]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Don't compress empty debug section
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize compress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decompress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244 }
3245
3246 static bfd_boolean
3247 sym_is_global (bfd *abfd, asymbol *sym)
3248 {
3249 /* If the backend has a special mapping, use it. */
3250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3251 if (bed->elf_backend_sym_is_global)
3252 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3253
3254 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3255 || bfd_is_und_section (bfd_get_section (sym))
3256 || bfd_is_com_section (bfd_get_section (sym)));
3257 }
3258
3259 /* Don't output section symbols for sections that are not going to be
3260 output, or that are duplicates. */
3261
3262 static bfd_boolean
3263 ignore_section_sym (bfd *abfd, asymbol *sym)
3264 {
3265 return ((sym->flags & BSF_SECTION_SYM) != 0
3266 && !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD
4156 && m->count != 0
4157 && m->sections[0]->vma >= info->relro_start
4158 && m->sections[0]->vma < info->relro_end)
4159 {
4160 i = m->count;
4161 while (--i != (unsigned) -1)
4162 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4163 == (SEC_LOAD | SEC_HAS_CONTENTS))
4164 break;
4165
4166 if (i == (unsigned) -1)
4167 continue;
4168
4169 if (m->sections[i]->vma + m->sections[i]->size
4170 >= info->relro_end)
4171 break;
4172 }
4173 }
4174
4175 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4176 if (m != NULL)
4177 {
4178 amt = sizeof (struct elf_segment_map);
4179 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4180 if (m == NULL)
4181 goto error_return;
4182 m->next = NULL;
4183 m->p_type = PT_GNU_RELRO;
4184 m->p_flags = PF_R;
4185 m->p_flags_valid = 1;
4186
4187 *pm = m;
4188 pm = &m->next;
4189 }
4190 }
4191
4192 free (sections);
4193 elf_tdata (abfd)->segment_map = mfirst;
4194 }
4195
4196 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4197 return FALSE;
4198
4199 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4200 ++count;
4201 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4202
4203 return TRUE;
4204
4205 error_return:
4206 if (sections != NULL)
4207 free (sections);
4208 return FALSE;
4209 }
4210
4211 /* Sort sections by address. */
4212
4213 static int
4214 elf_sort_sections (const void *arg1, const void *arg2)
4215 {
4216 const asection *sec1 = *(const asection **) arg1;
4217 const asection *sec2 = *(const asection **) arg2;
4218 bfd_size_type size1, size2;
4219
4220 /* Sort by LMA first, since this is the address used to
4221 place the section into a segment. */
4222 if (sec1->lma < sec2->lma)
4223 return -1;
4224 else if (sec1->lma > sec2->lma)
4225 return 1;
4226
4227 /* Then sort by VMA. Normally the LMA and the VMA will be
4228 the same, and this will do nothing. */
4229 if (sec1->vma < sec2->vma)
4230 return -1;
4231 else if (sec1->vma > sec2->vma)
4232 return 1;
4233
4234 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4235
4236 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4237
4238 if (TOEND (sec1))
4239 {
4240 if (TOEND (sec2))
4241 {
4242 /* If the indicies are the same, do not return 0
4243 here, but continue to try the next comparison. */
4244 if (sec1->target_index - sec2->target_index != 0)
4245 return sec1->target_index - sec2->target_index;
4246 }
4247 else
4248 return 1;
4249 }
4250 else if (TOEND (sec2))
4251 return -1;
4252
4253 #undef TOEND
4254
4255 /* Sort by size, to put zero sized sections
4256 before others at the same address. */
4257
4258 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4259 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4260
4261 if (size1 < size2)
4262 return -1;
4263 if (size1 > size2)
4264 return 1;
4265
4266 return sec1->target_index - sec2->target_index;
4267 }
4268
4269 /* Ian Lance Taylor writes:
4270
4271 We shouldn't be using % with a negative signed number. That's just
4272 not good. We have to make sure either that the number is not
4273 negative, or that the number has an unsigned type. When the types
4274 are all the same size they wind up as unsigned. When file_ptr is a
4275 larger signed type, the arithmetic winds up as signed long long,
4276 which is wrong.
4277
4278 What we're trying to say here is something like ``increase OFF by
4279 the least amount that will cause it to be equal to the VMA modulo
4280 the page size.'' */
4281 /* In other words, something like:
4282
4283 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4284 off_offset = off % bed->maxpagesize;
4285 if (vma_offset < off_offset)
4286 adjustment = vma_offset + bed->maxpagesize - off_offset;
4287 else
4288 adjustment = vma_offset - off_offset;
4289
4290 which can can be collapsed into the expression below. */
4291
4292 static file_ptr
4293 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4294 {
4295 return ((vma - off) % maxpagesize);
4296 }
4297
4298 static void
4299 print_segment_map (const struct elf_segment_map *m)
4300 {
4301 unsigned int j;
4302 const char *pt = get_segment_type (m->p_type);
4303 char buf[32];
4304
4305 if (pt == NULL)
4306 {
4307 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4308 sprintf (buf, "LOPROC+%7.7x",
4309 (unsigned int) (m->p_type - PT_LOPROC));
4310 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4311 sprintf (buf, "LOOS+%7.7x",
4312 (unsigned int) (m->p_type - PT_LOOS));
4313 else
4314 snprintf (buf, sizeof (buf), "%8.8x",
4315 (unsigned int) m->p_type);
4316 pt = buf;
4317 }
4318 fflush (stdout);
4319 fprintf (stderr, "%s:", pt);
4320 for (j = 0; j < m->count; j++)
4321 fprintf (stderr, " %s", m->sections [j]->name);
4322 putc ('\n',stderr);
4323 fflush (stderr);
4324 }
4325
4326 static bfd_boolean
4327 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4328 {
4329 void *buf;
4330 bfd_boolean ret;
4331
4332 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4333 return FALSE;
4334 buf = bfd_zmalloc (len);
4335 if (buf == NULL)
4336 return FALSE;
4337 ret = bfd_bwrite (buf, len, abfd) == len;
4338 free (buf);
4339 return ret;
4340 }
4341
4342 /* Assign file positions to the sections based on the mapping from
4343 sections to segments. This function also sets up some fields in
4344 the file header. */
4345
4346 static bfd_boolean
4347 assign_file_positions_for_load_sections (bfd *abfd,
4348 struct bfd_link_info *link_info)
4349 {
4350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4351 struct elf_segment_map *m;
4352 Elf_Internal_Phdr *phdrs;
4353 Elf_Internal_Phdr *p;
4354 file_ptr off;
4355 bfd_size_type maxpagesize;
4356 unsigned int alloc;
4357 unsigned int i, j;
4358 bfd_vma header_pad = 0;
4359
4360 if (link_info == NULL
4361 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4362 return FALSE;
4363
4364 alloc = 0;
4365 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4366 {
4367 ++alloc;
4368 if (m->header_size)
4369 header_pad = m->header_size;
4370 }
4371
4372 if (alloc)
4373 {
4374 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4375 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4376 }
4377 else
4378 {
4379 /* PR binutils/12467. */
4380 elf_elfheader (abfd)->e_phoff = 0;
4381 elf_elfheader (abfd)->e_phentsize = 0;
4382 }
4383
4384 elf_elfheader (abfd)->e_phnum = alloc;
4385
4386 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4387 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4388 else
4389 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4390 >= alloc * bed->s->sizeof_phdr);
4391
4392 if (alloc == 0)
4393 {
4394 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4395 return TRUE;
4396 }
4397
4398 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4399 see assign_file_positions_except_relocs, so make sure we have
4400 that amount allocated, with trailing space cleared.
4401 The variable alloc contains the computed need, while elf_tdata
4402 (abfd)->program_header_size contains the size used for the
4403 layout.
4404 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4405 where the layout is forced to according to a larger size in the
4406 last iterations for the testcase ld-elf/header. */
4407 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4408 == 0);
4409 phdrs = (Elf_Internal_Phdr *)
4410 bfd_zalloc2 (abfd,
4411 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4412 sizeof (Elf_Internal_Phdr));
4413 elf_tdata (abfd)->phdr = phdrs;
4414 if (phdrs == NULL)
4415 return FALSE;
4416
4417 maxpagesize = 1;
4418 if ((abfd->flags & D_PAGED) != 0)
4419 maxpagesize = bed->maxpagesize;
4420
4421 off = bed->s->sizeof_ehdr;
4422 off += alloc * bed->s->sizeof_phdr;
4423 if (header_pad < (bfd_vma) off)
4424 header_pad = 0;
4425 else
4426 header_pad -= off;
4427 off += header_pad;
4428
4429 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4430 m != NULL;
4431 m = m->next, p++, j++)
4432 {
4433 asection **secpp;
4434 bfd_vma off_adjust;
4435 bfd_boolean no_contents;
4436
4437 /* If elf_segment_map is not from map_sections_to_segments, the
4438 sections may not be correctly ordered. NOTE: sorting should
4439 not be done to the PT_NOTE section of a corefile, which may
4440 contain several pseudo-sections artificially created by bfd.
4441 Sorting these pseudo-sections breaks things badly. */
4442 if (m->count > 1
4443 && !(elf_elfheader (abfd)->e_type == ET_CORE
4444 && m->p_type == PT_NOTE))
4445 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4446 elf_sort_sections);
4447
4448 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4449 number of sections with contents contributing to both p_filesz
4450 and p_memsz, followed by a number of sections with no contents
4451 that just contribute to p_memsz. In this loop, OFF tracks next
4452 available file offset for PT_LOAD and PT_NOTE segments. */
4453 p->p_type = m->p_type;
4454 p->p_flags = m->p_flags;
4455
4456 if (m->count == 0)
4457 p->p_vaddr = 0;
4458 else
4459 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4460
4461 if (m->p_paddr_valid)
4462 p->p_paddr = m->p_paddr;
4463 else if (m->count == 0)
4464 p->p_paddr = 0;
4465 else
4466 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4467
4468 if (p->p_type == PT_LOAD
4469 && (abfd->flags & D_PAGED) != 0)
4470 {
4471 /* p_align in demand paged PT_LOAD segments effectively stores
4472 the maximum page size. When copying an executable with
4473 objcopy, we set m->p_align from the input file. Use this
4474 value for maxpagesize rather than bed->maxpagesize, which
4475 may be different. Note that we use maxpagesize for PT_TLS
4476 segment alignment later in this function, so we are relying
4477 on at least one PT_LOAD segment appearing before a PT_TLS
4478 segment. */
4479 if (m->p_align_valid)
4480 maxpagesize = m->p_align;
4481
4482 p->p_align = maxpagesize;
4483 }
4484 else if (m->p_align_valid)
4485 p->p_align = m->p_align;
4486 else if (m->count == 0)
4487 p->p_align = 1 << bed->s->log_file_align;
4488 else
4489 p->p_align = 0;
4490
4491 no_contents = FALSE;
4492 off_adjust = 0;
4493 if (p->p_type == PT_LOAD
4494 && m->count > 0)
4495 {
4496 bfd_size_type align;
4497 unsigned int align_power = 0;
4498
4499 if (m->p_align_valid)
4500 align = p->p_align;
4501 else
4502 {
4503 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4504 {
4505 unsigned int secalign;
4506
4507 secalign = bfd_get_section_alignment (abfd, *secpp);
4508 if (secalign > align_power)
4509 align_power = secalign;
4510 }
4511 align = (bfd_size_type) 1 << align_power;
4512 if (align < maxpagesize)
4513 align = maxpagesize;
4514 }
4515
4516 for (i = 0; i < m->count; i++)
4517 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4518 /* If we aren't making room for this section, then
4519 it must be SHT_NOBITS regardless of what we've
4520 set via struct bfd_elf_special_section. */
4521 elf_section_type (m->sections[i]) = SHT_NOBITS;
4522
4523 /* Find out whether this segment contains any loadable
4524 sections. */
4525 no_contents = TRUE;
4526 for (i = 0; i < m->count; i++)
4527 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4528 {
4529 no_contents = FALSE;
4530 break;
4531 }
4532
4533 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4534 off += off_adjust;
4535 if (no_contents)
4536 {
4537 /* We shouldn't need to align the segment on disk since
4538 the segment doesn't need file space, but the gABI
4539 arguably requires the alignment and glibc ld.so
4540 checks it. So to comply with the alignment
4541 requirement but not waste file space, we adjust
4542 p_offset for just this segment. (OFF_ADJUST is
4543 subtracted from OFF later.) This may put p_offset
4544 past the end of file, but that shouldn't matter. */
4545 }
4546 else
4547 off_adjust = 0;
4548 }
4549 /* Make sure the .dynamic section is the first section in the
4550 PT_DYNAMIC segment. */
4551 else if (p->p_type == PT_DYNAMIC
4552 && m->count > 1
4553 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4554 {
4555 _bfd_error_handler
4556 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4557 abfd);
4558 bfd_set_error (bfd_error_bad_value);
4559 return FALSE;
4560 }
4561 /* Set the note section type to SHT_NOTE. */
4562 else if (p->p_type == PT_NOTE)
4563 for (i = 0; i < m->count; i++)
4564 elf_section_type (m->sections[i]) = SHT_NOTE;
4565
4566 p->p_offset = 0;
4567 p->p_filesz = 0;
4568 p->p_memsz = 0;
4569
4570 if (m->includes_filehdr)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574 p->p_filesz = bed->s->sizeof_ehdr;
4575 p->p_memsz = bed->s->sizeof_ehdr;
4576 if (m->count > 0)
4577 {
4578 if (p->p_vaddr < (bfd_vma) off)
4579 {
4580 (*_bfd_error_handler)
4581 (_("%B: Not enough room for program headers, try linking with -N"),
4582 abfd);
4583 bfd_set_error (bfd_error_bad_value);
4584 return FALSE;
4585 }
4586
4587 p->p_vaddr -= off;
4588 if (!m->p_paddr_valid)
4589 p->p_paddr -= off;
4590 }
4591 }
4592
4593 if (m->includes_phdrs)
4594 {
4595 if (!m->p_flags_valid)
4596 p->p_flags |= PF_R;
4597
4598 if (!m->includes_filehdr)
4599 {
4600 p->p_offset = bed->s->sizeof_ehdr;
4601
4602 if (m->count > 0)
4603 {
4604 p->p_vaddr -= off - p->p_offset;
4605 if (!m->p_paddr_valid)
4606 p->p_paddr -= off - p->p_offset;
4607 }
4608 }
4609
4610 p->p_filesz += alloc * bed->s->sizeof_phdr;
4611 p->p_memsz += alloc * bed->s->sizeof_phdr;
4612 if (m->count)
4613 {
4614 p->p_filesz += header_pad;
4615 p->p_memsz += header_pad;
4616 }
4617 }
4618
4619 if (p->p_type == PT_LOAD
4620 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4621 {
4622 if (!m->includes_filehdr && !m->includes_phdrs)
4623 p->p_offset = off;
4624 else
4625 {
4626 file_ptr adjust;
4627
4628 adjust = off - (p->p_offset + p->p_filesz);
4629 if (!no_contents)
4630 p->p_filesz += adjust;
4631 p->p_memsz += adjust;
4632 }
4633 }
4634
4635 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4636 maps. Set filepos for sections in PT_LOAD segments, and in
4637 core files, for sections in PT_NOTE segments.
4638 assign_file_positions_for_non_load_sections will set filepos
4639 for other sections and update p_filesz for other segments. */
4640 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4641 {
4642 asection *sec;
4643 bfd_size_type align;
4644 Elf_Internal_Shdr *this_hdr;
4645
4646 sec = *secpp;
4647 this_hdr = &elf_section_data (sec)->this_hdr;
4648 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4649
4650 if ((p->p_type == PT_LOAD
4651 || p->p_type == PT_TLS)
4652 && (this_hdr->sh_type != SHT_NOBITS
4653 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4654 && ((this_hdr->sh_flags & SHF_TLS) == 0
4655 || p->p_type == PT_TLS))))
4656 {
4657 bfd_vma p_start = p->p_paddr;
4658 bfd_vma p_end = p_start + p->p_memsz;
4659 bfd_vma s_start = sec->lma;
4660 bfd_vma adjust = s_start - p_end;
4661
4662 if (adjust != 0
4663 && (s_start < p_end
4664 || p_end < p_start))
4665 {
4666 (*_bfd_error_handler)
4667 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4668 (unsigned long) s_start, (unsigned long) p_end);
4669 adjust = 0;
4670 sec->lma = p_end;
4671 }
4672 p->p_memsz += adjust;
4673
4674 if (this_hdr->sh_type != SHT_NOBITS)
4675 {
4676 if (p->p_filesz + adjust < p->p_memsz)
4677 {
4678 /* We have a PROGBITS section following NOBITS ones.
4679 Allocate file space for the NOBITS section(s) and
4680 zero it. */
4681 adjust = p->p_memsz - p->p_filesz;
4682 if (!write_zeros (abfd, off, adjust))
4683 return FALSE;
4684 }
4685 off += adjust;
4686 p->p_filesz += adjust;
4687 }
4688 }
4689
4690 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4691 {
4692 /* The section at i == 0 is the one that actually contains
4693 everything. */
4694 if (i == 0)
4695 {
4696 this_hdr->sh_offset = sec->filepos = off;
4697 off += this_hdr->sh_size;
4698 p->p_filesz = this_hdr->sh_size;
4699 p->p_memsz = 0;
4700 p->p_align = 1;
4701 }
4702 else
4703 {
4704 /* The rest are fake sections that shouldn't be written. */
4705 sec->filepos = 0;
4706 sec->size = 0;
4707 sec->flags = 0;
4708 continue;
4709 }
4710 }
4711 else
4712 {
4713 if (p->p_type == PT_LOAD)
4714 {
4715 this_hdr->sh_offset = sec->filepos = off;
4716 if (this_hdr->sh_type != SHT_NOBITS)
4717 off += this_hdr->sh_size;
4718 }
4719 else if (this_hdr->sh_type == SHT_NOBITS
4720 && (this_hdr->sh_flags & SHF_TLS) != 0
4721 && this_hdr->sh_offset == 0)
4722 {
4723 /* This is a .tbss section that didn't get a PT_LOAD.
4724 (See _bfd_elf_map_sections_to_segments "Create a
4725 final PT_LOAD".) Set sh_offset to the value it
4726 would have if we had created a zero p_filesz and
4727 p_memsz PT_LOAD header for the section. This
4728 also makes the PT_TLS header have the same
4729 p_offset value. */
4730 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4731 off, align);
4732 this_hdr->sh_offset = sec->filepos = off + adjust;
4733 }
4734
4735 if (this_hdr->sh_type != SHT_NOBITS)
4736 {
4737 p->p_filesz += this_hdr->sh_size;
4738 /* A load section without SHF_ALLOC is something like
4739 a note section in a PT_NOTE segment. These take
4740 file space but are not loaded into memory. */
4741 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4742 p->p_memsz += this_hdr->sh_size;
4743 }
4744 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4745 {
4746 if (p->p_type == PT_TLS)
4747 p->p_memsz += this_hdr->sh_size;
4748
4749 /* .tbss is special. It doesn't contribute to p_memsz of
4750 normal segments. */
4751 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4752 p->p_memsz += this_hdr->sh_size;
4753 }
4754
4755 if (align > p->p_align
4756 && !m->p_align_valid
4757 && (p->p_type != PT_LOAD
4758 || (abfd->flags & D_PAGED) == 0))
4759 p->p_align = align;
4760 }
4761
4762 if (!m->p_flags_valid)
4763 {
4764 p->p_flags |= PF_R;
4765 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4766 p->p_flags |= PF_X;
4767 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4768 p->p_flags |= PF_W;
4769 }
4770 }
4771 off -= off_adjust;
4772
4773 /* Check that all sections are in a PT_LOAD segment.
4774 Don't check funky gdb generated core files. */
4775 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4776 {
4777 bfd_boolean check_vma = TRUE;
4778
4779 for (i = 1; i < m->count; i++)
4780 if (m->sections[i]->vma == m->sections[i - 1]->vma
4781 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4782 ->this_hdr), p) != 0
4783 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4784 ->this_hdr), p) != 0)
4785 {
4786 /* Looks like we have overlays packed into the segment. */
4787 check_vma = FALSE;
4788 break;
4789 }
4790
4791 for (i = 0; i < m->count; i++)
4792 {
4793 Elf_Internal_Shdr *this_hdr;
4794 asection *sec;
4795
4796 sec = m->sections[i];
4797 this_hdr = &(elf_section_data(sec)->this_hdr);
4798 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4799 && !ELF_TBSS_SPECIAL (this_hdr, p))
4800 {
4801 (*_bfd_error_handler)
4802 (_("%B: section `%A' can't be allocated in segment %d"),
4803 abfd, sec, j);
4804 print_segment_map (m);
4805 }
4806 }
4807 }
4808 }
4809
4810 elf_tdata (abfd)->next_file_pos = off;
4811 return TRUE;
4812 }
4813
4814 /* Assign file positions for the other sections. */
4815
4816 static bfd_boolean
4817 assign_file_positions_for_non_load_sections (bfd *abfd,
4818 struct bfd_link_info *link_info)
4819 {
4820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4821 Elf_Internal_Shdr **i_shdrpp;
4822 Elf_Internal_Shdr **hdrpp;
4823 Elf_Internal_Phdr *phdrs;
4824 Elf_Internal_Phdr *p;
4825 struct elf_segment_map *m;
4826 struct elf_segment_map *hdrs_segment;
4827 bfd_vma filehdr_vaddr, filehdr_paddr;
4828 bfd_vma phdrs_vaddr, phdrs_paddr;
4829 file_ptr off;
4830 unsigned int num_sec;
4831 unsigned int i;
4832 unsigned int count;
4833
4834 i_shdrpp = elf_elfsections (abfd);
4835 num_sec = elf_numsections (abfd);
4836 off = elf_tdata (abfd)->next_file_pos;
4837 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4838 {
4839 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4840 Elf_Internal_Shdr *hdr;
4841
4842 hdr = *hdrpp;
4843 if (hdr->bfd_section != NULL
4844 && (hdr->bfd_section->filepos != 0
4845 || (hdr->sh_type == SHT_NOBITS
4846 && hdr->contents == NULL)))
4847 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4848 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4849 {
4850 if (hdr->sh_size != 0)
4851 (*_bfd_error_handler)
4852 (_("%B: warning: allocated section `%s' not in segment"),
4853 abfd,
4854 (hdr->bfd_section == NULL
4855 ? "*unknown*"
4856 : hdr->bfd_section->name));
4857 /* We don't need to page align empty sections. */
4858 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4859 off += vma_page_aligned_bias (hdr->sh_addr, off,
4860 bed->maxpagesize);
4861 else
4862 off += vma_page_aligned_bias (hdr->sh_addr, off,
4863 hdr->sh_addralign);
4864 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4865 FALSE);
4866 }
4867 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4868 && hdr->bfd_section == NULL)
4869 || hdr == i_shdrpp[tdata->symtab_section]
4870 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4871 || hdr == i_shdrpp[tdata->strtab_section])
4872 hdr->sh_offset = -1;
4873 else
4874 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4875 }
4876
4877 /* Now that we have set the section file positions, we can set up
4878 the file positions for the non PT_LOAD segments. */
4879 count = 0;
4880 filehdr_vaddr = 0;
4881 filehdr_paddr = 0;
4882 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4883 phdrs_paddr = 0;
4884 hdrs_segment = NULL;
4885 phdrs = elf_tdata (abfd)->phdr;
4886 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4887 m != NULL;
4888 m = m->next, p++)
4889 {
4890 ++count;
4891 if (p->p_type != PT_LOAD)
4892 continue;
4893
4894 if (m->includes_filehdr)
4895 {
4896 filehdr_vaddr = p->p_vaddr;
4897 filehdr_paddr = p->p_paddr;
4898 }
4899 if (m->includes_phdrs)
4900 {
4901 phdrs_vaddr = p->p_vaddr;
4902 phdrs_paddr = p->p_paddr;
4903 if (m->includes_filehdr)
4904 {
4905 hdrs_segment = m;
4906 phdrs_vaddr += bed->s->sizeof_ehdr;
4907 phdrs_paddr += bed->s->sizeof_ehdr;
4908 }
4909 }
4910 }
4911
4912 if (hdrs_segment != NULL && link_info != NULL)
4913 {
4914 /* There is a segment that contains both the file headers and the
4915 program headers, so provide a symbol __ehdr_start pointing there.
4916 A program can use this to examine itself robustly. */
4917
4918 struct elf_link_hash_entry *hash
4919 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4920 FALSE, FALSE, TRUE);
4921 /* If the symbol was referenced and not defined, define it. */
4922 if (hash != NULL
4923 && (hash->root.type == bfd_link_hash_new
4924 || hash->root.type == bfd_link_hash_undefined
4925 || hash->root.type == bfd_link_hash_undefweak
4926 || hash->root.type == bfd_link_hash_common))
4927 {
4928 asection *s = NULL;
4929 if (hdrs_segment->count != 0)
4930 /* The segment contains sections, so use the first one. */
4931 s = hdrs_segment->sections[0];
4932 else
4933 /* Use the first (i.e. lowest-addressed) section in any segment. */
4934 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4935 if (m->count != 0)
4936 {
4937 s = m->sections[0];
4938 break;
4939 }
4940
4941 if (s != NULL)
4942 {
4943 hash->root.u.def.value = filehdr_vaddr - s->vma;
4944 hash->root.u.def.section = s;
4945 }
4946 else
4947 {
4948 hash->root.u.def.value = filehdr_vaddr;
4949 hash->root.u.def.section = bfd_abs_section_ptr;
4950 }
4951
4952 hash->root.type = bfd_link_hash_defined;
4953 hash->def_regular = 1;
4954 hash->non_elf = 0;
4955 }
4956 }
4957
4958 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4959 m != NULL;
4960 m = m->next, p++)
4961 {
4962 if (p->p_type == PT_GNU_RELRO)
4963 {
4964 const Elf_Internal_Phdr *lp;
4965 struct elf_segment_map *lm;
4966
4967 if (link_info != NULL)
4968 {
4969 /* During linking the range of the RELRO segment is passed
4970 in link_info. */
4971 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4972 lm != NULL;
4973 lm = lm->next, lp++)
4974 {
4975 if (lp->p_type == PT_LOAD
4976 && lp->p_vaddr < link_info->relro_end
4977 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4978 && lm->count != 0
4979 && lm->sections[0]->vma >= link_info->relro_start)
4980 break;
4981 }
4982
4983 /* PR ld/14207. If the RELRO segment doesn't fit in the
4984 LOAD segment, it should be removed. */
4985 BFD_ASSERT (lm != NULL);
4986 }
4987 else
4988 {
4989 /* Otherwise we are copying an executable or shared
4990 library, but we need to use the same linker logic. */
4991 for (lp = phdrs; lp < phdrs + count; ++lp)
4992 {
4993 if (lp->p_type == PT_LOAD
4994 && lp->p_paddr == p->p_paddr)
4995 break;
4996 }
4997 }
4998
4999 if (lp < phdrs + count)
5000 {
5001 p->p_vaddr = lp->p_vaddr;
5002 p->p_paddr = lp->p_paddr;
5003 p->p_offset = lp->p_offset;
5004 if (link_info != NULL)
5005 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5006 else if (m->p_size_valid)
5007 p->p_filesz = m->p_size;
5008 else
5009 abort ();
5010 p->p_memsz = p->p_filesz;
5011 /* Preserve the alignment and flags if they are valid. The
5012 gold linker generates RW/4 for the PT_GNU_RELRO section.
5013 It is better for objcopy/strip to honor these attributes
5014 otherwise gdb will choke when using separate debug files.
5015 */
5016 if (!m->p_align_valid)
5017 p->p_align = 1;
5018 if (!m->p_flags_valid)
5019 p->p_flags = (lp->p_flags & ~PF_W);
5020 }
5021 else
5022 {
5023 memset (p, 0, sizeof *p);
5024 p->p_type = PT_NULL;
5025 }
5026 }
5027 else if (m->count != 0)
5028 {
5029 if (p->p_type != PT_LOAD
5030 && (p->p_type != PT_NOTE
5031 || bfd_get_format (abfd) != bfd_core))
5032 {
5033 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5034
5035 p->p_filesz = 0;
5036 p->p_offset = m->sections[0]->filepos;
5037 for (i = m->count; i-- != 0;)
5038 {
5039 asection *sect = m->sections[i];
5040 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5041 if (hdr->sh_type != SHT_NOBITS)
5042 {
5043 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5044 + hdr->sh_size);
5045 break;
5046 }
5047 }
5048 }
5049 }
5050 else if (m->includes_filehdr)
5051 {
5052 p->p_vaddr = filehdr_vaddr;
5053 if (! m->p_paddr_valid)
5054 p->p_paddr = filehdr_paddr;
5055 }
5056 else if (m->includes_phdrs)
5057 {
5058 p->p_vaddr = phdrs_vaddr;
5059 if (! m->p_paddr_valid)
5060 p->p_paddr = phdrs_paddr;
5061 }
5062 }
5063
5064 elf_tdata (abfd)->next_file_pos = off;
5065
5066 return TRUE;
5067 }
5068
5069 /* Work out the file positions of all the sections. This is called by
5070 _bfd_elf_compute_section_file_positions. All the section sizes and
5071 VMAs must be known before this is called.
5072
5073 Reloc sections come in two flavours: Those processed specially as
5074 "side-channel" data attached to a section to which they apply, and
5075 those that bfd doesn't process as relocations. The latter sort are
5076 stored in a normal bfd section by bfd_section_from_shdr. We don't
5077 consider the former sort here, unless they form part of the loadable
5078 image. Reloc sections not assigned here will be handled later by
5079 assign_file_positions_for_relocs.
5080
5081 We also don't set the positions of the .symtab and .strtab here. */
5082
5083 static bfd_boolean
5084 assign_file_positions_except_relocs (bfd *abfd,
5085 struct bfd_link_info *link_info)
5086 {
5087 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5088 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5089 file_ptr off;
5090 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5091
5092 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5093 && bfd_get_format (abfd) != bfd_core)
5094 {
5095 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5096 unsigned int num_sec = elf_numsections (abfd);
5097 Elf_Internal_Shdr **hdrpp;
5098 unsigned int i;
5099
5100 /* Start after the ELF header. */
5101 off = i_ehdrp->e_ehsize;
5102
5103 /* We are not creating an executable, which means that we are
5104 not creating a program header, and that the actual order of
5105 the sections in the file is unimportant. */
5106 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5107 {
5108 Elf_Internal_Shdr *hdr;
5109
5110 hdr = *hdrpp;
5111 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5112 && hdr->bfd_section == NULL)
5113 || i == tdata->symtab_section
5114 || i == tdata->symtab_shndx_section
5115 || i == tdata->strtab_section)
5116 {
5117 hdr->sh_offset = -1;
5118 }
5119 else
5120 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5121 }
5122 }
5123 else
5124 {
5125 unsigned int alloc;
5126
5127 /* Assign file positions for the loaded sections based on the
5128 assignment of sections to segments. */
5129 if (!assign_file_positions_for_load_sections (abfd, link_info))
5130 return FALSE;
5131
5132 /* And for non-load sections. */
5133 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5134 return FALSE;
5135
5136 if (bed->elf_backend_modify_program_headers != NULL)
5137 {
5138 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5139 return FALSE;
5140 }
5141
5142 /* Write out the program headers. */
5143 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5144 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5145 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5146 return FALSE;
5147
5148 off = tdata->next_file_pos;
5149 }
5150
5151 /* Place the section headers. */
5152 off = align_file_position (off, 1 << bed->s->log_file_align);
5153 i_ehdrp->e_shoff = off;
5154 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5155
5156 tdata->next_file_pos = off;
5157
5158 return TRUE;
5159 }
5160
5161 static bfd_boolean
5162 prep_headers (bfd *abfd)
5163 {
5164 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5165 struct elf_strtab_hash *shstrtab;
5166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5167
5168 i_ehdrp = elf_elfheader (abfd);
5169
5170 shstrtab = _bfd_elf_strtab_init ();
5171 if (shstrtab == NULL)
5172 return FALSE;
5173
5174 elf_shstrtab (abfd) = shstrtab;
5175
5176 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5177 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5178 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5179 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5180
5181 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5182 i_ehdrp->e_ident[EI_DATA] =
5183 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5184 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5185
5186 if ((abfd->flags & DYNAMIC) != 0)
5187 i_ehdrp->e_type = ET_DYN;
5188 else if ((abfd->flags & EXEC_P) != 0)
5189 i_ehdrp->e_type = ET_EXEC;
5190 else if (bfd_get_format (abfd) == bfd_core)
5191 i_ehdrp->e_type = ET_CORE;
5192 else
5193 i_ehdrp->e_type = ET_REL;
5194
5195 switch (bfd_get_arch (abfd))
5196 {
5197 case bfd_arch_unknown:
5198 i_ehdrp->e_machine = EM_NONE;
5199 break;
5200
5201 /* There used to be a long list of cases here, each one setting
5202 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5203 in the corresponding bfd definition. To avoid duplication,
5204 the switch was removed. Machines that need special handling
5205 can generally do it in elf_backend_final_write_processing(),
5206 unless they need the information earlier than the final write.
5207 Such need can generally be supplied by replacing the tests for
5208 e_machine with the conditions used to determine it. */
5209 default:
5210 i_ehdrp->e_machine = bed->elf_machine_code;
5211 }
5212
5213 i_ehdrp->e_version = bed->s->ev_current;
5214 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5215
5216 /* No program header, for now. */
5217 i_ehdrp->e_phoff = 0;
5218 i_ehdrp->e_phentsize = 0;
5219 i_ehdrp->e_phnum = 0;
5220
5221 /* Each bfd section is section header entry. */
5222 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5223 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5224
5225 /* If we're building an executable, we'll need a program header table. */
5226 if (abfd->flags & EXEC_P)
5227 /* It all happens later. */
5228 ;
5229 else
5230 {
5231 i_ehdrp->e_phentsize = 0;
5232 i_ehdrp->e_phoff = 0;
5233 }
5234
5235 elf_tdata (abfd)->symtab_hdr.sh_name =
5236 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5237 elf_tdata (abfd)->strtab_hdr.sh_name =
5238 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5239 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5240 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5241 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5242 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5243 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5244 return FALSE;
5245
5246 return TRUE;
5247 }
5248
5249 /* Assign file positions for all the reloc sections which are not part
5250 of the loadable file image. */
5251
5252 void
5253 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5254 {
5255 file_ptr off;
5256 unsigned int i, num_sec;
5257 Elf_Internal_Shdr **shdrpp;
5258
5259 off = elf_tdata (abfd)->next_file_pos;
5260
5261 num_sec = elf_numsections (abfd);
5262 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5263 {
5264 Elf_Internal_Shdr *shdrp;
5265
5266 shdrp = *shdrpp;
5267 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5268 && shdrp->sh_offset == -1)
5269 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5270 }
5271
5272 elf_tdata (abfd)->next_file_pos = off;
5273 }
5274
5275 bfd_boolean
5276 _bfd_elf_write_object_contents (bfd *abfd)
5277 {
5278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5279 Elf_Internal_Shdr **i_shdrp;
5280 bfd_boolean failed;
5281 unsigned int count, num_sec;
5282
5283 if (! abfd->output_has_begun
5284 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5285 return FALSE;
5286
5287 i_shdrp = elf_elfsections (abfd);
5288
5289 failed = FALSE;
5290 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5291 if (failed)
5292 return FALSE;
5293
5294 _bfd_elf_assign_file_positions_for_relocs (abfd);
5295
5296 /* After writing the headers, we need to write the sections too... */
5297 num_sec = elf_numsections (abfd);
5298 for (count = 1; count < num_sec; count++)
5299 {
5300 if (bed->elf_backend_section_processing)
5301 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5302 if (i_shdrp[count]->contents)
5303 {
5304 bfd_size_type amt = i_shdrp[count]->sh_size;
5305
5306 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5307 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5308 return FALSE;
5309 }
5310 }
5311
5312 /* Write out the section header names. */
5313 if (elf_shstrtab (abfd) != NULL
5314 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5315 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5316 return FALSE;
5317
5318 if (bed->elf_backend_final_write_processing)
5319 (*bed->elf_backend_final_write_processing) (abfd,
5320 elf_tdata (abfd)->linker);
5321
5322 if (!bed->s->write_shdrs_and_ehdr (abfd))
5323 return FALSE;
5324
5325 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5326 if (elf_tdata (abfd)->after_write_object_contents)
5327 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5328
5329 return TRUE;
5330 }
5331
5332 bfd_boolean
5333 _bfd_elf_write_corefile_contents (bfd *abfd)
5334 {
5335 /* Hopefully this can be done just like an object file. */
5336 return _bfd_elf_write_object_contents (abfd);
5337 }
5338
5339 /* Given a section, search the header to find them. */
5340
5341 unsigned int
5342 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5343 {
5344 const struct elf_backend_data *bed;
5345 unsigned int sec_index;
5346
5347 if (elf_section_data (asect) != NULL
5348 && elf_section_data (asect)->this_idx != 0)
5349 return elf_section_data (asect)->this_idx;
5350
5351 if (bfd_is_abs_section (asect))
5352 sec_index = SHN_ABS;
5353 else if (bfd_is_com_section (asect))
5354 sec_index = SHN_COMMON;
5355 else if (bfd_is_und_section (asect))
5356 sec_index = SHN_UNDEF;
5357 else
5358 sec_index = SHN_BAD;
5359
5360 bed = get_elf_backend_data (abfd);
5361 if (bed->elf_backend_section_from_bfd_section)
5362 {
5363 int retval = sec_index;
5364
5365 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5366 return retval;
5367 }
5368
5369 if (sec_index == SHN_BAD)
5370 bfd_set_error (bfd_error_nonrepresentable_section);
5371
5372 return sec_index;
5373 }
5374
5375 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5376 on error. */
5377
5378 int
5379 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5380 {
5381 asymbol *asym_ptr = *asym_ptr_ptr;
5382 int idx;
5383 flagword flags = asym_ptr->flags;
5384
5385 /* When gas creates relocations against local labels, it creates its
5386 own symbol for the section, but does put the symbol into the
5387 symbol chain, so udata is 0. When the linker is generating
5388 relocatable output, this section symbol may be for one of the
5389 input sections rather than the output section. */
5390 if (asym_ptr->udata.i == 0
5391 && (flags & BSF_SECTION_SYM)
5392 && asym_ptr->section)
5393 {
5394 asection *sec;
5395 int indx;
5396
5397 sec = asym_ptr->section;
5398 if (sec->owner != abfd && sec->output_section != NULL)
5399 sec = sec->output_section;
5400 if (sec->owner == abfd
5401 && (indx = sec->index) < elf_num_section_syms (abfd)
5402 && elf_section_syms (abfd)[indx] != NULL)
5403 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5404 }
5405
5406 idx = asym_ptr->udata.i;
5407
5408 if (idx == 0)
5409 {
5410 /* This case can occur when using --strip-symbol on a symbol
5411 which is used in a relocation entry. */
5412 (*_bfd_error_handler)
5413 (_("%B: symbol `%s' required but not present"),
5414 abfd, bfd_asymbol_name (asym_ptr));
5415 bfd_set_error (bfd_error_no_symbols);
5416 return -1;
5417 }
5418
5419 #if DEBUG & 4
5420 {
5421 fprintf (stderr,
5422 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5423 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5424 fflush (stderr);
5425 }
5426 #endif
5427
5428 return idx;
5429 }
5430
5431 /* Rewrite program header information. */
5432
5433 static bfd_boolean
5434 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5435 {
5436 Elf_Internal_Ehdr *iehdr;
5437 struct elf_segment_map *map;
5438 struct elf_segment_map *map_first;
5439 struct elf_segment_map **pointer_to_map;
5440 Elf_Internal_Phdr *segment;
5441 asection *section;
5442 unsigned int i;
5443 unsigned int num_segments;
5444 bfd_boolean phdr_included = FALSE;
5445 bfd_boolean p_paddr_valid;
5446 bfd_vma maxpagesize;
5447 struct elf_segment_map *phdr_adjust_seg = NULL;
5448 unsigned int phdr_adjust_num = 0;
5449 const struct elf_backend_data *bed;
5450
5451 bed = get_elf_backend_data (ibfd);
5452 iehdr = elf_elfheader (ibfd);
5453
5454 map_first = NULL;
5455 pointer_to_map = &map_first;
5456
5457 num_segments = elf_elfheader (ibfd)->e_phnum;
5458 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5459
5460 /* Returns the end address of the segment + 1. */
5461 #define SEGMENT_END(segment, start) \
5462 (start + (segment->p_memsz > segment->p_filesz \
5463 ? segment->p_memsz : segment->p_filesz))
5464
5465 #define SECTION_SIZE(section, segment) \
5466 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5467 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5468 ? section->size : 0)
5469
5470 /* Returns TRUE if the given section is contained within
5471 the given segment. VMA addresses are compared. */
5472 #define IS_CONTAINED_BY_VMA(section, segment) \
5473 (section->vma >= segment->p_vaddr \
5474 && (section->vma + SECTION_SIZE (section, segment) \
5475 <= (SEGMENT_END (segment, segment->p_vaddr))))
5476
5477 /* Returns TRUE if the given section is contained within
5478 the given segment. LMA addresses are compared. */
5479 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5480 (section->lma >= base \
5481 && (section->lma + SECTION_SIZE (section, segment) \
5482 <= SEGMENT_END (segment, base)))
5483
5484 /* Handle PT_NOTE segment. */
5485 #define IS_NOTE(p, s) \
5486 (p->p_type == PT_NOTE \
5487 && elf_section_type (s) == SHT_NOTE \
5488 && (bfd_vma) s->filepos >= p->p_offset \
5489 && ((bfd_vma) s->filepos + s->size \
5490 <= p->p_offset + p->p_filesz))
5491
5492 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5493 etc. */
5494 #define IS_COREFILE_NOTE(p, s) \
5495 (IS_NOTE (p, s) \
5496 && bfd_get_format (ibfd) == bfd_core \
5497 && s->vma == 0 \
5498 && s->lma == 0)
5499
5500 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5501 linker, which generates a PT_INTERP section with p_vaddr and
5502 p_memsz set to 0. */
5503 #define IS_SOLARIS_PT_INTERP(p, s) \
5504 (p->p_vaddr == 0 \
5505 && p->p_paddr == 0 \
5506 && p->p_memsz == 0 \
5507 && p->p_filesz > 0 \
5508 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5509 && s->size > 0 \
5510 && (bfd_vma) s->filepos >= p->p_offset \
5511 && ((bfd_vma) s->filepos + s->size \
5512 <= p->p_offset + p->p_filesz))
5513
5514 /* Decide if the given section should be included in the given segment.
5515 A section will be included if:
5516 1. It is within the address space of the segment -- we use the LMA
5517 if that is set for the segment and the VMA otherwise,
5518 2. It is an allocated section or a NOTE section in a PT_NOTE
5519 segment.
5520 3. There is an output section associated with it,
5521 4. The section has not already been allocated to a previous segment.
5522 5. PT_GNU_STACK segments do not include any sections.
5523 6. PT_TLS segment includes only SHF_TLS sections.
5524 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5525 8. PT_DYNAMIC should not contain empty sections at the beginning
5526 (with the possible exception of .dynamic). */
5527 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5528 ((((segment->p_paddr \
5529 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5530 : IS_CONTAINED_BY_VMA (section, segment)) \
5531 && (section->flags & SEC_ALLOC) != 0) \
5532 || IS_NOTE (segment, section)) \
5533 && segment->p_type != PT_GNU_STACK \
5534 && (segment->p_type != PT_TLS \
5535 || (section->flags & SEC_THREAD_LOCAL)) \
5536 && (segment->p_type == PT_LOAD \
5537 || segment->p_type == PT_TLS \
5538 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5539 && (segment->p_type != PT_DYNAMIC \
5540 || SECTION_SIZE (section, segment) > 0 \
5541 || (segment->p_paddr \
5542 ? segment->p_paddr != section->lma \
5543 : segment->p_vaddr != section->vma) \
5544 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5545 == 0)) \
5546 && !section->segment_mark)
5547
5548 /* If the output section of a section in the input segment is NULL,
5549 it is removed from the corresponding output segment. */
5550 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5551 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5552 && section->output_section != NULL)
5553
5554 /* Returns TRUE iff seg1 starts after the end of seg2. */
5555 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5556 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5557
5558 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5559 their VMA address ranges and their LMA address ranges overlap.
5560 It is possible to have overlapping VMA ranges without overlapping LMA
5561 ranges. RedBoot images for example can have both .data and .bss mapped
5562 to the same VMA range, but with the .data section mapped to a different
5563 LMA. */
5564 #define SEGMENT_OVERLAPS(seg1, seg2) \
5565 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5566 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5567 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5568 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5569
5570 /* Initialise the segment mark field. */
5571 for (section = ibfd->sections; section != NULL; section = section->next)
5572 section->segment_mark = FALSE;
5573
5574 /* The Solaris linker creates program headers in which all the
5575 p_paddr fields are zero. When we try to objcopy or strip such a
5576 file, we get confused. Check for this case, and if we find it
5577 don't set the p_paddr_valid fields. */
5578 p_paddr_valid = FALSE;
5579 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5580 i < num_segments;
5581 i++, segment++)
5582 if (segment->p_paddr != 0)
5583 {
5584 p_paddr_valid = TRUE;
5585 break;
5586 }
5587
5588 /* Scan through the segments specified in the program header
5589 of the input BFD. For this first scan we look for overlaps
5590 in the loadable segments. These can be created by weird
5591 parameters to objcopy. Also, fix some solaris weirdness. */
5592 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5593 i < num_segments;
5594 i++, segment++)
5595 {
5596 unsigned int j;
5597 Elf_Internal_Phdr *segment2;
5598
5599 if (segment->p_type == PT_INTERP)
5600 for (section = ibfd->sections; section; section = section->next)
5601 if (IS_SOLARIS_PT_INTERP (segment, section))
5602 {
5603 /* Mininal change so that the normal section to segment
5604 assignment code will work. */
5605 segment->p_vaddr = section->vma;
5606 break;
5607 }
5608
5609 if (segment->p_type != PT_LOAD)
5610 {
5611 /* Remove PT_GNU_RELRO segment. */
5612 if (segment->p_type == PT_GNU_RELRO)
5613 segment->p_type = PT_NULL;
5614 continue;
5615 }
5616
5617 /* Determine if this segment overlaps any previous segments. */
5618 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5619 {
5620 bfd_signed_vma extra_length;
5621
5622 if (segment2->p_type != PT_LOAD
5623 || !SEGMENT_OVERLAPS (segment, segment2))
5624 continue;
5625
5626 /* Merge the two segments together. */
5627 if (segment2->p_vaddr < segment->p_vaddr)
5628 {
5629 /* Extend SEGMENT2 to include SEGMENT and then delete
5630 SEGMENT. */
5631 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5632 - SEGMENT_END (segment2, segment2->p_vaddr));
5633
5634 if (extra_length > 0)
5635 {
5636 segment2->p_memsz += extra_length;
5637 segment2->p_filesz += extra_length;
5638 }
5639
5640 segment->p_type = PT_NULL;
5641
5642 /* Since we have deleted P we must restart the outer loop. */
5643 i = 0;
5644 segment = elf_tdata (ibfd)->phdr;
5645 break;
5646 }
5647 else
5648 {
5649 /* Extend SEGMENT to include SEGMENT2 and then delete
5650 SEGMENT2. */
5651 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5652 - SEGMENT_END (segment, segment->p_vaddr));
5653
5654 if (extra_length > 0)
5655 {
5656 segment->p_memsz += extra_length;
5657 segment->p_filesz += extra_length;
5658 }
5659
5660 segment2->p_type = PT_NULL;
5661 }
5662 }
5663 }
5664
5665 /* The second scan attempts to assign sections to segments. */
5666 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5667 i < num_segments;
5668 i++, segment++)
5669 {
5670 unsigned int section_count;
5671 asection **sections;
5672 asection *output_section;
5673 unsigned int isec;
5674 bfd_vma matching_lma;
5675 bfd_vma suggested_lma;
5676 unsigned int j;
5677 bfd_size_type amt;
5678 asection *first_section;
5679 bfd_boolean first_matching_lma;
5680 bfd_boolean first_suggested_lma;
5681
5682 if (segment->p_type == PT_NULL)
5683 continue;
5684
5685 first_section = NULL;
5686 /* Compute how many sections might be placed into this segment. */
5687 for (section = ibfd->sections, section_count = 0;
5688 section != NULL;
5689 section = section->next)
5690 {
5691 /* Find the first section in the input segment, which may be
5692 removed from the corresponding output segment. */
5693 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5694 {
5695 if (first_section == NULL)
5696 first_section = section;
5697 if (section->output_section != NULL)
5698 ++section_count;
5699 }
5700 }
5701
5702 /* Allocate a segment map big enough to contain
5703 all of the sections we have selected. */
5704 amt = sizeof (struct elf_segment_map);
5705 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5706 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5707 if (map == NULL)
5708 return FALSE;
5709
5710 /* Initialise the fields of the segment map. Default to
5711 using the physical address of the segment in the input BFD. */
5712 map->next = NULL;
5713 map->p_type = segment->p_type;
5714 map->p_flags = segment->p_flags;
5715 map->p_flags_valid = 1;
5716
5717 /* If the first section in the input segment is removed, there is
5718 no need to preserve segment physical address in the corresponding
5719 output segment. */
5720 if (!first_section || first_section->output_section != NULL)
5721 {
5722 map->p_paddr = segment->p_paddr;
5723 map->p_paddr_valid = p_paddr_valid;
5724 }
5725
5726 /* Determine if this segment contains the ELF file header
5727 and if it contains the program headers themselves. */
5728 map->includes_filehdr = (segment->p_offset == 0
5729 && segment->p_filesz >= iehdr->e_ehsize);
5730 map->includes_phdrs = 0;
5731
5732 if (!phdr_included || segment->p_type != PT_LOAD)
5733 {
5734 map->includes_phdrs =
5735 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5736 && (segment->p_offset + segment->p_filesz
5737 >= ((bfd_vma) iehdr->e_phoff
5738 + iehdr->e_phnum * iehdr->e_phentsize)));
5739
5740 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5741 phdr_included = TRUE;
5742 }
5743
5744 if (section_count == 0)
5745 {
5746 /* Special segments, such as the PT_PHDR segment, may contain
5747 no sections, but ordinary, loadable segments should contain
5748 something. They are allowed by the ELF spec however, so only
5749 a warning is produced. */
5750 if (segment->p_type == PT_LOAD)
5751 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5752 " detected, is this intentional ?\n"),
5753 ibfd);
5754
5755 map->count = 0;
5756 *pointer_to_map = map;
5757 pointer_to_map = &map->next;
5758
5759 continue;
5760 }
5761
5762 /* Now scan the sections in the input BFD again and attempt
5763 to add their corresponding output sections to the segment map.
5764 The problem here is how to handle an output section which has
5765 been moved (ie had its LMA changed). There are four possibilities:
5766
5767 1. None of the sections have been moved.
5768 In this case we can continue to use the segment LMA from the
5769 input BFD.
5770
5771 2. All of the sections have been moved by the same amount.
5772 In this case we can change the segment's LMA to match the LMA
5773 of the first section.
5774
5775 3. Some of the sections have been moved, others have not.
5776 In this case those sections which have not been moved can be
5777 placed in the current segment which will have to have its size,
5778 and possibly its LMA changed, and a new segment or segments will
5779 have to be created to contain the other sections.
5780
5781 4. The sections have been moved, but not by the same amount.
5782 In this case we can change the segment's LMA to match the LMA
5783 of the first section and we will have to create a new segment
5784 or segments to contain the other sections.
5785
5786 In order to save time, we allocate an array to hold the section
5787 pointers that we are interested in. As these sections get assigned
5788 to a segment, they are removed from this array. */
5789
5790 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5791 if (sections == NULL)
5792 return FALSE;
5793
5794 /* Step One: Scan for segment vs section LMA conflicts.
5795 Also add the sections to the section array allocated above.
5796 Also add the sections to the current segment. In the common
5797 case, where the sections have not been moved, this means that
5798 we have completely filled the segment, and there is nothing
5799 more to do. */
5800 isec = 0;
5801 matching_lma = 0;
5802 suggested_lma = 0;
5803 first_matching_lma = TRUE;
5804 first_suggested_lma = TRUE;
5805
5806 for (section = ibfd->sections;
5807 section != NULL;
5808 section = section->next)
5809 if (section == first_section)
5810 break;
5811
5812 for (j = 0; section != NULL; section = section->next)
5813 {
5814 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5815 {
5816 output_section = section->output_section;
5817
5818 sections[j++] = section;
5819
5820 /* The Solaris native linker always sets p_paddr to 0.
5821 We try to catch that case here, and set it to the
5822 correct value. Note - some backends require that
5823 p_paddr be left as zero. */
5824 if (!p_paddr_valid
5825 && segment->p_vaddr != 0
5826 && !bed->want_p_paddr_set_to_zero
5827 && isec == 0
5828 && output_section->lma != 0
5829 && output_section->vma == (segment->p_vaddr
5830 + (map->includes_filehdr
5831 ? iehdr->e_ehsize
5832 : 0)
5833 + (map->includes_phdrs
5834 ? (iehdr->e_phnum
5835 * iehdr->e_phentsize)
5836 : 0)))
5837 map->p_paddr = segment->p_vaddr;
5838
5839 /* Match up the physical address of the segment with the
5840 LMA address of the output section. */
5841 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5842 || IS_COREFILE_NOTE (segment, section)
5843 || (bed->want_p_paddr_set_to_zero
5844 && IS_CONTAINED_BY_VMA (output_section, segment)))
5845 {
5846 if (first_matching_lma || output_section->lma < matching_lma)
5847 {
5848 matching_lma = output_section->lma;
5849 first_matching_lma = FALSE;
5850 }
5851
5852 /* We assume that if the section fits within the segment
5853 then it does not overlap any other section within that
5854 segment. */
5855 map->sections[isec++] = output_section;
5856 }
5857 else if (first_suggested_lma)
5858 {
5859 suggested_lma = output_section->lma;
5860 first_suggested_lma = FALSE;
5861 }
5862
5863 if (j == section_count)
5864 break;
5865 }
5866 }
5867
5868 BFD_ASSERT (j == section_count);
5869
5870 /* Step Two: Adjust the physical address of the current segment,
5871 if necessary. */
5872 if (isec == section_count)
5873 {
5874 /* All of the sections fitted within the segment as currently
5875 specified. This is the default case. Add the segment to
5876 the list of built segments and carry on to process the next
5877 program header in the input BFD. */
5878 map->count = section_count;
5879 *pointer_to_map = map;
5880 pointer_to_map = &map->next;
5881
5882 if (p_paddr_valid
5883 && !bed->want_p_paddr_set_to_zero
5884 && matching_lma != map->p_paddr
5885 && !map->includes_filehdr
5886 && !map->includes_phdrs)
5887 /* There is some padding before the first section in the
5888 segment. So, we must account for that in the output
5889 segment's vma. */
5890 map->p_vaddr_offset = matching_lma - map->p_paddr;
5891
5892 free (sections);
5893 continue;
5894 }
5895 else
5896 {
5897 if (!first_matching_lma)
5898 {
5899 /* At least one section fits inside the current segment.
5900 Keep it, but modify its physical address to match the
5901 LMA of the first section that fitted. */
5902 map->p_paddr = matching_lma;
5903 }
5904 else
5905 {
5906 /* None of the sections fitted inside the current segment.
5907 Change the current segment's physical address to match
5908 the LMA of the first section. */
5909 map->p_paddr = suggested_lma;
5910 }
5911
5912 /* Offset the segment physical address from the lma
5913 to allow for space taken up by elf headers. */
5914 if (map->includes_filehdr)
5915 {
5916 if (map->p_paddr >= iehdr->e_ehsize)
5917 map->p_paddr -= iehdr->e_ehsize;
5918 else
5919 {
5920 map->includes_filehdr = FALSE;
5921 map->includes_phdrs = FALSE;
5922 }
5923 }
5924
5925 if (map->includes_phdrs)
5926 {
5927 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5928 {
5929 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5930
5931 /* iehdr->e_phnum is just an estimate of the number
5932 of program headers that we will need. Make a note
5933 here of the number we used and the segment we chose
5934 to hold these headers, so that we can adjust the
5935 offset when we know the correct value. */
5936 phdr_adjust_num = iehdr->e_phnum;
5937 phdr_adjust_seg = map;
5938 }
5939 else
5940 map->includes_phdrs = FALSE;
5941 }
5942 }
5943
5944 /* Step Three: Loop over the sections again, this time assigning
5945 those that fit to the current segment and removing them from the
5946 sections array; but making sure not to leave large gaps. Once all
5947 possible sections have been assigned to the current segment it is
5948 added to the list of built segments and if sections still remain
5949 to be assigned, a new segment is constructed before repeating
5950 the loop. */
5951 isec = 0;
5952 do
5953 {
5954 map->count = 0;
5955 suggested_lma = 0;
5956 first_suggested_lma = TRUE;
5957
5958 /* Fill the current segment with sections that fit. */
5959 for (j = 0; j < section_count; j++)
5960 {
5961 section = sections[j];
5962
5963 if (section == NULL)
5964 continue;
5965
5966 output_section = section->output_section;
5967
5968 BFD_ASSERT (output_section != NULL);
5969
5970 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5971 || IS_COREFILE_NOTE (segment, section))
5972 {
5973 if (map->count == 0)
5974 {
5975 /* If the first section in a segment does not start at
5976 the beginning of the segment, then something is
5977 wrong. */
5978 if (output_section->lma
5979 != (map->p_paddr
5980 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5981 + (map->includes_phdrs
5982 ? iehdr->e_phnum * iehdr->e_phentsize
5983 : 0)))
5984 abort ();
5985 }
5986 else
5987 {
5988 asection *prev_sec;
5989
5990 prev_sec = map->sections[map->count - 1];
5991
5992 /* If the gap between the end of the previous section
5993 and the start of this section is more than
5994 maxpagesize then we need to start a new segment. */
5995 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5996 maxpagesize)
5997 < BFD_ALIGN (output_section->lma, maxpagesize))
5998 || (prev_sec->lma + prev_sec->size
5999 > output_section->lma))
6000 {
6001 if (first_suggested_lma)
6002 {
6003 suggested_lma = output_section->lma;
6004 first_suggested_lma = FALSE;
6005 }
6006
6007 continue;
6008 }
6009 }
6010
6011 map->sections[map->count++] = output_section;
6012 ++isec;
6013 sections[j] = NULL;
6014 section->segment_mark = TRUE;
6015 }
6016 else if (first_suggested_lma)
6017 {
6018 suggested_lma = output_section->lma;
6019 first_suggested_lma = FALSE;
6020 }
6021 }
6022
6023 BFD_ASSERT (map->count > 0);
6024
6025 /* Add the current segment to the list of built segments. */
6026 *pointer_to_map = map;
6027 pointer_to_map = &map->next;
6028
6029 if (isec < section_count)
6030 {
6031 /* We still have not allocated all of the sections to
6032 segments. Create a new segment here, initialise it
6033 and carry on looping. */
6034 amt = sizeof (struct elf_segment_map);
6035 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6036 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
6037 if (map == NULL)
6038 {
6039 free (sections);
6040 return FALSE;
6041 }
6042
6043 /* Initialise the fields of the segment map. Set the physical
6044 physical address to the LMA of the first section that has
6045 not yet been assigned. */
6046 map->next = NULL;
6047 map->p_type = segment->p_type;
6048 map->p_flags = segment->p_flags;
6049 map->p_flags_valid = 1;
6050 map->p_paddr = suggested_lma;
6051 map->p_paddr_valid = p_paddr_valid;
6052 map->includes_filehdr = 0;
6053 map->includes_phdrs = 0;
6054 }
6055 }
6056 while (isec < section_count);
6057
6058 free (sections);
6059 }
6060
6061 elf_tdata (obfd)->segment_map = map_first;
6062
6063 /* If we had to estimate the number of program headers that were
6064 going to be needed, then check our estimate now and adjust
6065 the offset if necessary. */
6066 if (phdr_adjust_seg != NULL)
6067 {
6068 unsigned int count;
6069
6070 for (count = 0, map = map_first; map != NULL; map = map->next)
6071 count++;
6072
6073 if (count > phdr_adjust_num)
6074 phdr_adjust_seg->p_paddr
6075 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6076 }
6077
6078 #undef SEGMENT_END
6079 #undef SECTION_SIZE
6080 #undef IS_CONTAINED_BY_VMA
6081 #undef IS_CONTAINED_BY_LMA
6082 #undef IS_NOTE
6083 #undef IS_COREFILE_NOTE
6084 #undef IS_SOLARIS_PT_INTERP
6085 #undef IS_SECTION_IN_INPUT_SEGMENT
6086 #undef INCLUDE_SECTION_IN_SEGMENT
6087 #undef SEGMENT_AFTER_SEGMENT
6088 #undef SEGMENT_OVERLAPS
6089 return TRUE;
6090 }
6091
6092 /* Copy ELF program header information. */
6093
6094 static bfd_boolean
6095 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6096 {
6097 Elf_Internal_Ehdr *iehdr;
6098 struct elf_segment_map *map;
6099 struct elf_segment_map *map_first;
6100 struct elf_segment_map **pointer_to_map;
6101 Elf_Internal_Phdr *segment;
6102 unsigned int i;
6103 unsigned int num_segments;
6104 bfd_boolean phdr_included = FALSE;
6105 bfd_boolean p_paddr_valid;
6106
6107 iehdr = elf_elfheader (ibfd);
6108
6109 map_first = NULL;
6110 pointer_to_map = &map_first;
6111
6112 /* If all the segment p_paddr fields are zero, don't set
6113 map->p_paddr_valid. */
6114 p_paddr_valid = FALSE;
6115 num_segments = elf_elfheader (ibfd)->e_phnum;
6116 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6117 i < num_segments;
6118 i++, segment++)
6119 if (segment->p_paddr != 0)
6120 {
6121 p_paddr_valid = TRUE;
6122 break;
6123 }
6124
6125 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6126 i < num_segments;
6127 i++, segment++)
6128 {
6129 asection *section;
6130 unsigned int section_count;
6131 bfd_size_type amt;
6132 Elf_Internal_Shdr *this_hdr;
6133 asection *first_section = NULL;
6134 asection *lowest_section;
6135
6136 /* Compute how many sections are in this segment. */
6137 for (section = ibfd->sections, section_count = 0;
6138 section != NULL;
6139 section = section->next)
6140 {
6141 this_hdr = &(elf_section_data(section)->this_hdr);
6142 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6143 {
6144 if (first_section == NULL)
6145 first_section = section;
6146 section_count++;
6147 }
6148 }
6149
6150 /* Allocate a segment map big enough to contain
6151 all of the sections we have selected. */
6152 amt = sizeof (struct elf_segment_map);
6153 if (section_count != 0)
6154 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6155 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6156 if (map == NULL)
6157 return FALSE;
6158
6159 /* Initialize the fields of the output segment map with the
6160 input segment. */
6161 map->next = NULL;
6162 map->p_type = segment->p_type;
6163 map->p_flags = segment->p_flags;
6164 map->p_flags_valid = 1;
6165 map->p_paddr = segment->p_paddr;
6166 map->p_paddr_valid = p_paddr_valid;
6167 map->p_align = segment->p_align;
6168 map->p_align_valid = 1;
6169 map->p_vaddr_offset = 0;
6170
6171 if (map->p_type == PT_GNU_RELRO)
6172 {
6173 /* The PT_GNU_RELRO segment may contain the first a few
6174 bytes in the .got.plt section even if the whole .got.plt
6175 section isn't in the PT_GNU_RELRO segment. We won't
6176 change the size of the PT_GNU_RELRO segment. */
6177 map->p_size = segment->p_memsz;
6178 map->p_size_valid = 1;
6179 }
6180
6181 /* Determine if this segment contains the ELF file header
6182 and if it contains the program headers themselves. */
6183 map->includes_filehdr = (segment->p_offset == 0
6184 && segment->p_filesz >= iehdr->e_ehsize);
6185
6186 map->includes_phdrs = 0;
6187 if (! phdr_included || segment->p_type != PT_LOAD)
6188 {
6189 map->includes_phdrs =
6190 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6191 && (segment->p_offset + segment->p_filesz
6192 >= ((bfd_vma) iehdr->e_phoff
6193 + iehdr->e_phnum * iehdr->e_phentsize)));
6194
6195 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6196 phdr_included = TRUE;
6197 }
6198
6199 lowest_section = first_section;
6200 if (section_count != 0)
6201 {
6202 unsigned int isec = 0;
6203
6204 for (section = first_section;
6205 section != NULL;
6206 section = section->next)
6207 {
6208 this_hdr = &(elf_section_data(section)->this_hdr);
6209 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6210 {
6211 map->sections[isec++] = section->output_section;
6212 if (section->lma < lowest_section->lma)
6213 lowest_section = section;
6214 if ((section->flags & SEC_ALLOC) != 0)
6215 {
6216 bfd_vma seg_off;
6217
6218 /* Section lmas are set up from PT_LOAD header
6219 p_paddr in _bfd_elf_make_section_from_shdr.
6220 If this header has a p_paddr that disagrees
6221 with the section lma, flag the p_paddr as
6222 invalid. */
6223 if ((section->flags & SEC_LOAD) != 0)
6224 seg_off = this_hdr->sh_offset - segment->p_offset;
6225 else
6226 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6227 if (section->lma - segment->p_paddr != seg_off)
6228 map->p_paddr_valid = FALSE;
6229 }
6230 if (isec == section_count)
6231 break;
6232 }
6233 }
6234 }
6235
6236 if (map->includes_filehdr && lowest_section != NULL)
6237 /* We need to keep the space used by the headers fixed. */
6238 map->header_size = lowest_section->vma - segment->p_vaddr;
6239
6240 if (!map->includes_phdrs
6241 && !map->includes_filehdr
6242 && map->p_paddr_valid)
6243 /* There is some other padding before the first section. */
6244 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6245 - segment->p_paddr);
6246
6247 map->count = section_count;
6248 *pointer_to_map = map;
6249 pointer_to_map = &map->next;
6250 }
6251
6252 elf_tdata (obfd)->segment_map = map_first;
6253 return TRUE;
6254 }
6255
6256 /* Copy private BFD data. This copies or rewrites ELF program header
6257 information. */
6258
6259 static bfd_boolean
6260 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6261 {
6262 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6263 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6264 return TRUE;
6265
6266 if (elf_tdata (ibfd)->phdr == NULL)
6267 return TRUE;
6268
6269 if (ibfd->xvec == obfd->xvec)
6270 {
6271 /* Check to see if any sections in the input BFD
6272 covered by ELF program header have changed. */
6273 Elf_Internal_Phdr *segment;
6274 asection *section, *osec;
6275 unsigned int i, num_segments;
6276 Elf_Internal_Shdr *this_hdr;
6277 const struct elf_backend_data *bed;
6278
6279 bed = get_elf_backend_data (ibfd);
6280
6281 /* Regenerate the segment map if p_paddr is set to 0. */
6282 if (bed->want_p_paddr_set_to_zero)
6283 goto rewrite;
6284
6285 /* Initialize the segment mark field. */
6286 for (section = obfd->sections; section != NULL;
6287 section = section->next)
6288 section->segment_mark = FALSE;
6289
6290 num_segments = elf_elfheader (ibfd)->e_phnum;
6291 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6292 i < num_segments;
6293 i++, segment++)
6294 {
6295 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6296 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6297 which severly confuses things, so always regenerate the segment
6298 map in this case. */
6299 if (segment->p_paddr == 0
6300 && segment->p_memsz == 0
6301 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6302 goto rewrite;
6303
6304 for (section = ibfd->sections;
6305 section != NULL; section = section->next)
6306 {
6307 /* We mark the output section so that we know it comes
6308 from the input BFD. */
6309 osec = section->output_section;
6310 if (osec)
6311 osec->segment_mark = TRUE;
6312
6313 /* Check if this section is covered by the segment. */
6314 this_hdr = &(elf_section_data(section)->this_hdr);
6315 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6316 {
6317 /* FIXME: Check if its output section is changed or
6318 removed. What else do we need to check? */
6319 if (osec == NULL
6320 || section->flags != osec->flags
6321 || section->lma != osec->lma
6322 || section->vma != osec->vma
6323 || section->size != osec->size
6324 || section->rawsize != osec->rawsize
6325 || section->alignment_power != osec->alignment_power)
6326 goto rewrite;
6327 }
6328 }
6329 }
6330
6331 /* Check to see if any output section do not come from the
6332 input BFD. */
6333 for (section = obfd->sections; section != NULL;
6334 section = section->next)
6335 {
6336 if (section->segment_mark == FALSE)
6337 goto rewrite;
6338 else
6339 section->segment_mark = FALSE;
6340 }
6341
6342 return copy_elf_program_header (ibfd, obfd);
6343 }
6344
6345 rewrite:
6346 return rewrite_elf_program_header (ibfd, obfd);
6347 }
6348
6349 /* Initialize private output section information from input section. */
6350
6351 bfd_boolean
6352 _bfd_elf_init_private_section_data (bfd *ibfd,
6353 asection *isec,
6354 bfd *obfd,
6355 asection *osec,
6356 struct bfd_link_info *link_info)
6357
6358 {
6359 Elf_Internal_Shdr *ihdr, *ohdr;
6360 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6361
6362 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6363 || obfd->xvec->flavour != bfd_target_elf_flavour)
6364 return TRUE;
6365
6366 BFD_ASSERT (elf_section_data (osec) != NULL);
6367
6368 /* For objcopy and relocatable link, don't copy the output ELF
6369 section type from input if the output BFD section flags have been
6370 set to something different. For a final link allow some flags
6371 that the linker clears to differ. */
6372 if (elf_section_type (osec) == SHT_NULL
6373 && (osec->flags == isec->flags
6374 || (final_link
6375 && ((osec->flags ^ isec->flags)
6376 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6377 elf_section_type (osec) = elf_section_type (isec);
6378
6379 /* FIXME: Is this correct for all OS/PROC specific flags? */
6380 elf_section_flags (osec) |= (elf_section_flags (isec)
6381 & (SHF_MASKOS | SHF_MASKPROC));
6382
6383 /* Set things up for objcopy and relocatable link. The output
6384 SHT_GROUP section will have its elf_next_in_group pointing back
6385 to the input group members. Ignore linker created group section.
6386 See elfNN_ia64_object_p in elfxx-ia64.c. */
6387 if (!final_link)
6388 {
6389 if (elf_sec_group (isec) == NULL
6390 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6391 {
6392 if (elf_section_flags (isec) & SHF_GROUP)
6393 elf_section_flags (osec) |= SHF_GROUP;
6394 elf_next_in_group (osec) = elf_next_in_group (isec);
6395 elf_section_data (osec)->group = elf_section_data (isec)->group;
6396 }
6397 }
6398
6399 ihdr = &elf_section_data (isec)->this_hdr;
6400
6401 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6402 don't use the output section of the linked-to section since it
6403 may be NULL at this point. */
6404 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6405 {
6406 ohdr = &elf_section_data (osec)->this_hdr;
6407 ohdr->sh_flags |= SHF_LINK_ORDER;
6408 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6409 }
6410
6411 osec->use_rela_p = isec->use_rela_p;
6412
6413 return TRUE;
6414 }
6415
6416 /* Copy private section information. This copies over the entsize
6417 field, and sometimes the info field. */
6418
6419 bfd_boolean
6420 _bfd_elf_copy_private_section_data (bfd *ibfd,
6421 asection *isec,
6422 bfd *obfd,
6423 asection *osec)
6424 {
6425 Elf_Internal_Shdr *ihdr, *ohdr;
6426
6427 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6428 || obfd->xvec->flavour != bfd_target_elf_flavour)
6429 return TRUE;
6430
6431 ihdr = &elf_section_data (isec)->this_hdr;
6432 ohdr = &elf_section_data (osec)->this_hdr;
6433
6434 ohdr->sh_entsize = ihdr->sh_entsize;
6435
6436 if (ihdr->sh_type == SHT_SYMTAB
6437 || ihdr->sh_type == SHT_DYNSYM
6438 || ihdr->sh_type == SHT_GNU_verneed
6439 || ihdr->sh_type == SHT_GNU_verdef)
6440 ohdr->sh_info = ihdr->sh_info;
6441
6442 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6443 NULL);
6444 }
6445
6446 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6447 necessary if we are removing either the SHT_GROUP section or any of
6448 the group member sections. DISCARDED is the value that a section's
6449 output_section has if the section will be discarded, NULL when this
6450 function is called from objcopy, bfd_abs_section_ptr when called
6451 from the linker. */
6452
6453 bfd_boolean
6454 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6455 {
6456 asection *isec;
6457
6458 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6459 if (elf_section_type (isec) == SHT_GROUP)
6460 {
6461 asection *first = elf_next_in_group (isec);
6462 asection *s = first;
6463 bfd_size_type removed = 0;
6464
6465 while (s != NULL)
6466 {
6467 /* If this member section is being output but the
6468 SHT_GROUP section is not, then clear the group info
6469 set up by _bfd_elf_copy_private_section_data. */
6470 if (s->output_section != discarded
6471 && isec->output_section == discarded)
6472 {
6473 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6474 elf_group_name (s->output_section) = NULL;
6475 }
6476 /* Conversely, if the member section is not being output
6477 but the SHT_GROUP section is, then adjust its size. */
6478 else if (s->output_section == discarded
6479 && isec->output_section != discarded)
6480 removed += 4;
6481 s = elf_next_in_group (s);
6482 if (s == first)
6483 break;
6484 }
6485 if (removed != 0)
6486 {
6487 if (discarded != NULL)
6488 {
6489 /* If we've been called for ld -r, then we need to
6490 adjust the input section size. This function may
6491 be called multiple times, so save the original
6492 size. */
6493 if (isec->rawsize == 0)
6494 isec->rawsize = isec->size;
6495 isec->size = isec->rawsize - removed;
6496 }
6497 else
6498 {
6499 /* Adjust the output section size when called from
6500 objcopy. */
6501 isec->output_section->size -= removed;
6502 }
6503 }
6504 }
6505
6506 return TRUE;
6507 }
6508
6509 /* Copy private header information. */
6510
6511 bfd_boolean
6512 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6513 {
6514 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6515 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6516 return TRUE;
6517
6518 /* Copy over private BFD data if it has not already been copied.
6519 This must be done here, rather than in the copy_private_bfd_data
6520 entry point, because the latter is called after the section
6521 contents have been set, which means that the program headers have
6522 already been worked out. */
6523 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6524 {
6525 if (! copy_private_bfd_data (ibfd, obfd))
6526 return FALSE;
6527 }
6528
6529 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6530 }
6531
6532 /* Copy private symbol information. If this symbol is in a section
6533 which we did not map into a BFD section, try to map the section
6534 index correctly. We use special macro definitions for the mapped
6535 section indices; these definitions are interpreted by the
6536 swap_out_syms function. */
6537
6538 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6539 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6540 #define MAP_STRTAB (SHN_HIOS + 3)
6541 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6542 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6543
6544 bfd_boolean
6545 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6546 asymbol *isymarg,
6547 bfd *obfd,
6548 asymbol *osymarg)
6549 {
6550 elf_symbol_type *isym, *osym;
6551
6552 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6553 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6554 return TRUE;
6555
6556 isym = elf_symbol_from (ibfd, isymarg);
6557 osym = elf_symbol_from (obfd, osymarg);
6558
6559 if (isym != NULL
6560 && isym->internal_elf_sym.st_shndx != 0
6561 && osym != NULL
6562 && bfd_is_abs_section (isym->symbol.section))
6563 {
6564 unsigned int shndx;
6565
6566 shndx = isym->internal_elf_sym.st_shndx;
6567 if (shndx == elf_onesymtab (ibfd))
6568 shndx = MAP_ONESYMTAB;
6569 else if (shndx == elf_dynsymtab (ibfd))
6570 shndx = MAP_DYNSYMTAB;
6571 else if (shndx == elf_tdata (ibfd)->strtab_section)
6572 shndx = MAP_STRTAB;
6573 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6574 shndx = MAP_SHSTRTAB;
6575 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6576 shndx = MAP_SYM_SHNDX;
6577 osym->internal_elf_sym.st_shndx = shndx;
6578 }
6579
6580 return TRUE;
6581 }
6582
6583 /* Swap out the symbols. */
6584
6585 static bfd_boolean
6586 swap_out_syms (bfd *abfd,
6587 struct bfd_strtab_hash **sttp,
6588 int relocatable_p)
6589 {
6590 const struct elf_backend_data *bed;
6591 int symcount;
6592 asymbol **syms;
6593 struct bfd_strtab_hash *stt;
6594 Elf_Internal_Shdr *symtab_hdr;
6595 Elf_Internal_Shdr *symtab_shndx_hdr;
6596 Elf_Internal_Shdr *symstrtab_hdr;
6597 bfd_byte *outbound_syms;
6598 bfd_byte *outbound_shndx;
6599 int idx;
6600 bfd_size_type amt;
6601 bfd_boolean name_local_sections;
6602
6603 if (!elf_map_symbols (abfd))
6604 return FALSE;
6605
6606 /* Dump out the symtabs. */
6607 stt = _bfd_elf_stringtab_init ();
6608 if (stt == NULL)
6609 return FALSE;
6610
6611 bed = get_elf_backend_data (abfd);
6612 symcount = bfd_get_symcount (abfd);
6613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6614 symtab_hdr->sh_type = SHT_SYMTAB;
6615 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6616 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6617 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6618 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6619
6620 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6621 symstrtab_hdr->sh_type = SHT_STRTAB;
6622
6623 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6624 bed->s->sizeof_sym);
6625 if (outbound_syms == NULL)
6626 {
6627 _bfd_stringtab_free (stt);
6628 return FALSE;
6629 }
6630 symtab_hdr->contents = outbound_syms;
6631
6632 outbound_shndx = NULL;
6633 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6634 if (symtab_shndx_hdr->sh_name != 0)
6635 {
6636 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6637 outbound_shndx = (bfd_byte *)
6638 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6639 if (outbound_shndx == NULL)
6640 {
6641 _bfd_stringtab_free (stt);
6642 return FALSE;
6643 }
6644
6645 symtab_shndx_hdr->contents = outbound_shndx;
6646 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6647 symtab_shndx_hdr->sh_size = amt;
6648 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6649 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6650 }
6651
6652 /* Now generate the data (for "contents"). */
6653 {
6654 /* Fill in zeroth symbol and swap it out. */
6655 Elf_Internal_Sym sym;
6656 sym.st_name = 0;
6657 sym.st_value = 0;
6658 sym.st_size = 0;
6659 sym.st_info = 0;
6660 sym.st_other = 0;
6661 sym.st_shndx = SHN_UNDEF;
6662 sym.st_target_internal = 0;
6663 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6664 outbound_syms += bed->s->sizeof_sym;
6665 if (outbound_shndx != NULL)
6666 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6667 }
6668
6669 name_local_sections
6670 = (bed->elf_backend_name_local_section_symbols
6671 && bed->elf_backend_name_local_section_symbols (abfd));
6672
6673 syms = bfd_get_outsymbols (abfd);
6674 for (idx = 0; idx < symcount; idx++)
6675 {
6676 Elf_Internal_Sym sym;
6677 bfd_vma value = syms[idx]->value;
6678 elf_symbol_type *type_ptr;
6679 flagword flags = syms[idx]->flags;
6680 int type;
6681
6682 if (!name_local_sections
6683 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6684 {
6685 /* Local section symbols have no name. */
6686 sym.st_name = 0;
6687 }
6688 else
6689 {
6690 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6691 syms[idx]->name,
6692 TRUE, FALSE);
6693 if (sym.st_name == (unsigned long) -1)
6694 {
6695 _bfd_stringtab_free (stt);
6696 return FALSE;
6697 }
6698 }
6699
6700 type_ptr = elf_symbol_from (abfd, syms[idx]);
6701
6702 if ((flags & BSF_SECTION_SYM) == 0
6703 && bfd_is_com_section (syms[idx]->section))
6704 {
6705 /* ELF common symbols put the alignment into the `value' field,
6706 and the size into the `size' field. This is backwards from
6707 how BFD handles it, so reverse it here. */
6708 sym.st_size = value;
6709 if (type_ptr == NULL
6710 || type_ptr->internal_elf_sym.st_value == 0)
6711 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6712 else
6713 sym.st_value = type_ptr->internal_elf_sym.st_value;
6714 sym.st_shndx = _bfd_elf_section_from_bfd_section
6715 (abfd, syms[idx]->section);
6716 }
6717 else
6718 {
6719 asection *sec = syms[idx]->section;
6720 unsigned int shndx;
6721
6722 if (sec->output_section)
6723 {
6724 value += sec->output_offset;
6725 sec = sec->output_section;
6726 }
6727
6728 /* Don't add in the section vma for relocatable output. */
6729 if (! relocatable_p)
6730 value += sec->vma;
6731 sym.st_value = value;
6732 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6733
6734 if (bfd_is_abs_section (sec)
6735 && type_ptr != NULL
6736 && type_ptr->internal_elf_sym.st_shndx != 0)
6737 {
6738 /* This symbol is in a real ELF section which we did
6739 not create as a BFD section. Undo the mapping done
6740 by copy_private_symbol_data. */
6741 shndx = type_ptr->internal_elf_sym.st_shndx;
6742 switch (shndx)
6743 {
6744 case MAP_ONESYMTAB:
6745 shndx = elf_onesymtab (abfd);
6746 break;
6747 case MAP_DYNSYMTAB:
6748 shndx = elf_dynsymtab (abfd);
6749 break;
6750 case MAP_STRTAB:
6751 shndx = elf_tdata (abfd)->strtab_section;
6752 break;
6753 case MAP_SHSTRTAB:
6754 shndx = elf_tdata (abfd)->shstrtab_section;
6755 break;
6756 case MAP_SYM_SHNDX:
6757 shndx = elf_tdata (abfd)->symtab_shndx_section;
6758 break;
6759 default:
6760 break;
6761 }
6762 }
6763 else
6764 {
6765 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6766
6767 if (shndx == SHN_BAD)
6768 {
6769 asection *sec2;
6770
6771 /* Writing this would be a hell of a lot easier if
6772 we had some decent documentation on bfd, and
6773 knew what to expect of the library, and what to
6774 demand of applications. For example, it
6775 appears that `objcopy' might not set the
6776 section of a symbol to be a section that is
6777 actually in the output file. */
6778 sec2 = bfd_get_section_by_name (abfd, sec->name);
6779 if (sec2 == NULL)
6780 {
6781 _bfd_error_handler (_("\
6782 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6783 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6784 sec->name);
6785 bfd_set_error (bfd_error_invalid_operation);
6786 _bfd_stringtab_free (stt);
6787 return FALSE;
6788 }
6789
6790 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6791 BFD_ASSERT (shndx != SHN_BAD);
6792 }
6793 }
6794
6795 sym.st_shndx = shndx;
6796 }
6797
6798 if ((flags & BSF_THREAD_LOCAL) != 0)
6799 type = STT_TLS;
6800 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6801 type = STT_GNU_IFUNC;
6802 else if ((flags & BSF_FUNCTION) != 0)
6803 type = STT_FUNC;
6804 else if ((flags & BSF_OBJECT) != 0)
6805 type = STT_OBJECT;
6806 else if ((flags & BSF_RELC) != 0)
6807 type = STT_RELC;
6808 else if ((flags & BSF_SRELC) != 0)
6809 type = STT_SRELC;
6810 else
6811 type = STT_NOTYPE;
6812
6813 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6814 type = STT_TLS;
6815
6816 /* Processor-specific types. */
6817 if (type_ptr != NULL
6818 && bed->elf_backend_get_symbol_type)
6819 type = ((*bed->elf_backend_get_symbol_type)
6820 (&type_ptr->internal_elf_sym, type));
6821
6822 if (flags & BSF_SECTION_SYM)
6823 {
6824 if (flags & BSF_GLOBAL)
6825 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6826 else
6827 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6828 }
6829 else if (bfd_is_com_section (syms[idx]->section))
6830 {
6831 #ifdef USE_STT_COMMON
6832 if (type == STT_OBJECT)
6833 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6834 else
6835 #endif
6836 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6837 }
6838 else if (bfd_is_und_section (syms[idx]->section))
6839 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6840 ? STB_WEAK
6841 : STB_GLOBAL),
6842 type);
6843 else if (flags & BSF_FILE)
6844 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6845 else
6846 {
6847 int bind = STB_LOCAL;
6848
6849 if (flags & BSF_LOCAL)
6850 bind = STB_LOCAL;
6851 else if (flags & BSF_GNU_UNIQUE)
6852 bind = STB_GNU_UNIQUE;
6853 else if (flags & BSF_WEAK)
6854 bind = STB_WEAK;
6855 else if (flags & BSF_GLOBAL)
6856 bind = STB_GLOBAL;
6857
6858 sym.st_info = ELF_ST_INFO (bind, type);
6859 }
6860
6861 if (type_ptr != NULL)
6862 {
6863 sym.st_other = type_ptr->internal_elf_sym.st_other;
6864 sym.st_target_internal
6865 = type_ptr->internal_elf_sym.st_target_internal;
6866 }
6867 else
6868 {
6869 sym.st_other = 0;
6870 sym.st_target_internal = 0;
6871 }
6872
6873 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6874 outbound_syms += bed->s->sizeof_sym;
6875 if (outbound_shndx != NULL)
6876 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6877 }
6878
6879 *sttp = stt;
6880 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6881 symstrtab_hdr->sh_type = SHT_STRTAB;
6882
6883 symstrtab_hdr->sh_flags = 0;
6884 symstrtab_hdr->sh_addr = 0;
6885 symstrtab_hdr->sh_entsize = 0;
6886 symstrtab_hdr->sh_link = 0;
6887 symstrtab_hdr->sh_info = 0;
6888 symstrtab_hdr->sh_addralign = 1;
6889
6890 return TRUE;
6891 }
6892
6893 /* Return the number of bytes required to hold the symtab vector.
6894
6895 Note that we base it on the count plus 1, since we will null terminate
6896 the vector allocated based on this size. However, the ELF symbol table
6897 always has a dummy entry as symbol #0, so it ends up even. */
6898
6899 long
6900 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6901 {
6902 long symcount;
6903 long symtab_size;
6904 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6905
6906 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6907 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6908 if (symcount > 0)
6909 symtab_size -= sizeof (asymbol *);
6910
6911 return symtab_size;
6912 }
6913
6914 long
6915 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6916 {
6917 long symcount;
6918 long symtab_size;
6919 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6920
6921 if (elf_dynsymtab (abfd) == 0)
6922 {
6923 bfd_set_error (bfd_error_invalid_operation);
6924 return -1;
6925 }
6926
6927 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6928 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6929 if (symcount > 0)
6930 symtab_size -= sizeof (asymbol *);
6931
6932 return symtab_size;
6933 }
6934
6935 long
6936 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6937 sec_ptr asect)
6938 {
6939 return (asect->reloc_count + 1) * sizeof (arelent *);
6940 }
6941
6942 /* Canonicalize the relocs. */
6943
6944 long
6945 _bfd_elf_canonicalize_reloc (bfd *abfd,
6946 sec_ptr section,
6947 arelent **relptr,
6948 asymbol **symbols)
6949 {
6950 arelent *tblptr;
6951 unsigned int i;
6952 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6953
6954 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6955 return -1;
6956
6957 tblptr = section->relocation;
6958 for (i = 0; i < section->reloc_count; i++)
6959 *relptr++ = tblptr++;
6960
6961 *relptr = NULL;
6962
6963 return section->reloc_count;
6964 }
6965
6966 long
6967 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6968 {
6969 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6970 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6971
6972 if (symcount >= 0)
6973 bfd_get_symcount (abfd) = symcount;
6974 return symcount;
6975 }
6976
6977 long
6978 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6979 asymbol **allocation)
6980 {
6981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6982 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6983
6984 if (symcount >= 0)
6985 bfd_get_dynamic_symcount (abfd) = symcount;
6986 return symcount;
6987 }
6988
6989 /* Return the size required for the dynamic reloc entries. Any loadable
6990 section that was actually installed in the BFD, and has type SHT_REL
6991 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6992 dynamic reloc section. */
6993
6994 long
6995 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6996 {
6997 long ret;
6998 asection *s;
6999
7000 if (elf_dynsymtab (abfd) == 0)
7001 {
7002 bfd_set_error (bfd_error_invalid_operation);
7003 return -1;
7004 }
7005
7006 ret = sizeof (arelent *);
7007 for (s = abfd->sections; s != NULL; s = s->next)
7008 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7009 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7010 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7011 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7012 * sizeof (arelent *));
7013
7014 return ret;
7015 }
7016
7017 /* Canonicalize the dynamic relocation entries. Note that we return the
7018 dynamic relocations as a single block, although they are actually
7019 associated with particular sections; the interface, which was
7020 designed for SunOS style shared libraries, expects that there is only
7021 one set of dynamic relocs. Any loadable section that was actually
7022 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7023 dynamic symbol table, is considered to be a dynamic reloc section. */
7024
7025 long
7026 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7027 arelent **storage,
7028 asymbol **syms)
7029 {
7030 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7031 asection *s;
7032 long ret;
7033
7034 if (elf_dynsymtab (abfd) == 0)
7035 {
7036 bfd_set_error (bfd_error_invalid_operation);
7037 return -1;
7038 }
7039
7040 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7041 ret = 0;
7042 for (s = abfd->sections; s != NULL; s = s->next)
7043 {
7044 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7045 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7046 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7047 {
7048 arelent *p;
7049 long count, i;
7050
7051 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7052 return -1;
7053 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7054 p = s->relocation;
7055 for (i = 0; i < count; i++)
7056 *storage++ = p++;
7057 ret += count;
7058 }
7059 }
7060
7061 *storage = NULL;
7062
7063 return ret;
7064 }
7065 \f
7066 /* Read in the version information. */
7067
7068 bfd_boolean
7069 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7070 {
7071 bfd_byte *contents = NULL;
7072 unsigned int freeidx = 0;
7073
7074 if (elf_dynverref (abfd) != 0)
7075 {
7076 Elf_Internal_Shdr *hdr;
7077 Elf_External_Verneed *everneed;
7078 Elf_Internal_Verneed *iverneed;
7079 unsigned int i;
7080 bfd_byte *contents_end;
7081
7082 hdr = &elf_tdata (abfd)->dynverref_hdr;
7083
7084 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7085 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7086 if (elf_tdata (abfd)->verref == NULL)
7087 goto error_return;
7088
7089 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7090
7091 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7092 if (contents == NULL)
7093 {
7094 error_return_verref:
7095 elf_tdata (abfd)->verref = NULL;
7096 elf_tdata (abfd)->cverrefs = 0;
7097 goto error_return;
7098 }
7099 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7100 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7101 goto error_return_verref;
7102
7103 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7104 goto error_return_verref;
7105
7106 BFD_ASSERT (sizeof (Elf_External_Verneed)
7107 == sizeof (Elf_External_Vernaux));
7108 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7109 everneed = (Elf_External_Verneed *) contents;
7110 iverneed = elf_tdata (abfd)->verref;
7111 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7112 {
7113 Elf_External_Vernaux *evernaux;
7114 Elf_Internal_Vernaux *ivernaux;
7115 unsigned int j;
7116
7117 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7118
7119 iverneed->vn_bfd = abfd;
7120
7121 iverneed->vn_filename =
7122 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7123 iverneed->vn_file);
7124 if (iverneed->vn_filename == NULL)
7125 goto error_return_verref;
7126
7127 if (iverneed->vn_cnt == 0)
7128 iverneed->vn_auxptr = NULL;
7129 else
7130 {
7131 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7132 bfd_alloc2 (abfd, iverneed->vn_cnt,
7133 sizeof (Elf_Internal_Vernaux));
7134 if (iverneed->vn_auxptr == NULL)
7135 goto error_return_verref;
7136 }
7137
7138 if (iverneed->vn_aux
7139 > (size_t) (contents_end - (bfd_byte *) everneed))
7140 goto error_return_verref;
7141
7142 evernaux = ((Elf_External_Vernaux *)
7143 ((bfd_byte *) everneed + iverneed->vn_aux));
7144 ivernaux = iverneed->vn_auxptr;
7145 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7146 {
7147 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7148
7149 ivernaux->vna_nodename =
7150 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7151 ivernaux->vna_name);
7152 if (ivernaux->vna_nodename == NULL)
7153 goto error_return_verref;
7154
7155 if (j + 1 < iverneed->vn_cnt)
7156 ivernaux->vna_nextptr = ivernaux + 1;
7157 else
7158 ivernaux->vna_nextptr = NULL;
7159
7160 if (ivernaux->vna_next
7161 > (size_t) (contents_end - (bfd_byte *) evernaux))
7162 goto error_return_verref;
7163
7164 evernaux = ((Elf_External_Vernaux *)
7165 ((bfd_byte *) evernaux + ivernaux->vna_next));
7166
7167 if (ivernaux->vna_other > freeidx)
7168 freeidx = ivernaux->vna_other;
7169 }
7170
7171 if (i + 1 < hdr->sh_info)
7172 iverneed->vn_nextref = iverneed + 1;
7173 else
7174 iverneed->vn_nextref = NULL;
7175
7176 if (iverneed->vn_next
7177 > (size_t) (contents_end - (bfd_byte *) everneed))
7178 goto error_return_verref;
7179
7180 everneed = ((Elf_External_Verneed *)
7181 ((bfd_byte *) everneed + iverneed->vn_next));
7182 }
7183
7184 free (contents);
7185 contents = NULL;
7186 }
7187
7188 if (elf_dynverdef (abfd) != 0)
7189 {
7190 Elf_Internal_Shdr *hdr;
7191 Elf_External_Verdef *everdef;
7192 Elf_Internal_Verdef *iverdef;
7193 Elf_Internal_Verdef *iverdefarr;
7194 Elf_Internal_Verdef iverdefmem;
7195 unsigned int i;
7196 unsigned int maxidx;
7197 bfd_byte *contents_end_def, *contents_end_aux;
7198
7199 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7200
7201 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7202 if (contents == NULL)
7203 goto error_return;
7204 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7205 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7206 goto error_return;
7207
7208 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7209 goto error_return;
7210
7211 BFD_ASSERT (sizeof (Elf_External_Verdef)
7212 >= sizeof (Elf_External_Verdaux));
7213 contents_end_def = contents + hdr->sh_size
7214 - sizeof (Elf_External_Verdef);
7215 contents_end_aux = contents + hdr->sh_size
7216 - sizeof (Elf_External_Verdaux);
7217
7218 /* We know the number of entries in the section but not the maximum
7219 index. Therefore we have to run through all entries and find
7220 the maximum. */
7221 everdef = (Elf_External_Verdef *) contents;
7222 maxidx = 0;
7223 for (i = 0; i < hdr->sh_info; ++i)
7224 {
7225 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7226
7227 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7228 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7229
7230 if (iverdefmem.vd_next
7231 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7232 goto error_return;
7233
7234 everdef = ((Elf_External_Verdef *)
7235 ((bfd_byte *) everdef + iverdefmem.vd_next));
7236 }
7237
7238 if (default_imported_symver)
7239 {
7240 if (freeidx > maxidx)
7241 maxidx = ++freeidx;
7242 else
7243 freeidx = ++maxidx;
7244 }
7245 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7246 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7247 if (elf_tdata (abfd)->verdef == NULL)
7248 goto error_return;
7249
7250 elf_tdata (abfd)->cverdefs = maxidx;
7251
7252 everdef = (Elf_External_Verdef *) contents;
7253 iverdefarr = elf_tdata (abfd)->verdef;
7254 for (i = 0; i < hdr->sh_info; i++)
7255 {
7256 Elf_External_Verdaux *everdaux;
7257 Elf_Internal_Verdaux *iverdaux;
7258 unsigned int j;
7259
7260 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7261
7262 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7263 {
7264 error_return_verdef:
7265 elf_tdata (abfd)->verdef = NULL;
7266 elf_tdata (abfd)->cverdefs = 0;
7267 goto error_return;
7268 }
7269
7270 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7271 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7272
7273 iverdef->vd_bfd = abfd;
7274
7275 if (iverdef->vd_cnt == 0)
7276 iverdef->vd_auxptr = NULL;
7277 else
7278 {
7279 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7280 bfd_alloc2 (abfd, iverdef->vd_cnt,
7281 sizeof (Elf_Internal_Verdaux));
7282 if (iverdef->vd_auxptr == NULL)
7283 goto error_return_verdef;
7284 }
7285
7286 if (iverdef->vd_aux
7287 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7288 goto error_return_verdef;
7289
7290 everdaux = ((Elf_External_Verdaux *)
7291 ((bfd_byte *) everdef + iverdef->vd_aux));
7292 iverdaux = iverdef->vd_auxptr;
7293 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7294 {
7295 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7296
7297 iverdaux->vda_nodename =
7298 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7299 iverdaux->vda_name);
7300 if (iverdaux->vda_nodename == NULL)
7301 goto error_return_verdef;
7302
7303 if (j + 1 < iverdef->vd_cnt)
7304 iverdaux->vda_nextptr = iverdaux + 1;
7305 else
7306 iverdaux->vda_nextptr = NULL;
7307
7308 if (iverdaux->vda_next
7309 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7310 goto error_return_verdef;
7311
7312 everdaux = ((Elf_External_Verdaux *)
7313 ((bfd_byte *) everdaux + iverdaux->vda_next));
7314 }
7315
7316 if (iverdef->vd_cnt)
7317 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7318
7319 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7320 iverdef->vd_nextdef = iverdef + 1;
7321 else
7322 iverdef->vd_nextdef = NULL;
7323
7324 everdef = ((Elf_External_Verdef *)
7325 ((bfd_byte *) everdef + iverdef->vd_next));
7326 }
7327
7328 free (contents);
7329 contents = NULL;
7330 }
7331 else if (default_imported_symver)
7332 {
7333 if (freeidx < 3)
7334 freeidx = 3;
7335 else
7336 freeidx++;
7337
7338 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7339 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7340 if (elf_tdata (abfd)->verdef == NULL)
7341 goto error_return;
7342
7343 elf_tdata (abfd)->cverdefs = freeidx;
7344 }
7345
7346 /* Create a default version based on the soname. */
7347 if (default_imported_symver)
7348 {
7349 Elf_Internal_Verdef *iverdef;
7350 Elf_Internal_Verdaux *iverdaux;
7351
7352 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7353
7354 iverdef->vd_version = VER_DEF_CURRENT;
7355 iverdef->vd_flags = 0;
7356 iverdef->vd_ndx = freeidx;
7357 iverdef->vd_cnt = 1;
7358
7359 iverdef->vd_bfd = abfd;
7360
7361 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7362 if (iverdef->vd_nodename == NULL)
7363 goto error_return_verdef;
7364 iverdef->vd_nextdef = NULL;
7365 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7366 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7367 if (iverdef->vd_auxptr == NULL)
7368 goto error_return_verdef;
7369
7370 iverdaux = iverdef->vd_auxptr;
7371 iverdaux->vda_nodename = iverdef->vd_nodename;
7372 iverdaux->vda_nextptr = NULL;
7373 }
7374
7375 return TRUE;
7376
7377 error_return:
7378 if (contents != NULL)
7379 free (contents);
7380 return FALSE;
7381 }
7382 \f
7383 asymbol *
7384 _bfd_elf_make_empty_symbol (bfd *abfd)
7385 {
7386 elf_symbol_type *newsym;
7387 bfd_size_type amt = sizeof (elf_symbol_type);
7388
7389 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7390 if (!newsym)
7391 return NULL;
7392 else
7393 {
7394 newsym->symbol.the_bfd = abfd;
7395 return &newsym->symbol;
7396 }
7397 }
7398
7399 void
7400 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7401 asymbol *symbol,
7402 symbol_info *ret)
7403 {
7404 bfd_symbol_info (symbol, ret);
7405 }
7406
7407 /* Return whether a symbol name implies a local symbol. Most targets
7408 use this function for the is_local_label_name entry point, but some
7409 override it. */
7410
7411 bfd_boolean
7412 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7413 const char *name)
7414 {
7415 /* Normal local symbols start with ``.L''. */
7416 if (name[0] == '.' && name[1] == 'L')
7417 return TRUE;
7418
7419 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7420 DWARF debugging symbols starting with ``..''. */
7421 if (name[0] == '.' && name[1] == '.')
7422 return TRUE;
7423
7424 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7425 emitting DWARF debugging output. I suspect this is actually a
7426 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7427 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7428 underscore to be emitted on some ELF targets). For ease of use,
7429 we treat such symbols as local. */
7430 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7431 return TRUE;
7432
7433 return FALSE;
7434 }
7435
7436 alent *
7437 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7438 asymbol *symbol ATTRIBUTE_UNUSED)
7439 {
7440 abort ();
7441 return NULL;
7442 }
7443
7444 bfd_boolean
7445 _bfd_elf_set_arch_mach (bfd *abfd,
7446 enum bfd_architecture arch,
7447 unsigned long machine)
7448 {
7449 /* If this isn't the right architecture for this backend, and this
7450 isn't the generic backend, fail. */
7451 if (arch != get_elf_backend_data (abfd)->arch
7452 && arch != bfd_arch_unknown
7453 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7454 return FALSE;
7455
7456 return bfd_default_set_arch_mach (abfd, arch, machine);
7457 }
7458
7459 /* Find the function to a particular section and offset,
7460 for error reporting. */
7461
7462 static bfd_boolean
7463 elf_find_function (bfd *abfd,
7464 asection *section,
7465 asymbol **symbols,
7466 bfd_vma offset,
7467 const char **filename_ptr,
7468 const char **functionname_ptr)
7469 {
7470 static asection *last_section;
7471 static asymbol *func;
7472 static const char *filename;
7473 static bfd_size_type func_size;
7474
7475 if (symbols == NULL)
7476 return FALSE;
7477
7478 if (last_section != section
7479 || func == NULL
7480 || offset < func->value
7481 || offset >= func->value + func_size)
7482 {
7483 asymbol *file;
7484 bfd_vma low_func;
7485 asymbol **p;
7486 /* ??? Given multiple file symbols, it is impossible to reliably
7487 choose the right file name for global symbols. File symbols are
7488 local symbols, and thus all file symbols must sort before any
7489 global symbols. The ELF spec may be interpreted to say that a
7490 file symbol must sort before other local symbols, but currently
7491 ld -r doesn't do this. So, for ld -r output, it is possible to
7492 make a better choice of file name for local symbols by ignoring
7493 file symbols appearing after a given local symbol. */
7494 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7495 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7496
7497 filename = NULL;
7498 func = NULL;
7499 file = NULL;
7500 low_func = 0;
7501 state = nothing_seen;
7502 func_size = 0;
7503 last_section = section;
7504
7505 for (p = symbols; *p != NULL; p++)
7506 {
7507 asymbol *sym = *p;
7508 bfd_vma code_off;
7509 bfd_size_type size;
7510
7511 if ((sym->flags & BSF_FILE) != 0)
7512 {
7513 file = sym;
7514 if (state == symbol_seen)
7515 state = file_after_symbol_seen;
7516 continue;
7517 }
7518
7519 size = bed->maybe_function_sym (sym, section, &code_off);
7520 if (size != 0
7521 && code_off <= offset
7522 && (code_off > low_func
7523 || (code_off == low_func
7524 && size > func_size)))
7525 {
7526 func = sym;
7527 func_size = size;
7528 low_func = code_off;
7529 filename = NULL;
7530 if (file != NULL
7531 && ((sym->flags & BSF_LOCAL) != 0
7532 || state != file_after_symbol_seen))
7533 filename = bfd_asymbol_name (file);
7534 }
7535 if (state == nothing_seen)
7536 state = symbol_seen;
7537 }
7538 }
7539
7540 if (func == NULL)
7541 return FALSE;
7542
7543 if (filename_ptr)
7544 *filename_ptr = filename;
7545 if (functionname_ptr)
7546 *functionname_ptr = bfd_asymbol_name (func);
7547
7548 return TRUE;
7549 }
7550
7551 /* Find the nearest line to a particular section and offset,
7552 for error reporting. */
7553
7554 bfd_boolean
7555 _bfd_elf_find_nearest_line (bfd *abfd,
7556 asection *section,
7557 asymbol **symbols,
7558 bfd_vma offset,
7559 const char **filename_ptr,
7560 const char **functionname_ptr,
7561 unsigned int *line_ptr)
7562 {
7563 bfd_boolean found;
7564
7565 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7566 filename_ptr, functionname_ptr,
7567 line_ptr))
7568 {
7569 if (!*functionname_ptr)
7570 elf_find_function (abfd, section, symbols, offset,
7571 *filename_ptr ? NULL : filename_ptr,
7572 functionname_ptr);
7573
7574 return TRUE;
7575 }
7576
7577 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7578 section, symbols, offset,
7579 filename_ptr, functionname_ptr,
7580 line_ptr, 0,
7581 &elf_tdata (abfd)->dwarf2_find_line_info))
7582 {
7583 if (!*functionname_ptr)
7584 elf_find_function (abfd, section, symbols, offset,
7585 *filename_ptr ? NULL : filename_ptr,
7586 functionname_ptr);
7587
7588 return TRUE;
7589 }
7590
7591 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7592 &found, filename_ptr,
7593 functionname_ptr, line_ptr,
7594 &elf_tdata (abfd)->line_info))
7595 return FALSE;
7596 if (found && (*functionname_ptr || *line_ptr))
7597 return TRUE;
7598
7599 if (symbols == NULL)
7600 return FALSE;
7601
7602 if (! elf_find_function (abfd, section, symbols, offset,
7603 filename_ptr, functionname_ptr))
7604 return FALSE;
7605
7606 *line_ptr = 0;
7607 return TRUE;
7608 }
7609
7610 /* Find the line for a symbol. */
7611
7612 bfd_boolean
7613 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7614 const char **filename_ptr, unsigned int *line_ptr)
7615 {
7616 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7617 filename_ptr, line_ptr, 0,
7618 &elf_tdata (abfd)->dwarf2_find_line_info);
7619 }
7620
7621 /* After a call to bfd_find_nearest_line, successive calls to
7622 bfd_find_inliner_info can be used to get source information about
7623 each level of function inlining that terminated at the address
7624 passed to bfd_find_nearest_line. Currently this is only supported
7625 for DWARF2 with appropriate DWARF3 extensions. */
7626
7627 bfd_boolean
7628 _bfd_elf_find_inliner_info (bfd *abfd,
7629 const char **filename_ptr,
7630 const char **functionname_ptr,
7631 unsigned int *line_ptr)
7632 {
7633 bfd_boolean found;
7634 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7635 functionname_ptr, line_ptr,
7636 & elf_tdata (abfd)->dwarf2_find_line_info);
7637 return found;
7638 }
7639
7640 int
7641 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7642 {
7643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7644 int ret = bed->s->sizeof_ehdr;
7645
7646 if (!info->relocatable)
7647 {
7648 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7649
7650 if (phdr_size == (bfd_size_type) -1)
7651 {
7652 struct elf_segment_map *m;
7653
7654 phdr_size = 0;
7655 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7656 phdr_size += bed->s->sizeof_phdr;
7657
7658 if (phdr_size == 0)
7659 phdr_size = get_program_header_size (abfd, info);
7660 }
7661
7662 elf_tdata (abfd)->program_header_size = phdr_size;
7663 ret += phdr_size;
7664 }
7665
7666 return ret;
7667 }
7668
7669 bfd_boolean
7670 _bfd_elf_set_section_contents (bfd *abfd,
7671 sec_ptr section,
7672 const void *location,
7673 file_ptr offset,
7674 bfd_size_type count)
7675 {
7676 Elf_Internal_Shdr *hdr;
7677 bfd_signed_vma pos;
7678
7679 if (! abfd->output_has_begun
7680 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7681 return FALSE;
7682
7683 hdr = &elf_section_data (section)->this_hdr;
7684 pos = hdr->sh_offset + offset;
7685 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7686 || bfd_bwrite (location, count, abfd) != count)
7687 return FALSE;
7688
7689 return TRUE;
7690 }
7691
7692 void
7693 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7694 arelent *cache_ptr ATTRIBUTE_UNUSED,
7695 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7696 {
7697 abort ();
7698 }
7699
7700 /* Try to convert a non-ELF reloc into an ELF one. */
7701
7702 bfd_boolean
7703 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7704 {
7705 /* Check whether we really have an ELF howto. */
7706
7707 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7708 {
7709 bfd_reloc_code_real_type code;
7710 reloc_howto_type *howto;
7711
7712 /* Alien reloc: Try to determine its type to replace it with an
7713 equivalent ELF reloc. */
7714
7715 if (areloc->howto->pc_relative)
7716 {
7717 switch (areloc->howto->bitsize)
7718 {
7719 case 8:
7720 code = BFD_RELOC_8_PCREL;
7721 break;
7722 case 12:
7723 code = BFD_RELOC_12_PCREL;
7724 break;
7725 case 16:
7726 code = BFD_RELOC_16_PCREL;
7727 break;
7728 case 24:
7729 code = BFD_RELOC_24_PCREL;
7730 break;
7731 case 32:
7732 code = BFD_RELOC_32_PCREL;
7733 break;
7734 case 64:
7735 code = BFD_RELOC_64_PCREL;
7736 break;
7737 default:
7738 goto fail;
7739 }
7740
7741 howto = bfd_reloc_type_lookup (abfd, code);
7742
7743 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7744 {
7745 if (howto->pcrel_offset)
7746 areloc->addend += areloc->address;
7747 else
7748 areloc->addend -= areloc->address; /* addend is unsigned!! */
7749 }
7750 }
7751 else
7752 {
7753 switch (areloc->howto->bitsize)
7754 {
7755 case 8:
7756 code = BFD_RELOC_8;
7757 break;
7758 case 14:
7759 code = BFD_RELOC_14;
7760 break;
7761 case 16:
7762 code = BFD_RELOC_16;
7763 break;
7764 case 26:
7765 code = BFD_RELOC_26;
7766 break;
7767 case 32:
7768 code = BFD_RELOC_32;
7769 break;
7770 case 64:
7771 code = BFD_RELOC_64;
7772 break;
7773 default:
7774 goto fail;
7775 }
7776
7777 howto = bfd_reloc_type_lookup (abfd, code);
7778 }
7779
7780 if (howto)
7781 areloc->howto = howto;
7782 else
7783 goto fail;
7784 }
7785
7786 return TRUE;
7787
7788 fail:
7789 (*_bfd_error_handler)
7790 (_("%B: unsupported relocation type %s"),
7791 abfd, areloc->howto->name);
7792 bfd_set_error (bfd_error_bad_value);
7793 return FALSE;
7794 }
7795
7796 bfd_boolean
7797 _bfd_elf_close_and_cleanup (bfd *abfd)
7798 {
7799 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7800 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7801 {
7802 if (elf_shstrtab (abfd) != NULL)
7803 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7804 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7805 }
7806
7807 return _bfd_generic_close_and_cleanup (abfd);
7808 }
7809
7810 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7811 in the relocation's offset. Thus we cannot allow any sort of sanity
7812 range-checking to interfere. There is nothing else to do in processing
7813 this reloc. */
7814
7815 bfd_reloc_status_type
7816 _bfd_elf_rel_vtable_reloc_fn
7817 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7818 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7819 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7820 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7821 {
7822 return bfd_reloc_ok;
7823 }
7824 \f
7825 /* Elf core file support. Much of this only works on native
7826 toolchains, since we rely on knowing the
7827 machine-dependent procfs structure in order to pick
7828 out details about the corefile. */
7829
7830 #ifdef HAVE_SYS_PROCFS_H
7831 /* Needed for new procfs interface on sparc-solaris. */
7832 # define _STRUCTURED_PROC 1
7833 # include <sys/procfs.h>
7834 #endif
7835
7836 /* Return a PID that identifies a "thread" for threaded cores, or the
7837 PID of the main process for non-threaded cores. */
7838
7839 static int
7840 elfcore_make_pid (bfd *abfd)
7841 {
7842 int pid;
7843
7844 pid = elf_tdata (abfd)->core_lwpid;
7845 if (pid == 0)
7846 pid = elf_tdata (abfd)->core_pid;
7847
7848 return pid;
7849 }
7850
7851 /* If there isn't a section called NAME, make one, using
7852 data from SECT. Note, this function will generate a
7853 reference to NAME, so you shouldn't deallocate or
7854 overwrite it. */
7855
7856 static bfd_boolean
7857 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7858 {
7859 asection *sect2;
7860
7861 if (bfd_get_section_by_name (abfd, name) != NULL)
7862 return TRUE;
7863
7864 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7865 if (sect2 == NULL)
7866 return FALSE;
7867
7868 sect2->size = sect->size;
7869 sect2->filepos = sect->filepos;
7870 sect2->alignment_power = sect->alignment_power;
7871 return TRUE;
7872 }
7873
7874 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7875 actually creates up to two pseudosections:
7876 - For the single-threaded case, a section named NAME, unless
7877 such a section already exists.
7878 - For the multi-threaded case, a section named "NAME/PID", where
7879 PID is elfcore_make_pid (abfd).
7880 Both pseudosections have identical contents. */
7881 bfd_boolean
7882 _bfd_elfcore_make_pseudosection (bfd *abfd,
7883 char *name,
7884 size_t size,
7885 ufile_ptr filepos)
7886 {
7887 char buf[100];
7888 char *threaded_name;
7889 size_t len;
7890 asection *sect;
7891
7892 /* Build the section name. */
7893
7894 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7895 len = strlen (buf) + 1;
7896 threaded_name = (char *) bfd_alloc (abfd, len);
7897 if (threaded_name == NULL)
7898 return FALSE;
7899 memcpy (threaded_name, buf, len);
7900
7901 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7902 SEC_HAS_CONTENTS);
7903 if (sect == NULL)
7904 return FALSE;
7905 sect->size = size;
7906 sect->filepos = filepos;
7907 sect->alignment_power = 2;
7908
7909 return elfcore_maybe_make_sect (abfd, name, sect);
7910 }
7911
7912 /* prstatus_t exists on:
7913 solaris 2.5+
7914 linux 2.[01] + glibc
7915 unixware 4.2
7916 */
7917
7918 #if defined (HAVE_PRSTATUS_T)
7919
7920 static bfd_boolean
7921 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7922 {
7923 size_t size;
7924 int offset;
7925
7926 if (note->descsz == sizeof (prstatus_t))
7927 {
7928 prstatus_t prstat;
7929
7930 size = sizeof (prstat.pr_reg);
7931 offset = offsetof (prstatus_t, pr_reg);
7932 memcpy (&prstat, note->descdata, sizeof (prstat));
7933
7934 /* Do not overwrite the core signal if it
7935 has already been set by another thread. */
7936 if (elf_tdata (abfd)->core_signal == 0)
7937 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7938 if (elf_tdata (abfd)->core_pid == 0)
7939 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7940
7941 /* pr_who exists on:
7942 solaris 2.5+
7943 unixware 4.2
7944 pr_who doesn't exist on:
7945 linux 2.[01]
7946 */
7947 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7948 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7949 #else
7950 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7951 #endif
7952 }
7953 #if defined (HAVE_PRSTATUS32_T)
7954 else if (note->descsz == sizeof (prstatus32_t))
7955 {
7956 /* 64-bit host, 32-bit corefile */
7957 prstatus32_t prstat;
7958
7959 size = sizeof (prstat.pr_reg);
7960 offset = offsetof (prstatus32_t, pr_reg);
7961 memcpy (&prstat, note->descdata, sizeof (prstat));
7962
7963 /* Do not overwrite the core signal if it
7964 has already been set by another thread. */
7965 if (elf_tdata (abfd)->core_signal == 0)
7966 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7967 if (elf_tdata (abfd)->core_pid == 0)
7968 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7969
7970 /* pr_who exists on:
7971 solaris 2.5+
7972 unixware 4.2
7973 pr_who doesn't exist on:
7974 linux 2.[01]
7975 */
7976 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7977 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7978 #else
7979 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7980 #endif
7981 }
7982 #endif /* HAVE_PRSTATUS32_T */
7983 else
7984 {
7985 /* Fail - we don't know how to handle any other
7986 note size (ie. data object type). */
7987 return TRUE;
7988 }
7989
7990 /* Make a ".reg/999" section and a ".reg" section. */
7991 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7992 size, note->descpos + offset);
7993 }
7994 #endif /* defined (HAVE_PRSTATUS_T) */
7995
7996 /* Create a pseudosection containing the exact contents of NOTE. */
7997 static bfd_boolean
7998 elfcore_make_note_pseudosection (bfd *abfd,
7999 char *name,
8000 Elf_Internal_Note *note)
8001 {
8002 return _bfd_elfcore_make_pseudosection (abfd, name,
8003 note->descsz, note->descpos);
8004 }
8005
8006 /* There isn't a consistent prfpregset_t across platforms,
8007 but it doesn't matter, because we don't have to pick this
8008 data structure apart. */
8009
8010 static bfd_boolean
8011 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8012 {
8013 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8014 }
8015
8016 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8017 type of NT_PRXFPREG. Just include the whole note's contents
8018 literally. */
8019
8020 static bfd_boolean
8021 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8022 {
8023 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8024 }
8025
8026 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8027 with a note type of NT_X86_XSTATE. Just include the whole note's
8028 contents literally. */
8029
8030 static bfd_boolean
8031 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8032 {
8033 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8034 }
8035
8036 static bfd_boolean
8037 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8038 {
8039 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8040 }
8041
8042 static bfd_boolean
8043 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8044 {
8045 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8046 }
8047
8048 static bfd_boolean
8049 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8050 {
8051 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8052 }
8053
8054 static bfd_boolean
8055 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8056 {
8057 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8058 }
8059
8060 static bfd_boolean
8061 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8062 {
8063 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8064 }
8065
8066 static bfd_boolean
8067 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8068 {
8069 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8070 }
8071
8072 static bfd_boolean
8073 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8074 {
8075 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8076 }
8077
8078 static bfd_boolean
8079 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8080 {
8081 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8082 }
8083
8084 static bfd_boolean
8085 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8086 {
8087 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8088 }
8089
8090 static bfd_boolean
8091 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8092 {
8093 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8094 }
8095
8096 static bfd_boolean
8097 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8098 {
8099 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8100 }
8101
8102 #if defined (HAVE_PRPSINFO_T)
8103 typedef prpsinfo_t elfcore_psinfo_t;
8104 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8105 typedef prpsinfo32_t elfcore_psinfo32_t;
8106 #endif
8107 #endif
8108
8109 #if defined (HAVE_PSINFO_T)
8110 typedef psinfo_t elfcore_psinfo_t;
8111 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8112 typedef psinfo32_t elfcore_psinfo32_t;
8113 #endif
8114 #endif
8115
8116 /* return a malloc'ed copy of a string at START which is at
8117 most MAX bytes long, possibly without a terminating '\0'.
8118 the copy will always have a terminating '\0'. */
8119
8120 char *
8121 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8122 {
8123 char *dups;
8124 char *end = (char *) memchr (start, '\0', max);
8125 size_t len;
8126
8127 if (end == NULL)
8128 len = max;
8129 else
8130 len = end - start;
8131
8132 dups = (char *) bfd_alloc (abfd, len + 1);
8133 if (dups == NULL)
8134 return NULL;
8135
8136 memcpy (dups, start, len);
8137 dups[len] = '\0';
8138
8139 return dups;
8140 }
8141
8142 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8143 static bfd_boolean
8144 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8145 {
8146 if (note->descsz == sizeof (elfcore_psinfo_t))
8147 {
8148 elfcore_psinfo_t psinfo;
8149
8150 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8151
8152 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8153 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8154 #endif
8155 elf_tdata (abfd)->core_program
8156 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8157 sizeof (psinfo.pr_fname));
8158
8159 elf_tdata (abfd)->core_command
8160 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8161 sizeof (psinfo.pr_psargs));
8162 }
8163 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8164 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8165 {
8166 /* 64-bit host, 32-bit corefile */
8167 elfcore_psinfo32_t psinfo;
8168
8169 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8170
8171 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8172 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8173 #endif
8174 elf_tdata (abfd)->core_program
8175 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8176 sizeof (psinfo.pr_fname));
8177
8178 elf_tdata (abfd)->core_command
8179 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8180 sizeof (psinfo.pr_psargs));
8181 }
8182 #endif
8183
8184 else
8185 {
8186 /* Fail - we don't know how to handle any other
8187 note size (ie. data object type). */
8188 return TRUE;
8189 }
8190
8191 /* Note that for some reason, a spurious space is tacked
8192 onto the end of the args in some (at least one anyway)
8193 implementations, so strip it off if it exists. */
8194
8195 {
8196 char *command = elf_tdata (abfd)->core_command;
8197 int n = strlen (command);
8198
8199 if (0 < n && command[n - 1] == ' ')
8200 command[n - 1] = '\0';
8201 }
8202
8203 return TRUE;
8204 }
8205 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8206
8207 #if defined (HAVE_PSTATUS_T)
8208 static bfd_boolean
8209 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8210 {
8211 if (note->descsz == sizeof (pstatus_t)
8212 #if defined (HAVE_PXSTATUS_T)
8213 || note->descsz == sizeof (pxstatus_t)
8214 #endif
8215 )
8216 {
8217 pstatus_t pstat;
8218
8219 memcpy (&pstat, note->descdata, sizeof (pstat));
8220
8221 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8222 }
8223 #if defined (HAVE_PSTATUS32_T)
8224 else if (note->descsz == sizeof (pstatus32_t))
8225 {
8226 /* 64-bit host, 32-bit corefile */
8227 pstatus32_t pstat;
8228
8229 memcpy (&pstat, note->descdata, sizeof (pstat));
8230
8231 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8232 }
8233 #endif
8234 /* Could grab some more details from the "representative"
8235 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8236 NT_LWPSTATUS note, presumably. */
8237
8238 return TRUE;
8239 }
8240 #endif /* defined (HAVE_PSTATUS_T) */
8241
8242 #if defined (HAVE_LWPSTATUS_T)
8243 static bfd_boolean
8244 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8245 {
8246 lwpstatus_t lwpstat;
8247 char buf[100];
8248 char *name;
8249 size_t len;
8250 asection *sect;
8251
8252 if (note->descsz != sizeof (lwpstat)
8253 #if defined (HAVE_LWPXSTATUS_T)
8254 && note->descsz != sizeof (lwpxstatus_t)
8255 #endif
8256 )
8257 return TRUE;
8258
8259 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8260
8261 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8262 /* Do not overwrite the core signal if it has already been set by
8263 another thread. */
8264 if (elf_tdata (abfd)->core_signal == 0)
8265 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8266
8267 /* Make a ".reg/999" section. */
8268
8269 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8270 len = strlen (buf) + 1;
8271 name = bfd_alloc (abfd, len);
8272 if (name == NULL)
8273 return FALSE;
8274 memcpy (name, buf, len);
8275
8276 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8277 if (sect == NULL)
8278 return FALSE;
8279
8280 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8281 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8282 sect->filepos = note->descpos
8283 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8284 #endif
8285
8286 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8287 sect->size = sizeof (lwpstat.pr_reg);
8288 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8289 #endif
8290
8291 sect->alignment_power = 2;
8292
8293 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8294 return FALSE;
8295
8296 /* Make a ".reg2/999" section */
8297
8298 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8299 len = strlen (buf) + 1;
8300 name = bfd_alloc (abfd, len);
8301 if (name == NULL)
8302 return FALSE;
8303 memcpy (name, buf, len);
8304
8305 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8306 if (sect == NULL)
8307 return FALSE;
8308
8309 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8310 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8311 sect->filepos = note->descpos
8312 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8313 #endif
8314
8315 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8316 sect->size = sizeof (lwpstat.pr_fpreg);
8317 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8318 #endif
8319
8320 sect->alignment_power = 2;
8321
8322 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8323 }
8324 #endif /* defined (HAVE_LWPSTATUS_T) */
8325
8326 static bfd_boolean
8327 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8328 {
8329 char buf[30];
8330 char *name;
8331 size_t len;
8332 asection *sect;
8333 int type;
8334 int is_active_thread;
8335 bfd_vma base_addr;
8336
8337 if (note->descsz < 728)
8338 return TRUE;
8339
8340 if (! CONST_STRNEQ (note->namedata, "win32"))
8341 return TRUE;
8342
8343 type = bfd_get_32 (abfd, note->descdata);
8344
8345 switch (type)
8346 {
8347 case 1 /* NOTE_INFO_PROCESS */:
8348 /* FIXME: need to add ->core_command. */
8349 /* process_info.pid */
8350 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8351 /* process_info.signal */
8352 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8353 break;
8354
8355 case 2 /* NOTE_INFO_THREAD */:
8356 /* Make a ".reg/999" section. */
8357 /* thread_info.tid */
8358 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8359
8360 len = strlen (buf) + 1;
8361 name = (char *) bfd_alloc (abfd, len);
8362 if (name == NULL)
8363 return FALSE;
8364
8365 memcpy (name, buf, len);
8366
8367 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8368 if (sect == NULL)
8369 return FALSE;
8370
8371 /* sizeof (thread_info.thread_context) */
8372 sect->size = 716;
8373 /* offsetof (thread_info.thread_context) */
8374 sect->filepos = note->descpos + 12;
8375 sect->alignment_power = 2;
8376
8377 /* thread_info.is_active_thread */
8378 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8379
8380 if (is_active_thread)
8381 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8382 return FALSE;
8383 break;
8384
8385 case 3 /* NOTE_INFO_MODULE */:
8386 /* Make a ".module/xxxxxxxx" section. */
8387 /* module_info.base_address */
8388 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8389 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8390
8391 len = strlen (buf) + 1;
8392 name = (char *) bfd_alloc (abfd, len);
8393 if (name == NULL)
8394 return FALSE;
8395
8396 memcpy (name, buf, len);
8397
8398 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8399
8400 if (sect == NULL)
8401 return FALSE;
8402
8403 sect->size = note->descsz;
8404 sect->filepos = note->descpos;
8405 sect->alignment_power = 2;
8406 break;
8407
8408 default:
8409 return TRUE;
8410 }
8411
8412 return TRUE;
8413 }
8414
8415 static bfd_boolean
8416 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8417 {
8418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8419
8420 switch (note->type)
8421 {
8422 default:
8423 return TRUE;
8424
8425 case NT_PRSTATUS:
8426 if (bed->elf_backend_grok_prstatus)
8427 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8428 return TRUE;
8429 #if defined (HAVE_PRSTATUS_T)
8430 return elfcore_grok_prstatus (abfd, note);
8431 #else
8432 return TRUE;
8433 #endif
8434
8435 #if defined (HAVE_PSTATUS_T)
8436 case NT_PSTATUS:
8437 return elfcore_grok_pstatus (abfd, note);
8438 #endif
8439
8440 #if defined (HAVE_LWPSTATUS_T)
8441 case NT_LWPSTATUS:
8442 return elfcore_grok_lwpstatus (abfd, note);
8443 #endif
8444
8445 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8446 return elfcore_grok_prfpreg (abfd, note);
8447
8448 case NT_WIN32PSTATUS:
8449 return elfcore_grok_win32pstatus (abfd, note);
8450
8451 case NT_PRXFPREG: /* Linux SSE extension */
8452 if (note->namesz == 6
8453 && strcmp (note->namedata, "LINUX") == 0)
8454 return elfcore_grok_prxfpreg (abfd, note);
8455 else
8456 return TRUE;
8457
8458 case NT_X86_XSTATE: /* Linux XSAVE extension */
8459 if (note->namesz == 6
8460 && strcmp (note->namedata, "LINUX") == 0)
8461 return elfcore_grok_xstatereg (abfd, note);
8462 else
8463 return TRUE;
8464
8465 case NT_PPC_VMX:
8466 if (note->namesz == 6
8467 && strcmp (note->namedata, "LINUX") == 0)
8468 return elfcore_grok_ppc_vmx (abfd, note);
8469 else
8470 return TRUE;
8471
8472 case NT_PPC_VSX:
8473 if (note->namesz == 6
8474 && strcmp (note->namedata, "LINUX") == 0)
8475 return elfcore_grok_ppc_vsx (abfd, note);
8476 else
8477 return TRUE;
8478
8479 case NT_S390_HIGH_GPRS:
8480 if (note->namesz == 6
8481 && strcmp (note->namedata, "LINUX") == 0)
8482 return elfcore_grok_s390_high_gprs (abfd, note);
8483 else
8484 return TRUE;
8485
8486 case NT_S390_TIMER:
8487 if (note->namesz == 6
8488 && strcmp (note->namedata, "LINUX") == 0)
8489 return elfcore_grok_s390_timer (abfd, note);
8490 else
8491 return TRUE;
8492
8493 case NT_S390_TODCMP:
8494 if (note->namesz == 6
8495 && strcmp (note->namedata, "LINUX") == 0)
8496 return elfcore_grok_s390_todcmp (abfd, note);
8497 else
8498 return TRUE;
8499
8500 case NT_S390_TODPREG:
8501 if (note->namesz == 6
8502 && strcmp (note->namedata, "LINUX") == 0)
8503 return elfcore_grok_s390_todpreg (abfd, note);
8504 else
8505 return TRUE;
8506
8507 case NT_S390_CTRS:
8508 if (note->namesz == 6
8509 && strcmp (note->namedata, "LINUX") == 0)
8510 return elfcore_grok_s390_ctrs (abfd, note);
8511 else
8512 return TRUE;
8513
8514 case NT_S390_PREFIX:
8515 if (note->namesz == 6
8516 && strcmp (note->namedata, "LINUX") == 0)
8517 return elfcore_grok_s390_prefix (abfd, note);
8518 else
8519 return TRUE;
8520
8521 case NT_S390_LAST_BREAK:
8522 if (note->namesz == 6
8523 && strcmp (note->namedata, "LINUX") == 0)
8524 return elfcore_grok_s390_last_break (abfd, note);
8525 else
8526 return TRUE;
8527
8528 case NT_S390_SYSTEM_CALL:
8529 if (note->namesz == 6
8530 && strcmp (note->namedata, "LINUX") == 0)
8531 return elfcore_grok_s390_system_call (abfd, note);
8532 else
8533 return TRUE;
8534
8535 case NT_ARM_VFP:
8536 if (note->namesz == 6
8537 && strcmp (note->namedata, "LINUX") == 0)
8538 return elfcore_grok_arm_vfp (abfd, note);
8539 else
8540 return TRUE;
8541
8542 case NT_PRPSINFO:
8543 case NT_PSINFO:
8544 if (bed->elf_backend_grok_psinfo)
8545 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8546 return TRUE;
8547 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8548 return elfcore_grok_psinfo (abfd, note);
8549 #else
8550 return TRUE;
8551 #endif
8552
8553 case NT_AUXV:
8554 {
8555 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8556 SEC_HAS_CONTENTS);
8557
8558 if (sect == NULL)
8559 return FALSE;
8560 sect->size = note->descsz;
8561 sect->filepos = note->descpos;
8562 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8563
8564 return TRUE;
8565 }
8566 }
8567 }
8568
8569 static bfd_boolean
8570 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8571 {
8572 elf_tdata (abfd)->build_id_size = note->descsz;
8573 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8574 if (elf_tdata (abfd)->build_id == NULL)
8575 return FALSE;
8576
8577 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8578
8579 return TRUE;
8580 }
8581
8582 static bfd_boolean
8583 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8584 {
8585 switch (note->type)
8586 {
8587 default:
8588 return TRUE;
8589
8590 case NT_GNU_BUILD_ID:
8591 return elfobj_grok_gnu_build_id (abfd, note);
8592 }
8593 }
8594
8595 static bfd_boolean
8596 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8597 {
8598 struct sdt_note *cur =
8599 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8600 + note->descsz);
8601
8602 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8603 cur->size = (bfd_size_type) note->descsz;
8604 memcpy (cur->data, note->descdata, note->descsz);
8605
8606 elf_tdata (abfd)->sdt_note_head = cur;
8607
8608 return TRUE;
8609 }
8610
8611 static bfd_boolean
8612 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8613 {
8614 switch (note->type)
8615 {
8616 case NT_STAPSDT:
8617 return elfobj_grok_stapsdt_note_1 (abfd, note);
8618
8619 default:
8620 return TRUE;
8621 }
8622 }
8623
8624 static bfd_boolean
8625 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8626 {
8627 char *cp;
8628
8629 cp = strchr (note->namedata, '@');
8630 if (cp != NULL)
8631 {
8632 *lwpidp = atoi(cp + 1);
8633 return TRUE;
8634 }
8635 return FALSE;
8636 }
8637
8638 static bfd_boolean
8639 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8640 {
8641 /* Signal number at offset 0x08. */
8642 elf_tdata (abfd)->core_signal
8643 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8644
8645 /* Process ID at offset 0x50. */
8646 elf_tdata (abfd)->core_pid
8647 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8648
8649 /* Command name at 0x7c (max 32 bytes, including nul). */
8650 elf_tdata (abfd)->core_command
8651 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8652
8653 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8654 note);
8655 }
8656
8657 static bfd_boolean
8658 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8659 {
8660 int lwp;
8661
8662 if (elfcore_netbsd_get_lwpid (note, &lwp))
8663 elf_tdata (abfd)->core_lwpid = lwp;
8664
8665 if (note->type == NT_NETBSDCORE_PROCINFO)
8666 {
8667 /* NetBSD-specific core "procinfo". Note that we expect to
8668 find this note before any of the others, which is fine,
8669 since the kernel writes this note out first when it
8670 creates a core file. */
8671
8672 return elfcore_grok_netbsd_procinfo (abfd, note);
8673 }
8674
8675 /* As of Jan 2002 there are no other machine-independent notes
8676 defined for NetBSD core files. If the note type is less
8677 than the start of the machine-dependent note types, we don't
8678 understand it. */
8679
8680 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8681 return TRUE;
8682
8683
8684 switch (bfd_get_arch (abfd))
8685 {
8686 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8687 PT_GETFPREGS == mach+2. */
8688
8689 case bfd_arch_alpha:
8690 case bfd_arch_sparc:
8691 switch (note->type)
8692 {
8693 case NT_NETBSDCORE_FIRSTMACH+0:
8694 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8695
8696 case NT_NETBSDCORE_FIRSTMACH+2:
8697 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8698
8699 default:
8700 return TRUE;
8701 }
8702
8703 /* On all other arch's, PT_GETREGS == mach+1 and
8704 PT_GETFPREGS == mach+3. */
8705
8706 default:
8707 switch (note->type)
8708 {
8709 case NT_NETBSDCORE_FIRSTMACH+1:
8710 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8711
8712 case NT_NETBSDCORE_FIRSTMACH+3:
8713 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8714
8715 default:
8716 return TRUE;
8717 }
8718 }
8719 /* NOTREACHED */
8720 }
8721
8722 static bfd_boolean
8723 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8724 {
8725 /* Signal number at offset 0x08. */
8726 elf_tdata (abfd)->core_signal
8727 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8728
8729 /* Process ID at offset 0x20. */
8730 elf_tdata (abfd)->core_pid
8731 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8732
8733 /* Command name at 0x48 (max 32 bytes, including nul). */
8734 elf_tdata (abfd)->core_command
8735 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8736
8737 return TRUE;
8738 }
8739
8740 static bfd_boolean
8741 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8742 {
8743 if (note->type == NT_OPENBSD_PROCINFO)
8744 return elfcore_grok_openbsd_procinfo (abfd, note);
8745
8746 if (note->type == NT_OPENBSD_REGS)
8747 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8748
8749 if (note->type == NT_OPENBSD_FPREGS)
8750 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8751
8752 if (note->type == NT_OPENBSD_XFPREGS)
8753 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8754
8755 if (note->type == NT_OPENBSD_AUXV)
8756 {
8757 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8758 SEC_HAS_CONTENTS);
8759
8760 if (sect == NULL)
8761 return FALSE;
8762 sect->size = note->descsz;
8763 sect->filepos = note->descpos;
8764 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8765
8766 return TRUE;
8767 }
8768
8769 if (note->type == NT_OPENBSD_WCOOKIE)
8770 {
8771 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8772 SEC_HAS_CONTENTS);
8773
8774 if (sect == NULL)
8775 return FALSE;
8776 sect->size = note->descsz;
8777 sect->filepos = note->descpos;
8778 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8779
8780 return TRUE;
8781 }
8782
8783 return TRUE;
8784 }
8785
8786 static bfd_boolean
8787 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8788 {
8789 void *ddata = note->descdata;
8790 char buf[100];
8791 char *name;
8792 asection *sect;
8793 short sig;
8794 unsigned flags;
8795
8796 /* nto_procfs_status 'pid' field is at offset 0. */
8797 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8798
8799 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8800 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8801
8802 /* nto_procfs_status 'flags' field is at offset 8. */
8803 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8804
8805 /* nto_procfs_status 'what' field is at offset 14. */
8806 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8807 {
8808 elf_tdata (abfd)->core_signal = sig;
8809 elf_tdata (abfd)->core_lwpid = *tid;
8810 }
8811
8812 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8813 do not come from signals so we make sure we set the current
8814 thread just in case. */
8815 if (flags & 0x00000080)
8816 elf_tdata (abfd)->core_lwpid = *tid;
8817
8818 /* Make a ".qnx_core_status/%d" section. */
8819 sprintf (buf, ".qnx_core_status/%ld", *tid);
8820
8821 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8822 if (name == NULL)
8823 return FALSE;
8824 strcpy (name, buf);
8825
8826 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8827 if (sect == NULL)
8828 return FALSE;
8829
8830 sect->size = note->descsz;
8831 sect->filepos = note->descpos;
8832 sect->alignment_power = 2;
8833
8834 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8835 }
8836
8837 static bfd_boolean
8838 elfcore_grok_nto_regs (bfd *abfd,
8839 Elf_Internal_Note *note,
8840 long tid,
8841 char *base)
8842 {
8843 char buf[100];
8844 char *name;
8845 asection *sect;
8846
8847 /* Make a "(base)/%d" section. */
8848 sprintf (buf, "%s/%ld", base, tid);
8849
8850 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8851 if (name == NULL)
8852 return FALSE;
8853 strcpy (name, buf);
8854
8855 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8856 if (sect == NULL)
8857 return FALSE;
8858
8859 sect->size = note->descsz;
8860 sect->filepos = note->descpos;
8861 sect->alignment_power = 2;
8862
8863 /* This is the current thread. */
8864 if (elf_tdata (abfd)->core_lwpid == tid)
8865 return elfcore_maybe_make_sect (abfd, base, sect);
8866
8867 return TRUE;
8868 }
8869
8870 #define BFD_QNT_CORE_INFO 7
8871 #define BFD_QNT_CORE_STATUS 8
8872 #define BFD_QNT_CORE_GREG 9
8873 #define BFD_QNT_CORE_FPREG 10
8874
8875 static bfd_boolean
8876 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8877 {
8878 /* Every GREG section has a STATUS section before it. Store the
8879 tid from the previous call to pass down to the next gregs
8880 function. */
8881 static long tid = 1;
8882
8883 switch (note->type)
8884 {
8885 case BFD_QNT_CORE_INFO:
8886 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8887 case BFD_QNT_CORE_STATUS:
8888 return elfcore_grok_nto_status (abfd, note, &tid);
8889 case BFD_QNT_CORE_GREG:
8890 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8891 case BFD_QNT_CORE_FPREG:
8892 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8893 default:
8894 return TRUE;
8895 }
8896 }
8897
8898 static bfd_boolean
8899 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8900 {
8901 char *name;
8902 asection *sect;
8903 size_t len;
8904
8905 /* Use note name as section name. */
8906 len = note->namesz;
8907 name = (char *) bfd_alloc (abfd, len);
8908 if (name == NULL)
8909 return FALSE;
8910 memcpy (name, note->namedata, len);
8911 name[len - 1] = '\0';
8912
8913 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8914 if (sect == NULL)
8915 return FALSE;
8916
8917 sect->size = note->descsz;
8918 sect->filepos = note->descpos;
8919 sect->alignment_power = 1;
8920
8921 return TRUE;
8922 }
8923
8924 /* Function: elfcore_write_note
8925
8926 Inputs:
8927 buffer to hold note, and current size of buffer
8928 name of note
8929 type of note
8930 data for note
8931 size of data for note
8932
8933 Writes note to end of buffer. ELF64 notes are written exactly as
8934 for ELF32, despite the current (as of 2006) ELF gabi specifying
8935 that they ought to have 8-byte namesz and descsz field, and have
8936 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8937
8938 Return:
8939 Pointer to realloc'd buffer, *BUFSIZ updated. */
8940
8941 char *
8942 elfcore_write_note (bfd *abfd,
8943 char *buf,
8944 int *bufsiz,
8945 const char *name,
8946 int type,
8947 const void *input,
8948 int size)
8949 {
8950 Elf_External_Note *xnp;
8951 size_t namesz;
8952 size_t newspace;
8953 char *dest;
8954
8955 namesz = 0;
8956 if (name != NULL)
8957 namesz = strlen (name) + 1;
8958
8959 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8960
8961 buf = (char *) realloc (buf, *bufsiz + newspace);
8962 if (buf == NULL)
8963 return buf;
8964 dest = buf + *bufsiz;
8965 *bufsiz += newspace;
8966 xnp = (Elf_External_Note *) dest;
8967 H_PUT_32 (abfd, namesz, xnp->namesz);
8968 H_PUT_32 (abfd, size, xnp->descsz);
8969 H_PUT_32 (abfd, type, xnp->type);
8970 dest = xnp->name;
8971 if (name != NULL)
8972 {
8973 memcpy (dest, name, namesz);
8974 dest += namesz;
8975 while (namesz & 3)
8976 {
8977 *dest++ = '\0';
8978 ++namesz;
8979 }
8980 }
8981 memcpy (dest, input, size);
8982 dest += size;
8983 while (size & 3)
8984 {
8985 *dest++ = '\0';
8986 ++size;
8987 }
8988 return buf;
8989 }
8990
8991 char *
8992 elfcore_write_prpsinfo (bfd *abfd,
8993 char *buf,
8994 int *bufsiz,
8995 const char *fname,
8996 const char *psargs)
8997 {
8998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8999
9000 if (bed->elf_backend_write_core_note != NULL)
9001 {
9002 char *ret;
9003 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9004 NT_PRPSINFO, fname, psargs);
9005 if (ret != NULL)
9006 return ret;
9007 }
9008
9009 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9010 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9011 if (bed->s->elfclass == ELFCLASS32)
9012 {
9013 #if defined (HAVE_PSINFO32_T)
9014 psinfo32_t data;
9015 int note_type = NT_PSINFO;
9016 #else
9017 prpsinfo32_t data;
9018 int note_type = NT_PRPSINFO;
9019 #endif
9020
9021 memset (&data, 0, sizeof (data));
9022 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9023 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9024 return elfcore_write_note (abfd, buf, bufsiz,
9025 "CORE", note_type, &data, sizeof (data));
9026 }
9027 else
9028 #endif
9029 {
9030 #if defined (HAVE_PSINFO_T)
9031 psinfo_t data;
9032 int note_type = NT_PSINFO;
9033 #else
9034 prpsinfo_t data;
9035 int note_type = NT_PRPSINFO;
9036 #endif
9037
9038 memset (&data, 0, sizeof (data));
9039 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9040 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9041 return elfcore_write_note (abfd, buf, bufsiz,
9042 "CORE", note_type, &data, sizeof (data));
9043 }
9044 #endif /* PSINFO_T or PRPSINFO_T */
9045
9046 free (buf);
9047 return NULL;
9048 }
9049
9050 char *
9051 elfcore_write_prstatus (bfd *abfd,
9052 char *buf,
9053 int *bufsiz,
9054 long pid,
9055 int cursig,
9056 const void *gregs)
9057 {
9058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9059
9060 if (bed->elf_backend_write_core_note != NULL)
9061 {
9062 char *ret;
9063 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9064 NT_PRSTATUS,
9065 pid, cursig, gregs);
9066 if (ret != NULL)
9067 return ret;
9068 }
9069
9070 #if defined (HAVE_PRSTATUS_T)
9071 #if defined (HAVE_PRSTATUS32_T)
9072 if (bed->s->elfclass == ELFCLASS32)
9073 {
9074 prstatus32_t prstat;
9075
9076 memset (&prstat, 0, sizeof (prstat));
9077 prstat.pr_pid = pid;
9078 prstat.pr_cursig = cursig;
9079 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9080 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9081 NT_PRSTATUS, &prstat, sizeof (prstat));
9082 }
9083 else
9084 #endif
9085 {
9086 prstatus_t prstat;
9087
9088 memset (&prstat, 0, sizeof (prstat));
9089 prstat.pr_pid = pid;
9090 prstat.pr_cursig = cursig;
9091 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9092 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9093 NT_PRSTATUS, &prstat, sizeof (prstat));
9094 }
9095 #endif /* HAVE_PRSTATUS_T */
9096
9097 free (buf);
9098 return NULL;
9099 }
9100
9101 #if defined (HAVE_LWPSTATUS_T)
9102 char *
9103 elfcore_write_lwpstatus (bfd *abfd,
9104 char *buf,
9105 int *bufsiz,
9106 long pid,
9107 int cursig,
9108 const void *gregs)
9109 {
9110 lwpstatus_t lwpstat;
9111 const char *note_name = "CORE";
9112
9113 memset (&lwpstat, 0, sizeof (lwpstat));
9114 lwpstat.pr_lwpid = pid >> 16;
9115 lwpstat.pr_cursig = cursig;
9116 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9117 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9118 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9119 #if !defined(gregs)
9120 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9121 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9122 #else
9123 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9124 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9125 #endif
9126 #endif
9127 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9128 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9129 }
9130 #endif /* HAVE_LWPSTATUS_T */
9131
9132 #if defined (HAVE_PSTATUS_T)
9133 char *
9134 elfcore_write_pstatus (bfd *abfd,
9135 char *buf,
9136 int *bufsiz,
9137 long pid,
9138 int cursig ATTRIBUTE_UNUSED,
9139 const void *gregs ATTRIBUTE_UNUSED)
9140 {
9141 const char *note_name = "CORE";
9142 #if defined (HAVE_PSTATUS32_T)
9143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9144
9145 if (bed->s->elfclass == ELFCLASS32)
9146 {
9147 pstatus32_t pstat;
9148
9149 memset (&pstat, 0, sizeof (pstat));
9150 pstat.pr_pid = pid & 0xffff;
9151 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9152 NT_PSTATUS, &pstat, sizeof (pstat));
9153 return buf;
9154 }
9155 else
9156 #endif
9157 {
9158 pstatus_t pstat;
9159
9160 memset (&pstat, 0, sizeof (pstat));
9161 pstat.pr_pid = pid & 0xffff;
9162 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9163 NT_PSTATUS, &pstat, sizeof (pstat));
9164 return buf;
9165 }
9166 }
9167 #endif /* HAVE_PSTATUS_T */
9168
9169 char *
9170 elfcore_write_prfpreg (bfd *abfd,
9171 char *buf,
9172 int *bufsiz,
9173 const void *fpregs,
9174 int size)
9175 {
9176 const char *note_name = "CORE";
9177 return elfcore_write_note (abfd, buf, bufsiz,
9178 note_name, NT_FPREGSET, fpregs, size);
9179 }
9180
9181 char *
9182 elfcore_write_prxfpreg (bfd *abfd,
9183 char *buf,
9184 int *bufsiz,
9185 const void *xfpregs,
9186 int size)
9187 {
9188 char *note_name = "LINUX";
9189 return elfcore_write_note (abfd, buf, bufsiz,
9190 note_name, NT_PRXFPREG, xfpregs, size);
9191 }
9192
9193 char *
9194 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9195 const void *xfpregs, int size)
9196 {
9197 char *note_name = "LINUX";
9198 return elfcore_write_note (abfd, buf, bufsiz,
9199 note_name, NT_X86_XSTATE, xfpregs, size);
9200 }
9201
9202 char *
9203 elfcore_write_ppc_vmx (bfd *abfd,
9204 char *buf,
9205 int *bufsiz,
9206 const void *ppc_vmx,
9207 int size)
9208 {
9209 char *note_name = "LINUX";
9210 return elfcore_write_note (abfd, buf, bufsiz,
9211 note_name, NT_PPC_VMX, ppc_vmx, size);
9212 }
9213
9214 char *
9215 elfcore_write_ppc_vsx (bfd *abfd,
9216 char *buf,
9217 int *bufsiz,
9218 const void *ppc_vsx,
9219 int size)
9220 {
9221 char *note_name = "LINUX";
9222 return elfcore_write_note (abfd, buf, bufsiz,
9223 note_name, NT_PPC_VSX, ppc_vsx, size);
9224 }
9225
9226 static char *
9227 elfcore_write_s390_high_gprs (bfd *abfd,
9228 char *buf,
9229 int *bufsiz,
9230 const void *s390_high_gprs,
9231 int size)
9232 {
9233 char *note_name = "LINUX";
9234 return elfcore_write_note (abfd, buf, bufsiz,
9235 note_name, NT_S390_HIGH_GPRS,
9236 s390_high_gprs, size);
9237 }
9238
9239 char *
9240 elfcore_write_s390_timer (bfd *abfd,
9241 char *buf,
9242 int *bufsiz,
9243 const void *s390_timer,
9244 int size)
9245 {
9246 char *note_name = "LINUX";
9247 return elfcore_write_note (abfd, buf, bufsiz,
9248 note_name, NT_S390_TIMER, s390_timer, size);
9249 }
9250
9251 char *
9252 elfcore_write_s390_todcmp (bfd *abfd,
9253 char *buf,
9254 int *bufsiz,
9255 const void *s390_todcmp,
9256 int size)
9257 {
9258 char *note_name = "LINUX";
9259 return elfcore_write_note (abfd, buf, bufsiz,
9260 note_name, NT_S390_TODCMP, s390_todcmp, size);
9261 }
9262
9263 char *
9264 elfcore_write_s390_todpreg (bfd *abfd,
9265 char *buf,
9266 int *bufsiz,
9267 const void *s390_todpreg,
9268 int size)
9269 {
9270 char *note_name = "LINUX";
9271 return elfcore_write_note (abfd, buf, bufsiz,
9272 note_name, NT_S390_TODPREG, s390_todpreg, size);
9273 }
9274
9275 char *
9276 elfcore_write_s390_ctrs (bfd *abfd,
9277 char *buf,
9278 int *bufsiz,
9279 const void *s390_ctrs,
9280 int size)
9281 {
9282 char *note_name = "LINUX";
9283 return elfcore_write_note (abfd, buf, bufsiz,
9284 note_name, NT_S390_CTRS, s390_ctrs, size);
9285 }
9286
9287 char *
9288 elfcore_write_s390_prefix (bfd *abfd,
9289 char *buf,
9290 int *bufsiz,
9291 const void *s390_prefix,
9292 int size)
9293 {
9294 char *note_name = "LINUX";
9295 return elfcore_write_note (abfd, buf, bufsiz,
9296 note_name, NT_S390_PREFIX, s390_prefix, size);
9297 }
9298
9299 char *
9300 elfcore_write_s390_last_break (bfd *abfd,
9301 char *buf,
9302 int *bufsiz,
9303 const void *s390_last_break,
9304 int size)
9305 {
9306 char *note_name = "LINUX";
9307 return elfcore_write_note (abfd, buf, bufsiz,
9308 note_name, NT_S390_LAST_BREAK,
9309 s390_last_break, size);
9310 }
9311
9312 char *
9313 elfcore_write_s390_system_call (bfd *abfd,
9314 char *buf,
9315 int *bufsiz,
9316 const void *s390_system_call,
9317 int size)
9318 {
9319 char *note_name = "LINUX";
9320 return elfcore_write_note (abfd, buf, bufsiz,
9321 note_name, NT_S390_SYSTEM_CALL,
9322 s390_system_call, size);
9323 }
9324
9325 char *
9326 elfcore_write_arm_vfp (bfd *abfd,
9327 char *buf,
9328 int *bufsiz,
9329 const void *arm_vfp,
9330 int size)
9331 {
9332 char *note_name = "LINUX";
9333 return elfcore_write_note (abfd, buf, bufsiz,
9334 note_name, NT_ARM_VFP, arm_vfp, size);
9335 }
9336
9337 char *
9338 elfcore_write_register_note (bfd *abfd,
9339 char *buf,
9340 int *bufsiz,
9341 const char *section,
9342 const void *data,
9343 int size)
9344 {
9345 if (strcmp (section, ".reg2") == 0)
9346 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9347 if (strcmp (section, ".reg-xfp") == 0)
9348 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9349 if (strcmp (section, ".reg-xstate") == 0)
9350 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9351 if (strcmp (section, ".reg-ppc-vmx") == 0)
9352 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9353 if (strcmp (section, ".reg-ppc-vsx") == 0)
9354 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9355 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9356 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9357 if (strcmp (section, ".reg-s390-timer") == 0)
9358 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9359 if (strcmp (section, ".reg-s390-todcmp") == 0)
9360 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9361 if (strcmp (section, ".reg-s390-todpreg") == 0)
9362 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9363 if (strcmp (section, ".reg-s390-ctrs") == 0)
9364 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9365 if (strcmp (section, ".reg-s390-prefix") == 0)
9366 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9367 if (strcmp (section, ".reg-s390-last-break") == 0)
9368 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9369 if (strcmp (section, ".reg-s390-system-call") == 0)
9370 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9371 if (strcmp (section, ".reg-arm-vfp") == 0)
9372 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9373 return NULL;
9374 }
9375
9376 static bfd_boolean
9377 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9378 {
9379 char *p;
9380
9381 p = buf;
9382 while (p < buf + size)
9383 {
9384 /* FIXME: bad alignment assumption. */
9385 Elf_External_Note *xnp = (Elf_External_Note *) p;
9386 Elf_Internal_Note in;
9387
9388 if (offsetof (Elf_External_Note, name) > buf - p + size)
9389 return FALSE;
9390
9391 in.type = H_GET_32 (abfd, xnp->type);
9392
9393 in.namesz = H_GET_32 (abfd, xnp->namesz);
9394 in.namedata = xnp->name;
9395 if (in.namesz > buf - in.namedata + size)
9396 return FALSE;
9397
9398 in.descsz = H_GET_32 (abfd, xnp->descsz);
9399 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9400 in.descpos = offset + (in.descdata - buf);
9401 if (in.descsz != 0
9402 && (in.descdata >= buf + size
9403 || in.descsz > buf - in.descdata + size))
9404 return FALSE;
9405
9406 switch (bfd_get_format (abfd))
9407 {
9408 default:
9409 return TRUE;
9410
9411 case bfd_core:
9412 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9413 {
9414 if (! elfcore_grok_netbsd_note (abfd, &in))
9415 return FALSE;
9416 }
9417 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9418 {
9419 if (! elfcore_grok_openbsd_note (abfd, &in))
9420 return FALSE;
9421 }
9422 else if (CONST_STRNEQ (in.namedata, "QNX"))
9423 {
9424 if (! elfcore_grok_nto_note (abfd, &in))
9425 return FALSE;
9426 }
9427 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9428 {
9429 if (! elfcore_grok_spu_note (abfd, &in))
9430 return FALSE;
9431 }
9432 else
9433 {
9434 if (! elfcore_grok_note (abfd, &in))
9435 return FALSE;
9436 }
9437 break;
9438
9439 case bfd_object:
9440 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9441 {
9442 if (! elfobj_grok_gnu_note (abfd, &in))
9443 return FALSE;
9444 }
9445 else if (in.namesz == sizeof "stapsdt"
9446 && strcmp (in.namedata, "stapsdt") == 0)
9447 {
9448 if (! elfobj_grok_stapsdt_note (abfd, &in))
9449 return FALSE;
9450 }
9451 break;
9452 }
9453
9454 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9455 }
9456
9457 return TRUE;
9458 }
9459
9460 static bfd_boolean
9461 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9462 {
9463 char *buf;
9464
9465 if (size <= 0)
9466 return TRUE;
9467
9468 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9469 return FALSE;
9470
9471 buf = (char *) bfd_malloc (size);
9472 if (buf == NULL)
9473 return FALSE;
9474
9475 if (bfd_bread (buf, size, abfd) != size
9476 || !elf_parse_notes (abfd, buf, size, offset))
9477 {
9478 free (buf);
9479 return FALSE;
9480 }
9481
9482 free (buf);
9483 return TRUE;
9484 }
9485 \f
9486 /* Providing external access to the ELF program header table. */
9487
9488 /* Return an upper bound on the number of bytes required to store a
9489 copy of ABFD's program header table entries. Return -1 if an error
9490 occurs; bfd_get_error will return an appropriate code. */
9491
9492 long
9493 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9494 {
9495 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9496 {
9497 bfd_set_error (bfd_error_wrong_format);
9498 return -1;
9499 }
9500
9501 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9502 }
9503
9504 /* Copy ABFD's program header table entries to *PHDRS. The entries
9505 will be stored as an array of Elf_Internal_Phdr structures, as
9506 defined in include/elf/internal.h. To find out how large the
9507 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9508
9509 Return the number of program header table entries read, or -1 if an
9510 error occurs; bfd_get_error will return an appropriate code. */
9511
9512 int
9513 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9514 {
9515 int num_phdrs;
9516
9517 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9518 {
9519 bfd_set_error (bfd_error_wrong_format);
9520 return -1;
9521 }
9522
9523 num_phdrs = elf_elfheader (abfd)->e_phnum;
9524 memcpy (phdrs, elf_tdata (abfd)->phdr,
9525 num_phdrs * sizeof (Elf_Internal_Phdr));
9526
9527 return num_phdrs;
9528 }
9529
9530 enum elf_reloc_type_class
9531 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9532 {
9533 return reloc_class_normal;
9534 }
9535
9536 /* For RELA architectures, return the relocation value for a
9537 relocation against a local symbol. */
9538
9539 bfd_vma
9540 _bfd_elf_rela_local_sym (bfd *abfd,
9541 Elf_Internal_Sym *sym,
9542 asection **psec,
9543 Elf_Internal_Rela *rel)
9544 {
9545 asection *sec = *psec;
9546 bfd_vma relocation;
9547
9548 relocation = (sec->output_section->vma
9549 + sec->output_offset
9550 + sym->st_value);
9551 if ((sec->flags & SEC_MERGE)
9552 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9553 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9554 {
9555 rel->r_addend =
9556 _bfd_merged_section_offset (abfd, psec,
9557 elf_section_data (sec)->sec_info,
9558 sym->st_value + rel->r_addend);
9559 if (sec != *psec)
9560 {
9561 /* If we have changed the section, and our original section is
9562 marked with SEC_EXCLUDE, it means that the original
9563 SEC_MERGE section has been completely subsumed in some
9564 other SEC_MERGE section. In this case, we need to leave
9565 some info around for --emit-relocs. */
9566 if ((sec->flags & SEC_EXCLUDE) != 0)
9567 sec->kept_section = *psec;
9568 sec = *psec;
9569 }
9570 rel->r_addend -= relocation;
9571 rel->r_addend += sec->output_section->vma + sec->output_offset;
9572 }
9573 return relocation;
9574 }
9575
9576 bfd_vma
9577 _bfd_elf_rel_local_sym (bfd *abfd,
9578 Elf_Internal_Sym *sym,
9579 asection **psec,
9580 bfd_vma addend)
9581 {
9582 asection *sec = *psec;
9583
9584 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9585 return sym->st_value + addend;
9586
9587 return _bfd_merged_section_offset (abfd, psec,
9588 elf_section_data (sec)->sec_info,
9589 sym->st_value + addend);
9590 }
9591
9592 bfd_vma
9593 _bfd_elf_section_offset (bfd *abfd,
9594 struct bfd_link_info *info,
9595 asection *sec,
9596 bfd_vma offset)
9597 {
9598 switch (sec->sec_info_type)
9599 {
9600 case SEC_INFO_TYPE_STABS:
9601 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9602 offset);
9603 case SEC_INFO_TYPE_EH_FRAME:
9604 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9605 default:
9606 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9607 {
9608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9609 bfd_size_type address_size = bed->s->arch_size / 8;
9610 offset = sec->size - offset - address_size;
9611 }
9612 return offset;
9613 }
9614 }
9615 \f
9616 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9617 reconstruct an ELF file by reading the segments out of remote memory
9618 based on the ELF file header at EHDR_VMA and the ELF program headers it
9619 points to. If not null, *LOADBASEP is filled in with the difference
9620 between the VMAs from which the segments were read, and the VMAs the
9621 file headers (and hence BFD's idea of each section's VMA) put them at.
9622
9623 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9624 remote memory at target address VMA into the local buffer at MYADDR; it
9625 should return zero on success or an `errno' code on failure. TEMPL must
9626 be a BFD for an ELF target with the word size and byte order found in
9627 the remote memory. */
9628
9629 bfd *
9630 bfd_elf_bfd_from_remote_memory
9631 (bfd *templ,
9632 bfd_vma ehdr_vma,
9633 bfd_vma *loadbasep,
9634 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9635 {
9636 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9637 (templ, ehdr_vma, loadbasep, target_read_memory);
9638 }
9639 \f
9640 long
9641 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9642 long symcount ATTRIBUTE_UNUSED,
9643 asymbol **syms ATTRIBUTE_UNUSED,
9644 long dynsymcount,
9645 asymbol **dynsyms,
9646 asymbol **ret)
9647 {
9648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9649 asection *relplt;
9650 asymbol *s;
9651 const char *relplt_name;
9652 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9653 arelent *p;
9654 long count, i, n;
9655 size_t size;
9656 Elf_Internal_Shdr *hdr;
9657 char *names;
9658 asection *plt;
9659
9660 *ret = NULL;
9661
9662 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9663 return 0;
9664
9665 if (dynsymcount <= 0)
9666 return 0;
9667
9668 if (!bed->plt_sym_val)
9669 return 0;
9670
9671 relplt_name = bed->relplt_name;
9672 if (relplt_name == NULL)
9673 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9674 relplt = bfd_get_section_by_name (abfd, relplt_name);
9675 if (relplt == NULL)
9676 return 0;
9677
9678 hdr = &elf_section_data (relplt)->this_hdr;
9679 if (hdr->sh_link != elf_dynsymtab (abfd)
9680 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9681 return 0;
9682
9683 plt = bfd_get_section_by_name (abfd, ".plt");
9684 if (plt == NULL)
9685 return 0;
9686
9687 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9688 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9689 return -1;
9690
9691 count = relplt->size / hdr->sh_entsize;
9692 size = count * sizeof (asymbol);
9693 p = relplt->relocation;
9694 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9695 {
9696 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9697 if (p->addend != 0)
9698 {
9699 #ifdef BFD64
9700 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9701 #else
9702 size += sizeof ("+0x") - 1 + 8;
9703 #endif
9704 }
9705 }
9706
9707 s = *ret = (asymbol *) bfd_malloc (size);
9708 if (s == NULL)
9709 return -1;
9710
9711 names = (char *) (s + count);
9712 p = relplt->relocation;
9713 n = 0;
9714 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9715 {
9716 size_t len;
9717 bfd_vma addr;
9718
9719 addr = bed->plt_sym_val (i, plt, p);
9720 if (addr == (bfd_vma) -1)
9721 continue;
9722
9723 *s = **p->sym_ptr_ptr;
9724 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9725 we are defining a symbol, ensure one of them is set. */
9726 if ((s->flags & BSF_LOCAL) == 0)
9727 s->flags |= BSF_GLOBAL;
9728 s->flags |= BSF_SYNTHETIC;
9729 s->section = plt;
9730 s->value = addr - plt->vma;
9731 s->name = names;
9732 s->udata.p = NULL;
9733 len = strlen ((*p->sym_ptr_ptr)->name);
9734 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9735 names += len;
9736 if (p->addend != 0)
9737 {
9738 char buf[30], *a;
9739
9740 memcpy (names, "+0x", sizeof ("+0x") - 1);
9741 names += sizeof ("+0x") - 1;
9742 bfd_sprintf_vma (abfd, buf, p->addend);
9743 for (a = buf; *a == '0'; ++a)
9744 ;
9745 len = strlen (a);
9746 memcpy (names, a, len);
9747 names += len;
9748 }
9749 memcpy (names, "@plt", sizeof ("@plt"));
9750 names += sizeof ("@plt");
9751 ++s, ++n;
9752 }
9753
9754 return n;
9755 }
9756
9757 /* It is only used by x86-64 so far. */
9758 asection _bfd_elf_large_com_section
9759 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9760 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9761
9762 void
9763 _bfd_elf_set_osabi (bfd * abfd,
9764 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9765 {
9766 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9767
9768 i_ehdrp = elf_elfheader (abfd);
9769
9770 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9771
9772 /* To make things simpler for the loader on Linux systems we set the
9773 osabi field to ELFOSABI_GNU if the binary contains symbols of
9774 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9775 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9776 && elf_tdata (abfd)->has_gnu_symbols)
9777 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9778 }
9779
9780
9781 /* Return TRUE for ELF symbol types that represent functions.
9782 This is the default version of this function, which is sufficient for
9783 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9784
9785 bfd_boolean
9786 _bfd_elf_is_function_type (unsigned int type)
9787 {
9788 return (type == STT_FUNC
9789 || type == STT_GNU_IFUNC);
9790 }
9791
9792 /* If the ELF symbol SYM might be a function in SEC, return the
9793 function size and set *CODE_OFF to the function's entry point,
9794 otherwise return zero. */
9795
9796 bfd_size_type
9797 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9798 bfd_vma *code_off)
9799 {
9800 bfd_size_type size;
9801
9802 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9803 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9804 || sym->section != sec)
9805 return 0;
9806
9807 *code_off = sym->value;
9808 size = 0;
9809 if (!(sym->flags & BSF_SYNTHETIC))
9810 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9811 if (size == 0)
9812 size = 1;
9813 return size;
9814 }