]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
5 2013
6 Free Software Foundation, Inc.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25
26 /*
27 SECTION
28 ELF backends
29
30 BFD support for ELF formats is being worked on.
31 Currently, the best supported back ends are for sparc and i386
32 (running svr4 or Solaris 2).
33
34 Documentation of the internals of the support code still needs
35 to be written. The code is changing quickly enough that we
36 haven't bothered yet. */
37
38 /* For sparc64-cross-sparc32. */
39 #define _SYSCALL32
40 #include "sysdep.h"
41 #include "bfd.h"
42 #include "bfdlink.h"
43 #include "libbfd.h"
44 #define ARCH_SIZE 0
45 #include "elf-bfd.h"
46 #include "libiberty.h"
47 #include "safe-ctype.h"
48 #include "elf-linux-psinfo.h"
49
50 #ifdef CORE_HEADER
51 #include CORE_HEADER
52 #endif
53
54 static int elf_sort_sections (const void *, const void *);
55 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
56 static bfd_boolean prep_headers (bfd *);
57 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
58 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
59 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
60 file_ptr offset);
61
62 /* Swap version information in and out. The version information is
63 currently size independent. If that ever changes, this code will
64 need to move into elfcode.h. */
65
66 /* Swap in a Verdef structure. */
67
68 void
69 _bfd_elf_swap_verdef_in (bfd *abfd,
70 const Elf_External_Verdef *src,
71 Elf_Internal_Verdef *dst)
72 {
73 dst->vd_version = H_GET_16 (abfd, src->vd_version);
74 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
75 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
76 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
77 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
78 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
79 dst->vd_next = H_GET_32 (abfd, src->vd_next);
80 }
81
82 /* Swap out a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_out (bfd *abfd,
86 const Elf_Internal_Verdef *src,
87 Elf_External_Verdef *dst)
88 {
89 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
90 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
91 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
92 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
93 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
94 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
95 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
96 }
97
98 /* Swap in a Verdaux structure. */
99
100 void
101 _bfd_elf_swap_verdaux_in (bfd *abfd,
102 const Elf_External_Verdaux *src,
103 Elf_Internal_Verdaux *dst)
104 {
105 dst->vda_name = H_GET_32 (abfd, src->vda_name);
106 dst->vda_next = H_GET_32 (abfd, src->vda_next);
107 }
108
109 /* Swap out a Verdaux structure. */
110
111 void
112 _bfd_elf_swap_verdaux_out (bfd *abfd,
113 const Elf_Internal_Verdaux *src,
114 Elf_External_Verdaux *dst)
115 {
116 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
117 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
118 }
119
120 /* Swap in a Verneed structure. */
121
122 void
123 _bfd_elf_swap_verneed_in (bfd *abfd,
124 const Elf_External_Verneed *src,
125 Elf_Internal_Verneed *dst)
126 {
127 dst->vn_version = H_GET_16 (abfd, src->vn_version);
128 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
129 dst->vn_file = H_GET_32 (abfd, src->vn_file);
130 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
131 dst->vn_next = H_GET_32 (abfd, src->vn_next);
132 }
133
134 /* Swap out a Verneed structure. */
135
136 void
137 _bfd_elf_swap_verneed_out (bfd *abfd,
138 const Elf_Internal_Verneed *src,
139 Elf_External_Verneed *dst)
140 {
141 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
142 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
143 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
144 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
145 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
146 }
147
148 /* Swap in a Vernaux structure. */
149
150 void
151 _bfd_elf_swap_vernaux_in (bfd *abfd,
152 const Elf_External_Vernaux *src,
153 Elf_Internal_Vernaux *dst)
154 {
155 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
156 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
157 dst->vna_other = H_GET_16 (abfd, src->vna_other);
158 dst->vna_name = H_GET_32 (abfd, src->vna_name);
159 dst->vna_next = H_GET_32 (abfd, src->vna_next);
160 }
161
162 /* Swap out a Vernaux structure. */
163
164 void
165 _bfd_elf_swap_vernaux_out (bfd *abfd,
166 const Elf_Internal_Vernaux *src,
167 Elf_External_Vernaux *dst)
168 {
169 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
170 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
171 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
172 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
173 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
174 }
175
176 /* Swap in a Versym structure. */
177
178 void
179 _bfd_elf_swap_versym_in (bfd *abfd,
180 const Elf_External_Versym *src,
181 Elf_Internal_Versym *dst)
182 {
183 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
184 }
185
186 /* Swap out a Versym structure. */
187
188 void
189 _bfd_elf_swap_versym_out (bfd *abfd,
190 const Elf_Internal_Versym *src,
191 Elf_External_Versym *dst)
192 {
193 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
194 }
195
196 /* Standard ELF hash function. Do not change this function; you will
197 cause invalid hash tables to be generated. */
198
199 unsigned long
200 bfd_elf_hash (const char *namearg)
201 {
202 const unsigned char *name = (const unsigned char *) namearg;
203 unsigned long h = 0;
204 unsigned long g;
205 int ch;
206
207 while ((ch = *name++) != '\0')
208 {
209 h = (h << 4) + ch;
210 if ((g = (h & 0xf0000000)) != 0)
211 {
212 h ^= g >> 24;
213 /* The ELF ABI says `h &= ~g', but this is equivalent in
214 this case and on some machines one insn instead of two. */
215 h ^= g;
216 }
217 }
218 return h & 0xffffffff;
219 }
220
221 /* DT_GNU_HASH hash function. Do not change this function; you will
222 cause invalid hash tables to be generated. */
223
224 unsigned long
225 bfd_elf_gnu_hash (const char *namearg)
226 {
227 const unsigned char *name = (const unsigned char *) namearg;
228 unsigned long h = 5381;
229 unsigned char ch;
230
231 while ((ch = *name++) != '\0')
232 h = (h << 5) + h + ch;
233 return h & 0xffffffff;
234 }
235
236 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
237 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
238 bfd_boolean
239 bfd_elf_allocate_object (bfd *abfd,
240 size_t object_size,
241 enum elf_target_id object_id)
242 {
243 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
244 abfd->tdata.any = bfd_zalloc (abfd, object_size);
245 if (abfd->tdata.any == NULL)
246 return FALSE;
247
248 elf_object_id (abfd) = object_id;
249 elf_program_header_size (abfd) = (bfd_size_type) -1;
250 return TRUE;
251 }
252
253
254 bfd_boolean
255 bfd_elf_make_object (bfd *abfd)
256 {
257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
258 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
259 bed->target_id);
260 }
261
262 bfd_boolean
263 bfd_elf_mkcorefile (bfd *abfd)
264 {
265 /* I think this can be done just like an object file. */
266 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
267 }
268
269 static char *
270 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
271 {
272 Elf_Internal_Shdr **i_shdrp;
273 bfd_byte *shstrtab = NULL;
274 file_ptr offset;
275 bfd_size_type shstrtabsize;
276
277 i_shdrp = elf_elfsections (abfd);
278 if (i_shdrp == 0
279 || shindex >= elf_numsections (abfd)
280 || i_shdrp[shindex] == 0)
281 return NULL;
282
283 shstrtab = i_shdrp[shindex]->contents;
284 if (shstrtab == NULL)
285 {
286 /* No cached one, attempt to read, and cache what we read. */
287 offset = i_shdrp[shindex]->sh_offset;
288 shstrtabsize = i_shdrp[shindex]->sh_size;
289
290 /* Allocate and clear an extra byte at the end, to prevent crashes
291 in case the string table is not terminated. */
292 if (shstrtabsize + 1 <= 1
293 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
294 || bfd_seek (abfd, offset, SEEK_SET) != 0)
295 shstrtab = NULL;
296 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
297 {
298 if (bfd_get_error () != bfd_error_system_call)
299 bfd_set_error (bfd_error_file_truncated);
300 shstrtab = NULL;
301 /* Once we've failed to read it, make sure we don't keep
302 trying. Otherwise, we'll keep allocating space for
303 the string table over and over. */
304 i_shdrp[shindex]->sh_size = 0;
305 }
306 else
307 shstrtab[shstrtabsize] = '\0';
308 i_shdrp[shindex]->contents = shstrtab;
309 }
310 return (char *) shstrtab;
311 }
312
313 char *
314 bfd_elf_string_from_elf_section (bfd *abfd,
315 unsigned int shindex,
316 unsigned int strindex)
317 {
318 Elf_Internal_Shdr *hdr;
319
320 if (strindex == 0)
321 return "";
322
323 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
324 return NULL;
325
326 hdr = elf_elfsections (abfd)[shindex];
327
328 if (hdr->contents == NULL
329 && bfd_elf_get_str_section (abfd, shindex) == NULL)
330 return NULL;
331
332 if (strindex >= hdr->sh_size)
333 {
334 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
335 (*_bfd_error_handler)
336 (_("%B: invalid string offset %u >= %lu for section `%s'"),
337 abfd, strindex, (unsigned long) hdr->sh_size,
338 (shindex == shstrndx && strindex == hdr->sh_name
339 ? ".shstrtab"
340 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
341 return NULL;
342 }
343
344 return ((char *) hdr->contents) + strindex;
345 }
346
347 /* Read and convert symbols to internal format.
348 SYMCOUNT specifies the number of symbols to read, starting from
349 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
350 are non-NULL, they are used to store the internal symbols, external
351 symbols, and symbol section index extensions, respectively.
352 Returns a pointer to the internal symbol buffer (malloced if necessary)
353 or NULL if there were no symbols or some kind of problem. */
354
355 Elf_Internal_Sym *
356 bfd_elf_get_elf_syms (bfd *ibfd,
357 Elf_Internal_Shdr *symtab_hdr,
358 size_t symcount,
359 size_t symoffset,
360 Elf_Internal_Sym *intsym_buf,
361 void *extsym_buf,
362 Elf_External_Sym_Shndx *extshndx_buf)
363 {
364 Elf_Internal_Shdr *shndx_hdr;
365 void *alloc_ext;
366 const bfd_byte *esym;
367 Elf_External_Sym_Shndx *alloc_extshndx;
368 Elf_External_Sym_Shndx *shndx;
369 Elf_Internal_Sym *alloc_intsym;
370 Elf_Internal_Sym *isym;
371 Elf_Internal_Sym *isymend;
372 const struct elf_backend_data *bed;
373 size_t extsym_size;
374 bfd_size_type amt;
375 file_ptr pos;
376
377 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
378 abort ();
379
380 if (symcount == 0)
381 return intsym_buf;
382
383 /* Normal syms might have section extension entries. */
384 shndx_hdr = NULL;
385 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
386 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
387
388 /* Read the symbols. */
389 alloc_ext = NULL;
390 alloc_extshndx = NULL;
391 alloc_intsym = NULL;
392 bed = get_elf_backend_data (ibfd);
393 extsym_size = bed->s->sizeof_sym;
394 amt = symcount * extsym_size;
395 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
396 if (extsym_buf == NULL)
397 {
398 alloc_ext = bfd_malloc2 (symcount, extsym_size);
399 extsym_buf = alloc_ext;
400 }
401 if (extsym_buf == NULL
402 || bfd_seek (ibfd, pos, SEEK_SET) != 0
403 || bfd_bread (extsym_buf, amt, ibfd) != amt)
404 {
405 intsym_buf = NULL;
406 goto out;
407 }
408
409 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
410 extshndx_buf = NULL;
411 else
412 {
413 amt = symcount * sizeof (Elf_External_Sym_Shndx);
414 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
415 if (extshndx_buf == NULL)
416 {
417 alloc_extshndx = (Elf_External_Sym_Shndx *)
418 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
419 extshndx_buf = alloc_extshndx;
420 }
421 if (extshndx_buf == NULL
422 || bfd_seek (ibfd, pos, SEEK_SET) != 0
423 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
424 {
425 intsym_buf = NULL;
426 goto out;
427 }
428 }
429
430 if (intsym_buf == NULL)
431 {
432 alloc_intsym = (Elf_Internal_Sym *)
433 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
434 intsym_buf = alloc_intsym;
435 if (intsym_buf == NULL)
436 goto out;
437 }
438
439 /* Convert the symbols to internal form. */
440 isymend = intsym_buf + symcount;
441 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
442 shndx = extshndx_buf;
443 isym < isymend;
444 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
445 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
446 {
447 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
448 (*_bfd_error_handler) (_("%B symbol number %lu references "
449 "nonexistent SHT_SYMTAB_SHNDX section"),
450 ibfd, (unsigned long) symoffset);
451 if (alloc_intsym != NULL)
452 free (alloc_intsym);
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 out:
458 if (alloc_ext != NULL)
459 free (alloc_ext);
460 if (alloc_extshndx != NULL)
461 free (alloc_extshndx);
462
463 return intsym_buf;
464 }
465
466 /* Look up a symbol name. */
467 const char *
468 bfd_elf_sym_name (bfd *abfd,
469 Elf_Internal_Shdr *symtab_hdr,
470 Elf_Internal_Sym *isym,
471 asection *sym_sec)
472 {
473 const char *name;
474 unsigned int iname = isym->st_name;
475 unsigned int shindex = symtab_hdr->sh_link;
476
477 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
478 /* Check for a bogus st_shndx to avoid crashing. */
479 && isym->st_shndx < elf_numsections (abfd))
480 {
481 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
482 shindex = elf_elfheader (abfd)->e_shstrndx;
483 }
484
485 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
486 if (name == NULL)
487 name = "(null)";
488 else if (sym_sec && *name == '\0')
489 name = bfd_section_name (abfd, sym_sec);
490
491 return name;
492 }
493
494 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
495 sections. The first element is the flags, the rest are section
496 pointers. */
497
498 typedef union elf_internal_group {
499 Elf_Internal_Shdr *shdr;
500 unsigned int flags;
501 } Elf_Internal_Group;
502
503 /* Return the name of the group signature symbol. Why isn't the
504 signature just a string? */
505
506 static const char *
507 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
508 {
509 Elf_Internal_Shdr *hdr;
510 unsigned char esym[sizeof (Elf64_External_Sym)];
511 Elf_External_Sym_Shndx eshndx;
512 Elf_Internal_Sym isym;
513
514 /* First we need to ensure the symbol table is available. Make sure
515 that it is a symbol table section. */
516 if (ghdr->sh_link >= elf_numsections (abfd))
517 return NULL;
518 hdr = elf_elfsections (abfd) [ghdr->sh_link];
519 if (hdr->sh_type != SHT_SYMTAB
520 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
521 return NULL;
522
523 /* Go read the symbol. */
524 hdr = &elf_tdata (abfd)->symtab_hdr;
525 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
526 &isym, esym, &eshndx) == NULL)
527 return NULL;
528
529 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
530 }
531
532 /* Set next_in_group list pointer, and group name for NEWSECT. */
533
534 static bfd_boolean
535 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
536 {
537 unsigned int num_group = elf_tdata (abfd)->num_group;
538
539 /* If num_group is zero, read in all SHT_GROUP sections. The count
540 is set to -1 if there are no SHT_GROUP sections. */
541 if (num_group == 0)
542 {
543 unsigned int i, shnum;
544
545 /* First count the number of groups. If we have a SHT_GROUP
546 section with just a flag word (ie. sh_size is 4), ignore it. */
547 shnum = elf_numsections (abfd);
548 num_group = 0;
549
550 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
551 ( (shdr)->sh_type == SHT_GROUP \
552 && (shdr)->sh_size >= minsize \
553 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
554 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
555
556 for (i = 0; i < shnum; i++)
557 {
558 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
559
560 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
561 num_group += 1;
562 }
563
564 if (num_group == 0)
565 {
566 num_group = (unsigned) -1;
567 elf_tdata (abfd)->num_group = num_group;
568 }
569 else
570 {
571 /* We keep a list of elf section headers for group sections,
572 so we can find them quickly. */
573 bfd_size_type amt;
574
575 elf_tdata (abfd)->num_group = num_group;
576 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
577 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
578 if (elf_tdata (abfd)->group_sect_ptr == NULL)
579 return FALSE;
580
581 num_group = 0;
582 for (i = 0; i < shnum; i++)
583 {
584 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
585
586 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
587 {
588 unsigned char *src;
589 Elf_Internal_Group *dest;
590
591 /* Add to list of sections. */
592 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
593 num_group += 1;
594
595 /* Read the raw contents. */
596 BFD_ASSERT (sizeof (*dest) >= 4);
597 amt = shdr->sh_size * sizeof (*dest) / 4;
598 shdr->contents = (unsigned char *)
599 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
600 /* PR binutils/4110: Handle corrupt group headers. */
601 if (shdr->contents == NULL)
602 {
603 _bfd_error_handler
604 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
605 bfd_set_error (bfd_error_bad_value);
606 return FALSE;
607 }
608
609 memset (shdr->contents, 0, amt);
610
611 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
612 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
613 != shdr->sh_size))
614 return FALSE;
615
616 /* Translate raw contents, a flag word followed by an
617 array of elf section indices all in target byte order,
618 to the flag word followed by an array of elf section
619 pointers. */
620 src = shdr->contents + shdr->sh_size;
621 dest = (Elf_Internal_Group *) (shdr->contents + amt);
622 while (1)
623 {
624 unsigned int idx;
625
626 src -= 4;
627 --dest;
628 idx = H_GET_32 (abfd, src);
629 if (src == shdr->contents)
630 {
631 dest->flags = idx;
632 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
633 shdr->bfd_section->flags
634 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
635 break;
636 }
637 if (idx >= shnum)
638 {
639 ((*_bfd_error_handler)
640 (_("%B: invalid SHT_GROUP entry"), abfd));
641 idx = 0;
642 }
643 dest->shdr = elf_elfsections (abfd)[idx];
644 }
645 }
646 }
647 }
648 }
649
650 if (num_group != (unsigned) -1)
651 {
652 unsigned int i;
653
654 for (i = 0; i < num_group; i++)
655 {
656 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
657 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
658 unsigned int n_elt = shdr->sh_size / 4;
659
660 /* Look through this group's sections to see if current
661 section is a member. */
662 while (--n_elt != 0)
663 if ((++idx)->shdr == hdr)
664 {
665 asection *s = NULL;
666
667 /* We are a member of this group. Go looking through
668 other members to see if any others are linked via
669 next_in_group. */
670 idx = (Elf_Internal_Group *) shdr->contents;
671 n_elt = shdr->sh_size / 4;
672 while (--n_elt != 0)
673 if ((s = (++idx)->shdr->bfd_section) != NULL
674 && elf_next_in_group (s) != NULL)
675 break;
676 if (n_elt != 0)
677 {
678 /* Snarf the group name from other member, and
679 insert current section in circular list. */
680 elf_group_name (newsect) = elf_group_name (s);
681 elf_next_in_group (newsect) = elf_next_in_group (s);
682 elf_next_in_group (s) = newsect;
683 }
684 else
685 {
686 const char *gname;
687
688 gname = group_signature (abfd, shdr);
689 if (gname == NULL)
690 return FALSE;
691 elf_group_name (newsect) = gname;
692
693 /* Start a circular list with one element. */
694 elf_next_in_group (newsect) = newsect;
695 }
696
697 /* If the group section has been created, point to the
698 new member. */
699 if (shdr->bfd_section != NULL)
700 elf_next_in_group (shdr->bfd_section) = newsect;
701
702 i = num_group - 1;
703 break;
704 }
705 }
706 }
707
708 if (elf_group_name (newsect) == NULL)
709 {
710 (*_bfd_error_handler) (_("%B: no group info for section %A"),
711 abfd, newsect);
712 }
713 return TRUE;
714 }
715
716 bfd_boolean
717 _bfd_elf_setup_sections (bfd *abfd)
718 {
719 unsigned int i;
720 unsigned int num_group = elf_tdata (abfd)->num_group;
721 bfd_boolean result = TRUE;
722 asection *s;
723
724 /* Process SHF_LINK_ORDER. */
725 for (s = abfd->sections; s != NULL; s = s->next)
726 {
727 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
728 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
729 {
730 unsigned int elfsec = this_hdr->sh_link;
731 /* FIXME: The old Intel compiler and old strip/objcopy may
732 not set the sh_link or sh_info fields. Hence we could
733 get the situation where elfsec is 0. */
734 if (elfsec == 0)
735 {
736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
737 if (bed->link_order_error_handler)
738 bed->link_order_error_handler
739 (_("%B: warning: sh_link not set for section `%A'"),
740 abfd, s);
741 }
742 else
743 {
744 asection *linksec = NULL;
745
746 if (elfsec < elf_numsections (abfd))
747 {
748 this_hdr = elf_elfsections (abfd)[elfsec];
749 linksec = this_hdr->bfd_section;
750 }
751
752 /* PR 1991, 2008:
753 Some strip/objcopy may leave an incorrect value in
754 sh_link. We don't want to proceed. */
755 if (linksec == NULL)
756 {
757 (*_bfd_error_handler)
758 (_("%B: sh_link [%d] in section `%A' is incorrect"),
759 s->owner, s, elfsec);
760 result = FALSE;
761 }
762
763 elf_linked_to_section (s) = linksec;
764 }
765 }
766 }
767
768 /* Process section groups. */
769 if (num_group == (unsigned) -1)
770 return result;
771
772 for (i = 0; i < num_group; i++)
773 {
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
776 unsigned int n_elt = shdr->sh_size / 4;
777
778 while (--n_elt != 0)
779 if ((++idx)->shdr->bfd_section)
780 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
781 else if (idx->shdr->sh_type == SHT_RELA
782 || idx->shdr->sh_type == SHT_REL)
783 /* We won't include relocation sections in section groups in
784 output object files. We adjust the group section size here
785 so that relocatable link will work correctly when
786 relocation sections are in section group in input object
787 files. */
788 shdr->bfd_section->size -= 4;
789 else
790 {
791 /* There are some unknown sections in the group. */
792 (*_bfd_error_handler)
793 (_("%B: unknown [%d] section `%s' in group [%s]"),
794 abfd,
795 (unsigned int) idx->shdr->sh_type,
796 bfd_elf_string_from_elf_section (abfd,
797 (elf_elfheader (abfd)
798 ->e_shstrndx),
799 idx->shdr->sh_name),
800 shdr->bfd_section->name);
801 result = FALSE;
802 }
803 }
804 return result;
805 }
806
807 bfd_boolean
808 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
809 {
810 return elf_next_in_group (sec) != NULL;
811 }
812
813 /* Make a BFD section from an ELF section. We store a pointer to the
814 BFD section in the bfd_section field of the header. */
815
816 bfd_boolean
817 _bfd_elf_make_section_from_shdr (bfd *abfd,
818 Elf_Internal_Shdr *hdr,
819 const char *name,
820 int shindex)
821 {
822 asection *newsect;
823 flagword flags;
824 const struct elf_backend_data *bed;
825
826 if (hdr->bfd_section != NULL)
827 return TRUE;
828
829 newsect = bfd_make_section_anyway (abfd, name);
830 if (newsect == NULL)
831 return FALSE;
832
833 hdr->bfd_section = newsect;
834 elf_section_data (newsect)->this_hdr = *hdr;
835 elf_section_data (newsect)->this_idx = shindex;
836
837 /* Always use the real type/flags. */
838 elf_section_type (newsect) = hdr->sh_type;
839 elf_section_flags (newsect) = hdr->sh_flags;
840
841 newsect->filepos = hdr->sh_offset;
842
843 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
844 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
845 || ! bfd_set_section_alignment (abfd, newsect,
846 bfd_log2 (hdr->sh_addralign)))
847 return FALSE;
848
849 flags = SEC_NO_FLAGS;
850 if (hdr->sh_type != SHT_NOBITS)
851 flags |= SEC_HAS_CONTENTS;
852 if (hdr->sh_type == SHT_GROUP)
853 flags |= SEC_GROUP | SEC_EXCLUDE;
854 if ((hdr->sh_flags & SHF_ALLOC) != 0)
855 {
856 flags |= SEC_ALLOC;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_LOAD;
859 }
860 if ((hdr->sh_flags & SHF_WRITE) == 0)
861 flags |= SEC_READONLY;
862 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
863 flags |= SEC_CODE;
864 else if ((flags & SEC_LOAD) != 0)
865 flags |= SEC_DATA;
866 if ((hdr->sh_flags & SHF_MERGE) != 0)
867 {
868 flags |= SEC_MERGE;
869 newsect->entsize = hdr->sh_entsize;
870 if ((hdr->sh_flags & SHF_STRINGS) != 0)
871 flags |= SEC_STRINGS;
872 }
873 if (hdr->sh_flags & SHF_GROUP)
874 if (!setup_group (abfd, hdr, newsect))
875 return FALSE;
876 if ((hdr->sh_flags & SHF_TLS) != 0)
877 flags |= SEC_THREAD_LOCAL;
878 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
879 flags |= SEC_EXCLUDE;
880
881 if ((flags & SEC_ALLOC) == 0)
882 {
883 /* The debugging sections appear to be recognized only by name,
884 not any sort of flag. Their SEC_ALLOC bits are cleared. */
885 if (name [0] == '.')
886 {
887 const char *p;
888 int n;
889 if (name[1] == 'd')
890 p = ".debug", n = 6;
891 else if (name[1] == 'g' && name[2] == 'n')
892 p = ".gnu.linkonce.wi.", n = 17;
893 else if (name[1] == 'g' && name[2] == 'd')
894 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
895 else if (name[1] == 'l')
896 p = ".line", n = 5;
897 else if (name[1] == 's')
898 p = ".stab", n = 5;
899 else if (name[1] == 'z')
900 p = ".zdebug", n = 7;
901 else
902 p = NULL, n = 0;
903 if (p != NULL && strncmp (name, p, n) == 0)
904 flags |= SEC_DEBUGGING;
905 }
906 }
907
908 /* As a GNU extension, if the name begins with .gnu.linkonce, we
909 only link a single copy of the section. This is used to support
910 g++. g++ will emit each template expansion in its own section.
911 The symbols will be defined as weak, so that multiple definitions
912 are permitted. The GNU linker extension is to actually discard
913 all but one of the sections. */
914 if (CONST_STRNEQ (name, ".gnu.linkonce")
915 && elf_next_in_group (newsect) == NULL)
916 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
917
918 bed = get_elf_backend_data (abfd);
919 if (bed->elf_backend_section_flags)
920 if (! bed->elf_backend_section_flags (&flags, hdr))
921 return FALSE;
922
923 if (! bfd_set_section_flags (abfd, newsect, flags))
924 return FALSE;
925
926 /* We do not parse the PT_NOTE segments as we are interested even in the
927 separate debug info files which may have the segments offsets corrupted.
928 PT_NOTEs from the core files are currently not parsed using BFD. */
929 if (hdr->sh_type == SHT_NOTE)
930 {
931 bfd_byte *contents;
932
933 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
934 return FALSE;
935
936 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
937 free (contents);
938 }
939
940 if ((flags & SEC_ALLOC) != 0)
941 {
942 Elf_Internal_Phdr *phdr;
943 unsigned int i, nload;
944
945 /* Some ELF linkers produce binaries with all the program header
946 p_paddr fields zero. If we have such a binary with more than
947 one PT_LOAD header, then leave the section lma equal to vma
948 so that we don't create sections with overlapping lma. */
949 phdr = elf_tdata (abfd)->phdr;
950 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
951 if (phdr->p_paddr != 0)
952 break;
953 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
954 ++nload;
955 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
956 return TRUE;
957
958 phdr = elf_tdata (abfd)->phdr;
959 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
960 {
961 if (((phdr->p_type == PT_LOAD
962 && (hdr->sh_flags & SHF_TLS) == 0)
963 || phdr->p_type == PT_TLS)
964 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
965 {
966 if ((flags & SEC_LOAD) == 0)
967 newsect->lma = (phdr->p_paddr
968 + hdr->sh_addr - phdr->p_vaddr);
969 else
970 /* We used to use the same adjustment for SEC_LOAD
971 sections, but that doesn't work if the segment
972 is packed with code from multiple VMAs.
973 Instead we calculate the section LMA based on
974 the segment LMA. It is assumed that the
975 segment will contain sections with contiguous
976 LMAs, even if the VMAs are not. */
977 newsect->lma = (phdr->p_paddr
978 + hdr->sh_offset - phdr->p_offset);
979
980 /* With contiguous segments, we can't tell from file
981 offsets whether a section with zero size should
982 be placed at the end of one segment or the
983 beginning of the next. Decide based on vaddr. */
984 if (hdr->sh_addr >= phdr->p_vaddr
985 && (hdr->sh_addr + hdr->sh_size
986 <= phdr->p_vaddr + phdr->p_memsz))
987 break;
988 }
989 }
990 }
991
992 /* Compress/decompress DWARF debug sections with names: .debug_* and
993 .zdebug_*, after the section flags is set. */
994 if ((flags & SEC_DEBUGGING)
995 && ((name[1] == 'd' && name[6] == '_')
996 || (name[1] == 'z' && name[7] == '_')))
997 {
998 enum { nothing, compress, decompress } action = nothing;
999 char *new_name;
1000
1001 if (bfd_is_section_compressed (abfd, newsect))
1002 {
1003 /* Compressed section. Check if we should decompress. */
1004 if ((abfd->flags & BFD_DECOMPRESS))
1005 action = decompress;
1006 }
1007 else
1008 {
1009 /* Normal section. Check if we should compress. */
1010 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1011 action = compress;
1012 }
1013
1014 new_name = NULL;
1015 switch (action)
1016 {
1017 case nothing:
1018 break;
1019 case compress:
1020 if (!bfd_init_section_compress_status (abfd, newsect))
1021 {
1022 (*_bfd_error_handler)
1023 (_("%B: unable to initialize compress status for section %s"),
1024 abfd, name);
1025 return FALSE;
1026 }
1027 if (name[1] != 'z')
1028 {
1029 unsigned int len = strlen (name);
1030
1031 new_name = bfd_alloc (abfd, len + 2);
1032 if (new_name == NULL)
1033 return FALSE;
1034 new_name[0] = '.';
1035 new_name[1] = 'z';
1036 memcpy (new_name + 2, name + 1, len);
1037 }
1038 break;
1039 case decompress:
1040 if (!bfd_init_section_decompress_status (abfd, newsect))
1041 {
1042 (*_bfd_error_handler)
1043 (_("%B: unable to initialize decompress status for section %s"),
1044 abfd, name);
1045 return FALSE;
1046 }
1047 if (name[1] == 'z')
1048 {
1049 unsigned int len = strlen (name);
1050
1051 new_name = bfd_alloc (abfd, len);
1052 if (new_name == NULL)
1053 return FALSE;
1054 new_name[0] = '.';
1055 memcpy (new_name + 1, name + 2, len - 1);
1056 }
1057 break;
1058 }
1059 if (new_name != NULL)
1060 bfd_rename_section (abfd, newsect, new_name);
1061 }
1062
1063 return TRUE;
1064 }
1065
1066 const char *const bfd_elf_section_type_names[] = {
1067 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1068 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1069 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1070 };
1071
1072 /* ELF relocs are against symbols. If we are producing relocatable
1073 output, and the reloc is against an external symbol, and nothing
1074 has given us any additional addend, the resulting reloc will also
1075 be against the same symbol. In such a case, we don't want to
1076 change anything about the way the reloc is handled, since it will
1077 all be done at final link time. Rather than put special case code
1078 into bfd_perform_relocation, all the reloc types use this howto
1079 function. It just short circuits the reloc if producing
1080 relocatable output against an external symbol. */
1081
1082 bfd_reloc_status_type
1083 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1084 arelent *reloc_entry,
1085 asymbol *symbol,
1086 void *data ATTRIBUTE_UNUSED,
1087 asection *input_section,
1088 bfd *output_bfd,
1089 char **error_message ATTRIBUTE_UNUSED)
1090 {
1091 if (output_bfd != NULL
1092 && (symbol->flags & BSF_SECTION_SYM) == 0
1093 && (! reloc_entry->howto->partial_inplace
1094 || reloc_entry->addend == 0))
1095 {
1096 reloc_entry->address += input_section->output_offset;
1097 return bfd_reloc_ok;
1098 }
1099
1100 return bfd_reloc_continue;
1101 }
1102 \f
1103 /* Copy the program header and other data from one object module to
1104 another. */
1105
1106 bfd_boolean
1107 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1108 {
1109 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1110 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1111 return TRUE;
1112
1113 BFD_ASSERT (!elf_flags_init (obfd)
1114 || (elf_elfheader (obfd)->e_flags
1115 == elf_elfheader (ibfd)->e_flags));
1116
1117 elf_gp (obfd) = elf_gp (ibfd);
1118 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1119 elf_flags_init (obfd) = TRUE;
1120
1121 /* Copy object attributes. */
1122 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1123 return TRUE;
1124 }
1125
1126 static const char *
1127 get_segment_type (unsigned int p_type)
1128 {
1129 const char *pt;
1130 switch (p_type)
1131 {
1132 case PT_NULL: pt = "NULL"; break;
1133 case PT_LOAD: pt = "LOAD"; break;
1134 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1135 case PT_INTERP: pt = "INTERP"; break;
1136 case PT_NOTE: pt = "NOTE"; break;
1137 case PT_SHLIB: pt = "SHLIB"; break;
1138 case PT_PHDR: pt = "PHDR"; break;
1139 case PT_TLS: pt = "TLS"; break;
1140 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1141 case PT_GNU_STACK: pt = "STACK"; break;
1142 case PT_GNU_RELRO: pt = "RELRO"; break;
1143 default: pt = NULL; break;
1144 }
1145 return pt;
1146 }
1147
1148 /* Print out the program headers. */
1149
1150 bfd_boolean
1151 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1152 {
1153 FILE *f = (FILE *) farg;
1154 Elf_Internal_Phdr *p;
1155 asection *s;
1156 bfd_byte *dynbuf = NULL;
1157
1158 p = elf_tdata (abfd)->phdr;
1159 if (p != NULL)
1160 {
1161 unsigned int i, c;
1162
1163 fprintf (f, _("\nProgram Header:\n"));
1164 c = elf_elfheader (abfd)->e_phnum;
1165 for (i = 0; i < c; i++, p++)
1166 {
1167 const char *pt = get_segment_type (p->p_type);
1168 char buf[20];
1169
1170 if (pt == NULL)
1171 {
1172 sprintf (buf, "0x%lx", p->p_type);
1173 pt = buf;
1174 }
1175 fprintf (f, "%8s off 0x", pt);
1176 bfd_fprintf_vma (abfd, f, p->p_offset);
1177 fprintf (f, " vaddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1179 fprintf (f, " paddr 0x");
1180 bfd_fprintf_vma (abfd, f, p->p_paddr);
1181 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1182 fprintf (f, " filesz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_filesz);
1184 fprintf (f, " memsz 0x");
1185 bfd_fprintf_vma (abfd, f, p->p_memsz);
1186 fprintf (f, " flags %c%c%c",
1187 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1188 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1189 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1190 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1191 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1192 fprintf (f, "\n");
1193 }
1194 }
1195
1196 s = bfd_get_section_by_name (abfd, ".dynamic");
1197 if (s != NULL)
1198 {
1199 unsigned int elfsec;
1200 unsigned long shlink;
1201 bfd_byte *extdyn, *extdynend;
1202 size_t extdynsize;
1203 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1204
1205 fprintf (f, _("\nDynamic Section:\n"));
1206
1207 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1208 goto error_return;
1209
1210 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1211 if (elfsec == SHN_BAD)
1212 goto error_return;
1213 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1214
1215 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1216 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1217
1218 extdyn = dynbuf;
1219 extdynend = extdyn + s->size;
1220 for (; extdyn < extdynend; extdyn += extdynsize)
1221 {
1222 Elf_Internal_Dyn dyn;
1223 const char *name = "";
1224 char ab[20];
1225 bfd_boolean stringp;
1226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1227
1228 (*swap_dyn_in) (abfd, extdyn, &dyn);
1229
1230 if (dyn.d_tag == DT_NULL)
1231 break;
1232
1233 stringp = FALSE;
1234 switch (dyn.d_tag)
1235 {
1236 default:
1237 if (bed->elf_backend_get_target_dtag)
1238 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1239
1240 if (!strcmp (name, ""))
1241 {
1242 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1243 name = ab;
1244 }
1245 break;
1246
1247 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1248 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1249 case DT_PLTGOT: name = "PLTGOT"; break;
1250 case DT_HASH: name = "HASH"; break;
1251 case DT_STRTAB: name = "STRTAB"; break;
1252 case DT_SYMTAB: name = "SYMTAB"; break;
1253 case DT_RELA: name = "RELA"; break;
1254 case DT_RELASZ: name = "RELASZ"; break;
1255 case DT_RELAENT: name = "RELAENT"; break;
1256 case DT_STRSZ: name = "STRSZ"; break;
1257 case DT_SYMENT: name = "SYMENT"; break;
1258 case DT_INIT: name = "INIT"; break;
1259 case DT_FINI: name = "FINI"; break;
1260 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1261 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1262 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1263 case DT_REL: name = "REL"; break;
1264 case DT_RELSZ: name = "RELSZ"; break;
1265 case DT_RELENT: name = "RELENT"; break;
1266 case DT_PLTREL: name = "PLTREL"; break;
1267 case DT_DEBUG: name = "DEBUG"; break;
1268 case DT_TEXTREL: name = "TEXTREL"; break;
1269 case DT_JMPREL: name = "JMPREL"; break;
1270 case DT_BIND_NOW: name = "BIND_NOW"; break;
1271 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1272 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1273 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1274 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1275 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1276 case DT_FLAGS: name = "FLAGS"; break;
1277 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1278 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1279 case DT_CHECKSUM: name = "CHECKSUM"; break;
1280 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1281 case DT_MOVEENT: name = "MOVEENT"; break;
1282 case DT_MOVESZ: name = "MOVESZ"; break;
1283 case DT_FEATURE: name = "FEATURE"; break;
1284 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1285 case DT_SYMINSZ: name = "SYMINSZ"; break;
1286 case DT_SYMINENT: name = "SYMINENT"; break;
1287 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1288 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1289 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1290 case DT_PLTPAD: name = "PLTPAD"; break;
1291 case DT_MOVETAB: name = "MOVETAB"; break;
1292 case DT_SYMINFO: name = "SYMINFO"; break;
1293 case DT_RELACOUNT: name = "RELACOUNT"; break;
1294 case DT_RELCOUNT: name = "RELCOUNT"; break;
1295 case DT_FLAGS_1: name = "FLAGS_1"; break;
1296 case DT_VERSYM: name = "VERSYM"; break;
1297 case DT_VERDEF: name = "VERDEF"; break;
1298 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1299 case DT_VERNEED: name = "VERNEED"; break;
1300 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1301 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1302 case DT_USED: name = "USED"; break;
1303 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1304 case DT_GNU_HASH: name = "GNU_HASH"; break;
1305 }
1306
1307 fprintf (f, " %-20s ", name);
1308 if (! stringp)
1309 {
1310 fprintf (f, "0x");
1311 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1312 }
1313 else
1314 {
1315 const char *string;
1316 unsigned int tagv = dyn.d_un.d_val;
1317
1318 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1319 if (string == NULL)
1320 goto error_return;
1321 fprintf (f, "%s", string);
1322 }
1323 fprintf (f, "\n");
1324 }
1325
1326 free (dynbuf);
1327 dynbuf = NULL;
1328 }
1329
1330 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1331 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1332 {
1333 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1334 return FALSE;
1335 }
1336
1337 if (elf_dynverdef (abfd) != 0)
1338 {
1339 Elf_Internal_Verdef *t;
1340
1341 fprintf (f, _("\nVersion definitions:\n"));
1342 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1343 {
1344 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1345 t->vd_flags, t->vd_hash,
1346 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1347 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1348 {
1349 Elf_Internal_Verdaux *a;
1350
1351 fprintf (f, "\t");
1352 for (a = t->vd_auxptr->vda_nextptr;
1353 a != NULL;
1354 a = a->vda_nextptr)
1355 fprintf (f, "%s ",
1356 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1357 fprintf (f, "\n");
1358 }
1359 }
1360 }
1361
1362 if (elf_dynverref (abfd) != 0)
1363 {
1364 Elf_Internal_Verneed *t;
1365
1366 fprintf (f, _("\nVersion References:\n"));
1367 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1368 {
1369 Elf_Internal_Vernaux *a;
1370
1371 fprintf (f, _(" required from %s:\n"),
1372 t->vn_filename ? t->vn_filename : "<corrupt>");
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1375 a->vna_flags, a->vna_other,
1376 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1377 }
1378 }
1379
1380 return TRUE;
1381
1382 error_return:
1383 if (dynbuf != NULL)
1384 free (dynbuf);
1385 return FALSE;
1386 }
1387
1388 /* Display ELF-specific fields of a symbol. */
1389
1390 void
1391 bfd_elf_print_symbol (bfd *abfd,
1392 void *filep,
1393 asymbol *symbol,
1394 bfd_print_symbol_type how)
1395 {
1396 FILE *file = (FILE *) filep;
1397 switch (how)
1398 {
1399 case bfd_print_symbol_name:
1400 fprintf (file, "%s", symbol->name);
1401 break;
1402 case bfd_print_symbol_more:
1403 fprintf (file, "elf ");
1404 bfd_fprintf_vma (abfd, file, symbol->value);
1405 fprintf (file, " %lx", (unsigned long) symbol->flags);
1406 break;
1407 case bfd_print_symbol_all:
1408 {
1409 const char *section_name;
1410 const char *name = NULL;
1411 const struct elf_backend_data *bed;
1412 unsigned char st_other;
1413 bfd_vma val;
1414
1415 section_name = symbol->section ? symbol->section->name : "(*none*)";
1416
1417 bed = get_elf_backend_data (abfd);
1418 if (bed->elf_backend_print_symbol_all)
1419 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1420
1421 if (name == NULL)
1422 {
1423 name = symbol->name;
1424 bfd_print_symbol_vandf (abfd, file, symbol);
1425 }
1426
1427 fprintf (file, " %s\t", section_name);
1428 /* Print the "other" value for a symbol. For common symbols,
1429 we've already printed the size; now print the alignment.
1430 For other symbols, we have no specified alignment, and
1431 we've printed the address; now print the size. */
1432 if (symbol->section && bfd_is_com_section (symbol->section))
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1434 else
1435 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1436 bfd_fprintf_vma (abfd, file, val);
1437
1438 /* If we have version information, print it. */
1439 if (elf_dynversym (abfd) != 0
1440 && (elf_dynverdef (abfd) != 0
1441 || elf_dynverref (abfd) != 0))
1442 {
1443 unsigned int vernum;
1444 const char *version_string;
1445
1446 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1447
1448 if (vernum == 0)
1449 version_string = "";
1450 else if (vernum == 1)
1451 version_string = "Base";
1452 else if (vernum <= elf_tdata (abfd)->cverdefs)
1453 version_string =
1454 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1455 else
1456 {
1457 Elf_Internal_Verneed *t;
1458
1459 version_string = "";
1460 for (t = elf_tdata (abfd)->verref;
1461 t != NULL;
1462 t = t->vn_nextref)
1463 {
1464 Elf_Internal_Vernaux *a;
1465
1466 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1467 {
1468 if (a->vna_other == vernum)
1469 {
1470 version_string = a->vna_nodename;
1471 break;
1472 }
1473 }
1474 }
1475 }
1476
1477 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1478 fprintf (file, " %-11s", version_string);
1479 else
1480 {
1481 int i;
1482
1483 fprintf (file, " (%s)", version_string);
1484 for (i = 10 - strlen (version_string); i > 0; --i)
1485 putc (' ', file);
1486 }
1487 }
1488
1489 /* If the st_other field is not zero, print it. */
1490 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1491
1492 switch (st_other)
1493 {
1494 case 0: break;
1495 case STV_INTERNAL: fprintf (file, " .internal"); break;
1496 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1497 case STV_PROTECTED: fprintf (file, " .protected"); break;
1498 default:
1499 /* Some other non-defined flags are also present, so print
1500 everything hex. */
1501 fprintf (file, " 0x%02x", (unsigned int) st_other);
1502 }
1503
1504 fprintf (file, " %s", name);
1505 }
1506 break;
1507 }
1508 }
1509
1510 /* Allocate an ELF string table--force the first byte to be zero. */
1511
1512 struct bfd_strtab_hash *
1513 _bfd_elf_stringtab_init (void)
1514 {
1515 struct bfd_strtab_hash *ret;
1516
1517 ret = _bfd_stringtab_init ();
1518 if (ret != NULL)
1519 {
1520 bfd_size_type loc;
1521
1522 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1523 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1524 if (loc == (bfd_size_type) -1)
1525 {
1526 _bfd_stringtab_free (ret);
1527 ret = NULL;
1528 }
1529 }
1530 return ret;
1531 }
1532 \f
1533 /* ELF .o/exec file reading */
1534
1535 /* Create a new bfd section from an ELF section header. */
1536
1537 bfd_boolean
1538 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1539 {
1540 Elf_Internal_Shdr *hdr;
1541 Elf_Internal_Ehdr *ehdr;
1542 const struct elf_backend_data *bed;
1543 const char *name;
1544
1545 if (shindex >= elf_numsections (abfd))
1546 return FALSE;
1547
1548 hdr = elf_elfsections (abfd)[shindex];
1549 ehdr = elf_elfheader (abfd);
1550 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1551 hdr->sh_name);
1552 if (name == NULL)
1553 return FALSE;
1554
1555 bed = get_elf_backend_data (abfd);
1556 switch (hdr->sh_type)
1557 {
1558 case SHT_NULL:
1559 /* Inactive section. Throw it away. */
1560 return TRUE;
1561
1562 case SHT_PROGBITS: /* Normal section with contents. */
1563 case SHT_NOBITS: /* .bss section. */
1564 case SHT_HASH: /* .hash section. */
1565 case SHT_NOTE: /* .note section. */
1566 case SHT_INIT_ARRAY: /* .init_array section. */
1567 case SHT_FINI_ARRAY: /* .fini_array section. */
1568 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1569 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1570 case SHT_GNU_HASH: /* .gnu.hash section. */
1571 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1572
1573 case SHT_DYNAMIC: /* Dynamic linking information. */
1574 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1575 return FALSE;
1576 if (hdr->sh_link > elf_numsections (abfd))
1577 {
1578 /* PR 10478: Accept Solaris binaries with a sh_link
1579 field set to SHN_BEFORE or SHN_AFTER. */
1580 switch (bfd_get_arch (abfd))
1581 {
1582 case bfd_arch_i386:
1583 case bfd_arch_sparc:
1584 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1585 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1586 break;
1587 /* Otherwise fall through. */
1588 default:
1589 return FALSE;
1590 }
1591 }
1592 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1593 return FALSE;
1594 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1595 {
1596 Elf_Internal_Shdr *dynsymhdr;
1597
1598 /* The shared libraries distributed with hpux11 have a bogus
1599 sh_link field for the ".dynamic" section. Find the
1600 string table for the ".dynsym" section instead. */
1601 if (elf_dynsymtab (abfd) != 0)
1602 {
1603 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1604 hdr->sh_link = dynsymhdr->sh_link;
1605 }
1606 else
1607 {
1608 unsigned int i, num_sec;
1609
1610 num_sec = elf_numsections (abfd);
1611 for (i = 1; i < num_sec; i++)
1612 {
1613 dynsymhdr = elf_elfsections (abfd)[i];
1614 if (dynsymhdr->sh_type == SHT_DYNSYM)
1615 {
1616 hdr->sh_link = dynsymhdr->sh_link;
1617 break;
1618 }
1619 }
1620 }
1621 }
1622 break;
1623
1624 case SHT_SYMTAB: /* A symbol table */
1625 if (elf_onesymtab (abfd) == shindex)
1626 return TRUE;
1627
1628 if (hdr->sh_entsize != bed->s->sizeof_sym)
1629 return FALSE;
1630 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1631 {
1632 if (hdr->sh_size != 0)
1633 return FALSE;
1634 /* Some assemblers erroneously set sh_info to one with a
1635 zero sh_size. ld sees this as a global symbol count
1636 of (unsigned) -1. Fix it here. */
1637 hdr->sh_info = 0;
1638 return TRUE;
1639 }
1640 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1641 elf_onesymtab (abfd) = shindex;
1642 elf_tdata (abfd)->symtab_hdr = *hdr;
1643 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1644 abfd->flags |= HAS_SYMS;
1645
1646 /* Sometimes a shared object will map in the symbol table. If
1647 SHF_ALLOC is set, and this is a shared object, then we also
1648 treat this section as a BFD section. We can not base the
1649 decision purely on SHF_ALLOC, because that flag is sometimes
1650 set in a relocatable object file, which would confuse the
1651 linker. */
1652 if ((hdr->sh_flags & SHF_ALLOC) != 0
1653 && (abfd->flags & DYNAMIC) != 0
1654 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1655 shindex))
1656 return FALSE;
1657
1658 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1659 can't read symbols without that section loaded as well. It
1660 is most likely specified by the next section header. */
1661 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1662 {
1663 unsigned int i, num_sec;
1664
1665 num_sec = elf_numsections (abfd);
1666 for (i = shindex + 1; i < num_sec; i++)
1667 {
1668 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1669 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1670 && hdr2->sh_link == shindex)
1671 break;
1672 }
1673 if (i == num_sec)
1674 for (i = 1; i < shindex; i++)
1675 {
1676 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1677 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1678 && hdr2->sh_link == shindex)
1679 break;
1680 }
1681 if (i != shindex)
1682 return bfd_section_from_shdr (abfd, i);
1683 }
1684 return TRUE;
1685
1686 case SHT_DYNSYM: /* A dynamic symbol table */
1687 if (elf_dynsymtab (abfd) == shindex)
1688 return TRUE;
1689
1690 if (hdr->sh_entsize != bed->s->sizeof_sym)
1691 return FALSE;
1692 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1693 {
1694 if (hdr->sh_size != 0)
1695 return FALSE;
1696 /* Some linkers erroneously set sh_info to one with a
1697 zero sh_size. ld sees this as a global symbol count
1698 of (unsigned) -1. Fix it here. */
1699 hdr->sh_info = 0;
1700 return TRUE;
1701 }
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 /* There are more DWARF sections than these, but they needn't be added here
2067 unless you have to cope with broken compilers that don't emit section
2068 attributes or you want to help the user writing assembler. */
2069 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2073 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2074 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2075 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2076 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_f[] =
2081 {
2082 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2083 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2084 { NULL, 0, 0, 0, 0 }
2085 };
2086
2087 static const struct bfd_elf_special_section special_sections_g[] =
2088 {
2089 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2091 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2092 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2093 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2094 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2095 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2097 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_h[] =
2102 {
2103 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2104 { NULL, 0, 0, 0, 0 }
2105 };
2106
2107 static const struct bfd_elf_special_section special_sections_i[] =
2108 {
2109 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2110 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2111 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2112 { NULL, 0, 0, 0, 0 }
2113 };
2114
2115 static const struct bfd_elf_special_section special_sections_l[] =
2116 {
2117 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2118 { NULL, 0, 0, 0, 0 }
2119 };
2120
2121 static const struct bfd_elf_special_section special_sections_n[] =
2122 {
2123 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2125 { NULL, 0, 0, 0, 0 }
2126 };
2127
2128 static const struct bfd_elf_special_section special_sections_p[] =
2129 {
2130 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2131 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2132 { NULL, 0, 0, 0, 0 }
2133 };
2134
2135 static const struct bfd_elf_special_section special_sections_r[] =
2136 {
2137 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2138 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2139 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2140 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2141 { NULL, 0, 0, 0, 0 }
2142 };
2143
2144 static const struct bfd_elf_special_section special_sections_s[] =
2145 {
2146 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2147 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2148 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2149 /* See struct bfd_elf_special_section declaration for the semantics of
2150 this special case where .prefix_length != strlen (.prefix). */
2151 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_t[] =
2156 {
2157 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2158 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2159 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2160 { NULL, 0, 0, 0, 0 }
2161 };
2162
2163 static const struct bfd_elf_special_section special_sections_z[] =
2164 {
2165 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2167 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2168 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2169 { NULL, 0, 0, 0, 0 }
2170 };
2171
2172 static const struct bfd_elf_special_section * const special_sections[] =
2173 {
2174 special_sections_b, /* 'b' */
2175 special_sections_c, /* 'c' */
2176 special_sections_d, /* 'd' */
2177 NULL, /* 'e' */
2178 special_sections_f, /* 'f' */
2179 special_sections_g, /* 'g' */
2180 special_sections_h, /* 'h' */
2181 special_sections_i, /* 'i' */
2182 NULL, /* 'j' */
2183 NULL, /* 'k' */
2184 special_sections_l, /* 'l' */
2185 NULL, /* 'm' */
2186 special_sections_n, /* 'n' */
2187 NULL, /* 'o' */
2188 special_sections_p, /* 'p' */
2189 NULL, /* 'q' */
2190 special_sections_r, /* 'r' */
2191 special_sections_s, /* 's' */
2192 special_sections_t, /* 't' */
2193 NULL, /* 'u' */
2194 NULL, /* 'v' */
2195 NULL, /* 'w' */
2196 NULL, /* 'x' */
2197 NULL, /* 'y' */
2198 special_sections_z /* 'z' */
2199 };
2200
2201 const struct bfd_elf_special_section *
2202 _bfd_elf_get_special_section (const char *name,
2203 const struct bfd_elf_special_section *spec,
2204 unsigned int rela)
2205 {
2206 int i;
2207 int len;
2208
2209 len = strlen (name);
2210
2211 for (i = 0; spec[i].prefix != NULL; i++)
2212 {
2213 int suffix_len;
2214 int prefix_len = spec[i].prefix_length;
2215
2216 if (len < prefix_len)
2217 continue;
2218 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2219 continue;
2220
2221 suffix_len = spec[i].suffix_length;
2222 if (suffix_len <= 0)
2223 {
2224 if (name[prefix_len] != 0)
2225 {
2226 if (suffix_len == 0)
2227 continue;
2228 if (name[prefix_len] != '.'
2229 && (suffix_len == -2
2230 || (rela && spec[i].type == SHT_REL)))
2231 continue;
2232 }
2233 }
2234 else
2235 {
2236 if (len < prefix_len + suffix_len)
2237 continue;
2238 if (memcmp (name + len - suffix_len,
2239 spec[i].prefix + prefix_len,
2240 suffix_len) != 0)
2241 continue;
2242 }
2243 return &spec[i];
2244 }
2245
2246 return NULL;
2247 }
2248
2249 const struct bfd_elf_special_section *
2250 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2251 {
2252 int i;
2253 const struct bfd_elf_special_section *spec;
2254 const struct elf_backend_data *bed;
2255
2256 /* See if this is one of the special sections. */
2257 if (sec->name == NULL)
2258 return NULL;
2259
2260 bed = get_elf_backend_data (abfd);
2261 spec = bed->special_sections;
2262 if (spec)
2263 {
2264 spec = _bfd_elf_get_special_section (sec->name,
2265 bed->special_sections,
2266 sec->use_rela_p);
2267 if (spec != NULL)
2268 return spec;
2269 }
2270
2271 if (sec->name[0] != '.')
2272 return NULL;
2273
2274 i = sec->name[1] - 'b';
2275 if (i < 0 || i > 'z' - 'b')
2276 return NULL;
2277
2278 spec = special_sections[i];
2279
2280 if (spec == NULL)
2281 return NULL;
2282
2283 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2284 }
2285
2286 bfd_boolean
2287 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2288 {
2289 struct bfd_elf_section_data *sdata;
2290 const struct elf_backend_data *bed;
2291 const struct bfd_elf_special_section *ssect;
2292
2293 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2294 if (sdata == NULL)
2295 {
2296 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2297 sizeof (*sdata));
2298 if (sdata == NULL)
2299 return FALSE;
2300 sec->used_by_bfd = sdata;
2301 }
2302
2303 /* Indicate whether or not this section should use RELA relocations. */
2304 bed = get_elf_backend_data (abfd);
2305 sec->use_rela_p = bed->default_use_rela_p;
2306
2307 /* When we read a file, we don't need to set ELF section type and
2308 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2309 anyway. We will set ELF section type and flags for all linker
2310 created sections. If user specifies BFD section flags, we will
2311 set ELF section type and flags based on BFD section flags in
2312 elf_fake_sections. Special handling for .init_array/.fini_array
2313 output sections since they may contain .ctors/.dtors input
2314 sections. We don't want _bfd_elf_init_private_section_data to
2315 copy ELF section type from .ctors/.dtors input sections. */
2316 if (abfd->direction != read_direction
2317 || (sec->flags & SEC_LINKER_CREATED) != 0)
2318 {
2319 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2320 if (ssect != NULL
2321 && (!sec->flags
2322 || (sec->flags & SEC_LINKER_CREATED) != 0
2323 || ssect->type == SHT_INIT_ARRAY
2324 || ssect->type == SHT_FINI_ARRAY))
2325 {
2326 elf_section_type (sec) = ssect->type;
2327 elf_section_flags (sec) = ssect->attr;
2328 }
2329 }
2330
2331 return _bfd_generic_new_section_hook (abfd, sec);
2332 }
2333
2334 /* Create a new bfd section from an ELF program header.
2335
2336 Since program segments have no names, we generate a synthetic name
2337 of the form segment<NUM>, where NUM is generally the index in the
2338 program header table. For segments that are split (see below) we
2339 generate the names segment<NUM>a and segment<NUM>b.
2340
2341 Note that some program segments may have a file size that is different than
2342 (less than) the memory size. All this means is that at execution the
2343 system must allocate the amount of memory specified by the memory size,
2344 but only initialize it with the first "file size" bytes read from the
2345 file. This would occur for example, with program segments consisting
2346 of combined data+bss.
2347
2348 To handle the above situation, this routine generates TWO bfd sections
2349 for the single program segment. The first has the length specified by
2350 the file size of the segment, and the second has the length specified
2351 by the difference between the two sizes. In effect, the segment is split
2352 into its initialized and uninitialized parts.
2353
2354 */
2355
2356 bfd_boolean
2357 _bfd_elf_make_section_from_phdr (bfd *abfd,
2358 Elf_Internal_Phdr *hdr,
2359 int hdr_index,
2360 const char *type_name)
2361 {
2362 asection *newsect;
2363 char *name;
2364 char namebuf[64];
2365 size_t len;
2366 int split;
2367
2368 split = ((hdr->p_memsz > 0)
2369 && (hdr->p_filesz > 0)
2370 && (hdr->p_memsz > hdr->p_filesz));
2371
2372 if (hdr->p_filesz > 0)
2373 {
2374 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2375 len = strlen (namebuf) + 1;
2376 name = (char *) bfd_alloc (abfd, len);
2377 if (!name)
2378 return FALSE;
2379 memcpy (name, namebuf, len);
2380 newsect = bfd_make_section (abfd, name);
2381 if (newsect == NULL)
2382 return FALSE;
2383 newsect->vma = hdr->p_vaddr;
2384 newsect->lma = hdr->p_paddr;
2385 newsect->size = hdr->p_filesz;
2386 newsect->filepos = hdr->p_offset;
2387 newsect->flags |= SEC_HAS_CONTENTS;
2388 newsect->alignment_power = bfd_log2 (hdr->p_align);
2389 if (hdr->p_type == PT_LOAD)
2390 {
2391 newsect->flags |= SEC_ALLOC;
2392 newsect->flags |= SEC_LOAD;
2393 if (hdr->p_flags & PF_X)
2394 {
2395 /* FIXME: all we known is that it has execute PERMISSION,
2396 may be data. */
2397 newsect->flags |= SEC_CODE;
2398 }
2399 }
2400 if (!(hdr->p_flags & PF_W))
2401 {
2402 newsect->flags |= SEC_READONLY;
2403 }
2404 }
2405
2406 if (hdr->p_memsz > hdr->p_filesz)
2407 {
2408 bfd_vma align;
2409
2410 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2411 len = strlen (namebuf) + 1;
2412 name = (char *) bfd_alloc (abfd, len);
2413 if (!name)
2414 return FALSE;
2415 memcpy (name, namebuf, len);
2416 newsect = bfd_make_section (abfd, name);
2417 if (newsect == NULL)
2418 return FALSE;
2419 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2420 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2421 newsect->size = hdr->p_memsz - hdr->p_filesz;
2422 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2423 align = newsect->vma & -newsect->vma;
2424 if (align == 0 || align > hdr->p_align)
2425 align = hdr->p_align;
2426 newsect->alignment_power = bfd_log2 (align);
2427 if (hdr->p_type == PT_LOAD)
2428 {
2429 /* Hack for gdb. Segments that have not been modified do
2430 not have their contents written to a core file, on the
2431 assumption that a debugger can find the contents in the
2432 executable. We flag this case by setting the fake
2433 section size to zero. Note that "real" bss sections will
2434 always have their contents dumped to the core file. */
2435 if (bfd_get_format (abfd) == bfd_core)
2436 newsect->size = 0;
2437 newsect->flags |= SEC_ALLOC;
2438 if (hdr->p_flags & PF_X)
2439 newsect->flags |= SEC_CODE;
2440 }
2441 if (!(hdr->p_flags & PF_W))
2442 newsect->flags |= SEC_READONLY;
2443 }
2444
2445 return TRUE;
2446 }
2447
2448 bfd_boolean
2449 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2450 {
2451 const struct elf_backend_data *bed;
2452
2453 switch (hdr->p_type)
2454 {
2455 case PT_NULL:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2457
2458 case PT_LOAD:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2460
2461 case PT_DYNAMIC:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2463
2464 case PT_INTERP:
2465 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2466
2467 case PT_NOTE:
2468 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2469 return FALSE;
2470 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2471 return FALSE;
2472 return TRUE;
2473
2474 case PT_SHLIB:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2476
2477 case PT_PHDR:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2479
2480 case PT_GNU_EH_FRAME:
2481 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2482 "eh_frame_hdr");
2483
2484 case PT_GNU_STACK:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2486
2487 case PT_GNU_RELRO:
2488 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2489
2490 default:
2491 /* Check for any processor-specific program segment types. */
2492 bed = get_elf_backend_data (abfd);
2493 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2494 }
2495 }
2496
2497 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2498 REL or RELA. */
2499
2500 Elf_Internal_Shdr *
2501 _bfd_elf_single_rel_hdr (asection *sec)
2502 {
2503 if (elf_section_data (sec)->rel.hdr)
2504 {
2505 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2506 return elf_section_data (sec)->rel.hdr;
2507 }
2508 else
2509 return elf_section_data (sec)->rela.hdr;
2510 }
2511
2512 /* Allocate and initialize a section-header for a new reloc section,
2513 containing relocations against ASECT. It is stored in RELDATA. If
2514 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2515 relocations. */
2516
2517 bfd_boolean
2518 _bfd_elf_init_reloc_shdr (bfd *abfd,
2519 struct bfd_elf_section_reloc_data *reldata,
2520 asection *asect,
2521 bfd_boolean use_rela_p)
2522 {
2523 Elf_Internal_Shdr *rel_hdr;
2524 char *name;
2525 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526 bfd_size_type amt;
2527
2528 amt = sizeof (Elf_Internal_Shdr);
2529 BFD_ASSERT (reldata->hdr == NULL);
2530 rel_hdr = bfd_zalloc (abfd, amt);
2531 reldata->hdr = rel_hdr;
2532
2533 amt = sizeof ".rela" + strlen (asect->name);
2534 name = (char *) bfd_alloc (abfd, amt);
2535 if (name == NULL)
2536 return FALSE;
2537 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2538 rel_hdr->sh_name =
2539 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2540 FALSE);
2541 if (rel_hdr->sh_name == (unsigned int) -1)
2542 return FALSE;
2543 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2544 rel_hdr->sh_entsize = (use_rela_p
2545 ? bed->s->sizeof_rela
2546 : bed->s->sizeof_rel);
2547 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2548 rel_hdr->sh_flags = 0;
2549 rel_hdr->sh_addr = 0;
2550 rel_hdr->sh_size = 0;
2551 rel_hdr->sh_offset = 0;
2552
2553 return TRUE;
2554 }
2555
2556 /* Return the default section type based on the passed in section flags. */
2557
2558 int
2559 bfd_elf_get_default_section_type (flagword flags)
2560 {
2561 if ((flags & SEC_ALLOC) != 0
2562 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2563 return SHT_NOBITS;
2564 return SHT_PROGBITS;
2565 }
2566
2567 struct fake_section_arg
2568 {
2569 struct bfd_link_info *link_info;
2570 bfd_boolean failed;
2571 };
2572
2573 /* Set up an ELF internal section header for a section. */
2574
2575 static void
2576 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2577 {
2578 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2580 struct bfd_elf_section_data *esd = elf_section_data (asect);
2581 Elf_Internal_Shdr *this_hdr;
2582 unsigned int sh_type;
2583
2584 if (arg->failed)
2585 {
2586 /* We already failed; just get out of the bfd_map_over_sections
2587 loop. */
2588 return;
2589 }
2590
2591 this_hdr = &esd->this_hdr;
2592
2593 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2594 asect->name, FALSE);
2595 if (this_hdr->sh_name == (unsigned int) -1)
2596 {
2597 arg->failed = TRUE;
2598 return;
2599 }
2600
2601 /* Don't clear sh_flags. Assembler may set additional bits. */
2602
2603 if ((asect->flags & SEC_ALLOC) != 0
2604 || asect->user_set_vma)
2605 this_hdr->sh_addr = asect->vma;
2606 else
2607 this_hdr->sh_addr = 0;
2608
2609 this_hdr->sh_offset = 0;
2610 this_hdr->sh_size = asect->size;
2611 this_hdr->sh_link = 0;
2612 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2613 /* The sh_entsize and sh_info fields may have been set already by
2614 copy_private_section_data. */
2615
2616 this_hdr->bfd_section = asect;
2617 this_hdr->contents = NULL;
2618
2619 /* If the section type is unspecified, we set it based on
2620 asect->flags. */
2621 if ((asect->flags & SEC_GROUP) != 0)
2622 sh_type = SHT_GROUP;
2623 else
2624 sh_type = bfd_elf_get_default_section_type (asect->flags);
2625
2626 if (this_hdr->sh_type == SHT_NULL)
2627 this_hdr->sh_type = sh_type;
2628 else if (this_hdr->sh_type == SHT_NOBITS
2629 && sh_type == SHT_PROGBITS
2630 && (asect->flags & SEC_ALLOC) != 0)
2631 {
2632 /* Warn if we are changing a NOBITS section to PROGBITS, but
2633 allow the link to proceed. This can happen when users link
2634 non-bss input sections to bss output sections, or emit data
2635 to a bss output section via a linker script. */
2636 (*_bfd_error_handler)
2637 (_("warning: section `%A' type changed to PROGBITS"), asect);
2638 this_hdr->sh_type = sh_type;
2639 }
2640
2641 switch (this_hdr->sh_type)
2642 {
2643 default:
2644 break;
2645
2646 case SHT_STRTAB:
2647 case SHT_INIT_ARRAY:
2648 case SHT_FINI_ARRAY:
2649 case SHT_PREINIT_ARRAY:
2650 case SHT_NOTE:
2651 case SHT_NOBITS:
2652 case SHT_PROGBITS:
2653 break;
2654
2655 case SHT_HASH:
2656 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2657 break;
2658
2659 case SHT_DYNSYM:
2660 this_hdr->sh_entsize = bed->s->sizeof_sym;
2661 break;
2662
2663 case SHT_DYNAMIC:
2664 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2665 break;
2666
2667 case SHT_RELA:
2668 if (get_elf_backend_data (abfd)->may_use_rela_p)
2669 this_hdr->sh_entsize = bed->s->sizeof_rela;
2670 break;
2671
2672 case SHT_REL:
2673 if (get_elf_backend_data (abfd)->may_use_rel_p)
2674 this_hdr->sh_entsize = bed->s->sizeof_rel;
2675 break;
2676
2677 case SHT_GNU_versym:
2678 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2679 break;
2680
2681 case SHT_GNU_verdef:
2682 this_hdr->sh_entsize = 0;
2683 /* objcopy or strip will copy over sh_info, but may not set
2684 cverdefs. The linker will set cverdefs, but sh_info will be
2685 zero. */
2686 if (this_hdr->sh_info == 0)
2687 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2688 else
2689 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2690 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2691 break;
2692
2693 case SHT_GNU_verneed:
2694 this_hdr->sh_entsize = 0;
2695 /* objcopy or strip will copy over sh_info, but may not set
2696 cverrefs. The linker will set cverrefs, but sh_info will be
2697 zero. */
2698 if (this_hdr->sh_info == 0)
2699 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2700 else
2701 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2702 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2703 break;
2704
2705 case SHT_GROUP:
2706 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2707 break;
2708
2709 case SHT_GNU_HASH:
2710 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2711 break;
2712 }
2713
2714 if ((asect->flags & SEC_ALLOC) != 0)
2715 this_hdr->sh_flags |= SHF_ALLOC;
2716 if ((asect->flags & SEC_READONLY) == 0)
2717 this_hdr->sh_flags |= SHF_WRITE;
2718 if ((asect->flags & SEC_CODE) != 0)
2719 this_hdr->sh_flags |= SHF_EXECINSTR;
2720 if ((asect->flags & SEC_MERGE) != 0)
2721 {
2722 this_hdr->sh_flags |= SHF_MERGE;
2723 this_hdr->sh_entsize = asect->entsize;
2724 if ((asect->flags & SEC_STRINGS) != 0)
2725 this_hdr->sh_flags |= SHF_STRINGS;
2726 }
2727 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2728 this_hdr->sh_flags |= SHF_GROUP;
2729 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2730 {
2731 this_hdr->sh_flags |= SHF_TLS;
2732 if (asect->size == 0
2733 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2734 {
2735 struct bfd_link_order *o = asect->map_tail.link_order;
2736
2737 this_hdr->sh_size = 0;
2738 if (o != NULL)
2739 {
2740 this_hdr->sh_size = o->offset + o->size;
2741 if (this_hdr->sh_size != 0)
2742 this_hdr->sh_type = SHT_NOBITS;
2743 }
2744 }
2745 }
2746 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2747 this_hdr->sh_flags |= SHF_EXCLUDE;
2748
2749 /* If the section has relocs, set up a section header for the
2750 SHT_REL[A] section. If two relocation sections are required for
2751 this section, it is up to the processor-specific back-end to
2752 create the other. */
2753 if ((asect->flags & SEC_RELOC) != 0)
2754 {
2755 /* When doing a relocatable link, create both REL and RELA sections if
2756 needed. */
2757 if (arg->link_info
2758 /* Do the normal setup if we wouldn't create any sections here. */
2759 && esd->rel.count + esd->rela.count > 0
2760 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2761 {
2762 if (esd->rel.count && esd->rel.hdr == NULL
2763 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2764 {
2765 arg->failed = TRUE;
2766 return;
2767 }
2768 if (esd->rela.count && esd->rela.hdr == NULL
2769 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2770 {
2771 arg->failed = TRUE;
2772 return;
2773 }
2774 }
2775 else if (!_bfd_elf_init_reloc_shdr (abfd,
2776 (asect->use_rela_p
2777 ? &esd->rela : &esd->rel),
2778 asect,
2779 asect->use_rela_p))
2780 arg->failed = TRUE;
2781 }
2782
2783 /* Check for processor-specific section types. */
2784 sh_type = this_hdr->sh_type;
2785 if (bed->elf_backend_fake_sections
2786 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2787 arg->failed = TRUE;
2788
2789 if (sh_type == SHT_NOBITS && asect->size != 0)
2790 {
2791 /* Don't change the header type from NOBITS if we are being
2792 called for objcopy --only-keep-debug. */
2793 this_hdr->sh_type = sh_type;
2794 }
2795 }
2796
2797 /* Fill in the contents of a SHT_GROUP section. Called from
2798 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2799 when ELF targets use the generic linker, ld. Called for ld -r
2800 from bfd_elf_final_link. */
2801
2802 void
2803 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2804 {
2805 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2806 asection *elt, *first;
2807 unsigned char *loc;
2808 bfd_boolean gas;
2809
2810 /* Ignore linker created group section. See elfNN_ia64_object_p in
2811 elfxx-ia64.c. */
2812 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2813 || *failedptr)
2814 return;
2815
2816 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2817 {
2818 unsigned long symindx = 0;
2819
2820 /* elf_group_id will have been set up by objcopy and the
2821 generic linker. */
2822 if (elf_group_id (sec) != NULL)
2823 symindx = elf_group_id (sec)->udata.i;
2824
2825 if (symindx == 0)
2826 {
2827 /* If called from the assembler, swap_out_syms will have set up
2828 elf_section_syms. */
2829 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2830 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2831 }
2832 elf_section_data (sec)->this_hdr.sh_info = symindx;
2833 }
2834 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2835 {
2836 /* The ELF backend linker sets sh_info to -2 when the group
2837 signature symbol is global, and thus the index can't be
2838 set until all local symbols are output. */
2839 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2840 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2841 unsigned long symndx = sec_data->this_hdr.sh_info;
2842 unsigned long extsymoff = 0;
2843 struct elf_link_hash_entry *h;
2844
2845 if (!elf_bad_symtab (igroup->owner))
2846 {
2847 Elf_Internal_Shdr *symtab_hdr;
2848
2849 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2850 extsymoff = symtab_hdr->sh_info;
2851 }
2852 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2853 while (h->root.type == bfd_link_hash_indirect
2854 || h->root.type == bfd_link_hash_warning)
2855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2856
2857 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2858 }
2859
2860 /* The contents won't be allocated for "ld -r" or objcopy. */
2861 gas = TRUE;
2862 if (sec->contents == NULL)
2863 {
2864 gas = FALSE;
2865 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2866
2867 /* Arrange for the section to be written out. */
2868 elf_section_data (sec)->this_hdr.contents = sec->contents;
2869 if (sec->contents == NULL)
2870 {
2871 *failedptr = TRUE;
2872 return;
2873 }
2874 }
2875
2876 loc = sec->contents + sec->size;
2877
2878 /* Get the pointer to the first section in the group that gas
2879 squirreled away here. objcopy arranges for this to be set to the
2880 start of the input section group. */
2881 first = elt = elf_next_in_group (sec);
2882
2883 /* First element is a flag word. Rest of section is elf section
2884 indices for all the sections of the group. Write them backwards
2885 just to keep the group in the same order as given in .section
2886 directives, not that it matters. */
2887 while (elt != NULL)
2888 {
2889 asection *s;
2890
2891 s = elt;
2892 if (!gas)
2893 s = s->output_section;
2894 if (s != NULL
2895 && !bfd_is_abs_section (s))
2896 {
2897 unsigned int idx = elf_section_data (s)->this_idx;
2898
2899 loc -= 4;
2900 H_PUT_32 (abfd, idx, loc);
2901 }
2902 elt = elf_next_in_group (elt);
2903 if (elt == first)
2904 break;
2905 }
2906
2907 if ((loc -= 4) != sec->contents)
2908 abort ();
2909
2910 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2911 }
2912
2913 /* Assign all ELF section numbers. The dummy first section is handled here
2914 too. The link/info pointers for the standard section types are filled
2915 in here too, while we're at it. */
2916
2917 static bfd_boolean
2918 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2919 {
2920 struct elf_obj_tdata *t = elf_tdata (abfd);
2921 asection *sec;
2922 unsigned int section_number, secn;
2923 Elf_Internal_Shdr **i_shdrp;
2924 struct bfd_elf_section_data *d;
2925 bfd_boolean need_symtab;
2926
2927 section_number = 1;
2928
2929 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2930
2931 /* SHT_GROUP sections are in relocatable files only. */
2932 if (link_info == NULL || link_info->relocatable)
2933 {
2934 /* Put SHT_GROUP sections first. */
2935 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2936 {
2937 d = elf_section_data (sec);
2938
2939 if (d->this_hdr.sh_type == SHT_GROUP)
2940 {
2941 if (sec->flags & SEC_LINKER_CREATED)
2942 {
2943 /* Remove the linker created SHT_GROUP sections. */
2944 bfd_section_list_remove (abfd, sec);
2945 abfd->section_count--;
2946 }
2947 else
2948 d->this_idx = section_number++;
2949 }
2950 }
2951 }
2952
2953 for (sec = abfd->sections; sec; sec = sec->next)
2954 {
2955 d = elf_section_data (sec);
2956
2957 if (d->this_hdr.sh_type != SHT_GROUP)
2958 d->this_idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2960 if (d->rel.hdr)
2961 {
2962 d->rel.idx = section_number++;
2963 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2964 }
2965 else
2966 d->rel.idx = 0;
2967
2968 if (d->rela.hdr)
2969 {
2970 d->rela.idx = section_number++;
2971 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2972 }
2973 else
2974 d->rela.idx = 0;
2975 }
2976
2977 elf_shstrtab_sec (abfd) = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2979 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2980
2981 need_symtab = (bfd_get_symcount (abfd) > 0
2982 || (link_info == NULL
2983 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2984 == HAS_RELOC)));
2985 if (need_symtab)
2986 {
2987 elf_onesymtab (abfd) = section_number++;
2988 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2989 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2990 {
2991 elf_symtab_shndx (abfd) = section_number++;
2992 t->symtab_shndx_hdr.sh_name
2993 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2994 ".symtab_shndx", FALSE);
2995 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2996 return FALSE;
2997 }
2998 elf_strtab_sec (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3000 }
3001
3002 if (section_number >= SHN_LORESERVE)
3003 {
3004 _bfd_error_handler (_("%B: too many sections: %u"),
3005 abfd, section_number);
3006 return FALSE;
3007 }
3008
3009 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3010 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3011
3012 elf_numsections (abfd) = section_number;
3013 elf_elfheader (abfd)->e_shnum = section_number;
3014
3015 /* Set up the list of section header pointers, in agreement with the
3016 indices. */
3017 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3018 sizeof (Elf_Internal_Shdr *));
3019 if (i_shdrp == NULL)
3020 return FALSE;
3021
3022 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3023 sizeof (Elf_Internal_Shdr));
3024 if (i_shdrp[0] == NULL)
3025 {
3026 bfd_release (abfd, i_shdrp);
3027 return FALSE;
3028 }
3029
3030 elf_elfsections (abfd) = i_shdrp;
3031
3032 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3033 if (need_symtab)
3034 {
3035 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3036 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3037 {
3038 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3039 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3040 }
3041 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3042 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3043 }
3044
3045 for (sec = abfd->sections; sec; sec = sec->next)
3046 {
3047 asection *s;
3048 const char *name;
3049
3050 d = elf_section_data (sec);
3051
3052 i_shdrp[d->this_idx] = &d->this_hdr;
3053 if (d->rel.idx != 0)
3054 i_shdrp[d->rel.idx] = d->rel.hdr;
3055 if (d->rela.idx != 0)
3056 i_shdrp[d->rela.idx] = d->rela.hdr;
3057
3058 /* Fill in the sh_link and sh_info fields while we're at it. */
3059
3060 /* sh_link of a reloc section is the section index of the symbol
3061 table. sh_info is the section index of the section to which
3062 the relocation entries apply. */
3063 if (d->rel.idx != 0)
3064 {
3065 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3066 d->rel.hdr->sh_info = d->this_idx;
3067 }
3068 if (d->rela.idx != 0)
3069 {
3070 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3071 d->rela.hdr->sh_info = d->this_idx;
3072 }
3073
3074 /* We need to set up sh_link for SHF_LINK_ORDER. */
3075 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3076 {
3077 s = elf_linked_to_section (sec);
3078 if (s)
3079 {
3080 /* elf_linked_to_section points to the input section. */
3081 if (link_info != NULL)
3082 {
3083 /* Check discarded linkonce section. */
3084 if (discarded_section (s))
3085 {
3086 asection *kept;
3087 (*_bfd_error_handler)
3088 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3089 abfd, d->this_hdr.bfd_section,
3090 s, s->owner);
3091 /* Point to the kept section if it has the same
3092 size as the discarded one. */
3093 kept = _bfd_elf_check_kept_section (s, link_info);
3094 if (kept == NULL)
3095 {
3096 bfd_set_error (bfd_error_bad_value);
3097 return FALSE;
3098 }
3099 s = kept;
3100 }
3101
3102 s = s->output_section;
3103 BFD_ASSERT (s != NULL);
3104 }
3105 else
3106 {
3107 /* Handle objcopy. */
3108 if (s->output_section == NULL)
3109 {
3110 (*_bfd_error_handler)
3111 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3112 abfd, d->this_hdr.bfd_section, s, s->owner);
3113 bfd_set_error (bfd_error_bad_value);
3114 return FALSE;
3115 }
3116 s = s->output_section;
3117 }
3118 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3119 }
3120 else
3121 {
3122 /* PR 290:
3123 The Intel C compiler generates SHT_IA_64_UNWIND with
3124 SHF_LINK_ORDER. But it doesn't set the sh_link or
3125 sh_info fields. Hence we could get the situation
3126 where s is NULL. */
3127 const struct elf_backend_data *bed
3128 = get_elf_backend_data (abfd);
3129 if (bed->link_order_error_handler)
3130 bed->link_order_error_handler
3131 (_("%B: warning: sh_link not set for section `%A'"),
3132 abfd, sec);
3133 }
3134 }
3135
3136 switch (d->this_hdr.sh_type)
3137 {
3138 case SHT_REL:
3139 case SHT_RELA:
3140 /* A reloc section which we are treating as a normal BFD
3141 section. sh_link is the section index of the symbol
3142 table. sh_info is the section index of the section to
3143 which the relocation entries apply. We assume that an
3144 allocated reloc section uses the dynamic symbol table.
3145 FIXME: How can we be sure? */
3146 s = bfd_get_section_by_name (abfd, ".dynsym");
3147 if (s != NULL)
3148 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3149
3150 /* We look up the section the relocs apply to by name. */
3151 name = sec->name;
3152 if (d->this_hdr.sh_type == SHT_REL)
3153 name += 4;
3154 else
3155 name += 5;
3156 s = bfd_get_section_by_name (abfd, name);
3157 if (s != NULL)
3158 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3159 break;
3160
3161 case SHT_STRTAB:
3162 /* We assume that a section named .stab*str is a stabs
3163 string section. We look for a section with the same name
3164 but without the trailing ``str'', and set its sh_link
3165 field to point to this section. */
3166 if (CONST_STRNEQ (sec->name, ".stab")
3167 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3168 {
3169 size_t len;
3170 char *alc;
3171
3172 len = strlen (sec->name);
3173 alc = (char *) bfd_malloc (len - 2);
3174 if (alc == NULL)
3175 return FALSE;
3176 memcpy (alc, sec->name, len - 3);
3177 alc[len - 3] = '\0';
3178 s = bfd_get_section_by_name (abfd, alc);
3179 free (alc);
3180 if (s != NULL)
3181 {
3182 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3183
3184 /* This is a .stab section. */
3185 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3186 elf_section_data (s)->this_hdr.sh_entsize
3187 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3188 }
3189 }
3190 break;
3191
3192 case SHT_DYNAMIC:
3193 case SHT_DYNSYM:
3194 case SHT_GNU_verneed:
3195 case SHT_GNU_verdef:
3196 /* sh_link is the section header index of the string table
3197 used for the dynamic entries, or the symbol table, or the
3198 version strings. */
3199 s = bfd_get_section_by_name (abfd, ".dynstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_GNU_LIBLIST:
3205 /* sh_link is the section header index of the prelink library
3206 list used for the dynamic entries, or the symbol table, or
3207 the version strings. */
3208 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3209 ? ".dynstr" : ".gnu.libstr");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_HASH:
3215 case SHT_GNU_HASH:
3216 case SHT_GNU_versym:
3217 /* sh_link is the section header index of the symbol table
3218 this hash table or version table is for. */
3219 s = bfd_get_section_by_name (abfd, ".dynsym");
3220 if (s != NULL)
3221 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3222 break;
3223
3224 case SHT_GROUP:
3225 d->this_hdr.sh_link = elf_onesymtab (abfd);
3226 }
3227 }
3228
3229 for (secn = 1; secn < section_number; ++secn)
3230 if (i_shdrp[secn] == NULL)
3231 i_shdrp[secn] = i_shdrp[0];
3232 else
3233 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3234 i_shdrp[secn]->sh_name);
3235 return TRUE;
3236 }
3237
3238 static bfd_boolean
3239 sym_is_global (bfd *abfd, asymbol *sym)
3240 {
3241 /* If the backend has a special mapping, use it. */
3242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3243 if (bed->elf_backend_sym_is_global)
3244 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3245
3246 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3247 || bfd_is_und_section (bfd_get_section (sym))
3248 || bfd_is_com_section (bfd_get_section (sym)));
3249 }
3250
3251 /* Don't output section symbols for sections that are not going to be
3252 output, that are duplicates or there is no BFD section. */
3253
3254 static bfd_boolean
3255 ignore_section_sym (bfd *abfd, asymbol *sym)
3256 {
3257 elf_symbol_type *type_ptr;
3258
3259 if ((sym->flags & BSF_SECTION_SYM) == 0)
3260 return FALSE;
3261
3262 type_ptr = elf_symbol_from (abfd, sym);
3263 return ((type_ptr != NULL
3264 && type_ptr->internal_elf_sym.st_shndx != 0
3265 && bfd_is_abs_section (sym->section))
3266 || !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 *pnum_locals = num_locals;
3393 return TRUE;
3394 }
3395
3396 /* Align to the maximum file alignment that could be required for any
3397 ELF data structure. */
3398
3399 static inline file_ptr
3400 align_file_position (file_ptr off, int align)
3401 {
3402 return (off + align - 1) & ~(align - 1);
3403 }
3404
3405 /* Assign a file position to a section, optionally aligning to the
3406 required section alignment. */
3407
3408 file_ptr
3409 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3410 file_ptr offset,
3411 bfd_boolean align)
3412 {
3413 if (align && i_shdrp->sh_addralign > 1)
3414 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3415 i_shdrp->sh_offset = offset;
3416 if (i_shdrp->bfd_section != NULL)
3417 i_shdrp->bfd_section->filepos = offset;
3418 if (i_shdrp->sh_type != SHT_NOBITS)
3419 offset += i_shdrp->sh_size;
3420 return offset;
3421 }
3422
3423 /* Compute the file positions we are going to put the sections at, and
3424 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3425 is not NULL, this is being called by the ELF backend linker. */
3426
3427 bfd_boolean
3428 _bfd_elf_compute_section_file_positions (bfd *abfd,
3429 struct bfd_link_info *link_info)
3430 {
3431 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3432 struct fake_section_arg fsargs;
3433 bfd_boolean failed;
3434 struct bfd_strtab_hash *strtab = NULL;
3435 Elf_Internal_Shdr *shstrtab_hdr;
3436 bfd_boolean need_symtab;
3437
3438 if (abfd->output_has_begun)
3439 return TRUE;
3440
3441 /* Do any elf backend specific processing first. */
3442 if (bed->elf_backend_begin_write_processing)
3443 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3444
3445 if (! prep_headers (abfd))
3446 return FALSE;
3447
3448 /* Post process the headers if necessary. */
3449 if (bed->elf_backend_post_process_headers)
3450 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3451
3452 fsargs.failed = FALSE;
3453 fsargs.link_info = link_info;
3454 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3455 if (fsargs.failed)
3456 return FALSE;
3457
3458 if (!assign_section_numbers (abfd, link_info))
3459 return FALSE;
3460
3461 /* The backend linker builds symbol table information itself. */
3462 need_symtab = (link_info == NULL
3463 && (bfd_get_symcount (abfd) > 0
3464 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3465 == HAS_RELOC)));
3466 if (need_symtab)
3467 {
3468 /* Non-zero if doing a relocatable link. */
3469 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3470
3471 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3472 return FALSE;
3473 }
3474
3475 failed = FALSE;
3476 if (link_info == NULL)
3477 {
3478 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3479 if (failed)
3480 return FALSE;
3481 }
3482
3483 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3484 /* sh_name was set in prep_headers. */
3485 shstrtab_hdr->sh_type = SHT_STRTAB;
3486 shstrtab_hdr->sh_flags = 0;
3487 shstrtab_hdr->sh_addr = 0;
3488 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3489 shstrtab_hdr->sh_entsize = 0;
3490 shstrtab_hdr->sh_link = 0;
3491 shstrtab_hdr->sh_info = 0;
3492 /* sh_offset is set in assign_file_positions_except_relocs. */
3493 shstrtab_hdr->sh_addralign = 1;
3494
3495 if (!assign_file_positions_except_relocs (abfd, link_info))
3496 return FALSE;
3497
3498 if (need_symtab)
3499 {
3500 file_ptr off;
3501 Elf_Internal_Shdr *hdr;
3502
3503 off = elf_next_file_pos (abfd);
3504
3505 hdr = &elf_tdata (abfd)->symtab_hdr;
3506 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3507
3508 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3509 if (hdr->sh_size != 0)
3510 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3511
3512 hdr = &elf_tdata (abfd)->strtab_hdr;
3513 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3514
3515 elf_next_file_pos (abfd) = off;
3516
3517 /* Now that we know where the .strtab section goes, write it
3518 out. */
3519 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3520 || ! _bfd_stringtab_emit (abfd, strtab))
3521 return FALSE;
3522 _bfd_stringtab_free (strtab);
3523 }
3524
3525 abfd->output_has_begun = TRUE;
3526
3527 return TRUE;
3528 }
3529
3530 /* Make an initial estimate of the size of the program header. If we
3531 get the number wrong here, we'll redo section placement. */
3532
3533 static bfd_size_type
3534 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3535 {
3536 size_t segs;
3537 asection *s;
3538 const struct elf_backend_data *bed;
3539
3540 /* Assume we will need exactly two PT_LOAD segments: one for text
3541 and one for data. */
3542 segs = 2;
3543
3544 s = bfd_get_section_by_name (abfd, ".interp");
3545 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3546 {
3547 /* If we have a loadable interpreter section, we need a
3548 PT_INTERP segment. In this case, assume we also need a
3549 PT_PHDR segment, although that may not be true for all
3550 targets. */
3551 segs += 2;
3552 }
3553
3554 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3555 {
3556 /* We need a PT_DYNAMIC segment. */
3557 ++segs;
3558 }
3559
3560 if (info != NULL && info->relro)
3561 {
3562 /* We need a PT_GNU_RELRO segment. */
3563 ++segs;
3564 }
3565
3566 if (elf_eh_frame_hdr (abfd))
3567 {
3568 /* We need a PT_GNU_EH_FRAME segment. */
3569 ++segs;
3570 }
3571
3572 if (elf_stack_flags (abfd))
3573 {
3574 /* We need a PT_GNU_STACK segment. */
3575 ++segs;
3576 }
3577
3578 for (s = abfd->sections; s != NULL; s = s->next)
3579 {
3580 if ((s->flags & SEC_LOAD) != 0
3581 && CONST_STRNEQ (s->name, ".note"))
3582 {
3583 /* We need a PT_NOTE segment. */
3584 ++segs;
3585 /* Try to create just one PT_NOTE segment
3586 for all adjacent loadable .note* sections.
3587 gABI requires that within a PT_NOTE segment
3588 (and also inside of each SHT_NOTE section)
3589 each note is padded to a multiple of 4 size,
3590 so we check whether the sections are correctly
3591 aligned. */
3592 if (s->alignment_power == 2)
3593 while (s->next != NULL
3594 && s->next->alignment_power == 2
3595 && (s->next->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->next->name, ".note"))
3597 s = s->next;
3598 }
3599 }
3600
3601 for (s = abfd->sections; s != NULL; s = s->next)
3602 {
3603 if (s->flags & SEC_THREAD_LOCAL)
3604 {
3605 /* We need a PT_TLS segment. */
3606 ++segs;
3607 break;
3608 }
3609 }
3610
3611 /* Let the backend count up any program headers it might need. */
3612 bed = get_elf_backend_data (abfd);
3613 if (bed->elf_backend_additional_program_headers)
3614 {
3615 int a;
3616
3617 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3618 if (a == -1)
3619 abort ();
3620 segs += a;
3621 }
3622
3623 return segs * bed->s->sizeof_phdr;
3624 }
3625
3626 /* Find the segment that contains the output_section of section. */
3627
3628 Elf_Internal_Phdr *
3629 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3630 {
3631 struct elf_segment_map *m;
3632 Elf_Internal_Phdr *p;
3633
3634 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3635 m != NULL;
3636 m = m->next, p++)
3637 {
3638 int i;
3639
3640 for (i = m->count - 1; i >= 0; i--)
3641 if (m->sections[i] == section)
3642 return p;
3643 }
3644
3645 return NULL;
3646 }
3647
3648 /* Create a mapping from a set of sections to a program segment. */
3649
3650 static struct elf_segment_map *
3651 make_mapping (bfd *abfd,
3652 asection **sections,
3653 unsigned int from,
3654 unsigned int to,
3655 bfd_boolean phdr)
3656 {
3657 struct elf_segment_map *m;
3658 unsigned int i;
3659 asection **hdrpp;
3660 bfd_size_type amt;
3661
3662 amt = sizeof (struct elf_segment_map);
3663 amt += (to - from - 1) * sizeof (asection *);
3664 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 return NULL;
3667 m->next = NULL;
3668 m->p_type = PT_LOAD;
3669 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3670 m->sections[i - from] = *hdrpp;
3671 m->count = to - from;
3672
3673 if (from == 0 && phdr)
3674 {
3675 /* Include the headers in the first PT_LOAD segment. */
3676 m->includes_filehdr = 1;
3677 m->includes_phdrs = 1;
3678 }
3679
3680 return m;
3681 }
3682
3683 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3684 on failure. */
3685
3686 struct elf_segment_map *
3687 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3688 {
3689 struct elf_segment_map *m;
3690
3691 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3692 sizeof (struct elf_segment_map));
3693 if (m == NULL)
3694 return NULL;
3695 m->next = NULL;
3696 m->p_type = PT_DYNAMIC;
3697 m->count = 1;
3698 m->sections[0] = dynsec;
3699
3700 return m;
3701 }
3702
3703 /* Possibly add or remove segments from the segment map. */
3704
3705 static bfd_boolean
3706 elf_modify_segment_map (bfd *abfd,
3707 struct bfd_link_info *info,
3708 bfd_boolean remove_empty_load)
3709 {
3710 struct elf_segment_map **m;
3711 const struct elf_backend_data *bed;
3712
3713 /* The placement algorithm assumes that non allocated sections are
3714 not in PT_LOAD segments. We ensure this here by removing such
3715 sections from the segment map. We also remove excluded
3716 sections. Finally, any PT_LOAD segment without sections is
3717 removed. */
3718 m = &elf_seg_map (abfd);
3719 while (*m)
3720 {
3721 unsigned int i, new_count;
3722
3723 for (new_count = 0, i = 0; i < (*m)->count; i++)
3724 {
3725 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3726 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3727 || (*m)->p_type != PT_LOAD))
3728 {
3729 (*m)->sections[new_count] = (*m)->sections[i];
3730 new_count++;
3731 }
3732 }
3733 (*m)->count = new_count;
3734
3735 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3736 *m = (*m)->next;
3737 else
3738 m = &(*m)->next;
3739 }
3740
3741 bed = get_elf_backend_data (abfd);
3742 if (bed->elf_backend_modify_segment_map != NULL)
3743 {
3744 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3745 return FALSE;
3746 }
3747
3748 return TRUE;
3749 }
3750
3751 /* Set up a mapping from BFD sections to program segments. */
3752
3753 bfd_boolean
3754 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3755 {
3756 unsigned int count;
3757 struct elf_segment_map *m;
3758 asection **sections = NULL;
3759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3760 bfd_boolean no_user_phdrs;
3761
3762 no_user_phdrs = elf_seg_map (abfd) == NULL;
3763
3764 if (info != NULL)
3765 info->user_phdrs = !no_user_phdrs;
3766
3767 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3768 {
3769 asection *s;
3770 unsigned int i;
3771 struct elf_segment_map *mfirst;
3772 struct elf_segment_map **pm;
3773 asection *last_hdr;
3774 bfd_vma last_size;
3775 unsigned int phdr_index;
3776 bfd_vma maxpagesize;
3777 asection **hdrpp;
3778 bfd_boolean phdr_in_segment = TRUE;
3779 bfd_boolean writable;
3780 int tls_count = 0;
3781 asection *first_tls = NULL;
3782 asection *dynsec, *eh_frame_hdr;
3783 bfd_size_type amt;
3784 bfd_vma addr_mask, wrap_to = 0;
3785
3786 /* Select the allocated sections, and sort them. */
3787
3788 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3789 sizeof (asection *));
3790 if (sections == NULL)
3791 goto error_return;
3792
3793 /* Calculate top address, avoiding undefined behaviour of shift
3794 left operator when shift count is equal to size of type
3795 being shifted. */
3796 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3797 addr_mask = (addr_mask << 1) + 1;
3798
3799 i = 0;
3800 for (s = abfd->sections; s != NULL; s = s->next)
3801 {
3802 if ((s->flags & SEC_ALLOC) != 0)
3803 {
3804 sections[i] = s;
3805 ++i;
3806 /* A wrapping section potentially clashes with header. */
3807 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3808 wrap_to = (s->lma + s->size) & addr_mask;
3809 }
3810 }
3811 BFD_ASSERT (i <= bfd_count_sections (abfd));
3812 count = i;
3813
3814 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3815
3816 /* Build the mapping. */
3817
3818 mfirst = NULL;
3819 pm = &mfirst;
3820
3821 /* If we have a .interp section, then create a PT_PHDR segment for
3822 the program headers and a PT_INTERP segment for the .interp
3823 section. */
3824 s = bfd_get_section_by_name (abfd, ".interp");
3825 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3826 {
3827 amt = sizeof (struct elf_segment_map);
3828 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_PHDR;
3833 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3834 m->p_flags = PF_R | PF_X;
3835 m->p_flags_valid = 1;
3836 m->includes_phdrs = 1;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 amt = sizeof (struct elf_segment_map);
3842 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3843 if (m == NULL)
3844 goto error_return;
3845 m->next = NULL;
3846 m->p_type = PT_INTERP;
3847 m->count = 1;
3848 m->sections[0] = s;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* Look through the sections. We put sections in the same program
3855 segment when the start of the second section can be placed within
3856 a few bytes of the end of the first section. */
3857 last_hdr = NULL;
3858 last_size = 0;
3859 phdr_index = 0;
3860 maxpagesize = bed->maxpagesize;
3861 writable = FALSE;
3862 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3863 if (dynsec != NULL
3864 && (dynsec->flags & SEC_LOAD) == 0)
3865 dynsec = NULL;
3866
3867 /* Deal with -Ttext or something similar such that the first section
3868 is not adjacent to the program headers. This is an
3869 approximation, since at this point we don't know exactly how many
3870 program headers we will need. */
3871 if (count > 0)
3872 {
3873 bfd_size_type phdr_size = elf_program_header_size (abfd);
3874
3875 if (phdr_size == (bfd_size_type) -1)
3876 phdr_size = get_program_header_size (abfd, info);
3877 phdr_size += bed->s->sizeof_ehdr;
3878 if ((abfd->flags & D_PAGED) == 0
3879 || (sections[0]->lma & addr_mask) < phdr_size
3880 || ((sections[0]->lma & addr_mask) % maxpagesize
3881 < phdr_size % maxpagesize)
3882 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3883 phdr_in_segment = FALSE;
3884 }
3885
3886 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3887 {
3888 asection *hdr;
3889 bfd_boolean new_segment;
3890
3891 hdr = *hdrpp;
3892
3893 /* See if this section and the last one will fit in the same
3894 segment. */
3895
3896 if (last_hdr == NULL)
3897 {
3898 /* If we don't have a segment yet, then we don't need a new
3899 one (we build the last one after this loop). */
3900 new_segment = FALSE;
3901 }
3902 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3903 {
3904 /* If this section has a different relation between the
3905 virtual address and the load address, then we need a new
3906 segment. */
3907 new_segment = TRUE;
3908 }
3909 else if (hdr->lma < last_hdr->lma + last_size
3910 || last_hdr->lma + last_size < last_hdr->lma)
3911 {
3912 /* If this section has a load address that makes it overlap
3913 the previous section, then we need a new segment. */
3914 new_segment = TRUE;
3915 }
3916 /* In the next test we have to be careful when last_hdr->lma is close
3917 to the end of the address space. If the aligned address wraps
3918 around to the start of the address space, then there are no more
3919 pages left in memory and it is OK to assume that the current
3920 section can be included in the current segment. */
3921 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3922 > last_hdr->lma)
3923 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3924 <= hdr->lma))
3925 {
3926 /* If putting this section in this segment would force us to
3927 skip a page in the segment, then we need a new segment. */
3928 new_segment = TRUE;
3929 }
3930 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3931 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3932 {
3933 /* We don't want to put a loadable section after a
3934 nonloadable section in the same segment.
3935 Consider .tbss sections as loadable for this purpose. */
3936 new_segment = TRUE;
3937 }
3938 else if ((abfd->flags & D_PAGED) == 0)
3939 {
3940 /* If the file is not demand paged, which means that we
3941 don't require the sections to be correctly aligned in the
3942 file, then there is no other reason for a new segment. */
3943 new_segment = FALSE;
3944 }
3945 else if (! writable
3946 && (hdr->flags & SEC_READONLY) == 0
3947 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3948 != (hdr->lma & -maxpagesize)))
3949 {
3950 /* We don't want to put a writable section in a read only
3951 segment, unless they are on the same page in memory
3952 anyhow. We already know that the last section does not
3953 bring us past the current section on the page, so the
3954 only case in which the new section is not on the same
3955 page as the previous section is when the previous section
3956 ends precisely on a page boundary. */
3957 new_segment = TRUE;
3958 }
3959 else
3960 {
3961 /* Otherwise, we can use the same segment. */
3962 new_segment = FALSE;
3963 }
3964
3965 /* Allow interested parties a chance to override our decision. */
3966 if (last_hdr != NULL
3967 && info != NULL
3968 && info->callbacks->override_segment_assignment != NULL)
3969 new_segment
3970 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3971 last_hdr,
3972 new_segment);
3973
3974 if (! new_segment)
3975 {
3976 if ((hdr->flags & SEC_READONLY) == 0)
3977 writable = TRUE;
3978 last_hdr = hdr;
3979 /* .tbss sections effectively have zero size. */
3980 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3981 != SEC_THREAD_LOCAL)
3982 last_size = hdr->size;
3983 else
3984 last_size = 0;
3985 continue;
3986 }
3987
3988 /* We need a new program segment. We must create a new program
3989 header holding all the sections from phdr_index until hdr. */
3990
3991 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3992 if (m == NULL)
3993 goto error_return;
3994
3995 *pm = m;
3996 pm = &m->next;
3997
3998 if ((hdr->flags & SEC_READONLY) == 0)
3999 writable = TRUE;
4000 else
4001 writable = FALSE;
4002
4003 last_hdr = hdr;
4004 /* .tbss sections effectively have zero size. */
4005 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4006 last_size = hdr->size;
4007 else
4008 last_size = 0;
4009 phdr_index = i;
4010 phdr_in_segment = FALSE;
4011 }
4012
4013 /* Create a final PT_LOAD program segment, but not if it's just
4014 for .tbss. */
4015 if (last_hdr != NULL
4016 && (i - phdr_index != 1
4017 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4018 != SEC_THREAD_LOCAL)))
4019 {
4020 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4021 if (m == NULL)
4022 goto error_return;
4023
4024 *pm = m;
4025 pm = &m->next;
4026 }
4027
4028 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4029 if (dynsec != NULL)
4030 {
4031 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4032 if (m == NULL)
4033 goto error_return;
4034 *pm = m;
4035 pm = &m->next;
4036 }
4037
4038 /* For each batch of consecutive loadable .note sections,
4039 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4040 because if we link together nonloadable .note sections and
4041 loadable .note sections, we will generate two .note sections
4042 in the output file. FIXME: Using names for section types is
4043 bogus anyhow. */
4044 for (s = abfd->sections; s != NULL; s = s->next)
4045 {
4046 if ((s->flags & SEC_LOAD) != 0
4047 && CONST_STRNEQ (s->name, ".note"))
4048 {
4049 asection *s2;
4050
4051 count = 1;
4052 amt = sizeof (struct elf_segment_map);
4053 if (s->alignment_power == 2)
4054 for (s2 = s; s2->next != NULL; s2 = s2->next)
4055 {
4056 if (s2->next->alignment_power == 2
4057 && (s2->next->flags & SEC_LOAD) != 0
4058 && CONST_STRNEQ (s2->next->name, ".note")
4059 && align_power (s2->lma + s2->size, 2)
4060 == s2->next->lma)
4061 count++;
4062 else
4063 break;
4064 }
4065 amt += (count - 1) * sizeof (asection *);
4066 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4067 if (m == NULL)
4068 goto error_return;
4069 m->next = NULL;
4070 m->p_type = PT_NOTE;
4071 m->count = count;
4072 while (count > 1)
4073 {
4074 m->sections[m->count - count--] = s;
4075 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4076 s = s->next;
4077 }
4078 m->sections[m->count - 1] = s;
4079 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4080 *pm = m;
4081 pm = &m->next;
4082 }
4083 if (s->flags & SEC_THREAD_LOCAL)
4084 {
4085 if (! tls_count)
4086 first_tls = s;
4087 tls_count++;
4088 }
4089 }
4090
4091 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4092 if (tls_count > 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 amt += (tls_count - 1) * sizeof (asection *);
4096 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4097 if (m == NULL)
4098 goto error_return;
4099 m->next = NULL;
4100 m->p_type = PT_TLS;
4101 m->count = tls_count;
4102 /* Mandated PF_R. */
4103 m->p_flags = PF_R;
4104 m->p_flags_valid = 1;
4105 for (i = 0; i < (unsigned int) tls_count; ++i)
4106 {
4107 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4108 m->sections[i] = first_tls;
4109 first_tls = first_tls->next;
4110 }
4111
4112 *pm = m;
4113 pm = &m->next;
4114 }
4115
4116 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4117 segment. */
4118 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4119 if (eh_frame_hdr != NULL
4120 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4121 {
4122 amt = sizeof (struct elf_segment_map);
4123 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4124 if (m == NULL)
4125 goto error_return;
4126 m->next = NULL;
4127 m->p_type = PT_GNU_EH_FRAME;
4128 m->count = 1;
4129 m->sections[0] = eh_frame_hdr->output_section;
4130
4131 *pm = m;
4132 pm = &m->next;
4133 }
4134
4135 if (elf_stack_flags (abfd))
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_GNU_STACK;
4143 m->p_flags = elf_stack_flags (abfd);
4144 m->p_align = bed->stack_align;
4145 m->p_flags_valid = 1;
4146 m->p_align_valid = m->p_align != 0;
4147 if (info->stacksize > 0)
4148 {
4149 m->p_size = info->stacksize;
4150 m->p_size_valid = 1;
4151 }
4152
4153 *pm = m;
4154 pm = &m->next;
4155 }
4156
4157 if (info != NULL && info->relro)
4158 {
4159 for (m = mfirst; m != NULL; m = m->next)
4160 {
4161 if (m->p_type == PT_LOAD
4162 && m->count != 0
4163 && m->sections[0]->vma >= info->relro_start
4164 && m->sections[0]->vma < info->relro_end)
4165 {
4166 i = m->count;
4167 while (--i != (unsigned) -1)
4168 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4169 == (SEC_LOAD | SEC_HAS_CONTENTS))
4170 break;
4171
4172 if (i == (unsigned) -1)
4173 continue;
4174
4175 if (m->sections[i]->vma + m->sections[i]->size
4176 >= info->relro_end)
4177 break;
4178 }
4179 }
4180
4181 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4182 if (m != NULL)
4183 {
4184 amt = sizeof (struct elf_segment_map);
4185 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4186 if (m == NULL)
4187 goto error_return;
4188 m->next = NULL;
4189 m->p_type = PT_GNU_RELRO;
4190 m->p_flags = PF_R;
4191 m->p_flags_valid = 1;
4192
4193 *pm = m;
4194 pm = &m->next;
4195 }
4196 }
4197
4198 free (sections);
4199 elf_seg_map (abfd) = mfirst;
4200 }
4201
4202 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4203 return FALSE;
4204
4205 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4206 ++count;
4207 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4208
4209 return TRUE;
4210
4211 error_return:
4212 if (sections != NULL)
4213 free (sections);
4214 return FALSE;
4215 }
4216
4217 /* Sort sections by address. */
4218
4219 static int
4220 elf_sort_sections (const void *arg1, const void *arg2)
4221 {
4222 const asection *sec1 = *(const asection **) arg1;
4223 const asection *sec2 = *(const asection **) arg2;
4224 bfd_size_type size1, size2;
4225
4226 /* Sort by LMA first, since this is the address used to
4227 place the section into a segment. */
4228 if (sec1->lma < sec2->lma)
4229 return -1;
4230 else if (sec1->lma > sec2->lma)
4231 return 1;
4232
4233 /* Then sort by VMA. Normally the LMA and the VMA will be
4234 the same, and this will do nothing. */
4235 if (sec1->vma < sec2->vma)
4236 return -1;
4237 else if (sec1->vma > sec2->vma)
4238 return 1;
4239
4240 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4241
4242 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4243
4244 if (TOEND (sec1))
4245 {
4246 if (TOEND (sec2))
4247 {
4248 /* If the indicies are the same, do not return 0
4249 here, but continue to try the next comparison. */
4250 if (sec1->target_index - sec2->target_index != 0)
4251 return sec1->target_index - sec2->target_index;
4252 }
4253 else
4254 return 1;
4255 }
4256 else if (TOEND (sec2))
4257 return -1;
4258
4259 #undef TOEND
4260
4261 /* Sort by size, to put zero sized sections
4262 before others at the same address. */
4263
4264 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4265 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4266
4267 if (size1 < size2)
4268 return -1;
4269 if (size1 > size2)
4270 return 1;
4271
4272 return sec1->target_index - sec2->target_index;
4273 }
4274
4275 /* Ian Lance Taylor writes:
4276
4277 We shouldn't be using % with a negative signed number. That's just
4278 not good. We have to make sure either that the number is not
4279 negative, or that the number has an unsigned type. When the types
4280 are all the same size they wind up as unsigned. When file_ptr is a
4281 larger signed type, the arithmetic winds up as signed long long,
4282 which is wrong.
4283
4284 What we're trying to say here is something like ``increase OFF by
4285 the least amount that will cause it to be equal to the VMA modulo
4286 the page size.'' */
4287 /* In other words, something like:
4288
4289 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4290 off_offset = off % bed->maxpagesize;
4291 if (vma_offset < off_offset)
4292 adjustment = vma_offset + bed->maxpagesize - off_offset;
4293 else
4294 adjustment = vma_offset - off_offset;
4295
4296 which can can be collapsed into the expression below. */
4297
4298 static file_ptr
4299 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4300 {
4301 return ((vma - off) % maxpagesize);
4302 }
4303
4304 static void
4305 print_segment_map (const struct elf_segment_map *m)
4306 {
4307 unsigned int j;
4308 const char *pt = get_segment_type (m->p_type);
4309 char buf[32];
4310
4311 if (pt == NULL)
4312 {
4313 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4314 sprintf (buf, "LOPROC+%7.7x",
4315 (unsigned int) (m->p_type - PT_LOPROC));
4316 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4317 sprintf (buf, "LOOS+%7.7x",
4318 (unsigned int) (m->p_type - PT_LOOS));
4319 else
4320 snprintf (buf, sizeof (buf), "%8.8x",
4321 (unsigned int) m->p_type);
4322 pt = buf;
4323 }
4324 fflush (stdout);
4325 fprintf (stderr, "%s:", pt);
4326 for (j = 0; j < m->count; j++)
4327 fprintf (stderr, " %s", m->sections [j]->name);
4328 putc ('\n',stderr);
4329 fflush (stderr);
4330 }
4331
4332 static bfd_boolean
4333 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4334 {
4335 void *buf;
4336 bfd_boolean ret;
4337
4338 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4339 return FALSE;
4340 buf = bfd_zmalloc (len);
4341 if (buf == NULL)
4342 return FALSE;
4343 ret = bfd_bwrite (buf, len, abfd) == len;
4344 free (buf);
4345 return ret;
4346 }
4347
4348 /* Assign file positions to the sections based on the mapping from
4349 sections to segments. This function also sets up some fields in
4350 the file header. */
4351
4352 static bfd_boolean
4353 assign_file_positions_for_load_sections (bfd *abfd,
4354 struct bfd_link_info *link_info)
4355 {
4356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4357 struct elf_segment_map *m;
4358 Elf_Internal_Phdr *phdrs;
4359 Elf_Internal_Phdr *p;
4360 file_ptr off;
4361 bfd_size_type maxpagesize;
4362 unsigned int alloc;
4363 unsigned int i, j;
4364 bfd_vma header_pad = 0;
4365
4366 if (link_info == NULL
4367 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4368 return FALSE;
4369
4370 alloc = 0;
4371 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4372 {
4373 ++alloc;
4374 if (m->header_size)
4375 header_pad = m->header_size;
4376 }
4377
4378 if (alloc)
4379 {
4380 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4381 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4382 }
4383 else
4384 {
4385 /* PR binutils/12467. */
4386 elf_elfheader (abfd)->e_phoff = 0;
4387 elf_elfheader (abfd)->e_phentsize = 0;
4388 }
4389
4390 elf_elfheader (abfd)->e_phnum = alloc;
4391
4392 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4393 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4394 else
4395 BFD_ASSERT (elf_program_header_size (abfd)
4396 >= alloc * bed->s->sizeof_phdr);
4397
4398 if (alloc == 0)
4399 {
4400 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4401 return TRUE;
4402 }
4403
4404 /* We're writing the size in elf_program_header_size (abfd),
4405 see assign_file_positions_except_relocs, so make sure we have
4406 that amount allocated, with trailing space cleared.
4407 The variable alloc contains the computed need, while
4408 elf_program_header_size (abfd) contains the size used for the
4409 layout.
4410 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4411 where the layout is forced to according to a larger size in the
4412 last iterations for the testcase ld-elf/header. */
4413 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4414 == 0);
4415 phdrs = (Elf_Internal_Phdr *)
4416 bfd_zalloc2 (abfd,
4417 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4418 sizeof (Elf_Internal_Phdr));
4419 elf_tdata (abfd)->phdr = phdrs;
4420 if (phdrs == NULL)
4421 return FALSE;
4422
4423 maxpagesize = 1;
4424 if ((abfd->flags & D_PAGED) != 0)
4425 maxpagesize = bed->maxpagesize;
4426
4427 off = bed->s->sizeof_ehdr;
4428 off += alloc * bed->s->sizeof_phdr;
4429 if (header_pad < (bfd_vma) off)
4430 header_pad = 0;
4431 else
4432 header_pad -= off;
4433 off += header_pad;
4434
4435 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4436 m != NULL;
4437 m = m->next, p++, j++)
4438 {
4439 asection **secpp;
4440 bfd_vma off_adjust;
4441 bfd_boolean no_contents;
4442
4443 /* If elf_segment_map is not from map_sections_to_segments, the
4444 sections may not be correctly ordered. NOTE: sorting should
4445 not be done to the PT_NOTE section of a corefile, which may
4446 contain several pseudo-sections artificially created by bfd.
4447 Sorting these pseudo-sections breaks things badly. */
4448 if (m->count > 1
4449 && !(elf_elfheader (abfd)->e_type == ET_CORE
4450 && m->p_type == PT_NOTE))
4451 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4452 elf_sort_sections);
4453
4454 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4455 number of sections with contents contributing to both p_filesz
4456 and p_memsz, followed by a number of sections with no contents
4457 that just contribute to p_memsz. In this loop, OFF tracks next
4458 available file offset for PT_LOAD and PT_NOTE segments. */
4459 p->p_type = m->p_type;
4460 p->p_flags = m->p_flags;
4461
4462 if (m->count == 0)
4463 p->p_vaddr = 0;
4464 else
4465 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4466
4467 if (m->p_paddr_valid)
4468 p->p_paddr = m->p_paddr;
4469 else if (m->count == 0)
4470 p->p_paddr = 0;
4471 else
4472 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4473
4474 if (p->p_type == PT_LOAD
4475 && (abfd->flags & D_PAGED) != 0)
4476 {
4477 /* p_align in demand paged PT_LOAD segments effectively stores
4478 the maximum page size. When copying an executable with
4479 objcopy, we set m->p_align from the input file. Use this
4480 value for maxpagesize rather than bed->maxpagesize, which
4481 may be different. Note that we use maxpagesize for PT_TLS
4482 segment alignment later in this function, so we are relying
4483 on at least one PT_LOAD segment appearing before a PT_TLS
4484 segment. */
4485 if (m->p_align_valid)
4486 maxpagesize = m->p_align;
4487
4488 p->p_align = maxpagesize;
4489 }
4490 else if (m->p_align_valid)
4491 p->p_align = m->p_align;
4492 else if (m->count == 0)
4493 p->p_align = 1 << bed->s->log_file_align;
4494 else
4495 p->p_align = 0;
4496
4497 no_contents = FALSE;
4498 off_adjust = 0;
4499 if (p->p_type == PT_LOAD
4500 && m->count > 0)
4501 {
4502 bfd_size_type align;
4503 unsigned int align_power = 0;
4504
4505 if (m->p_align_valid)
4506 align = p->p_align;
4507 else
4508 {
4509 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4510 {
4511 unsigned int secalign;
4512
4513 secalign = bfd_get_section_alignment (abfd, *secpp);
4514 if (secalign > align_power)
4515 align_power = secalign;
4516 }
4517 align = (bfd_size_type) 1 << align_power;
4518 if (align < maxpagesize)
4519 align = maxpagesize;
4520 }
4521
4522 for (i = 0; i < m->count; i++)
4523 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4524 /* If we aren't making room for this section, then
4525 it must be SHT_NOBITS regardless of what we've
4526 set via struct bfd_elf_special_section. */
4527 elf_section_type (m->sections[i]) = SHT_NOBITS;
4528
4529 /* Find out whether this segment contains any loadable
4530 sections. */
4531 no_contents = TRUE;
4532 for (i = 0; i < m->count; i++)
4533 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4534 {
4535 no_contents = FALSE;
4536 break;
4537 }
4538
4539 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4540 off += off_adjust;
4541 if (no_contents)
4542 {
4543 /* We shouldn't need to align the segment on disk since
4544 the segment doesn't need file space, but the gABI
4545 arguably requires the alignment and glibc ld.so
4546 checks it. So to comply with the alignment
4547 requirement but not waste file space, we adjust
4548 p_offset for just this segment. (OFF_ADJUST is
4549 subtracted from OFF later.) This may put p_offset
4550 past the end of file, but that shouldn't matter. */
4551 }
4552 else
4553 off_adjust = 0;
4554 }
4555 /* Make sure the .dynamic section is the first section in the
4556 PT_DYNAMIC segment. */
4557 else if (p->p_type == PT_DYNAMIC
4558 && m->count > 1
4559 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4560 {
4561 _bfd_error_handler
4562 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4563 abfd);
4564 bfd_set_error (bfd_error_bad_value);
4565 return FALSE;
4566 }
4567 /* Set the note section type to SHT_NOTE. */
4568 else if (p->p_type == PT_NOTE)
4569 for (i = 0; i < m->count; i++)
4570 elf_section_type (m->sections[i]) = SHT_NOTE;
4571
4572 p->p_offset = 0;
4573 p->p_filesz = 0;
4574 p->p_memsz = 0;
4575
4576 if (m->includes_filehdr)
4577 {
4578 if (!m->p_flags_valid)
4579 p->p_flags |= PF_R;
4580 p->p_filesz = bed->s->sizeof_ehdr;
4581 p->p_memsz = bed->s->sizeof_ehdr;
4582 if (m->count > 0)
4583 {
4584 if (p->p_vaddr < (bfd_vma) off)
4585 {
4586 (*_bfd_error_handler)
4587 (_("%B: Not enough room for program headers, try linking with -N"),
4588 abfd);
4589 bfd_set_error (bfd_error_bad_value);
4590 return FALSE;
4591 }
4592
4593 p->p_vaddr -= off;
4594 if (!m->p_paddr_valid)
4595 p->p_paddr -= off;
4596 }
4597 }
4598
4599 if (m->includes_phdrs)
4600 {
4601 if (!m->p_flags_valid)
4602 p->p_flags |= PF_R;
4603
4604 if (!m->includes_filehdr)
4605 {
4606 p->p_offset = bed->s->sizeof_ehdr;
4607
4608 if (m->count > 0)
4609 {
4610 p->p_vaddr -= off - p->p_offset;
4611 if (!m->p_paddr_valid)
4612 p->p_paddr -= off - p->p_offset;
4613 }
4614 }
4615
4616 p->p_filesz += alloc * bed->s->sizeof_phdr;
4617 p->p_memsz += alloc * bed->s->sizeof_phdr;
4618 if (m->count)
4619 {
4620 p->p_filesz += header_pad;
4621 p->p_memsz += header_pad;
4622 }
4623 }
4624
4625 if (p->p_type == PT_LOAD
4626 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4627 {
4628 if (!m->includes_filehdr && !m->includes_phdrs)
4629 p->p_offset = off;
4630 else
4631 {
4632 file_ptr adjust;
4633
4634 adjust = off - (p->p_offset + p->p_filesz);
4635 if (!no_contents)
4636 p->p_filesz += adjust;
4637 p->p_memsz += adjust;
4638 }
4639 }
4640
4641 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4642 maps. Set filepos for sections in PT_LOAD segments, and in
4643 core files, for sections in PT_NOTE segments.
4644 assign_file_positions_for_non_load_sections will set filepos
4645 for other sections and update p_filesz for other segments. */
4646 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4647 {
4648 asection *sec;
4649 bfd_size_type align;
4650 Elf_Internal_Shdr *this_hdr;
4651
4652 sec = *secpp;
4653 this_hdr = &elf_section_data (sec)->this_hdr;
4654 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4655
4656 if ((p->p_type == PT_LOAD
4657 || p->p_type == PT_TLS)
4658 && (this_hdr->sh_type != SHT_NOBITS
4659 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4660 && ((this_hdr->sh_flags & SHF_TLS) == 0
4661 || p->p_type == PT_TLS))))
4662 {
4663 bfd_vma p_start = p->p_paddr;
4664 bfd_vma p_end = p_start + p->p_memsz;
4665 bfd_vma s_start = sec->lma;
4666 bfd_vma adjust = s_start - p_end;
4667
4668 if (adjust != 0
4669 && (s_start < p_end
4670 || p_end < p_start))
4671 {
4672 (*_bfd_error_handler)
4673 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4674 (unsigned long) s_start, (unsigned long) p_end);
4675 adjust = 0;
4676 sec->lma = p_end;
4677 }
4678 p->p_memsz += adjust;
4679
4680 if (this_hdr->sh_type != SHT_NOBITS)
4681 {
4682 if (p->p_filesz + adjust < p->p_memsz)
4683 {
4684 /* We have a PROGBITS section following NOBITS ones.
4685 Allocate file space for the NOBITS section(s) and
4686 zero it. */
4687 adjust = p->p_memsz - p->p_filesz;
4688 if (!write_zeros (abfd, off, adjust))
4689 return FALSE;
4690 }
4691 off += adjust;
4692 p->p_filesz += adjust;
4693 }
4694 }
4695
4696 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4697 {
4698 /* The section at i == 0 is the one that actually contains
4699 everything. */
4700 if (i == 0)
4701 {
4702 this_hdr->sh_offset = sec->filepos = off;
4703 off += this_hdr->sh_size;
4704 p->p_filesz = this_hdr->sh_size;
4705 p->p_memsz = 0;
4706 p->p_align = 1;
4707 }
4708 else
4709 {
4710 /* The rest are fake sections that shouldn't be written. */
4711 sec->filepos = 0;
4712 sec->size = 0;
4713 sec->flags = 0;
4714 continue;
4715 }
4716 }
4717 else
4718 {
4719 if (p->p_type == PT_LOAD)
4720 {
4721 this_hdr->sh_offset = sec->filepos = off;
4722 if (this_hdr->sh_type != SHT_NOBITS)
4723 off += this_hdr->sh_size;
4724 }
4725 else if (this_hdr->sh_type == SHT_NOBITS
4726 && (this_hdr->sh_flags & SHF_TLS) != 0
4727 && this_hdr->sh_offset == 0)
4728 {
4729 /* This is a .tbss section that didn't get a PT_LOAD.
4730 (See _bfd_elf_map_sections_to_segments "Create a
4731 final PT_LOAD".) Set sh_offset to the value it
4732 would have if we had created a zero p_filesz and
4733 p_memsz PT_LOAD header for the section. This
4734 also makes the PT_TLS header have the same
4735 p_offset value. */
4736 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4737 off, align);
4738 this_hdr->sh_offset = sec->filepos = off + adjust;
4739 }
4740
4741 if (this_hdr->sh_type != SHT_NOBITS)
4742 {
4743 p->p_filesz += this_hdr->sh_size;
4744 /* A load section without SHF_ALLOC is something like
4745 a note section in a PT_NOTE segment. These take
4746 file space but are not loaded into memory. */
4747 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4748 p->p_memsz += this_hdr->sh_size;
4749 }
4750 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4751 {
4752 if (p->p_type == PT_TLS)
4753 p->p_memsz += this_hdr->sh_size;
4754
4755 /* .tbss is special. It doesn't contribute to p_memsz of
4756 normal segments. */
4757 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4758 p->p_memsz += this_hdr->sh_size;
4759 }
4760
4761 if (align > p->p_align
4762 && !m->p_align_valid
4763 && (p->p_type != PT_LOAD
4764 || (abfd->flags & D_PAGED) == 0))
4765 p->p_align = align;
4766 }
4767
4768 if (!m->p_flags_valid)
4769 {
4770 p->p_flags |= PF_R;
4771 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4772 p->p_flags |= PF_X;
4773 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4774 p->p_flags |= PF_W;
4775 }
4776 }
4777 off -= off_adjust;
4778
4779 /* Check that all sections are in a PT_LOAD segment.
4780 Don't check funky gdb generated core files. */
4781 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4782 {
4783 bfd_boolean check_vma = TRUE;
4784
4785 for (i = 1; i < m->count; i++)
4786 if (m->sections[i]->vma == m->sections[i - 1]->vma
4787 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4788 ->this_hdr), p) != 0
4789 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4790 ->this_hdr), p) != 0)
4791 {
4792 /* Looks like we have overlays packed into the segment. */
4793 check_vma = FALSE;
4794 break;
4795 }
4796
4797 for (i = 0; i < m->count; i++)
4798 {
4799 Elf_Internal_Shdr *this_hdr;
4800 asection *sec;
4801
4802 sec = m->sections[i];
4803 this_hdr = &(elf_section_data(sec)->this_hdr);
4804 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4805 && !ELF_TBSS_SPECIAL (this_hdr, p))
4806 {
4807 (*_bfd_error_handler)
4808 (_("%B: section `%A' can't be allocated in segment %d"),
4809 abfd, sec, j);
4810 print_segment_map (m);
4811 }
4812 }
4813 }
4814 }
4815
4816 elf_next_file_pos (abfd) = off;
4817 return TRUE;
4818 }
4819
4820 /* Assign file positions for the other sections. */
4821
4822 static bfd_boolean
4823 assign_file_positions_for_non_load_sections (bfd *abfd,
4824 struct bfd_link_info *link_info)
4825 {
4826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4827 Elf_Internal_Shdr **i_shdrpp;
4828 Elf_Internal_Shdr **hdrpp;
4829 Elf_Internal_Phdr *phdrs;
4830 Elf_Internal_Phdr *p;
4831 struct elf_segment_map *m;
4832 struct elf_segment_map *hdrs_segment;
4833 bfd_vma filehdr_vaddr, filehdr_paddr;
4834 bfd_vma phdrs_vaddr, phdrs_paddr;
4835 file_ptr off;
4836 unsigned int num_sec;
4837 unsigned int i;
4838 unsigned int count;
4839
4840 i_shdrpp = elf_elfsections (abfd);
4841 num_sec = elf_numsections (abfd);
4842 off = elf_next_file_pos (abfd);
4843 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4844 {
4845 Elf_Internal_Shdr *hdr;
4846
4847 hdr = *hdrpp;
4848 if (hdr->bfd_section != NULL
4849 && (hdr->bfd_section->filepos != 0
4850 || (hdr->sh_type == SHT_NOBITS
4851 && hdr->contents == NULL)))
4852 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4853 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4854 {
4855 if (hdr->sh_size != 0)
4856 (*_bfd_error_handler)
4857 (_("%B: warning: allocated section `%s' not in segment"),
4858 abfd,
4859 (hdr->bfd_section == NULL
4860 ? "*unknown*"
4861 : hdr->bfd_section->name));
4862 /* We don't need to page align empty sections. */
4863 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4864 off += vma_page_aligned_bias (hdr->sh_addr, off,
4865 bed->maxpagesize);
4866 else
4867 off += vma_page_aligned_bias (hdr->sh_addr, off,
4868 hdr->sh_addralign);
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4870 FALSE);
4871 }
4872 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4873 && hdr->bfd_section == NULL)
4874 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4875 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4876 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4877 hdr->sh_offset = -1;
4878 else
4879 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4880 }
4881
4882 /* Now that we have set the section file positions, we can set up
4883 the file positions for the non PT_LOAD segments. */
4884 count = 0;
4885 filehdr_vaddr = 0;
4886 filehdr_paddr = 0;
4887 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4888 phdrs_paddr = 0;
4889 hdrs_segment = NULL;
4890 phdrs = elf_tdata (abfd)->phdr;
4891 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4892 {
4893 ++count;
4894 if (p->p_type != PT_LOAD)
4895 continue;
4896
4897 if (m->includes_filehdr)
4898 {
4899 filehdr_vaddr = p->p_vaddr;
4900 filehdr_paddr = p->p_paddr;
4901 }
4902 if (m->includes_phdrs)
4903 {
4904 phdrs_vaddr = p->p_vaddr;
4905 phdrs_paddr = p->p_paddr;
4906 if (m->includes_filehdr)
4907 {
4908 hdrs_segment = m;
4909 phdrs_vaddr += bed->s->sizeof_ehdr;
4910 phdrs_paddr += bed->s->sizeof_ehdr;
4911 }
4912 }
4913 }
4914
4915 if (hdrs_segment != NULL && link_info != NULL)
4916 {
4917 /* There is a segment that contains both the file headers and the
4918 program headers, so provide a symbol __ehdr_start pointing there.
4919 A program can use this to examine itself robustly. */
4920
4921 struct elf_link_hash_entry *hash
4922 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4923 FALSE, FALSE, TRUE);
4924 /* If the symbol was referenced and not defined, define it. */
4925 if (hash != NULL
4926 && (hash->root.type == bfd_link_hash_new
4927 || hash->root.type == bfd_link_hash_undefined
4928 || hash->root.type == bfd_link_hash_undefweak
4929 || hash->root.type == bfd_link_hash_common))
4930 {
4931 asection *s = NULL;
4932 if (hdrs_segment->count != 0)
4933 /* The segment contains sections, so use the first one. */
4934 s = hdrs_segment->sections[0];
4935 else
4936 /* Use the first (i.e. lowest-addressed) section in any segment. */
4937 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4938 if (m->count != 0)
4939 {
4940 s = m->sections[0];
4941 break;
4942 }
4943
4944 if (s != NULL)
4945 {
4946 hash->root.u.def.value = filehdr_vaddr - s->vma;
4947 hash->root.u.def.section = s;
4948 }
4949 else
4950 {
4951 hash->root.u.def.value = filehdr_vaddr;
4952 hash->root.u.def.section = bfd_abs_section_ptr;
4953 }
4954
4955 hash->root.type = bfd_link_hash_defined;
4956 hash->def_regular = 1;
4957 hash->non_elf = 0;
4958 }
4959 }
4960
4961 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4962 {
4963 if (p->p_type == PT_GNU_RELRO)
4964 {
4965 const Elf_Internal_Phdr *lp;
4966 struct elf_segment_map *lm;
4967
4968 if (link_info != NULL)
4969 {
4970 /* During linking the range of the RELRO segment is passed
4971 in link_info. */
4972 for (lm = elf_seg_map (abfd), lp = phdrs;
4973 lm != NULL;
4974 lm = lm->next, lp++)
4975 {
4976 if (lp->p_type == PT_LOAD
4977 && lp->p_vaddr < link_info->relro_end
4978 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4979 && lm->count != 0
4980 && lm->sections[0]->vma >= link_info->relro_start)
4981 break;
4982 }
4983
4984 /* PR ld/14207. If the RELRO segment doesn't fit in the
4985 LOAD segment, it should be removed. */
4986 BFD_ASSERT (lm != NULL);
4987 }
4988 else
4989 {
4990 /* Otherwise we are copying an executable or shared
4991 library, but we need to use the same linker logic. */
4992 for (lp = phdrs; lp < phdrs + count; ++lp)
4993 {
4994 if (lp->p_type == PT_LOAD
4995 && lp->p_paddr == p->p_paddr)
4996 break;
4997 }
4998 }
4999
5000 if (lp < phdrs + count)
5001 {
5002 p->p_vaddr = lp->p_vaddr;
5003 p->p_paddr = lp->p_paddr;
5004 p->p_offset = lp->p_offset;
5005 if (link_info != NULL)
5006 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5007 else if (m->p_size_valid)
5008 p->p_filesz = m->p_size;
5009 else
5010 abort ();
5011 p->p_memsz = p->p_filesz;
5012 /* Preserve the alignment and flags if they are valid. The
5013 gold linker generates RW/4 for the PT_GNU_RELRO section.
5014 It is better for objcopy/strip to honor these attributes
5015 otherwise gdb will choke when using separate debug files.
5016 */
5017 if (!m->p_align_valid)
5018 p->p_align = 1;
5019 if (!m->p_flags_valid)
5020 p->p_flags = (lp->p_flags & ~PF_W);
5021 }
5022 else
5023 {
5024 memset (p, 0, sizeof *p);
5025 p->p_type = PT_NULL;
5026 }
5027 }
5028 else if (p->p_type == PT_GNU_STACK)
5029 {
5030 if (m->p_size_valid)
5031 p->p_memsz = m->p_size;
5032 }
5033 else if (m->count != 0)
5034 {
5035 if (p->p_type != PT_LOAD
5036 && (p->p_type != PT_NOTE
5037 || bfd_get_format (abfd) != bfd_core))
5038 {
5039 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5040
5041 p->p_filesz = 0;
5042 p->p_offset = m->sections[0]->filepos;
5043 for (i = m->count; i-- != 0;)
5044 {
5045 asection *sect = m->sections[i];
5046 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5047 if (hdr->sh_type != SHT_NOBITS)
5048 {
5049 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5050 + hdr->sh_size);
5051 break;
5052 }
5053 }
5054 }
5055 }
5056 else if (m->includes_filehdr)
5057 {
5058 p->p_vaddr = filehdr_vaddr;
5059 if (! m->p_paddr_valid)
5060 p->p_paddr = filehdr_paddr;
5061 }
5062 else if (m->includes_phdrs)
5063 {
5064 p->p_vaddr = phdrs_vaddr;
5065 if (! m->p_paddr_valid)
5066 p->p_paddr = phdrs_paddr;
5067 }
5068 }
5069
5070 elf_next_file_pos (abfd) = off;
5071
5072 return TRUE;
5073 }
5074
5075 /* Work out the file positions of all the sections. This is called by
5076 _bfd_elf_compute_section_file_positions. All the section sizes and
5077 VMAs must be known before this is called.
5078
5079 Reloc sections come in two flavours: Those processed specially as
5080 "side-channel" data attached to a section to which they apply, and
5081 those that bfd doesn't process as relocations. The latter sort are
5082 stored in a normal bfd section by bfd_section_from_shdr. We don't
5083 consider the former sort here, unless they form part of the loadable
5084 image. Reloc sections not assigned here will be handled later by
5085 assign_file_positions_for_relocs.
5086
5087 We also don't set the positions of the .symtab and .strtab here. */
5088
5089 static bfd_boolean
5090 assign_file_positions_except_relocs (bfd *abfd,
5091 struct bfd_link_info *link_info)
5092 {
5093 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5094 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5095 file_ptr off;
5096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5097
5098 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5099 && bfd_get_format (abfd) != bfd_core)
5100 {
5101 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5102 unsigned int num_sec = elf_numsections (abfd);
5103 Elf_Internal_Shdr **hdrpp;
5104 unsigned int i;
5105
5106 /* Start after the ELF header. */
5107 off = i_ehdrp->e_ehsize;
5108
5109 /* We are not creating an executable, which means that we are
5110 not creating a program header, and that the actual order of
5111 the sections in the file is unimportant. */
5112 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5113 {
5114 Elf_Internal_Shdr *hdr;
5115
5116 hdr = *hdrpp;
5117 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5118 && hdr->bfd_section == NULL)
5119 || i == elf_onesymtab (abfd)
5120 || i == elf_symtab_shndx (abfd)
5121 || i == elf_strtab_sec (abfd))
5122 {
5123 hdr->sh_offset = -1;
5124 }
5125 else
5126 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5127 }
5128 }
5129 else
5130 {
5131 unsigned int alloc;
5132
5133 /* Assign file positions for the loaded sections based on the
5134 assignment of sections to segments. */
5135 if (!assign_file_positions_for_load_sections (abfd, link_info))
5136 return FALSE;
5137
5138 /* And for non-load sections. */
5139 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5140 return FALSE;
5141
5142 if (bed->elf_backend_modify_program_headers != NULL)
5143 {
5144 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5145 return FALSE;
5146 }
5147
5148 /* Write out the program headers. */
5149 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5150 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5151 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5152 return FALSE;
5153
5154 off = elf_next_file_pos (abfd);
5155 }
5156
5157 /* Place the section headers. */
5158 off = align_file_position (off, 1 << bed->s->log_file_align);
5159 i_ehdrp->e_shoff = off;
5160 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5161
5162 elf_next_file_pos (abfd) = off;
5163
5164 return TRUE;
5165 }
5166
5167 static bfd_boolean
5168 prep_headers (bfd *abfd)
5169 {
5170 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5171 struct elf_strtab_hash *shstrtab;
5172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5173
5174 i_ehdrp = elf_elfheader (abfd);
5175
5176 shstrtab = _bfd_elf_strtab_init ();
5177 if (shstrtab == NULL)
5178 return FALSE;
5179
5180 elf_shstrtab (abfd) = shstrtab;
5181
5182 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5183 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5184 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5185 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5186
5187 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5188 i_ehdrp->e_ident[EI_DATA] =
5189 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5190 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5191
5192 if ((abfd->flags & DYNAMIC) != 0)
5193 i_ehdrp->e_type = ET_DYN;
5194 else if ((abfd->flags & EXEC_P) != 0)
5195 i_ehdrp->e_type = ET_EXEC;
5196 else if (bfd_get_format (abfd) == bfd_core)
5197 i_ehdrp->e_type = ET_CORE;
5198 else
5199 i_ehdrp->e_type = ET_REL;
5200
5201 switch (bfd_get_arch (abfd))
5202 {
5203 case bfd_arch_unknown:
5204 i_ehdrp->e_machine = EM_NONE;
5205 break;
5206
5207 /* There used to be a long list of cases here, each one setting
5208 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5209 in the corresponding bfd definition. To avoid duplication,
5210 the switch was removed. Machines that need special handling
5211 can generally do it in elf_backend_final_write_processing(),
5212 unless they need the information earlier than the final write.
5213 Such need can generally be supplied by replacing the tests for
5214 e_machine with the conditions used to determine it. */
5215 default:
5216 i_ehdrp->e_machine = bed->elf_machine_code;
5217 }
5218
5219 i_ehdrp->e_version = bed->s->ev_current;
5220 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5221
5222 /* No program header, for now. */
5223 i_ehdrp->e_phoff = 0;
5224 i_ehdrp->e_phentsize = 0;
5225 i_ehdrp->e_phnum = 0;
5226
5227 /* Each bfd section is section header entry. */
5228 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5229 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5230
5231 /* If we're building an executable, we'll need a program header table. */
5232 if (abfd->flags & EXEC_P)
5233 /* It all happens later. */
5234 ;
5235 else
5236 {
5237 i_ehdrp->e_phentsize = 0;
5238 i_ehdrp->e_phoff = 0;
5239 }
5240
5241 elf_tdata (abfd)->symtab_hdr.sh_name =
5242 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5243 elf_tdata (abfd)->strtab_hdr.sh_name =
5244 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5245 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5246 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5247 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5248 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5249 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5250 return FALSE;
5251
5252 return TRUE;
5253 }
5254
5255 /* Assign file positions for all the reloc sections which are not part
5256 of the loadable file image. */
5257
5258 void
5259 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5260 {
5261 file_ptr off;
5262 unsigned int i, num_sec;
5263 Elf_Internal_Shdr **shdrpp;
5264
5265 off = elf_next_file_pos (abfd);
5266
5267 num_sec = elf_numsections (abfd);
5268 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5269 {
5270 Elf_Internal_Shdr *shdrp;
5271
5272 shdrp = *shdrpp;
5273 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5274 && shdrp->sh_offset == -1)
5275 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5276 }
5277
5278 elf_next_file_pos (abfd) = off;
5279 }
5280
5281 bfd_boolean
5282 _bfd_elf_write_object_contents (bfd *abfd)
5283 {
5284 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5285 Elf_Internal_Shdr **i_shdrp;
5286 bfd_boolean failed;
5287 unsigned int count, num_sec;
5288 struct elf_obj_tdata *t;
5289
5290 if (! abfd->output_has_begun
5291 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5292 return FALSE;
5293
5294 i_shdrp = elf_elfsections (abfd);
5295
5296 failed = FALSE;
5297 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5298 if (failed)
5299 return FALSE;
5300
5301 _bfd_elf_assign_file_positions_for_relocs (abfd);
5302
5303 /* After writing the headers, we need to write the sections too... */
5304 num_sec = elf_numsections (abfd);
5305 for (count = 1; count < num_sec; count++)
5306 {
5307 if (bed->elf_backend_section_processing)
5308 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5309 if (i_shdrp[count]->contents)
5310 {
5311 bfd_size_type amt = i_shdrp[count]->sh_size;
5312
5313 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5314 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5315 return FALSE;
5316 }
5317 }
5318
5319 /* Write out the section header names. */
5320 t = elf_tdata (abfd);
5321 if (elf_shstrtab (abfd) != NULL
5322 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5323 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5324 return FALSE;
5325
5326 if (bed->elf_backend_final_write_processing)
5327 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5328
5329 if (!bed->s->write_shdrs_and_ehdr (abfd))
5330 return FALSE;
5331
5332 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5333 if (t->build_id != NULL
5334 && t->build_id->u.o.zero == 0)
5335 return (*t->build_id->u.o.after_write_object_contents) (abfd);
5336
5337 return TRUE;
5338 }
5339
5340 bfd_boolean
5341 _bfd_elf_write_corefile_contents (bfd *abfd)
5342 {
5343 /* Hopefully this can be done just like an object file. */
5344 return _bfd_elf_write_object_contents (abfd);
5345 }
5346
5347 /* Given a section, search the header to find them. */
5348
5349 unsigned int
5350 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5351 {
5352 const struct elf_backend_data *bed;
5353 unsigned int sec_index;
5354
5355 if (elf_section_data (asect) != NULL
5356 && elf_section_data (asect)->this_idx != 0)
5357 return elf_section_data (asect)->this_idx;
5358
5359 if (bfd_is_abs_section (asect))
5360 sec_index = SHN_ABS;
5361 else if (bfd_is_com_section (asect))
5362 sec_index = SHN_COMMON;
5363 else if (bfd_is_und_section (asect))
5364 sec_index = SHN_UNDEF;
5365 else
5366 sec_index = SHN_BAD;
5367
5368 bed = get_elf_backend_data (abfd);
5369 if (bed->elf_backend_section_from_bfd_section)
5370 {
5371 int retval = sec_index;
5372
5373 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5374 return retval;
5375 }
5376
5377 if (sec_index == SHN_BAD)
5378 bfd_set_error (bfd_error_nonrepresentable_section);
5379
5380 return sec_index;
5381 }
5382
5383 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5384 on error. */
5385
5386 int
5387 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5388 {
5389 asymbol *asym_ptr = *asym_ptr_ptr;
5390 int idx;
5391 flagword flags = asym_ptr->flags;
5392
5393 /* When gas creates relocations against local labels, it creates its
5394 own symbol for the section, but does put the symbol into the
5395 symbol chain, so udata is 0. When the linker is generating
5396 relocatable output, this section symbol may be for one of the
5397 input sections rather than the output section. */
5398 if (asym_ptr->udata.i == 0
5399 && (flags & BSF_SECTION_SYM)
5400 && asym_ptr->section)
5401 {
5402 asection *sec;
5403 int indx;
5404
5405 sec = asym_ptr->section;
5406 if (sec->owner != abfd && sec->output_section != NULL)
5407 sec = sec->output_section;
5408 if (sec->owner == abfd
5409 && (indx = sec->index) < elf_num_section_syms (abfd)
5410 && elf_section_syms (abfd)[indx] != NULL)
5411 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5412 }
5413
5414 idx = asym_ptr->udata.i;
5415
5416 if (idx == 0)
5417 {
5418 /* This case can occur when using --strip-symbol on a symbol
5419 which is used in a relocation entry. */
5420 (*_bfd_error_handler)
5421 (_("%B: symbol `%s' required but not present"),
5422 abfd, bfd_asymbol_name (asym_ptr));
5423 bfd_set_error (bfd_error_no_symbols);
5424 return -1;
5425 }
5426
5427 #if DEBUG & 4
5428 {
5429 fprintf (stderr,
5430 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5431 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5432 fflush (stderr);
5433 }
5434 #endif
5435
5436 return idx;
5437 }
5438
5439 /* Rewrite program header information. */
5440
5441 static bfd_boolean
5442 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5443 {
5444 Elf_Internal_Ehdr *iehdr;
5445 struct elf_segment_map *map;
5446 struct elf_segment_map *map_first;
5447 struct elf_segment_map **pointer_to_map;
5448 Elf_Internal_Phdr *segment;
5449 asection *section;
5450 unsigned int i;
5451 unsigned int num_segments;
5452 bfd_boolean phdr_included = FALSE;
5453 bfd_boolean p_paddr_valid;
5454 bfd_vma maxpagesize;
5455 struct elf_segment_map *phdr_adjust_seg = NULL;
5456 unsigned int phdr_adjust_num = 0;
5457 const struct elf_backend_data *bed;
5458
5459 bed = get_elf_backend_data (ibfd);
5460 iehdr = elf_elfheader (ibfd);
5461
5462 map_first = NULL;
5463 pointer_to_map = &map_first;
5464
5465 num_segments = elf_elfheader (ibfd)->e_phnum;
5466 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5467
5468 /* Returns the end address of the segment + 1. */
5469 #define SEGMENT_END(segment, start) \
5470 (start + (segment->p_memsz > segment->p_filesz \
5471 ? segment->p_memsz : segment->p_filesz))
5472
5473 #define SECTION_SIZE(section, segment) \
5474 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5475 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5476 ? section->size : 0)
5477
5478 /* Returns TRUE if the given section is contained within
5479 the given segment. VMA addresses are compared. */
5480 #define IS_CONTAINED_BY_VMA(section, segment) \
5481 (section->vma >= segment->p_vaddr \
5482 && (section->vma + SECTION_SIZE (section, segment) \
5483 <= (SEGMENT_END (segment, segment->p_vaddr))))
5484
5485 /* Returns TRUE if the given section is contained within
5486 the given segment. LMA addresses are compared. */
5487 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5488 (section->lma >= base \
5489 && (section->lma + SECTION_SIZE (section, segment) \
5490 <= SEGMENT_END (segment, base)))
5491
5492 /* Handle PT_NOTE segment. */
5493 #define IS_NOTE(p, s) \
5494 (p->p_type == PT_NOTE \
5495 && elf_section_type (s) == SHT_NOTE \
5496 && (bfd_vma) s->filepos >= p->p_offset \
5497 && ((bfd_vma) s->filepos + s->size \
5498 <= p->p_offset + p->p_filesz))
5499
5500 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5501 etc. */
5502 #define IS_COREFILE_NOTE(p, s) \
5503 (IS_NOTE (p, s) \
5504 && bfd_get_format (ibfd) == bfd_core \
5505 && s->vma == 0 \
5506 && s->lma == 0)
5507
5508 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5509 linker, which generates a PT_INTERP section with p_vaddr and
5510 p_memsz set to 0. */
5511 #define IS_SOLARIS_PT_INTERP(p, s) \
5512 (p->p_vaddr == 0 \
5513 && p->p_paddr == 0 \
5514 && p->p_memsz == 0 \
5515 && p->p_filesz > 0 \
5516 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5517 && s->size > 0 \
5518 && (bfd_vma) s->filepos >= p->p_offset \
5519 && ((bfd_vma) s->filepos + s->size \
5520 <= p->p_offset + p->p_filesz))
5521
5522 /* Decide if the given section should be included in the given segment.
5523 A section will be included if:
5524 1. It is within the address space of the segment -- we use the LMA
5525 if that is set for the segment and the VMA otherwise,
5526 2. It is an allocated section or a NOTE section in a PT_NOTE
5527 segment.
5528 3. There is an output section associated with it,
5529 4. The section has not already been allocated to a previous segment.
5530 5. PT_GNU_STACK segments do not include any sections.
5531 6. PT_TLS segment includes only SHF_TLS sections.
5532 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5533 8. PT_DYNAMIC should not contain empty sections at the beginning
5534 (with the possible exception of .dynamic). */
5535 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5536 ((((segment->p_paddr \
5537 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5538 : IS_CONTAINED_BY_VMA (section, segment)) \
5539 && (section->flags & SEC_ALLOC) != 0) \
5540 || IS_NOTE (segment, section)) \
5541 && segment->p_type != PT_GNU_STACK \
5542 && (segment->p_type != PT_TLS \
5543 || (section->flags & SEC_THREAD_LOCAL)) \
5544 && (segment->p_type == PT_LOAD \
5545 || segment->p_type == PT_TLS \
5546 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5547 && (segment->p_type != PT_DYNAMIC \
5548 || SECTION_SIZE (section, segment) > 0 \
5549 || (segment->p_paddr \
5550 ? segment->p_paddr != section->lma \
5551 : segment->p_vaddr != section->vma) \
5552 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5553 == 0)) \
5554 && !section->segment_mark)
5555
5556 /* If the output section of a section in the input segment is NULL,
5557 it is removed from the corresponding output segment. */
5558 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5559 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5560 && section->output_section != NULL)
5561
5562 /* Returns TRUE iff seg1 starts after the end of seg2. */
5563 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5564 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5565
5566 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5567 their VMA address ranges and their LMA address ranges overlap.
5568 It is possible to have overlapping VMA ranges without overlapping LMA
5569 ranges. RedBoot images for example can have both .data and .bss mapped
5570 to the same VMA range, but with the .data section mapped to a different
5571 LMA. */
5572 #define SEGMENT_OVERLAPS(seg1, seg2) \
5573 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5574 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5575 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5576 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5577
5578 /* Initialise the segment mark field. */
5579 for (section = ibfd->sections; section != NULL; section = section->next)
5580 section->segment_mark = FALSE;
5581
5582 /* The Solaris linker creates program headers in which all the
5583 p_paddr fields are zero. When we try to objcopy or strip such a
5584 file, we get confused. Check for this case, and if we find it
5585 don't set the p_paddr_valid fields. */
5586 p_paddr_valid = FALSE;
5587 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5588 i < num_segments;
5589 i++, segment++)
5590 if (segment->p_paddr != 0)
5591 {
5592 p_paddr_valid = TRUE;
5593 break;
5594 }
5595
5596 /* Scan through the segments specified in the program header
5597 of the input BFD. For this first scan we look for overlaps
5598 in the loadable segments. These can be created by weird
5599 parameters to objcopy. Also, fix some solaris weirdness. */
5600 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5601 i < num_segments;
5602 i++, segment++)
5603 {
5604 unsigned int j;
5605 Elf_Internal_Phdr *segment2;
5606
5607 if (segment->p_type == PT_INTERP)
5608 for (section = ibfd->sections; section; section = section->next)
5609 if (IS_SOLARIS_PT_INTERP (segment, section))
5610 {
5611 /* Mininal change so that the normal section to segment
5612 assignment code will work. */
5613 segment->p_vaddr = section->vma;
5614 break;
5615 }
5616
5617 if (segment->p_type != PT_LOAD)
5618 {
5619 /* Remove PT_GNU_RELRO segment. */
5620 if (segment->p_type == PT_GNU_RELRO)
5621 segment->p_type = PT_NULL;
5622 continue;
5623 }
5624
5625 /* Determine if this segment overlaps any previous segments. */
5626 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5627 {
5628 bfd_signed_vma extra_length;
5629
5630 if (segment2->p_type != PT_LOAD
5631 || !SEGMENT_OVERLAPS (segment, segment2))
5632 continue;
5633
5634 /* Merge the two segments together. */
5635 if (segment2->p_vaddr < segment->p_vaddr)
5636 {
5637 /* Extend SEGMENT2 to include SEGMENT and then delete
5638 SEGMENT. */
5639 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5640 - SEGMENT_END (segment2, segment2->p_vaddr));
5641
5642 if (extra_length > 0)
5643 {
5644 segment2->p_memsz += extra_length;
5645 segment2->p_filesz += extra_length;
5646 }
5647
5648 segment->p_type = PT_NULL;
5649
5650 /* Since we have deleted P we must restart the outer loop. */
5651 i = 0;
5652 segment = elf_tdata (ibfd)->phdr;
5653 break;
5654 }
5655 else
5656 {
5657 /* Extend SEGMENT to include SEGMENT2 and then delete
5658 SEGMENT2. */
5659 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5660 - SEGMENT_END (segment, segment->p_vaddr));
5661
5662 if (extra_length > 0)
5663 {
5664 segment->p_memsz += extra_length;
5665 segment->p_filesz += extra_length;
5666 }
5667
5668 segment2->p_type = PT_NULL;
5669 }
5670 }
5671 }
5672
5673 /* The second scan attempts to assign sections to segments. */
5674 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5675 i < num_segments;
5676 i++, segment++)
5677 {
5678 unsigned int section_count;
5679 asection **sections;
5680 asection *output_section;
5681 unsigned int isec;
5682 bfd_vma matching_lma;
5683 bfd_vma suggested_lma;
5684 unsigned int j;
5685 bfd_size_type amt;
5686 asection *first_section;
5687 bfd_boolean first_matching_lma;
5688 bfd_boolean first_suggested_lma;
5689
5690 if (segment->p_type == PT_NULL)
5691 continue;
5692
5693 first_section = NULL;
5694 /* Compute how many sections might be placed into this segment. */
5695 for (section = ibfd->sections, section_count = 0;
5696 section != NULL;
5697 section = section->next)
5698 {
5699 /* Find the first section in the input segment, which may be
5700 removed from the corresponding output segment. */
5701 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5702 {
5703 if (first_section == NULL)
5704 first_section = section;
5705 if (section->output_section != NULL)
5706 ++section_count;
5707 }
5708 }
5709
5710 /* Allocate a segment map big enough to contain
5711 all of the sections we have selected. */
5712 amt = sizeof (struct elf_segment_map);
5713 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5714 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5715 if (map == NULL)
5716 return FALSE;
5717
5718 /* Initialise the fields of the segment map. Default to
5719 using the physical address of the segment in the input BFD. */
5720 map->next = NULL;
5721 map->p_type = segment->p_type;
5722 map->p_flags = segment->p_flags;
5723 map->p_flags_valid = 1;
5724
5725 /* If the first section in the input segment is removed, there is
5726 no need to preserve segment physical address in the corresponding
5727 output segment. */
5728 if (!first_section || first_section->output_section != NULL)
5729 {
5730 map->p_paddr = segment->p_paddr;
5731 map->p_paddr_valid = p_paddr_valid;
5732 }
5733
5734 /* Determine if this segment contains the ELF file header
5735 and if it contains the program headers themselves. */
5736 map->includes_filehdr = (segment->p_offset == 0
5737 && segment->p_filesz >= iehdr->e_ehsize);
5738 map->includes_phdrs = 0;
5739
5740 if (!phdr_included || segment->p_type != PT_LOAD)
5741 {
5742 map->includes_phdrs =
5743 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5744 && (segment->p_offset + segment->p_filesz
5745 >= ((bfd_vma) iehdr->e_phoff
5746 + iehdr->e_phnum * iehdr->e_phentsize)));
5747
5748 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5749 phdr_included = TRUE;
5750 }
5751
5752 if (section_count == 0)
5753 {
5754 /* Special segments, such as the PT_PHDR segment, may contain
5755 no sections, but ordinary, loadable segments should contain
5756 something. They are allowed by the ELF spec however, so only
5757 a warning is produced. */
5758 if (segment->p_type == PT_LOAD)
5759 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5760 " detected, is this intentional ?\n"),
5761 ibfd);
5762
5763 map->count = 0;
5764 *pointer_to_map = map;
5765 pointer_to_map = &map->next;
5766
5767 continue;
5768 }
5769
5770 /* Now scan the sections in the input BFD again and attempt
5771 to add their corresponding output sections to the segment map.
5772 The problem here is how to handle an output section which has
5773 been moved (ie had its LMA changed). There are four possibilities:
5774
5775 1. None of the sections have been moved.
5776 In this case we can continue to use the segment LMA from the
5777 input BFD.
5778
5779 2. All of the sections have been moved by the same amount.
5780 In this case we can change the segment's LMA to match the LMA
5781 of the first section.
5782
5783 3. Some of the sections have been moved, others have not.
5784 In this case those sections which have not been moved can be
5785 placed in the current segment which will have to have its size,
5786 and possibly its LMA changed, and a new segment or segments will
5787 have to be created to contain the other sections.
5788
5789 4. The sections have been moved, but not by the same amount.
5790 In this case we can change the segment's LMA to match the LMA
5791 of the first section and we will have to create a new segment
5792 or segments to contain the other sections.
5793
5794 In order to save time, we allocate an array to hold the section
5795 pointers that we are interested in. As these sections get assigned
5796 to a segment, they are removed from this array. */
5797
5798 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5799 if (sections == NULL)
5800 return FALSE;
5801
5802 /* Step One: Scan for segment vs section LMA conflicts.
5803 Also add the sections to the section array allocated above.
5804 Also add the sections to the current segment. In the common
5805 case, where the sections have not been moved, this means that
5806 we have completely filled the segment, and there is nothing
5807 more to do. */
5808 isec = 0;
5809 matching_lma = 0;
5810 suggested_lma = 0;
5811 first_matching_lma = TRUE;
5812 first_suggested_lma = TRUE;
5813
5814 for (section = ibfd->sections;
5815 section != NULL;
5816 section = section->next)
5817 if (section == first_section)
5818 break;
5819
5820 for (j = 0; section != NULL; section = section->next)
5821 {
5822 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5823 {
5824 output_section = section->output_section;
5825
5826 sections[j++] = section;
5827
5828 /* The Solaris native linker always sets p_paddr to 0.
5829 We try to catch that case here, and set it to the
5830 correct value. Note - some backends require that
5831 p_paddr be left as zero. */
5832 if (!p_paddr_valid
5833 && segment->p_vaddr != 0
5834 && !bed->want_p_paddr_set_to_zero
5835 && isec == 0
5836 && output_section->lma != 0
5837 && output_section->vma == (segment->p_vaddr
5838 + (map->includes_filehdr
5839 ? iehdr->e_ehsize
5840 : 0)
5841 + (map->includes_phdrs
5842 ? (iehdr->e_phnum
5843 * iehdr->e_phentsize)
5844 : 0)))
5845 map->p_paddr = segment->p_vaddr;
5846
5847 /* Match up the physical address of the segment with the
5848 LMA address of the output section. */
5849 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5850 || IS_COREFILE_NOTE (segment, section)
5851 || (bed->want_p_paddr_set_to_zero
5852 && IS_CONTAINED_BY_VMA (output_section, segment)))
5853 {
5854 if (first_matching_lma || output_section->lma < matching_lma)
5855 {
5856 matching_lma = output_section->lma;
5857 first_matching_lma = FALSE;
5858 }
5859
5860 /* We assume that if the section fits within the segment
5861 then it does not overlap any other section within that
5862 segment. */
5863 map->sections[isec++] = output_section;
5864 }
5865 else if (first_suggested_lma)
5866 {
5867 suggested_lma = output_section->lma;
5868 first_suggested_lma = FALSE;
5869 }
5870
5871 if (j == section_count)
5872 break;
5873 }
5874 }
5875
5876 BFD_ASSERT (j == section_count);
5877
5878 /* Step Two: Adjust the physical address of the current segment,
5879 if necessary. */
5880 if (isec == section_count)
5881 {
5882 /* All of the sections fitted within the segment as currently
5883 specified. This is the default case. Add the segment to
5884 the list of built segments and carry on to process the next
5885 program header in the input BFD. */
5886 map->count = section_count;
5887 *pointer_to_map = map;
5888 pointer_to_map = &map->next;
5889
5890 if (p_paddr_valid
5891 && !bed->want_p_paddr_set_to_zero
5892 && matching_lma != map->p_paddr
5893 && !map->includes_filehdr
5894 && !map->includes_phdrs)
5895 /* There is some padding before the first section in the
5896 segment. So, we must account for that in the output
5897 segment's vma. */
5898 map->p_vaddr_offset = matching_lma - map->p_paddr;
5899
5900 free (sections);
5901 continue;
5902 }
5903 else
5904 {
5905 if (!first_matching_lma)
5906 {
5907 /* At least one section fits inside the current segment.
5908 Keep it, but modify its physical address to match the
5909 LMA of the first section that fitted. */
5910 map->p_paddr = matching_lma;
5911 }
5912 else
5913 {
5914 /* None of the sections fitted inside the current segment.
5915 Change the current segment's physical address to match
5916 the LMA of the first section. */
5917 map->p_paddr = suggested_lma;
5918 }
5919
5920 /* Offset the segment physical address from the lma
5921 to allow for space taken up by elf headers. */
5922 if (map->includes_filehdr)
5923 {
5924 if (map->p_paddr >= iehdr->e_ehsize)
5925 map->p_paddr -= iehdr->e_ehsize;
5926 else
5927 {
5928 map->includes_filehdr = FALSE;
5929 map->includes_phdrs = FALSE;
5930 }
5931 }
5932
5933 if (map->includes_phdrs)
5934 {
5935 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5936 {
5937 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5938
5939 /* iehdr->e_phnum is just an estimate of the number
5940 of program headers that we will need. Make a note
5941 here of the number we used and the segment we chose
5942 to hold these headers, so that we can adjust the
5943 offset when we know the correct value. */
5944 phdr_adjust_num = iehdr->e_phnum;
5945 phdr_adjust_seg = map;
5946 }
5947 else
5948 map->includes_phdrs = FALSE;
5949 }
5950 }
5951
5952 /* Step Three: Loop over the sections again, this time assigning
5953 those that fit to the current segment and removing them from the
5954 sections array; but making sure not to leave large gaps. Once all
5955 possible sections have been assigned to the current segment it is
5956 added to the list of built segments and if sections still remain
5957 to be assigned, a new segment is constructed before repeating
5958 the loop. */
5959 isec = 0;
5960 do
5961 {
5962 map->count = 0;
5963 suggested_lma = 0;
5964 first_suggested_lma = TRUE;
5965
5966 /* Fill the current segment with sections that fit. */
5967 for (j = 0; j < section_count; j++)
5968 {
5969 section = sections[j];
5970
5971 if (section == NULL)
5972 continue;
5973
5974 output_section = section->output_section;
5975
5976 BFD_ASSERT (output_section != NULL);
5977
5978 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5979 || IS_COREFILE_NOTE (segment, section))
5980 {
5981 if (map->count == 0)
5982 {
5983 /* If the first section in a segment does not start at
5984 the beginning of the segment, then something is
5985 wrong. */
5986 if (output_section->lma
5987 != (map->p_paddr
5988 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5989 + (map->includes_phdrs
5990 ? iehdr->e_phnum * iehdr->e_phentsize
5991 : 0)))
5992 abort ();
5993 }
5994 else
5995 {
5996 asection *prev_sec;
5997
5998 prev_sec = map->sections[map->count - 1];
5999
6000 /* If the gap between the end of the previous section
6001 and the start of this section is more than
6002 maxpagesize then we need to start a new segment. */
6003 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6004 maxpagesize)
6005 < BFD_ALIGN (output_section->lma, maxpagesize))
6006 || (prev_sec->lma + prev_sec->size
6007 > output_section->lma))
6008 {
6009 if (first_suggested_lma)
6010 {
6011 suggested_lma = output_section->lma;
6012 first_suggested_lma = FALSE;
6013 }
6014
6015 continue;
6016 }
6017 }
6018
6019 map->sections[map->count++] = output_section;
6020 ++isec;
6021 sections[j] = NULL;
6022 section->segment_mark = TRUE;
6023 }
6024 else if (first_suggested_lma)
6025 {
6026 suggested_lma = output_section->lma;
6027 first_suggested_lma = FALSE;
6028 }
6029 }
6030
6031 BFD_ASSERT (map->count > 0);
6032
6033 /* Add the current segment to the list of built segments. */
6034 *pointer_to_map = map;
6035 pointer_to_map = &map->next;
6036
6037 if (isec < section_count)
6038 {
6039 /* We still have not allocated all of the sections to
6040 segments. Create a new segment here, initialise it
6041 and carry on looping. */
6042 amt = sizeof (struct elf_segment_map);
6043 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6044 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6045 if (map == NULL)
6046 {
6047 free (sections);
6048 return FALSE;
6049 }
6050
6051 /* Initialise the fields of the segment map. Set the physical
6052 physical address to the LMA of the first section that has
6053 not yet been assigned. */
6054 map->next = NULL;
6055 map->p_type = segment->p_type;
6056 map->p_flags = segment->p_flags;
6057 map->p_flags_valid = 1;
6058 map->p_paddr = suggested_lma;
6059 map->p_paddr_valid = p_paddr_valid;
6060 map->includes_filehdr = 0;
6061 map->includes_phdrs = 0;
6062 }
6063 }
6064 while (isec < section_count);
6065
6066 free (sections);
6067 }
6068
6069 elf_seg_map (obfd) = map_first;
6070
6071 /* If we had to estimate the number of program headers that were
6072 going to be needed, then check our estimate now and adjust
6073 the offset if necessary. */
6074 if (phdr_adjust_seg != NULL)
6075 {
6076 unsigned int count;
6077
6078 for (count = 0, map = map_first; map != NULL; map = map->next)
6079 count++;
6080
6081 if (count > phdr_adjust_num)
6082 phdr_adjust_seg->p_paddr
6083 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6084 }
6085
6086 #undef SEGMENT_END
6087 #undef SECTION_SIZE
6088 #undef IS_CONTAINED_BY_VMA
6089 #undef IS_CONTAINED_BY_LMA
6090 #undef IS_NOTE
6091 #undef IS_COREFILE_NOTE
6092 #undef IS_SOLARIS_PT_INTERP
6093 #undef IS_SECTION_IN_INPUT_SEGMENT
6094 #undef INCLUDE_SECTION_IN_SEGMENT
6095 #undef SEGMENT_AFTER_SEGMENT
6096 #undef SEGMENT_OVERLAPS
6097 return TRUE;
6098 }
6099
6100 /* Copy ELF program header information. */
6101
6102 static bfd_boolean
6103 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6104 {
6105 Elf_Internal_Ehdr *iehdr;
6106 struct elf_segment_map *map;
6107 struct elf_segment_map *map_first;
6108 struct elf_segment_map **pointer_to_map;
6109 Elf_Internal_Phdr *segment;
6110 unsigned int i;
6111 unsigned int num_segments;
6112 bfd_boolean phdr_included = FALSE;
6113 bfd_boolean p_paddr_valid;
6114
6115 iehdr = elf_elfheader (ibfd);
6116
6117 map_first = NULL;
6118 pointer_to_map = &map_first;
6119
6120 /* If all the segment p_paddr fields are zero, don't set
6121 map->p_paddr_valid. */
6122 p_paddr_valid = FALSE;
6123 num_segments = elf_elfheader (ibfd)->e_phnum;
6124 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6125 i < num_segments;
6126 i++, segment++)
6127 if (segment->p_paddr != 0)
6128 {
6129 p_paddr_valid = TRUE;
6130 break;
6131 }
6132
6133 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6134 i < num_segments;
6135 i++, segment++)
6136 {
6137 asection *section;
6138 unsigned int section_count;
6139 bfd_size_type amt;
6140 Elf_Internal_Shdr *this_hdr;
6141 asection *first_section = NULL;
6142 asection *lowest_section;
6143
6144 /* Compute how many sections are in this segment. */
6145 for (section = ibfd->sections, section_count = 0;
6146 section != NULL;
6147 section = section->next)
6148 {
6149 this_hdr = &(elf_section_data(section)->this_hdr);
6150 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6151 {
6152 if (first_section == NULL)
6153 first_section = section;
6154 section_count++;
6155 }
6156 }
6157
6158 /* Allocate a segment map big enough to contain
6159 all of the sections we have selected. */
6160 amt = sizeof (struct elf_segment_map);
6161 if (section_count != 0)
6162 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6163 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6164 if (map == NULL)
6165 return FALSE;
6166
6167 /* Initialize the fields of the output segment map with the
6168 input segment. */
6169 map->next = NULL;
6170 map->p_type = segment->p_type;
6171 map->p_flags = segment->p_flags;
6172 map->p_flags_valid = 1;
6173 map->p_paddr = segment->p_paddr;
6174 map->p_paddr_valid = p_paddr_valid;
6175 map->p_align = segment->p_align;
6176 map->p_align_valid = 1;
6177 map->p_vaddr_offset = 0;
6178
6179 if (map->p_type == PT_GNU_RELRO
6180 || map->p_type == PT_GNU_STACK)
6181 {
6182 /* The PT_GNU_RELRO segment may contain the first a few
6183 bytes in the .got.plt section even if the whole .got.plt
6184 section isn't in the PT_GNU_RELRO segment. We won't
6185 change the size of the PT_GNU_RELRO segment.
6186 Similarly, PT_GNU_STACK size is significant on uclinux
6187 systems. */
6188 map->p_size = segment->p_memsz;
6189 map->p_size_valid = 1;
6190 }
6191
6192 /* Determine if this segment contains the ELF file header
6193 and if it contains the program headers themselves. */
6194 map->includes_filehdr = (segment->p_offset == 0
6195 && segment->p_filesz >= iehdr->e_ehsize);
6196
6197 map->includes_phdrs = 0;
6198 if (! phdr_included || segment->p_type != PT_LOAD)
6199 {
6200 map->includes_phdrs =
6201 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6202 && (segment->p_offset + segment->p_filesz
6203 >= ((bfd_vma) iehdr->e_phoff
6204 + iehdr->e_phnum * iehdr->e_phentsize)));
6205
6206 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6207 phdr_included = TRUE;
6208 }
6209
6210 lowest_section = first_section;
6211 if (section_count != 0)
6212 {
6213 unsigned int isec = 0;
6214
6215 for (section = first_section;
6216 section != NULL;
6217 section = section->next)
6218 {
6219 this_hdr = &(elf_section_data(section)->this_hdr);
6220 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6221 {
6222 map->sections[isec++] = section->output_section;
6223 if (section->lma < lowest_section->lma)
6224 lowest_section = section;
6225 if ((section->flags & SEC_ALLOC) != 0)
6226 {
6227 bfd_vma seg_off;
6228
6229 /* Section lmas are set up from PT_LOAD header
6230 p_paddr in _bfd_elf_make_section_from_shdr.
6231 If this header has a p_paddr that disagrees
6232 with the section lma, flag the p_paddr as
6233 invalid. */
6234 if ((section->flags & SEC_LOAD) != 0)
6235 seg_off = this_hdr->sh_offset - segment->p_offset;
6236 else
6237 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6238 if (section->lma - segment->p_paddr != seg_off)
6239 map->p_paddr_valid = FALSE;
6240 }
6241 if (isec == section_count)
6242 break;
6243 }
6244 }
6245 }
6246
6247 if (map->includes_filehdr && lowest_section != NULL)
6248 /* We need to keep the space used by the headers fixed. */
6249 map->header_size = lowest_section->vma - segment->p_vaddr;
6250
6251 if (!map->includes_phdrs
6252 && !map->includes_filehdr
6253 && map->p_paddr_valid)
6254 /* There is some other padding before the first section. */
6255 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6256 - segment->p_paddr);
6257
6258 map->count = section_count;
6259 *pointer_to_map = map;
6260 pointer_to_map = &map->next;
6261 }
6262
6263 elf_seg_map (obfd) = map_first;
6264 return TRUE;
6265 }
6266
6267 /* Copy private BFD data. This copies or rewrites ELF program header
6268 information. */
6269
6270 static bfd_boolean
6271 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6272 {
6273 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6274 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6275 return TRUE;
6276
6277 if (elf_tdata (ibfd)->phdr == NULL)
6278 return TRUE;
6279
6280 if (ibfd->xvec == obfd->xvec)
6281 {
6282 /* Check to see if any sections in the input BFD
6283 covered by ELF program header have changed. */
6284 Elf_Internal_Phdr *segment;
6285 asection *section, *osec;
6286 unsigned int i, num_segments;
6287 Elf_Internal_Shdr *this_hdr;
6288 const struct elf_backend_data *bed;
6289
6290 bed = get_elf_backend_data (ibfd);
6291
6292 /* Regenerate the segment map if p_paddr is set to 0. */
6293 if (bed->want_p_paddr_set_to_zero)
6294 goto rewrite;
6295
6296 /* Initialize the segment mark field. */
6297 for (section = obfd->sections; section != NULL;
6298 section = section->next)
6299 section->segment_mark = FALSE;
6300
6301 num_segments = elf_elfheader (ibfd)->e_phnum;
6302 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6303 i < num_segments;
6304 i++, segment++)
6305 {
6306 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6307 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6308 which severly confuses things, so always regenerate the segment
6309 map in this case. */
6310 if (segment->p_paddr == 0
6311 && segment->p_memsz == 0
6312 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6313 goto rewrite;
6314
6315 for (section = ibfd->sections;
6316 section != NULL; section = section->next)
6317 {
6318 /* We mark the output section so that we know it comes
6319 from the input BFD. */
6320 osec = section->output_section;
6321 if (osec)
6322 osec->segment_mark = TRUE;
6323
6324 /* Check if this section is covered by the segment. */
6325 this_hdr = &(elf_section_data(section)->this_hdr);
6326 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6327 {
6328 /* FIXME: Check if its output section is changed or
6329 removed. What else do we need to check? */
6330 if (osec == NULL
6331 || section->flags != osec->flags
6332 || section->lma != osec->lma
6333 || section->vma != osec->vma
6334 || section->size != osec->size
6335 || section->rawsize != osec->rawsize
6336 || section->alignment_power != osec->alignment_power)
6337 goto rewrite;
6338 }
6339 }
6340 }
6341
6342 /* Check to see if any output section do not come from the
6343 input BFD. */
6344 for (section = obfd->sections; section != NULL;
6345 section = section->next)
6346 {
6347 if (section->segment_mark == FALSE)
6348 goto rewrite;
6349 else
6350 section->segment_mark = FALSE;
6351 }
6352
6353 return copy_elf_program_header (ibfd, obfd);
6354 }
6355
6356 rewrite:
6357 if (ibfd->xvec == obfd->xvec)
6358 {
6359 /* When rewriting program header, set the output maxpagesize to
6360 the maximum alignment of input PT_LOAD segments. */
6361 Elf_Internal_Phdr *segment;
6362 unsigned int i;
6363 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6364 bfd_vma maxpagesize = 0;
6365
6366 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6367 i < num_segments;
6368 i++, segment++)
6369 if (segment->p_type == PT_LOAD
6370 && maxpagesize < segment->p_align)
6371 maxpagesize = segment->p_align;
6372
6373 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6374 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6375 }
6376
6377 return rewrite_elf_program_header (ibfd, obfd);
6378 }
6379
6380 /* Initialize private output section information from input section. */
6381
6382 bfd_boolean
6383 _bfd_elf_init_private_section_data (bfd *ibfd,
6384 asection *isec,
6385 bfd *obfd,
6386 asection *osec,
6387 struct bfd_link_info *link_info)
6388
6389 {
6390 Elf_Internal_Shdr *ihdr, *ohdr;
6391 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6392
6393 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6394 || obfd->xvec->flavour != bfd_target_elf_flavour)
6395 return TRUE;
6396
6397 BFD_ASSERT (elf_section_data (osec) != NULL);
6398
6399 /* For objcopy and relocatable link, don't copy the output ELF
6400 section type from input if the output BFD section flags have been
6401 set to something different. For a final link allow some flags
6402 that the linker clears to differ. */
6403 if (elf_section_type (osec) == SHT_NULL
6404 && (osec->flags == isec->flags
6405 || (final_link
6406 && ((osec->flags ^ isec->flags)
6407 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6408 elf_section_type (osec) = elf_section_type (isec);
6409
6410 /* FIXME: Is this correct for all OS/PROC specific flags? */
6411 elf_section_flags (osec) |= (elf_section_flags (isec)
6412 & (SHF_MASKOS | SHF_MASKPROC));
6413
6414 /* Set things up for objcopy and relocatable link. The output
6415 SHT_GROUP section will have its elf_next_in_group pointing back
6416 to the input group members. Ignore linker created group section.
6417 See elfNN_ia64_object_p in elfxx-ia64.c. */
6418 if (!final_link)
6419 {
6420 if (elf_sec_group (isec) == NULL
6421 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6422 {
6423 if (elf_section_flags (isec) & SHF_GROUP)
6424 elf_section_flags (osec) |= SHF_GROUP;
6425 elf_next_in_group (osec) = elf_next_in_group (isec);
6426 elf_section_data (osec)->group = elf_section_data (isec)->group;
6427 }
6428 }
6429
6430 ihdr = &elf_section_data (isec)->this_hdr;
6431
6432 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6433 don't use the output section of the linked-to section since it
6434 may be NULL at this point. */
6435 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6436 {
6437 ohdr = &elf_section_data (osec)->this_hdr;
6438 ohdr->sh_flags |= SHF_LINK_ORDER;
6439 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6440 }
6441
6442 osec->use_rela_p = isec->use_rela_p;
6443
6444 return TRUE;
6445 }
6446
6447 /* Copy private section information. This copies over the entsize
6448 field, and sometimes the info field. */
6449
6450 bfd_boolean
6451 _bfd_elf_copy_private_section_data (bfd *ibfd,
6452 asection *isec,
6453 bfd *obfd,
6454 asection *osec)
6455 {
6456 Elf_Internal_Shdr *ihdr, *ohdr;
6457
6458 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6459 || obfd->xvec->flavour != bfd_target_elf_flavour)
6460 return TRUE;
6461
6462 ihdr = &elf_section_data (isec)->this_hdr;
6463 ohdr = &elf_section_data (osec)->this_hdr;
6464
6465 ohdr->sh_entsize = ihdr->sh_entsize;
6466
6467 if (ihdr->sh_type == SHT_SYMTAB
6468 || ihdr->sh_type == SHT_DYNSYM
6469 || ihdr->sh_type == SHT_GNU_verneed
6470 || ihdr->sh_type == SHT_GNU_verdef)
6471 ohdr->sh_info = ihdr->sh_info;
6472
6473 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6474 NULL);
6475 }
6476
6477 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6478 necessary if we are removing either the SHT_GROUP section or any of
6479 the group member sections. DISCARDED is the value that a section's
6480 output_section has if the section will be discarded, NULL when this
6481 function is called from objcopy, bfd_abs_section_ptr when called
6482 from the linker. */
6483
6484 bfd_boolean
6485 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6486 {
6487 asection *isec;
6488
6489 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6490 if (elf_section_type (isec) == SHT_GROUP)
6491 {
6492 asection *first = elf_next_in_group (isec);
6493 asection *s = first;
6494 bfd_size_type removed = 0;
6495
6496 while (s != NULL)
6497 {
6498 /* If this member section is being output but the
6499 SHT_GROUP section is not, then clear the group info
6500 set up by _bfd_elf_copy_private_section_data. */
6501 if (s->output_section != discarded
6502 && isec->output_section == discarded)
6503 {
6504 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6505 elf_group_name (s->output_section) = NULL;
6506 }
6507 /* Conversely, if the member section is not being output
6508 but the SHT_GROUP section is, then adjust its size. */
6509 else if (s->output_section == discarded
6510 && isec->output_section != discarded)
6511 removed += 4;
6512 s = elf_next_in_group (s);
6513 if (s == first)
6514 break;
6515 }
6516 if (removed != 0)
6517 {
6518 if (discarded != NULL)
6519 {
6520 /* If we've been called for ld -r, then we need to
6521 adjust the input section size. This function may
6522 be called multiple times, so save the original
6523 size. */
6524 if (isec->rawsize == 0)
6525 isec->rawsize = isec->size;
6526 isec->size = isec->rawsize - removed;
6527 }
6528 else
6529 {
6530 /* Adjust the output section size when called from
6531 objcopy. */
6532 isec->output_section->size -= removed;
6533 }
6534 }
6535 }
6536
6537 return TRUE;
6538 }
6539
6540 /* Copy private header information. */
6541
6542 bfd_boolean
6543 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6544 {
6545 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6546 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6547 return TRUE;
6548
6549 /* Copy over private BFD data if it has not already been copied.
6550 This must be done here, rather than in the copy_private_bfd_data
6551 entry point, because the latter is called after the section
6552 contents have been set, which means that the program headers have
6553 already been worked out. */
6554 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6555 {
6556 if (! copy_private_bfd_data (ibfd, obfd))
6557 return FALSE;
6558 }
6559
6560 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6561 }
6562
6563 /* Copy private symbol information. If this symbol is in a section
6564 which we did not map into a BFD section, try to map the section
6565 index correctly. We use special macro definitions for the mapped
6566 section indices; these definitions are interpreted by the
6567 swap_out_syms function. */
6568
6569 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6570 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6571 #define MAP_STRTAB (SHN_HIOS + 3)
6572 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6573 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6574
6575 bfd_boolean
6576 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6577 asymbol *isymarg,
6578 bfd *obfd,
6579 asymbol *osymarg)
6580 {
6581 elf_symbol_type *isym, *osym;
6582
6583 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6584 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6585 return TRUE;
6586
6587 isym = elf_symbol_from (ibfd, isymarg);
6588 osym = elf_symbol_from (obfd, osymarg);
6589
6590 if (isym != NULL
6591 && isym->internal_elf_sym.st_shndx != 0
6592 && osym != NULL
6593 && bfd_is_abs_section (isym->symbol.section))
6594 {
6595 unsigned int shndx;
6596
6597 shndx = isym->internal_elf_sym.st_shndx;
6598 if (shndx == elf_onesymtab (ibfd))
6599 shndx = MAP_ONESYMTAB;
6600 else if (shndx == elf_dynsymtab (ibfd))
6601 shndx = MAP_DYNSYMTAB;
6602 else if (shndx == elf_strtab_sec (ibfd))
6603 shndx = MAP_STRTAB;
6604 else if (shndx == elf_shstrtab_sec (ibfd))
6605 shndx = MAP_SHSTRTAB;
6606 else if (shndx == elf_symtab_shndx (ibfd))
6607 shndx = MAP_SYM_SHNDX;
6608 osym->internal_elf_sym.st_shndx = shndx;
6609 }
6610
6611 return TRUE;
6612 }
6613
6614 /* Swap out the symbols. */
6615
6616 static bfd_boolean
6617 swap_out_syms (bfd *abfd,
6618 struct bfd_strtab_hash **sttp,
6619 int relocatable_p)
6620 {
6621 const struct elf_backend_data *bed;
6622 int symcount;
6623 asymbol **syms;
6624 struct bfd_strtab_hash *stt;
6625 Elf_Internal_Shdr *symtab_hdr;
6626 Elf_Internal_Shdr *symtab_shndx_hdr;
6627 Elf_Internal_Shdr *symstrtab_hdr;
6628 bfd_byte *outbound_syms;
6629 bfd_byte *outbound_shndx;
6630 int idx;
6631 unsigned int num_locals;
6632 bfd_size_type amt;
6633 bfd_boolean name_local_sections;
6634
6635 if (!elf_map_symbols (abfd, &num_locals))
6636 return FALSE;
6637
6638 /* Dump out the symtabs. */
6639 stt = _bfd_elf_stringtab_init ();
6640 if (stt == NULL)
6641 return FALSE;
6642
6643 bed = get_elf_backend_data (abfd);
6644 symcount = bfd_get_symcount (abfd);
6645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6646 symtab_hdr->sh_type = SHT_SYMTAB;
6647 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6648 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6649 symtab_hdr->sh_info = num_locals + 1;
6650 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6651
6652 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6653 symstrtab_hdr->sh_type = SHT_STRTAB;
6654
6655 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6656 bed->s->sizeof_sym);
6657 if (outbound_syms == NULL)
6658 {
6659 _bfd_stringtab_free (stt);
6660 return FALSE;
6661 }
6662 symtab_hdr->contents = outbound_syms;
6663
6664 outbound_shndx = NULL;
6665 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6666 if (symtab_shndx_hdr->sh_name != 0)
6667 {
6668 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6669 outbound_shndx = (bfd_byte *)
6670 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6671 if (outbound_shndx == NULL)
6672 {
6673 _bfd_stringtab_free (stt);
6674 return FALSE;
6675 }
6676
6677 symtab_shndx_hdr->contents = outbound_shndx;
6678 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6679 symtab_shndx_hdr->sh_size = amt;
6680 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6681 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6682 }
6683
6684 /* Now generate the data (for "contents"). */
6685 {
6686 /* Fill in zeroth symbol and swap it out. */
6687 Elf_Internal_Sym sym;
6688 sym.st_name = 0;
6689 sym.st_value = 0;
6690 sym.st_size = 0;
6691 sym.st_info = 0;
6692 sym.st_other = 0;
6693 sym.st_shndx = SHN_UNDEF;
6694 sym.st_target_internal = 0;
6695 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6696 outbound_syms += bed->s->sizeof_sym;
6697 if (outbound_shndx != NULL)
6698 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6699 }
6700
6701 name_local_sections
6702 = (bed->elf_backend_name_local_section_symbols
6703 && bed->elf_backend_name_local_section_symbols (abfd));
6704
6705 syms = bfd_get_outsymbols (abfd);
6706 for (idx = 0; idx < symcount; idx++)
6707 {
6708 Elf_Internal_Sym sym;
6709 bfd_vma value = syms[idx]->value;
6710 elf_symbol_type *type_ptr;
6711 flagword flags = syms[idx]->flags;
6712 int type;
6713
6714 if (!name_local_sections
6715 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6716 {
6717 /* Local section symbols have no name. */
6718 sym.st_name = 0;
6719 }
6720 else
6721 {
6722 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6723 syms[idx]->name,
6724 TRUE, FALSE);
6725 if (sym.st_name == (unsigned long) -1)
6726 {
6727 _bfd_stringtab_free (stt);
6728 return FALSE;
6729 }
6730 }
6731
6732 type_ptr = elf_symbol_from (abfd, syms[idx]);
6733
6734 if ((flags & BSF_SECTION_SYM) == 0
6735 && bfd_is_com_section (syms[idx]->section))
6736 {
6737 /* ELF common symbols put the alignment into the `value' field,
6738 and the size into the `size' field. This is backwards from
6739 how BFD handles it, so reverse it here. */
6740 sym.st_size = value;
6741 if (type_ptr == NULL
6742 || type_ptr->internal_elf_sym.st_value == 0)
6743 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6744 else
6745 sym.st_value = type_ptr->internal_elf_sym.st_value;
6746 sym.st_shndx = _bfd_elf_section_from_bfd_section
6747 (abfd, syms[idx]->section);
6748 }
6749 else
6750 {
6751 asection *sec = syms[idx]->section;
6752 unsigned int shndx;
6753
6754 if (sec->output_section)
6755 {
6756 value += sec->output_offset;
6757 sec = sec->output_section;
6758 }
6759
6760 /* Don't add in the section vma for relocatable output. */
6761 if (! relocatable_p)
6762 value += sec->vma;
6763 sym.st_value = value;
6764 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6765
6766 if (bfd_is_abs_section (sec)
6767 && type_ptr != NULL
6768 && type_ptr->internal_elf_sym.st_shndx != 0)
6769 {
6770 /* This symbol is in a real ELF section which we did
6771 not create as a BFD section. Undo the mapping done
6772 by copy_private_symbol_data. */
6773 shndx = type_ptr->internal_elf_sym.st_shndx;
6774 switch (shndx)
6775 {
6776 case MAP_ONESYMTAB:
6777 shndx = elf_onesymtab (abfd);
6778 break;
6779 case MAP_DYNSYMTAB:
6780 shndx = elf_dynsymtab (abfd);
6781 break;
6782 case MAP_STRTAB:
6783 shndx = elf_strtab_sec (abfd);
6784 break;
6785 case MAP_SHSTRTAB:
6786 shndx = elf_shstrtab_sec (abfd);
6787 break;
6788 case MAP_SYM_SHNDX:
6789 shndx = elf_symtab_shndx (abfd);
6790 break;
6791 default:
6792 shndx = SHN_ABS;
6793 break;
6794 }
6795 }
6796 else
6797 {
6798 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6799
6800 if (shndx == SHN_BAD)
6801 {
6802 asection *sec2;
6803
6804 /* Writing this would be a hell of a lot easier if
6805 we had some decent documentation on bfd, and
6806 knew what to expect of the library, and what to
6807 demand of applications. For example, it
6808 appears that `objcopy' might not set the
6809 section of a symbol to be a section that is
6810 actually in the output file. */
6811 sec2 = bfd_get_section_by_name (abfd, sec->name);
6812 if (sec2 == NULL)
6813 {
6814 _bfd_error_handler (_("\
6815 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6816 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6817 sec->name);
6818 bfd_set_error (bfd_error_invalid_operation);
6819 _bfd_stringtab_free (stt);
6820 return FALSE;
6821 }
6822
6823 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6824 BFD_ASSERT (shndx != SHN_BAD);
6825 }
6826 }
6827
6828 sym.st_shndx = shndx;
6829 }
6830
6831 if ((flags & BSF_THREAD_LOCAL) != 0)
6832 type = STT_TLS;
6833 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6834 type = STT_GNU_IFUNC;
6835 else if ((flags & BSF_FUNCTION) != 0)
6836 type = STT_FUNC;
6837 else if ((flags & BSF_OBJECT) != 0)
6838 type = STT_OBJECT;
6839 else if ((flags & BSF_RELC) != 0)
6840 type = STT_RELC;
6841 else if ((flags & BSF_SRELC) != 0)
6842 type = STT_SRELC;
6843 else
6844 type = STT_NOTYPE;
6845
6846 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6847 type = STT_TLS;
6848
6849 /* Processor-specific types. */
6850 if (type_ptr != NULL
6851 && bed->elf_backend_get_symbol_type)
6852 type = ((*bed->elf_backend_get_symbol_type)
6853 (&type_ptr->internal_elf_sym, type));
6854
6855 if (flags & BSF_SECTION_SYM)
6856 {
6857 if (flags & BSF_GLOBAL)
6858 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6859 else
6860 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6861 }
6862 else if (bfd_is_com_section (syms[idx]->section))
6863 {
6864 #ifdef USE_STT_COMMON
6865 if (type == STT_OBJECT)
6866 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6867 else
6868 #endif
6869 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6870 }
6871 else if (bfd_is_und_section (syms[idx]->section))
6872 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6873 ? STB_WEAK
6874 : STB_GLOBAL),
6875 type);
6876 else if (flags & BSF_FILE)
6877 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6878 else
6879 {
6880 int bind = STB_LOCAL;
6881
6882 if (flags & BSF_LOCAL)
6883 bind = STB_LOCAL;
6884 else if (flags & BSF_GNU_UNIQUE)
6885 bind = STB_GNU_UNIQUE;
6886 else if (flags & BSF_WEAK)
6887 bind = STB_WEAK;
6888 else if (flags & BSF_GLOBAL)
6889 bind = STB_GLOBAL;
6890
6891 sym.st_info = ELF_ST_INFO (bind, type);
6892 }
6893
6894 if (type_ptr != NULL)
6895 {
6896 sym.st_other = type_ptr->internal_elf_sym.st_other;
6897 sym.st_target_internal
6898 = type_ptr->internal_elf_sym.st_target_internal;
6899 }
6900 else
6901 {
6902 sym.st_other = 0;
6903 sym.st_target_internal = 0;
6904 }
6905
6906 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6907 outbound_syms += bed->s->sizeof_sym;
6908 if (outbound_shndx != NULL)
6909 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6910 }
6911
6912 *sttp = stt;
6913 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6914 symstrtab_hdr->sh_type = SHT_STRTAB;
6915
6916 symstrtab_hdr->sh_flags = 0;
6917 symstrtab_hdr->sh_addr = 0;
6918 symstrtab_hdr->sh_entsize = 0;
6919 symstrtab_hdr->sh_link = 0;
6920 symstrtab_hdr->sh_info = 0;
6921 symstrtab_hdr->sh_addralign = 1;
6922
6923 return TRUE;
6924 }
6925
6926 /* Return the number of bytes required to hold the symtab vector.
6927
6928 Note that we base it on the count plus 1, since we will null terminate
6929 the vector allocated based on this size. However, the ELF symbol table
6930 always has a dummy entry as symbol #0, so it ends up even. */
6931
6932 long
6933 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6934 {
6935 long symcount;
6936 long symtab_size;
6937 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6938
6939 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6940 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6941 if (symcount > 0)
6942 symtab_size -= sizeof (asymbol *);
6943
6944 return symtab_size;
6945 }
6946
6947 long
6948 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6949 {
6950 long symcount;
6951 long symtab_size;
6952 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6953
6954 if (elf_dynsymtab (abfd) == 0)
6955 {
6956 bfd_set_error (bfd_error_invalid_operation);
6957 return -1;
6958 }
6959
6960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6961 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6962 if (symcount > 0)
6963 symtab_size -= sizeof (asymbol *);
6964
6965 return symtab_size;
6966 }
6967
6968 long
6969 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6970 sec_ptr asect)
6971 {
6972 return (asect->reloc_count + 1) * sizeof (arelent *);
6973 }
6974
6975 /* Canonicalize the relocs. */
6976
6977 long
6978 _bfd_elf_canonicalize_reloc (bfd *abfd,
6979 sec_ptr section,
6980 arelent **relptr,
6981 asymbol **symbols)
6982 {
6983 arelent *tblptr;
6984 unsigned int i;
6985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6986
6987 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6988 return -1;
6989
6990 tblptr = section->relocation;
6991 for (i = 0; i < section->reloc_count; i++)
6992 *relptr++ = tblptr++;
6993
6994 *relptr = NULL;
6995
6996 return section->reloc_count;
6997 }
6998
6999 long
7000 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7001 {
7002 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7003 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7004
7005 if (symcount >= 0)
7006 bfd_get_symcount (abfd) = symcount;
7007 return symcount;
7008 }
7009
7010 long
7011 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7012 asymbol **allocation)
7013 {
7014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7015 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7016
7017 if (symcount >= 0)
7018 bfd_get_dynamic_symcount (abfd) = symcount;
7019 return symcount;
7020 }
7021
7022 /* Return the size required for the dynamic reloc entries. Any loadable
7023 section that was actually installed in the BFD, and has type SHT_REL
7024 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7025 dynamic reloc section. */
7026
7027 long
7028 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7029 {
7030 long ret;
7031 asection *s;
7032
7033 if (elf_dynsymtab (abfd) == 0)
7034 {
7035 bfd_set_error (bfd_error_invalid_operation);
7036 return -1;
7037 }
7038
7039 ret = sizeof (arelent *);
7040 for (s = abfd->sections; s != NULL; s = s->next)
7041 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7042 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7043 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7044 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7045 * sizeof (arelent *));
7046
7047 return ret;
7048 }
7049
7050 /* Canonicalize the dynamic relocation entries. Note that we return the
7051 dynamic relocations as a single block, although they are actually
7052 associated with particular sections; the interface, which was
7053 designed for SunOS style shared libraries, expects that there is only
7054 one set of dynamic relocs. Any loadable section that was actually
7055 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7056 dynamic symbol table, is considered to be a dynamic reloc section. */
7057
7058 long
7059 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7060 arelent **storage,
7061 asymbol **syms)
7062 {
7063 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7064 asection *s;
7065 long ret;
7066
7067 if (elf_dynsymtab (abfd) == 0)
7068 {
7069 bfd_set_error (bfd_error_invalid_operation);
7070 return -1;
7071 }
7072
7073 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7074 ret = 0;
7075 for (s = abfd->sections; s != NULL; s = s->next)
7076 {
7077 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7078 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7079 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7080 {
7081 arelent *p;
7082 long count, i;
7083
7084 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7085 return -1;
7086 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7087 p = s->relocation;
7088 for (i = 0; i < count; i++)
7089 *storage++ = p++;
7090 ret += count;
7091 }
7092 }
7093
7094 *storage = NULL;
7095
7096 return ret;
7097 }
7098 \f
7099 /* Read in the version information. */
7100
7101 bfd_boolean
7102 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7103 {
7104 bfd_byte *contents = NULL;
7105 unsigned int freeidx = 0;
7106
7107 if (elf_dynverref (abfd) != 0)
7108 {
7109 Elf_Internal_Shdr *hdr;
7110 Elf_External_Verneed *everneed;
7111 Elf_Internal_Verneed *iverneed;
7112 unsigned int i;
7113 bfd_byte *contents_end;
7114
7115 hdr = &elf_tdata (abfd)->dynverref_hdr;
7116
7117 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7118 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7119 if (elf_tdata (abfd)->verref == NULL)
7120 goto error_return;
7121
7122 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7123
7124 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7125 if (contents == NULL)
7126 {
7127 error_return_verref:
7128 elf_tdata (abfd)->verref = NULL;
7129 elf_tdata (abfd)->cverrefs = 0;
7130 goto error_return;
7131 }
7132 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7133 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7134 goto error_return_verref;
7135
7136 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7137 goto error_return_verref;
7138
7139 BFD_ASSERT (sizeof (Elf_External_Verneed)
7140 == sizeof (Elf_External_Vernaux));
7141 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7142 everneed = (Elf_External_Verneed *) contents;
7143 iverneed = elf_tdata (abfd)->verref;
7144 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7145 {
7146 Elf_External_Vernaux *evernaux;
7147 Elf_Internal_Vernaux *ivernaux;
7148 unsigned int j;
7149
7150 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7151
7152 iverneed->vn_bfd = abfd;
7153
7154 iverneed->vn_filename =
7155 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7156 iverneed->vn_file);
7157 if (iverneed->vn_filename == NULL)
7158 goto error_return_verref;
7159
7160 if (iverneed->vn_cnt == 0)
7161 iverneed->vn_auxptr = NULL;
7162 else
7163 {
7164 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7165 bfd_alloc2 (abfd, iverneed->vn_cnt,
7166 sizeof (Elf_Internal_Vernaux));
7167 if (iverneed->vn_auxptr == NULL)
7168 goto error_return_verref;
7169 }
7170
7171 if (iverneed->vn_aux
7172 > (size_t) (contents_end - (bfd_byte *) everneed))
7173 goto error_return_verref;
7174
7175 evernaux = ((Elf_External_Vernaux *)
7176 ((bfd_byte *) everneed + iverneed->vn_aux));
7177 ivernaux = iverneed->vn_auxptr;
7178 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7179 {
7180 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7181
7182 ivernaux->vna_nodename =
7183 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7184 ivernaux->vna_name);
7185 if (ivernaux->vna_nodename == NULL)
7186 goto error_return_verref;
7187
7188 if (j + 1 < iverneed->vn_cnt)
7189 ivernaux->vna_nextptr = ivernaux + 1;
7190 else
7191 ivernaux->vna_nextptr = NULL;
7192
7193 if (ivernaux->vna_next
7194 > (size_t) (contents_end - (bfd_byte *) evernaux))
7195 goto error_return_verref;
7196
7197 evernaux = ((Elf_External_Vernaux *)
7198 ((bfd_byte *) evernaux + ivernaux->vna_next));
7199
7200 if (ivernaux->vna_other > freeidx)
7201 freeidx = ivernaux->vna_other;
7202 }
7203
7204 if (i + 1 < hdr->sh_info)
7205 iverneed->vn_nextref = iverneed + 1;
7206 else
7207 iverneed->vn_nextref = NULL;
7208
7209 if (iverneed->vn_next
7210 > (size_t) (contents_end - (bfd_byte *) everneed))
7211 goto error_return_verref;
7212
7213 everneed = ((Elf_External_Verneed *)
7214 ((bfd_byte *) everneed + iverneed->vn_next));
7215 }
7216
7217 free (contents);
7218 contents = NULL;
7219 }
7220
7221 if (elf_dynverdef (abfd) != 0)
7222 {
7223 Elf_Internal_Shdr *hdr;
7224 Elf_External_Verdef *everdef;
7225 Elf_Internal_Verdef *iverdef;
7226 Elf_Internal_Verdef *iverdefarr;
7227 Elf_Internal_Verdef iverdefmem;
7228 unsigned int i;
7229 unsigned int maxidx;
7230 bfd_byte *contents_end_def, *contents_end_aux;
7231
7232 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7233
7234 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7235 if (contents == NULL)
7236 goto error_return;
7237 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7238 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7239 goto error_return;
7240
7241 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7242 goto error_return;
7243
7244 BFD_ASSERT (sizeof (Elf_External_Verdef)
7245 >= sizeof (Elf_External_Verdaux));
7246 contents_end_def = contents + hdr->sh_size
7247 - sizeof (Elf_External_Verdef);
7248 contents_end_aux = contents + hdr->sh_size
7249 - sizeof (Elf_External_Verdaux);
7250
7251 /* We know the number of entries in the section but not the maximum
7252 index. Therefore we have to run through all entries and find
7253 the maximum. */
7254 everdef = (Elf_External_Verdef *) contents;
7255 maxidx = 0;
7256 for (i = 0; i < hdr->sh_info; ++i)
7257 {
7258 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7259
7260 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7261 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7262
7263 if (iverdefmem.vd_next
7264 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7265 goto error_return;
7266
7267 everdef = ((Elf_External_Verdef *)
7268 ((bfd_byte *) everdef + iverdefmem.vd_next));
7269 }
7270
7271 if (default_imported_symver)
7272 {
7273 if (freeidx > maxidx)
7274 maxidx = ++freeidx;
7275 else
7276 freeidx = ++maxidx;
7277 }
7278 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7279 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7280 if (elf_tdata (abfd)->verdef == NULL)
7281 goto error_return;
7282
7283 elf_tdata (abfd)->cverdefs = maxidx;
7284
7285 everdef = (Elf_External_Verdef *) contents;
7286 iverdefarr = elf_tdata (abfd)->verdef;
7287 for (i = 0; i < hdr->sh_info; i++)
7288 {
7289 Elf_External_Verdaux *everdaux;
7290 Elf_Internal_Verdaux *iverdaux;
7291 unsigned int j;
7292
7293 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7294
7295 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7296 {
7297 error_return_verdef:
7298 elf_tdata (abfd)->verdef = NULL;
7299 elf_tdata (abfd)->cverdefs = 0;
7300 goto error_return;
7301 }
7302
7303 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7304 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7305
7306 iverdef->vd_bfd = abfd;
7307
7308 if (iverdef->vd_cnt == 0)
7309 iverdef->vd_auxptr = NULL;
7310 else
7311 {
7312 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7313 bfd_alloc2 (abfd, iverdef->vd_cnt,
7314 sizeof (Elf_Internal_Verdaux));
7315 if (iverdef->vd_auxptr == NULL)
7316 goto error_return_verdef;
7317 }
7318
7319 if (iverdef->vd_aux
7320 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7321 goto error_return_verdef;
7322
7323 everdaux = ((Elf_External_Verdaux *)
7324 ((bfd_byte *) everdef + iverdef->vd_aux));
7325 iverdaux = iverdef->vd_auxptr;
7326 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7327 {
7328 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7329
7330 iverdaux->vda_nodename =
7331 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7332 iverdaux->vda_name);
7333 if (iverdaux->vda_nodename == NULL)
7334 goto error_return_verdef;
7335
7336 if (j + 1 < iverdef->vd_cnt)
7337 iverdaux->vda_nextptr = iverdaux + 1;
7338 else
7339 iverdaux->vda_nextptr = NULL;
7340
7341 if (iverdaux->vda_next
7342 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7343 goto error_return_verdef;
7344
7345 everdaux = ((Elf_External_Verdaux *)
7346 ((bfd_byte *) everdaux + iverdaux->vda_next));
7347 }
7348
7349 if (iverdef->vd_cnt)
7350 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7351
7352 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7353 iverdef->vd_nextdef = iverdef + 1;
7354 else
7355 iverdef->vd_nextdef = NULL;
7356
7357 everdef = ((Elf_External_Verdef *)
7358 ((bfd_byte *) everdef + iverdef->vd_next));
7359 }
7360
7361 free (contents);
7362 contents = NULL;
7363 }
7364 else if (default_imported_symver)
7365 {
7366 if (freeidx < 3)
7367 freeidx = 3;
7368 else
7369 freeidx++;
7370
7371 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7372 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7373 if (elf_tdata (abfd)->verdef == NULL)
7374 goto error_return;
7375
7376 elf_tdata (abfd)->cverdefs = freeidx;
7377 }
7378
7379 /* Create a default version based on the soname. */
7380 if (default_imported_symver)
7381 {
7382 Elf_Internal_Verdef *iverdef;
7383 Elf_Internal_Verdaux *iverdaux;
7384
7385 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7386
7387 iverdef->vd_version = VER_DEF_CURRENT;
7388 iverdef->vd_flags = 0;
7389 iverdef->vd_ndx = freeidx;
7390 iverdef->vd_cnt = 1;
7391
7392 iverdef->vd_bfd = abfd;
7393
7394 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7395 if (iverdef->vd_nodename == NULL)
7396 goto error_return_verdef;
7397 iverdef->vd_nextdef = NULL;
7398 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7399 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7400 if (iverdef->vd_auxptr == NULL)
7401 goto error_return_verdef;
7402
7403 iverdaux = iverdef->vd_auxptr;
7404 iverdaux->vda_nodename = iverdef->vd_nodename;
7405 iverdaux->vda_nextptr = NULL;
7406 }
7407
7408 return TRUE;
7409
7410 error_return:
7411 if (contents != NULL)
7412 free (contents);
7413 return FALSE;
7414 }
7415 \f
7416 asymbol *
7417 _bfd_elf_make_empty_symbol (bfd *abfd)
7418 {
7419 elf_symbol_type *newsym;
7420 bfd_size_type amt = sizeof (elf_symbol_type);
7421
7422 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7423 if (!newsym)
7424 return NULL;
7425 else
7426 {
7427 newsym->symbol.the_bfd = abfd;
7428 return &newsym->symbol;
7429 }
7430 }
7431
7432 void
7433 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7434 asymbol *symbol,
7435 symbol_info *ret)
7436 {
7437 bfd_symbol_info (symbol, ret);
7438 }
7439
7440 /* Return whether a symbol name implies a local symbol. Most targets
7441 use this function for the is_local_label_name entry point, but some
7442 override it. */
7443
7444 bfd_boolean
7445 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7446 const char *name)
7447 {
7448 /* Normal local symbols start with ``.L''. */
7449 if (name[0] == '.' && name[1] == 'L')
7450 return TRUE;
7451
7452 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7453 DWARF debugging symbols starting with ``..''. */
7454 if (name[0] == '.' && name[1] == '.')
7455 return TRUE;
7456
7457 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7458 emitting DWARF debugging output. I suspect this is actually a
7459 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7460 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7461 underscore to be emitted on some ELF targets). For ease of use,
7462 we treat such symbols as local. */
7463 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7464 return TRUE;
7465
7466 return FALSE;
7467 }
7468
7469 alent *
7470 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7471 asymbol *symbol ATTRIBUTE_UNUSED)
7472 {
7473 abort ();
7474 return NULL;
7475 }
7476
7477 bfd_boolean
7478 _bfd_elf_set_arch_mach (bfd *abfd,
7479 enum bfd_architecture arch,
7480 unsigned long machine)
7481 {
7482 /* If this isn't the right architecture for this backend, and this
7483 isn't the generic backend, fail. */
7484 if (arch != get_elf_backend_data (abfd)->arch
7485 && arch != bfd_arch_unknown
7486 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7487 return FALSE;
7488
7489 return bfd_default_set_arch_mach (abfd, arch, machine);
7490 }
7491
7492 /* Find the function to a particular section and offset,
7493 for error reporting. */
7494
7495 static bfd_boolean
7496 elf_find_function (bfd *abfd,
7497 asection *section,
7498 asymbol **symbols,
7499 bfd_vma offset,
7500 const char **filename_ptr,
7501 const char **functionname_ptr)
7502 {
7503 struct elf_find_function_cache
7504 {
7505 asection *last_section;
7506 asymbol *func;
7507 const char *filename;
7508 bfd_size_type func_size;
7509 } *cache;
7510
7511 if (symbols == NULL)
7512 return FALSE;
7513
7514 cache = elf_tdata (abfd)->elf_find_function_cache;
7515 if (cache == NULL)
7516 {
7517 cache = bfd_zalloc (abfd, sizeof (*cache));
7518 elf_tdata (abfd)->elf_find_function_cache = cache;
7519 if (cache == NULL)
7520 return FALSE;
7521 }
7522 if (cache->last_section != section
7523 || cache->func == NULL
7524 || offset < cache->func->value
7525 || offset >= cache->func->value + cache->func_size)
7526 {
7527 asymbol *file;
7528 bfd_vma low_func;
7529 asymbol **p;
7530 /* ??? Given multiple file symbols, it is impossible to reliably
7531 choose the right file name for global symbols. File symbols are
7532 local symbols, and thus all file symbols must sort before any
7533 global symbols. The ELF spec may be interpreted to say that a
7534 file symbol must sort before other local symbols, but currently
7535 ld -r doesn't do this. So, for ld -r output, it is possible to
7536 make a better choice of file name for local symbols by ignoring
7537 file symbols appearing after a given local symbol. */
7538 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7540
7541 file = NULL;
7542 low_func = 0;
7543 state = nothing_seen;
7544 cache->filename = NULL;
7545 cache->func = NULL;
7546 cache->func_size = 0;
7547 cache->last_section = section;
7548
7549 for (p = symbols; *p != NULL; p++)
7550 {
7551 asymbol *sym = *p;
7552 bfd_vma code_off;
7553 bfd_size_type size;
7554
7555 if ((sym->flags & BSF_FILE) != 0)
7556 {
7557 file = sym;
7558 if (state == symbol_seen)
7559 state = file_after_symbol_seen;
7560 continue;
7561 }
7562
7563 size = bed->maybe_function_sym (sym, section, &code_off);
7564 if (size != 0
7565 && code_off <= offset
7566 && (code_off > low_func
7567 || (code_off == low_func
7568 && size > cache->func_size)))
7569 {
7570 cache->func = sym;
7571 cache->func_size = size;
7572 cache->filename = NULL;
7573 low_func = code_off;
7574 if (file != NULL
7575 && ((sym->flags & BSF_LOCAL) != 0
7576 || state != file_after_symbol_seen))
7577 cache->filename = bfd_asymbol_name (file);
7578 }
7579 if (state == nothing_seen)
7580 state = symbol_seen;
7581 }
7582 }
7583
7584 if (cache->func == NULL)
7585 return FALSE;
7586
7587 if (filename_ptr)
7588 *filename_ptr = cache->filename;
7589 if (functionname_ptr)
7590 *functionname_ptr = bfd_asymbol_name (cache->func);
7591
7592 return TRUE;
7593 }
7594
7595 /* Find the nearest line to a particular section and offset,
7596 for error reporting. */
7597
7598 bfd_boolean
7599 _bfd_elf_find_nearest_line (bfd *abfd,
7600 asection *section,
7601 asymbol **symbols,
7602 bfd_vma offset,
7603 const char **filename_ptr,
7604 const char **functionname_ptr,
7605 unsigned int *line_ptr)
7606 {
7607 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7608 offset, filename_ptr,
7609 functionname_ptr,
7610 line_ptr,
7611 NULL);
7612 }
7613
7614 bfd_boolean
7615 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7616 asection *section,
7617 asymbol **symbols,
7618 bfd_vma offset,
7619 const char **filename_ptr,
7620 const char **functionname_ptr,
7621 unsigned int *line_ptr,
7622 unsigned int *discriminator_ptr)
7623 {
7624 bfd_boolean found;
7625
7626 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7627 filename_ptr, functionname_ptr,
7628 line_ptr))
7629 {
7630 if (!*functionname_ptr)
7631 elf_find_function (abfd, section, symbols, offset,
7632 *filename_ptr ? NULL : filename_ptr,
7633 functionname_ptr);
7634
7635 return TRUE;
7636 }
7637
7638 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7639 section, symbols, offset,
7640 filename_ptr, functionname_ptr,
7641 line_ptr, discriminator_ptr, 0,
7642 &elf_tdata (abfd)->dwarf2_find_line_info))
7643 {
7644 if (!*functionname_ptr)
7645 elf_find_function (abfd, section, symbols, offset,
7646 *filename_ptr ? NULL : filename_ptr,
7647 functionname_ptr);
7648
7649 return TRUE;
7650 }
7651
7652 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7653 &found, filename_ptr,
7654 functionname_ptr, line_ptr,
7655 &elf_tdata (abfd)->line_info))
7656 return FALSE;
7657 if (found && (*functionname_ptr || *line_ptr))
7658 return TRUE;
7659
7660 if (symbols == NULL)
7661 return FALSE;
7662
7663 if (! elf_find_function (abfd, section, symbols, offset,
7664 filename_ptr, functionname_ptr))
7665 return FALSE;
7666
7667 *line_ptr = 0;
7668 return TRUE;
7669 }
7670
7671 /* Find the line for a symbol. */
7672
7673 bfd_boolean
7674 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7675 const char **filename_ptr, unsigned int *line_ptr)
7676 {
7677 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7678 filename_ptr, line_ptr,
7679 NULL);
7680 }
7681
7682 bfd_boolean
7683 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7684 const char **filename_ptr,
7685 unsigned int *line_ptr,
7686 unsigned int *discriminator_ptr)
7687 {
7688 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7689 filename_ptr, line_ptr, discriminator_ptr, 0,
7690 &elf_tdata (abfd)->dwarf2_find_line_info);
7691 }
7692
7693 /* After a call to bfd_find_nearest_line, successive calls to
7694 bfd_find_inliner_info can be used to get source information about
7695 each level of function inlining that terminated at the address
7696 passed to bfd_find_nearest_line. Currently this is only supported
7697 for DWARF2 with appropriate DWARF3 extensions. */
7698
7699 bfd_boolean
7700 _bfd_elf_find_inliner_info (bfd *abfd,
7701 const char **filename_ptr,
7702 const char **functionname_ptr,
7703 unsigned int *line_ptr)
7704 {
7705 bfd_boolean found;
7706 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7707 functionname_ptr, line_ptr,
7708 & elf_tdata (abfd)->dwarf2_find_line_info);
7709 return found;
7710 }
7711
7712 int
7713 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7714 {
7715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7716 int ret = bed->s->sizeof_ehdr;
7717
7718 if (!info->relocatable)
7719 {
7720 bfd_size_type phdr_size = elf_program_header_size (abfd);
7721
7722 if (phdr_size == (bfd_size_type) -1)
7723 {
7724 struct elf_segment_map *m;
7725
7726 phdr_size = 0;
7727 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7728 phdr_size += bed->s->sizeof_phdr;
7729
7730 if (phdr_size == 0)
7731 phdr_size = get_program_header_size (abfd, info);
7732 }
7733
7734 elf_program_header_size (abfd) = phdr_size;
7735 ret += phdr_size;
7736 }
7737
7738 return ret;
7739 }
7740
7741 bfd_boolean
7742 _bfd_elf_set_section_contents (bfd *abfd,
7743 sec_ptr section,
7744 const void *location,
7745 file_ptr offset,
7746 bfd_size_type count)
7747 {
7748 Elf_Internal_Shdr *hdr;
7749 bfd_signed_vma pos;
7750
7751 if (! abfd->output_has_begun
7752 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7753 return FALSE;
7754
7755 hdr = &elf_section_data (section)->this_hdr;
7756 pos = hdr->sh_offset + offset;
7757 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7758 || bfd_bwrite (location, count, abfd) != count)
7759 return FALSE;
7760
7761 return TRUE;
7762 }
7763
7764 void
7765 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7766 arelent *cache_ptr ATTRIBUTE_UNUSED,
7767 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7768 {
7769 abort ();
7770 }
7771
7772 /* Try to convert a non-ELF reloc into an ELF one. */
7773
7774 bfd_boolean
7775 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7776 {
7777 /* Check whether we really have an ELF howto. */
7778
7779 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7780 {
7781 bfd_reloc_code_real_type code;
7782 reloc_howto_type *howto;
7783
7784 /* Alien reloc: Try to determine its type to replace it with an
7785 equivalent ELF reloc. */
7786
7787 if (areloc->howto->pc_relative)
7788 {
7789 switch (areloc->howto->bitsize)
7790 {
7791 case 8:
7792 code = BFD_RELOC_8_PCREL;
7793 break;
7794 case 12:
7795 code = BFD_RELOC_12_PCREL;
7796 break;
7797 case 16:
7798 code = BFD_RELOC_16_PCREL;
7799 break;
7800 case 24:
7801 code = BFD_RELOC_24_PCREL;
7802 break;
7803 case 32:
7804 code = BFD_RELOC_32_PCREL;
7805 break;
7806 case 64:
7807 code = BFD_RELOC_64_PCREL;
7808 break;
7809 default:
7810 goto fail;
7811 }
7812
7813 howto = bfd_reloc_type_lookup (abfd, code);
7814
7815 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7816 {
7817 if (howto->pcrel_offset)
7818 areloc->addend += areloc->address;
7819 else
7820 areloc->addend -= areloc->address; /* addend is unsigned!! */
7821 }
7822 }
7823 else
7824 {
7825 switch (areloc->howto->bitsize)
7826 {
7827 case 8:
7828 code = BFD_RELOC_8;
7829 break;
7830 case 14:
7831 code = BFD_RELOC_14;
7832 break;
7833 case 16:
7834 code = BFD_RELOC_16;
7835 break;
7836 case 26:
7837 code = BFD_RELOC_26;
7838 break;
7839 case 32:
7840 code = BFD_RELOC_32;
7841 break;
7842 case 64:
7843 code = BFD_RELOC_64;
7844 break;
7845 default:
7846 goto fail;
7847 }
7848
7849 howto = bfd_reloc_type_lookup (abfd, code);
7850 }
7851
7852 if (howto)
7853 areloc->howto = howto;
7854 else
7855 goto fail;
7856 }
7857
7858 return TRUE;
7859
7860 fail:
7861 (*_bfd_error_handler)
7862 (_("%B: unsupported relocation type %s"),
7863 abfd, areloc->howto->name);
7864 bfd_set_error (bfd_error_bad_value);
7865 return FALSE;
7866 }
7867
7868 bfd_boolean
7869 _bfd_elf_close_and_cleanup (bfd *abfd)
7870 {
7871 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7872 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7873 {
7874 if (elf_shstrtab (abfd) != NULL)
7875 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7876 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7877 }
7878
7879 return _bfd_generic_close_and_cleanup (abfd);
7880 }
7881
7882 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7883 in the relocation's offset. Thus we cannot allow any sort of sanity
7884 range-checking to interfere. There is nothing else to do in processing
7885 this reloc. */
7886
7887 bfd_reloc_status_type
7888 _bfd_elf_rel_vtable_reloc_fn
7889 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7890 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7891 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7892 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7893 {
7894 return bfd_reloc_ok;
7895 }
7896 \f
7897 /* Elf core file support. Much of this only works on native
7898 toolchains, since we rely on knowing the
7899 machine-dependent procfs structure in order to pick
7900 out details about the corefile. */
7901
7902 #ifdef HAVE_SYS_PROCFS_H
7903 /* Needed for new procfs interface on sparc-solaris. */
7904 # define _STRUCTURED_PROC 1
7905 # include <sys/procfs.h>
7906 #endif
7907
7908 /* Return a PID that identifies a "thread" for threaded cores, or the
7909 PID of the main process for non-threaded cores. */
7910
7911 static int
7912 elfcore_make_pid (bfd *abfd)
7913 {
7914 int pid;
7915
7916 pid = elf_tdata (abfd)->core_lwpid;
7917 if (pid == 0)
7918 pid = elf_tdata (abfd)->core_pid;
7919
7920 return pid;
7921 }
7922
7923 /* If there isn't a section called NAME, make one, using
7924 data from SECT. Note, this function will generate a
7925 reference to NAME, so you shouldn't deallocate or
7926 overwrite it. */
7927
7928 static bfd_boolean
7929 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7930 {
7931 asection *sect2;
7932
7933 if (bfd_get_section_by_name (abfd, name) != NULL)
7934 return TRUE;
7935
7936 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7937 if (sect2 == NULL)
7938 return FALSE;
7939
7940 sect2->size = sect->size;
7941 sect2->filepos = sect->filepos;
7942 sect2->alignment_power = sect->alignment_power;
7943 return TRUE;
7944 }
7945
7946 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7947 actually creates up to two pseudosections:
7948 - For the single-threaded case, a section named NAME, unless
7949 such a section already exists.
7950 - For the multi-threaded case, a section named "NAME/PID", where
7951 PID is elfcore_make_pid (abfd).
7952 Both pseudosections have identical contents. */
7953 bfd_boolean
7954 _bfd_elfcore_make_pseudosection (bfd *abfd,
7955 char *name,
7956 size_t size,
7957 ufile_ptr filepos)
7958 {
7959 char buf[100];
7960 char *threaded_name;
7961 size_t len;
7962 asection *sect;
7963
7964 /* Build the section name. */
7965
7966 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7967 len = strlen (buf) + 1;
7968 threaded_name = (char *) bfd_alloc (abfd, len);
7969 if (threaded_name == NULL)
7970 return FALSE;
7971 memcpy (threaded_name, buf, len);
7972
7973 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7974 SEC_HAS_CONTENTS);
7975 if (sect == NULL)
7976 return FALSE;
7977 sect->size = size;
7978 sect->filepos = filepos;
7979 sect->alignment_power = 2;
7980
7981 return elfcore_maybe_make_sect (abfd, name, sect);
7982 }
7983
7984 /* prstatus_t exists on:
7985 solaris 2.5+
7986 linux 2.[01] + glibc
7987 unixware 4.2
7988 */
7989
7990 #if defined (HAVE_PRSTATUS_T)
7991
7992 static bfd_boolean
7993 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7994 {
7995 size_t size;
7996 int offset;
7997
7998 if (note->descsz == sizeof (prstatus_t))
7999 {
8000 prstatus_t prstat;
8001
8002 size = sizeof (prstat.pr_reg);
8003 offset = offsetof (prstatus_t, pr_reg);
8004 memcpy (&prstat, note->descdata, sizeof (prstat));
8005
8006 /* Do not overwrite the core signal if it
8007 has already been set by another thread. */
8008 if (elf_tdata (abfd)->core_signal == 0)
8009 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8010 if (elf_tdata (abfd)->core_pid == 0)
8011 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8012
8013 /* pr_who exists on:
8014 solaris 2.5+
8015 unixware 4.2
8016 pr_who doesn't exist on:
8017 linux 2.[01]
8018 */
8019 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8020 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8021 #else
8022 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8023 #endif
8024 }
8025 #if defined (HAVE_PRSTATUS32_T)
8026 else if (note->descsz == sizeof (prstatus32_t))
8027 {
8028 /* 64-bit host, 32-bit corefile */
8029 prstatus32_t prstat;
8030
8031 size = sizeof (prstat.pr_reg);
8032 offset = offsetof (prstatus32_t, pr_reg);
8033 memcpy (&prstat, note->descdata, sizeof (prstat));
8034
8035 /* Do not overwrite the core signal if it
8036 has already been set by another thread. */
8037 if (elf_tdata (abfd)->core_signal == 0)
8038 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8039 if (elf_tdata (abfd)->core_pid == 0)
8040 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8041
8042 /* pr_who exists on:
8043 solaris 2.5+
8044 unixware 4.2
8045 pr_who doesn't exist on:
8046 linux 2.[01]
8047 */
8048 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8049 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8050 #else
8051 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8052 #endif
8053 }
8054 #endif /* HAVE_PRSTATUS32_T */
8055 else
8056 {
8057 /* Fail - we don't know how to handle any other
8058 note size (ie. data object type). */
8059 return TRUE;
8060 }
8061
8062 /* Make a ".reg/999" section and a ".reg" section. */
8063 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8064 size, note->descpos + offset);
8065 }
8066 #endif /* defined (HAVE_PRSTATUS_T) */
8067
8068 /* Create a pseudosection containing the exact contents of NOTE. */
8069 static bfd_boolean
8070 elfcore_make_note_pseudosection (bfd *abfd,
8071 char *name,
8072 Elf_Internal_Note *note)
8073 {
8074 return _bfd_elfcore_make_pseudosection (abfd, name,
8075 note->descsz, note->descpos);
8076 }
8077
8078 /* There isn't a consistent prfpregset_t across platforms,
8079 but it doesn't matter, because we don't have to pick this
8080 data structure apart. */
8081
8082 static bfd_boolean
8083 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8084 {
8085 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8086 }
8087
8088 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8089 type of NT_PRXFPREG. Just include the whole note's contents
8090 literally. */
8091
8092 static bfd_boolean
8093 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8094 {
8095 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8096 }
8097
8098 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8099 with a note type of NT_X86_XSTATE. Just include the whole note's
8100 contents literally. */
8101
8102 static bfd_boolean
8103 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8104 {
8105 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8106 }
8107
8108 static bfd_boolean
8109 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8110 {
8111 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8112 }
8113
8114 static bfd_boolean
8115 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8116 {
8117 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8118 }
8119
8120 static bfd_boolean
8121 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8122 {
8123 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8124 }
8125
8126 static bfd_boolean
8127 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8128 {
8129 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8130 }
8131
8132 static bfd_boolean
8133 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8134 {
8135 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8136 }
8137
8138 static bfd_boolean
8139 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8140 {
8141 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8142 }
8143
8144 static bfd_boolean
8145 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8146 {
8147 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8148 }
8149
8150 static bfd_boolean
8151 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8152 {
8153 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8154 }
8155
8156 static bfd_boolean
8157 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8160 }
8161
8162 static bfd_boolean
8163 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8164 {
8165 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8166 }
8167
8168 static bfd_boolean
8169 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8170 {
8171 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8172 }
8173
8174 static bfd_boolean
8175 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8176 {
8177 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8178 }
8179
8180 static bfd_boolean
8181 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8182 {
8183 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8184 }
8185
8186 static bfd_boolean
8187 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8188 {
8189 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8190 }
8191
8192 #if defined (HAVE_PRPSINFO_T)
8193 typedef prpsinfo_t elfcore_psinfo_t;
8194 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8195 typedef prpsinfo32_t elfcore_psinfo32_t;
8196 #endif
8197 #endif
8198
8199 #if defined (HAVE_PSINFO_T)
8200 typedef psinfo_t elfcore_psinfo_t;
8201 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8202 typedef psinfo32_t elfcore_psinfo32_t;
8203 #endif
8204 #endif
8205
8206 /* return a malloc'ed copy of a string at START which is at
8207 most MAX bytes long, possibly without a terminating '\0'.
8208 the copy will always have a terminating '\0'. */
8209
8210 char *
8211 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8212 {
8213 char *dups;
8214 char *end = (char *) memchr (start, '\0', max);
8215 size_t len;
8216
8217 if (end == NULL)
8218 len = max;
8219 else
8220 len = end - start;
8221
8222 dups = (char *) bfd_alloc (abfd, len + 1);
8223 if (dups == NULL)
8224 return NULL;
8225
8226 memcpy (dups, start, len);
8227 dups[len] = '\0';
8228
8229 return dups;
8230 }
8231
8232 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8233 static bfd_boolean
8234 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8235 {
8236 if (note->descsz == sizeof (elfcore_psinfo_t))
8237 {
8238 elfcore_psinfo_t psinfo;
8239
8240 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8241
8242 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8243 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8244 #endif
8245 elf_tdata (abfd)->core_program
8246 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8247 sizeof (psinfo.pr_fname));
8248
8249 elf_tdata (abfd)->core_command
8250 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8251 sizeof (psinfo.pr_psargs));
8252 }
8253 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8254 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8255 {
8256 /* 64-bit host, 32-bit corefile */
8257 elfcore_psinfo32_t psinfo;
8258
8259 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8260
8261 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8262 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8263 #endif
8264 elf_tdata (abfd)->core_program
8265 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8266 sizeof (psinfo.pr_fname));
8267
8268 elf_tdata (abfd)->core_command
8269 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8270 sizeof (psinfo.pr_psargs));
8271 }
8272 #endif
8273
8274 else
8275 {
8276 /* Fail - we don't know how to handle any other
8277 note size (ie. data object type). */
8278 return TRUE;
8279 }
8280
8281 /* Note that for some reason, a spurious space is tacked
8282 onto the end of the args in some (at least one anyway)
8283 implementations, so strip it off if it exists. */
8284
8285 {
8286 char *command = elf_tdata (abfd)->core_command;
8287 int n = strlen (command);
8288
8289 if (0 < n && command[n - 1] == ' ')
8290 command[n - 1] = '\0';
8291 }
8292
8293 return TRUE;
8294 }
8295 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8296
8297 #if defined (HAVE_PSTATUS_T)
8298 static bfd_boolean
8299 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8300 {
8301 if (note->descsz == sizeof (pstatus_t)
8302 #if defined (HAVE_PXSTATUS_T)
8303 || note->descsz == sizeof (pxstatus_t)
8304 #endif
8305 )
8306 {
8307 pstatus_t pstat;
8308
8309 memcpy (&pstat, note->descdata, sizeof (pstat));
8310
8311 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8312 }
8313 #if defined (HAVE_PSTATUS32_T)
8314 else if (note->descsz == sizeof (pstatus32_t))
8315 {
8316 /* 64-bit host, 32-bit corefile */
8317 pstatus32_t pstat;
8318
8319 memcpy (&pstat, note->descdata, sizeof (pstat));
8320
8321 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8322 }
8323 #endif
8324 /* Could grab some more details from the "representative"
8325 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8326 NT_LWPSTATUS note, presumably. */
8327
8328 return TRUE;
8329 }
8330 #endif /* defined (HAVE_PSTATUS_T) */
8331
8332 #if defined (HAVE_LWPSTATUS_T)
8333 static bfd_boolean
8334 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8335 {
8336 lwpstatus_t lwpstat;
8337 char buf[100];
8338 char *name;
8339 size_t len;
8340 asection *sect;
8341
8342 if (note->descsz != sizeof (lwpstat)
8343 #if defined (HAVE_LWPXSTATUS_T)
8344 && note->descsz != sizeof (lwpxstatus_t)
8345 #endif
8346 )
8347 return TRUE;
8348
8349 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8350
8351 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8352 /* Do not overwrite the core signal if it has already been set by
8353 another thread. */
8354 if (elf_tdata (abfd)->core_signal == 0)
8355 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8356
8357 /* Make a ".reg/999" section. */
8358
8359 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8360 len = strlen (buf) + 1;
8361 name = bfd_alloc (abfd, len);
8362 if (name == NULL)
8363 return FALSE;
8364 memcpy (name, buf, len);
8365
8366 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8367 if (sect == NULL)
8368 return FALSE;
8369
8370 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8371 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8372 sect->filepos = note->descpos
8373 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8374 #endif
8375
8376 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8377 sect->size = sizeof (lwpstat.pr_reg);
8378 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8379 #endif
8380
8381 sect->alignment_power = 2;
8382
8383 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8384 return FALSE;
8385
8386 /* Make a ".reg2/999" section */
8387
8388 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8389 len = strlen (buf) + 1;
8390 name = bfd_alloc (abfd, len);
8391 if (name == NULL)
8392 return FALSE;
8393 memcpy (name, buf, len);
8394
8395 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8396 if (sect == NULL)
8397 return FALSE;
8398
8399 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8400 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8401 sect->filepos = note->descpos
8402 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8403 #endif
8404
8405 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8406 sect->size = sizeof (lwpstat.pr_fpreg);
8407 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8408 #endif
8409
8410 sect->alignment_power = 2;
8411
8412 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8413 }
8414 #endif /* defined (HAVE_LWPSTATUS_T) */
8415
8416 static bfd_boolean
8417 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8418 {
8419 char buf[30];
8420 char *name;
8421 size_t len;
8422 asection *sect;
8423 int type;
8424 int is_active_thread;
8425 bfd_vma base_addr;
8426
8427 if (note->descsz < 728)
8428 return TRUE;
8429
8430 if (! CONST_STRNEQ (note->namedata, "win32"))
8431 return TRUE;
8432
8433 type = bfd_get_32 (abfd, note->descdata);
8434
8435 switch (type)
8436 {
8437 case 1 /* NOTE_INFO_PROCESS */:
8438 /* FIXME: need to add ->core_command. */
8439 /* process_info.pid */
8440 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8441 /* process_info.signal */
8442 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8443 break;
8444
8445 case 2 /* NOTE_INFO_THREAD */:
8446 /* Make a ".reg/999" section. */
8447 /* thread_info.tid */
8448 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8449
8450 len = strlen (buf) + 1;
8451 name = (char *) bfd_alloc (abfd, len);
8452 if (name == NULL)
8453 return FALSE;
8454
8455 memcpy (name, buf, len);
8456
8457 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8458 if (sect == NULL)
8459 return FALSE;
8460
8461 /* sizeof (thread_info.thread_context) */
8462 sect->size = 716;
8463 /* offsetof (thread_info.thread_context) */
8464 sect->filepos = note->descpos + 12;
8465 sect->alignment_power = 2;
8466
8467 /* thread_info.is_active_thread */
8468 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8469
8470 if (is_active_thread)
8471 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8472 return FALSE;
8473 break;
8474
8475 case 3 /* NOTE_INFO_MODULE */:
8476 /* Make a ".module/xxxxxxxx" section. */
8477 /* module_info.base_address */
8478 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8479 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8480
8481 len = strlen (buf) + 1;
8482 name = (char *) bfd_alloc (abfd, len);
8483 if (name == NULL)
8484 return FALSE;
8485
8486 memcpy (name, buf, len);
8487
8488 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8489
8490 if (sect == NULL)
8491 return FALSE;
8492
8493 sect->size = note->descsz;
8494 sect->filepos = note->descpos;
8495 sect->alignment_power = 2;
8496 break;
8497
8498 default:
8499 return TRUE;
8500 }
8501
8502 return TRUE;
8503 }
8504
8505 static bfd_boolean
8506 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8507 {
8508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8509
8510 switch (note->type)
8511 {
8512 default:
8513 return TRUE;
8514
8515 case NT_PRSTATUS:
8516 if (bed->elf_backend_grok_prstatus)
8517 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8518 return TRUE;
8519 #if defined (HAVE_PRSTATUS_T)
8520 return elfcore_grok_prstatus (abfd, note);
8521 #else
8522 return TRUE;
8523 #endif
8524
8525 #if defined (HAVE_PSTATUS_T)
8526 case NT_PSTATUS:
8527 return elfcore_grok_pstatus (abfd, note);
8528 #endif
8529
8530 #if defined (HAVE_LWPSTATUS_T)
8531 case NT_LWPSTATUS:
8532 return elfcore_grok_lwpstatus (abfd, note);
8533 #endif
8534
8535 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8536 return elfcore_grok_prfpreg (abfd, note);
8537
8538 case NT_WIN32PSTATUS:
8539 return elfcore_grok_win32pstatus (abfd, note);
8540
8541 case NT_PRXFPREG: /* Linux SSE extension */
8542 if (note->namesz == 6
8543 && strcmp (note->namedata, "LINUX") == 0)
8544 return elfcore_grok_prxfpreg (abfd, note);
8545 else
8546 return TRUE;
8547
8548 case NT_X86_XSTATE: /* Linux XSAVE extension */
8549 if (note->namesz == 6
8550 && strcmp (note->namedata, "LINUX") == 0)
8551 return elfcore_grok_xstatereg (abfd, note);
8552 else
8553 return TRUE;
8554
8555 case NT_PPC_VMX:
8556 if (note->namesz == 6
8557 && strcmp (note->namedata, "LINUX") == 0)
8558 return elfcore_grok_ppc_vmx (abfd, note);
8559 else
8560 return TRUE;
8561
8562 case NT_PPC_VSX:
8563 if (note->namesz == 6
8564 && strcmp (note->namedata, "LINUX") == 0)
8565 return elfcore_grok_ppc_vsx (abfd, note);
8566 else
8567 return TRUE;
8568
8569 case NT_S390_HIGH_GPRS:
8570 if (note->namesz == 6
8571 && strcmp (note->namedata, "LINUX") == 0)
8572 return elfcore_grok_s390_high_gprs (abfd, note);
8573 else
8574 return TRUE;
8575
8576 case NT_S390_TIMER:
8577 if (note->namesz == 6
8578 && strcmp (note->namedata, "LINUX") == 0)
8579 return elfcore_grok_s390_timer (abfd, note);
8580 else
8581 return TRUE;
8582
8583 case NT_S390_TODCMP:
8584 if (note->namesz == 6
8585 && strcmp (note->namedata, "LINUX") == 0)
8586 return elfcore_grok_s390_todcmp (abfd, note);
8587 else
8588 return TRUE;
8589
8590 case NT_S390_TODPREG:
8591 if (note->namesz == 6
8592 && strcmp (note->namedata, "LINUX") == 0)
8593 return elfcore_grok_s390_todpreg (abfd, note);
8594 else
8595 return TRUE;
8596
8597 case NT_S390_CTRS:
8598 if (note->namesz == 6
8599 && strcmp (note->namedata, "LINUX") == 0)
8600 return elfcore_grok_s390_ctrs (abfd, note);
8601 else
8602 return TRUE;
8603
8604 case NT_S390_PREFIX:
8605 if (note->namesz == 6
8606 && strcmp (note->namedata, "LINUX") == 0)
8607 return elfcore_grok_s390_prefix (abfd, note);
8608 else
8609 return TRUE;
8610
8611 case NT_S390_LAST_BREAK:
8612 if (note->namesz == 6
8613 && strcmp (note->namedata, "LINUX") == 0)
8614 return elfcore_grok_s390_last_break (abfd, note);
8615 else
8616 return TRUE;
8617
8618 case NT_S390_SYSTEM_CALL:
8619 if (note->namesz == 6
8620 && strcmp (note->namedata, "LINUX") == 0)
8621 return elfcore_grok_s390_system_call (abfd, note);
8622 else
8623 return TRUE;
8624
8625 case NT_ARM_VFP:
8626 if (note->namesz == 6
8627 && strcmp (note->namedata, "LINUX") == 0)
8628 return elfcore_grok_arm_vfp (abfd, note);
8629 else
8630 return TRUE;
8631
8632 case NT_ARM_TLS:
8633 if (note->namesz == 6
8634 && strcmp (note->namedata, "LINUX") == 0)
8635 return elfcore_grok_aarch_tls (abfd, note);
8636 else
8637 return TRUE;
8638
8639 case NT_ARM_HW_BREAK:
8640 if (note->namesz == 6
8641 && strcmp (note->namedata, "LINUX") == 0)
8642 return elfcore_grok_aarch_hw_break (abfd, note);
8643 else
8644 return TRUE;
8645
8646 case NT_ARM_HW_WATCH:
8647 if (note->namesz == 6
8648 && strcmp (note->namedata, "LINUX") == 0)
8649 return elfcore_grok_aarch_hw_watch (abfd, note);
8650 else
8651 return TRUE;
8652
8653 case NT_PRPSINFO:
8654 case NT_PSINFO:
8655 if (bed->elf_backend_grok_psinfo)
8656 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8657 return TRUE;
8658 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8659 return elfcore_grok_psinfo (abfd, note);
8660 #else
8661 return TRUE;
8662 #endif
8663
8664 case NT_AUXV:
8665 {
8666 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8667 SEC_HAS_CONTENTS);
8668
8669 if (sect == NULL)
8670 return FALSE;
8671 sect->size = note->descsz;
8672 sect->filepos = note->descpos;
8673 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8674
8675 return TRUE;
8676 }
8677
8678 case NT_FILE:
8679 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8680 note);
8681
8682 case NT_SIGINFO:
8683 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8684 note);
8685 }
8686 }
8687
8688 static bfd_boolean
8689 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8690 {
8691 struct elf_obj_tdata *t;
8692
8693 if (note->descsz == 0)
8694 return FALSE;
8695
8696 t = elf_tdata (abfd);
8697 t->build_id = bfd_alloc (abfd, sizeof (t->build_id->u.i) - 1 + note->descsz);
8698 if (t->build_id == NULL)
8699 return FALSE;
8700
8701 t->build_id->u.i.size = note->descsz;
8702 memcpy (t->build_id->u.i.data, note->descdata, note->descsz);
8703
8704 return TRUE;
8705 }
8706
8707 static bfd_boolean
8708 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8709 {
8710 switch (note->type)
8711 {
8712 default:
8713 return TRUE;
8714
8715 case NT_GNU_BUILD_ID:
8716 return elfobj_grok_gnu_build_id (abfd, note);
8717 }
8718 }
8719
8720 static bfd_boolean
8721 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8722 {
8723 struct sdt_note *cur =
8724 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8725 + note->descsz);
8726
8727 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8728 cur->size = (bfd_size_type) note->descsz;
8729 memcpy (cur->data, note->descdata, note->descsz);
8730
8731 elf_tdata (abfd)->sdt_note_head = cur;
8732
8733 return TRUE;
8734 }
8735
8736 static bfd_boolean
8737 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8738 {
8739 switch (note->type)
8740 {
8741 case NT_STAPSDT:
8742 return elfobj_grok_stapsdt_note_1 (abfd, note);
8743
8744 default:
8745 return TRUE;
8746 }
8747 }
8748
8749 static bfd_boolean
8750 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8751 {
8752 char *cp;
8753
8754 cp = strchr (note->namedata, '@');
8755 if (cp != NULL)
8756 {
8757 *lwpidp = atoi(cp + 1);
8758 return TRUE;
8759 }
8760 return FALSE;
8761 }
8762
8763 static bfd_boolean
8764 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8765 {
8766 /* Signal number at offset 0x08. */
8767 elf_tdata (abfd)->core_signal
8768 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8769
8770 /* Process ID at offset 0x50. */
8771 elf_tdata (abfd)->core_pid
8772 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8773
8774 /* Command name at 0x7c (max 32 bytes, including nul). */
8775 elf_tdata (abfd)->core_command
8776 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8777
8778 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8779 note);
8780 }
8781
8782 static bfd_boolean
8783 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8784 {
8785 int lwp;
8786
8787 if (elfcore_netbsd_get_lwpid (note, &lwp))
8788 elf_tdata (abfd)->core_lwpid = lwp;
8789
8790 if (note->type == NT_NETBSDCORE_PROCINFO)
8791 {
8792 /* NetBSD-specific core "procinfo". Note that we expect to
8793 find this note before any of the others, which is fine,
8794 since the kernel writes this note out first when it
8795 creates a core file. */
8796
8797 return elfcore_grok_netbsd_procinfo (abfd, note);
8798 }
8799
8800 /* As of Jan 2002 there are no other machine-independent notes
8801 defined for NetBSD core files. If the note type is less
8802 than the start of the machine-dependent note types, we don't
8803 understand it. */
8804
8805 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8806 return TRUE;
8807
8808
8809 switch (bfd_get_arch (abfd))
8810 {
8811 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8812 PT_GETFPREGS == mach+2. */
8813
8814 case bfd_arch_alpha:
8815 case bfd_arch_sparc:
8816 switch (note->type)
8817 {
8818 case NT_NETBSDCORE_FIRSTMACH+0:
8819 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8820
8821 case NT_NETBSDCORE_FIRSTMACH+2:
8822 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8823
8824 default:
8825 return TRUE;
8826 }
8827
8828 /* On all other arch's, PT_GETREGS == mach+1 and
8829 PT_GETFPREGS == mach+3. */
8830
8831 default:
8832 switch (note->type)
8833 {
8834 case NT_NETBSDCORE_FIRSTMACH+1:
8835 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8836
8837 case NT_NETBSDCORE_FIRSTMACH+3:
8838 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8839
8840 default:
8841 return TRUE;
8842 }
8843 }
8844 /* NOTREACHED */
8845 }
8846
8847 static bfd_boolean
8848 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8849 {
8850 /* Signal number at offset 0x08. */
8851 elf_tdata (abfd)->core_signal
8852 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8853
8854 /* Process ID at offset 0x20. */
8855 elf_tdata (abfd)->core_pid
8856 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8857
8858 /* Command name at 0x48 (max 32 bytes, including nul). */
8859 elf_tdata (abfd)->core_command
8860 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8861
8862 return TRUE;
8863 }
8864
8865 static bfd_boolean
8866 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8867 {
8868 if (note->type == NT_OPENBSD_PROCINFO)
8869 return elfcore_grok_openbsd_procinfo (abfd, note);
8870
8871 if (note->type == NT_OPENBSD_REGS)
8872 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8873
8874 if (note->type == NT_OPENBSD_FPREGS)
8875 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8876
8877 if (note->type == NT_OPENBSD_XFPREGS)
8878 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8879
8880 if (note->type == NT_OPENBSD_AUXV)
8881 {
8882 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8883 SEC_HAS_CONTENTS);
8884
8885 if (sect == NULL)
8886 return FALSE;
8887 sect->size = note->descsz;
8888 sect->filepos = note->descpos;
8889 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8890
8891 return TRUE;
8892 }
8893
8894 if (note->type == NT_OPENBSD_WCOOKIE)
8895 {
8896 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8897 SEC_HAS_CONTENTS);
8898
8899 if (sect == NULL)
8900 return FALSE;
8901 sect->size = note->descsz;
8902 sect->filepos = note->descpos;
8903 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8904
8905 return TRUE;
8906 }
8907
8908 return TRUE;
8909 }
8910
8911 static bfd_boolean
8912 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8913 {
8914 void *ddata = note->descdata;
8915 char buf[100];
8916 char *name;
8917 asection *sect;
8918 short sig;
8919 unsigned flags;
8920
8921 /* nto_procfs_status 'pid' field is at offset 0. */
8922 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8923
8924 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8925 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8926
8927 /* nto_procfs_status 'flags' field is at offset 8. */
8928 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8929
8930 /* nto_procfs_status 'what' field is at offset 14. */
8931 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8932 {
8933 elf_tdata (abfd)->core_signal = sig;
8934 elf_tdata (abfd)->core_lwpid = *tid;
8935 }
8936
8937 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8938 do not come from signals so we make sure we set the current
8939 thread just in case. */
8940 if (flags & 0x00000080)
8941 elf_tdata (abfd)->core_lwpid = *tid;
8942
8943 /* Make a ".qnx_core_status/%d" section. */
8944 sprintf (buf, ".qnx_core_status/%ld", *tid);
8945
8946 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8947 if (name == NULL)
8948 return FALSE;
8949 strcpy (name, buf);
8950
8951 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8952 if (sect == NULL)
8953 return FALSE;
8954
8955 sect->size = note->descsz;
8956 sect->filepos = note->descpos;
8957 sect->alignment_power = 2;
8958
8959 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8960 }
8961
8962 static bfd_boolean
8963 elfcore_grok_nto_regs (bfd *abfd,
8964 Elf_Internal_Note *note,
8965 long tid,
8966 char *base)
8967 {
8968 char buf[100];
8969 char *name;
8970 asection *sect;
8971
8972 /* Make a "(base)/%d" section. */
8973 sprintf (buf, "%s/%ld", base, tid);
8974
8975 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8976 if (name == NULL)
8977 return FALSE;
8978 strcpy (name, buf);
8979
8980 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8981 if (sect == NULL)
8982 return FALSE;
8983
8984 sect->size = note->descsz;
8985 sect->filepos = note->descpos;
8986 sect->alignment_power = 2;
8987
8988 /* This is the current thread. */
8989 if (elf_tdata (abfd)->core_lwpid == tid)
8990 return elfcore_maybe_make_sect (abfd, base, sect);
8991
8992 return TRUE;
8993 }
8994
8995 #define BFD_QNT_CORE_INFO 7
8996 #define BFD_QNT_CORE_STATUS 8
8997 #define BFD_QNT_CORE_GREG 9
8998 #define BFD_QNT_CORE_FPREG 10
8999
9000 static bfd_boolean
9001 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9002 {
9003 /* Every GREG section has a STATUS section before it. Store the
9004 tid from the previous call to pass down to the next gregs
9005 function. */
9006 static long tid = 1;
9007
9008 switch (note->type)
9009 {
9010 case BFD_QNT_CORE_INFO:
9011 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9012 case BFD_QNT_CORE_STATUS:
9013 return elfcore_grok_nto_status (abfd, note, &tid);
9014 case BFD_QNT_CORE_GREG:
9015 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9016 case BFD_QNT_CORE_FPREG:
9017 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9018 default:
9019 return TRUE;
9020 }
9021 }
9022
9023 static bfd_boolean
9024 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9025 {
9026 char *name;
9027 asection *sect;
9028 size_t len;
9029
9030 /* Use note name as section name. */
9031 len = note->namesz;
9032 name = (char *) bfd_alloc (abfd, len);
9033 if (name == NULL)
9034 return FALSE;
9035 memcpy (name, note->namedata, len);
9036 name[len - 1] = '\0';
9037
9038 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9039 if (sect == NULL)
9040 return FALSE;
9041
9042 sect->size = note->descsz;
9043 sect->filepos = note->descpos;
9044 sect->alignment_power = 1;
9045
9046 return TRUE;
9047 }
9048
9049 /* Function: elfcore_write_note
9050
9051 Inputs:
9052 buffer to hold note, and current size of buffer
9053 name of note
9054 type of note
9055 data for note
9056 size of data for note
9057
9058 Writes note to end of buffer. ELF64 notes are written exactly as
9059 for ELF32, despite the current (as of 2006) ELF gabi specifying
9060 that they ought to have 8-byte namesz and descsz field, and have
9061 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9062
9063 Return:
9064 Pointer to realloc'd buffer, *BUFSIZ updated. */
9065
9066 char *
9067 elfcore_write_note (bfd *abfd,
9068 char *buf,
9069 int *bufsiz,
9070 const char *name,
9071 int type,
9072 const void *input,
9073 int size)
9074 {
9075 Elf_External_Note *xnp;
9076 size_t namesz;
9077 size_t newspace;
9078 char *dest;
9079
9080 namesz = 0;
9081 if (name != NULL)
9082 namesz = strlen (name) + 1;
9083
9084 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9085
9086 buf = (char *) realloc (buf, *bufsiz + newspace);
9087 if (buf == NULL)
9088 return buf;
9089 dest = buf + *bufsiz;
9090 *bufsiz += newspace;
9091 xnp = (Elf_External_Note *) dest;
9092 H_PUT_32 (abfd, namesz, xnp->namesz);
9093 H_PUT_32 (abfd, size, xnp->descsz);
9094 H_PUT_32 (abfd, type, xnp->type);
9095 dest = xnp->name;
9096 if (name != NULL)
9097 {
9098 memcpy (dest, name, namesz);
9099 dest += namesz;
9100 while (namesz & 3)
9101 {
9102 *dest++ = '\0';
9103 ++namesz;
9104 }
9105 }
9106 memcpy (dest, input, size);
9107 dest += size;
9108 while (size & 3)
9109 {
9110 *dest++ = '\0';
9111 ++size;
9112 }
9113 return buf;
9114 }
9115
9116 char *
9117 elfcore_write_prpsinfo (bfd *abfd,
9118 char *buf,
9119 int *bufsiz,
9120 const char *fname,
9121 const char *psargs)
9122 {
9123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9124
9125 if (bed->elf_backend_write_core_note != NULL)
9126 {
9127 char *ret;
9128 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9129 NT_PRPSINFO, fname, psargs);
9130 if (ret != NULL)
9131 return ret;
9132 }
9133
9134 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9135 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9136 if (bed->s->elfclass == ELFCLASS32)
9137 {
9138 #if defined (HAVE_PSINFO32_T)
9139 psinfo32_t data;
9140 int note_type = NT_PSINFO;
9141 #else
9142 prpsinfo32_t data;
9143 int note_type = NT_PRPSINFO;
9144 #endif
9145
9146 memset (&data, 0, sizeof (data));
9147 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9148 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9149 return elfcore_write_note (abfd, buf, bufsiz,
9150 "CORE", note_type, &data, sizeof (data));
9151 }
9152 else
9153 #endif
9154 {
9155 #if defined (HAVE_PSINFO_T)
9156 psinfo_t data;
9157 int note_type = NT_PSINFO;
9158 #else
9159 prpsinfo_t data;
9160 int note_type = NT_PRPSINFO;
9161 #endif
9162
9163 memset (&data, 0, sizeof (data));
9164 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9165 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9166 return elfcore_write_note (abfd, buf, bufsiz,
9167 "CORE", note_type, &data, sizeof (data));
9168 }
9169 #endif /* PSINFO_T or PRPSINFO_T */
9170
9171 free (buf);
9172 return NULL;
9173 }
9174
9175 char *
9176 elfcore_write_linux_prpsinfo32
9177 (bfd *abfd, char *buf, int *bufsiz,
9178 const struct elf_internal_linux_prpsinfo *prpsinfo)
9179 {
9180 struct elf_external_linux_prpsinfo32 data;
9181
9182 memset (&data, 0, sizeof (data));
9183 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9184
9185 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9186 &data, sizeof (data));
9187 }
9188
9189 char *
9190 elfcore_write_linux_prpsinfo64
9191 (bfd *abfd, char *buf, int *bufsiz,
9192 const struct elf_internal_linux_prpsinfo *prpsinfo)
9193 {
9194 struct elf_external_linux_prpsinfo64 data;
9195
9196 memset (&data, 0, sizeof (data));
9197 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9198
9199 return elfcore_write_note (abfd, buf, bufsiz,
9200 "CORE", NT_PRPSINFO, &data, sizeof (data));
9201 }
9202
9203 char *
9204 elfcore_write_prstatus (bfd *abfd,
9205 char *buf,
9206 int *bufsiz,
9207 long pid,
9208 int cursig,
9209 const void *gregs)
9210 {
9211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9212
9213 if (bed->elf_backend_write_core_note != NULL)
9214 {
9215 char *ret;
9216 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9217 NT_PRSTATUS,
9218 pid, cursig, gregs);
9219 if (ret != NULL)
9220 return ret;
9221 }
9222
9223 #if defined (HAVE_PRSTATUS_T)
9224 #if defined (HAVE_PRSTATUS32_T)
9225 if (bed->s->elfclass == ELFCLASS32)
9226 {
9227 prstatus32_t prstat;
9228
9229 memset (&prstat, 0, sizeof (prstat));
9230 prstat.pr_pid = pid;
9231 prstat.pr_cursig = cursig;
9232 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9233 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9234 NT_PRSTATUS, &prstat, sizeof (prstat));
9235 }
9236 else
9237 #endif
9238 {
9239 prstatus_t prstat;
9240
9241 memset (&prstat, 0, sizeof (prstat));
9242 prstat.pr_pid = pid;
9243 prstat.pr_cursig = cursig;
9244 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9245 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9246 NT_PRSTATUS, &prstat, sizeof (prstat));
9247 }
9248 #endif /* HAVE_PRSTATUS_T */
9249
9250 free (buf);
9251 return NULL;
9252 }
9253
9254 #if defined (HAVE_LWPSTATUS_T)
9255 char *
9256 elfcore_write_lwpstatus (bfd *abfd,
9257 char *buf,
9258 int *bufsiz,
9259 long pid,
9260 int cursig,
9261 const void *gregs)
9262 {
9263 lwpstatus_t lwpstat;
9264 const char *note_name = "CORE";
9265
9266 memset (&lwpstat, 0, sizeof (lwpstat));
9267 lwpstat.pr_lwpid = pid >> 16;
9268 lwpstat.pr_cursig = cursig;
9269 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9270 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9271 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9272 #if !defined(gregs)
9273 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9274 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9275 #else
9276 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9277 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9278 #endif
9279 #endif
9280 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9281 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9282 }
9283 #endif /* HAVE_LWPSTATUS_T */
9284
9285 #if defined (HAVE_PSTATUS_T)
9286 char *
9287 elfcore_write_pstatus (bfd *abfd,
9288 char *buf,
9289 int *bufsiz,
9290 long pid,
9291 int cursig ATTRIBUTE_UNUSED,
9292 const void *gregs ATTRIBUTE_UNUSED)
9293 {
9294 const char *note_name = "CORE";
9295 #if defined (HAVE_PSTATUS32_T)
9296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9297
9298 if (bed->s->elfclass == ELFCLASS32)
9299 {
9300 pstatus32_t pstat;
9301
9302 memset (&pstat, 0, sizeof (pstat));
9303 pstat.pr_pid = pid & 0xffff;
9304 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9305 NT_PSTATUS, &pstat, sizeof (pstat));
9306 return buf;
9307 }
9308 else
9309 #endif
9310 {
9311 pstatus_t pstat;
9312
9313 memset (&pstat, 0, sizeof (pstat));
9314 pstat.pr_pid = pid & 0xffff;
9315 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9316 NT_PSTATUS, &pstat, sizeof (pstat));
9317 return buf;
9318 }
9319 }
9320 #endif /* HAVE_PSTATUS_T */
9321
9322 char *
9323 elfcore_write_prfpreg (bfd *abfd,
9324 char *buf,
9325 int *bufsiz,
9326 const void *fpregs,
9327 int size)
9328 {
9329 const char *note_name = "CORE";
9330 return elfcore_write_note (abfd, buf, bufsiz,
9331 note_name, NT_FPREGSET, fpregs, size);
9332 }
9333
9334 char *
9335 elfcore_write_prxfpreg (bfd *abfd,
9336 char *buf,
9337 int *bufsiz,
9338 const void *xfpregs,
9339 int size)
9340 {
9341 char *note_name = "LINUX";
9342 return elfcore_write_note (abfd, buf, bufsiz,
9343 note_name, NT_PRXFPREG, xfpregs, size);
9344 }
9345
9346 char *
9347 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9348 const void *xfpregs, int size)
9349 {
9350 char *note_name = "LINUX";
9351 return elfcore_write_note (abfd, buf, bufsiz,
9352 note_name, NT_X86_XSTATE, xfpregs, size);
9353 }
9354
9355 char *
9356 elfcore_write_ppc_vmx (bfd *abfd,
9357 char *buf,
9358 int *bufsiz,
9359 const void *ppc_vmx,
9360 int size)
9361 {
9362 char *note_name = "LINUX";
9363 return elfcore_write_note (abfd, buf, bufsiz,
9364 note_name, NT_PPC_VMX, ppc_vmx, size);
9365 }
9366
9367 char *
9368 elfcore_write_ppc_vsx (bfd *abfd,
9369 char *buf,
9370 int *bufsiz,
9371 const void *ppc_vsx,
9372 int size)
9373 {
9374 char *note_name = "LINUX";
9375 return elfcore_write_note (abfd, buf, bufsiz,
9376 note_name, NT_PPC_VSX, ppc_vsx, size);
9377 }
9378
9379 static char *
9380 elfcore_write_s390_high_gprs (bfd *abfd,
9381 char *buf,
9382 int *bufsiz,
9383 const void *s390_high_gprs,
9384 int size)
9385 {
9386 char *note_name = "LINUX";
9387 return elfcore_write_note (abfd, buf, bufsiz,
9388 note_name, NT_S390_HIGH_GPRS,
9389 s390_high_gprs, size);
9390 }
9391
9392 char *
9393 elfcore_write_s390_timer (bfd *abfd,
9394 char *buf,
9395 int *bufsiz,
9396 const void *s390_timer,
9397 int size)
9398 {
9399 char *note_name = "LINUX";
9400 return elfcore_write_note (abfd, buf, bufsiz,
9401 note_name, NT_S390_TIMER, s390_timer, size);
9402 }
9403
9404 char *
9405 elfcore_write_s390_todcmp (bfd *abfd,
9406 char *buf,
9407 int *bufsiz,
9408 const void *s390_todcmp,
9409 int size)
9410 {
9411 char *note_name = "LINUX";
9412 return elfcore_write_note (abfd, buf, bufsiz,
9413 note_name, NT_S390_TODCMP, s390_todcmp, size);
9414 }
9415
9416 char *
9417 elfcore_write_s390_todpreg (bfd *abfd,
9418 char *buf,
9419 int *bufsiz,
9420 const void *s390_todpreg,
9421 int size)
9422 {
9423 char *note_name = "LINUX";
9424 return elfcore_write_note (abfd, buf, bufsiz,
9425 note_name, NT_S390_TODPREG, s390_todpreg, size);
9426 }
9427
9428 char *
9429 elfcore_write_s390_ctrs (bfd *abfd,
9430 char *buf,
9431 int *bufsiz,
9432 const void *s390_ctrs,
9433 int size)
9434 {
9435 char *note_name = "LINUX";
9436 return elfcore_write_note (abfd, buf, bufsiz,
9437 note_name, NT_S390_CTRS, s390_ctrs, size);
9438 }
9439
9440 char *
9441 elfcore_write_s390_prefix (bfd *abfd,
9442 char *buf,
9443 int *bufsiz,
9444 const void *s390_prefix,
9445 int size)
9446 {
9447 char *note_name = "LINUX";
9448 return elfcore_write_note (abfd, buf, bufsiz,
9449 note_name, NT_S390_PREFIX, s390_prefix, size);
9450 }
9451
9452 char *
9453 elfcore_write_s390_last_break (bfd *abfd,
9454 char *buf,
9455 int *bufsiz,
9456 const void *s390_last_break,
9457 int size)
9458 {
9459 char *note_name = "LINUX";
9460 return elfcore_write_note (abfd, buf, bufsiz,
9461 note_name, NT_S390_LAST_BREAK,
9462 s390_last_break, size);
9463 }
9464
9465 char *
9466 elfcore_write_s390_system_call (bfd *abfd,
9467 char *buf,
9468 int *bufsiz,
9469 const void *s390_system_call,
9470 int size)
9471 {
9472 char *note_name = "LINUX";
9473 return elfcore_write_note (abfd, buf, bufsiz,
9474 note_name, NT_S390_SYSTEM_CALL,
9475 s390_system_call, size);
9476 }
9477
9478 char *
9479 elfcore_write_arm_vfp (bfd *abfd,
9480 char *buf,
9481 int *bufsiz,
9482 const void *arm_vfp,
9483 int size)
9484 {
9485 char *note_name = "LINUX";
9486 return elfcore_write_note (abfd, buf, bufsiz,
9487 note_name, NT_ARM_VFP, arm_vfp, size);
9488 }
9489
9490 char *
9491 elfcore_write_aarch_tls (bfd *abfd,
9492 char *buf,
9493 int *bufsiz,
9494 const void *aarch_tls,
9495 int size)
9496 {
9497 char *note_name = "LINUX";
9498 return elfcore_write_note (abfd, buf, bufsiz,
9499 note_name, NT_ARM_TLS, aarch_tls, size);
9500 }
9501
9502 char *
9503 elfcore_write_aarch_hw_break (bfd *abfd,
9504 char *buf,
9505 int *bufsiz,
9506 const void *aarch_hw_break,
9507 int size)
9508 {
9509 char *note_name = "LINUX";
9510 return elfcore_write_note (abfd, buf, bufsiz,
9511 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9512 }
9513
9514 char *
9515 elfcore_write_aarch_hw_watch (bfd *abfd,
9516 char *buf,
9517 int *bufsiz,
9518 const void *aarch_hw_watch,
9519 int size)
9520 {
9521 char *note_name = "LINUX";
9522 return elfcore_write_note (abfd, buf, bufsiz,
9523 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9524 }
9525
9526 char *
9527 elfcore_write_register_note (bfd *abfd,
9528 char *buf,
9529 int *bufsiz,
9530 const char *section,
9531 const void *data,
9532 int size)
9533 {
9534 if (strcmp (section, ".reg2") == 0)
9535 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9536 if (strcmp (section, ".reg-xfp") == 0)
9537 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9538 if (strcmp (section, ".reg-xstate") == 0)
9539 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9540 if (strcmp (section, ".reg-ppc-vmx") == 0)
9541 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9542 if (strcmp (section, ".reg-ppc-vsx") == 0)
9543 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9544 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9545 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9546 if (strcmp (section, ".reg-s390-timer") == 0)
9547 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9548 if (strcmp (section, ".reg-s390-todcmp") == 0)
9549 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9550 if (strcmp (section, ".reg-s390-todpreg") == 0)
9551 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9552 if (strcmp (section, ".reg-s390-ctrs") == 0)
9553 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9554 if (strcmp (section, ".reg-s390-prefix") == 0)
9555 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9556 if (strcmp (section, ".reg-s390-last-break") == 0)
9557 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9558 if (strcmp (section, ".reg-s390-system-call") == 0)
9559 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9560 if (strcmp (section, ".reg-arm-vfp") == 0)
9561 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9562 if (strcmp (section, ".reg-aarch-tls") == 0)
9563 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9564 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9565 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9566 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9567 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9568 return NULL;
9569 }
9570
9571 static bfd_boolean
9572 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9573 {
9574 char *p;
9575
9576 p = buf;
9577 while (p < buf + size)
9578 {
9579 /* FIXME: bad alignment assumption. */
9580 Elf_External_Note *xnp = (Elf_External_Note *) p;
9581 Elf_Internal_Note in;
9582
9583 if (offsetof (Elf_External_Note, name) > buf - p + size)
9584 return FALSE;
9585
9586 in.type = H_GET_32 (abfd, xnp->type);
9587
9588 in.namesz = H_GET_32 (abfd, xnp->namesz);
9589 in.namedata = xnp->name;
9590 if (in.namesz > buf - in.namedata + size)
9591 return FALSE;
9592
9593 in.descsz = H_GET_32 (abfd, xnp->descsz);
9594 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9595 in.descpos = offset + (in.descdata - buf);
9596 if (in.descsz != 0
9597 && (in.descdata >= buf + size
9598 || in.descsz > buf - in.descdata + size))
9599 return FALSE;
9600
9601 switch (bfd_get_format (abfd))
9602 {
9603 default:
9604 return TRUE;
9605
9606 case bfd_core:
9607 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9608 {
9609 if (! elfcore_grok_netbsd_note (abfd, &in))
9610 return FALSE;
9611 }
9612 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9613 {
9614 if (! elfcore_grok_openbsd_note (abfd, &in))
9615 return FALSE;
9616 }
9617 else if (CONST_STRNEQ (in.namedata, "QNX"))
9618 {
9619 if (! elfcore_grok_nto_note (abfd, &in))
9620 return FALSE;
9621 }
9622 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9623 {
9624 if (! elfcore_grok_spu_note (abfd, &in))
9625 return FALSE;
9626 }
9627 else
9628 {
9629 if (! elfcore_grok_note (abfd, &in))
9630 return FALSE;
9631 }
9632 break;
9633
9634 case bfd_object:
9635 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9636 {
9637 if (! elfobj_grok_gnu_note (abfd, &in))
9638 return FALSE;
9639 }
9640 else if (in.namesz == sizeof "stapsdt"
9641 && strcmp (in.namedata, "stapsdt") == 0)
9642 {
9643 if (! elfobj_grok_stapsdt_note (abfd, &in))
9644 return FALSE;
9645 }
9646 break;
9647 }
9648
9649 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9650 }
9651
9652 return TRUE;
9653 }
9654
9655 static bfd_boolean
9656 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9657 {
9658 char *buf;
9659
9660 if (size <= 0)
9661 return TRUE;
9662
9663 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9664 return FALSE;
9665
9666 buf = (char *) bfd_malloc (size);
9667 if (buf == NULL)
9668 return FALSE;
9669
9670 if (bfd_bread (buf, size, abfd) != size
9671 || !elf_parse_notes (abfd, buf, size, offset))
9672 {
9673 free (buf);
9674 return FALSE;
9675 }
9676
9677 free (buf);
9678 return TRUE;
9679 }
9680 \f
9681 /* Providing external access to the ELF program header table. */
9682
9683 /* Return an upper bound on the number of bytes required to store a
9684 copy of ABFD's program header table entries. Return -1 if an error
9685 occurs; bfd_get_error will return an appropriate code. */
9686
9687 long
9688 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9689 {
9690 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9691 {
9692 bfd_set_error (bfd_error_wrong_format);
9693 return -1;
9694 }
9695
9696 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9697 }
9698
9699 /* Copy ABFD's program header table entries to *PHDRS. The entries
9700 will be stored as an array of Elf_Internal_Phdr structures, as
9701 defined in include/elf/internal.h. To find out how large the
9702 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9703
9704 Return the number of program header table entries read, or -1 if an
9705 error occurs; bfd_get_error will return an appropriate code. */
9706
9707 int
9708 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9709 {
9710 int num_phdrs;
9711
9712 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9713 {
9714 bfd_set_error (bfd_error_wrong_format);
9715 return -1;
9716 }
9717
9718 num_phdrs = elf_elfheader (abfd)->e_phnum;
9719 memcpy (phdrs, elf_tdata (abfd)->phdr,
9720 num_phdrs * sizeof (Elf_Internal_Phdr));
9721
9722 return num_phdrs;
9723 }
9724
9725 enum elf_reloc_type_class
9726 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9727 {
9728 return reloc_class_normal;
9729 }
9730
9731 /* For RELA architectures, return the relocation value for a
9732 relocation against a local symbol. */
9733
9734 bfd_vma
9735 _bfd_elf_rela_local_sym (bfd *abfd,
9736 Elf_Internal_Sym *sym,
9737 asection **psec,
9738 Elf_Internal_Rela *rel)
9739 {
9740 asection *sec = *psec;
9741 bfd_vma relocation;
9742
9743 relocation = (sec->output_section->vma
9744 + sec->output_offset
9745 + sym->st_value);
9746 if ((sec->flags & SEC_MERGE)
9747 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9748 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9749 {
9750 rel->r_addend =
9751 _bfd_merged_section_offset (abfd, psec,
9752 elf_section_data (sec)->sec_info,
9753 sym->st_value + rel->r_addend);
9754 if (sec != *psec)
9755 {
9756 /* If we have changed the section, and our original section is
9757 marked with SEC_EXCLUDE, it means that the original
9758 SEC_MERGE section has been completely subsumed in some
9759 other SEC_MERGE section. In this case, we need to leave
9760 some info around for --emit-relocs. */
9761 if ((sec->flags & SEC_EXCLUDE) != 0)
9762 sec->kept_section = *psec;
9763 sec = *psec;
9764 }
9765 rel->r_addend -= relocation;
9766 rel->r_addend += sec->output_section->vma + sec->output_offset;
9767 }
9768 return relocation;
9769 }
9770
9771 bfd_vma
9772 _bfd_elf_rel_local_sym (bfd *abfd,
9773 Elf_Internal_Sym *sym,
9774 asection **psec,
9775 bfd_vma addend)
9776 {
9777 asection *sec = *psec;
9778
9779 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9780 return sym->st_value + addend;
9781
9782 return _bfd_merged_section_offset (abfd, psec,
9783 elf_section_data (sec)->sec_info,
9784 sym->st_value + addend);
9785 }
9786
9787 bfd_vma
9788 _bfd_elf_section_offset (bfd *abfd,
9789 struct bfd_link_info *info,
9790 asection *sec,
9791 bfd_vma offset)
9792 {
9793 switch (sec->sec_info_type)
9794 {
9795 case SEC_INFO_TYPE_STABS:
9796 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9797 offset);
9798 case SEC_INFO_TYPE_EH_FRAME:
9799 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9800 default:
9801 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9802 {
9803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9804 bfd_size_type address_size = bed->s->arch_size / 8;
9805 offset = sec->size - offset - address_size;
9806 }
9807 return offset;
9808 }
9809 }
9810 \f
9811 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9812 reconstruct an ELF file by reading the segments out of remote memory
9813 based on the ELF file header at EHDR_VMA and the ELF program headers it
9814 points to. If not null, *LOADBASEP is filled in with the difference
9815 between the VMAs from which the segments were read, and the VMAs the
9816 file headers (and hence BFD's idea of each section's VMA) put them at.
9817
9818 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9819 remote memory at target address VMA into the local buffer at MYADDR; it
9820 should return zero on success or an `errno' code on failure. TEMPL must
9821 be a BFD for an ELF target with the word size and byte order found in
9822 the remote memory. */
9823
9824 bfd *
9825 bfd_elf_bfd_from_remote_memory
9826 (bfd *templ,
9827 bfd_vma ehdr_vma,
9828 bfd_vma *loadbasep,
9829 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9830 {
9831 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9832 (templ, ehdr_vma, loadbasep, target_read_memory);
9833 }
9834 \f
9835 long
9836 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9837 long symcount ATTRIBUTE_UNUSED,
9838 asymbol **syms ATTRIBUTE_UNUSED,
9839 long dynsymcount,
9840 asymbol **dynsyms,
9841 asymbol **ret)
9842 {
9843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9844 asection *relplt;
9845 asymbol *s;
9846 const char *relplt_name;
9847 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9848 arelent *p;
9849 long count, i, n;
9850 size_t size;
9851 Elf_Internal_Shdr *hdr;
9852 char *names;
9853 asection *plt;
9854
9855 *ret = NULL;
9856
9857 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9858 return 0;
9859
9860 if (dynsymcount <= 0)
9861 return 0;
9862
9863 if (!bed->plt_sym_val)
9864 return 0;
9865
9866 relplt_name = bed->relplt_name;
9867 if (relplt_name == NULL)
9868 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9869 relplt = bfd_get_section_by_name (abfd, relplt_name);
9870 if (relplt == NULL)
9871 return 0;
9872
9873 hdr = &elf_section_data (relplt)->this_hdr;
9874 if (hdr->sh_link != elf_dynsymtab (abfd)
9875 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9876 return 0;
9877
9878 plt = bfd_get_section_by_name (abfd, ".plt");
9879 if (plt == NULL)
9880 return 0;
9881
9882 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9883 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9884 return -1;
9885
9886 count = relplt->size / hdr->sh_entsize;
9887 size = count * sizeof (asymbol);
9888 p = relplt->relocation;
9889 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9890 {
9891 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9892 if (p->addend != 0)
9893 {
9894 #ifdef BFD64
9895 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9896 #else
9897 size += sizeof ("+0x") - 1 + 8;
9898 #endif
9899 }
9900 }
9901
9902 s = *ret = (asymbol *) bfd_malloc (size);
9903 if (s == NULL)
9904 return -1;
9905
9906 names = (char *) (s + count);
9907 p = relplt->relocation;
9908 n = 0;
9909 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9910 {
9911 size_t len;
9912 bfd_vma addr;
9913
9914 addr = bed->plt_sym_val (i, plt, p);
9915 if (addr == (bfd_vma) -1)
9916 continue;
9917
9918 *s = **p->sym_ptr_ptr;
9919 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9920 we are defining a symbol, ensure one of them is set. */
9921 if ((s->flags & BSF_LOCAL) == 0)
9922 s->flags |= BSF_GLOBAL;
9923 s->flags |= BSF_SYNTHETIC;
9924 s->section = plt;
9925 s->value = addr - plt->vma;
9926 s->name = names;
9927 s->udata.p = NULL;
9928 len = strlen ((*p->sym_ptr_ptr)->name);
9929 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9930 names += len;
9931 if (p->addend != 0)
9932 {
9933 char buf[30], *a;
9934
9935 memcpy (names, "+0x", sizeof ("+0x") - 1);
9936 names += sizeof ("+0x") - 1;
9937 bfd_sprintf_vma (abfd, buf, p->addend);
9938 for (a = buf; *a == '0'; ++a)
9939 ;
9940 len = strlen (a);
9941 memcpy (names, a, len);
9942 names += len;
9943 }
9944 memcpy (names, "@plt", sizeof ("@plt"));
9945 names += sizeof ("@plt");
9946 ++s, ++n;
9947 }
9948
9949 return n;
9950 }
9951
9952 /* It is only used by x86-64 so far. */
9953 asection _bfd_elf_large_com_section
9954 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9955 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9956
9957 void
9958 _bfd_elf_set_osabi (bfd * abfd,
9959 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9960 {
9961 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9962
9963 i_ehdrp = elf_elfheader (abfd);
9964
9965 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9966
9967 /* To make things simpler for the loader on Linux systems we set the
9968 osabi field to ELFOSABI_GNU if the binary contains symbols of
9969 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9970 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9971 && elf_tdata (abfd)->has_gnu_symbols)
9972 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9973 }
9974
9975
9976 /* Return TRUE for ELF symbol types that represent functions.
9977 This is the default version of this function, which is sufficient for
9978 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9979
9980 bfd_boolean
9981 _bfd_elf_is_function_type (unsigned int type)
9982 {
9983 return (type == STT_FUNC
9984 || type == STT_GNU_IFUNC);
9985 }
9986
9987 /* If the ELF symbol SYM might be a function in SEC, return the
9988 function size and set *CODE_OFF to the function's entry point,
9989 otherwise return zero. */
9990
9991 bfd_size_type
9992 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9993 bfd_vma *code_off)
9994 {
9995 bfd_size_type size;
9996
9997 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9998 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9999 || sym->section != sec)
10000 return 0;
10001
10002 *code_off = sym->value;
10003 size = 0;
10004 if (!(sym->flags & BSF_SYNTHETIC))
10005 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10006 if (size == 0)
10007 size = 1;
10008 return size;
10009 }