocatable
1231 output, and the reloc is against an external symbol, and nothing
1232 has given us any additional addend, the resulting reloc will also
1233 be against the same symbol. In such a case, we don't want to
1234 change anything about the way the reloc is handled, since it will
1235 all be done at final link time. Rather than put special case code
1236 into bfd_perform_relocation, all the reloc types use this howto
1237 function. It just short circuits the reloc if producing
1238 relocatable output against an external symbol. */
1239
1240 bfd_reloc_status_type
1241 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1242 arelent *reloc_entry,
1243 asymbol *symbol,
1244 void *data ATTRIBUTE_UNUSED,
1245 asection *input_section,
1246 bfd *output_bfd,
1247 char **error_message ATTRIBUTE_UNUSED)
1248 {
1249 if (output_bfd != NULL
1250 && (symbol->flags & BSF_SECTION_SYM) == 0
1251 && (! reloc_entry->howto->partial_inplace
1252 || reloc_entry->addend == 0))
1253 {
1254 reloc_entry->address += input_section->output_offset;
1255 return bfd_reloc_ok;
1256 }
1257
1258 return bfd_reloc_continue;
1259 }
1260 \f
1261 /* Returns TRUE if section A matches section B.
1262 Names, addresses and links may be different, but everything else
1263 should be the same. */
1264
1265 static bfd_boolean
1266 section_match (const Elf_Internal_Shdr * a,
1267 const Elf_Internal_Shdr * b)
1268 {
1269 return
1270 a->sh_type == b->sh_type
1271 && (a->sh_flags & ~ SHF_INFO_LINK)
1272 == (b->sh_flags & ~ SHF_INFO_LINK)
1273 && a->sh_addralign == b->sh_addralign
1274 && a->sh_size == b->sh_size
1275 && a->sh_entsize == b->sh_entsize
1276 /* FIXME: Check sh_addr ? */
1277 ;
1278 }
1279
1280 /* Find a section in OBFD that has the same characteristics
1281 as IHEADER. Return the index of this section or SHN_UNDEF if
1282 none can be found. Check's section HINT first, as this is likely
1283 to be the correct section. */
1284
1285 static unsigned int
1286 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1287 const unsigned int hint)
1288 {
1289 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1290 unsigned int i;
1291
1292 BFD_ASSERT (iheader != NULL);
1293
1294 /* See PR 20922 for a reproducer of the NULL test. */
1295 if (hint < elf_numsections (obfd)
1296 && oheaders[hint] != NULL
1297 && section_match (oheaders[hint], iheader))
1298 return hint;
1299
1300 for (i = 1; i < elf_numsections (obfd); i++)
1301 {
1302 Elf_Internal_Shdr * oheader = oheaders[i];
1303
1304 if (oheader == NULL)
1305 continue;
1306 if (section_match (oheader, iheader))
1307 /* FIXME: Do we care if there is a potential for
1308 multiple matches ? */
1309 return i;
1310 }
1311
1312 return SHN_UNDEF;
1313 }
1314
1315 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1316 Processor specific section, based upon a matching input section.
1317 Returns TRUE upon success, FALSE otherwise. */
1318
1319 static bfd_boolean
1320 copy_special_section_fields (const bfd *ibfd,
1321 bfd *obfd,
1322 const Elf_Internal_Shdr *iheader,
1323 Elf_Internal_Shdr *oheader,
1324 const unsigned int secnum)
1325 {
1326 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1327 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1328 bfd_boolean changed = FALSE;
1329 unsigned int sh_link;
1330
1331 if (oheader->sh_type == SHT_NOBITS)
1332 {
1333 /* This is a feature for objcopy --only-keep-debug:
1334 When a section's type is changed to NOBITS, we preserve
1335 the sh_link and sh_info fields so that they can be
1336 matched up with the original.
1337
1338 Note: Strictly speaking these assignments are wrong.
1339 The sh_link and sh_info fields should point to the
1340 relevent sections in the output BFD, which may not be in
1341 the same location as they were in the input BFD. But
1342 the whole point of this action is to preserve the
1343 original values of the sh_link and sh_info fields, so
1344 that they can be matched up with the section headers in
1345 the original file. So strictly speaking we may be
1346 creating an invalid ELF file, but it is only for a file
1347 that just contains debug info and only for sections
1348 without any contents. */
1349 if (oheader->sh_link == 0)
1350 oheader->sh_link = iheader->sh_link;
1351 if (oheader->sh_info == 0)
1352 oheader->sh_info = iheader->sh_info;
1353 return TRUE;
1354 }
1355
1356 /* Allow the target a chance to decide how these fields should be set. */
1357 if (bed->elf_backend_copy_special_section_fields != NULL
1358 && bed->elf_backend_copy_special_section_fields
1359 (ibfd, obfd, iheader, oheader))
1360 return TRUE;
1361
1362 /* We have an iheader which might match oheader, and which has non-zero
1363 sh_info and/or sh_link fields. Attempt to follow those links and find
1364 the section in the output bfd which corresponds to the linked section
1365 in the input bfd. */
1366 if (iheader->sh_link != SHN_UNDEF)
1367 {
1368 /* See PR 20931 for a reproducer. */
1369 if (iheader->sh_link >= elf_numsections (ibfd))
1370 {
1371 _bfd_error_handler
1372 /* xgettext:c-format */
1373 (_("%B: Invalid sh_link field (%d) in section number %d"),
1374 ibfd, iheader->sh_link, secnum);
1375 return FALSE;
1376 }
1377
1378 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1379 if (sh_link != SHN_UNDEF)
1380 {
1381 oheader->sh_link = sh_link;
1382 changed = TRUE;
1383 }
1384 else
1385 /* FIXME: Should we install iheader->sh_link
1386 if we could not find a match ? */
1387 _bfd_error_handler
1388 /* xgettext:c-format */
1389 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1390 }
1391
1392 if (iheader->sh_info)
1393 {
1394 /* The sh_info field can hold arbitrary information, but if the
1395 SHF_LINK_INFO flag is set then it should be interpreted as a
1396 section index. */
1397 if (iheader->sh_flags & SHF_INFO_LINK)
1398 {
1399 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1400 iheader->sh_info);
1401 if (sh_link != SHN_UNDEF)
1402 oheader->sh_flags |= SHF_INFO_LINK;
1403 }
1404 else
1405 /* No idea what it means - just copy it. */
1406 sh_link = iheader->sh_info;
1407
1408 if (sh_link != SHN_UNDEF)
1409 {
1410 oheader->sh_info = sh_link;
1411 changed = TRUE;
1412 }
1413 else
1414 _bfd_error_handler
1415 /* xgettext:c-format */
1416 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1417 }
1418
1419 return changed;
1420 }
1421
1422 /* Copy the program header and other data from one object module to
1423 another. */
1424
1425 bfd_boolean
1426 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1427 {
1428 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1429 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1430 const struct elf_backend_data *bed;
1431 unsigned int i;
1432
1433 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1434 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1435 return TRUE;
1436
1437 if (!elf_flags_init (obfd))
1438 {
1439 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1440 elf_flags_init (obfd) = TRUE;
1441 }
1442
1443 elf_gp (obfd) = elf_gp (ibfd);
1444
1445 /* Also copy the EI_OSABI field. */
1446 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1447 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1448
1449 /* If set, copy the EI_ABIVERSION field. */
1450 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1451 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1452 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1453
1454 /* Copy object attributes. */
1455 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1456
1457 if (iheaders == NULL || oheaders == NULL)
1458 return TRUE;
1459
1460 bed = get_elf_backend_data (obfd);
1461
1462 /* Possibly copy other fields in the section header. */
1463 for (i = 1; i < elf_numsections (obfd); i++)
1464 {
1465 unsigned int j;
1466 Elf_Internal_Shdr * oheader = oheaders[i];
1467
1468 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1469 because of a special case need for generating separate debug info
1470 files. See below for more details. */
1471 if (oheader == NULL
1472 || (oheader->sh_type != SHT_NOBITS
1473 && oheader->sh_type < SHT_LOOS))
1474 continue;
1475
1476 /* Ignore empty sections, and sections whose
1477 fields have already been initialised. */
1478 if (oheader->sh_size == 0
1479 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1480 continue;
1481
1482 /* Scan for the matching section in the input bfd.
1483 First we try for a direct mapping between the input and output sections. */
1484 for (j = 1; j < elf_numsections (ibfd); j++)
1485 {
1486 const Elf_Internal_Shdr * iheader = iheaders[j];
1487
1488 if (iheader == NULL)
1489 continue;
1490
1491 if (oheader->bfd_section != NULL
1492 && iheader->bfd_section != NULL
1493 && iheader->bfd_section->output_section != NULL
1494 && iheader->bfd_section->output_section == oheader->bfd_section)
1495 {
1496 /* We have found a connection from the input section to the
1497 output section. Attempt to copy the header fields. If
1498 this fails then do not try any further sections - there
1499 should only be a one-to-one mapping between input and output. */
1500 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1501 j = elf_numsections (ibfd);
1502 break;
1503 }
1504 }
1505
1506 if (j < elf_numsections (ibfd))
1507 continue;
1508
1509 /* That failed. So try to deduce the corresponding input section.
1510 Unfortunately we cannot compare names as the output string table
1511 is empty, so instead we check size, address and type. */
1512 for (j = 1; j < elf_numsections (ibfd); j++)
1513 {
1514 const Elf_Internal_Shdr * iheader = iheaders[j];
1515
1516 if (iheader == NULL)
1517 continue;
1518
1519 /* Try matching fields in the input section's header.
1520 Since --only-keep-debug turns all non-debug sections into
1521 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1522 input type. */
1523 if ((oheader->sh_type == SHT_NOBITS
1524 || iheader->sh_type == oheader->sh_type)
1525 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1526 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1527 && iheader->sh_addralign == oheader->sh_addralign
1528 && iheader->sh_entsize == oheader->sh_entsize
1529 && iheader->sh_size == oheader->sh_size
1530 && iheader->sh_addr == oheader->sh_addr
1531 && (iheader->sh_info != oheader->sh_info
1532 || iheader->sh_link != oheader->sh_link))
1533 {
1534 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1535 break;
1536 }
1537 }
1538
1539 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1540 {
1541 /* Final attempt. Call the backend copy function
1542 with a NULL input section. */
1543 if (bed->elf_backend_copy_special_section_fields != NULL)
1544 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 static const char *
1552 get_segment_type (unsigned int p_type)
1553 {
1554 const char *pt;
1555 switch (p_type)
1556 {
1557 case PT_NULL: pt = "NULL"; break;
1558 case PT_LOAD: pt = "LOAD"; break;
1559 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1560 case PT_INTERP: pt = "INTERP"; break;
1561 case PT_NOTE: pt = "NOTE"; break;
1562 case PT_SHLIB: pt = "SHLIB"; break;
1563 case PT_PHDR: pt = "PHDR"; break;
1564 case PT_TLS: pt = "TLS"; break;
1565 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1566 case PT_GNU_STACK: pt = "STACK"; break;
1567 case PT_GNU_RELRO: pt = "RELRO"; break;
1568 default: pt = NULL; break;
1569 }
1570 return pt;
1571 }
1572
1573 /* Print out the program headers. */
1574
1575 bfd_boolean
1576 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1577 {
1578 FILE *f = (FILE *) farg;
1579 Elf_Internal_Phdr *p;
1580 asection *s;
1581 bfd_byte *dynbuf = NULL;
1582
1583 p = elf_tdata (abfd)->phdr;
1584 if (p != NULL)
1585 {
1586 unsigned int i, c;
1587
1588 fprintf (f, _("\nProgram Header:\n"));
1589 c = elf_elfheader (abfd)->e_phnum;
1590 for (i = 0; i < c; i++, p++)
1591 {
1592 const char *pt = get_segment_type (p->p_type);
1593 char buf[20];
1594
1595 if (pt == NULL)
1596 {
1597 sprintf (buf, "0x%lx", p->p_type);
1598 pt = buf;
1599 }
1600 fprintf (f, "%8s off 0x", pt);
1601 bfd_fprintf_vma (abfd, f, p->p_offset);
1602 fprintf (f, " vaddr 0x");
1603 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1604 fprintf (f, " paddr 0x");
1605 bfd_fprintf_vma (abfd, f, p->p_paddr);
1606 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1607 fprintf (f, " filesz 0x");
1608 bfd_fprintf_vma (abfd, f, p->p_filesz);
1609 fprintf (f, " memsz 0x");
1610 bfd_fprintf_vma (abfd, f, p->p_memsz);
1611 fprintf (f, " flags %c%c%c",
1612 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1613 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1614 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1615 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1616 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1617 fprintf (f, "\n");
1618 }
1619 }
1620
1621 s = bfd_get_section_by_name (abfd, ".dynamic");
1622 if (s != NULL)
1623 {
1624 unsigned int elfsec;
1625 unsigned long shlink;
1626 bfd_byte *extdyn, *extdynend;
1627 size_t extdynsize;
1628 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1629
1630 fprintf (f, _("\nDynamic Section:\n"));
1631
1632 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1633 goto error_return;
1634
1635 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1636 if (elfsec == SHN_BAD)
1637 goto error_return;
1638 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1639
1640 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1641 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1642
1643 extdyn = dynbuf;
1644 /* PR 17512: file: 6f427532. */
1645 if (s->size < extdynsize)
1646 goto error_return;
1647 extdynend = extdyn + s->size;
1648 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1649 Fix range check. */
1650 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1651 {
1652 Elf_Internal_Dyn dyn;
1653 const char *name = "";
1654 char ab[20];
1655 bfd_boolean stringp;
1656 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1657
1658 (*swap_dyn_in) (abfd, extdyn, &dyn);
1659
1660 if (dyn.d_tag == DT_NULL)
1661 break;
1662
1663 stringp = FALSE;
1664 switch (dyn.d_tag)
1665 {
1666 default:
1667 if (bed->elf_backend_get_target_dtag)
1668 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1669
1670 if (!strcmp (name, ""))
1671 {
1672 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1673 name = ab;
1674 }
1675 break;
1676
1677 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1678 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1679 case DT_PLTGOT: name = "PLTGOT"; break;
1680 case DT_HASH: name = "HASH"; break;
1681 case DT_STRTAB: name = "STRTAB"; break;
1682 case DT_SYMTAB: name = "SYMTAB"; break;
1683 case DT_RELA: name = "RELA"; break;
1684 case DT_RELASZ: name = "RELASZ"; break;
1685 case DT_RELAENT: name = "RELAENT"; break;
1686 case DT_STRSZ: name = "STRSZ"; break;
1687 case DT_SYMENT: name = "SYMENT"; break;
1688 case DT_INIT: name = "INIT"; break;
1689 case DT_FINI: name = "FINI"; break;
1690 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1691 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1692 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1693 case DT_REL: name = "REL"; break;
1694 case DT_RELSZ: name = "RELSZ"; break;
1695 case DT_RELENT: name = "RELENT"; break;
1696 case DT_PLTREL: name = "PLTREL"; break;
1697 case DT_DEBUG: name = "DEBUG"; break;
1698 case DT_TEXTREL: name = "TEXTREL"; break;
1699 case DT_JMPREL: name = "JMPREL"; break;
1700 case DT_BIND_NOW: name = "BIND_NOW"; break;
1701 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1702 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1703 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1704 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1705 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1706 case DT_FLAGS: name = "FLAGS"; break;
1707 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1708 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1709 case DT_CHECKSUM: name = "CHECKSUM"; break;
1710 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1711 case DT_MOVEENT: name = "MOVEENT"; break;
1712 case DT_MOVESZ: name = "MOVESZ"; break;
1713 case DT_FEATURE: name = "FEATURE"; break;
1714 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1715 case DT_SYMINSZ: name = "SYMINSZ"; break;
1716 case DT_SYMINENT: name = "SYMINENT"; break;
1717 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1718 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1719 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1720 case DT_PLTPAD: name = "PLTPAD"; break;
1721 case DT_MOVETAB: name = "MOVETAB"; break;
1722 case DT_SYMINFO: name = "SYMINFO"; break;
1723 case DT_RELACOUNT: name = "RELACOUNT"; break;
1724 case DT_RELCOUNT: name = "RELCOUNT"; break;
1725 case DT_FLAGS_1: name = "FLAGS_1"; break;
1726 case DT_VERSYM: name = "VERSYM"; break;
1727 case DT_VERDEF: name = "VERDEF"; break;
1728 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1729 case DT_VERNEED: name = "VERNEED"; break;
1730 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1731 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1732 case DT_USED: name = "USED"; break;
1733 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1734 case DT_GNU_HASH: name = "GNU_HASH"; break;
1735 }
1736
1737 fprintf (f, " %-20s ", name);
1738 if (! stringp)
1739 {
1740 fprintf (f, "0x");
1741 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1742 }
1743 else
1744 {
1745 const char *string;
1746 unsigned int tagv = dyn.d_un.d_val;
1747
1748 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1749 if (string == NULL)
1750 goto error_return;
1751 fprintf (f, "%s", string);
1752 }
1753 fprintf (f, "\n");
1754 }
1755
1756 free (dynbuf);
1757 dynbuf = NULL;
1758 }
1759
1760 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1761 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1762 {
1763 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1764 return FALSE;
1765 }
1766
1767 if (elf_dynverdef (abfd) != 0)
1768 {
1769 Elf_Internal_Verdef *t;
1770
1771 fprintf (f, _("\nVersion definitions:\n"));
1772 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1773 {
1774 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1775 t->vd_flags, t->vd_hash,
1776 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1777 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1778 {
1779 Elf_Internal_Verdaux *a;
1780
1781 fprintf (f, "\t");
1782 for (a = t->vd_auxptr->vda_nextptr;
1783 a != NULL;
1784 a = a->vda_nextptr)
1785 fprintf (f, "%s ",
1786 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1787 fprintf (f, "\n");
1788 }
1789 }
1790 }
1791
1792 if (elf_dynverref (abfd) != 0)
1793 {
1794 Elf_Internal_Verneed *t;
1795
1796 fprintf (f, _("\nVersion References:\n"));
1797 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1798 {
1799 Elf_Internal_Vernaux *a;
1800
1801 fprintf (f, _(" required from %s:\n"),
1802 t->vn_filename ? t->vn_filename : "<corrupt>");
1803 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1804 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1805 a->vna_flags, a->vna_other,
1806 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1807 }
1808 }
1809
1810 return TRUE;
1811
1812 error_return:
1813 if (dynbuf != NULL)
1814 free (dynbuf);
1815 return FALSE;
1816 }
1817
1818 /* Get version string. */
1819
1820 const char *
1821 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1822 bfd_boolean *hidden)
1823 {
1824 const char *version_string = NULL;
1825 if (elf_dynversym (abfd) != 0
1826 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1827 {
1828 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1829
1830 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1831 vernum &= VERSYM_VERSION;
1832
1833 if (vernum == 0)
1834 version_string = "";
1835 else if (vernum == 1)
1836 version_string = "Base";
1837 else if (vernum <= elf_tdata (abfd)->cverdefs)
1838 version_string =
1839 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1840 else
1841 {
1842 Elf_Internal_Verneed *t;
1843
1844 version_string = "";
1845 for (t = elf_tdata (abfd)->verref;
1846 t != NULL;
1847 t = t->vn_nextref)
1848 {
1849 Elf_Internal_Vernaux *a;
1850
1851 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1852 {
1853 if (a->vna_other == vernum)
1854 {
1855 version_string = a->vna_nodename;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 }
1862 return version_string;
1863 }
1864
1865 /* Display ELF-specific fields of a symbol. */
1866
1867 void
1868 bfd_elf_print_symbol (bfd *abfd,
1869 void *filep,
1870 asymbol *symbol,
1871 bfd_print_symbol_type how)
1872 {
1873 FILE *file = (FILE *) filep;
1874 switch (how)
1875 {
1876 case bfd_print_symbol_name:
1877 fprintf (file, "%s", symbol->name);
1878 break;
1879 case bfd_print_symbol_more:
1880 fprintf (file, "elf ");
1881 bfd_fprintf_vma (abfd, file, symbol->value);
1882 fprintf (file, " %x", symbol->flags);
1883 break;
1884 case bfd_print_symbol_all:
1885 {
1886 const char *section_name;
1887 const char *name = NULL;
1888 const struct elf_backend_data *bed;
1889 unsigned char st_other;
1890 bfd_vma val;
1891 const char *version_string;
1892 bfd_boolean hidden;
1893
1894 section_name = symbol->section ? symbol->section->name : "(*none*)";
1895
1896 bed = get_elf_backend_data (abfd);
1897 if (bed->elf_backend_print_symbol_all)
1898 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1899
1900 if (name == NULL)
1901 {
1902 name = symbol->name;
1903 bfd_print_symbol_vandf (abfd, file, symbol);
1904 }
1905
1906 fprintf (file, " %s\t", section_name);
1907 /* Print the "other" value for a symbol. For common symbols,
1908 we've already printed the size; now print the alignment.
1909 For other symbols, we have no specified alignment, and
1910 we've printed the address; now print the size. */
1911 if (symbol->section && bfd_is_com_section (symbol->section))
1912 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1913 else
1914 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1915 bfd_fprintf_vma (abfd, file, val);
1916
1917 /* If we have version information, print it. */
1918 version_string = _bfd_elf_get_symbol_version_string (abfd,
1919 symbol,
1920 &hidden);
1921 if (version_string)
1922 {
1923 if (!hidden)
1924 fprintf (file, " %-11s", version_string);
1925 else
1926 {
1927 int i;
1928
1929 fprintf (file, " (%s)", version_string);
1930 for (i = 10 - strlen (version_string); i > 0; --i)
1931 putc (' ', file);
1932 }
1933 }
1934
1935 /* If the st_other field is not zero, print it. */
1936 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1937
1938 switch (st_other)
1939 {
1940 case 0: break;
1941 case STV_INTERNAL: fprintf (file, " .internal"); break;
1942 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1943 case STV_PROTECTED: fprintf (file, " .protected"); break;
1944 default:
1945 /* Some other non-defined flags are also present, so print
1946 everything hex. */
1947 fprintf (file, " 0x%02x", (unsigned int) st_other);
1948 }
1949
1950 fprintf (file, " %s", name);
1951 }
1952 break;
1953 }
1954 }
1955 \f
1956 /* ELF .o/exec file reading */
1957
1958 /* Create a new bfd section from an ELF section header. */
1959
1960 bfd_boolean
1961 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1962 {
1963 Elf_Internal_Shdr *hdr;
1964 Elf_Internal_Ehdr *ehdr;
1965 const struct elf_backend_data *bed;
1966 const char *name;
1967 bfd_boolean ret = TRUE;
1968 static bfd_boolean * sections_being_created = NULL;
1969 static bfd * sections_being_created_abfd = NULL;
1970 static unsigned int nesting = 0;
1971
1972 if (shindex >= elf_numsections (abfd))
1973 return FALSE;
1974
1975 if (++ nesting > 3)
1976 {
1977 /* PR17512: A corrupt ELF binary might contain a recursive group of
1978 sections, with each the string indicies pointing to the next in the
1979 loop. Detect this here, by refusing to load a section that we are
1980 already in the process of loading. We only trigger this test if
1981 we have nested at least three sections deep as normal ELF binaries
1982 can expect to recurse at least once.
1983
1984 FIXME: It would be better if this array was attached to the bfd,
1985 rather than being held in a static pointer. */
1986
1987 if (sections_being_created_abfd != abfd)
1988 sections_being_created = NULL;
1989 if (sections_being_created == NULL)
1990 {
1991 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1992 sections_being_created = (bfd_boolean *)
1993 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1994 sections_being_created_abfd = abfd;
1995 }
1996 if (sections_being_created [shindex])
1997 {
1998 _bfd_error_handler
1999 (_("%B: warning: loop in section dependencies detected"), abfd);
2000 return FALSE;
2001 }
2002 sections_being_created [shindex] = TRUE;
2003 }
2004
2005 hdr = elf_elfsections (abfd)[shindex];
2006 ehdr = elf_elfheader (abfd);
2007 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2008 hdr->sh_name);
2009 if (name == NULL)
2010 goto fail;
2011
2012 bed = get_elf_backend_data (abfd);
2013 switch (hdr->sh_type)
2014 {
2015 case SHT_NULL:
2016 /* Inactive section. Throw it away. */
2017 goto success;
2018
2019 case SHT_PROGBITS: /* Normal section with contents. */
2020 case SHT_NOBITS: /* .bss section. */
2021 case SHT_HASH: /* .hash section. */
2022 case SHT_NOTE: /* .note section. */
2023 case SHT_INIT_ARRAY: /* .init_array section. */
2024 case SHT_FINI_ARRAY: /* .fini_array section. */
2025 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2026 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2027 case SHT_GNU_HASH: /* .gnu.hash section. */
2028 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2029 goto success;
2030
2031 case SHT_DYNAMIC: /* Dynamic linking information. */
2032 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2033 goto fail;
2034
2035 if (hdr->sh_link > elf_numsections (abfd))
2036 {
2037 /* PR 10478: Accept Solaris binaries with a sh_link
2038 field set to SHN_BEFORE or SHN_AFTER. */
2039 switch (bfd_get_arch (abfd))
2040 {
2041 case bfd_arch_i386:
2042 case bfd_arch_sparc:
2043 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2044 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2045 break;
2046 /* Otherwise fall through. */
2047 default:
2048 goto fail;
2049 }
2050 }
2051 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2052 goto fail;
2053 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2054 {
2055 Elf_Internal_Shdr *dynsymhdr;
2056
2057 /* The shared libraries distributed with hpux11 have a bogus
2058 sh_link field for the ".dynamic" section. Find the
2059 string table for the ".dynsym" section instead. */
2060 if (elf_dynsymtab (abfd) != 0)
2061 {
2062 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2063 hdr->sh_link = dynsymhdr->sh_link;
2064 }
2065 else
2066 {
2067 unsigned int i, num_sec;
2068
2069 num_sec = elf_numsections (abfd);
2070 for (i = 1; i < num_sec; i++)
2071 {
2072 dynsymhdr = elf_elfsections (abfd)[i];
2073 if (dynsymhdr->sh_type == SHT_DYNSYM)
2074 {
2075 hdr->sh_link = dynsymhdr->sh_link;
2076 break;
2077 }
2078 }
2079 }
2080 }
2081 goto success;
2082
2083 case SHT_SYMTAB: /* A symbol table. */
2084 if (elf_onesymtab (abfd) == shindex)
2085 goto success;
2086
2087 if (hdr->sh_entsize != bed->s->sizeof_sym)
2088 goto fail;
2089
2090 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2091 {
2092 if (hdr->sh_size != 0)
2093 goto fail;
2094 /* Some assemblers erroneously set sh_info to one with a
2095 zero sh_size. ld sees this as a global symbol count
2096 of (unsigned) -1. Fix it here. */
2097 hdr->sh_info = 0;
2098 goto success;
2099 }
2100
2101 /* PR 18854: A binary might contain more than one symbol table.
2102 Unusual, but possible. Warn, but continue. */
2103 if (elf_onesymtab (abfd) != 0)
2104 {
2105 _bfd_error_handler
2106 /* xgettext:c-format */
2107 (_("%B: warning: multiple symbol tables detected"
2108 " - ignoring the table in section %u"),
2109 abfd, shindex);
2110 goto success;
2111 }
2112 elf_onesymtab (abfd) = shindex;
2113 elf_symtab_hdr (abfd) = *hdr;
2114 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2115 abfd->flags |= HAS_SYMS;
2116
2117 /* Sometimes a shared object will map in the symbol table. If
2118 SHF_ALLOC is set, and this is a shared object, then we also
2119 treat this section as a BFD section. We can not base the
2120 decision purely on SHF_ALLOC, because that flag is sometimes
2121 set in a relocatable object file, which would confuse the
2122 linker. */
2123 if ((hdr->sh_flags & SHF_ALLOC) != 0
2124 && (abfd->flags & DYNAMIC) != 0
2125 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2126 shindex))
2127 goto fail;
2128
2129 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2130 can't read symbols without that section loaded as well. It
2131 is most likely specified by the next section header. */
2132 {
2133 elf_section_list * entry;
2134 unsigned int i, num_sec;
2135
2136 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2137 if (entry->hdr.sh_link == shindex)
2138 goto success;
2139
2140 num_sec = elf_numsections (abfd);
2141 for (i = shindex + 1; i < num_sec; i++)
2142 {
2143 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2144
2145 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2146 && hdr2->sh_link == shindex)
2147 break;
2148 }
2149
2150 if (i == num_sec)
2151 for (i = 1; i < shindex; i++)
2152 {
2153 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2154
2155 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2156 && hdr2->sh_link == shindex)
2157 break;
2158 }
2159
2160 if (i != shindex)
2161 ret = bfd_section_from_shdr (abfd, i);
2162 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2163 goto success;
2164 }
2165
2166 case SHT_DYNSYM: /* A dynamic symbol table. */
2167 if (elf_dynsymtab (abfd) == shindex)
2168 goto success;
2169
2170 if (hdr->sh_entsize != bed->s->sizeof_sym)
2171 goto fail;
2172
2173 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2174 {
2175 if (hdr->sh_size != 0)
2176 goto fail;
2177
2178 /* Some linkers erroneously set sh_info to one with a
2179 zero sh_size. ld sees this as a global symbol count
2180 of (unsigned) -1. Fix it here. */
2181 hdr->sh_info = 0;
2182 goto success;
2183 }
2184
2185 /* PR 18854: A binary might contain more than one dynamic symbol table.
2186 Unusual, but possible. Warn, but continue. */
2187 if (elf_dynsymtab (abfd) != 0)
2188 {
2189 _bfd_error_handler
2190 /* xgettext:c-format */
2191 (_("%B: warning: multiple dynamic symbol tables detected"
2192 " - ignoring the table in section %u"),
2193 abfd, shindex);
2194 goto success;
2195 }
2196 elf_dynsymtab (abfd) = shindex;
2197 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2198 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2199 abfd->flags |= HAS_SYMS;
2200
2201 /* Besides being a symbol table, we also treat this as a regular
2202 section, so that objcopy can handle it. */
2203 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2204 goto success;
2205
2206 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2207 {
2208 elf_section_list * entry;
2209
2210 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2211 if (entry->ndx == shindex)
2212 goto success;
2213
2214 entry = bfd_alloc (abfd, sizeof * entry);
2215 if (entry == NULL)
2216 goto fail;
2217 entry->ndx = shindex;
2218 entry->hdr = * hdr;
2219 entry->next = elf_symtab_shndx_list (abfd);
2220 elf_symtab_shndx_list (abfd) = entry;
2221 elf_elfsections (abfd)[shindex] = & entry->hdr;
2222 goto success;
2223 }
2224
2225 case SHT_STRTAB: /* A string table. */
2226 if (hdr->bfd_section != NULL)
2227 goto success;
2228
2229 if (ehdr->e_shstrndx == shindex)
2230 {
2231 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2232 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2233 goto success;
2234 }
2235
2236 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2237 {
2238 symtab_strtab:
2239 elf_tdata (abfd)->strtab_hdr = *hdr;
2240 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2241 goto success;
2242 }
2243
2244 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2245 {
2246 dynsymtab_strtab:
2247 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2248 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2249 elf_elfsections (abfd)[shindex] = hdr;
2250 /* We also treat this as a regular section, so that objcopy
2251 can handle it. */
2252 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2253 shindex);
2254 goto success;
2255 }
2256
2257 /* If the string table isn't one of the above, then treat it as a
2258 regular section. We need to scan all the headers to be sure,
2259 just in case this strtab section appeared before the above. */
2260 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2261 {
2262 unsigned int i, num_sec;
2263
2264 num_sec = elf_numsections (abfd);
2265 for (i = 1; i < num_sec; i++)
2266 {
2267 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2268 if (hdr2->sh_link == shindex)
2269 {
2270 /* Prevent endless recursion on broken objects. */
2271 if (i == shindex)
2272 goto fail;
2273 if (! bfd_section_from_shdr (abfd, i))
2274 goto fail;
2275 if (elf_onesymtab (abfd) == i)
2276 goto symtab_strtab;
2277 if (elf_dynsymtab (abfd) == i)
2278 goto dynsymtab_strtab;
2279 }
2280 }
2281 }
2282 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2283 goto success;
2284
2285 case SHT_REL:
2286 case SHT_RELA:
2287 /* *These* do a lot of work -- but build no sections! */
2288 {
2289 asection *target_sect;
2290 Elf_Internal_Shdr *hdr2, **p_hdr;
2291 unsigned int num_sec = elf_numsections (abfd);
2292 struct bfd_elf_section_data *esdt;
2293
2294 if (hdr->sh_entsize
2295 != (bfd_size_type) (hdr->sh_type == SHT_REL
2296 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2297 goto fail;
2298
2299 /* Check for a bogus link to avoid crashing. */
2300 if (hdr->sh_link >= num_sec)
2301 {
2302 _bfd_error_handler
2303 /* xgettext:c-format */
2304 (_("%B: invalid link %u for reloc section %s (index %u)"),
2305 abfd, hdr->sh_link, name, shindex);
2306 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2307 shindex);
2308 goto success;
2309 }
2310
2311 /* For some incomprehensible reason Oracle distributes
2312 libraries for Solaris in which some of the objects have
2313 bogus sh_link fields. It would be nice if we could just
2314 reject them, but, unfortunately, some people need to use
2315 them. We scan through the section headers; if we find only
2316 one suitable symbol table, we clobber the sh_link to point
2317 to it. I hope this doesn't break anything.
2318
2319 Don't do it on executable nor shared library. */
2320 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2321 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2322 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2323 {
2324 unsigned int scan;
2325 int found;
2326
2327 found = 0;
2328 for (scan = 1; scan < num_sec; scan++)
2329 {
2330 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2331 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2332 {
2333 if (found != 0)
2334 {
2335 found = 0;
2336 break;
2337 }
2338 found = scan;
2339 }
2340 }
2341 if (found != 0)
2342 hdr->sh_link = found;
2343 }
2344
2345 /* Get the symbol table. */
2346 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2347 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2348 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2349 goto fail;
2350
2351 /* If this reloc section does not use the main symbol table we
2352 don't treat it as a reloc section. BFD can't adequately
2353 represent such a section, so at least for now, we don't
2354 try. We just present it as a normal section. We also
2355 can't use it as a reloc section if it points to the null
2356 section, an invalid section, another reloc section, or its
2357 sh_link points to the null section. */
2358 if (hdr->sh_link != elf_onesymtab (abfd)
2359 || hdr->sh_link == SHN_UNDEF
2360 || hdr->sh_info == SHN_UNDEF
2361 || hdr->sh_info >= num_sec
2362 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2363 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2364 {
2365 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2366 shindex);
2367 goto success;
2368 }
2369
2370 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2371 goto fail;
2372
2373 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2374 if (target_sect == NULL)
2375 goto fail;
2376
2377 esdt = elf_section_data (target_sect);
2378 if (hdr->sh_type == SHT_RELA)
2379 p_hdr = &esdt->rela.hdr;
2380 else
2381 p_hdr = &esdt->rel.hdr;
2382
2383 /* PR 17512: file: 0b4f81b7. */
2384 if (*p_hdr != NULL)
2385 goto fail;
2386 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2387 if (hdr2 == NULL)
2388 goto fail;
2389 *hdr2 = *hdr;
2390 *p_hdr = hdr2;
2391 elf_elfsections (abfd)[shindex] = hdr2;
2392 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2393 * bed->s->int_rels_per_ext_rel);
2394 target_sect->flags |= SEC_RELOC;
2395 target_sect->relocation = NULL;
2396 target_sect->rel_filepos = hdr->sh_offset;
2397 /* In the section to which the relocations apply, mark whether
2398 its relocations are of the REL or RELA variety. */
2399 if (hdr->sh_size != 0)
2400 {
2401 if (hdr->sh_type == SHT_RELA)
2402 target_sect->use_rela_p = 1;
2403 }
2404 abfd->flags |= HAS_RELOC;
2405 goto success;
2406 }
2407
2408 case SHT_GNU_verdef:
2409 elf_dynverdef (abfd) = shindex;
2410 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2411 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2412 goto success;
2413
2414 case SHT_GNU_versym:
2415 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2416 goto fail;
2417
2418 elf_dynversym (abfd) = shindex;
2419 elf_tdata (abfd)->dynversym_hdr = *hdr;
2420 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2421 goto success;
2422
2423 case SHT_GNU_verneed:
2424 elf_dynverref (abfd) = shindex;
2425 elf_tdata (abfd)->dynverref_hdr = *hdr;
2426 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2427 goto success;
2428
2429 case SHT_SHLIB:
2430 goto success;
2431
2432 case SHT_GROUP:
2433 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2434 goto fail;
2435
2436 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2437 goto fail;
2438
2439 goto success;
2440
2441 default:
2442 /* Possibly an attributes section. */
2443 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2444 || hdr->sh_type == bed->obj_attrs_section_type)
2445 {
2446 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2447 goto fail;
2448 _bfd_elf_parse_attributes (abfd, hdr);
2449 goto success;
2450 }
2451
2452 /* Check for any processor-specific section types. */
2453 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2454 goto success;
2455
2456 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2457 {
2458 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2459 /* FIXME: How to properly handle allocated section reserved
2460 for applications? */
2461 _bfd_error_handler
2462 /* xgettext:c-format */
2463 (_("%B: unknown type [%#x] section `%s'"),
2464 abfd, hdr->sh_type, name);
2465 else
2466 {
2467 /* Allow sections reserved for applications. */
2468 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2469 shindex);
2470 goto success;
2471 }
2472 }
2473 else if (hdr->sh_type >= SHT_LOPROC
2474 && hdr->sh_type <= SHT_HIPROC)
2475 /* FIXME: We should handle this section. */
2476 _bfd_error_handler
2477 /* xgettext:c-format */
2478 (_("%B: unknown type [%#x] section `%s'"),
2479 abfd, hdr->sh_type, name);
2480 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2481 {
2482 /* Unrecognised OS-specific sections. */
2483 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2484 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2485 required to correctly process the section and the file should
2486 be rejected with an error message. */
2487 _bfd_error_handler
2488 /* xgettext:c-format */
2489 (_("%B: unknown type [%#x] section `%s'"),
2490 abfd, hdr->sh_type, name);
2491 else
2492 {
2493 /* Otherwise it should be processed. */
2494 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2495 goto success;
2496 }
2497 }
2498 else
2499 /* FIXME: We should handle this section. */
2500 _bfd_error_handler
2501 /* xgettext:c-format */
2502 (_("%B: unknown type [%#x] section `%s'"),
2503 abfd, hdr->sh_type, name);
2504
2505 goto fail;
2506 }
2507
2508 fail:
2509 ret = FALSE;
2510 success:
2511 if (sections_being_created && sections_being_created_abfd == abfd)
2512 sections_being_created [shindex] = FALSE;
2513 if (-- nesting == 0)
2514 {
2515 sections_being_created = NULL;
2516 sections_being_created_abfd = abfd;
2517 }
2518 return ret;
2519 }
2520
2521 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2522
2523 Elf_Internal_Sym *
2524 bfd_sym_from_r_symndx (struct sym_cache *cache,
2525 bfd *abfd,
2526 unsigned long r_symndx)
2527 {
2528 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2529
2530 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2531 {
2532 Elf_Internal_Shdr *symtab_hdr;
2533 unsigned char esym[sizeof (Elf64_External_Sym)];
2534 Elf_External_Sym_Shndx eshndx;
2535
2536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2537 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2538 &cache->sym[ent], esym, &eshndx) == NULL)
2539 return NULL;
2540
2541 if (cache->abfd != abfd)
2542 {
2543 memset (cache->indx, -1, sizeof (cache->indx));
2544 cache->abfd = abfd;
2545 }
2546 cache->indx[ent] = r_symndx;
2547 }
2548
2549 return &cache->sym[ent];
2550 }
2551
2552 /* Given an ELF section number, retrieve the corresponding BFD
2553 section. */
2554
2555 asection *
2556 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2557 {
2558 if (sec_index >= elf_numsections (abfd))
2559 return NULL;
2560 return elf_elfsections (abfd)[sec_index]->bfd_section;
2561 }
2562
2563 static const struct bfd_elf_special_section special_sections_b[] =
2564 {
2565 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2566 { NULL, 0, 0, 0, 0 }
2567 };
2568
2569 static const struct bfd_elf_special_section special_sections_c[] =
2570 {
2571 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2572 { NULL, 0, 0, 0, 0 }
2573 };
2574
2575 static const struct bfd_elf_special_section special_sections_d[] =
2576 {
2577 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2578 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2579 /* There are more DWARF sections than these, but they needn't be added here
2580 unless you have to cope with broken compilers that don't emit section
2581 attributes or you want to help the user writing assembler. */
2582 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2583 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2584 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2585 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2586 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2587 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2588 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2589 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2590 { NULL, 0, 0, 0, 0 }
2591 };
2592
2593 static const struct bfd_elf_special_section special_sections_f[] =
2594 {
2595 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2596 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2597 { NULL, 0 , 0, 0, 0 }
2598 };
2599
2600 static const struct bfd_elf_special_section special_sections_g[] =
2601 {
2602 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2603 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2604 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2605 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2606 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2607 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2608 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2609 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2610 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2611 { NULL, 0, 0, 0, 0 }
2612 };
2613
2614 static const struct bfd_elf_special_section special_sections_h[] =
2615 {
2616 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2617 { NULL, 0, 0, 0, 0 }
2618 };
2619
2620 static const struct bfd_elf_special_section special_sections_i[] =
2621 {
2622 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2623 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2624 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2625 { NULL, 0, 0, 0, 0 }
2626 };
2627
2628 static const struct bfd_elf_special_section special_sections_l[] =
2629 {
2630 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2631 { NULL, 0, 0, 0, 0 }
2632 };
2633
2634 static const struct bfd_elf_special_section special_sections_n[] =
2635 {
2636 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2637 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2638 { NULL, 0, 0, 0, 0 }
2639 };
2640
2641 static const struct bfd_elf_special_section special_sections_p[] =
2642 {
2643 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2644 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2645 { NULL, 0, 0, 0, 0 }
2646 };
2647
2648 static const struct bfd_elf_special_section special_sections_r[] =
2649 {
2650 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2651 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2652 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2653 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2654 { NULL, 0, 0, 0, 0 }
2655 };
2656
2657 static const struct bfd_elf_special_section special_sections_s[] =
2658 {
2659 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2660 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2661 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2662 /* See struct bfd_elf_special_section declaration for the semantics of
2663 this special case where .prefix_length != strlen (.prefix). */
2664 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_t[] =
2669 {
2670 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2671 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2672 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_z[] =
2677 {
2678 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section * const special_sections[] =
2686 {
2687 special_sections_b, /* 'b' */
2688 special_sections_c, /* 'c' */
2689 special_sections_d, /* 'd' */
2690 NULL, /* 'e' */
2691 special_sections_f, /* 'f' */
2692 special_sections_g, /* 'g' */
2693 special_sections_h, /* 'h' */
2694 special_sections_i, /* 'i' */
2695 NULL, /* 'j' */
2696 NULL, /* 'k' */
2697 special_sections_l, /* 'l' */
2698 NULL, /* 'm' */
2699 special_sections_n, /* 'n' */
2700 NULL, /* 'o' */
2701 special_sections_p, /* 'p' */
2702 NULL, /* 'q' */
2703 special_sections_r, /* 'r' */
2704 special_sections_s, /* 's' */
2705 special_sections_t, /* 't' */
2706 NULL, /* 'u' */
2707 NULL, /* 'v' */
2708 NULL, /* 'w' */
2709 NULL, /* 'x' */
2710 NULL, /* 'y' */
2711 special_sections_z /* 'z' */
2712 };
2713
2714 const struct bfd_elf_special_section *
2715 _bfd_elf_get_special_section (const char *name,
2716 const struct bfd_elf_special_section *spec,
2717 unsigned int rela)
2718 {
2719 int i;
2720 int len;
2721
2722 len = strlen (name);
2723
2724 for (i = 0; spec[i].prefix != NULL; i++)
2725 {
2726 int suffix_len;
2727 int prefix_len = spec[i].prefix_length;
2728
2729 if (len < prefix_len)
2730 continue;
2731 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2732 continue;
2733
2734 suffix_len = spec[i].suffix_length;
2735 if (suffix_len <= 0)
2736 {
2737 if (name[prefix_len] != 0)
2738 {
2739 if (suffix_len == 0)
2740 continue;
2741 if (name[prefix_len] != '.'
2742 && (suffix_len == -2
2743 || (rela && spec[i].type == SHT_REL)))
2744 continue;
2745 }
2746 }
2747 else
2748 {
2749 if (len < prefix_len + suffix_len)
2750 continue;
2751 if (memcmp (name + len - suffix_len,
2752 spec[i].prefix + prefix_len,
2753 suffix_len) != 0)
2754 continue;
2755 }
2756 return &spec[i];
2757 }
2758
2759 return NULL;
2760 }
2761
2762 const struct bfd_elf_special_section *
2763 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2764 {
2765 int i;
2766 const struct bfd_elf_special_section *spec;
2767 const struct elf_backend_data *bed;
2768
2769 /* See if this is one of the special sections. */
2770 if (sec->name == NULL)
2771 return NULL;
2772
2773 bed = get_elf_backend_data (abfd);
2774 spec = bed->special_sections;
2775 if (spec)
2776 {
2777 spec = _bfd_elf_get_special_section (sec->name,
2778 bed->special_sections,
2779 sec->use_rela_p);
2780 if (spec != NULL)
2781 return spec;
2782 }
2783
2784 if (sec->name[0] != '.')
2785 return NULL;
2786
2787 i = sec->name[1] - 'b';
2788 if (i < 0 || i > 'z' - 'b')
2789 return NULL;
2790
2791 spec = special_sections[i];
2792
2793 if (spec == NULL)
2794 return NULL;
2795
2796 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2797 }
2798
2799 bfd_boolean
2800 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2801 {
2802 struct bfd_elf_section_data *sdata;
2803 const struct elf_backend_data *bed;
2804 const struct bfd_elf_special_section *ssect;
2805
2806 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2807 if (sdata == NULL)
2808 {
2809 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2810 sizeof (*sdata));
2811 if (sdata == NULL)
2812 return FALSE;
2813 sec->used_by_bfd = sdata;
2814 }
2815
2816 /* Indicate whether or not this section should use RELA relocations. */
2817 bed = get_elf_backend_data (abfd);
2818 sec->use_rela_p = bed->default_use_rela_p;
2819
2820 /* When we read a file, we don't need to set ELF section type and
2821 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2822 anyway. We will set ELF section type and flags for all linker
2823 created sections. If user specifies BFD section flags, we will
2824 set ELF section type and flags based on BFD section flags in
2825 elf_fake_sections. Special handling for .init_array/.fini_array
2826 output sections since they may contain .ctors/.dtors input
2827 sections. We don't want _bfd_elf_init_private_section_data to
2828 copy ELF section type from .ctors/.dtors input sections. */
2829 if (abfd->direction != read_direction
2830 || (sec->flags & SEC_LINKER_CREATED) != 0)
2831 {
2832 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2833 if (ssect != NULL
2834 && (!sec->flags
2835 || (sec->flags & SEC_LINKER_CREATED) != 0
2836 || ssect->type == SHT_INIT_ARRAY
2837 || ssect->type == SHT_FINI_ARRAY))
2838 {
2839 elf_section_type (sec) = ssect->type;
2840 elf_section_flags (sec) = ssect->attr;
2841 }
2842 }
2843
2844 return _bfd_generic_new_section_hook (abfd, sec);
2845 }
2846
2847 /* Create a new bfd section from an ELF program header.
2848
2849 Since program segments have no names, we generate a synthetic name
2850 of the form segment<NUM>, where NUM is generally the index in the
2851 program header table. For segments that are split (see below) we
2852 generate the names segment<NUM>a and segment<NUM>b.
2853
2854 Note that some program segments may have a file size that is different than
2855 (less than) the memory size. All this means is that at execution the
2856 system must allocate the amount of memory specified by the memory size,
2857 but only initialize it with the first "file size" bytes read from the
2858 file. This would occur for example, with program segments consisting
2859 of combined data+bss.
2860
2861 To handle the above situation, this routine generates TWO bfd sections
2862 for the single program segment. The first has the length specified by
2863 the file size of the segment, and the second has the length specified
2864 by the difference between the two sizes. In effect, the segment is split
2865 into its initialized and uninitialized parts.
2866
2867 */
2868
2869 bfd_boolean
2870 _bfd_elf_make_section_from_phdr (bfd *abfd,
2871 Elf_Internal_Phdr *hdr,
2872 int hdr_index,
2873 const char *type_name)
2874 {
2875 asection *newsect;
2876 char *name;
2877 char namebuf[64];
2878 size_t len;
2879 int split;
2880
2881 split = ((hdr->p_memsz > 0)
2882 && (hdr->p_filesz > 0)
2883 && (hdr->p_memsz > hdr->p_filesz));
2884
2885 if (hdr->p_filesz > 0)
2886 {
2887 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2888 len = strlen (namebuf) + 1;
2889 name = (char *) bfd_alloc (abfd, len);
2890 if (!name)
2891 return FALSE;
2892 memcpy (name, namebuf, len);
2893 newsect = bfd_make_section (abfd, name);
2894 if (newsect == NULL)
2895 return FALSE;
2896 newsect->vma = hdr->p_vaddr;
2897 newsect->lma = hdr->p_paddr;
2898 newsect->size = hdr->p_filesz;
2899 newsect->filepos = hdr->p_offset;
2900 newsect->flags |= SEC_HAS_CONTENTS;
2901 newsect->alignment_power = bfd_log2 (hdr->p_align);
2902 if (hdr->p_type == PT_LOAD)
2903 {
2904 newsect->flags |= SEC_ALLOC;
2905 newsect->flags |= SEC_LOAD;
2906 if (hdr->p_flags & PF_X)
2907 {
2908 /* FIXME: all we known is that it has execute PERMISSION,
2909 may be data. */
2910 newsect->flags |= SEC_CODE;
2911 }
2912 }
2913 if (!(hdr->p_flags & PF_W))
2914 {
2915 newsect->flags |= SEC_READONLY;
2916 }
2917 }
2918
2919 if (hdr->p_memsz > hdr->p_filesz)
2920 {
2921 bfd_vma align;
2922
2923 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2924 len = strlen (namebuf) + 1;
2925 name = (char *) bfd_alloc (abfd, len);
2926 if (!name)
2927 return FALSE;
2928 memcpy (name, namebuf, len);
2929 newsect = bfd_make_section (abfd, name);
2930 if (newsect == NULL)
2931 return FALSE;
2932 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2933 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2934 newsect->size = hdr->p_memsz - hdr->p_filesz;
2935 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2936 align = newsect->vma & -newsect->vma;
2937 if (align == 0 || align > hdr->p_align)
2938 align = hdr->p_align;
2939 newsect->alignment_power = bfd_log2 (align);
2940 if (hdr->p_type == PT_LOAD)
2941 {
2942 /* Hack for gdb. Segments that have not been modified do
2943 not have their contents written to a core file, on the
2944 assumption that a debugger can find the contents in the
2945 executable. We flag this case by setting the fake
2946 section size to zero. Note that "real" bss sections will
2947 always have their contents dumped to the core file. */
2948 if (bfd_get_format (abfd) == bfd_core)
2949 newsect->size = 0;
2950 newsect->flags |= SEC_ALLOC;
2951 if (hdr->p_flags & PF_X)
2952 newsect->flags |= SEC_CODE;
2953 }
2954 if (!(hdr->p_flags & PF_W))
2955 newsect->flags |= SEC_READONLY;
2956 }
2957
2958 return TRUE;
2959 }
2960
2961 bfd_boolean
2962 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2963 {
2964 const struct elf_backend_data *bed;
2965
2966 switch (hdr->p_type)
2967 {
2968 case PT_NULL:
2969 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2970
2971 case PT_LOAD:
2972 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2973
2974 case PT_DYNAMIC:
2975 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2976
2977 case PT_INTERP:
2978 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2979
2980 case PT_NOTE:
2981 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2982 return FALSE;
2983 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2984 return FALSE;
2985 return TRUE;
2986
2987 case PT_SHLIB:
2988 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2989
2990 case PT_PHDR:
2991 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2992
2993 case PT_GNU_EH_FRAME:
2994 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2995 "eh_frame_hdr");
2996
2997 case PT_GNU_STACK:
2998 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2999
3000 case PT_GNU_RELRO:
3001 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3002
3003 default:
3004 /* Check for any processor-specific program segment types. */
3005 bed = get_elf_backend_data (abfd);
3006 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3007 }
3008 }
3009
3010 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3011 REL or RELA. */
3012
3013 Elf_Internal_Shdr *
3014 _bfd_elf_single_rel_hdr (asection *sec)
3015 {
3016 if (elf_section_data (sec)->rel.hdr)
3017 {
3018 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3019 return elf_section_data (sec)->rel.hdr;
3020 }
3021 else
3022 return elf_section_data (sec)->rela.hdr;
3023 }
3024
3025 static bfd_boolean
3026 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3027 Elf_Internal_Shdr *rel_hdr,
3028 const char *sec_name,
3029 bfd_boolean use_rela_p)
3030 {
3031 char *name = (char *) bfd_alloc (abfd,
3032 sizeof ".rela" + strlen (sec_name));
3033 if (name == NULL)
3034 return FALSE;
3035
3036 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3037 rel_hdr->sh_name =
3038 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3039 FALSE);
3040 if (rel_hdr->sh_name == (unsigned int) -1)
3041 return FALSE;
3042
3043 return TRUE;
3044 }
3045
3046 /* Allocate and initialize a section-header for a new reloc section,
3047 containing relocations against ASECT. It is stored in RELDATA. If
3048 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3049 relocations. */
3050
3051 static bfd_boolean
3052 _bfd_elf_init_reloc_shdr (bfd *abfd,
3053 struct bfd_elf_section_reloc_data *reldata,
3054 const char *sec_name,
3055 bfd_boolean use_rela_p,
3056 bfd_boolean delay_st_name_p)
3057 {
3058 Elf_Internal_Shdr *rel_hdr;
3059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3060
3061 BFD_ASSERT (reldata->hdr == NULL);
3062 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3063 reldata->hdr = rel_hdr;
3064
3065 if (delay_st_name_p)
3066 rel_hdr->sh_name = (unsigned int) -1;
3067 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3068 use_rela_p))
3069 return FALSE;
3070 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3071 rel_hdr->sh_entsize = (use_rela_p
3072 ? bed->s->sizeof_rela
3073 : bed->s->sizeof_rel);
3074 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3075 rel_hdr->sh_flags = 0;
3076 rel_hdr->sh_addr = 0;
3077 rel_hdr->sh_size = 0;
3078 rel_hdr->sh_offset = 0;
3079
3080 return TRUE;
3081 }
3082
3083 /* Return the default section type based on the passed in section flags. */
3084
3085 int
3086 bfd_elf_get_default_section_type (flagword flags)
3087 {
3088 if ((flags & SEC_ALLOC) != 0
3089 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3090 return SHT_NOBITS;
3091 return SHT_PROGBITS;
3092 }
3093
3094 struct fake_section_arg
3095 {
3096 struct bfd_link_info *link_info;
3097 bfd_boolean failed;
3098 };
3099
3100 /* Set up an ELF internal section header for a section. */
3101
3102 static void
3103 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3104 {
3105 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3107 struct bfd_elf_section_data *esd = elf_section_data (asect);
3108 Elf_Internal_Shdr *this_hdr;
3109 unsigned int sh_type;
3110 const char *name = asect->name;
3111 bfd_boolean delay_st_name_p = FALSE;
3112
3113 if (arg->failed)
3114 {
3115 /* We already failed; just get out of the bfd_map_over_sections
3116 loop. */
3117 return;
3118 }
3119
3120 this_hdr = &esd->this_hdr;
3121
3122 if (arg->link_info)
3123 {
3124 /* ld: compress DWARF debug sections with names: .debug_*. */
3125 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3126 && (asect->flags & SEC_DEBUGGING)
3127 && name[1] == 'd'
3128 && name[6] == '_')
3129 {
3130 /* Set SEC_ELF_COMPRESS to indicate this section should be
3131 compressed. */
3132 asect->flags |= SEC_ELF_COMPRESS;
3133
3134 /* If this section will be compressed, delay adding section
3135 name to section name section after it is compressed in
3136 _bfd_elf_assign_file_positions_for_non_load. */
3137 delay_st_name_p = TRUE;
3138 }
3139 }
3140 else if ((asect->flags & SEC_ELF_RENAME))
3141 {
3142 /* objcopy: rename output DWARF debug section. */
3143 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3144 {
3145 /* When we decompress or compress with SHF_COMPRESSED,
3146 convert section name from .zdebug_* to .debug_* if
3147 needed. */
3148 if (name[1] == 'z')
3149 {
3150 char *new_name = convert_zdebug_to_debug (abfd, name);
3151 if (new_name == NULL)
3152 {
3153 arg->failed = TRUE;
3154 return;
3155 }
3156 name = new_name;
3157 }
3158 }
3159 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3160 {
3161 /* PR binutils/18087: Compression does not always make a
3162 section smaller. So only rename the section when
3163 compression has actually taken place. If input section
3164 name is .zdebug_*, we should never compress it again. */
3165 char *new_name = convert_debug_to_zdebug (abfd, name);
3166 if (new_name == NULL)
3167 {
3168 arg->failed = TRUE;
3169 return;
3170 }
3171 BFD_ASSERT (name[1] != 'z');
3172 name = new_name;
3173 }
3174 }
3175
3176 if (delay_st_name_p)
3177 this_hdr->sh_name = (unsigned int) -1;
3178 else
3179 {
3180 this_hdr->sh_name
3181 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3182 name, FALSE);
3183 if (this_hdr->sh_name == (unsigned int) -1)
3184 {
3185 arg->failed = TRUE;
3186 return;
3187 }
3188 }
3189
3190 /* Don't clear sh_flags. Assembler may set additional bits. */
3191
3192 if ((asect->flags & SEC_ALLOC) != 0
3193 || asect->user_set_vma)
3194 this_hdr->sh_addr = asect->vma;
3195 else
3196 this_hdr->sh_addr = 0;
3197
3198 this_hdr->sh_offset = 0;
3199 this_hdr->sh_size = asect->size;
3200 this_hdr->sh_link = 0;
3201 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3202 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3203 {
3204 _bfd_error_handler
3205 /* xgettext:c-format */
3206 (_("%B: error: Alignment power %d of section `%A' is too big"),
3207 abfd, asect->alignment_power, asect);
3208 arg->failed = TRUE;
3209 return;
3210 }
3211 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3212 /* The sh_entsize and sh_info fields may have been set already by
3213 copy_private_section_data. */
3214
3215 this_hdr->bfd_section = asect;
3216 this_hdr->contents = NULL;
3217
3218 /* If the section type is unspecified, we set it based on
3219 asect->flags. */
3220 if ((asect->flags & SEC_GROUP) != 0)
3221 sh_type = SHT_GROUP;
3222 else
3223 sh_type = bfd_elf_get_default_section_type (asect->flags);
3224
3225 if (this_hdr->sh_type == SHT_NULL)
3226 this_hdr->sh_type = sh_type;
3227 else if (this_hdr->sh_type == SHT_NOBITS
3228 && sh_type == SHT_PROGBITS
3229 && (asect->flags & SEC_ALLOC) != 0)
3230 {
3231 /* Warn if we are changing a NOBITS section to PROGBITS, but
3232 allow the link to proceed. This can happen when users link
3233 non-bss input sections to bss output sections, or emit data
3234 to a bss output section via a linker script. */
3235 _bfd_error_handler
3236 (_("warning: section `%A' type changed to PROGBITS"), asect);
3237 this_hdr->sh_type = sh_type;
3238 }
3239
3240 switch (this_hdr->sh_type)
3241 {
3242 default:
3243 break;
3244
3245 case SHT_STRTAB:
3246 case SHT_NOTE:
3247 case SHT_NOBITS:
3248 case SHT_PROGBITS:
3249 break;
3250
3251 case SHT_INIT_ARRAY:
3252 case SHT_FINI_ARRAY:
3253 case SHT_PREINIT_ARRAY:
3254 this_hdr->sh_entsize = bed->s->arch_size / 8;
3255 break;
3256
3257 case SHT_HASH:
3258 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3259 break;
3260
3261 case SHT_DYNSYM:
3262 this_hdr->sh_entsize = bed->s->sizeof_sym;
3263 break;
3264
3265 case SHT_DYNAMIC:
3266 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3267 break;
3268
3269 case SHT_RELA:
3270 if (get_elf_backend_data (abfd)->may_use_rela_p)
3271 this_hdr->sh_entsize = bed->s->sizeof_rela;
3272 break;
3273
3274 case SHT_REL:
3275 if (get_elf_backend_data (abfd)->may_use_rel_p)
3276 this_hdr->sh_entsize = bed->s->sizeof_rel;
3277 break;
3278
3279 case SHT_GNU_versym:
3280 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3281 break;
3282
3283 case SHT_GNU_verdef:
3284 this_hdr->sh_entsize = 0;
3285 /* objcopy or strip will copy over sh_info, but may not set
3286 cverdefs. The linker will set cverdefs, but sh_info will be
3287 zero. */
3288 if (this_hdr->sh_info == 0)
3289 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3290 else
3291 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3292 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3293 break;
3294
3295 case SHT_GNU_verneed:
3296 this_hdr->sh_entsize = 0;
3297 /* objcopy or strip will copy over sh_info, but may not set
3298 cverrefs. The linker will set cverrefs, but sh_info will be
3299 zero. */
3300 if (this_hdr->sh_info == 0)
3301 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3302 else
3303 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3304 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3305 break;
3306
3307 case SHT_GROUP:
3308 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3309 break;
3310
3311 case SHT_GNU_HASH:
3312 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3313 break;
3314 }
3315
3316 if ((asect->flags & SEC_ALLOC) != 0)
3317 this_hdr->sh_flags |= SHF_ALLOC;
3318 if ((asect->flags & SEC_READONLY) == 0)
3319 this_hdr->sh_flags |= SHF_WRITE;
3320 if ((asect->flags & SEC_CODE) != 0)
3321 this_hdr->sh_flags |= SHF_EXECINSTR;
3322 if ((asect->flags & SEC_MERGE) != 0)
3323 {
3324 this_hdr->sh_flags |= SHF_MERGE;
3325 this_hdr->sh_entsize = asect->entsize;
3326 }
3327 if ((asect->flags & SEC_STRINGS) != 0)
3328 this_hdr->sh_flags |= SHF_STRINGS;
3329 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3330 this_hdr->sh_flags |= SHF_GROUP;
3331 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3332 {
3333 this_hdr->sh_flags |= SHF_TLS;
3334 if (asect->size == 0
3335 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3336 {
3337 struct bfd_link_order *o = asect->map_tail.link_order;
3338
3339 this_hdr->sh_size = 0;
3340 if (o != NULL)
3341 {
3342 this_hdr->sh_size = o->offset + o->size;
3343 if (this_hdr->sh_size != 0)
3344 this_hdr->sh_type = SHT_NOBITS;
3345 }
3346 }
3347 }
3348 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3349 this_hdr->sh_flags |= SHF_EXCLUDE;
3350
3351 /* If the section has relocs, set up a section header for the
3352 SHT_REL[A] section. If two relocation sections are required for
3353 this section, it is up to the processor-specific back-end to
3354 create the other. */
3355 if ((asect->flags & SEC_RELOC) != 0)
3356 {
3357 /* When doing a relocatable link, create both REL and RELA sections if
3358 needed. */
3359 if (arg->link_info
3360 /* Do the normal setup if we wouldn't create any sections here. */
3361 && esd->rel.count + esd->rela.count > 0
3362 && (bfd_link_relocatable (arg->link_info)
3363 || arg->link_info->emitrelocations))
3364 {
3365 if (esd->rel.count && esd->rel.hdr == NULL
3366 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3367 delay_st_name_p))
3368 {
3369 arg->failed = TRUE;
3370 return;
3371 }
3372 if (esd->rela.count && esd->rela.hdr == NULL
3373 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3374 delay_st_name_p))
3375 {
3376 arg->failed = TRUE;
3377 return;
3378 }
3379 }
3380 else if (!_bfd_elf_init_reloc_shdr (abfd,
3381 (asect->use_rela_p
3382 ? &esd->rela : &esd->rel),
3383 name,
3384 asect->use_rela_p,
3385 delay_st_name_p))
3386 arg->failed = TRUE;
3387 }
3388
3389 /* Check for processor-specific section types. */
3390 sh_type = this_hdr->sh_type;
3391 if (bed->elf_backend_fake_sections
3392 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3393 arg->failed = TRUE;
3394
3395 if (sh_type == SHT_NOBITS && asect->size != 0)
3396 {
3397 /* Don't change the header type from NOBITS if we are being
3398 called for objcopy --only-keep-debug. */
3399 this_hdr->sh_type = sh_type;
3400 }
3401 }
3402
3403 /* Fill in the contents of a SHT_GROUP section. Called from
3404 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3405 when ELF targets use the generic linker, ld. Called for ld -r
3406 from bfd_elf_final_link. */
3407
3408 void
3409 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3410 {
3411 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3412 asection *elt, *first;
3413 unsigned char *loc;
3414 bfd_boolean gas;
3415
3416 /* Ignore linker created group section. See elfNN_ia64_object_p in
3417 elfxx-ia64.c. */
3418 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3419 || *failedptr)
3420 return;
3421
3422 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3423 {
3424 unsigned long symindx = 0;
3425
3426 /* elf_group_id will have been set up by objcopy and the
3427 generic linker. */
3428 if (elf_group_id (sec) != NULL)
3429 symindx = elf_group_id (sec)->udata.i;
3430
3431 if (symindx == 0)
3432 {
3433 /* If called from the assembler, swap_out_syms will have set up
3434 elf_section_syms. */
3435 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3436 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3437 }
3438 elf_section_data (sec)->this_hdr.sh_info = symindx;
3439 }
3440 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3441 {
3442 /* The ELF backend linker sets sh_info to -2 when the group
3443 signature symbol is global, and thus the index can't be
3444 set until all local symbols are output. */
3445 asection *igroup;
3446 struct bfd_elf_section_data *sec_data;
3447 unsigned long symndx;
3448 unsigned long extsymoff;
3449 struct elf_link_hash_entry *h;
3450
3451 /* The point of this little dance to the first SHF_GROUP section
3452 then back to the SHT_GROUP section is that this gets us to
3453 the SHT_GROUP in the input object. */
3454 igroup = elf_sec_group (elf_next_in_group (sec));
3455 sec_data = elf_section_data (igroup);
3456 symndx = sec_data->this_hdr.sh_info;
3457 extsymoff = 0;
3458 if (!elf_bad_symtab (igroup->owner))
3459 {
3460 Elf_Internal_Shdr *symtab_hdr;
3461
3462 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3463 extsymoff = symtab_hdr->sh_info;
3464 }
3465 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3466 while (h->root.type == bfd_link_hash_indirect
3467 || h->root.type == bfd_link_hash_warning)
3468 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3469
3470 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3471 }
3472
3473 /* The contents won't be allocated for "ld -r" or objcopy. */
3474 gas = TRUE;
3475 if (sec->contents == NULL)
3476 {
3477 gas = FALSE;
3478 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3479
3480 /* Arrange for the section to be written out. */
3481 elf_section_data (sec)->this_hdr.contents = sec->contents;
3482 if (sec->contents == NULL)
3483 {
3484 *failedptr = TRUE;
3485 return;
3486 }
3487 }
3488
3489 loc = sec->contents + sec->size;
3490
3491 /* Get the pointer to the first section in the group that gas
3492 squirreled away here. objcopy arranges for this to be set to the
3493 start of the input section group. */
3494 first = elt = elf_next_in_group (sec);
3495
3496 /* First element is a flag word. Rest of section is elf section
3497 indices for all the sections of the group. Write them backwards
3498 just to keep the group in the same order as given in .section
3499 directives, not that it matters. */
3500 while (elt != NULL)
3501 {
3502 asection *s;
3503
3504 s = elt;
3505 if (!gas)
3506 s = s->output_section;
3507 if (s != NULL
3508 && !bfd_is_abs_section (s))
3509 {
3510 unsigned int idx = elf_section_data (s)->this_idx;
3511
3512 loc -= 4;
3513 H_PUT_32 (abfd, idx, loc);
3514 }
3515 elt = elf_next_in_group (elt);
3516 if (elt == first)
3517 break;
3518 }
3519
3520 loc -= 4;
3521 BFD_ASSERT (loc == sec->contents);
3522
3523 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3524 }
3525
3526 /* Given NAME, the name of a relocation section stripped of its
3527 .rel/.rela prefix, return the section in ABFD to which the
3528 relocations apply. */
3529
3530 asection *
3531 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3532 {
3533 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3534 section likely apply to .got.plt or .got section. */
3535 if (get_elf_backend_data (abfd)->want_got_plt
3536 && strcmp (name, ".plt") == 0)
3537 {
3538 asection *sec;
3539
3540 name = ".got.plt";
3541 sec = bfd_get_section_by_name (abfd, name);
3542 if (sec != NULL)
3543 return sec;
3544 name = ".got";
3545 }
3546
3547 return bfd_get_section_by_name (abfd, name);
3548 }
3549
3550 /* Return the section to which RELOC_SEC applies. */
3551
3552 static asection *
3553 elf_get_reloc_section (asection *reloc_sec)
3554 {
3555 const char *name;
3556 unsigned int type;
3557 bfd *abfd;
3558 const struct elf_backend_data *bed;
3559
3560 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3561 if (type != SHT_REL && type != SHT_RELA)
3562 return NULL;
3563
3564 /* We look up the section the relocs apply to by name. */
3565 name = reloc_sec->name;
3566 if (strncmp (name, ".rel", 4) != 0)
3567 return NULL;
3568 name += 4;
3569 if (type == SHT_RELA && *name++ != 'a')
3570 return NULL;
3571
3572 abfd = reloc_sec->owner;
3573 bed = get_elf_backend_data (abfd);
3574 return bed->get_reloc_section (abfd, name);
3575 }
3576
3577 /* Assign all ELF section numbers. The dummy first section is handled here
3578 too. The link/info pointers for the standard section types are filled
3579 in here too, while we're at it. */
3580
3581 static bfd_boolean
3582 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3583 {
3584 struct elf_obj_tdata *t = elf_tdata (abfd);
3585 asection *sec;
3586 unsigned int section_number;
3587 Elf_Internal_Shdr **i_shdrp;
3588 struct bfd_elf_section_data *d;
3589 bfd_boolean need_symtab;
3590
3591 section_number = 1;
3592
3593 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3594
3595 /* SHT_GROUP sections are in relocatable files only. */
3596 if (link_info == NULL || !link_info->resolve_section_groups)
3597 {
3598 size_t reloc_count = 0;
3599
3600 /* Put SHT_GROUP sections first. */
3601 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3602 {
3603 d = elf_section_data (sec);
3604
3605 if (d->this_hdr.sh_type == SHT_GROUP)
3606 {
3607 if (sec->flags & SEC_LINKER_CREATED)
3608 {
3609 /* Remove the linker created SHT_GROUP sections. */
3610 bfd_section_list_remove (abfd, sec);
3611 abfd->section_count--;
3612 }
3613 else
3614 d->this_idx = section_number++;
3615 }
3616
3617 /* Count relocations. */
3618 reloc_count += sec->reloc_count;
3619 }
3620
3621 /* Clear HAS_RELOC if there are no relocations. */
3622 if (reloc_count == 0)
3623 abfd->flags &= ~HAS_RELOC;
3624 }
3625
3626 for (sec = abfd->sections; sec; sec = sec->next)
3627 {
3628 d = elf_section_data (sec);
3629
3630 if (d->this_hdr.sh_type != SHT_GROUP)
3631 d->this_idx = section_number++;
3632 if (d->this_hdr.sh_name != (unsigned int) -1)
3633 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3634 if (d->rel.hdr)
3635 {
3636 d->rel.idx = section_number++;
3637 if (d->rel.hdr->sh_name != (unsigned int) -1)
3638 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3639 }
3640 else
3641 d->rel.idx = 0;
3642
3643 if (d->rela.hdr)
3644 {
3645 d->rela.idx = section_number++;
3646 if (d->rela.hdr->sh_name != (unsigned int) -1)
3647 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3648 }
3649 else
3650 d->rela.idx = 0;
3651 }
3652
3653 need_symtab = (bfd_get_symcount (abfd) > 0
3654 || (link_info == NULL
3655 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3656 == HAS_RELOC)));
3657 if (need_symtab)
3658 {
3659 elf_onesymtab (abfd) = section_number++;
3660 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3661 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3662 {
3663 elf_section_list * entry;
3664
3665 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3666
3667 entry = bfd_zalloc (abfd, sizeof * entry);
3668 entry->ndx = section_number++;
3669 elf_symtab_shndx_list (abfd) = entry;
3670 entry->hdr.sh_name
3671 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3672 ".symtab_shndx", FALSE);
3673 if (entry->hdr.sh_name == (unsigned int) -1)
3674 return FALSE;
3675 }
3676 elf_strtab_sec (abfd) = section_number++;
3677 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3678 }
3679
3680 elf_shstrtab_sec (abfd) = section_number++;
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3682 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3683
3684 if (section_number >= SHN_LORESERVE)
3685 {
3686 /* xgettext:c-format */
3687 _bfd_error_handler (_("%B: too many sections: %u"),
3688 abfd, section_number);
3689 return FALSE;
3690 }
3691
3692 elf_numsections (abfd) = section_number;
3693 elf_elfheader (abfd)->e_shnum = section_number;
3694
3695 /* Set up the list of section header pointers, in agreement with the
3696 indices. */
3697 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3698 sizeof (Elf_Internal_Shdr *));
3699 if (i_shdrp == NULL)
3700 return FALSE;
3701
3702 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3703 sizeof (Elf_Internal_Shdr));
3704 if (i_shdrp[0] == NULL)
3705 {
3706 bfd_release (abfd, i_shdrp);
3707 return FALSE;
3708 }
3709
3710 elf_elfsections (abfd) = i_shdrp;
3711
3712 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3713 if (need_symtab)
3714 {
3715 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3716 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3717 {
3718 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3719 BFD_ASSERT (entry != NULL);
3720 i_shdrp[entry->ndx] = & entry->hdr;
3721 entry->hdr.sh_link = elf_onesymtab (abfd);
3722 }
3723 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3724 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3725 }
3726
3727 for (sec = abfd->sections; sec; sec = sec->next)
3728 {
3729 asection *s;
3730
3731 d = elf_section_data (sec);
3732
3733 i_shdrp[d->this_idx] = &d->this_hdr;
3734 if (d->rel.idx != 0)
3735 i_shdrp[d->rel.idx] = d->rel.hdr;
3736 if (d->rela.idx != 0)
3737 i_shdrp[d->rela.idx] = d->rela.hdr;
3738
3739 /* Fill in the sh_link and sh_info fields while we're at it. */
3740
3741 /* sh_link of a reloc section is the section index of the symbol
3742 table. sh_info is the section index of the section to which
3743 the relocation entries apply. */
3744 if (d->rel.idx != 0)
3745 {
3746 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3747 d->rel.hdr->sh_info = d->this_idx;
3748 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3749 }
3750 if (d->rela.idx != 0)
3751 {
3752 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3753 d->rela.hdr->sh_info = d->this_idx;
3754 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3755 }
3756
3757 /* We need to set up sh_link for SHF_LINK_ORDER. */
3758 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3759 {
3760 s = elf_linked_to_section (sec);
3761 if (s)
3762 {
3763 /* elf_linked_to_section points to the input section. */
3764 if (link_info != NULL)
3765 {
3766 /* Check discarded linkonce section. */
3767 if (discarded_section (s))
3768 {
3769 asection *kept;
3770 _bfd_error_handler
3771 /* xgettext:c-format */
3772 (_("%B: sh_link of section `%A' points to"
3773 " discarded section `%A' of `%B'"),
3774 abfd, d->this_hdr.bfd_section,
3775 s, s->owner);
3776 /* Point to the kept section if it has the same
3777 size as the discarded one. */
3778 kept = _bfd_elf_check_kept_section (s, link_info);
3779 if (kept == NULL)
3780 {
3781 bfd_set_error (bfd_error_bad_value);
3782 return FALSE;
3783 }
3784 s = kept;
3785 }
3786
3787 s = s->output_section;
3788 BFD_ASSERT (s != NULL);
3789 }
3790 else
3791 {
3792 /* Handle objcopy. */
3793 if (s->output_section == NULL)
3794 {
3795 _bfd_error_handler
3796 /* xgettext:c-format */
3797 (_("%B: sh_link of section `%A' points to"
3798 " removed section `%A' of `%B'"),
3799 abfd, d->this_hdr.bfd_section, s, s->owner);
3800 bfd_set_error (bfd_error_bad_value);
3801 return FALSE;
3802 }
3803 s = s->output_section;
3804 }
3805 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3806 }
3807 else
3808 {
3809 /* PR 290:
3810 The Intel C compiler generates SHT_IA_64_UNWIND with
3811 SHF_LINK_ORDER. But it doesn't set the sh_link or
3812 sh_info fields. Hence we could get the situation
3813 where s is NULL. */
3814 const struct elf_backend_data *bed
3815 = get_elf_backend_data (abfd);
3816 if (bed->link_order_error_handler)
3817 bed->link_order_error_handler
3818 /* xgettext:c-format */
3819 (_("%B: warning: sh_link not set for section `%A'"),
3820 abfd, sec);
3821 }
3822 }
3823
3824 switch (d->this_hdr.sh_type)
3825 {
3826 case SHT_REL:
3827 case SHT_RELA:
3828 /* A reloc section which we are treating as a normal BFD
3829 section. sh_link is the section index of the symbol
3830 table. sh_info is the section index of the section to
3831 which the relocation entries apply. We assume that an
3832 allocated reloc section uses the dynamic symbol table.
3833 FIXME: How can we be sure? */
3834 s = bfd_get_section_by_name (abfd, ".dynsym");
3835 if (s != NULL)
3836 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3837
3838 s = elf_get_reloc_section (sec);
3839 if (s != NULL)
3840 {
3841 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3842 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3843 }
3844 break;
3845
3846 case SHT_STRTAB:
3847 /* We assume that a section named .stab*str is a stabs
3848 string section. We look for a section with the same name
3849 but without the trailing ``str'', and set its sh_link
3850 field to point to this section. */
3851 if (CONST_STRNEQ (sec->name, ".stab")
3852 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3853 {
3854 size_t len;
3855 char *alc;
3856
3857 len = strlen (sec->name);
3858 alc = (char *) bfd_malloc (len - 2);
3859 if (alc == NULL)
3860 return FALSE;
3861 memcpy (alc, sec->name, len - 3);
3862 alc[len - 3] = '\0';
3863 s = bfd_get_section_by_name (abfd, alc);
3864 free (alc);
3865 if (s != NULL)
3866 {
3867 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3868
3869 /* This is a .stab section. */
3870 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3871 elf_section_data (s)->this_hdr.sh_entsize
3872 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3873 }
3874 }
3875 break;
3876
3877 case SHT_DYNAMIC:
3878 case SHT_DYNSYM:
3879 case SHT_GNU_verneed:
3880 case SHT_GNU_verdef:
3881 /* sh_link is the section header index of the string table
3882 used for the dynamic entries, or the symbol table, or the
3883 version strings. */
3884 s = bfd_get_section_by_name (abfd, ".dynstr");
3885 if (s != NULL)
3886 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3887 break;
3888
3889 case SHT_GNU_LIBLIST:
3890 /* sh_link is the section header index of the prelink library
3891 list used for the dynamic entries, or the symbol table, or
3892 the version strings. */
3893 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3894 ? ".dynstr" : ".gnu.libstr");
3895 if (s != NULL)
3896 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3897 break;
3898
3899 case SHT_HASH:
3900 case SHT_GNU_HASH:
3901 case SHT_GNU_versym:
3902 /* sh_link is the section header index of the symbol table
3903 this hash table or version table is for. */
3904 s = bfd_get_section_by_name (abfd, ".dynsym");
3905 if (s != NULL)
3906 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3907 break;
3908
3909 case SHT_GROUP:
3910 d->this_hdr.sh_link = elf_onesymtab (abfd);
3911 }
3912 }
3913
3914 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3915 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3916 debug section name from .debug_* to .zdebug_* if needed. */
3917
3918 return TRUE;
3919 }
3920
3921 static bfd_boolean
3922 sym_is_global (bfd *abfd, asymbol *sym)
3923 {
3924 /* If the backend has a special mapping, use it. */
3925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3926 if (bed->elf_backend_sym_is_global)
3927 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3928
3929 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3930 || bfd_is_und_section (bfd_get_section (sym))
3931 || bfd_is_com_section (bfd_get_section (sym)));
3932 }
3933
3934 /* Filter global symbols of ABFD to include in the import library. All
3935 SYMCOUNT symbols of ABFD can be examined from their pointers in
3936 SYMS. Pointers of symbols to keep should be stored contiguously at
3937 the beginning of that array.
3938
3939 Returns the number of symbols to keep. */
3940
3941 unsigned int
3942 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3943 asymbol **syms, long symcount)
3944 {
3945 long src_count, dst_count = 0;
3946
3947 for (src_count = 0; src_count < symcount; src_count++)
3948 {
3949 asymbol *sym = syms[src_count];
3950 char *name = (char *) bfd_asymbol_name (sym);
3951 struct bfd_link_hash_entry *h;
3952
3953 if (!sym_is_global (abfd, sym))
3954 continue;
3955
3956 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3957 if (h == NULL)
3958 continue;
3959 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3960 continue;
3961 if (h->linker_def || h->ldscript_def)
3962 continue;
3963
3964 syms[dst_count++] = sym;
3965 }
3966
3967 syms[dst_count] = NULL;
3968
3969 return dst_count;
3970 }
3971
3972 /* Don't output section symbols for sections that are not going to be
3973 output, that are duplicates or there is no BFD section. */
3974
3975 static bfd_boolean
3976 ignore_section_sym (bfd *abfd, asymbol *sym)
3977 {
3978 elf_symbol_type *type_ptr;
3979
3980 if ((sym->flags & BSF_SECTION_SYM) == 0)
3981 return FALSE;
3982
3983 type_ptr = elf_symbol_from (abfd, sym);
3984 return ((type_ptr != NULL
3985 && type_ptr->internal_elf_sym.st_shndx != 0
3986 && bfd_is_abs_section (sym->section))
3987 || !(sym->section->owner == abfd
3988 || (sym->section->output_section->owner == abfd
3989 && sym->section->output_offset == 0)
3990 || bfd_is_abs_section (sym->section)));
3991 }
3992
3993 /* Map symbol from it's internal number to the external number, moving
3994 all local symbols to be at the head of the list. */
3995
3996 static bfd_boolean
3997 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3998 {
3999 unsigned int symcount = bfd_get_symcount (abfd);
4000 asymbol **syms = bfd_get_outsymbols (abfd);
4001 asymbol **sect_syms;
4002 unsigned int num_locals = 0;
4003 unsigned int num_globals = 0;
4004 unsigned int num_locals2 = 0;
4005 unsigned int num_globals2 = 0;
4006 unsigned int max_index = 0;
4007 unsigned int idx;
4008 asection *asect;
4009 asymbol **new_syms;
4010
4011 #ifdef DEBUG
4012 fprintf (stderr, "elf_map_symbols\n");
4013 fflush (stderr);
4014 #endif
4015
4016 for (asect = abfd->sections; asect; asect = asect->next)
4017 {
4018 if (max_index < asect->index)
4019 max_index = asect->index;
4020 }
4021
4022 max_index++;
4023 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4024 if (sect_syms == NULL)
4025 return FALSE;
4026 elf_section_syms (abfd) = sect_syms;
4027 elf_num_section_syms (abfd) = max_index;
4028
4029 /* Init sect_syms entries for any section symbols we have already
4030 decided to output. */
4031 for (idx = 0; idx < symcount; idx++)
4032 {
4033 asymbol *sym = syms[idx];
4034
4035 if ((sym->flags & BSF_SECTION_SYM) != 0
4036 && sym->value == 0
4037 && !ignore_section_sym (abfd, sym)
4038 && !bfd_is_abs_section (sym->section))
4039 {
4040 asection *sec = sym->section;
4041
4042 if (sec->owner != abfd)
4043 sec = sec->output_section;
4044
4045 sect_syms[sec->index] = syms[idx];
4046 }
4047 }
4048
4049 /* Classify all of the symbols. */
4050 for (idx = 0; idx < symcount; idx++)
4051 {
4052 if (sym_is_global (abfd, syms[idx]))
4053 num_globals++;
4054 else if (!ignore_section_sym (abfd, syms[idx]))
4055 num_locals++;
4056 }
4057
4058 /* We will be adding a section symbol for each normal BFD section. Most
4059 sections will already have a section symbol in outsymbols, but
4060 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4061 at least in that case. */
4062 for (asect = abfd->sections; asect; asect = asect->next)
4063 {
4064 if (sect_syms[asect->index] == NULL)
4065 {
4066 if (!sym_is_global (abfd, asect->symbol))
4067 num_locals++;
4068 else
4069 num_globals++;
4070 }
4071 }
4072
4073 /* Now sort the symbols so the local symbols are first. */
4074 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4075 sizeof (asymbol *));
4076
4077 if (new_syms == NULL)
4078 return FALSE;
4079
4080 for (idx = 0; idx < symcount; idx++)
4081 {
4082 asymbol *sym = syms[idx];
4083 unsigned int i;
4084
4085 if (sym_is_global (abfd, sym))
4086 i = num_locals + num_globals2++;
4087 else if (!ignore_section_sym (abfd, sym))
4088 i = num_locals2++;
4089 else
4090 continue;
4091 new_syms[i] = sym;
4092 sym->udata.i = i + 1;
4093 }
4094 for (asect = abfd->sections; asect; asect = asect->next)
4095 {
4096 if (sect_syms[asect->index] == NULL)
4097 {
4098 asymbol *sym = asect->symbol;
4099 unsigned int i;
4100
4101 sect_syms[asect->index] = sym;
4102 if (!sym_is_global (abfd, sym))
4103 i = num_locals2++;
4104 else
4105 i = num_locals + num_globals2++;
4106 new_syms[i] = sym;
4107 sym->udata.i = i + 1;
4108 }
4109 }
4110
4111 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4112
4113 *pnum_locals = num_locals;
4114 return TRUE;
4115 }
4116
4117 /* Align to the maximum file alignment that could be required for any
4118 ELF data structure. */
4119
4120 static inline file_ptr
4121 align_file_position (file_ptr off, int align)
4122 {
4123 return (off + align - 1) & ~(align - 1);
4124 }
4125
4126 /* Assign a file position to a section, optionally aligning to the
4127 required section alignment. */
4128
4129 file_ptr
4130 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4131 file_ptr offset,
4132 bfd_boolean align)
4133 {
4134 if (align && i_shdrp->sh_addralign > 1)
4135 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4136 i_shdrp->sh_offset = offset;
4137 if (i_shdrp->bfd_section != NULL)
4138 i_shdrp->bfd_section->filepos = offset;
4139 if (i_shdrp->sh_type != SHT_NOBITS)
4140 offset += i_shdrp->sh_size;
4141 return offset;
4142 }
4143
4144 /* Compute the file positions we are going to put the sections at, and
4145 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4146 is not NULL, this is being called by the ELF backend linker. */
4147
4148 bfd_boolean
4149 _bfd_elf_compute_section_file_positions (bfd *abfd,
4150 struct bfd_link_info *link_info)
4151 {
4152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4153 struct fake_section_arg fsargs;
4154 bfd_boolean failed;
4155 struct elf_strtab_hash *strtab = NULL;
4156 Elf_Internal_Shdr *shstrtab_hdr;
4157 bfd_boolean need_symtab;
4158
4159 if (abfd->output_has_begun)
4160 return TRUE;
4161
4162 /* Do any elf backend specific processing first. */
4163 if (bed->elf_backend_begin_write_processing)
4164 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4165
4166 if (! prep_headers (abfd))
4167 return FALSE;
4168
4169 /* Post process the headers if necessary. */
4170 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4171
4172 fsargs.failed = FALSE;
4173 fsargs.link_info = link_info;
4174 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4175 if (fsargs.failed)
4176 return FALSE;
4177
4178 if (!assign_section_numbers (abfd, link_info))
4179 return FALSE;
4180
4181 /* The backend linker builds symbol table information itself. */
4182 need_symtab = (link_info == NULL
4183 && (bfd_get_symcount (abfd) > 0
4184 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4185 == HAS_RELOC)));
4186 if (need_symtab)
4187 {
4188 /* Non-zero if doing a relocatable link. */
4189 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4190
4191 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4192 return FALSE;
4193 }
4194
4195 failed = FALSE;
4196 if (link_info == NULL)
4197 {
4198 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4199 if (failed)
4200 return FALSE;
4201 }
4202
4203 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4204 /* sh_name was set in prep_headers. */
4205 shstrtab_hdr->sh_type = SHT_STRTAB;
4206 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4207 shstrtab_hdr->sh_addr = 0;
4208 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4209 shstrtab_hdr->sh_entsize = 0;
4210 shstrtab_hdr->sh_link = 0;
4211 shstrtab_hdr->sh_info = 0;
4212 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4213 shstrtab_hdr->sh_addralign = 1;
4214
4215 if (!assign_file_positions_except_relocs (abfd, link_info))
4216 return FALSE;
4217
4218 if (need_symtab)
4219 {
4220 file_ptr off;
4221 Elf_Internal_Shdr *hdr;
4222
4223 off = elf_next_file_pos (abfd);
4224
4225 hdr = & elf_symtab_hdr (abfd);
4226 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4227
4228 if (elf_symtab_shndx_list (abfd) != NULL)
4229 {
4230 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4231 if (hdr->sh_size != 0)
4232 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4233 /* FIXME: What about other symtab_shndx sections in the list ? */
4234 }
4235
4236 hdr = &elf_tdata (abfd)->strtab_hdr;
4237 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4238
4239 elf_next_file_pos (abfd) = off;
4240
4241 /* Now that we know where the .strtab section goes, write it
4242 out. */
4243 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4244 || ! _bfd_elf_strtab_emit (abfd, strtab))
4245 return FALSE;
4246 _bfd_elf_strtab_free (strtab);
4247 }
4248
4249 abfd->output_has_begun = TRUE;
4250
4251 return TRUE;
4252 }
4253
4254 /* Make an initial estimate of the size of the program header. If we
4255 get the number wrong here, we'll redo section placement. */
4256
4257 static bfd_size_type
4258 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4259 {
4260 size_t segs;
4261 asection *s;
4262 const struct elf_backend_data *bed;
4263
4264 /* Assume we will need exactly two PT_LOAD segments: one for text
4265 and one for data. */
4266 segs = 2;
4267
4268 s = bfd_get_section_by_name (abfd, ".interp");
4269 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4270 {
4271 /* If we have a loadable interpreter section, we need a
4272 PT_INTERP segment. In this case, assume we also need a
4273 PT_PHDR segment, although that may not be true for all
4274 targets. */
4275 segs += 2;
4276 }
4277
4278 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4279 {
4280 /* We need a PT_DYNAMIC segment. */
4281 ++segs;
4282 }
4283
4284 if (info != NULL && info->relro)
4285 {
4286 /* We need a PT_GNU_RELRO segment. */
4287 ++segs;
4288 }
4289
4290 if (elf_eh_frame_hdr (abfd))
4291 {
4292 /* We need a PT_GNU_EH_FRAME segment. */
4293 ++segs;
4294 }
4295
4296 if (elf_stack_flags (abfd))
4297 {
4298 /* We need a PT_GNU_STACK segment. */
4299 ++segs;
4300 }
4301
4302 for (s = abfd->sections; s != NULL; s = s->next)
4303 {
4304 if ((s->flags & SEC_LOAD) != 0
4305 && CONST_STRNEQ (s->name, ".note"))
4306 {
4307 /* We need a PT_NOTE segment. */
4308 ++segs;
4309 /* Try to create just one PT_NOTE segment
4310 for all adjacent loadable .note* sections.
4311 gABI requires that within a PT_NOTE segment
4312 (and also inside of each SHT_NOTE section)
4313 each note is padded to a multiple of 4 size,
4314 so we check whether the sections are correctly
4315 aligned. */
4316 if (s->alignment_power == 2)
4317 while (s->next != NULL
4318 && s->next->alignment_power == 2
4319 && (s->next->flags & SEC_LOAD) != 0
4320 && CONST_STRNEQ (s->next->name, ".note"))
4321 s = s->next;
4322 }
4323 }
4324
4325 for (s = abfd->sections; s != NULL; s = s->next)
4326 {
4327 if (s->flags & SEC_THREAD_LOCAL)
4328 {
4329 /* We need a PT_TLS segment. */
4330 ++segs;
4331 break;
4332 }
4333 }
4334
4335 bed = get_elf_backend_data (abfd);
4336
4337 if ((abfd->flags & D_PAGED) != 0)
4338 {
4339 /* Add a PT_GNU_MBIND segment for each mbind section. */
4340 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4341 for (s = abfd->sections; s != NULL; s = s->next)
4342 if (elf_section_flags (s) & SHF_GNU_MBIND)
4343 {
4344 if (elf_section_data (s)->this_hdr.sh_info
4345 > PT_GNU_MBIND_NUM)
4346 {
4347 _bfd_error_handler
4348 /* xgettext:c-format */
4349 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4350 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4351 continue;
4352 }
4353 /* Align mbind section to page size. */
4354 if (s->alignment_power < page_align_power)
4355 s->alignment_power = page_align_power;
4356 segs ++;
4357 }
4358 }
4359
4360 /* Let the backend count up any program headers it might need. */
4361 if (bed->elf_backend_additional_program_headers)
4362 {
4363 int a;
4364
4365 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4366 if (a == -1)
4367 abort ();
4368 segs += a;
4369 }
4370
4371 return segs * bed->s->sizeof_phdr;
4372 }
4373
4374 /* Find the segment that contains the output_section of section. */
4375
4376 Elf_Internal_Phdr *
4377 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4378 {
4379 struct elf_segment_map *m;
4380 Elf_Internal_Phdr *p;
4381
4382 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4383 m != NULL;
4384 m = m->next, p++)
4385 {
4386 int i;
4387
4388 for (i = m->count - 1; i >= 0; i--)
4389 if (m->sections[i] == section)
4390 return p;
4391 }
4392
4393 return NULL;
4394 }
4395
4396 /* Create a mapping from a set of sections to a program segment. */
4397
4398 static struct elf_segment_map *
4399 make_mapping (bfd *abfd,
4400 asection **sections,
4401 unsigned int from,
4402 unsigned int to,
4403 bfd_boolean phdr)
4404 {
4405 struct elf_segment_map *m;
4406 unsigned int i;
4407 asection **hdrpp;
4408 bfd_size_type amt;
4409
4410 amt = sizeof (struct elf_segment_map);
4411 amt += (to - from - 1) * sizeof (asection *);
4412 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4413 if (m == NULL)
4414 return NULL;
4415 m->next = NULL;
4416 m->p_type = PT_LOAD;
4417 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4418 m->sections[i - from] = *hdrpp;
4419 m->count = to - from;
4420
4421 if (from == 0 && phdr)
4422 {
4423 /* Include the headers in the first PT_LOAD segment. */
4424 m->includes_filehdr = 1;
4425 m->includes_phdrs = 1;
4426 }
4427
4428 return m;
4429 }
4430
4431 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4432 on failure. */
4433
4434 struct elf_segment_map *
4435 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4436 {
4437 struct elf_segment_map *m;
4438
4439 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4440 sizeof (struct elf_segment_map));
4441 if (m == NULL)
4442 return NULL;
4443 m->next = NULL;
4444 m->p_type = PT_DYNAMIC;
4445 m->count = 1;
4446 m->sections[0] = dynsec;
4447
4448 return m;
4449 }
4450
4451 /* Possibly add or remove segments from the segment map. */
4452
4453 static bfd_boolean
4454 elf_modify_segment_map (bfd *abfd,
4455 struct bfd_link_info *info,
4456 bfd_boolean remove_empty_load)
4457 {
4458 struct elf_segment_map **m;
4459 const struct elf_backend_data *bed;
4460
4461 /* The placement algorithm assumes that non allocated sections are
4462 not in PT_LOAD segments. We ensure this here by removing such
4463 sections from the segment map. We also remove excluded
4464 sections. Finally, any PT_LOAD segment without sections is
4465 removed. */
4466 m = &elf_seg_map (abfd);
4467 while (*m)
4468 {
4469 unsigned int i, new_count;
4470
4471 for (new_count = 0, i = 0; i < (*m)->count; i++)
4472 {
4473 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4474 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4475 || (*m)->p_type != PT_LOAD))
4476 {
4477 (*m)->sections[new_count] = (*m)->sections[i];
4478 new_count++;
4479 }
4480 }
4481 (*m)->count = new_count;
4482
4483 if (remove_empty_load
4484 && (*m)->p_type == PT_LOAD
4485 && (*m)->count == 0
4486 && !(*m)->includes_phdrs)
4487 *m = (*m)->next;
4488 else
4489 m = &(*m)->next;
4490 }
4491
4492 bed = get_elf_backend_data (abfd);
4493 if (bed->elf_backend_modify_segment_map != NULL)
4494 {
4495 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4496 return FALSE;
4497 }
4498
4499 return TRUE;
4500 }
4501
4502 /* Set up a mapping from BFD sections to program segments. */
4503
4504 bfd_boolean
4505 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4506 {
4507 unsigned int count;
4508 struct elf_segment_map *m;
4509 asection **sections = NULL;
4510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4511 bfd_boolean no_user_phdrs;
4512
4513 no_user_phdrs = elf_seg_map (abfd) == NULL;
4514
4515 if (info != NULL)
4516 info->user_phdrs = !no_user_phdrs;
4517
4518 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4519 {
4520 asection *s;
4521 unsigned int i;
4522 struct elf_segment_map *mfirst;
4523 struct elf_segment_map **pm;
4524 asection *last_hdr;
4525 bfd_vma last_size;
4526 unsigned int phdr_index;
4527 bfd_vma maxpagesize;
4528 asection **hdrpp;
4529 bfd_boolean phdr_in_segment = TRUE;
4530 bfd_boolean writable;
4531 int tls_count = 0;
4532 asection *first_tls = NULL;
4533 asection *first_mbind = NULL;
4534 asection *dynsec, *eh_frame_hdr;
4535 bfd_size_type amt;
4536 bfd_vma addr_mask, wrap_to = 0;
4537 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4538
4539 /* Select the allocated sections, and sort them. */
4540
4541 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4542 sizeof (asection *));
4543 if (sections == NULL)
4544 goto error_return;
4545
4546 /* Calculate top address, avoiding undefined behaviour of shift
4547 left operator when shift count is equal to size of type
4548 being shifted. */
4549 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4550 addr_mask = (addr_mask << 1) + 1;
4551
4552 i = 0;
4553 for (s = abfd->sections; s != NULL; s = s->next)
4554 {
4555 if ((s->flags & SEC_ALLOC) != 0)
4556 {
4557 sections[i] = s;
4558 ++i;
4559 /* A wrapping section potentially clashes with header. */
4560 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4561 wrap_to = (s->lma + s->size) & addr_mask;
4562 }
4563 }
4564 BFD_ASSERT (i <= bfd_count_sections (abfd));
4565 count = i;
4566
4567 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4568
4569 /* Build the mapping. */
4570
4571 mfirst = NULL;
4572 pm = &mfirst;
4573
4574 /* If we have a .interp section, then create a PT_PHDR segment for
4575 the program headers and a PT_INTERP segment for the .interp
4576 section. */
4577 s = bfd_get_section_by_name (abfd, ".interp");
4578 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4579 {
4580 amt = sizeof (struct elf_segment_map);
4581 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4582 if (m == NULL)
4583 goto error_return;
4584 m->next = NULL;
4585 m->p_type = PT_PHDR;
4586 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4587 m->p_flags = PF_R | PF_X;
4588 m->p_flags_valid = 1;
4589 m->includes_phdrs = 1;
4590 linker_created_pt_phdr_segment = TRUE;
4591 *pm = m;
4592 pm = &m->next;
4593
4594 amt = sizeof (struct elf_segment_map);
4595 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4596 if (m == NULL)
4597 goto error_return;
4598 m->next = NULL;
4599 m->p_type = PT_INTERP;
4600 m->count = 1;
4601 m->sections[0] = s;
4602
4603 *pm = m;
4604 pm = &m->next;
4605 }
4606
4607 /* Look through the sections. We put sections in the same program
4608 segment when the start of the second section can be placed within
4609 a few bytes of the end of the first section. */
4610 last_hdr = NULL;
4611 last_size = 0;
4612 phdr_index = 0;
4613 maxpagesize = bed->maxpagesize;
4614 /* PR 17512: file: c8455299.
4615 Avoid divide-by-zero errors later on.
4616 FIXME: Should we abort if the maxpagesize is zero ? */
4617 if (maxpagesize == 0)
4618 maxpagesize = 1;
4619 writable = FALSE;
4620 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4621 if (dynsec != NULL
4622 && (dynsec->flags & SEC_LOAD) == 0)
4623 dynsec = NULL;
4624
4625 /* Deal with -Ttext or something similar such that the first section
4626 is not adjacent to the program headers. This is an
4627 approximation, since at this point we don't know exactly how many
4628 program headers we will need. */
4629 if (count > 0)
4630 {
4631 bfd_size_type phdr_size = elf_program_header_size (abfd);
4632
4633 if (phdr_size == (bfd_size_type) -1)
4634 phdr_size = get_program_header_size (abfd, info);
4635 phdr_size += bed->s->sizeof_ehdr;
4636 if ((abfd->flags & D_PAGED) == 0
4637 || (sections[0]->lma & addr_mask) < phdr_size
4638 || ((sections[0]->lma & addr_mask) % maxpagesize
4639 < phdr_size % maxpagesize)
4640 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4641 {
4642 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4643 present, must be included as part of the memory image of the
4644 program. Ie it must be part of a PT_LOAD segment as well.
4645 If we have had to create our own PT_PHDR segment, but it is
4646 not going to be covered by the first PT_LOAD segment, then
4647 force the inclusion if we can... */
4648 if ((abfd->flags & D_PAGED) != 0
4649 && linker_created_pt_phdr_segment)
4650 phdr_in_segment = TRUE;
4651 else
4652 phdr_in_segment = FALSE;
4653 }
4654 }
4655
4656 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4657 {
4658 asection *hdr;
4659 bfd_boolean new_segment;
4660
4661 hdr = *hdrpp;
4662
4663 /* See if this section and the last one will fit in the same
4664 segment. */
4665
4666 if (last_hdr == NULL)
4667 {
4668 /* If we don't have a segment yet, then we don't need a new
4669 one (we build the last one after this loop). */
4670 new_segment = FALSE;
4671 }
4672 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4673 {
4674 /* If this section has a different relation between the
4675 virtual address and the load address, then we need a new
4676 segment. */
4677 new_segment = TRUE;
4678 }
4679 else if (hdr->lma < last_hdr->lma + last_size
4680 || last_hdr->lma + last_size < last_hdr->lma)
4681 {
4682 /* If this section has a load address that makes it overlap
4683 the previous section, then we need a new segment. */
4684 new_segment = TRUE;
4685 }
4686 /* In the next test we have to be careful when last_hdr->lma is close
4687 to the end of the address space. If the aligned address wraps
4688 around to the start of the address space, then there are no more
4689 pages left in memory and it is OK to assume that the current
4690 section can be included in the current segment. */
4691 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4692 > last_hdr->lma)
4693 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4694 <= hdr->lma))
4695 {
4696 /* If putting this section in this segment would force us to
4697 skip a page in the segment, then we need a new segment. */
4698 new_segment = TRUE;
4699 }
4700 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4701 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4702 && ((abfd->flags & D_PAGED) == 0
4703 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4704 != (hdr->lma & -maxpagesize))))
4705 {
4706 /* We don't want to put a loaded section after a
4707 nonloaded (ie. bss style) section in the same segment
4708 as that will force the non-loaded section to be loaded.
4709 Consider .tbss sections as loaded for this purpose.
4710 However, like the writable/non-writable case below,
4711 if they are on the same page then they must be put
4712 in the same segment. */
4713 new_segment = TRUE;
4714 }
4715 else if ((abfd->flags & D_PAGED) == 0)
4716 {
4717 /* If the file is not demand paged, which means that we
4718 don't require the sections to be correctly aligned in the
4719 file, then there is no other reason for a new segment. */
4720 new_segment = FALSE;
4721 }
4722 else if (! writable
4723 && (hdr->flags & SEC_READONLY) == 0
4724 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4725 != (hdr->lma & -maxpagesize)))
4726 {
4727 /* We don't want to put a writable section in a read only
4728 segment, unless they are on the same page in memory
4729 anyhow. We already know that the last section does not
4730 bring us past the current section on the page, so the
4731 only case in which the new section is not on the same
4732 page as the previous section is when the previous section
4733 ends precisely on a page boundary. */
4734 new_segment = TRUE;
4735 }
4736 else
4737 {
4738 /* Otherwise, we can use the same segment. */
4739 new_segment = FALSE;
4740 }
4741
4742 /* Allow interested parties a chance to override our decision. */
4743 if (last_hdr != NULL
4744 && info != NULL
4745 && info->callbacks->override_segment_assignment != NULL)
4746 new_segment
4747 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4748 last_hdr,
4749 new_segment);
4750
4751 if (! new_segment)
4752 {
4753 if ((hdr->flags & SEC_READONLY) == 0)
4754 writable = TRUE;
4755 last_hdr = hdr;
4756 /* .tbss sections effectively have zero size. */
4757 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4758 != SEC_THREAD_LOCAL)
4759 last_size = hdr->size;
4760 else
4761 last_size = 0;
4762 continue;
4763 }
4764
4765 /* We need a new program segment. We must create a new program
4766 header holding all the sections from phdr_index until hdr. */
4767
4768 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4769 if (m == NULL)
4770 goto error_return;
4771
4772 *pm = m;
4773 pm = &m->next;
4774
4775 if ((hdr->flags & SEC_READONLY) == 0)
4776 writable = TRUE;
4777 else
4778 writable = FALSE;
4779
4780 last_hdr = hdr;
4781 /* .tbss sections effectively have zero size. */
4782 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4783 last_size = hdr->size;
4784 else
4785 last_size = 0;
4786 phdr_index = i;
4787 phdr_in_segment = FALSE;
4788 }
4789
4790 /* Create a final PT_LOAD program segment, but not if it's just
4791 for .tbss. */
4792 if (last_hdr != NULL
4793 && (i - phdr_index != 1
4794 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4795 != SEC_THREAD_LOCAL)))
4796 {
4797 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4798 if (m == NULL)
4799 goto error_return;
4800
4801 *pm = m;
4802 pm = &m->next;
4803 }
4804
4805 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4806 if (dynsec != NULL)
4807 {
4808 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4809 if (m == NULL)
4810 goto error_return;
4811 *pm = m;
4812 pm = &m->next;
4813 }
4814
4815 /* For each batch of consecutive loadable .note sections,
4816 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4817 because if we link together nonloadable .note sections and
4818 loadable .note sections, we will generate two .note sections
4819 in the output file. FIXME: Using names for section types is
4820 bogus anyhow. */
4821 for (s = abfd->sections; s != NULL; s = s->next)
4822 {
4823 if ((s->flags & SEC_LOAD) != 0
4824 && CONST_STRNEQ (s->name, ".note"))
4825 {
4826 asection *s2;
4827
4828 count = 1;
4829 amt = sizeof (struct elf_segment_map);
4830 if (s->alignment_power == 2)
4831 for (s2 = s; s2->next != NULL; s2 = s2->next)
4832 {
4833 if (s2->next->alignment_power == 2
4834 && (s2->next->flags & SEC_LOAD) != 0
4835 && CONST_STRNEQ (s2->next->name, ".note")
4836 && align_power (s2->lma + s2->size, 2)
4837 == s2->next->lma)
4838 count++;
4839 else
4840 break;
4841 }
4842 amt += (count - 1) * sizeof (asection *);
4843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4844 if (m == NULL)
4845 goto error_return;
4846 m->next = NULL;
4847 m->p_type = PT_NOTE;
4848 m->count = count;
4849 while (count > 1)
4850 {
4851 m->sections[m->count - count--] = s;
4852 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4853 s = s->next;
4854 }
4855 m->sections[m->count - 1] = s;
4856 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4857 *pm = m;
4858 pm = &m->next;
4859 }
4860 if (s->flags & SEC_THREAD_LOCAL)
4861 {
4862 if (! tls_count)
4863 first_tls = s;
4864 tls_count++;
4865 }
4866 if (first_mbind == NULL
4867 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4868 first_mbind = s;
4869 }
4870
4871 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4872 if (tls_count > 0)
4873 {
4874 amt = sizeof (struct elf_segment_map);
4875 amt += (tls_count - 1) * sizeof (asection *);
4876 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4877 if (m == NULL)
4878 goto error_return;
4879 m->next = NULL;
4880 m->p_type = PT_TLS;
4881 m->count = tls_count;
4882 /* Mandated PF_R. */
4883 m->p_flags = PF_R;
4884 m->p_flags_valid = 1;
4885 s = first_tls;
4886 for (i = 0; i < (unsigned int) tls_count; ++i)
4887 {
4888 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4889 {
4890 _bfd_error_handler
4891 (_("%B: TLS sections are not adjacent:"), abfd);
4892 s = first_tls;
4893 i = 0;
4894 while (i < (unsigned int) tls_count)
4895 {
4896 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4897 {
4898 _bfd_error_handler (_(" TLS: %A"), s);
4899 i++;
4900 }
4901 else
4902 _bfd_error_handler (_(" non-TLS: %A"), s);
4903 s = s->next;
4904 }
4905 bfd_set_error (bfd_error_bad_value);
4906 goto error_return;
4907 }
4908 m->sections[i] = s;
4909 s = s->next;
4910 }
4911
4912 *pm = m;
4913 pm = &m->next;
4914 }
4915
4916 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4917 for (s = first_mbind; s != NULL; s = s->next)
4918 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4919 && (elf_section_data (s)->this_hdr.sh_info
4920 <= PT_GNU_MBIND_NUM))
4921 {
4922 /* Mandated PF_R. */
4923 unsigned long p_flags = PF_R;
4924 if ((s->flags & SEC_READONLY) == 0)
4925 p_flags |= PF_W;
4926 if ((s->flags & SEC_CODE) != 0)
4927 p_flags |= PF_X;
4928
4929 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4930 m = bfd_zalloc (abfd, amt);
4931 if (m == NULL)
4932 goto error_return;
4933 m->next = NULL;
4934 m->p_type = (PT_GNU_MBIND_LO
4935 + elf_section_data (s)->this_hdr.sh_info);
4936 m->count = 1;
4937 m->p_flags_valid = 1;
4938 m->sections[0] = s;
4939 m->p_flags = p_flags;
4940
4941 *pm = m;
4942 pm = &m->next;
4943 }
4944
4945 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4946 segment. */
4947 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4948 if (eh_frame_hdr != NULL
4949 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4950 {
4951 amt = sizeof (struct elf_segment_map);
4952 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4953 if (m == NULL)
4954 goto error_return;
4955 m->next = NULL;
4956 m->p_type = PT_GNU_EH_FRAME;
4957 m->count = 1;
4958 m->sections[0] = eh_frame_hdr->output_section;
4959
4960 *pm = m;
4961 pm = &m->next;
4962 }
4963
4964 if (elf_stack_flags (abfd))
4965 {
4966 amt = sizeof (struct elf_segment_map);
4967 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4968 if (m == NULL)
4969 goto error_return;
4970 m->next = NULL;
4971 m->p_type = PT_GNU_STACK;
4972 m->p_flags = elf_stack_flags (abfd);
4973 m->p_align = bed->stack_align;
4974 m->p_flags_valid = 1;
4975 m->p_align_valid = m->p_align != 0;
4976 if (info->stacksize > 0)
4977 {
4978 m->p_size = info->stacksize;
4979 m->p_size_valid = 1;
4980 }
4981
4982 *pm = m;
4983 pm = &m->next;
4984 }
4985
4986 if (info != NULL && info->relro)
4987 {
4988 for (m = mfirst; m != NULL; m = m->next)
4989 {
4990 if (m->p_type == PT_LOAD
4991 && m->count != 0
4992 && m->sections[0]->vma >= info->relro_start
4993 && m->sections[0]->vma < info->relro_end)
4994 {
4995 i = m->count;
4996 while (--i != (unsigned) -1)
4997 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4998 == (SEC_LOAD | SEC_HAS_CONTENTS))
4999 break;
5000
5001 if (i != (unsigned) -1)
5002 break;
5003 }
5004 }
5005
5006 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5007 if (m != NULL)
5008 {
5009 amt = sizeof (struct elf_segment_map);
5010 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5011 if (m == NULL)
5012 goto error_return;
5013 m->next = NULL;
5014 m->p_type = PT_GNU_RELRO;
5015 *pm = m;
5016 pm = &m->next;
5017 }
5018 }
5019
5020 free (sections);
5021 elf_seg_map (abfd) = mfirst;
5022 }
5023
5024 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5025 return FALSE;
5026
5027 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5028 ++count;
5029 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5030
5031 return TRUE;
5032
5033 error_return:
5034 if (sections != NULL)
5035 free (sections);
5036 return FALSE;
5037 }
5038
5039 /* Sort sections by address. */
5040
5041 static int
5042 elf_sort_sections (const void *arg1, const void *arg2)
5043 {
5044 const asection *sec1 = *(const asection **) arg1;
5045 const asection *sec2 = *(const asection **) arg2;
5046 bfd_size_type size1, size2;
5047
5048 /* Sort by LMA first, since this is the address used to
5049 place the section into a segment. */
5050 if (sec1->lma < sec2->lma)
5051 return -1;
5052 else if (sec1->lma > sec2->lma)
5053 return 1;
5054
5055 /* Then sort by VMA. Normally the LMA and the VMA will be
5056 the same, and this will do nothing. */
5057 if (sec1->vma < sec2->vma)
5058 return -1;
5059 else if (sec1->vma > sec2->vma)
5060 return 1;
5061
5062 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5063
5064 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5065
5066 if (TOEND (sec1))
5067 {
5068 if (TOEND (sec2))
5069 {
5070 /* If the indicies are the same, do not return 0
5071 here, but continue to try the next comparison. */
5072 if (sec1->target_index - sec2->target_index != 0)
5073 return sec1->target_index - sec2->target_index;
5074 }
5075 else
5076 return 1;
5077 }
5078 else if (TOEND (sec2))
5079 return -1;
5080
5081 #undef TOEND
5082
5083 /* Sort by size, to put zero sized sections
5084 before others at the same address. */
5085
5086 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5087 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5088
5089 if (size1 < size2)
5090 return -1;
5091 if (size1 > size2)
5092 return 1;
5093
5094 return sec1->target_index - sec2->target_index;
5095 }
5096
5097 /* Ian Lance Taylor writes:
5098
5099 We shouldn't be using % with a negative signed number. That's just
5100 not good. We have to make sure either that the number is not
5101 negative, or that the number has an unsigned type. When the types
5102 are all the same size they wind up as unsigned. When file_ptr is a
5103 larger signed type, the arithmetic winds up as signed long long,
5104 which is wrong.
5105
5106 What we're trying to say here is something like ``increase OFF by
5107 the least amount that will cause it to be equal to the VMA modulo
5108 the page size.'' */
5109 /* In other words, something like:
5110
5111 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5112 off_offset = off % bed->maxpagesize;
5113 if (vma_offset < off_offset)
5114 adjustment = vma_offset + bed->maxpagesize - off_offset;
5115 else
5116 adjustment = vma_offset - off_offset;
5117
5118 which can be collapsed into the expression below. */
5119
5120 static file_ptr
5121 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5122 {
5123 /* PR binutils/16199: Handle an alignment of zero. */
5124 if (maxpagesize == 0)
5125 maxpagesize = 1;
5126 return ((vma - off) % maxpagesize);
5127 }
5128
5129 static void
5130 print_segment_map (const struct elf_segment_map *m)
5131 {
5132 unsigned int j;
5133 const char *pt = get_segment_type (m->p_type);
5134 char buf[32];
5135
5136 if (pt == NULL)
5137 {
5138 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5139 sprintf (buf, "LOPROC+%7.7x",
5140 (unsigned int) (m->p_type - PT_LOPROC));
5141 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5142 sprintf (buf, "LOOS+%7.7x",
5143 (unsigned int) (m->p_type - PT_LOOS));
5144 else
5145 snprintf (buf, sizeof (buf), "%8.8x",
5146 (unsigned int) m->p_type);
5147 pt = buf;
5148 }
5149 fflush (stdout);
5150 fprintf (stderr, "%s:", pt);
5151 for (j = 0; j < m->count; j++)
5152 fprintf (stderr, " %s", m->sections [j]->name);
5153 putc ('\n',stderr);
5154 fflush (stderr);
5155 }
5156
5157 static bfd_boolean
5158 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5159 {
5160 void *buf;
5161 bfd_boolean ret;
5162
5163 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5164 return FALSE;
5165 buf = bfd_zmalloc (len);
5166 if (buf == NULL)
5167 return FALSE;
5168 ret = bfd_bwrite (buf, len, abfd) == len;
5169 free (buf);
5170 return ret;
5171 }
5172
5173 /* Assign file positions to the sections based on the mapping from
5174 sections to segments. This function also sets up some fields in
5175 the file header. */
5176
5177 static bfd_boolean
5178 assign_file_positions_for_load_sections (bfd *abfd,
5179 struct bfd_link_info *link_info)
5180 {
5181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5182 struct elf_segment_map *m;
5183 Elf_Internal_Phdr *phdrs;
5184 Elf_Internal_Phdr *p;
5185 file_ptr off;
5186 bfd_size_type maxpagesize;
5187 unsigned int pt_load_count = 0;
5188 unsigned int alloc;
5189 unsigned int i, j;
5190 bfd_vma header_pad = 0;
5191
5192 if (link_info == NULL
5193 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5194 return FALSE;
5195
5196 alloc = 0;
5197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5198 {
5199 ++alloc;
5200 if (m->header_size)
5201 header_pad = m->header_size;
5202 }
5203
5204 if (alloc)
5205 {
5206 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5207 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5208 }
5209 else
5210 {
5211 /* PR binutils/12467. */
5212 elf_elfheader (abfd)->e_phoff = 0;
5213 elf_elfheader (abfd)->e_phentsize = 0;
5214 }
5215
5216 elf_elfheader (abfd)->e_phnum = alloc;
5217
5218 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5219 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5220 else
5221 BFD_ASSERT (elf_program_header_size (abfd)
5222 >= alloc * bed->s->sizeof_phdr);
5223
5224 if (alloc == 0)
5225 {
5226 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5227 return TRUE;
5228 }
5229
5230 /* We're writing the size in elf_program_header_size (abfd),
5231 see assign_file_positions_except_relocs, so make sure we have
5232 that amount allocated, with trailing space cleared.
5233 The variable alloc contains the computed need, while
5234 elf_program_header_size (abfd) contains the size used for the
5235 layout.
5236 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5237 where the layout is forced to according to a larger size in the
5238 last iterations for the testcase ld-elf/header. */
5239 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5240 == 0);
5241 phdrs = (Elf_Internal_Phdr *)
5242 bfd_zalloc2 (abfd,
5243 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5244 sizeof (Elf_Internal_Phdr));
5245 elf_tdata (abfd)->phdr = phdrs;
5246 if (phdrs == NULL)
5247 return FALSE;
5248
5249 maxpagesize = 1;
5250 if ((abfd->flags & D_PAGED) != 0)
5251 maxpagesize = bed->maxpagesize;
5252
5253 off = bed->s->sizeof_ehdr;
5254 off += alloc * bed->s->sizeof_phdr;
5255 if (header_pad < (bfd_vma) off)
5256 header_pad = 0;
5257 else
5258 header_pad -= off;
5259 off += header_pad;
5260
5261 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5262 m != NULL;
5263 m = m->next, p++, j++)
5264 {
5265 asection **secpp;
5266 bfd_vma off_adjust;
5267 bfd_boolean no_contents;
5268
5269 /* If elf_segment_map is not from map_sections_to_segments, the
5270 sections may not be correctly ordered. NOTE: sorting should
5271 not be done to the PT_NOTE section of a corefile, which may
5272 contain several pseudo-sections artificially created by bfd.
5273 Sorting these pseudo-sections breaks things badly. */
5274 if (m->count > 1
5275 && !(elf_elfheader (abfd)->e_type == ET_CORE
5276 && m->p_type == PT_NOTE))
5277 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5278 elf_sort_sections);
5279
5280 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5281 number of sections with contents contributing to both p_filesz
5282 and p_memsz, followed by a number of sections with no contents
5283 that just contribute to p_memsz. In this loop, OFF tracks next
5284 available file offset for PT_LOAD and PT_NOTE segments. */
5285 p->p_type = m->p_type;
5286 p->p_flags = m->p_flags;
5287
5288 if (m->count == 0)
5289 p->p_vaddr = 0;
5290 else
5291 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5292
5293 if (m->p_paddr_valid)
5294 p->p_paddr = m->p_paddr;
5295 else if (m->count == 0)
5296 p->p_paddr = 0;
5297 else
5298 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5299
5300 if (p->p_type == PT_LOAD
5301 && (abfd->flags & D_PAGED) != 0)
5302 {
5303 /* p_align in demand paged PT_LOAD segments effectively stores
5304 the maximum page size. When copying an executable with
5305 objcopy, we set m->p_align from the input file. Use this
5306 value for maxpagesize rather than bed->maxpagesize, which
5307 may be different. Note that we use maxpagesize for PT_TLS
5308 segment alignment later in this function, so we are relying
5309 on at least one PT_LOAD segment appearing before a PT_TLS
5310 segment. */
5311 if (m->p_align_valid)
5312 maxpagesize = m->p_align;
5313
5314 p->p_align = maxpagesize;
5315 pt_load_count += 1;
5316 }
5317 else if (m->p_align_valid)
5318 p->p_align = m->p_align;
5319 else if (m->count == 0)
5320 p->p_align = 1 << bed->s->log_file_align;
5321 else
5322 p->p_align = 0;
5323
5324 no_contents = FALSE;
5325 off_adjust = 0;
5326 if (p->p_type == PT_LOAD
5327 && m->count > 0)
5328 {
5329 bfd_size_type align;
5330 unsigned int align_power = 0;
5331
5332 if (m->p_align_valid)
5333 align = p->p_align;
5334 else
5335 {
5336 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5337 {
5338 unsigned int secalign;
5339
5340 secalign = bfd_get_section_alignment (abfd, *secpp);
5341 if (secalign > align_power)
5342 align_power = secalign;
5343 }
5344 align = (bfd_size_type) 1 << align_power;
5345 if (align < maxpagesize)
5346 align = maxpagesize;
5347 }
5348
5349 for (i = 0; i < m->count; i++)
5350 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5351 /* If we aren't making room for this section, then
5352 it must be SHT_NOBITS regardless of what we've
5353 set via struct bfd_elf_special_section. */
5354 elf_section_type (m->sections[i]) = SHT_NOBITS;
5355
5356 /* Find out whether this segment contains any loadable
5357 sections. */
5358 no_contents = TRUE;
5359 for (i = 0; i < m->count; i++)
5360 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5361 {
5362 no_contents = FALSE;
5363 break;
5364 }
5365
5366 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5367
5368 /* Broken hardware and/or kernel require that files do not
5369 map the same page with different permissions on some hppa
5370 processors. */
5371 if (pt_load_count > 1
5372 && bed->no_page_alias
5373 && (off & (maxpagesize - 1)) != 0
5374 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5375 off_adjust += maxpagesize;
5376 off += off_adjust;
5377 if (no_contents)
5378 {
5379 /* We shouldn't need to align the segment on disk since
5380 the segment doesn't need file space, but the gABI
5381 arguably requires the alignment and glibc ld.so
5382 checks it. So to comply with the alignment
5383 requirement but not waste file space, we adjust
5384 p_offset for just this segment. (OFF_ADJUST is
5385 subtracted from OFF later.) This may put p_offset
5386 past the end of file, but that shouldn't matter. */
5387 }
5388 else
5389 off_adjust = 0;
5390 }
5391 /* Make sure the .dynamic section is the first section in the
5392 PT_DYNAMIC segment. */
5393 else if (p->p_type == PT_DYNAMIC
5394 && m->count > 1
5395 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5396 {
5397 _bfd_error_handler
5398 (_("%B: The first section in the PT_DYNAMIC segment"
5399 " is not the .dynamic section"),
5400 abfd);
5401 bfd_set_error (bfd_error_bad_value);
5402 return FALSE;
5403 }
5404 /* Set the note section type to SHT_NOTE. */
5405 else if (p->p_type == PT_NOTE)
5406 for (i = 0; i < m->count; i++)
5407 elf_section_type (m->sections[i]) = SHT_NOTE;
5408
5409 p->p_offset = 0;
5410 p->p_filesz = 0;
5411 p->p_memsz = 0;
5412
5413 if (m->includes_filehdr)
5414 {
5415 if (!m->p_flags_valid)
5416 p->p_flags |= PF_R;
5417 p->p_filesz = bed->s->sizeof_ehdr;
5418 p->p_memsz = bed->s->sizeof_ehdr;
5419 if (m->count > 0)
5420 {
5421 if (p->p_vaddr < (bfd_vma) off
5422 || (!m->p_paddr_valid
5423 && p->p_paddr < (bfd_vma) off))
5424 {
5425 _bfd_error_handler
5426 (_("%B: Not enough room for program headers,"
5427 " try linking with -N"),
5428 abfd);
5429 bfd_set_error (bfd_error_bad_value);
5430 return FALSE;
5431 }
5432
5433 p->p_vaddr -= off;
5434 if (!m->p_paddr_valid)
5435 p->p_paddr -= off;
5436 }
5437 }
5438
5439 if (m->includes_phdrs)
5440 {
5441 if (!m->p_flags_valid)
5442 p->p_flags |= PF_R;
5443
5444 if (!m->includes_filehdr)
5445 {
5446 p->p_offset = bed->s->sizeof_ehdr;
5447
5448 if (m->count > 0)
5449 {
5450 p->p_vaddr -= off - p->p_offset;
5451 if (!m->p_paddr_valid)
5452 p->p_paddr -= off - p->p_offset;
5453 }
5454 }
5455
5456 p->p_filesz += alloc * bed->s->sizeof_phdr;
5457 p->p_memsz += alloc * bed->s->sizeof_phdr;
5458 if (m->count)
5459 {
5460 p->p_filesz += header_pad;
5461 p->p_memsz += header_pad;
5462 }
5463 }
5464
5465 if (p->p_type == PT_LOAD
5466 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5467 {
5468 if (!m->includes_filehdr && !m->includes_phdrs)
5469 p->p_offset = off;
5470 else
5471 {
5472 file_ptr adjust;
5473
5474 adjust = off - (p->p_offset + p->p_filesz);
5475 if (!no_contents)
5476 p->p_filesz += adjust;
5477 p->p_memsz += adjust;
5478 }
5479 }
5480
5481 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5482 maps. Set filepos for sections in PT_LOAD segments, and in
5483 core files, for sections in PT_NOTE segments.
5484 assign_file_positions_for_non_load_sections will set filepos
5485 for other sections and update p_filesz for other segments. */
5486 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5487 {
5488 asection *sec;
5489 bfd_size_type align;
5490 Elf_Internal_Shdr *this_hdr;
5491
5492 sec = *secpp;
5493 this_hdr = &elf_section_data (sec)->this_hdr;
5494 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5495
5496 if ((p->p_type == PT_LOAD
5497 || p->p_type == PT_TLS)
5498 && (this_hdr->sh_type != SHT_NOBITS
5499 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5500 && ((this_hdr->sh_flags & SHF_TLS) == 0
5501 || p->p_type == PT_TLS))))
5502 {
5503 bfd_vma p_start = p->p_paddr;
5504 bfd_vma p_end = p_start + p->p_memsz;
5505 bfd_vma s_start = sec->lma;
5506 bfd_vma adjust = s_start - p_end;
5507
5508 if (adjust != 0
5509 && (s_start < p_end
5510 || p_end < p_start))
5511 {
5512 _bfd_error_handler
5513 /* xgettext:c-format */
5514 (_("%B: section %A lma %#Lx adjusted to %#Lx"),
5515 abfd, sec, s_start, p_end);
5516 adjust = 0;
5517 sec->lma = p_end;
5518 }
5519 p->p_memsz += adjust;
5520
5521 if (this_hdr->sh_type != SHT_NOBITS)
5522 {
5523 if (p->p_filesz + adjust < p->p_memsz)
5524 {
5525 /* We have a PROGBITS section following NOBITS ones.
5526 Allocate file space for the NOBITS section(s) and
5527 zero it. */
5528 adjust = p->p_memsz - p->p_filesz;
5529 if (!write_zeros (abfd, off, adjust))
5530 return FALSE;
5531 }
5532 off += adjust;
5533 p->p_filesz += adjust;
5534 }
5535 }
5536
5537 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5538 {
5539 /* The section at i == 0 is the one that actually contains
5540 everything. */
5541 if (i == 0)
5542 {
5543 this_hdr->sh_offset = sec->filepos = off;
5544 off += this_hdr->sh_size;
5545 p->p_filesz = this_hdr->sh_size;
5546 p->p_memsz = 0;
5547 p->p_align = 1;
5548 }
5549 else
5550 {
5551 /* The rest are fake sections that shouldn't be written. */
5552 sec->filepos = 0;
5553 sec->size = 0;
5554 sec->flags = 0;
5555 continue;
5556 }
5557 }
5558 else
5559 {
5560 if (p->p_type == PT_LOAD)
5561 {
5562 this_hdr->sh_offset = sec->filepos = off;
5563 if (this_hdr->sh_type != SHT_NOBITS)
5564 off += this_hdr->sh_size;
5565 }
5566 else if (this_hdr->sh_type == SHT_NOBITS
5567 && (this_hdr->sh_flags & SHF_TLS) != 0
5568 && this_hdr->sh_offset == 0)
5569 {
5570 /* This is a .tbss section that didn't get a PT_LOAD.
5571 (See _bfd_elf_map_sections_to_segments "Create a
5572 final PT_LOAD".) Set sh_offset to the value it
5573 would have if we had created a zero p_filesz and
5574 p_memsz PT_LOAD header for the section. This
5575 also makes the PT_TLS header have the same
5576 p_offset value. */
5577 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5578 off, align);
5579 this_hdr->sh_offset = sec->filepos = off + adjust;
5580 }
5581
5582 if (this_hdr->sh_type != SHT_NOBITS)
5583 {
5584 p->p_filesz += this_hdr->sh_size;
5585 /* A load section without SHF_ALLOC is something like
5586 a note section in a PT_NOTE segment. These take
5587 file space but are not loaded into memory. */
5588 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5589 p->p_memsz += this_hdr->sh_size;
5590 }
5591 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5592 {
5593 if (p->p_type == PT_TLS)
5594 p->p_memsz += this_hdr->sh_size;
5595
5596 /* .tbss is special. It doesn't contribute to p_memsz of
5597 normal segments. */
5598 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5599 p->p_memsz += this_hdr->sh_size;
5600 }
5601
5602 if (align > p->p_align
5603 && !m->p_align_valid
5604 && (p->p_type != PT_LOAD
5605 || (abfd->flags & D_PAGED) == 0))
5606 p->p_align = align;
5607 }
5608
5609 if (!m->p_flags_valid)
5610 {
5611 p->p_flags |= PF_R;
5612 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5613 p->p_flags |= PF_X;
5614 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5615 p->p_flags |= PF_W;
5616 }
5617 }
5618
5619 off -= off_adjust;
5620
5621 /* Check that all sections are in a PT_LOAD segment.
5622 Don't check funky gdb generated core files. */
5623 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5624 {
5625 bfd_boolean check_vma = TRUE;
5626
5627 for (i = 1; i < m->count; i++)
5628 if (m->sections[i]->vma == m->sections[i - 1]->vma
5629 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5630 ->this_hdr), p) != 0
5631 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5632 ->this_hdr), p) != 0)
5633 {
5634 /* Looks like we have overlays packed into the segment. */
5635 check_vma = FALSE;
5636 break;
5637 }
5638
5639 for (i = 0; i < m->count; i++)
5640 {
5641 Elf_Internal_Shdr *this_hdr;
5642 asection *sec;
5643
5644 sec = m->sections[i];
5645 this_hdr = &(elf_section_data(sec)->this_hdr);
5646 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5647 && !ELF_TBSS_SPECIAL (this_hdr, p))
5648 {
5649 _bfd_error_handler
5650 /* xgettext:c-format */
5651 (_("%B: section `%A' can't be allocated in segment %d"),
5652 abfd, sec, j);
5653 print_segment_map (m);
5654 }
5655 }
5656 }
5657 }
5658
5659 elf_next_file_pos (abfd) = off;
5660 return TRUE;
5661 }
5662
5663 /* Assign file positions for the other sections. */
5664
5665 static bfd_boolean
5666 assign_file_positions_for_non_load_sections (bfd *abfd,
5667 struct bfd_link_info *link_info)
5668 {
5669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5670 Elf_Internal_Shdr **i_shdrpp;
5671 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5672 Elf_Internal_Phdr *phdrs;
5673 Elf_Internal_Phdr *p;
5674 struct elf_segment_map *m;
5675 struct elf_segment_map *hdrs_segment;
5676 bfd_vma filehdr_vaddr, filehdr_paddr;
5677 bfd_vma phdrs_vaddr, phdrs_paddr;
5678 file_ptr off;
5679 unsigned int count;
5680
5681 i_shdrpp = elf_elfsections (abfd);
5682 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5683 off = elf_next_file_pos (abfd);
5684 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5685 {
5686 Elf_Internal_Shdr *hdr;
5687
5688 hdr = *hdrpp;
5689 if (hdr->bfd_section != NULL
5690 && (hdr->bfd_section->filepos != 0
5691 || (hdr->sh_type == SHT_NOBITS
5692 && hdr->contents == NULL)))
5693 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5694 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5695 {
5696 if (hdr->sh_size != 0)
5697 _bfd_error_handler
5698 /* xgettext:c-format */
5699 (_("%B: warning: allocated section `%s' not in segment"),
5700 abfd,
5701 (hdr->bfd_section == NULL
5702 ? "*unknown*"
5703 : hdr->bfd_section->name));
5704 /* We don't need to page align empty sections. */
5705 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5706 off += vma_page_aligned_bias (hdr->sh_addr, off,
5707 bed->maxpagesize);
5708 else
5709 off += vma_page_aligned_bias (hdr->sh_addr, off,
5710 hdr->sh_addralign);
5711 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5712 FALSE);
5713 }
5714 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5715 && hdr->bfd_section == NULL)
5716 || (hdr->bfd_section != NULL
5717 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5718 /* Compress DWARF debug sections. */
5719 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5720 || (elf_symtab_shndx_list (abfd) != NULL
5721 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5722 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5723 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5724 hdr->sh_offset = -1;
5725 else
5726 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5727 }
5728
5729 /* Now that we have set the section file positions, we can set up
5730 the file positions for the non PT_LOAD segments. */
5731 count = 0;
5732 filehdr_vaddr = 0;
5733 filehdr_paddr = 0;
5734 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5735 phdrs_paddr = 0;
5736 hdrs_segment = NULL;
5737 phdrs = elf_tdata (abfd)->phdr;
5738 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5739 {
5740 ++count;
5741 if (p->p_type != PT_LOAD)
5742 continue;
5743
5744 if (m->includes_filehdr)
5745 {
5746 filehdr_vaddr = p->p_vaddr;
5747 filehdr_paddr = p->p_paddr;
5748 }
5749 if (m->includes_phdrs)
5750 {
5751 phdrs_vaddr = p->p_vaddr;
5752 phdrs_paddr = p->p_paddr;
5753 if (m->includes_filehdr)
5754 {
5755 hdrs_segment = m;
5756 phdrs_vaddr += bed->s->sizeof_ehdr;
5757 phdrs_paddr += bed->s->sizeof_ehdr;
5758 }
5759 }
5760 }
5761
5762 if (hdrs_segment != NULL && link_info != NULL)
5763 {
5764 /* There is a segment that contains both the file headers and the
5765 program headers, so provide a symbol __ehdr_start pointing there.
5766 A program can use this to examine itself robustly. */
5767
5768 struct elf_link_hash_entry *hash
5769 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5770 FALSE, FALSE, TRUE);
5771 /* If the symbol was referenced and not defined, define it. */
5772 if (hash != NULL
5773 && (hash->root.type == bfd_link_hash_new
5774 || hash->root.type == bfd_link_hash_undefined
5775 || hash->root.type == bfd_link_hash_undefweak
5776 || hash->root.type == bfd_link_hash_common))
5777 {
5778 asection *s = NULL;
5779 if (hdrs_segment->count != 0)
5780 /* The segment contains sections, so use the first one. */
5781 s = hdrs_segment->sections[0];
5782 else
5783 /* Use the first (i.e. lowest-addressed) section in any segment. */
5784 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5785 if (m->count != 0)
5786 {
5787 s = m->sections[0];
5788 break;
5789 }
5790
5791 if (s != NULL)
5792 {
5793 hash->root.u.def.value = filehdr_vaddr - s->vma;
5794 hash->root.u.def.section = s;
5795 }
5796 else
5797 {
5798 hash->root.u.def.value = filehdr_vaddr;
5799 hash->root.u.def.section = bfd_abs_section_ptr;
5800 }
5801
5802 hash->root.type = bfd_link_hash_defined;
5803 hash->def_regular = 1;
5804 hash->non_elf = 0;
5805 }
5806 }
5807
5808 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5809 {
5810 if (p->p_type == PT_GNU_RELRO)
5811 {
5812 const Elf_Internal_Phdr *lp;
5813 struct elf_segment_map *lm;
5814
5815 if (link_info != NULL)
5816 {
5817 /* During linking the range of the RELRO segment is passed
5818 in link_info. */
5819 for (lm = elf_seg_map (abfd), lp = phdrs;
5820 lm != NULL;
5821 lm = lm->next, lp++)
5822 {
5823 if (lp->p_type == PT_LOAD
5824 && lp->p_vaddr < link_info->relro_end
5825 && lm->count != 0
5826 && lm->sections[0]->vma >= link_info->relro_start)
5827 break;
5828 }
5829
5830 BFD_ASSERT (lm != NULL);
5831 }
5832 else
5833 {
5834 /* Otherwise we are copying an executable or shared
5835 library, but we need to use the same linker logic. */
5836 for (lp = phdrs; lp < phdrs + count; ++lp)
5837 {
5838 if (lp->p_type == PT_LOAD
5839 && lp->p_paddr == p->p_paddr)
5840 break;
5841 }
5842 }
5843
5844 if (lp < phdrs + count)
5845 {
5846 p->p_vaddr = lp->p_vaddr;
5847 p->p_paddr = lp->p_paddr;
5848 p->p_offset = lp->p_offset;
5849 if (link_info != NULL)
5850 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5851 else if (m->p_size_valid)
5852 p->p_filesz = m->p_size;
5853 else
5854 abort ();
5855 p->p_memsz = p->p_filesz;
5856 /* Preserve the alignment and flags if they are valid. The
5857 gold linker generates RW/4 for the PT_GNU_RELRO section.
5858 It is better for objcopy/strip to honor these attributes
5859 otherwise gdb will choke when using separate debug files.
5860 */
5861 if (!m->p_align_valid)
5862 p->p_align = 1;
5863 if (!m->p_flags_valid)
5864 p->p_flags = PF_R;
5865 }
5866 else
5867 {
5868 memset (p, 0, sizeof *p);
5869 p->p_type = PT_NULL;
5870 }
5871 }
5872 else if (p->p_type == PT_GNU_STACK)
5873 {
5874 if (m->p_size_valid)
5875 p->p_memsz = m->p_size;
5876 }
5877 else if (m->count != 0)
5878 {
5879 unsigned int i;
5880
5881 if (p->p_type != PT_LOAD
5882 && (p->p_type != PT_NOTE
5883 || bfd_get_format (abfd) != bfd_core))
5884 {
5885 /* A user specified segment layout may include a PHDR
5886 segment that overlaps with a LOAD segment... */
5887 if (p->p_type == PT_PHDR)
5888 {
5889 m->count = 0;
5890 continue;
5891 }
5892
5893 if (m->includes_filehdr || m->includes_phdrs)
5894 {
5895 /* PR 17512: file: 2195325e. */
5896 _bfd_error_handler
5897 (_("%B: error: non-load segment %d includes file header "
5898 "and/or program header"),
5899 abfd, (int) (p - phdrs));
5900 return FALSE;
5901 }
5902
5903 p->p_filesz = 0;
5904 p->p_offset = m->sections[0]->filepos;
5905 for (i = m->count; i-- != 0;)
5906 {
5907 asection *sect = m->sections[i];
5908 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5909 if (hdr->sh_type != SHT_NOBITS)
5910 {
5911 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5912 + hdr->sh_size);
5913 break;
5914 }
5915 }
5916 }
5917 }
5918 else if (m->includes_filehdr)
5919 {
5920 p->p_vaddr = filehdr_vaddr;
5921 if (! m->p_paddr_valid)
5922 p->p_paddr = filehdr_paddr;
5923 }
5924 else if (m->includes_phdrs)
5925 {
5926 p->p_vaddr = phdrs_vaddr;
5927 if (! m->p_paddr_valid)
5928 p->p_paddr = phdrs_paddr;
5929 }
5930 }
5931
5932 elf_next_file_pos (abfd) = off;
5933
5934 return TRUE;
5935 }
5936
5937 static elf_section_list *
5938 find_section_in_list (unsigned int i, elf_section_list * list)
5939 {
5940 for (;list != NULL; list = list->next)
5941 if (list->ndx == i)
5942 break;
5943 return list;
5944 }
5945
5946 /* Work out the file positions of all the sections. This is called by
5947 _bfd_elf_compute_section_file_positions. All the section sizes and
5948 VMAs must be known before this is called.
5949
5950 Reloc sections come in two flavours: Those processed specially as
5951 "side-channel" data attached to a section to which they apply, and
5952 those that bfd doesn't process as relocations. The latter sort are
5953 stored in a normal bfd section by bfd_section_from_shdr. We don't
5954 consider the former sort here, unless they form part of the loadable
5955 image. Reloc sections not assigned here will be handled later by
5956 assign_file_positions_for_relocs.
5957
5958 We also don't set the positions of the .symtab and .strtab here. */
5959
5960 static bfd_boolean
5961 assign_file_positions_except_relocs (bfd *abfd,
5962 struct bfd_link_info *link_info)
5963 {
5964 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5965 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5967
5968 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5969 && bfd_get_format (abfd) != bfd_core)
5970 {
5971 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5972 unsigned int num_sec = elf_numsections (abfd);
5973 Elf_Internal_Shdr **hdrpp;
5974 unsigned int i;
5975 file_ptr off;
5976
5977 /* Start after the ELF header. */
5978 off = i_ehdrp->e_ehsize;
5979
5980 /* We are not creating an executable, which means that we are
5981 not creating a program header, and that the actual order of
5982 the sections in the file is unimportant. */
5983 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5984 {
5985 Elf_Internal_Shdr *hdr;
5986
5987 hdr = *hdrpp;
5988 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5989 && hdr->bfd_section == NULL)
5990 || (hdr->bfd_section != NULL
5991 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5992 /* Compress DWARF debug sections. */
5993 || i == elf_onesymtab (abfd)
5994 || (elf_symtab_shndx_list (abfd) != NULL
5995 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5996 || i == elf_strtab_sec (abfd)
5997 || i == elf_shstrtab_sec (abfd))
5998 {
5999 hdr->sh_offset = -1;
6000 }
6001 else
6002 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6003 }
6004
6005 elf_next_file_pos (abfd) = off;
6006 }
6007 else
6008 {
6009 unsigned int alloc;
6010
6011 /* Assign file positions for the loaded sections based on the
6012 assignment of sections to segments. */
6013 if (!assign_file_positions_for_load_sections (abfd, link_info))
6014 return FALSE;
6015
6016 /* And for non-load sections. */
6017 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6018 return FALSE;
6019
6020 if (bed->elf_backend_modify_program_headers != NULL)
6021 {
6022 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6023 return FALSE;
6024 }
6025
6026 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6027 if (link_info != NULL && bfd_link_pie (link_info))
6028 {
6029 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6030 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6031 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6032
6033 /* Find the lowest p_vaddr in PT_LOAD segments. */
6034 bfd_vma p_vaddr = (bfd_vma) -1;
6035 for (; segment < end_segment; segment++)
6036 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6037 p_vaddr = segment->p_vaddr;
6038
6039 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6040 segments is non-zero. */
6041 if (p_vaddr)
6042 i_ehdrp->e_type = ET_EXEC;
6043 }
6044
6045 /* Write out the program headers. */
6046 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6047
6048 /* Sort the program headers into the ordering required by the ELF standard. */
6049 if (alloc == 0)
6050 return TRUE;
6051
6052 /* PR ld/20815 - Check that the program header segment, if present, will
6053 be loaded into memory. FIXME: The check below is not sufficient as
6054 really all PT_LOAD segments should be checked before issuing an error
6055 message. Plus the PHDR segment does not have to be the first segment
6056 in the program header table. But this version of the check should
6057 catch all real world use cases.
6058
6059 FIXME: We used to have code here to sort the PT_LOAD segments into
6060 ascending order, as per the ELF spec. But this breaks some programs,
6061 including the Linux kernel. But really either the spec should be
6062 changed or the programs updated. */
6063 if (alloc > 1
6064 && tdata->phdr[0].p_type == PT_PHDR
6065 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6066 && tdata->phdr[1].p_type == PT_LOAD
6067 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6068 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6069 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6070 {
6071 /* The fix for this error is usually to edit the linker script being
6072 used and set up the program headers manually. Either that or
6073 leave room for the headers at the start of the SECTIONS. */
6074 _bfd_error_handler (_("\
6075 %B: error: PHDR segment not covered by LOAD segment"),
6076 abfd);
6077 return FALSE;
6078 }
6079
6080 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6081 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6082 return FALSE;
6083 }
6084
6085 return TRUE;
6086 }
6087
6088 static bfd_boolean
6089 prep_headers (bfd *abfd)
6090 {
6091 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6092 struct elf_strtab_hash *shstrtab;
6093 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6094
6095 i_ehdrp = elf_elfheader (abfd);
6096
6097 shstrtab = _bfd_elf_strtab_init ();
6098 if (shstrtab == NULL)
6099 return FALSE;
6100
6101 elf_shstrtab (abfd) = shstrtab;
6102
6103 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6104 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6105 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6106 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6107
6108 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6109 i_ehdrp->e_ident[EI_DATA] =
6110 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6111 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6112
6113 if ((abfd->flags & DYNAMIC) != 0)
6114 i_ehdrp->e_type = ET_DYN;
6115 else if ((abfd->flags & EXEC_P) != 0)
6116 i_ehdrp->e_type = ET_EXEC;
6117 else if (bfd_get_format (abfd) == bfd_core)
6118 i_ehdrp->e_type = ET_CORE;
6119 else
6120 i_ehdrp->e_type = ET_REL;
6121
6122 switch (bfd_get_arch (abfd))
6123 {
6124 case bfd_arch_unknown:
6125 i_ehdrp->e_machine = EM_NONE;
6126 break;
6127
6128 /* There used to be a long list of cases here, each one setting
6129 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6130 in the corresponding bfd definition. To avoid duplication,
6131 the switch was removed. Machines that need special handling
6132 can generally do it in elf_backend_final_write_processing(),
6133 unless they need the information earlier than the final write.
6134 Such need can generally be supplied by replacing the tests for
6135 e_machine with the conditions used to determine it. */
6136 default:
6137 i_ehdrp->e_machine = bed->elf_machine_code;
6138 }
6139
6140 i_ehdrp->e_version = bed->s->ev_current;
6141 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6142
6143 /* No program header, for now. */
6144 i_ehdrp->e_phoff = 0;
6145 i_ehdrp->e_phentsize = 0;
6146 i_ehdrp->e_phnum = 0;
6147
6148 /* Each bfd section is section header entry. */
6149 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6150 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6151
6152 /* If we're building an executable, we'll need a program header table. */
6153 if (abfd->flags & EXEC_P)
6154 /* It all happens later. */
6155 ;
6156 else
6157 {
6158 i_ehdrp->e_phentsize = 0;
6159 i_ehdrp->e_phoff = 0;
6160 }
6161
6162 elf_tdata (abfd)->symtab_hdr.sh_name =
6163 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6164 elf_tdata (abfd)->strtab_hdr.sh_name =
6165 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6166 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6167 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6168 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6169 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6170 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6171 return FALSE;
6172
6173 return TRUE;
6174 }
6175
6176 /* Assign file positions for all the reloc sections which are not part
6177 of the loadable file image, and the file position of section headers. */
6178
6179 static bfd_boolean
6180 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6181 {
6182 file_ptr off;
6183 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6184 Elf_Internal_Shdr *shdrp;
6185 Elf_Internal_Ehdr *i_ehdrp;
6186 const struct elf_backend_data *bed;
6187
6188 off = elf_next_file_pos (abfd);
6189
6190 shdrpp = elf_elfsections (abfd);
6191 end_shdrpp = shdrpp + elf_numsections (abfd);
6192 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6193 {
6194 shdrp = *shdrpp;
6195 if (shdrp->sh_offset == -1)
6196 {
6197 asection *sec = shdrp->bfd_section;
6198 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6199 || shdrp->sh_type == SHT_RELA);
6200 if (is_rel
6201 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6202 {
6203 if (!is_rel)
6204 {
6205 const char *name = sec->name;
6206 struct bfd_elf_section_data *d;
6207
6208 /* Compress DWARF debug sections. */
6209 if (!bfd_compress_section (abfd, sec,
6210 shdrp->contents))
6211 return FALSE;
6212
6213 if (sec->compress_status == COMPRESS_SECTION_DONE
6214 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6215 {
6216 /* If section is compressed with zlib-gnu, convert
6217 section name from .debug_* to .zdebug_*. */
6218 char *new_name
6219 = convert_debug_to_zdebug (abfd, name);
6220 if (new_name == NULL)
6221 return FALSE;
6222 name = new_name;
6223 }
6224 /* Add section name to section name section. */
6225 if (shdrp->sh_name != (unsigned int) -1)
6226 abort ();
6227 shdrp->sh_name
6228 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6229 name, FALSE);
6230 d = elf_section_data (sec);
6231
6232 /* Add reloc section name to section name section. */
6233 if (d->rel.hdr
6234 && !_bfd_elf_set_reloc_sh_name (abfd,
6235 d->rel.hdr,
6236 name, FALSE))
6237 return FALSE;
6238 if (d->rela.hdr
6239 && !_bfd_elf_set_reloc_sh_name (abfd,
6240 d->rela.hdr,
6241 name, TRUE))
6242 return FALSE;
6243
6244 /* Update section size and contents. */
6245 shdrp->sh_size = sec->size;
6246 shdrp->contents = sec->contents;
6247 shdrp->bfd_section->contents = NULL;
6248 }
6249 off = _bfd_elf_assign_file_position_for_section (shdrp,
6250 off,
6251 TRUE);
6252 }
6253 }
6254 }
6255
6256 /* Place section name section after DWARF debug sections have been
6257 compressed. */
6258 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6259 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6260 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6261 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6262
6263 /* Place the section headers. */
6264 i_ehdrp = elf_elfheader (abfd);
6265 bed = get_elf_backend_data (abfd);
6266 off = align_file_position (off, 1 << bed->s->log_file_align);
6267 i_ehdrp->e_shoff = off;
6268 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6269 elf_next_file_pos (abfd) = off;
6270
6271 return TRUE;
6272 }
6273
6274 bfd_boolean
6275 _bfd_elf_write_object_contents (bfd *abfd)
6276 {
6277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6278 Elf_Internal_Shdr **i_shdrp;
6279 bfd_boolean failed;
6280 unsigned int count, num_sec;
6281 struct elf_obj_tdata *t;
6282
6283 if (! abfd->output_has_begun
6284 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6285 return FALSE;
6286
6287 i_shdrp = elf_elfsections (abfd);
6288
6289 failed = FALSE;
6290 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6291 if (failed)
6292 return FALSE;
6293
6294 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6295 return FALSE;
6296
6297 /* After writing the headers, we need to write the sections too... */
6298 num_sec = elf_numsections (abfd);
6299 for (count = 1; count < num_sec; count++)
6300 {
6301 i_shdrp[count]->sh_name
6302 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6303 i_shdrp[count]->sh_name);
6304 if (bed->elf_backend_section_processing)
6305 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6306 if (i_shdrp[count]->contents)
6307 {
6308 bfd_size_type amt = i_shdrp[count]->sh_size;
6309
6310 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6311 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6312 return FALSE;
6313 }
6314 }
6315
6316 /* Write out the section header names. */
6317 t = elf_tdata (abfd);
6318 if (elf_shstrtab (abfd) != NULL
6319 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6320 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6321 return FALSE;
6322
6323 if (bed->elf_backend_final_write_processing)
6324 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6325
6326 if (!bed->s->write_shdrs_and_ehdr (abfd))
6327 return FALSE;
6328
6329 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6330 if (t->o->build_id.after_write_object_contents != NULL)
6331 return (*t->o->build_id.after_write_object_contents) (abfd);
6332
6333 return TRUE;
6334 }
6335
6336 bfd_boolean
6337 _bfd_elf_write_corefile_contents (bfd *abfd)
6338 {
6339 /* Hopefully this can be done just like an object file. */
6340 return _bfd_elf_write_object_contents (abfd);
6341 }
6342
6343 /* Given a section, search the header to find them. */
6344
6345 unsigned int
6346 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6347 {
6348 const struct elf_backend_data *bed;
6349 unsigned int sec_index;
6350
6351 if (elf_section_data (asect) != NULL
6352 && elf_section_data (asect)->this_idx != 0)
6353 return elf_section_data (asect)->this_idx;
6354
6355 if (bfd_is_abs_section (asect))
6356 sec_index = SHN_ABS;
6357 else if (bfd_is_com_section (asect))
6358 sec_index = SHN_COMMON;
6359 else if (bfd_is_und_section (asect))
6360 sec_index = SHN_UNDEF;
6361 else
6362 sec_index = SHN_BAD;
6363
6364 bed = get_elf_backend_data (abfd);
6365 if (bed->elf_backend_section_from_bfd_section)
6366 {
6367 int retval = sec_index;
6368
6369 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6370 return retval;
6371 }
6372
6373 if (sec_index == SHN_BAD)
6374 bfd_set_error (bfd_error_nonrepresentable_section);
6375
6376 return sec_index;
6377 }
6378
6379 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6380 on error. */
6381
6382 int
6383 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6384 {
6385 asymbol *asym_ptr = *asym_ptr_ptr;
6386 int idx;
6387 flagword flags = asym_ptr->flags;
6388
6389 /* When gas creates relocations against local labels, it creates its
6390 own symbol for the section, but does put the symbol into the
6391 symbol chain, so udata is 0. When the linker is generating
6392 relocatable output, this section symbol may be for one of the
6393 input sections rather than the output section. */
6394 if (asym_ptr->udata.i == 0
6395 && (flags & BSF_SECTION_SYM)
6396 && asym_ptr->section)
6397 {
6398 asection *sec;
6399 int indx;
6400
6401 sec = asym_ptr->section;
6402 if (sec->owner != abfd && sec->output_section != NULL)
6403 sec = sec->output_section;
6404 if (sec->owner == abfd
6405 && (indx = sec->index) < elf_num_section_syms (abfd)
6406 && elf_section_syms (abfd)[indx] != NULL)
6407 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6408 }
6409
6410 idx = asym_ptr->udata.i;
6411
6412 if (idx == 0)
6413 {
6414 /* This case can occur when using --strip-symbol on a symbol
6415 which is used in a relocation entry. */
6416 _bfd_error_handler
6417 /* xgettext:c-format */
6418 (_("%B: symbol `%s' required but not present"),
6419 abfd, bfd_asymbol_name (asym_ptr));
6420 bfd_set_error (bfd_error_no_symbols);
6421 return -1;
6422 }
6423
6424 #if DEBUG & 4
6425 {
6426 fprintf (stderr,
6427 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6428 (long) asym_ptr, asym_ptr->name, idx, flags);
6429 fflush (stderr);
6430 }
6431 #endif
6432
6433 return idx;
6434 }
6435
6436 /* Rewrite program header information. */
6437
6438 static bfd_boolean
6439 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6440 {
6441 Elf_Internal_Ehdr *iehdr;
6442 struct elf_segment_map *map;
6443 struct elf_segment_map *map_first;
6444 struct elf_segment_map **pointer_to_map;
6445 Elf_Internal_Phdr *segment;
6446 asection *section;
6447 unsigned int i;
6448 unsigned int num_segments;
6449 bfd_boolean phdr_included = FALSE;
6450 bfd_boolean p_paddr_valid;
6451 bfd_vma maxpagesize;
6452 struct elf_segment_map *phdr_adjust_seg = NULL;
6453 unsigned int phdr_adjust_num = 0;
6454 const struct elf_backend_data *bed;
6455
6456 bed = get_elf_backend_data (ibfd);
6457 iehdr = elf_elfheader (ibfd);
6458
6459 map_first = NULL;
6460 pointer_to_map = &map_first;
6461
6462 num_segments = elf_elfheader (ibfd)->e_phnum;
6463 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6464
6465 /* Returns the end address of the segment + 1. */
6466 #define SEGMENT_END(segment, start) \
6467 (start + (segment->p_memsz > segment->p_filesz \
6468 ? segment->p_memsz : segment->p_filesz))
6469
6470 #define SECTION_SIZE(section, segment) \
6471 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6472 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6473 ? section->size : 0)
6474
6475 /* Returns TRUE if the given section is contained within
6476 the given segment. VMA addresses are compared. */
6477 #define IS_CONTAINED_BY_VMA(section, segment) \
6478 (section->vma >= segment->p_vaddr \
6479 && (section->vma + SECTION_SIZE (section, segment) \
6480 <= (SEGMENT_END (segment, segment->p_vaddr))))
6481
6482 /* Returns TRUE if the given section is contained within
6483 the given segment. LMA addresses are compared. */
6484 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6485 (section->lma >= base \
6486 && (section->lma + SECTION_SIZE (section, segment) \
6487 <= SEGMENT_END (segment, base)))
6488
6489 /* Handle PT_NOTE segment. */
6490 #define IS_NOTE(p, s) \
6491 (p->p_type == PT_NOTE \
6492 && elf_section_type (s) == SHT_NOTE \
6493 && (bfd_vma) s->filepos >= p->p_offset \
6494 && ((bfd_vma) s->filepos + s->size \
6495 <= p->p_offset + p->p_filesz))
6496
6497 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6498 etc. */
6499 #define IS_COREFILE_NOTE(p, s) \
6500 (IS_NOTE (p, s) \
6501 && bfd_get_format (ibfd) == bfd_core \
6502 && s->vma == 0 \
6503 && s->lma == 0)
6504
6505 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6506 linker, which generates a PT_INTERP section with p_vaddr and
6507 p_memsz set to 0. */
6508 #define IS_SOLARIS_PT_INTERP(p, s) \
6509 (p->p_vaddr == 0 \
6510 && p->p_paddr == 0 \
6511 && p->p_memsz == 0 \
6512 && p->p_filesz > 0 \
6513 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6514 && s->size > 0 \
6515 && (bfd_vma) s->filepos >= p->p_offset \
6516 && ((bfd_vma) s->filepos + s->size \
6517 <= p->p_offset + p->p_filesz))
6518
6519 /* Decide if the given section should be included in the given segment.
6520 A section will be included if:
6521 1. It is within the address space of the segment -- we use the LMA
6522 if that is set for the segment and the VMA otherwise,
6523 2. It is an allocated section or a NOTE section in a PT_NOTE
6524 segment.
6525 3. There is an output section associated with it,
6526 4. The section has not already been allocated to a previous segment.
6527 5. PT_GNU_STACK segments do not include any sections.
6528 6. PT_TLS segment includes only SHF_TLS sections.
6529 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6530 8. PT_DYNAMIC should not contain empty sections at the beginning
6531 (with the possible exception of .dynamic). */
6532 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6533 ((((segment->p_paddr \
6534 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6535 : IS_CONTAINED_BY_VMA (section, segment)) \
6536 && (section->flags & SEC_ALLOC) != 0) \
6537 || IS_NOTE (segment, section)) \
6538 && segment->p_type != PT_GNU_STACK \
6539 && (segment->p_type != PT_TLS \
6540 || (section->flags & SEC_THREAD_LOCAL)) \
6541 && (segment->p_type == PT_LOAD \
6542 || segment->p_type == PT_TLS \
6543 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6544 && (segment->p_type != PT_DYNAMIC \
6545 || SECTION_SIZE (section, segment) > 0 \
6546 || (segment->p_paddr \
6547 ? segment->p_paddr != section->lma \
6548 : segment->p_vaddr != section->vma) \
6549 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6550 == 0)) \
6551 && !section->segment_mark)
6552
6553 /* If the output section of a section in the input segment is NULL,
6554 it is removed from the corresponding output segment. */
6555 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6556 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6557 && section->output_section != NULL)
6558
6559 /* Returns TRUE iff seg1 starts after the end of seg2. */
6560 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6561 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6562
6563 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6564 their VMA address ranges and their LMA address ranges overlap.
6565 It is possible to have overlapping VMA ranges without overlapping LMA
6566 ranges. RedBoot images for example can have both .data and .bss mapped
6567 to the same VMA range, but with the .data section mapped to a different
6568 LMA. */
6569 #define SEGMENT_OVERLAPS(seg1, seg2) \
6570 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6571 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6572 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6573 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6574
6575 /* Initialise the segment mark field. */
6576 for (section = ibfd->sections; section != NULL; section = section->next)
6577 section->segment_mark = FALSE;
6578
6579 /* The Solaris linker creates program headers in which all the
6580 p_paddr fields are zero. When we try to objcopy or strip such a
6581 file, we get confused. Check for this case, and if we find it
6582 don't set the p_paddr_valid fields. */
6583 p_paddr_valid = FALSE;
6584 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6585 i < num_segments;
6586 i++, segment++)
6587 if (segment->p_paddr != 0)
6588 {
6589 p_paddr_valid = TRUE;
6590 break;
6591 }
6592
6593 /* Scan through the segments specified in the program header
6594 of the input BFD. For this first scan we look for overlaps
6595 in the loadable segments. These can be created by weird
6596 parameters to objcopy. Also, fix some solaris weirdness. */
6597 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6598 i < num_segments;
6599 i++, segment++)
6600 {
6601 unsigned int j;
6602 Elf_Internal_Phdr *segment2;
6603
6604 if (segment->p_type == PT_INTERP)
6605 for (section = ibfd->sections; section; section = section->next)
6606 if (IS_SOLARIS_PT_INTERP (segment, section))
6607 {
6608 /* Mininal change so that the normal section to segment
6609 assignment code will work. */
6610 segment->p_vaddr = section->vma;
6611 break;
6612 }
6613
6614 if (segment->p_type != PT_LOAD)
6615 {
6616 /* Remove PT_GNU_RELRO segment. */
6617 if (segment->p_type == PT_GNU_RELRO)
6618 segment->p_type = PT_NULL;
6619 continue;
6620 }
6621
6622 /* Determine if this segment overlaps any previous segments. */
6623 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6624 {
6625 bfd_signed_vma extra_length;
6626
6627 if (segment2->p_type != PT_LOAD
6628 || !SEGMENT_OVERLAPS (segment, segment2))
6629 continue;
6630
6631 /* Merge the two segments together. */
6632 if (segment2->p_vaddr < segment->p_vaddr)
6633 {
6634 /* Extend SEGMENT2 to include SEGMENT and then delete
6635 SEGMENT. */
6636 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6637 - SEGMENT_END (segment2, segment2->p_vaddr));
6638
6639 if (extra_length > 0)
6640 {
6641 segment2->p_memsz += extra_length;
6642 segment2->p_filesz += extra_length;
6643 }
6644
6645 segment->p_type = PT_NULL;
6646
6647 /* Since we have deleted P we must restart the outer loop. */
6648 i = 0;
6649 segment = elf_tdata (ibfd)->phdr;
6650 break;
6651 }
6652 else
6653 {
6654 /* Extend SEGMENT to include SEGMENT2 and then delete
6655 SEGMENT2. */
6656 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6657 - SEGMENT_END (segment, segment->p_vaddr));
6658
6659 if (extra_length > 0)
6660 {
6661 segment->p_memsz += extra_length;
6662 segment->p_filesz += extra_length;
6663 }
6664
6665 segment2->p_type = PT_NULL;
6666 }
6667 }
6668 }
6669
6670 /* The second scan attempts to assign sections to segments. */
6671 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6672 i < num_segments;
6673 i++, segment++)
6674 {
6675 unsigned int section_count;
6676 asection **sections;
6677 asection *output_section;
6678 unsigned int isec;
6679 bfd_vma matching_lma;
6680 bfd_vma suggested_lma;
6681 unsigned int j;
6682 bfd_size_type amt;
6683 asection *first_section;
6684 bfd_boolean first_matching_lma;
6685 bfd_boolean first_suggested_lma;
6686
6687 if (segment->p_type == PT_NULL)
6688 continue;
6689
6690 first_section = NULL;
6691 /* Compute how many sections might be placed into this segment. */
6692 for (section = ibfd->sections, section_count = 0;
6693 section != NULL;
6694 section = section->next)
6695 {
6696 /* Find the first section in the input segment, which may be
6697 removed from the corresponding output segment. */
6698 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6699 {
6700 if (first_section == NULL)
6701 first_section = section;
6702 if (section->output_section != NULL)
6703 ++section_count;
6704 }
6705 }
6706
6707 /* Allocate a segment map big enough to contain
6708 all of the sections we have selected. */
6709 amt = sizeof (struct elf_segment_map);
6710 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6711 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6712 if (map == NULL)
6713 return FALSE;
6714
6715 /* Initialise the fields of the segment map. Default to
6716 using the physical address of the segment in the input BFD. */
6717 map->next = NULL;
6718 map->p_type = segment->p_type;
6719 map->p_flags = segment->p_flags;
6720 map->p_flags_valid = 1;
6721
6722 /* If the first section in the input segment is removed, there is
6723 no need to preserve segment physical address in the corresponding
6724 output segment. */
6725 if (!first_section || first_section->output_section != NULL)
6726 {
6727 map->p_paddr = segment->p_paddr;
6728 map->p_paddr_valid = p_paddr_valid;
6729 }
6730
6731 /* Determine if this segment contains the ELF file header
6732 and if it contains the program headers themselves. */
6733 map->includes_filehdr = (segment->p_offset == 0
6734 && segment->p_filesz >= iehdr->e_ehsize);
6735 map->includes_phdrs = 0;
6736
6737 if (!phdr_included || segment->p_type != PT_LOAD)
6738 {
6739 map->includes_phdrs =
6740 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6741 && (segment->p_offset + segment->p_filesz
6742 >= ((bfd_vma) iehdr->e_phoff
6743 + iehdr->e_phnum * iehdr->e_phentsize)));
6744
6745 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6746 phdr_included = TRUE;
6747 }
6748
6749 if (section_count == 0)
6750 {
6751 /* Special segments, such as the PT_PHDR segment, may contain
6752 no sections, but ordinary, loadable segments should contain
6753 something. They are allowed by the ELF spec however, so only
6754 a warning is produced.
6755 There is however the valid use case of embedded systems which
6756 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6757 flash memory with zeros. No warning is shown for that case. */
6758 if (segment->p_type == PT_LOAD
6759 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6760 /* xgettext:c-format */
6761 _bfd_error_handler (_("%B: warning: Empty loadable segment detected"
6762 " at vaddr=%#Lx, is this intentional?"),
6763 ibfd, segment->p_vaddr);
6764
6765 map->count = 0;
6766 *pointer_to_map = map;
6767 pointer_to_map = &map->next;
6768
6769 continue;
6770 }
6771
6772 /* Now scan the sections in the input BFD again and attempt
6773 to add their corresponding output sections to the segment map.
6774 The problem here is how to handle an output section which has
6775 been moved (ie had its LMA changed). There are four possibilities:
6776
6777 1. None of the sections have been moved.
6778 In this case we can continue to use the segment LMA from the
6779 input BFD.
6780
6781 2. All of the sections have been moved by the same amount.
6782 In this case we can change the segment's LMA to match the LMA
6783 of the first section.
6784
6785 3. Some of the sections have been moved, others have not.
6786 In this case those sections which have not been moved can be
6787 placed in the current segment which will have to have its size,
6788 and possibly its LMA changed, and a new segment or segments will
6789 have to be created to contain the other sections.
6790
6791 4. The sections have been moved, but not by the same amount.
6792 In this case we can change the segment's LMA to match the LMA
6793 of the first section and we will have to create a new segment
6794 or segments to contain the other sections.
6795
6796 In order to save time, we allocate an array to hold the section
6797 pointers that we are interested in. As these sections get assigned
6798 to a segment, they are removed from this array. */
6799
6800 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6801 if (sections == NULL)
6802 return FALSE;
6803
6804 /* Step One: Scan for segment vs section LMA conflicts.
6805 Also add the sections to the section array allocated above.
6806 Also add the sections to the current segment. In the common
6807 case, where the sections have not been moved, this means that
6808 we have completely filled the segment, and there is nothing
6809 more to do. */
6810 isec = 0;
6811 matching_lma = 0;
6812 suggested_lma = 0;
6813 first_matching_lma = TRUE;
6814 first_suggested_lma = TRUE;
6815
6816 for (section = first_section, j = 0;
6817 section != NULL;
6818 section = section->next)
6819 {
6820 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6821 {
6822 output_section = section->output_section;
6823
6824 sections[j++] = section;
6825
6826 /* The Solaris native linker always sets p_paddr to 0.
6827 We try to catch that case here, and set it to the
6828 correct value. Note - some backends require that
6829 p_paddr be left as zero. */
6830 if (!p_paddr_valid
6831 && segment->p_vaddr != 0
6832 && !bed->want_p_paddr_set_to_zero
6833 && isec == 0
6834 && output_section->lma != 0
6835 && output_section->vma == (segment->p_vaddr
6836 + (map->includes_filehdr
6837 ? iehdr->e_ehsize
6838 : 0)
6839 + (map->includes_phdrs
6840 ? (iehdr->e_phnum
6841 * iehdr->e_phentsize)
6842 : 0)))
6843 map->p_paddr = segment->p_vaddr;
6844
6845 /* Match up the physical address of the segment with the
6846 LMA address of the output section. */
6847 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6848 || IS_COREFILE_NOTE (segment, section)
6849 || (bed->want_p_paddr_set_to_zero
6850 && IS_CONTAINED_BY_VMA (output_section, segment)))
6851 {
6852 if (first_matching_lma || output_section->lma < matching_lma)
6853 {
6854 matching_lma = output_section->lma;
6855 first_matching_lma = FALSE;
6856 }
6857
6858 /* We assume that if the section fits within the segment
6859 then it does not overlap any other section within that
6860 segment. */
6861 map->sections[isec++] = output_section;
6862 }
6863 else if (first_suggested_lma)
6864 {
6865 suggested_lma = output_section->lma;
6866 first_suggested_lma = FALSE;
6867 }
6868
6869 if (j == section_count)
6870 break;
6871 }
6872 }
6873
6874 BFD_ASSERT (j == section_count);
6875
6876 /* Step Two: Adjust the physical address of the current segment,
6877 if necessary. */
6878 if (isec == section_count)
6879 {
6880 /* All of the sections fitted within the segment as currently
6881 specified. This is the default case. Add the segment to
6882 the list of built segments and carry on to process the next
6883 program header in the input BFD. */
6884 map->count = section_count;
6885 *pointer_to_map = map;
6886 pointer_to_map = &map->next;
6887
6888 if (p_paddr_valid
6889 && !bed->want_p_paddr_set_to_zero
6890 && matching_lma != map->p_paddr
6891 && !map->includes_filehdr
6892 && !map->includes_phdrs)
6893 /* There is some padding before the first section in the
6894 segment. So, we must account for that in the output
6895 segment's vma. */
6896 map->p_vaddr_offset = matching_lma - map->p_paddr;
6897
6898 free (sections);
6899 continue;
6900 }
6901 else
6902 {
6903 if (!first_matching_lma)
6904 {
6905 /* At least one section fits inside the current segment.
6906 Keep it, but modify its physical address to match the
6907 LMA of the first section that fitted. */
6908 map->p_paddr = matching_lma;
6909 }
6910 else
6911 {
6912 /* None of the sections fitted inside the current segment.
6913 Change the current segment's physical address to match
6914 the LMA of the first section. */
6915 map->p_paddr = suggested_lma;
6916 }
6917
6918 /* Offset the segment physical address from the lma
6919 to allow for space taken up by elf headers. */
6920 if (map->includes_filehdr)
6921 {
6922 if (map->p_paddr >= iehdr->e_ehsize)
6923 map->p_paddr -= iehdr->e_ehsize;
6924 else
6925 {
6926 map->includes_filehdr = FALSE;
6927 map->includes_phdrs = FALSE;
6928 }
6929 }
6930
6931 if (map->includes_phdrs)
6932 {
6933 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6934 {
6935 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6936
6937 /* iehdr->e_phnum is just an estimate of the number
6938 of program headers that we will need. Make a note
6939 here of the number we used and the segment we chose
6940 to hold these headers, so that we can adjust the
6941 offset when we know the correct value. */
6942 phdr_adjust_num = iehdr->e_phnum;
6943 phdr_adjust_seg = map;
6944 }
6945 else
6946 map->includes_phdrs = FALSE;
6947 }
6948 }
6949
6950 /* Step Three: Loop over the sections again, this time assigning
6951 those that fit to the current segment and removing them from the
6952 sections array; but making sure not to leave large gaps. Once all
6953 possible sections have been assigned to the current segment it is
6954 added to the list of built segments and if sections still remain
6955 to be assigned, a new segment is constructed before repeating
6956 the loop. */
6957 isec = 0;
6958 do
6959 {
6960 map->count = 0;
6961 suggested_lma = 0;
6962 first_suggested_lma = TRUE;
6963
6964 /* Fill the current segment with sections that fit. */
6965 for (j = 0; j < section_count; j++)
6966 {
6967 section = sections[j];
6968
6969 if (section == NULL)
6970 continue;
6971
6972 output_section = section->output_section;
6973
6974 BFD_ASSERT (output_section != NULL);
6975
6976 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6977 || IS_COREFILE_NOTE (segment, section))
6978 {
6979 if (map->count == 0)
6980 {
6981 /* If the first section in a segment does not start at
6982 the beginning of the segment, then something is
6983 wrong. */
6984 if (output_section->lma
6985 != (map->p_paddr
6986 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6987 + (map->includes_phdrs
6988 ? iehdr->e_phnum * iehdr->e_phentsize
6989 : 0)))
6990 abort ();
6991 }
6992 else
6993 {
6994 asection *prev_sec;
6995
6996 prev_sec = map->sections[map->count - 1];
6997
6998 /* If the gap between the end of the previous section
6999 and the start of this section is more than
7000 maxpagesize then we need to start a new segment. */
7001 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7002 maxpagesize)
7003 < BFD_ALIGN (output_section->lma, maxpagesize))
7004 || (prev_sec->lma + prev_sec->size
7005 > output_section->lma))
7006 {
7007 if (first_suggested_lma)
7008 {
7009 suggested_lma = output_section->lma;
7010 first_suggested_lma = FALSE;
7011 }
7012
7013 continue;
7014 }
7015 }
7016
7017 map->sections[map->count++] = output_section;
7018 ++isec;
7019 sections[j] = NULL;
7020 section->segment_mark = TRUE;
7021 }
7022 else if (first_suggested_lma)
7023 {
7024 suggested_lma = output_section->lma;
7025 first_suggested_lma = FALSE;
7026 }
7027 }
7028
7029 BFD_ASSERT (map->count > 0);
7030
7031 /* Add the current segment to the list of built segments. */
7032 *pointer_to_map = map;
7033 pointer_to_map = &map->next;
7034
7035 if (isec < section_count)
7036 {
7037 /* We still have not allocated all of the sections to
7038 segments. Create a new segment here, initialise it
7039 and carry on looping. */
7040 amt = sizeof (struct elf_segment_map);
7041 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7042 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7043 if (map == NULL)
7044 {
7045 free (sections);
7046 return FALSE;
7047 }
7048
7049 /* Initialise the fields of the segment map. Set the physical
7050 physical address to the LMA of the first section that has
7051 not yet been assigned. */
7052 map->next = NULL;
7053 map->p_type = segment->p_type;
7054 map->p_flags = segment->p_flags;
7055 map->p_flags_valid = 1;
7056 map->p_paddr = suggested_lma;
7057 map->p_paddr_valid = p_paddr_valid;
7058 map->includes_filehdr = 0;
7059 map->includes_phdrs = 0;
7060 }
7061 }
7062 while (isec < section_count);
7063
7064 free (sections);
7065 }
7066
7067 elf_seg_map (obfd) = map_first;
7068
7069 /* If we had to estimate the number of program headers that were
7070 going to be needed, then check our estimate now and adjust
7071 the offset if necessary. */
7072 if (phdr_adjust_seg != NULL)
7073 {
7074 unsigned int count;
7075
7076 for (count = 0, map = map_first; map != NULL; map = map->next)
7077 count++;
7078
7079 if (count > phdr_adjust_num)
7080 phdr_adjust_seg->p_paddr
7081 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7082 }
7083
7084 #undef SEGMENT_END
7085 #undef SECTION_SIZE
7086 #undef IS_CONTAINED_BY_VMA
7087 #undef IS_CONTAINED_BY_LMA
7088 #undef IS_NOTE
7089 #undef IS_COREFILE_NOTE
7090 #undef IS_SOLARIS_PT_INTERP
7091 #undef IS_SECTION_IN_INPUT_SEGMENT
7092 #undef INCLUDE_SECTION_IN_SEGMENT
7093 #undef SEGMENT_AFTER_SEGMENT
7094 #undef SEGMENT_OVERLAPS
7095 return TRUE;
7096 }
7097
7098 /* Copy ELF program header information. */
7099
7100 static bfd_boolean
7101 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7102 {
7103 Elf_Internal_Ehdr *iehdr;
7104 struct elf_segment_map *map;
7105 struct elf_segment_map *map_first;
7106 struct elf_segment_map **pointer_to_map;
7107 Elf_Internal_Phdr *segment;
7108 unsigned int i;
7109 unsigned int num_segments;
7110 bfd_boolean phdr_included = FALSE;
7111 bfd_boolean p_paddr_valid;
7112
7113 iehdr = elf_elfheader (ibfd);
7114
7115 map_first = NULL;
7116 pointer_to_map = &map_first;
7117
7118 /* If all the segment p_paddr fields are zero, don't set
7119 map->p_paddr_valid. */
7120 p_paddr_valid = FALSE;
7121 num_segments = elf_elfheader (ibfd)->e_phnum;
7122 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7123 i < num_segments;
7124 i++, segment++)
7125 if (segment->p_paddr != 0)
7126 {
7127 p_paddr_valid = TRUE;
7128 break;
7129 }
7130
7131 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7132 i < num_segments;
7133 i++, segment++)
7134 {
7135 asection *section;
7136 unsigned int section_count;
7137 bfd_size_type amt;
7138 Elf_Internal_Shdr *this_hdr;
7139 asection *first_section = NULL;
7140 asection *lowest_section;
7141
7142 /* Compute how many sections are in this segment. */
7143 for (section = ibfd->sections, section_count = 0;
7144 section != NULL;
7145 section = section->next)
7146 {
7147 this_hdr = &(elf_section_data(section)->this_hdr);
7148 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7149 {
7150 if (first_section == NULL)
7151 first_section = section;
7152 section_count++;
7153 }
7154 }
7155
7156 /* Allocate a segment map big enough to contain
7157 all of the sections we have selected. */
7158 amt = sizeof (struct elf_segment_map);
7159 if (section_count != 0)
7160 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7161 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7162 if (map == NULL)
7163 return FALSE;
7164
7165 /* Initialize the fields of the output segment map with the
7166 input segment. */
7167 map->next = NULL;
7168 map->p_type = segment->p_type;
7169 map->p_flags = segment->p_flags;
7170 map->p_flags_valid = 1;
7171 map->p_paddr = segment->p_paddr;
7172 map->p_paddr_valid = p_paddr_valid;
7173 map->p_align = segment->p_align;
7174 map->p_align_valid = 1;
7175 map->p_vaddr_offset = 0;
7176
7177 if (map->p_type == PT_GNU_RELRO
7178 || map->p_type == PT_GNU_STACK)
7179 {
7180 /* The PT_GNU_RELRO segment may contain the first a few
7181 bytes in the .got.plt section even if the whole .got.plt
7182 section isn't in the PT_GNU_RELRO segment. We won't
7183 change the size of the PT_GNU_RELRO segment.
7184 Similarly, PT_GNU_STACK size is significant on uclinux
7185 systems. */
7186 map->p_size = segment->p_memsz;
7187 map->p_size_valid = 1;
7188 }
7189
7190 /* Determine if this segment contains the ELF file header
7191 and if it contains the program headers themselves. */
7192 map->includes_filehdr = (segment->p_offset == 0
7193 && segment->p_filesz >= iehdr->e_ehsize);
7194
7195 map->includes_phdrs = 0;
7196 if (! phdr_included || segment->p_type != PT_LOAD)
7197 {
7198 map->includes_phdrs =
7199 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7200 && (segment->p_offset + segment->p_filesz
7201 >= ((bfd_vma) iehdr->e_phoff
7202 + iehdr->e_phnum * iehdr->e_phentsize)));
7203
7204 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7205 phdr_included = TRUE;
7206 }
7207
7208 lowest_section = NULL;
7209 if (section_count != 0)
7210 {
7211 unsigned int isec = 0;
7212
7213 for (section = first_section;
7214 section != NULL;
7215 section = section->next)
7216 {
7217 this_hdr = &(elf_section_data(section)->this_hdr);
7218 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7219 {
7220 map->sections[isec++] = section->output_section;
7221 if ((section->flags & SEC_ALLOC) != 0)
7222 {
7223 bfd_vma seg_off;
7224
7225 if (lowest_section == NULL
7226 || section->lma < lowest_section->lma)
7227 lowest_section = section;
7228
7229 /* Section lmas are set up from PT_LOAD header
7230 p_paddr in _bfd_elf_make_section_from_shdr.
7231 If this header has a p_paddr that disagrees
7232 with the section lma, flag the p_paddr as
7233 invalid. */
7234 if ((section->flags & SEC_LOAD) != 0)
7235 seg_off = this_hdr->sh_offset - segment->p_offset;
7236 else
7237 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7238 if (section->lma - segment->p_paddr != seg_off)
7239 map->p_paddr_valid = FALSE;
7240 }
7241 if (isec == section_count)
7242 break;
7243 }
7244 }
7245 }
7246
7247 if (map->includes_filehdr && lowest_section != NULL)
7248 /* We need to keep the space used by the headers fixed. */
7249 map->header_size = lowest_section->vma - segment->p_vaddr;
7250
7251 if (!map->includes_phdrs
7252 && !map->includes_filehdr
7253 && map->p_paddr_valid)
7254 /* There is some other padding before the first section. */
7255 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7256 - segment->p_paddr);
7257
7258 map->count = section_count;
7259 *pointer_to_map = map;
7260 pointer_to_map = &map->next;
7261 }
7262
7263 elf_seg_map (obfd) = map_first;
7264 return TRUE;
7265 }
7266
7267 /* Copy private BFD data. This copies or rewrites ELF program header
7268 information. */
7269
7270 static bfd_boolean
7271 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7272 {
7273 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7274 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7275 return TRUE;
7276
7277 if (elf_tdata (ibfd)->phdr == NULL)
7278 return TRUE;
7279
7280 if (ibfd->xvec == obfd->xvec)
7281 {
7282 /* Check to see if any sections in the input BFD
7283 covered by ELF program header have changed. */
7284 Elf_Internal_Phdr *segment;
7285 asection *section, *osec;
7286 unsigned int i, num_segments;
7287 Elf_Internal_Shdr *this_hdr;
7288 const struct elf_backend_data *bed;
7289
7290 bed = get_elf_backend_data (ibfd);
7291
7292 /* Regenerate the segment map if p_paddr is set to 0. */
7293 if (bed->want_p_paddr_set_to_zero)
7294 goto rewrite;
7295
7296 /* Initialize the segment mark field. */
7297 for (section = obfd->sections; section != NULL;
7298 section = section->next)
7299 section->segment_mark = FALSE;
7300
7301 num_segments = elf_elfheader (ibfd)->e_phnum;
7302 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7303 i < num_segments;
7304 i++, segment++)
7305 {
7306 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7307 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7308 which severly confuses things, so always regenerate the segment
7309 map in this case. */
7310 if (segment->p_paddr == 0
7311 && segment->p_memsz == 0
7312 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7313 goto rewrite;
7314
7315 for (section = ibfd->sections;
7316 section != NULL; section = section->next)
7317 {
7318 /* We mark the output section so that we know it comes
7319 from the input BFD. */
7320 osec = section->output_section;
7321 if (osec)
7322 osec->segment_mark = TRUE;
7323
7324 /* Check if this section is covered by the segment. */
7325 this_hdr = &(elf_section_data(section)->this_hdr);
7326 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7327 {
7328 /* FIXME: Check if its output section is changed or
7329 removed. What else do we need to check? */
7330 if (osec == NULL
7331 || section->flags != osec->flags
7332 || section->lma != osec->lma
7333 || section->vma != osec->vma
7334 || section->size != osec->size
7335 || section->rawsize != osec->rawsize
7336 || section->alignment_power != osec->alignment_power)
7337 goto rewrite;
7338 }
7339 }
7340 }
7341
7342 /* Check to see if any output section do not come from the
7343 input BFD. */
7344 for (section = obfd->sections; section != NULL;
7345 section = section->next)
7346 {
7347 if (!section->segment_mark)
7348 goto rewrite;
7349 else
7350 section->segment_mark = FALSE;
7351 }
7352
7353 return copy_elf_program_header (ibfd, obfd);
7354 }
7355
7356 rewrite:
7357 if (ibfd->xvec == obfd->xvec)
7358 {
7359 /* When rewriting program header, set the output maxpagesize to
7360 the maximum alignment of input PT_LOAD segments. */
7361 Elf_Internal_Phdr *segment;
7362 unsigned int i;
7363 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7364 bfd_vma maxpagesize = 0;
7365
7366 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7367 i < num_segments;
7368 i++, segment++)
7369 if (segment->p_type == PT_LOAD
7370 && maxpagesize < segment->p_align)
7371 {
7372 /* PR 17512: file: f17299af. */
7373 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7374 /* xgettext:c-format */
7375 _bfd_error_handler (_("%B: warning: segment alignment of %#Lx"
7376 " is too large"),
7377 ibfd, segment->p_align);
7378 else
7379 maxpagesize = segment->p_align;
7380 }
7381
7382 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7383 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7384 }
7385
7386 return rewrite_elf_program_header (ibfd, obfd);
7387 }
7388
7389 /* Initialize private output section information from input section. */
7390
7391 bfd_boolean
7392 _bfd_elf_init_private_section_data (bfd *ibfd,
7393 asection *isec,
7394 bfd *obfd,
7395 asection *osec,
7396 struct bfd_link_info *link_info)
7397
7398 {
7399 Elf_Internal_Shdr *ihdr, *ohdr;
7400 bfd_boolean final_link = (link_info != NULL
7401 && !bfd_link_relocatable (link_info));
7402
7403 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7404 || obfd->xvec->flavour != bfd_target_elf_flavour)
7405 return TRUE;
7406
7407 BFD_ASSERT (elf_section_data (osec) != NULL);
7408
7409 /* For objcopy and relocatable link, don't copy the output ELF
7410 section type from input if the output BFD section flags have been
7411 set to something different. For a final link allow some flags
7412 that the linker clears to differ. */
7413 if (elf_section_type (osec) == SHT_NULL
7414 && (osec->flags == isec->flags
7415 || (final_link
7416 && ((osec->flags ^ isec->flags)
7417 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7418 elf_section_type (osec) = elf_section_type (isec);
7419
7420 /* FIXME: Is this correct for all OS/PROC specific flags? */
7421 elf_section_flags (osec) |= (elf_section_flags (isec)
7422 & (SHF_MASKOS | SHF_MASKPROC));
7423
7424 /* Copy sh_info from input for mbind section. */
7425 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7426 elf_section_data (osec)->this_hdr.sh_info
7427 = elf_section_data (isec)->this_hdr.sh_info;
7428
7429 /* Set things up for objcopy and relocatable link. The output
7430 SHT_GROUP section will have its elf_next_in_group pointing back
7431 to the input group members. Ignore linker created group section.
7432 See elfNN_ia64_object_p in elfxx-ia64.c. */
7433 if ((link_info == NULL
7434 || !link_info->resolve_section_groups)
7435 && (elf_sec_group (isec) == NULL
7436 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7437 {
7438 if (elf_section_flags (isec) & SHF_GROUP)
7439 elf_section_flags (osec) |= SHF_GROUP;
7440 elf_next_in_group (osec) = elf_next_in_group (isec);
7441 elf_section_data (osec)->group = elf_section_data (isec)->group;
7442 }
7443
7444 /* If not decompress, preserve SHF_COMPRESSED. */
7445 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7446 elf_section_flags (osec) |= (elf_section_flags (isec)
7447 & SHF_COMPRESSED);
7448
7449 ihdr = &elf_section_data (isec)->this_hdr;
7450
7451 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7452 don't use the output section of the linked-to section since it
7453 may be NULL at this point. */
7454 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7455 {
7456 ohdr = &elf_section_data (osec)->this_hdr;
7457 ohdr->sh_flags |= SHF_LINK_ORDER;
7458 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7459 }
7460
7461 osec->use_rela_p = isec->use_rela_p;
7462
7463 return TRUE;
7464 }
7465
7466 /* Copy private section information. This copies over the entsize
7467 field, and sometimes the info field. */
7468
7469 bfd_boolean
7470 _bfd_elf_copy_private_section_data (bfd *ibfd,
7471 asection *isec,
7472 bfd *obfd,
7473 asection *osec)
7474 {
7475 Elf_Internal_Shdr *ihdr, *ohdr;
7476
7477 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7478 || obfd->xvec->flavour != bfd_target_elf_flavour)
7479 return TRUE;
7480
7481 ihdr = &elf_section_data (isec)->this_hdr;
7482 ohdr = &elf_section_data (osec)->this_hdr;
7483
7484 ohdr->sh_entsize = ihdr->sh_entsize;
7485
7486 if (ihdr->sh_type == SHT_SYMTAB
7487 || ihdr->sh_type == SHT_DYNSYM
7488 || ihdr->sh_type == SHT_GNU_verneed
7489 || ihdr->sh_type == SHT_GNU_verdef)
7490 ohdr->sh_info = ihdr->sh_info;
7491
7492 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7493 NULL);
7494 }
7495
7496 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7497 necessary if we are removing either the SHT_GROUP section or any of
7498 the group member sections. DISCARDED is the value that a section's
7499 output_section has if the section will be discarded, NULL when this
7500 function is called from objcopy, bfd_abs_section_ptr when called
7501 from the linker. */
7502
7503 bfd_boolean
7504 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7505 {
7506 asection *isec;
7507
7508 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7509 if (elf_section_type (isec) == SHT_GROUP)
7510 {
7511 asection *first = elf_next_in_group (isec);
7512 asection *s = first;
7513 bfd_size_type removed = 0;
7514
7515 while (s != NULL)
7516 {
7517 /* If this member section is being output but the
7518 SHT_GROUP section is not, then clear the group info
7519 set up by _bfd_elf_copy_private_section_data. */
7520 if (s->output_section != discarded
7521 && isec->output_section == discarded)
7522 {
7523 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7524 elf_group_name (s->output_section) = NULL;
7525 }
7526 /* Conversely, if the member section is not being output
7527 but the SHT_GROUP section is, then adjust its size. */
7528 else if (s->output_section == discarded
7529 && isec->output_section != discarded)
7530 removed += 4;
7531 s = elf_next_in_group (s);
7532 if (s == first)
7533 break;
7534 }
7535 if (removed != 0)
7536 {
7537 if (discarded != NULL)
7538 {
7539 /* If we've been called for ld -r, then we need to
7540 adjust the input section size. This function may
7541 be called multiple times, so save the original
7542 size. */
7543 if (isec->rawsize == 0)
7544 isec->rawsize = isec->size;
7545 isec->size = isec->rawsize - removed;
7546 }
7547 else
7548 {
7549 /* Adjust the output section size when called from
7550 objcopy. */
7551 isec->output_section->size -= removed;
7552 }
7553 }
7554 }
7555
7556 return TRUE;
7557 }
7558
7559 /* Copy private header information. */
7560
7561 bfd_boolean
7562 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7563 {
7564 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7565 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7566 return TRUE;
7567
7568 /* Copy over private BFD data if it has not already been copied.
7569 This must be done here, rather than in the copy_private_bfd_data
7570 entry point, because the latter is called after the section
7571 contents have been set, which means that the program headers have
7572 already been worked out. */
7573 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7574 {
7575 if (! copy_private_bfd_data (ibfd, obfd))
7576 return FALSE;
7577 }
7578
7579 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7580 }
7581
7582 /* Copy private symbol information. If this symbol is in a section
7583 which we did not map into a BFD section, try to map the section
7584 index correctly. We use special macro definitions for the mapped
7585 section indices; these definitions are interpreted by the
7586 swap_out_syms function. */
7587
7588 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7589 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7590 #define MAP_STRTAB (SHN_HIOS + 3)
7591 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7592 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7593
7594 bfd_boolean
7595 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7596 asymbol *isymarg,
7597 bfd *obfd,
7598 asymbol *osymarg)
7599 {
7600 elf_symbol_type *isym, *osym;
7601
7602 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7603 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7604 return TRUE;
7605
7606 isym = elf_symbol_from (ibfd, isymarg);
7607 osym = elf_symbol_from (obfd, osymarg);
7608
7609 if (isym != NULL
7610 && isym->internal_elf_sym.st_shndx != 0
7611 && osym != NULL
7612 && bfd_is_abs_section (isym->symbol.section))
7613 {
7614 unsigned int shndx;
7615
7616 shndx = isym->internal_elf_sym.st_shndx;
7617 if (shndx == elf_onesymtab (ibfd))
7618 shndx = MAP_ONESYMTAB;
7619 else if (shndx == elf_dynsymtab (ibfd))
7620 shndx = MAP_DYNSYMTAB;
7621 else if (shndx == elf_strtab_sec (ibfd))
7622 shndx = MAP_STRTAB;
7623 else if (shndx == elf_shstrtab_sec (ibfd))
7624 shndx = MAP_SHSTRTAB;
7625 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7626 shndx = MAP_SYM_SHNDX;
7627 osym->internal_elf_sym.st_shndx = shndx;
7628 }
7629
7630 return TRUE;
7631 }
7632
7633 /* Swap out the symbols. */
7634
7635 static bfd_boolean
7636 swap_out_syms (bfd *abfd,
7637 struct elf_strtab_hash **sttp,
7638 int relocatable_p)
7639 {
7640 const struct elf_backend_data *bed;
7641 int symcount;
7642 asymbol **syms;
7643 struct elf_strtab_hash *stt;
7644 Elf_Internal_Shdr *symtab_hdr;
7645 Elf_Internal_Shdr *symtab_shndx_hdr;
7646 Elf_Internal_Shdr *symstrtab_hdr;
7647 struct elf_sym_strtab *symstrtab;
7648 bfd_byte *outbound_syms;
7649 bfd_byte *outbound_shndx;
7650 unsigned long outbound_syms_index;
7651 unsigned long outbound_shndx_index;
7652 int idx;
7653 unsigned int num_locals;
7654 bfd_size_type amt;
7655 bfd_boolean name_local_sections;
7656
7657 if (!elf_map_symbols (abfd, &num_locals))
7658 return FALSE;
7659
7660 /* Dump out the symtabs. */
7661 stt = _bfd_elf_strtab_init ();
7662 if (stt == NULL)
7663 return FALSE;
7664
7665 bed = get_elf_backend_data (abfd);
7666 symcount = bfd_get_symcount (abfd);
7667 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7668 symtab_hdr->sh_type = SHT_SYMTAB;
7669 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7670 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7671 symtab_hdr->sh_info = num_locals + 1;
7672 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7673
7674 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7675 symstrtab_hdr->sh_type = SHT_STRTAB;
7676
7677 /* Allocate buffer to swap out the .strtab section. */
7678 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7679 * sizeof (*symstrtab));
7680 if (symstrtab == NULL)
7681 {
7682 _bfd_elf_strtab_free (stt);
7683 return FALSE;
7684 }
7685
7686 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7687 bed->s->sizeof_sym);
7688 if (outbound_syms == NULL)
7689 {
7690 error_return:
7691 _bfd_elf_strtab_free (stt);
7692 free (symstrtab);
7693 return FALSE;
7694 }
7695 symtab_hdr->contents = outbound_syms;
7696 outbound_syms_index = 0;
7697
7698 outbound_shndx = NULL;
7699 outbound_shndx_index = 0;
7700
7701 if (elf_symtab_shndx_list (abfd))
7702 {
7703 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7704 if (symtab_shndx_hdr->sh_name != 0)
7705 {
7706 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7707 outbound_shndx = (bfd_byte *)
7708 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7709 if (outbound_shndx == NULL)
7710 goto error_return;
7711
7712 symtab_shndx_hdr->contents = outbound_shndx;
7713 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7714 symtab_shndx_hdr->sh_size = amt;
7715 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7716 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7717 }
7718 /* FIXME: What about any other headers in the list ? */
7719 }
7720
7721 /* Now generate the data (for "contents"). */
7722 {
7723 /* Fill in zeroth symbol and swap it out. */
7724 Elf_Internal_Sym sym;
7725 sym.st_name = 0;
7726 sym.st_value = 0;
7727 sym.st_size = 0;
7728 sym.st_info = 0;
7729 sym.st_other = 0;
7730 sym.st_shndx = SHN_UNDEF;
7731 sym.st_target_internal = 0;
7732 symstrtab[0].sym = sym;
7733 symstrtab[0].dest_index = outbound_syms_index;
7734 symstrtab[0].destshndx_index = outbound_shndx_index;
7735 outbound_syms_index++;
7736 if (outbound_shndx != NULL)
7737 outbound_shndx_index++;
7738 }
7739
7740 name_local_sections
7741 = (bed->elf_backend_name_local_section_symbols
7742 && bed->elf_backend_name_local_section_symbols (abfd));
7743
7744 syms = bfd_get_outsymbols (abfd);
7745 for (idx = 0; idx < symcount;)
7746 {
7747 Elf_Internal_Sym sym;
7748 bfd_vma value = syms[idx]->value;
7749 elf_symbol_type *type_ptr;
7750 flagword flags = syms[idx]->flags;
7751 int type;
7752
7753 if (!name_local_sections
7754 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7755 {
7756 /* Local section symbols have no name. */
7757 sym.st_name = (unsigned long) -1;
7758 }
7759 else
7760 {
7761 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7762 to get the final offset for st_name. */
7763 sym.st_name
7764 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7765 FALSE);
7766 if (sym.st_name == (unsigned long) -1)
7767 goto error_return;
7768 }
7769
7770 type_ptr = elf_symbol_from (abfd, syms[idx]);
7771
7772 if ((flags & BSF_SECTION_SYM) == 0
7773 && bfd_is_com_section (syms[idx]->section))
7774 {
7775 /* ELF common symbols put the alignment into the `value' field,
7776 and the size into the `size' field. This is backwards from
7777 how BFD handles it, so reverse it here. */
7778 sym.st_size = value;
7779 if (type_ptr == NULL
7780 || type_ptr->internal_elf_sym.st_value == 0)
7781 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7782 else
7783 sym.st_value = type_ptr->internal_elf_sym.st_value;
7784 sym.st_shndx = _bfd_elf_section_from_bfd_section
7785 (abfd, syms[idx]->section);
7786 }
7787 else
7788 {
7789 asection *sec = syms[idx]->section;
7790 unsigned int shndx;
7791
7792 if (sec->output_section)
7793 {
7794 value += sec->output_offset;
7795 sec = sec->output_section;
7796 }
7797
7798 /* Don't add in the section vma for relocatable output. */
7799 if (! relocatable_p)
7800 value += sec->vma;
7801 sym.st_value = value;
7802 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7803
7804 if (bfd_is_abs_section (sec)
7805 && type_ptr != NULL
7806 && type_ptr->internal_elf_sym.st_shndx != 0)
7807 {
7808 /* This symbol is in a real ELF section which we did
7809 not create as a BFD section. Undo the mapping done
7810 by copy_private_symbol_data. */
7811 shndx = type_ptr->internal_elf_sym.st_shndx;
7812 switch (shndx)
7813 {
7814 case MAP_ONESYMTAB:
7815 shndx = elf_onesymtab (abfd);
7816 break;
7817 case MAP_DYNSYMTAB:
7818 shndx = elf_dynsymtab (abfd);
7819 break;
7820 case MAP_STRTAB:
7821 shndx = elf_strtab_sec (abfd);
7822 break;
7823 case MAP_SHSTRTAB:
7824 shndx = elf_shstrtab_sec (abfd);
7825 break;
7826 case MAP_SYM_SHNDX:
7827 if (elf_symtab_shndx_list (abfd))
7828 shndx = elf_symtab_shndx_list (abfd)->ndx;
7829 break;
7830 default:
7831 shndx = SHN_ABS;
7832 break;
7833 }
7834 }
7835 else
7836 {
7837 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7838
7839 if (shndx == SHN_BAD)
7840 {
7841 asection *sec2;
7842
7843 /* Writing this would be a hell of a lot easier if
7844 we had some decent documentation on bfd, and
7845 knew what to expect of the library, and what to
7846 demand of applications. For example, it
7847 appears that `objcopy' might not set the
7848 section of a symbol to be a section that is
7849 actually in the output file. */
7850 sec2 = bfd_get_section_by_name (abfd, sec->name);
7851 if (sec2 != NULL)
7852 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7853 if (shndx == SHN_BAD)
7854 {
7855 /* xgettext:c-format */
7856 _bfd_error_handler (_("\
7857 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7858 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7859 sec->name);
7860 bfd_set_error (bfd_error_invalid_operation);
7861 goto error_return;
7862 }
7863 }
7864 }
7865
7866 sym.st_shndx = shndx;
7867 }
7868
7869 if ((flags & BSF_THREAD_LOCAL) != 0)
7870 type = STT_TLS;
7871 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7872 type = STT_GNU_IFUNC;
7873 else if ((flags & BSF_FUNCTION) != 0)
7874 type = STT_FUNC;
7875 else if ((flags & BSF_OBJECT) != 0)
7876 type = STT_OBJECT;
7877 else if ((flags & BSF_RELC) != 0)
7878 type = STT_RELC;
7879 else if ((flags & BSF_SRELC) != 0)
7880 type = STT_SRELC;
7881 else
7882 type = STT_NOTYPE;
7883
7884 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7885 type = STT_TLS;
7886
7887 /* Processor-specific types. */
7888 if (type_ptr != NULL
7889 && bed->elf_backend_get_symbol_type)
7890 type = ((*bed->elf_backend_get_symbol_type)
7891 (&type_ptr->internal_elf_sym, type));
7892
7893 if (flags & BSF_SECTION_SYM)
7894 {
7895 if (flags & BSF_GLOBAL)
7896 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7897 else
7898 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7899 }
7900 else if (bfd_is_com_section (syms[idx]->section))
7901 {
7902 if (type != STT_TLS)
7903 {
7904 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7905 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7906 ? STT_COMMON : STT_OBJECT);
7907 else
7908 type = ((flags & BSF_ELF_COMMON) != 0
7909 ? STT_COMMON : STT_OBJECT);
7910 }
7911 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7912 }
7913 else if (bfd_is_und_section (syms[idx]->section))
7914 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7915 ? STB_WEAK
7916 : STB_GLOBAL),
7917 type);
7918 else if (flags & BSF_FILE)
7919 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7920 else
7921 {
7922 int bind = STB_LOCAL;
7923
7924 if (flags & BSF_LOCAL)
7925 bind = STB_LOCAL;
7926 else if (flags & BSF_GNU_UNIQUE)
7927 bind = STB_GNU_UNIQUE;
7928 else if (flags & BSF_WEAK)
7929 bind = STB_WEAK;
7930 else if (flags & BSF_GLOBAL)
7931 bind = STB_GLOBAL;
7932
7933 sym.st_info = ELF_ST_INFO (bind, type);
7934 }
7935
7936 if (type_ptr != NULL)
7937 {
7938 sym.st_other = type_ptr->internal_elf_sym.st_other;
7939 sym.st_target_internal
7940 = type_ptr->internal_elf_sym.st_target_internal;
7941 }
7942 else
7943 {
7944 sym.st_other = 0;
7945 sym.st_target_internal = 0;
7946 }
7947
7948 idx++;
7949 symstrtab[idx].sym = sym;
7950 symstrtab[idx].dest_index = outbound_syms_index;
7951 symstrtab[idx].destshndx_index = outbound_shndx_index;
7952
7953 outbound_syms_index++;
7954 if (outbound_shndx != NULL)
7955 outbound_shndx_index++;
7956 }
7957
7958 /* Finalize the .strtab section. */
7959 _bfd_elf_strtab_finalize (stt);
7960
7961 /* Swap out the .strtab section. */
7962 for (idx = 0; idx <= symcount; idx++)
7963 {
7964 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7965 if (elfsym->sym.st_name == (unsigned long) -1)
7966 elfsym->sym.st_name = 0;
7967 else
7968 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7969 elfsym->sym.st_name);
7970 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7971 (outbound_syms
7972 + (elfsym->dest_index
7973 * bed->s->sizeof_sym)),
7974 (outbound_shndx
7975 + (elfsym->destshndx_index
7976 * sizeof (Elf_External_Sym_Shndx))));
7977 }
7978 free (symstrtab);
7979
7980 *sttp = stt;
7981 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7982 symstrtab_hdr->sh_type = SHT_STRTAB;
7983 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7984 symstrtab_hdr->sh_addr = 0;
7985 symstrtab_hdr->sh_entsize = 0;
7986 symstrtab_hdr->sh_link = 0;
7987 symstrtab_hdr->sh_info = 0;
7988 symstrtab_hdr->sh_addralign = 1;
7989
7990 return TRUE;
7991 }
7992
7993 /* Return the number of bytes required to hold the symtab vector.
7994
7995 Note that we base it on the count plus 1, since we will null terminate
7996 the vector allocated based on this size. However, the ELF symbol table
7997 always has a dummy entry as symbol #0, so it ends up even. */
7998
7999 long
8000 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8001 {
8002 long symcount;
8003 long symtab_size;
8004 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8005
8006 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8007 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8008 if (symcount > 0)
8009 symtab_size -= sizeof (asymbol *);
8010
8011 return symtab_size;
8012 }
8013
8014 long
8015 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8016 {
8017 long symcount;
8018 long symtab_size;
8019 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8020
8021 if (elf_dynsymtab (abfd) == 0)
8022 {
8023 bfd_set_error (bfd_error_invalid_operation);
8024 return -1;
8025 }
8026
8027 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8028 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8029 if (symcount > 0)
8030 symtab_size -= sizeof (asymbol *);
8031
8032 return symtab_size;
8033 }
8034
8035 long
8036 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8037 sec_ptr asect)
8038 {
8039 return (asect->reloc_count + 1) * sizeof (arelent *);
8040 }
8041
8042 /* Canonicalize the relocs. */
8043
8044 long
8045 _bfd_elf_canonicalize_reloc (bfd *abfd,
8046 sec_ptr section,
8047 arelent **relptr,
8048 asymbol **symbols)
8049 {
8050 arelent *tblptr;
8051 unsigned int i;
8052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8053
8054 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8055 return -1;
8056
8057 tblptr = section->relocation;
8058 for (i = 0; i < section->reloc_count; i++)
8059 *relptr++ = tblptr++;
8060
8061 *relptr = NULL;
8062
8063 return section->reloc_count;
8064 }
8065
8066 long
8067 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8068 {
8069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8070 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8071
8072 if (symcount >= 0)
8073 bfd_get_symcount (abfd) = symcount;
8074 return symcount;
8075 }
8076
8077 long
8078 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8079 asymbol **allocation)
8080 {
8081 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8082 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8083
8084 if (symcount >= 0)
8085 bfd_get_dynamic_symcount (abfd) = symcount;
8086 return symcount;
8087 }
8088
8089 /* Return the size required for the dynamic reloc entries. Any loadable
8090 section that was actually installed in the BFD, and has type SHT_REL
8091 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8092 dynamic reloc section. */
8093
8094 long
8095 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8096 {
8097 long ret;
8098 asection *s;
8099
8100 if (elf_dynsymtab (abfd) == 0)
8101 {
8102 bfd_set_error (bfd_error_invalid_operation);
8103 return -1;
8104 }
8105
8106 ret = sizeof (arelent *);
8107 for (s = abfd->sections; s != NULL; s = s->next)
8108 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8109 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8110 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8111 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8112 * sizeof (arelent *));
8113
8114 return ret;
8115 }
8116
8117 /* Canonicalize the dynamic relocation entries. Note that we return the
8118 dynamic relocations as a single block, although they are actually
8119 associated with particular sections; the interface, which was
8120 designed for SunOS style shared libraries, expects that there is only
8121 one set of dynamic relocs. Any loadable section that was actually
8122 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8123 dynamic symbol table, is considered to be a dynamic reloc section. */
8124
8125 long
8126 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8127 arelent **storage,
8128 asymbol **syms)
8129 {
8130 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8131 asection *s;
8132 long ret;
8133
8134 if (elf_dynsymtab (abfd) == 0)
8135 {
8136 bfd_set_error (bfd_error_invalid_operation);
8137 return -1;
8138 }
8139
8140 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8141 ret = 0;
8142 for (s = abfd->sections; s != NULL; s = s->next)
8143 {
8144 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8145 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8146 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8147 {
8148 arelent *p;
8149 long count, i;
8150
8151 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8152 return -1;
8153 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8154 p = s->relocation;
8155 for (i = 0; i < count; i++)
8156 *storage++ = p++;
8157 ret += count;
8158 }
8159 }
8160
8161 *storage = NULL;
8162
8163 return ret;
8164 }
8165 \f
8166 /* Read in the version information. */
8167
8168 bfd_boolean
8169 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8170 {
8171 bfd_byte *contents = NULL;
8172 unsigned int freeidx = 0;
8173
8174 if (elf_dynverref (abfd) != 0)
8175 {
8176 Elf_Internal_Shdr *hdr;
8177 Elf_External_Verneed *everneed;
8178 Elf_Internal_Verneed *iverneed;
8179 unsigned int i;
8180 bfd_byte *contents_end;
8181
8182 hdr = &elf_tdata (abfd)->dynverref_hdr;
8183
8184 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8185 {
8186 error_return_bad_verref:
8187 _bfd_error_handler
8188 (_("%B: .gnu.version_r invalid entry"), abfd);
8189 bfd_set_error (bfd_error_bad_value);
8190 error_return_verref:
8191 elf_tdata (abfd)->verref = NULL;
8192 elf_tdata (abfd)->cverrefs = 0;
8193 goto error_return;
8194 }
8195
8196 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8197 if (contents == NULL)
8198 goto error_return_verref;
8199
8200 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8201 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8202 goto error_return_verref;
8203
8204 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8205 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8206
8207 if (elf_tdata (abfd)->verref == NULL)
8208 goto error_return_verref;
8209
8210 BFD_ASSERT (sizeof (Elf_External_Verneed)
8211 == sizeof (Elf_External_Vernaux));
8212 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8213 everneed = (Elf_External_Verneed *) contents;
8214 iverneed = elf_tdata (abfd)->verref;
8215 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8216 {
8217 Elf_External_Vernaux *evernaux;
8218 Elf_Internal_Vernaux *ivernaux;
8219 unsigned int j;
8220
8221 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8222
8223 iverneed->vn_bfd = abfd;
8224
8225 iverneed->vn_filename =
8226 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8227 iverneed->vn_file);
8228 if (iverneed->vn_filename == NULL)
8229 goto error_return_bad_verref;
8230
8231 if (iverneed->vn_cnt == 0)
8232 iverneed->vn_auxptr = NULL;
8233 else
8234 {
8235 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8236 bfd_alloc2 (abfd, iverneed->vn_cnt,
8237 sizeof (Elf_Internal_Vernaux));
8238 if (iverneed->vn_auxptr == NULL)
8239 goto error_return_verref;
8240 }
8241
8242 if (iverneed->vn_aux
8243 > (size_t) (contents_end - (bfd_byte *) everneed))
8244 goto error_return_bad_verref;
8245
8246 evernaux = ((Elf_External_Vernaux *)
8247 ((bfd_byte *) everneed + iverneed->vn_aux));
8248 ivernaux = iverneed->vn_auxptr;
8249 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8250 {
8251 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8252
8253 ivernaux->vna_nodename =
8254 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8255 ivernaux->vna_name);
8256 if (ivernaux->vna_nodename == NULL)
8257 goto error_return_bad_verref;
8258
8259 if (ivernaux->vna_other > freeidx)
8260 freeidx = ivernaux->vna_other;
8261
8262 ivernaux->vna_nextptr = NULL;
8263 if (ivernaux->vna_next == 0)
8264 {
8265 iverneed->vn_cnt = j + 1;
8266 break;
8267 }
8268 if (j + 1 < iverneed->vn_cnt)
8269 ivernaux->vna_nextptr = ivernaux + 1;
8270
8271 if (ivernaux->vna_next
8272 > (size_t) (contents_end - (bfd_byte *) evernaux))
8273 goto error_return_bad_verref;
8274
8275 evernaux = ((Elf_External_Vernaux *)
8276 ((bfd_byte *) evernaux + ivernaux->vna_next));
8277 }
8278
8279 iverneed->vn_nextref = NULL;
8280 if (iverneed->vn_next == 0)
8281 break;
8282 if (i + 1 < hdr->sh_info)
8283 iverneed->vn_nextref = iverneed + 1;
8284
8285 if (iverneed->vn_next
8286 > (size_t) (contents_end - (bfd_byte *) everneed))
8287 goto error_return_bad_verref;
8288
8289 everneed = ((Elf_External_Verneed *)
8290 ((bfd_byte *) everneed + iverneed->vn_next));
8291 }
8292 elf_tdata (abfd)->cverrefs = i;
8293
8294 free (contents);
8295 contents = NULL;
8296 }
8297
8298 if (elf_dynverdef (abfd) != 0)
8299 {
8300 Elf_Internal_Shdr *hdr;
8301 Elf_External_Verdef *everdef;
8302 Elf_Internal_Verdef *iverdef;
8303 Elf_Internal_Verdef *iverdefarr;
8304 Elf_Internal_Verdef iverdefmem;
8305 unsigned int i;
8306 unsigned int maxidx;
8307 bfd_byte *contents_end_def, *contents_end_aux;
8308
8309 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8310
8311 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8312 {
8313 error_return_bad_verdef:
8314 _bfd_error_handler
8315 (_("%B: .gnu.version_d invalid entry"), abfd);
8316 bfd_set_error (bfd_error_bad_value);
8317 error_return_verdef:
8318 elf_tdata (abfd)->verdef = NULL;
8319 elf_tdata (abfd)->cverdefs = 0;
8320 goto error_return;
8321 }
8322
8323 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8324 if (contents == NULL)
8325 goto error_return_verdef;
8326 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8327 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8328 goto error_return_verdef;
8329
8330 BFD_ASSERT (sizeof (Elf_External_Verdef)
8331 >= sizeof (Elf_External_Verdaux));
8332 contents_end_def = contents + hdr->sh_size
8333 - sizeof (Elf_External_Verdef);
8334 contents_end_aux = contents + hdr->sh_size
8335 - sizeof (Elf_External_Verdaux);
8336
8337 /* We know the number of entries in the section but not the maximum
8338 index. Therefore we have to run through all entries and find
8339 the maximum. */
8340 everdef = (Elf_External_Verdef *) contents;
8341 maxidx = 0;
8342 for (i = 0; i < hdr->sh_info; ++i)
8343 {
8344 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8345
8346 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8347 goto error_return_bad_verdef;
8348 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8349 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8350
8351 if (iverdefmem.vd_next == 0)
8352 break;
8353
8354 if (iverdefmem.vd_next
8355 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8356 goto error_return_bad_verdef;
8357
8358 everdef = ((Elf_External_Verdef *)
8359 ((bfd_byte *) everdef + iverdefmem.vd_next));
8360 }
8361
8362 if (default_imported_symver)
8363 {
8364 if (freeidx > maxidx)
8365 maxidx = ++freeidx;
8366 else
8367 freeidx = ++maxidx;
8368 }
8369
8370 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8371 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8372 if (elf_tdata (abfd)->verdef == NULL)
8373 goto error_return_verdef;
8374
8375 elf_tdata (abfd)->cverdefs = maxidx;
8376
8377 everdef = (Elf_External_Verdef *) contents;
8378 iverdefarr = elf_tdata (abfd)->verdef;
8379 for (i = 0; i < hdr->sh_info; i++)
8380 {
8381 Elf_External_Verdaux *everdaux;
8382 Elf_Internal_Verdaux *iverdaux;
8383 unsigned int j;
8384
8385 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8386
8387 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8388 goto error_return_bad_verdef;
8389
8390 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8391 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8392
8393 iverdef->vd_bfd = abfd;
8394
8395 if (iverdef->vd_cnt == 0)
8396 iverdef->vd_auxptr = NULL;
8397 else
8398 {
8399 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8400 bfd_alloc2 (abfd, iverdef->vd_cnt,
8401 sizeof (Elf_Internal_Verdaux));
8402 if (iverdef->vd_auxptr == NULL)
8403 goto error_return_verdef;
8404 }
8405
8406 if (iverdef->vd_aux
8407 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8408 goto error_return_bad_verdef;
8409
8410 everdaux = ((Elf_External_Verdaux *)
8411 ((bfd_byte *) everdef + iverdef->vd_aux));
8412 iverdaux = iverdef->vd_auxptr;
8413 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8414 {
8415 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8416
8417 iverdaux->vda_nodename =
8418 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8419 iverdaux->vda_name);
8420 if (iverdaux->vda_nodename == NULL)
8421 goto error_return_bad_verdef;
8422
8423 iverdaux->vda_nextptr = NULL;
8424 if (iverdaux->vda_next == 0)
8425 {
8426 iverdef->vd_cnt = j + 1;
8427 break;
8428 }
8429 if (j + 1 < iverdef->vd_cnt)
8430 iverdaux->vda_nextptr = iverdaux + 1;
8431
8432 if (iverdaux->vda_next
8433 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8434 goto error_return_bad_verdef;
8435
8436 everdaux = ((Elf_External_Verdaux *)
8437 ((bfd_byte *) everdaux + iverdaux->vda_next));
8438 }
8439
8440 iverdef->vd_nodename = NULL;
8441 if (iverdef->vd_cnt)
8442 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8443
8444 iverdef->vd_nextdef = NULL;
8445 if (iverdef->vd_next == 0)
8446 break;
8447 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8448 iverdef->vd_nextdef = iverdef + 1;
8449
8450 everdef = ((Elf_External_Verdef *)
8451 ((bfd_byte *) everdef + iverdef->vd_next));
8452 }
8453
8454 free (contents);
8455 contents = NULL;
8456 }
8457 else if (default_imported_symver)
8458 {
8459 if (freeidx < 3)
8460 freeidx = 3;
8461 else
8462 freeidx++;
8463
8464 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8465 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8466 if (elf_tdata (abfd)->verdef == NULL)
8467 goto error_return;
8468
8469 elf_tdata (abfd)->cverdefs = freeidx;
8470 }
8471
8472 /* Create a default version based on the soname. */
8473 if (default_imported_symver)
8474 {
8475 Elf_Internal_Verdef *iverdef;
8476 Elf_Internal_Verdaux *iverdaux;
8477
8478 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8479
8480 iverdef->vd_version = VER_DEF_CURRENT;
8481 iverdef->vd_flags = 0;
8482 iverdef->vd_ndx = freeidx;
8483 iverdef->vd_cnt = 1;
8484
8485 iverdef->vd_bfd = abfd;
8486
8487 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8488 if (iverdef->vd_nodename == NULL)
8489 goto error_return_verdef;
8490 iverdef->vd_nextdef = NULL;
8491 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8492 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8493 if (iverdef->vd_auxptr == NULL)
8494 goto error_return_verdef;
8495
8496 iverdaux = iverdef->vd_auxptr;
8497 iverdaux->vda_nodename = iverdef->vd_nodename;
8498 }
8499
8500 return TRUE;
8501
8502 error_return:
8503 if (contents != NULL)
8504 free (contents);
8505 return FALSE;
8506 }
8507 \f
8508 asymbol *
8509 _bfd_elf_make_empty_symbol (bfd *abfd)
8510 {
8511 elf_symbol_type *newsym;
8512
8513 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8514 if (!newsym)
8515 return NULL;
8516 newsym->symbol.the_bfd = abfd;
8517 return &newsym->symbol;
8518 }
8519
8520 void
8521 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8522 asymbol *symbol,
8523 symbol_info *ret)
8524 {
8525 bfd_symbol_info (symbol, ret);
8526 }
8527
8528 /* Return whether a symbol name implies a local symbol. Most targets
8529 use this function for the is_local_label_name entry point, but some
8530 override it. */
8531
8532 bfd_boolean
8533 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8534 const char *name)
8535 {
8536 /* Normal local symbols start with ``.L''. */
8537 if (name[0] == '.' && name[1] == 'L')
8538 return TRUE;
8539
8540 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8541 DWARF debugging symbols starting with ``..''. */
8542 if (name[0] == '.' && name[1] == '.')
8543 return TRUE;
8544
8545 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8546 emitting DWARF debugging output. I suspect this is actually a
8547 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8548 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8549 underscore to be emitted on some ELF targets). For ease of use,
8550 we treat such symbols as local. */
8551 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8552 return TRUE;
8553
8554 /* Treat assembler generated fake symbols, dollar local labels and
8555 forward-backward labels (aka local labels) as locals.
8556 These labels have the form:
8557
8558 L0^A.* (fake symbols)
8559
8560 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8561
8562 Versions which start with .L will have already been matched above,
8563 so we only need to match the rest. */
8564 if (name[0] == 'L' && ISDIGIT (name[1]))
8565 {
8566 bfd_boolean ret = FALSE;
8567 const char * p;
8568 char c;
8569
8570 for (p = name + 2; (c = *p); p++)
8571 {
8572 if (c == 1 || c == 2)
8573 {
8574 if (c == 1 && p == name + 2)
8575 /* A fake symbol. */
8576 return TRUE;
8577
8578 /* FIXME: We are being paranoid here and treating symbols like
8579 L0^Bfoo as if there were non-local, on the grounds that the
8580 assembler will never generate them. But can any symbol
8581 containing an ASCII value in the range 1-31 ever be anything
8582 other than some kind of local ? */
8583 ret = TRUE;
8584 }
8585
8586 if (! ISDIGIT (c))
8587 {
8588 ret = FALSE;
8589 break;
8590 }
8591 }
8592 return ret;
8593 }
8594
8595 return FALSE;
8596 }
8597
8598 alent *
8599 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8600 asymbol *symbol ATTRIBUTE_UNUSED)
8601 {
8602 abort ();
8603 return NULL;
8604 }
8605
8606 bfd_boolean
8607 _bfd_elf_set_arch_mach (bfd *abfd,
8608 enum bfd_architecture arch,
8609 unsigned long machine)
8610 {
8611 /* If this isn't the right architecture for this backend, and this
8612 isn't the generic backend, fail. */
8613 if (arch != get_elf_backend_data (abfd)->arch
8614 && arch != bfd_arch_unknown
8615 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8616 return FALSE;
8617
8618 return bfd_default_set_arch_mach (abfd, arch, machine);
8619 }
8620
8621 /* Find the nearest line to a particular section and offset,
8622 for error reporting. */
8623
8624 bfd_boolean
8625 _bfd_elf_find_nearest_line (bfd *abfd,
8626 asymbol **symbols,
8627 asection *section,
8628 bfd_vma offset,
8629 const char **filename_ptr,
8630 const char **functionname_ptr,
8631 unsigned int *line_ptr,
8632 unsigned int *discriminator_ptr)
8633 {
8634 bfd_boolean found;
8635
8636 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8637 filename_ptr, functionname_ptr,
8638 line_ptr, discriminator_ptr,
8639 dwarf_debug_sections, 0,
8640 &elf_tdata (abfd)->dwarf2_find_line_info)
8641 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8642 filename_ptr, functionname_ptr,
8643 line_ptr))
8644 {
8645 if (!*functionname_ptr)
8646 _bfd_elf_find_function (abfd, symbols, section, offset,
8647 *filename_ptr ? NULL : filename_ptr,
8648 functionname_ptr);
8649 return TRUE;
8650 }
8651
8652 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8653 &found, filename_ptr,
8654 functionname_ptr, line_ptr,
8655 &elf_tdata (abfd)->line_info))
8656 return FALSE;
8657 if (found && (*functionname_ptr || *line_ptr))
8658 return TRUE;
8659
8660 if (symbols == NULL)
8661 return FALSE;
8662
8663 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8664 filename_ptr, functionname_ptr))
8665 return FALSE;
8666
8667 *line_ptr = 0;
8668 return TRUE;
8669 }
8670
8671 /* Find the line for a symbol. */
8672
8673 bfd_boolean
8674 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8675 const char **filename_ptr, unsigned int *line_ptr)
8676 {
8677 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8678 filename_ptr, NULL, line_ptr, NULL,
8679 dwarf_debug_sections, 0,
8680 &elf_tdata (abfd)->dwarf2_find_line_info);
8681 }
8682
8683 /* After a call to bfd_find_nearest_line, successive calls to
8684 bfd_find_inliner_info can be used to get source information about
8685 each level of function inlining that terminated at the address
8686 passed to bfd_find_nearest_line. Currently this is only supported
8687 for DWARF2 with appropriate DWARF3 extensions. */
8688
8689 bfd_boolean
8690 _bfd_elf_find_inliner_info (bfd *abfd,
8691 const char **filename_ptr,
8692 const char **functionname_ptr,
8693 unsigned int *line_ptr)
8694 {
8695 bfd_boolean found;
8696 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8697 functionname_ptr, line_ptr,
8698 & elf_tdata (abfd)->dwarf2_find_line_info);
8699 return found;
8700 }
8701
8702 int
8703 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8704 {
8705 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8706 int ret = bed->s->sizeof_ehdr;
8707
8708 if (!bfd_link_relocatable (info))
8709 {
8710 bfd_size_type phdr_size = elf_program_header_size (abfd);
8711
8712 if (phdr_size == (bfd_size_type) -1)
8713 {
8714 struct elf_segment_map *m;
8715
8716 phdr_size = 0;
8717 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8718 phdr_size += bed->s->sizeof_phdr;
8719
8720 if (phdr_size == 0)
8721 phdr_size = get_program_header_size (abfd, info);
8722 }
8723
8724 elf_program_header_size (abfd) = phdr_size;
8725 ret += phdr_size;
8726 }
8727
8728 return ret;
8729 }
8730
8731 bfd_boolean
8732 _bfd_elf_set_section_contents (bfd *abfd,
8733 sec_ptr section,
8734 const void *location,
8735 file_ptr offset,
8736 bfd_size_type count)
8737 {
8738 Elf_Internal_Shdr *hdr;
8739 file_ptr pos;
8740
8741 if (! abfd->output_has_begun
8742 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8743 return FALSE;
8744
8745 if (!count)
8746 return TRUE;
8747
8748 hdr = &elf_section_data (section)->this_hdr;
8749 if (hdr->sh_offset == (file_ptr) -1)
8750 {
8751 /* We must compress this section. Write output to the buffer. */
8752 unsigned char *contents = hdr->contents;
8753 if ((offset + count) > hdr->sh_size
8754 || (section->flags & SEC_ELF_COMPRESS) == 0
8755 || contents == NULL)
8756 abort ();
8757 memcpy (contents + offset, location, count);
8758 return TRUE;
8759 }
8760 pos = hdr->sh_offset + offset;
8761 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8762 || bfd_bwrite (location, count, abfd) != count)
8763 return FALSE;
8764
8765 return TRUE;
8766 }
8767
8768 void
8769 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8770 arelent *cache_ptr ATTRIBUTE_UNUSED,
8771 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8772 {
8773 abort ();
8774 }
8775
8776 /* Try to convert a non-ELF reloc into an ELF one. */
8777
8778 bfd_boolean
8779 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8780 {
8781 /* Check whether we really have an ELF howto. */
8782
8783 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8784 {
8785 bfd_reloc_code_real_type code;
8786 reloc_howto_type *howto;
8787
8788 /* Alien reloc: Try to determine its type to replace it with an
8789 equivalent ELF reloc. */
8790
8791 if (areloc->howto->pc_relative)
8792 {
8793 switch (areloc->howto->bitsize)
8794 {
8795 case 8:
8796 code = BFD_RELOC_8_PCREL;
8797 break;
8798 case 12:
8799 code = BFD_RELOC_12_PCREL;
8800 break;
8801 case 16:
8802 code = BFD_RELOC_16_PCREL;
8803 break;
8804 case 24:
8805 code = BFD_RELOC_24_PCREL;
8806 break;
8807 case 32:
8808 code = BFD_RELOC_32_PCREL;
8809 break;
8810 case 64:
8811 code = BFD_RELOC_64_PCREL;
8812 break;
8813 default:
8814 goto fail;
8815 }
8816
8817 howto = bfd_reloc_type_lookup (abfd, code);
8818
8819 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8820 {
8821 if (howto->pcrel_offset)
8822 areloc->addend += areloc->address;
8823 else
8824 areloc->addend -= areloc->address; /* addend is unsigned!! */
8825 }
8826 }
8827 else
8828 {
8829 switch (areloc->howto->bitsize)
8830 {
8831 case 8:
8832 code = BFD_RELOC_8;
8833 break;
8834 case 14:
8835 code = BFD_RELOC_14;
8836 break;
8837 case 16:
8838 code = BFD_RELOC_16;
8839 break;
8840 case 26:
8841 code = BFD_RELOC_26;
8842 break;
8843 case 32:
8844 code = BFD_RELOC_32;
8845 break;
8846 case 64:
8847 code = BFD_RELOC_64;
8848 break;
8849 default:
8850 goto fail;
8851 }
8852
8853 howto = bfd_reloc_type_lookup (abfd, code);
8854 }
8855
8856 if (howto)
8857 areloc->howto = howto;
8858 else
8859 goto fail;
8860 }
8861
8862 return TRUE;
8863
8864 fail:
8865 _bfd_error_handler
8866 /* xgettext:c-format */
8867 (_("%B: unsupported relocation type %s"),
8868 abfd, areloc->howto->name);
8869 bfd_set_error (bfd_error_bad_value);
8870 return FALSE;
8871 }
8872
8873 bfd_boolean
8874 _bfd_elf_close_and_cleanup (bfd *abfd)
8875 {
8876 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8877 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8878 {
8879 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8880 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8881 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8882 }
8883
8884 return _bfd_generic_close_and_cleanup (abfd);
8885 }
8886
8887 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8888 in the relocation's offset. Thus we cannot allow any sort of sanity
8889 range-checking to interfere. There is nothing else to do in processing
8890 this reloc. */
8891
8892 bfd_reloc_status_type
8893 _bfd_elf_rel_vtable_reloc_fn
8894 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8895 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8896 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8897 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8898 {
8899 return bfd_reloc_ok;
8900 }
8901 \f
8902 /* Elf core file support. Much of this only works on native
8903 toolchains, since we rely on knowing the
8904 machine-dependent procfs structure in order to pick
8905 out details about the corefile. */
8906
8907 #ifdef HAVE_SYS_PROCFS_H
8908 /* Needed for new procfs interface on sparc-solaris. */
8909 # define _STRUCTURED_PROC 1
8910 # include <sys/procfs.h>
8911 #endif
8912
8913 /* Return a PID that identifies a "thread" for threaded cores, or the
8914 PID of the main process for non-threaded cores. */
8915
8916 static int
8917 elfcore_make_pid (bfd *abfd)
8918 {
8919 int pid;
8920
8921 pid = elf_tdata (abfd)->core->lwpid;
8922 if (pid == 0)
8923 pid = elf_tdata (abfd)->core->pid;
8924
8925 return pid;
8926 }
8927
8928 /* If there isn't a section called NAME, make one, using
8929 data from SECT. Note, this function will generate a
8930 reference to NAME, so you shouldn't deallocate or
8931 overwrite it. */
8932
8933 static bfd_boolean
8934 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8935 {
8936 asection *sect2;
8937
8938 if (bfd_get_section_by_name (abfd, name) != NULL)
8939 return TRUE;
8940
8941 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8942 if (sect2 == NULL)
8943 return FALSE;
8944
8945 sect2->size = sect->size;
8946 sect2->filepos = sect->filepos;
8947 sect2->alignment_power = sect->alignment_power;
8948 return TRUE;
8949 }
8950
8951 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8952 actually creates up to two pseudosections:
8953 - For the single-threaded case, a section named NAME, unless
8954 such a section already exists.
8955 - For the multi-threaded case, a section named "NAME/PID", where
8956 PID is elfcore_make_pid (abfd).
8957 Both pseudosections have identical contents. */
8958 bfd_boolean
8959 _bfd_elfcore_make_pseudosection (bfd *abfd,
8960 char *name,
8961 size_t size,
8962 ufile_ptr filepos)
8963 {
8964 char buf[100];
8965 char *threaded_name;
8966 size_t len;
8967 asection *sect;
8968
8969 /* Build the section name. */
8970
8971 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8972 len = strlen (buf) + 1;
8973 threaded_name = (char *) bfd_alloc (abfd, len);
8974 if (threaded_name == NULL)
8975 return FALSE;
8976 memcpy (threaded_name, buf, len);
8977
8978 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8979 SEC_HAS_CONTENTS);
8980 if (sect == NULL)
8981 return FALSE;
8982 sect->size = size;
8983 sect->filepos = filepos;
8984 sect->alignment_power = 2;
8985
8986 return elfcore_maybe_make_sect (abfd, name, sect);
8987 }
8988
8989 /* prstatus_t exists on:
8990 solaris 2.5+
8991 linux 2.[01] + glibc
8992 unixware 4.2
8993 */
8994
8995 #if defined (HAVE_PRSTATUS_T)
8996
8997 static bfd_boolean
8998 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8999 {
9000 size_t size;
9001 int offset;
9002
9003 if (note->descsz == sizeof (prstatus_t))
9004 {
9005 prstatus_t prstat;
9006
9007 size = sizeof (prstat.pr_reg);
9008 offset = offsetof (prstatus_t, pr_reg);
9009 memcpy (&prstat, note->descdata, sizeof (prstat));
9010
9011 /* Do not overwrite the core signal if it
9012 has already been set by another thread. */
9013 if (elf_tdata (abfd)->core->signal == 0)
9014 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9015 if (elf_tdata (abfd)->core->pid == 0)
9016 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9017
9018 /* pr_who exists on:
9019 solaris 2.5+
9020 unixware 4.2
9021 pr_who doesn't exist on:
9022 linux 2.[01]
9023 */
9024 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9025 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9026 #else
9027 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9028 #endif
9029 }
9030 #if defined (HAVE_PRSTATUS32_T)
9031 else if (note->descsz == sizeof (prstatus32_t))
9032 {
9033 /* 64-bit host, 32-bit corefile */
9034 prstatus32_t prstat;
9035
9036 size = sizeof (prstat.pr_reg);
9037 offset = offsetof (prstatus32_t, pr_reg);
9038 memcpy (&prstat, note->descdata, sizeof (prstat));
9039
9040 /* Do not overwrite the core signal if it
9041 has already been set by another thread. */
9042 if (elf_tdata (abfd)->core->signal == 0)
9043 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9044 if (elf_tdata (abfd)->core->pid == 0)
9045 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9046
9047 /* pr_who exists on:
9048 solaris 2.5+
9049 unixware 4.2
9050 pr_who doesn't exist on:
9051 linux 2.[01]
9052 */
9053 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9054 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9055 #else
9056 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9057 #endif
9058 }
9059 #endif /* HAVE_PRSTATUS32_T */
9060 else
9061 {
9062 /* Fail - we don't know how to handle any other
9063 note size (ie. data object type). */
9064 return TRUE;
9065 }
9066
9067 /* Make a ".reg/999" section and a ".reg" section. */
9068 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9069 size, note->descpos + offset);
9070 }
9071 #endif /* defined (HAVE_PRSTATUS_T) */
9072
9073 /* Create a pseudosection containing the exact contents of NOTE. */
9074 static bfd_boolean
9075 elfcore_make_note_pseudosection (bfd *abfd,
9076 char *name,
9077 Elf_Internal_Note *note)
9078 {
9079 return _bfd_elfcore_make_pseudosection (abfd, name,
9080 note->descsz, note->descpos);
9081 }
9082
9083 /* There isn't a consistent prfpregset_t across platforms,
9084 but it doesn't matter, because we don't have to pick this
9085 data structure apart. */
9086
9087 static bfd_boolean
9088 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9089 {
9090 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9091 }
9092
9093 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9094 type of NT_PRXFPREG. Just include the whole note's contents
9095 literally. */
9096
9097 static bfd_boolean
9098 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9099 {
9100 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9101 }
9102
9103 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9104 with a note type of NT_X86_XSTATE. Just include the whole note's
9105 contents literally. */
9106
9107 static bfd_boolean
9108 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9109 {
9110 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9111 }
9112
9113 static bfd_boolean
9114 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9115 {
9116 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9117 }
9118
9119 static bfd_boolean
9120 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9121 {
9122 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9123 }
9124
9125 static bfd_boolean
9126 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9127 {
9128 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9129 }
9130
9131 static bfd_boolean
9132 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9133 {
9134 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9135 }
9136
9137 static bfd_boolean
9138 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9139 {
9140 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9141 }
9142
9143 static bfd_boolean
9144 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9145 {
9146 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9147 }
9148
9149 static bfd_boolean
9150 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9151 {
9152 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9153 }
9154
9155 static bfd_boolean
9156 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9157 {
9158 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9159 }
9160
9161 static bfd_boolean
9162 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9163 {
9164 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9165 }
9166
9167 static bfd_boolean
9168 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9169 {
9170 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9171 }
9172
9173 static bfd_boolean
9174 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9175 {
9176 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9177 }
9178
9179 static bfd_boolean
9180 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9181 {
9182 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9183 }
9184
9185 static bfd_boolean
9186 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9187 {
9188 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9189 }
9190
9191 static bfd_boolean
9192 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9193 {
9194 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9195 }
9196
9197 static bfd_boolean
9198 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9199 {
9200 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9201 }
9202
9203 static bfd_boolean
9204 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9205 {
9206 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9207 }
9208
9209 static bfd_boolean
9210 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9211 {
9212 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9213 }
9214
9215 static bfd_boolean
9216 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9217 {
9218 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9219 }
9220
9221 static bfd_boolean
9222 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9223 {
9224 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9225 }
9226
9227 #if defined (HAVE_PRPSINFO_T)
9228 typedef prpsinfo_t elfcore_psinfo_t;
9229 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9230 typedef prpsinfo32_t elfcore_psinfo32_t;
9231 #endif
9232 #endif
9233
9234 #if defined (HAVE_PSINFO_T)
9235 typedef psinfo_t elfcore_psinfo_t;
9236 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9237 typedef psinfo32_t elfcore_psinfo32_t;
9238 #endif
9239 #endif
9240
9241 /* return a malloc'ed copy of a string at START which is at
9242 most MAX bytes long, possibly without a terminating '\0'.
9243 the copy will always have a terminating '\0'. */
9244
9245 char *
9246 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9247 {
9248 char *dups;
9249 char *end = (char *) memchr (start, '\0', max);
9250 size_t len;
9251
9252 if (end == NULL)
9253 len = max;
9254 else
9255 len = end - start;
9256
9257 dups = (char *) bfd_alloc (abfd, len + 1);
9258 if (dups == NULL)
9259 return NULL;
9260
9261 memcpy (dups, start, len);
9262 dups[len] = '\0';
9263
9264 return dups;
9265 }
9266
9267 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9268 static bfd_boolean
9269 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9270 {
9271 if (note->descsz == sizeof (elfcore_psinfo_t))
9272 {
9273 elfcore_psinfo_t psinfo;
9274
9275 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9276
9277 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9278 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9279 #endif
9280 elf_tdata (abfd)->core->program
9281 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9282 sizeof (psinfo.pr_fname));
9283
9284 elf_tdata (abfd)->core->command
9285 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9286 sizeof (psinfo.pr_psargs));
9287 }
9288 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9289 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9290 {
9291 /* 64-bit host, 32-bit corefile */
9292 elfcore_psinfo32_t psinfo;
9293
9294 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9295
9296 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9297 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9298 #endif
9299 elf_tdata (abfd)->core->program
9300 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9301 sizeof (psinfo.pr_fname));
9302
9303 elf_tdata (abfd)->core->command
9304 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9305 sizeof (psinfo.pr_psargs));
9306 }
9307 #endif
9308
9309 else
9310 {
9311 /* Fail - we don't know how to handle any other
9312 note size (ie. data object type). */
9313 return TRUE;
9314 }
9315
9316 /* Note that for some reason, a spurious space is tacked
9317 onto the end of the args in some (at least one anyway)
9318 implementations, so strip it off if it exists. */
9319
9320 {
9321 char *command = elf_tdata (abfd)->core->command;
9322 int n = strlen (command);
9323
9324 if (0 < n && command[n - 1] == ' ')
9325 command[n - 1] = '\0';
9326 }
9327
9328 return TRUE;
9329 }
9330 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9331
9332 #if defined (HAVE_PSTATUS_T)
9333 static bfd_boolean
9334 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9335 {
9336 if (note->descsz == sizeof (pstatus_t)
9337 #if defined (HAVE_PXSTATUS_T)
9338 || note->descsz == sizeof (pxstatus_t)
9339 #endif
9340 )
9341 {
9342 pstatus_t pstat;
9343
9344 memcpy (&pstat, note->descdata, sizeof (pstat));
9345
9346 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9347 }
9348 #if defined (HAVE_PSTATUS32_T)
9349 else if (note->descsz == sizeof (pstatus32_t))
9350 {
9351 /* 64-bit host, 32-bit corefile */
9352 pstatus32_t pstat;
9353
9354 memcpy (&pstat, note->descdata, sizeof (pstat));
9355
9356 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9357 }
9358 #endif
9359 /* Could grab some more details from the "representative"
9360 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9361 NT_LWPSTATUS note, presumably. */
9362
9363 return TRUE;
9364 }
9365 #endif /* defined (HAVE_PSTATUS_T) */
9366
9367 #if defined (HAVE_LWPSTATUS_T)
9368 static bfd_boolean
9369 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9370 {
9371 lwpstatus_t lwpstat;
9372 char buf[100];
9373 char *name;
9374 size_t len;
9375 asection *sect;
9376
9377 if (note->descsz != sizeof (lwpstat)
9378 #if defined (HAVE_LWPXSTATUS_T)
9379 && note->descsz != sizeof (lwpxstatus_t)
9380 #endif
9381 )
9382 return TRUE;
9383
9384 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9385
9386 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9387 /* Do not overwrite the core signal if it has already been set by
9388 another thread. */
9389 if (elf_tdata (abfd)->core->signal == 0)
9390 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9391
9392 /* Make a ".reg/999" section. */
9393
9394 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9395 len = strlen (buf) + 1;
9396 name = bfd_alloc (abfd, len);
9397 if (name == NULL)
9398 return FALSE;
9399 memcpy (name, buf, len);
9400
9401 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9402 if (sect == NULL)
9403 return FALSE;
9404
9405 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9406 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9407 sect->filepos = note->descpos
9408 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9409 #endif
9410
9411 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9412 sect->size = sizeof (lwpstat.pr_reg);
9413 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9414 #endif
9415
9416 sect->alignment_power = 2;
9417
9418 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9419 return FALSE;
9420
9421 /* Make a ".reg2/999" section */
9422
9423 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9424 len = strlen (buf) + 1;
9425 name = bfd_alloc (abfd, len);
9426 if (name == NULL)
9427 return FALSE;
9428 memcpy (name, buf, len);
9429
9430 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9431 if (sect == NULL)
9432 return FALSE;
9433
9434 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9435 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9436 sect->filepos = note->descpos
9437 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9438 #endif
9439
9440 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9441 sect->size = sizeof (lwpstat.pr_fpreg);
9442 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9443 #endif
9444
9445 sect->alignment_power = 2;
9446
9447 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9448 }
9449 #endif /* defined (HAVE_LWPSTATUS_T) */
9450
9451 static bfd_boolean
9452 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9453 {
9454 char buf[30];
9455 char *name;
9456 size_t len;
9457 asection *sect;
9458 int type;
9459 int is_active_thread;
9460 bfd_vma base_addr;
9461
9462 if (note->descsz < 728)
9463 return TRUE;
9464
9465 if (! CONST_STRNEQ (note->namedata, "win32"))
9466 return TRUE;
9467
9468 type = bfd_get_32 (abfd, note->descdata);
9469
9470 switch (type)
9471 {
9472 case 1 /* NOTE_INFO_PROCESS */:
9473 /* FIXME: need to add ->core->command. */
9474 /* process_info.pid */
9475 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9476 /* process_info.signal */
9477 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9478 break;
9479
9480 case 2 /* NOTE_INFO_THREAD */:
9481 /* Make a ".reg/999" section. */
9482 /* thread_info.tid */
9483 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9484
9485 len = strlen (buf) + 1;
9486 name = (char *) bfd_alloc (abfd, len);
9487 if (name == NULL)
9488 return FALSE;
9489
9490 memcpy (name, buf, len);
9491
9492 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9493 if (sect == NULL)
9494 return FALSE;
9495
9496 /* sizeof (thread_info.thread_context) */
9497 sect->size = 716;
9498 /* offsetof (thread_info.thread_context) */
9499 sect->filepos = note->descpos + 12;
9500 sect->alignment_power = 2;
9501
9502 /* thread_info.is_active_thread */
9503 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9504
9505 if (is_active_thread)
9506 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9507 return FALSE;
9508 break;
9509
9510 case 3 /* NOTE_INFO_MODULE */:
9511 /* Make a ".module/xxxxxxxx" section. */
9512 /* module_info.base_address */
9513 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9514 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9515
9516 len = strlen (buf) + 1;
9517 name = (char *) bfd_alloc (abfd, len);
9518 if (name == NULL)
9519 return FALSE;
9520
9521 memcpy (name, buf, len);
9522
9523 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9524
9525 if (sect == NULL)
9526 return FALSE;
9527
9528 sect->size = note->descsz;
9529 sect->filepos = note->descpos;
9530 sect->alignment_power = 2;
9531 break;
9532
9533 default:
9534 return TRUE;
9535 }
9536
9537 return TRUE;
9538 }
9539
9540 static bfd_boolean
9541 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9542 {
9543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9544
9545 switch (note->type)
9546 {
9547 default:
9548 return TRUE;
9549
9550 case NT_PRSTATUS:
9551 if (bed->elf_backend_grok_prstatus)
9552 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9553 return TRUE;
9554 #if defined (HAVE_PRSTATUS_T)
9555 return elfcore_grok_prstatus (abfd, note);
9556 #else
9557 return TRUE;
9558 #endif
9559
9560 #if defined (HAVE_PSTATUS_T)
9561 case NT_PSTATUS:
9562 return elfcore_grok_pstatus (abfd, note);
9563 #endif
9564
9565 #if defined (HAVE_LWPSTATUS_T)
9566 case NT_LWPSTATUS:
9567 return elfcore_grok_lwpstatus (abfd, note);
9568 #endif
9569
9570 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9571 return elfcore_grok_prfpreg (abfd, note);
9572
9573 case NT_WIN32PSTATUS:
9574 return elfcore_grok_win32pstatus (abfd, note);
9575
9576 case NT_PRXFPREG: /* Linux SSE extension */
9577 if (note->namesz == 6
9578 && strcmp (note->namedata, "LINUX") == 0)
9579 return elfcore_grok_prxfpreg (abfd, note);
9580 else
9581 return TRUE;
9582
9583 case NT_X86_XSTATE: /* Linux XSAVE extension */
9584 if (note->namesz == 6
9585 && strcmp (note->namedata, "LINUX") == 0)
9586 return elfcore_grok_xstatereg (abfd, note);
9587 else
9588 return TRUE;
9589
9590 case NT_PPC_VMX:
9591 if (note->namesz == 6
9592 && strcmp (note->namedata, "LINUX") == 0)
9593 return elfcore_grok_ppc_vmx (abfd, note);
9594 else
9595 return TRUE;
9596
9597 case NT_PPC_VSX:
9598 if (note->namesz == 6
9599 && strcmp (note->namedata, "LINUX") == 0)
9600 return elfcore_grok_ppc_vsx (abfd, note);
9601 else
9602 return TRUE;
9603
9604 case NT_S390_HIGH_GPRS:
9605 if (note->namesz == 6
9606 && strcmp (note->namedata, "LINUX") == 0)
9607 return elfcore_grok_s390_high_gprs (abfd, note);
9608 else
9609 return TRUE;
9610
9611 case NT_S390_TIMER:
9612 if (note->namesz == 6
9613 && strcmp (note->namedata, "LINUX") == 0)
9614 return elfcore_grok_s390_timer (abfd, note);
9615 else
9616 return TRUE;
9617
9618 case NT_S390_TODCMP:
9619 if (note->namesz == 6
9620 && strcmp (note->namedata, "LINUX") == 0)
9621 return elfcore_grok_s390_todcmp (abfd, note);
9622 else
9623 return TRUE;
9624
9625 case NT_S390_TODPREG:
9626 if (note->namesz == 6
9627 && strcmp (note->namedata, "LINUX") == 0)
9628 return elfcore_grok_s390_todpreg (abfd, note);
9629 else
9630 return TRUE;
9631
9632 case NT_S390_CTRS:
9633 if (note->namesz == 6
9634 && strcmp (note->namedata, "LINUX") == 0)
9635 return elfcore_grok_s390_ctrs (abfd, note);
9636 else
9637 return TRUE;
9638
9639 case NT_S390_PREFIX:
9640 if (note->namesz == 6
9641 && strcmp (note->namedata, "LINUX") == 0)
9642 return elfcore_grok_s390_prefix (abfd, note);
9643 else
9644 return TRUE;
9645
9646 case NT_S390_LAST_BREAK:
9647 if (note->namesz == 6
9648 && strcmp (note->namedata, "LINUX") == 0)
9649 return elfcore_grok_s390_last_break (abfd, note);
9650 else
9651 return TRUE;
9652
9653 case NT_S390_SYSTEM_CALL:
9654 if (note->namesz == 6
9655 && strcmp (note->namedata, "LINUX") == 0)
9656 return elfcore_grok_s390_system_call (abfd, note);
9657 else
9658 return TRUE;
9659
9660 case NT_S390_TDB:
9661 if (note->namesz == 6
9662 && strcmp (note->namedata, "LINUX") == 0)
9663 return elfcore_grok_s390_tdb (abfd, note);
9664 else
9665 return TRUE;
9666
9667 case NT_S390_VXRS_LOW:
9668 if (note->namesz == 6
9669 && strcmp (note->namedata, "LINUX") == 0)
9670 return elfcore_grok_s390_vxrs_low (abfd, note);
9671 else
9672 return TRUE;
9673
9674 case NT_S390_VXRS_HIGH:
9675 if (note->namesz == 6
9676 && strcmp (note->namedata, "LINUX") == 0)
9677 return elfcore_grok_s390_vxrs_high (abfd, note);
9678 else
9679 return TRUE;
9680
9681 case NT_S390_GS_CB:
9682 if (note->namesz == 6
9683 && strcmp (note->namedata, "LINUX") == 0)
9684 return elfcore_grok_s390_gs_bc (abfd, note);
9685 else
9686 return TRUE;
9687
9688 case NT_S390_GS_BC:
9689 if (note->namesz == 6
9690 && strcmp (note->namedata, "LINUX") == 0)
9691 return elfcore_grok_s390_gs_cb (abfd, note);
9692 else
9693 return TRUE;
9694
9695 case NT_ARM_VFP:
9696 if (note->namesz == 6
9697 && strcmp (note->namedata, "LINUX") == 0)
9698 return elfcore_grok_arm_vfp (abfd, note);
9699 else
9700 return TRUE;
9701
9702 case NT_ARM_TLS:
9703 if (note->namesz == 6
9704 && strcmp (note->namedata, "LINUX") == 0)
9705 return elfcore_grok_aarch_tls (abfd, note);
9706 else
9707 return TRUE;
9708
9709 case NT_ARM_HW_BREAK:
9710 if (note->namesz == 6
9711 && strcmp (note->namedata, "LINUX") == 0)
9712 return elfcore_grok_aarch_hw_break (abfd, note);
9713 else
9714 return TRUE;
9715
9716 case NT_ARM_HW_WATCH:
9717 if (note->namesz == 6
9718 && strcmp (note->namedata, "LINUX") == 0)
9719 return elfcore_grok_aarch_hw_watch (abfd, note);
9720 else
9721 return TRUE;
9722
9723 case NT_PRPSINFO:
9724 case NT_PSINFO:
9725 if (bed->elf_backend_grok_psinfo)
9726 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9727 return TRUE;
9728 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9729 return elfcore_grok_psinfo (abfd, note);
9730 #else
9731 return TRUE;
9732 #endif
9733
9734 case NT_AUXV:
9735 {
9736 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9737 SEC_HAS_CONTENTS);
9738
9739 if (sect == NULL)
9740 return FALSE;
9741 sect->size = note->descsz;
9742 sect->filepos = note->descpos;
9743 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9744
9745 return TRUE;
9746 }
9747
9748 case NT_FILE:
9749 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9750 note);
9751
9752 case NT_SIGINFO:
9753 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9754 note);
9755
9756 }
9757 }
9758
9759 static bfd_boolean
9760 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9761 {
9762 struct bfd_build_id* build_id;
9763
9764 if (note->descsz == 0)
9765 return FALSE;
9766
9767 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9768 if (build_id == NULL)
9769 return FALSE;
9770
9771 build_id->size = note->descsz;
9772 memcpy (build_id->data, note->descdata, note->descsz);
9773 abfd->build_id = build_id;
9774
9775 return TRUE;
9776 }
9777
9778 static bfd_boolean
9779 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9780 {
9781 switch (note->type)
9782 {
9783 default:
9784 return TRUE;
9785
9786 case NT_GNU_PROPERTY_TYPE_0:
9787 return _bfd_elf_parse_gnu_properties (abfd, note);
9788
9789 case NT_GNU_BUILD_ID:
9790 return elfobj_grok_gnu_build_id (abfd, note);
9791 }
9792 }
9793
9794 static bfd_boolean
9795 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9796 {
9797 struct sdt_note *cur =
9798 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9799 + note->descsz);
9800
9801 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9802 cur->size = (bfd_size_type) note->descsz;
9803 memcpy (cur->data, note->descdata, note->descsz);
9804
9805 elf_tdata (abfd)->sdt_note_head = cur;
9806
9807 return TRUE;
9808 }
9809
9810 static bfd_boolean
9811 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 switch (note->type)
9814 {
9815 case NT_STAPSDT:
9816 return elfobj_grok_stapsdt_note_1 (abfd, note);
9817
9818 default:
9819 return TRUE;
9820 }
9821 }
9822
9823 static bfd_boolean
9824 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9825 {
9826 size_t offset;
9827
9828 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9829 {
9830 case ELFCLASS32:
9831 if (note->descsz < 108)
9832 return FALSE;
9833 break;
9834
9835 case ELFCLASS64:
9836 if (note->descsz < 120)
9837 return FALSE;
9838 break;
9839
9840 default:
9841 return FALSE;
9842 }
9843
9844 /* Check for version 1 in pr_version. */
9845 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9846 return FALSE;
9847 offset = 4;
9848
9849 /* Skip over pr_psinfosz. */
9850 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9851 offset += 4;
9852 else
9853 {
9854 offset += 4; /* Padding before pr_psinfosz. */
9855 offset += 8;
9856 }
9857
9858 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9859 elf_tdata (abfd)->core->program
9860 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9861 offset += 17;
9862
9863 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9864 elf_tdata (abfd)->core->command
9865 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9866 offset += 81;
9867
9868 /* Padding before pr_pid. */
9869 offset += 2;
9870
9871 /* The pr_pid field was added in version "1a". */
9872 if (note->descsz < offset + 4)
9873 return TRUE;
9874
9875 elf_tdata (abfd)->core->pid
9876 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9877
9878 return TRUE;
9879 }
9880
9881 static bfd_boolean
9882 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9883 {
9884 size_t offset;
9885 size_t size;
9886
9887 /* Check for version 1 in pr_version. */
9888 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9889 return FALSE;
9890 offset = 4;
9891
9892 /* Skip over pr_statussz. */
9893 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9894 {
9895 case ELFCLASS32:
9896 offset += 4;
9897 break;
9898
9899 case ELFCLASS64:
9900 offset += 4; /* Padding before pr_statussz. */
9901 offset += 8;
9902 break;
9903
9904 default:
9905 return FALSE;
9906 }
9907
9908 /* Extract size of pr_reg from pr_gregsetsz. */
9909 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9910 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9911 else
9912 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9913
9914 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9915 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9916 offset += 4 * 2;
9917 else
9918 offset += 8 * 2;
9919
9920 /* Skip over pr_osreldate. */
9921 offset += 4;
9922
9923 /* Read signal from pr_cursig. */
9924 if (elf_tdata (abfd)->core->signal == 0)
9925 elf_tdata (abfd)->core->signal
9926 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9927 offset += 4;
9928
9929 /* Read TID from pr_pid. */
9930 elf_tdata (abfd)->core->lwpid
9931 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9932 offset += 4;
9933
9934 /* Padding before pr_reg. */
9935 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
9936 offset += 4;
9937
9938 /* Make a ".reg/999" section and a ".reg" section. */
9939 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9940 size, note->descpos + offset);
9941 }
9942
9943 static bfd_boolean
9944 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9945 {
9946 switch (note->type)
9947 {
9948 case NT_PRSTATUS:
9949 return elfcore_grok_freebsd_prstatus (abfd, note);
9950
9951 case NT_FPREGSET:
9952 return elfcore_grok_prfpreg (abfd, note);
9953
9954 case NT_PRPSINFO:
9955 return elfcore_grok_freebsd_psinfo (abfd, note);
9956
9957 case NT_FREEBSD_THRMISC:
9958 if (note->namesz == 8)
9959 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9960 else
9961 return TRUE;
9962
9963 case NT_FREEBSD_PROCSTAT_AUXV:
9964 {
9965 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9966 SEC_HAS_CONTENTS);
9967
9968 if (sect == NULL)
9969 return FALSE;
9970 sect->size = note->descsz - 4;
9971 sect->filepos = note->descpos + 4;
9972 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9973
9974 return TRUE;
9975 }
9976
9977 case NT_X86_XSTATE:
9978 if (note->namesz == 8)
9979 return elfcore_grok_xstatereg (abfd, note);
9980 else
9981 return TRUE;
9982
9983 case NT_FREEBSD_PTLWPINFO:
9984 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
9985 note);
9986
9987 default:
9988 return TRUE;
9989 }
9990 }
9991
9992 static bfd_boolean
9993 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9994 {
9995 char *cp;
9996
9997 cp = strchr (note->namedata, '@');
9998 if (cp != NULL)
9999 {
10000 *lwpidp = atoi(cp + 1);
10001 return TRUE;
10002 }
10003 return FALSE;
10004 }
10005
10006 static bfd_boolean
10007 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10008 {
10009 /* Signal number at offset 0x08. */
10010 elf_tdata (abfd)->core->signal
10011 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10012
10013 /* Process ID at offset 0x50. */
10014 elf_tdata (abfd)->core->pid
10015 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10016
10017 /* Command name at 0x7c (max 32 bytes, including nul). */
10018 elf_tdata (abfd)->core->command
10019 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10020
10021 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10022 note);
10023 }
10024
10025 static bfd_boolean
10026 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10027 {
10028 int lwp;
10029
10030 if (elfcore_netbsd_get_lwpid (note, &lwp))
10031 elf_tdata (abfd)->core->lwpid = lwp;
10032
10033 if (note->type == NT_NETBSDCORE_PROCINFO)
10034 {
10035 /* NetBSD-specific core "procinfo". Note that we expect to
10036 find this note before any of the others, which is fine,
10037 since the kernel writes this note out first when it
10038 creates a core file. */
10039
10040 return elfcore_grok_netbsd_procinfo (abfd, note);
10041 }
10042
10043 /* As of Jan 2002 there are no other machine-independent notes
10044 defined for NetBSD core files. If the note type is less
10045 than the start of the machine-dependent note types, we don't
10046 understand it. */
10047
10048 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10049 return TRUE;
10050
10051
10052 switch (bfd_get_arch (abfd))
10053 {
10054 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10055 PT_GETFPREGS == mach+2. */
10056
10057 case bfd_arch_alpha:
10058 case bfd_arch_sparc:
10059 switch (note->type)
10060 {
10061 case NT_NETBSDCORE_FIRSTMACH+0:
10062 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10063
10064 case NT_NETBSDCORE_FIRSTMACH+2:
10065 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10066
10067 default:
10068 return TRUE;
10069 }
10070
10071 /* On all other arch's, PT_GETREGS == mach+1 and
10072 PT_GETFPREGS == mach+3. */
10073
10074 default:
10075 switch (note->type)
10076 {
10077 case NT_NETBSDCORE_FIRSTMACH+1:
10078 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10079
10080 case NT_NETBSDCORE_FIRSTMACH+3:
10081 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10082
10083 default:
10084 return TRUE;
10085 }
10086 }
10087 /* NOTREACHED */
10088 }
10089
10090 static bfd_boolean
10091 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10092 {
10093 /* Signal number at offset 0x08. */
10094 elf_tdata (abfd)->core->signal
10095 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10096
10097 /* Process ID at offset 0x20. */
10098 elf_tdata (abfd)->core->pid
10099 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10100
10101 /* Command name at 0x48 (max 32 bytes, including nul). */
10102 elf_tdata (abfd)->core->command
10103 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10104
10105 return TRUE;
10106 }
10107
10108 static bfd_boolean
10109 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10110 {
10111 if (note->type == NT_OPENBSD_PROCINFO)
10112 return elfcore_grok_openbsd_procinfo (abfd, note);
10113
10114 if (note->type == NT_OPENBSD_REGS)
10115 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10116
10117 if (note->type == NT_OPENBSD_FPREGS)
10118 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10119
10120 if (note->type == NT_OPENBSD_XFPREGS)
10121 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10122
10123 if (note->type == NT_OPENBSD_AUXV)
10124 {
10125 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10126 SEC_HAS_CONTENTS);
10127
10128 if (sect == NULL)
10129 return FALSE;
10130 sect->size = note->descsz;
10131 sect->filepos = note->descpos;
10132 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10133
10134 return TRUE;
10135 }
10136
10137 if (note->type == NT_OPENBSD_WCOOKIE)
10138 {
10139 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10140 SEC_HAS_CONTENTS);
10141
10142 if (sect == NULL)
10143 return FALSE;
10144 sect->size = note->descsz;
10145 sect->filepos = note->descpos;
10146 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10147
10148 return TRUE;
10149 }
10150
10151 return TRUE;
10152 }
10153
10154 static bfd_boolean
10155 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10156 {
10157 void *ddata = note->descdata;
10158 char buf[100];
10159 char *name;
10160 asection *sect;
10161 short sig;
10162 unsigned flags;
10163
10164 /* nto_procfs_status 'pid' field is at offset 0. */
10165 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10166
10167 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10168 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10169
10170 /* nto_procfs_status 'flags' field is at offset 8. */
10171 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10172
10173 /* nto_procfs_status 'what' field is at offset 14. */
10174 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10175 {
10176 elf_tdata (abfd)->core->signal = sig;
10177 elf_tdata (abfd)->core->lwpid = *tid;
10178 }
10179
10180 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10181 do not come from signals so we make sure we set the current
10182 thread just in case. */
10183 if (flags & 0x00000080)
10184 elf_tdata (abfd)->core->lwpid = *tid;
10185
10186 /* Make a ".qnx_core_status/%d" section. */
10187 sprintf (buf, ".qnx_core_status/%ld", *tid);
10188
10189 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10190 if (name == NULL)
10191 return FALSE;
10192 strcpy (name, buf);
10193
10194 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10195 if (sect == NULL)
10196 return FALSE;
10197
10198 sect->size = note->descsz;
10199 sect->filepos = note->descpos;
10200 sect->alignment_power = 2;
10201
10202 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10203 }
10204
10205 static bfd_boolean
10206 elfcore_grok_nto_regs (bfd *abfd,
10207 Elf_Internal_Note *note,
10208 long tid,
10209 char *base)
10210 {
10211 char buf[100];
10212 char *name;
10213 asection *sect;
10214
10215 /* Make a "(base)/%d" section. */
10216 sprintf (buf, "%s/%ld", base, tid);
10217
10218 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10219 if (name == NULL)
10220 return FALSE;
10221 strcpy (name, buf);
10222
10223 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10224 if (sect == NULL)
10225 return FALSE;
10226
10227 sect->size = note->descsz;
10228 sect->filepos = note->descpos;
10229 sect->alignment_power = 2;
10230
10231 /* This is the current thread. */
10232 if (elf_tdata (abfd)->core->lwpid == tid)
10233 return elfcore_maybe_make_sect (abfd, base, sect);
10234
10235 return TRUE;
10236 }
10237
10238 #define BFD_QNT_CORE_INFO 7
10239 #define BFD_QNT_CORE_STATUS 8
10240 #define BFD_QNT_CORE_GREG 9
10241 #define BFD_QNT_CORE_FPREG 10
10242
10243 static bfd_boolean
10244 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10245 {
10246 /* Every GREG section has a STATUS section before it. Store the
10247 tid from the previous call to pass down to the next gregs
10248 function. */
10249 static long tid = 1;
10250
10251 switch (note->type)
10252 {
10253 case BFD_QNT_CORE_INFO:
10254 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10255 case BFD_QNT_CORE_STATUS:
10256 return elfcore_grok_nto_status (abfd, note, &tid);
10257 case BFD_QNT_CORE_GREG:
10258 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10259 case BFD_QNT_CORE_FPREG:
10260 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10261 default:
10262 return TRUE;
10263 }
10264 }
10265
10266 static bfd_boolean
10267 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10268 {
10269 char *name;
10270 asection *sect;
10271 size_t len;
10272
10273 /* Use note name as section name. */
10274 len = note->namesz;
10275 name = (char *) bfd_alloc (abfd, len);
10276 if (name == NULL)
10277 return FALSE;
10278 memcpy (name, note->namedata, len);
10279 name[len - 1] = '\0';
10280
10281 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10282 if (sect == NULL)
10283 return FALSE;
10284
10285 sect->size = note->descsz;
10286 sect->filepos = note->descpos;
10287 sect->alignment_power = 1;
10288
10289 return TRUE;
10290 }
10291
10292 /* Function: elfcore_write_note
10293
10294 Inputs:
10295 buffer to hold note, and current size of buffer
10296 name of note
10297 type of note
10298 data for note
10299 size of data for note
10300
10301 Writes note to end of buffer. ELF64 notes are written exactly as
10302 for ELF32, despite the current (as of 2006) ELF gabi specifying
10303 that they ought to have 8-byte namesz and descsz field, and have
10304 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10305
10306 Return:
10307 Pointer to realloc'd buffer, *BUFSIZ updated. */
10308
10309 char *
10310 elfcore_write_note (bfd *abfd,
10311 char *buf,
10312 int *bufsiz,
10313 const char *name,
10314 int type,
10315 const void *input,
10316 int size)
10317 {
10318 Elf_External_Note *xnp;
10319 size_t namesz;
10320 size_t newspace;
10321 char *dest;
10322
10323 namesz = 0;
10324 if (name != NULL)
10325 namesz = strlen (name) + 1;
10326
10327 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10328
10329 buf = (char *) realloc (buf, *bufsiz + newspace);
10330 if (buf == NULL)
10331 return buf;
10332 dest = buf + *bufsiz;
10333 *bufsiz += newspace;
10334 xnp = (Elf_External_Note *) dest;
10335 H_PUT_32 (abfd, namesz, xnp->namesz);
10336 H_PUT_32 (abfd, size, xnp->descsz);
10337 H_PUT_32 (abfd, type, xnp->type);
10338 dest = xnp->name;
10339 if (name != NULL)
10340 {
10341 memcpy (dest, name, namesz);
10342 dest += namesz;
10343 while (namesz & 3)
10344 {
10345 *dest++ = '\0';
10346 ++namesz;
10347 }
10348 }
10349 memcpy (dest, input, size);
10350 dest += size;
10351 while (size & 3)
10352 {
10353 *dest++ = '\0';
10354 ++size;
10355 }
10356 return buf;
10357 }
10358
10359 char *
10360 elfcore_write_prpsinfo (bfd *abfd,
10361 char *buf,
10362 int *bufsiz,
10363 const char *fname,
10364 const char *psargs)
10365 {
10366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10367
10368 if (bed->elf_backend_write_core_note != NULL)
10369 {
10370 char *ret;
10371 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10372 NT_PRPSINFO, fname, psargs);
10373 if (ret != NULL)
10374 return ret;
10375 }
10376
10377 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10378 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10379 if (bed->s->elfclass == ELFCLASS32)
10380 {
10381 #if defined (HAVE_PSINFO32_T)
10382 psinfo32_t data;
10383 int note_type = NT_PSINFO;
10384 #else
10385 prpsinfo32_t data;
10386 int note_type = NT_PRPSINFO;
10387 #endif
10388
10389 memset (&data, 0, sizeof (data));
10390 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10391 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10392 return elfcore_write_note (abfd, buf, bufsiz,
10393 "CORE", note_type, &data, sizeof (data));
10394 }
10395 else
10396 #endif
10397 {
10398 #if defined (HAVE_PSINFO_T)
10399 psinfo_t data;
10400 int note_type = NT_PSINFO;
10401 #else
10402 prpsinfo_t data;
10403 int note_type = NT_PRPSINFO;
10404 #endif
10405
10406 memset (&data, 0, sizeof (data));
10407 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10408 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10409 return elfcore_write_note (abfd, buf, bufsiz,
10410 "CORE", note_type, &data, sizeof (data));
10411 }
10412 #endif /* PSINFO_T or PRPSINFO_T */
10413
10414 free (buf);
10415 return NULL;
10416 }
10417
10418 char *
10419 elfcore_write_linux_prpsinfo32
10420 (bfd *abfd, char *buf, int *bufsiz,
10421 const struct elf_internal_linux_prpsinfo *prpsinfo)
10422 {
10423 struct elf_external_linux_prpsinfo32 data;
10424
10425 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10426 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10427 &data, sizeof (data));
10428 }
10429
10430 char *
10431 elfcore_write_linux_prpsinfo64
10432 (bfd *abfd, char *buf, int *bufsiz,
10433 const struct elf_internal_linux_prpsinfo *prpsinfo)
10434 {
10435 struct elf_external_linux_prpsinfo64 data;
10436
10437 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10438 return elfcore_write_note (abfd, buf, bufsiz,
10439 "CORE", NT_PRPSINFO, &data, sizeof (data));
10440 }
10441
10442 char *
10443 elfcore_write_prstatus (bfd *abfd,
10444 char *buf,
10445 int *bufsiz,
10446 long pid,
10447 int cursig,
10448 const void *gregs)
10449 {
10450 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10451
10452 if (bed->elf_backend_write_core_note != NULL)
10453 {
10454 char *ret;
10455 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10456 NT_PRSTATUS,
10457 pid, cursig, gregs);
10458 if (ret != NULL)
10459 return ret;
10460 }
10461
10462 #if defined (HAVE_PRSTATUS_T)
10463 #if defined (HAVE_PRSTATUS32_T)
10464 if (bed->s->elfclass == ELFCLASS32)
10465 {
10466 prstatus32_t prstat;
10467
10468 memset (&prstat, 0, sizeof (prstat));
10469 prstat.pr_pid = pid;
10470 prstat.pr_cursig = cursig;
10471 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10472 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10473 NT_PRSTATUS, &prstat, sizeof (prstat));
10474 }
10475 else
10476 #endif
10477 {
10478 prstatus_t prstat;
10479
10480 memset (&prstat, 0, sizeof (prstat));
10481 prstat.pr_pid = pid;
10482 prstat.pr_cursig = cursig;
10483 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10484 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10485 NT_PRSTATUS, &prstat, sizeof (prstat));
10486 }
10487 #endif /* HAVE_PRSTATUS_T */
10488
10489 free (buf);
10490 return NULL;
10491 }
10492
10493 #if defined (HAVE_LWPSTATUS_T)
10494 char *
10495 elfcore_write_lwpstatus (bfd *abfd,
10496 char *buf,
10497 int *bufsiz,
10498 long pid,
10499 int cursig,
10500 const void *gregs)
10501 {
10502 lwpstatus_t lwpstat;
10503 const char *note_name = "CORE";
10504
10505 memset (&lwpstat, 0, sizeof (lwpstat));
10506 lwpstat.pr_lwpid = pid >> 16;
10507 lwpstat.pr_cursig = cursig;
10508 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10509 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10510 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10511 #if !defined(gregs)
10512 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10513 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10514 #else
10515 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10516 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10517 #endif
10518 #endif
10519 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10520 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10521 }
10522 #endif /* HAVE_LWPSTATUS_T */
10523
10524 #if defined (HAVE_PSTATUS_T)
10525 char *
10526 elfcore_write_pstatus (bfd *abfd,
10527 char *buf,
10528 int *bufsiz,
10529 long pid,
10530 int cursig ATTRIBUTE_UNUSED,
10531 const void *gregs ATTRIBUTE_UNUSED)
10532 {
10533 const char *note_name = "CORE";
10534 #if defined (HAVE_PSTATUS32_T)
10535 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10536
10537 if (bed->s->elfclass == ELFCLASS32)
10538 {
10539 pstatus32_t pstat;
10540
10541 memset (&pstat, 0, sizeof (pstat));
10542 pstat.pr_pid = pid & 0xffff;
10543 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10544 NT_PSTATUS, &pstat, sizeof (pstat));
10545 return buf;
10546 }
10547 else
10548 #endif
10549 {
10550 pstatus_t pstat;
10551
10552 memset (&pstat, 0, sizeof (pstat));
10553 pstat.pr_pid = pid & 0xffff;
10554 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10555 NT_PSTATUS, &pstat, sizeof (pstat));
10556 return buf;
10557 }
10558 }
10559 #endif /* HAVE_PSTATUS_T */
10560
10561 char *
10562 elfcore_write_prfpreg (bfd *abfd,
10563 char *buf,
10564 int *bufsiz,
10565 const void *fpregs,
10566 int size)
10567 {
10568 const char *note_name = "CORE";
10569 return elfcore_write_note (abfd, buf, bufsiz,
10570 note_name, NT_FPREGSET, fpregs, size);
10571 }
10572
10573 char *
10574 elfcore_write_prxfpreg (bfd *abfd,
10575 char *buf,
10576 int *bufsiz,
10577 const void *xfpregs,
10578 int size)
10579 {
10580 char *note_name = "LINUX";
10581 return elfcore_write_note (abfd, buf, bufsiz,
10582 note_name, NT_PRXFPREG, xfpregs, size);
10583 }
10584
10585 char *
10586 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10587 const void *xfpregs, int size)
10588 {
10589 char *note_name;
10590 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10591 note_name = "FreeBSD";
10592 else
10593 note_name = "LINUX";
10594 return elfcore_write_note (abfd, buf, bufsiz,
10595 note_name, NT_X86_XSTATE, xfpregs, size);
10596 }
10597
10598 char *
10599 elfcore_write_ppc_vmx (bfd *abfd,
10600 char *buf,
10601 int *bufsiz,
10602 const void *ppc_vmx,
10603 int size)
10604 {
10605 char *note_name = "LINUX";
10606 return elfcore_write_note (abfd, buf, bufsiz,
10607 note_name, NT_PPC_VMX, ppc_vmx, size);
10608 }
10609
10610 char *
10611 elfcore_write_ppc_vsx (bfd *abfd,
10612 char *buf,
10613 int *bufsiz,
10614 const void *ppc_vsx,
10615 int size)
10616 {
10617 char *note_name = "LINUX";
10618 return elfcore_write_note (abfd, buf, bufsiz,
10619 note_name, NT_PPC_VSX, ppc_vsx, size);
10620 }
10621
10622 static char *
10623 elfcore_write_s390_high_gprs (bfd *abfd,
10624 char *buf,
10625 int *bufsiz,
10626 const void *s390_high_gprs,
10627 int size)
10628 {
10629 char *note_name = "LINUX";
10630 return elfcore_write_note (abfd, buf, bufsiz,
10631 note_name, NT_S390_HIGH_GPRS,
10632 s390_high_gprs, size);
10633 }
10634
10635 char *
10636 elfcore_write_s390_timer (bfd *abfd,
10637 char *buf,
10638 int *bufsiz,
10639 const void *s390_timer,
10640 int size)
10641 {
10642 char *note_name = "LINUX";
10643 return elfcore_write_note (abfd, buf, bufsiz,
10644 note_name, NT_S390_TIMER, s390_timer, size);
10645 }
10646
10647 char *
10648 elfcore_write_s390_todcmp (bfd *abfd,
10649 char *buf,
10650 int *bufsiz,
10651 const void *s390_todcmp,
10652 int size)
10653 {
10654 char *note_name = "LINUX";
10655 return elfcore_write_note (abfd, buf, bufsiz,
10656 note_name, NT_S390_TODCMP, s390_todcmp, size);
10657 }
10658
10659 char *
10660 elfcore_write_s390_todpreg (bfd *abfd,
10661 char *buf,
10662 int *bufsiz,
10663 const void *s390_todpreg,
10664 int size)
10665 {
10666 char *note_name = "LINUX";
10667 return elfcore_write_note (abfd, buf, bufsiz,
10668 note_name, NT_S390_TODPREG, s390_todpreg, size);
10669 }
10670
10671 char *
10672 elfcore_write_s390_ctrs (bfd *abfd,
10673 char *buf,
10674 int *bufsiz,
10675 const void *s390_ctrs,
10676 int size)
10677 {
10678 char *note_name = "LINUX";
10679 return elfcore_write_note (abfd, buf, bufsiz,
10680 note_name, NT_S390_CTRS, s390_ctrs, size);
10681 }
10682
10683 char *
10684 elfcore_write_s390_prefix (bfd *abfd,
10685 char *buf,
10686 int *bufsiz,
10687 const void *s390_prefix,
10688 int size)
10689 {
10690 char *note_name = "LINUX";
10691 return elfcore_write_note (abfd, buf, bufsiz,
10692 note_name, NT_S390_PREFIX, s390_prefix, size);
10693 }
10694
10695 char *
10696 elfcore_write_s390_last_break (bfd *abfd,
10697 char *buf,
10698 int *bufsiz,
10699 const void *s390_last_break,
10700 int size)
10701 {
10702 char *note_name = "LINUX";
10703 return elfcore_write_note (abfd, buf, bufsiz,
10704 note_name, NT_S390_LAST_BREAK,
10705 s390_last_break, size);
10706 }
10707
10708 char *
10709 elfcore_write_s390_system_call (bfd *abfd,
10710 char *buf,
10711 int *bufsiz,
10712 const void *s390_system_call,
10713 int size)
10714 {
10715 char *note_name = "LINUX";
10716 return elfcore_write_note (abfd, buf, bufsiz,
10717 note_name, NT_S390_SYSTEM_CALL,
10718 s390_system_call, size);
10719 }
10720
10721 char *
10722 elfcore_write_s390_tdb (bfd *abfd,
10723 char *buf,
10724 int *bufsiz,
10725 const void *s390_tdb,
10726 int size)
10727 {
10728 char *note_name = "LINUX";
10729 return elfcore_write_note (abfd, buf, bufsiz,
10730 note_name, NT_S390_TDB, s390_tdb, size);
10731 }
10732
10733 char *
10734 elfcore_write_s390_vxrs_low (bfd *abfd,
10735 char *buf,
10736 int *bufsiz,
10737 const void *s390_vxrs_low,
10738 int size)
10739 {
10740 char *note_name = "LINUX";
10741 return elfcore_write_note (abfd, buf, bufsiz,
10742 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10743 }
10744
10745 char *
10746 elfcore_write_s390_vxrs_high (bfd *abfd,
10747 char *buf,
10748 int *bufsiz,
10749 const void *s390_vxrs_high,
10750 int size)
10751 {
10752 char *note_name = "LINUX";
10753 return elfcore_write_note (abfd, buf, bufsiz,
10754 note_name, NT_S390_VXRS_HIGH,
10755 s390_vxrs_high, size);
10756 }
10757
10758 char *
10759 elfcore_write_s390_gs_cb (bfd *abfd,
10760 char *buf,
10761 int *bufsiz,
10762 const void *s390_gs_cb,
10763 int size)
10764 {
10765 char *note_name = "LINUX";
10766 return elfcore_write_note (abfd, buf, bufsiz,
10767 note_name, NT_S390_GS_CB,
10768 s390_gs_cb, size);
10769 }
10770
10771 char *
10772 elfcore_write_s390_gs_bc (bfd *abfd,
10773 char *buf,
10774 int *bufsiz,
10775 const void *s390_gs_bc,
10776 int size)
10777 {
10778 char *note_name = "LINUX";
10779 return elfcore_write_note (abfd, buf, bufsiz,
10780 note_name, NT_S390_GS_BC,
10781 s390_gs_bc, size);
10782 }
10783
10784 char *
10785 elfcore_write_arm_vfp (bfd *abfd,
10786 char *buf,
10787 int *bufsiz,
10788 const void *arm_vfp,
10789 int size)
10790 {
10791 char *note_name = "LINUX";
10792 return elfcore_write_note (abfd, buf, bufsiz,
10793 note_name, NT_ARM_VFP, arm_vfp, size);
10794 }
10795
10796 char *
10797 elfcore_write_aarch_tls (bfd *abfd,
10798 char *buf,
10799 int *bufsiz,
10800 const void *aarch_tls,
10801 int size)
10802 {
10803 char *note_name = "LINUX";
10804 return elfcore_write_note (abfd, buf, bufsiz,
10805 note_name, NT_ARM_TLS, aarch_tls, size);
10806 }
10807
10808 char *
10809 elfcore_write_aarch_hw_break (bfd *abfd,
10810 char *buf,
10811 int *bufsiz,
10812 const void *aarch_hw_break,
10813 int size)
10814 {
10815 char *note_name = "LINUX";
10816 return elfcore_write_note (abfd, buf, bufsiz,
10817 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10818 }
10819
10820 char *
10821 elfcore_write_aarch_hw_watch (bfd *abfd,
10822 char *buf,
10823 int *bufsiz,
10824 const void *aarch_hw_watch,
10825 int size)
10826 {
10827 char *note_name = "LINUX";
10828 return elfcore_write_note (abfd, buf, bufsiz,
10829 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10830 }
10831
10832 char *
10833 elfcore_write_register_note (bfd *abfd,
10834 char *buf,
10835 int *bufsiz,
10836 const char *section,
10837 const void *data,
10838 int size)
10839 {
10840 if (strcmp (section, ".reg2") == 0)
10841 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10842 if (strcmp (section, ".reg-xfp") == 0)
10843 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10844 if (strcmp (section, ".reg-xstate") == 0)
10845 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10846 if (strcmp (section, ".reg-ppc-vmx") == 0)
10847 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10848 if (strcmp (section, ".reg-ppc-vsx") == 0)
10849 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10850 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10851 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10852 if (strcmp (section, ".reg-s390-timer") == 0)
10853 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10854 if (strcmp (section, ".reg-s390-todcmp") == 0)
10855 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10856 if (strcmp (section, ".reg-s390-todpreg") == 0)
10857 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10858 if (strcmp (section, ".reg-s390-ctrs") == 0)
10859 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10860 if (strcmp (section, ".reg-s390-prefix") == 0)
10861 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10862 if (strcmp (section, ".reg-s390-last-break") == 0)
10863 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10864 if (strcmp (section, ".reg-s390-system-call") == 0)
10865 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10866 if (strcmp (section, ".reg-s390-tdb") == 0)
10867 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10868 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10869 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10870 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10871 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10872 if (strcmp (section, ".reg-s390-gs-cb") == 0)
10873 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
10874 if (strcmp (section, ".reg-s390-gs-bc") == 0)
10875 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
10876 if (strcmp (section, ".reg-arm-vfp") == 0)
10877 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10878 if (strcmp (section, ".reg-aarch-tls") == 0)
10879 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10880 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10881 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10882 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10883 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10884 return NULL;
10885 }
10886
10887 static bfd_boolean
10888 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10889 {
10890 char *p;
10891
10892 p = buf;
10893 while (p < buf + size)
10894 {
10895 /* FIXME: bad alignment assumption. */
10896 Elf_External_Note *xnp = (Elf_External_Note *) p;
10897 Elf_Internal_Note in;
10898
10899 if (offsetof (Elf_External_Note, name) > buf - p + size)
10900 return FALSE;
10901
10902 in.type = H_GET_32 (abfd, xnp->type);
10903
10904 in.namesz = H_GET_32 (abfd, xnp->namesz);
10905 in.namedata = xnp->name;
10906 if (in.namesz > buf - in.namedata + size)
10907 return FALSE;
10908
10909 in.descsz = H_GET_32 (abfd, xnp->descsz);
10910 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10911 in.descpos = offset + (in.descdata - buf);
10912 if (in.descsz != 0
10913 && (in.descdata >= buf + size
10914 || in.descsz > buf - in.descdata + size))
10915 return FALSE;
10916
10917 switch (bfd_get_format (abfd))
10918 {
10919 default:
10920 return TRUE;
10921
10922 case bfd_core:
10923 {
10924 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10925 struct
10926 {
10927 const char * string;
10928 size_t len;
10929 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10930 }
10931 grokers[] =
10932 {
10933 GROKER_ELEMENT ("", elfcore_grok_note),
10934 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10935 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10936 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10937 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10938 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10939 };
10940 #undef GROKER_ELEMENT
10941 int i;
10942
10943 for (i = ARRAY_SIZE (grokers); i--;)
10944 {
10945 if (in.namesz >= grokers[i].len
10946 && strncmp (in.namedata, grokers[i].string,
10947 grokers[i].len) == 0)
10948 {
10949 if (! grokers[i].func (abfd, & in))
10950 return FALSE;
10951 break;
10952 }
10953 }
10954 break;
10955 }
10956
10957 case bfd_object:
10958 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10959 {
10960 if (! elfobj_grok_gnu_note (abfd, &in))
10961 return FALSE;
10962 }
10963 else if (in.namesz == sizeof "stapsdt"
10964 && strcmp (in.namedata, "stapsdt") == 0)
10965 {
10966 if (! elfobj_grok_stapsdt_note (abfd, &in))
10967 return FALSE;
10968 }
10969 break;
10970 }
10971
10972 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10973 }
10974
10975 return TRUE;
10976 }
10977
10978 static bfd_boolean
10979 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10980 {
10981 char *buf;
10982
10983 if (size <= 0)
10984 return TRUE;
10985
10986 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10987 return FALSE;
10988
10989 buf = (char *) bfd_malloc (size + 1);
10990 if (buf == NULL)
10991 return FALSE;
10992
10993 /* PR 17512: file: ec08f814
10994 0-termintate the buffer so that string searches will not overflow. */
10995 buf[size] = 0;
10996
10997 if (bfd_bread (buf, size, abfd) != size
10998 || !elf_parse_notes (abfd, buf, size, offset))
10999 {
11000 free (buf);
11001 return FALSE;
11002 }
11003
11004 free (buf);
11005 return TRUE;
11006 }
11007 \f
11008 /* Providing external access to the ELF program header table. */
11009
11010 /* Return an upper bound on the number of bytes required to store a
11011 copy of ABFD's program header table entries. Return -1 if an error
11012 occurs; bfd_get_error will return an appropriate code. */
11013
11014 long
11015 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11016 {
11017 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11018 {
11019 bfd_set_error (bfd_error_wrong_format);
11020 return -1;
11021 }
11022
11023 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11024 }
11025
11026 /* Copy ABFD's program header table entries to *PHDRS. The entries
11027 will be stored as an array of Elf_Internal_Phdr structures, as
11028 defined in include/elf/internal.h. To find out how large the
11029 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11030
11031 Return the number of program header table entries read, or -1 if an
11032 error occurs; bfd_get_error will return an appropriate code. */
11033
11034 int
11035 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11036 {
11037 int num_phdrs;
11038
11039 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11040 {
11041 bfd_set_error (bfd_error_wrong_format);
11042 return -1;
11043 }
11044
11045 num_phdrs = elf_elfheader (abfd)->e_phnum;
11046 memcpy (phdrs, elf_tdata (abfd)->phdr,
11047 num_phdrs * sizeof (Elf_Internal_Phdr));
11048
11049 return num_phdrs;
11050 }
11051
11052 enum elf_reloc_type_class
11053 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11054 const asection *rel_sec ATTRIBUTE_UNUSED,
11055 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11056 {
11057 return reloc_class_normal;
11058 }
11059
11060 /* For RELA architectures, return the relocation value for a
11061 relocation against a local symbol. */
11062
11063 bfd_vma
11064 _bfd_elf_rela_local_sym (bfd *abfd,
11065 Elf_Internal_Sym *sym,
11066 asection **psec,
11067 Elf_Internal_Rela *rel)
11068 {
11069 asection *sec = *psec;
11070 bfd_vma relocation;
11071
11072 relocation = (sec->output_section->vma
11073 + sec->output_offset
11074 + sym->st_value);
11075 if ((sec->flags & SEC_MERGE)
11076 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11077 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11078 {
11079 rel->r_addend =
11080 _bfd_merged_section_offset (abfd, psec,
11081 elf_section_data (sec)->sec_info,
11082 sym->st_value + rel->r_addend);
11083 if (sec != *psec)
11084 {
11085 /* If we have changed the section, and our original section is
11086 marked with SEC_EXCLUDE, it means that the original
11087 SEC_MERGE section has been completely subsumed in some
11088 other SEC_MERGE section. In this case, we need to leave
11089 some info around for --emit-relocs. */
11090 if ((sec->flags & SEC_EXCLUDE) != 0)
11091 sec->kept_section = *psec;
11092 sec = *psec;
11093 }
11094 rel->r_addend -= relocation;
11095 rel->r_addend += sec->output_section->vma + sec->output_offset;
11096 }
11097 return relocation;
11098 }
11099
11100 bfd_vma
11101 _bfd_elf_rel_local_sym (bfd *abfd,
11102 Elf_Internal_Sym *sym,
11103 asection **psec,
11104 bfd_vma addend)
11105 {
11106 asection *sec = *psec;
11107
11108 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11109 return sym->st_value + addend;
11110
11111 return _bfd_merged_section_offset (abfd, psec,
11112 elf_section_data (sec)->sec_info,
11113 sym->st_value + addend);
11114 }
11115
11116 /* Adjust an address within a section. Given OFFSET within SEC, return
11117 the new offset within the section, based upon changes made to the
11118 section. Returns -1 if the offset is now invalid.
11119 The offset (in abnd out) is in target sized bytes, however big a
11120 byte may be. */
11121
11122 bfd_vma
11123 _bfd_elf_section_offset (bfd *abfd,
11124 struct bfd_link_info *info,
11125 asection *sec,
11126 bfd_vma offset)
11127 {
11128 switch (sec->sec_info_type)
11129 {
11130 case SEC_INFO_TYPE_STABS:
11131 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11132 offset);
11133 case SEC_INFO_TYPE_EH_FRAME:
11134 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11135
11136 default:
11137 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11138 {
11139 /* Reverse the offset. */
11140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11141 bfd_size_type address_size = bed->s->arch_size / 8;
11142
11143 /* address_size and sec->size are in octets. Convert
11144 to bytes before subtracting the original offset. */
11145 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11146 }
11147 return offset;
11148 }
11149 }
11150 \f
11151 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11152 reconstruct an ELF file by reading the segments out of remote memory
11153 based on the ELF file header at EHDR_VMA and the ELF program headers it
11154 points to. If not null, *LOADBASEP is filled in with the difference
11155 between the VMAs from which the segments were read, and the VMAs the
11156 file headers (and hence BFD's idea of each section's VMA) put them at.
11157
11158 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11159 remote memory at target address VMA into the local buffer at MYADDR; it
11160 should return zero on success or an `errno' code on failure. TEMPL must
11161 be a BFD for an ELF target with the word size and byte order found in
11162 the remote memory. */
11163
11164 bfd *
11165 bfd_elf_bfd_from_remote_memory
11166 (bfd *templ,
11167 bfd_vma ehdr_vma,
11168 bfd_size_type size,
11169 bfd_vma *loadbasep,
11170 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11171 {
11172 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11173 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11174 }
11175 \f
11176 long
11177 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11178 long symcount ATTRIBUTE_UNUSED,
11179 asymbol **syms ATTRIBUTE_UNUSED,
11180 long dynsymcount,
11181 asymbol **dynsyms,
11182 asymbol **ret)
11183 {
11184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11185 asection *relplt;
11186 asymbol *s;
11187 const char *relplt_name;
11188 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11189 arelent *p;
11190 long count, i, n;
11191 size_t size;
11192 Elf_Internal_Shdr *hdr;
11193 char *names;
11194 asection *plt;
11195
11196 *ret = NULL;
11197
11198 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11199 return 0;
11200
11201 if (dynsymcount <= 0)
11202 return 0;
11203
11204 if (!bed->plt_sym_val)
11205 return 0;
11206
11207 relplt_name = bed->relplt_name;
11208 if (relplt_name == NULL)
11209 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11210 relplt = bfd_get_section_by_name (abfd, relplt_name);
11211 if (relplt == NULL)
11212 return 0;
11213
11214 hdr = &elf_section_data (relplt)->this_hdr;
11215 if (hdr->sh_link != elf_dynsymtab (abfd)
11216 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11217 return 0;
11218
11219 plt = bfd_get_section_by_name (abfd, ".plt");
11220 if (plt == NULL)
11221 return 0;
11222
11223 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11224 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11225 return -1;
11226
11227 count = relplt->size / hdr->sh_entsize;
11228 size = count * sizeof (asymbol);
11229 p = relplt->relocation;
11230 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11231 {
11232 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11233 if (p->addend != 0)
11234 {
11235 #ifdef BFD64
11236 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11237 #else
11238 size += sizeof ("+0x") - 1 + 8;
11239 #endif
11240 }
11241 }
11242
11243 s = *ret = (asymbol *) bfd_malloc (size);
11244 if (s == NULL)
11245 return -1;
11246
11247 names = (char *) (s + count);
11248 p = relplt->relocation;
11249 n = 0;
11250 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11251 {
11252 size_t len;
11253 bfd_vma addr;
11254
11255 addr = bed->plt_sym_val (i, plt, p);
11256 if (addr == (bfd_vma) -1)
11257 continue;
11258
11259 *s = **p->sym_ptr_ptr;
11260 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11261 we are defining a symbol, ensure one of them is set. */
11262 if ((s->flags & BSF_LOCAL) == 0)
11263 s->flags |= BSF_GLOBAL;
11264 s->flags |= BSF_SYNTHETIC;
11265 s->section = plt;
11266 s->value = addr - plt->vma;
11267 s->name = names;
11268 s->udata.p = NULL;
11269 len = strlen ((*p->sym_ptr_ptr)->name);
11270 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11271 names += len;
11272 if (p->addend != 0)
11273 {
11274 char buf[30], *a;
11275
11276 memcpy (names, "+0x", sizeof ("+0x") - 1);
11277 names += sizeof ("+0x") - 1;
11278 bfd_sprintf_vma (abfd, buf, p->addend);
11279 for (a = buf; *a == '0'; ++a)
11280 ;
11281 len = strlen (a);
11282 memcpy (names, a, len);
11283 names += len;
11284 }
11285 memcpy (names, "@plt", sizeof ("@plt"));
11286 names += sizeof ("@plt");
11287 ++s, ++n;
11288 }
11289
11290 return n;
11291 }
11292
11293 /* It is only used by x86-64 so far.
11294 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11295 but current usage would allow all of _bfd_std_section to be zero. */
11296 static const asymbol lcomm_sym
11297 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11298 asection _bfd_elf_large_com_section
11299 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11300 "LARGE_COMMON", 0, SEC_IS_COMMON);
11301
11302 void
11303 _bfd_elf_post_process_headers (bfd * abfd,
11304 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11305 {
11306 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11307
11308 i_ehdrp = elf_elfheader (abfd);
11309
11310 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11311
11312 /* To make things simpler for the loader on Linux systems we set the
11313 osabi field to ELFOSABI_GNU if the binary contains symbols of
11314 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11315 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11316 && elf_tdata (abfd)->has_gnu_symbols)
11317 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11318 }
11319
11320
11321 /* Return TRUE for ELF symbol types that represent functions.
11322 This is the default version of this function, which is sufficient for
11323 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11324
11325 bfd_boolean
11326 _bfd_elf_is_function_type (unsigned int type)
11327 {
11328 return (type == STT_FUNC
11329 || type == STT_GNU_IFUNC);
11330 }
11331
11332 /* If the ELF symbol SYM might be a function in SEC, return the
11333 function size and set *CODE_OFF to the function's entry point,
11334 otherwise return zero. */
11335
11336 bfd_size_type
11337 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11338 bfd_vma *code_off)
11339 {
11340 bfd_size_type size;
11341
11342 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11343 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11344 || sym->section != sec)
11345 return 0;
11346
11347 *code_off = sym->value;
11348 size = 0;
11349 if (!(sym->flags & BSF_SYNTHETIC))
11350 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11351 if (size == 0)
11352 size = 1;
11353 return size;
11354 }