]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
PR 12763
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006 }
2007
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010 Elf_Internal_Sym *
2011 bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014 {
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037 }
2038
2039 /* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042 asection *
2043 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044 {
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048 }
2049
2050 static const struct bfd_elf_special_section special_sections_b[] =
2051 {
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_c[] =
2057 {
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060 };
2061
2062 static const struct bfd_elf_special_section special_sections_d[] =
2063 {
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075 };
2076
2077 static const struct bfd_elf_special_section special_sections_f[] =
2078 {
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_g[] =
2085 {
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_h[] =
2099 {
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102 };
2103
2104 static const struct bfd_elf_special_section special_sections_i[] =
2105 {
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_l[] =
2113 {
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_n[] =
2119 {
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123 };
2124
2125 static const struct bfd_elf_special_section special_sections_p[] =
2126 {
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_r[] =
2133 {
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139 };
2140
2141 static const struct bfd_elf_special_section special_sections_s[] =
2142 {
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150 };
2151
2152 static const struct bfd_elf_special_section special_sections_t[] =
2153 {
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158 };
2159
2160 static const struct bfd_elf_special_section special_sections_z[] =
2161 {
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167 };
2168
2169 static const struct bfd_elf_special_section * const special_sections[] =
2170 {
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196 };
2197
2198 const struct bfd_elf_special_section *
2199 _bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202 {
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244 }
2245
2246 const struct bfd_elf_special_section *
2247 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248 {
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281 }
2282
2283 bfd_boolean
2284 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285 {
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329 }
2330
2331 /* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353 bfd_boolean
2354 _bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358 {
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 bfd_boolean
2446 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447 {
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492 }
2493
2494 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497 Elf_Internal_Shdr *
2498 _bfd_elf_single_rel_hdr (asection *sec)
2499 {
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507 }
2508
2509 /* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514 bfd_boolean
2515 _bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519 {
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551 }
2552
2553 /* Return the default section type based on the passed in section flags. */
2554
2555 int
2556 bfd_elf_get_default_section_type (flagword flags)
2557 {
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562 }
2563
2564 struct fake_section_arg
2565 {
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568 };
2569
2570 /* Set up an ELF internal section header for a section. */
2571
2572 static void
2573 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574 {
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792 }
2793
2794 /* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799 void
2800 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801 {
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908 }
2909
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914 static bfd_boolean
2915 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916 {
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (elf_discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226 }
3227
3228 /* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231 static bfd_boolean
3232 sym_is_global (bfd *abfd, asymbol *sym)
3233 {
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242 }
3243
3244 /* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247 static bfd_boolean
3248 ignore_section_sym (bfd *abfd, asymbol *sym)
3249 {
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254 }
3255
3256 static bfd_boolean
3257 elf_map_symbols (bfd *abfd)
3258 {
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271 #ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274 #endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377 }
3378
3379 /* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382 static inline file_ptr
3383 align_file_position (file_ptr off, int align)
3384 {
3385 return (off + align - 1) & ~(align - 1);
3386 }
3387
3388 /* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391 file_ptr
3392 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395 {
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404 }
3405
3406 /* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410 bfd_boolean
3411 _bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413 {
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511 }
3512
3513 /* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516 static bfd_size_type
3517 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518 {
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607 }
3608
3609 /* Find the segment that contains the output_section of section. */
3610
3611 Elf_Internal_Phdr *
3612 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613 {
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630 }
3631
3632 /* Create a mapping from a set of sections to a program segment. */
3633
3634 static struct elf_segment_map *
3635 make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640 {
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665 }
3666
3667 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670 struct elf_segment_map *
3671 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672 {
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685 }
3686
3687 /* Possibly add or remove segments from the segment map. */
3688
3689 static bfd_boolean
3690 elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693 {
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733 }
3734
3735 /* Set up a mapping from BFD sections to program segments. */
3736
3737 bfd_boolean
3738 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739 {
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3748 {
3749 asection *s;
3750 unsigned int i;
3751 struct elf_segment_map *mfirst;
3752 struct elf_segment_map **pm;
3753 asection *last_hdr;
3754 bfd_vma last_size;
3755 unsigned int phdr_index;
3756 bfd_vma maxpagesize;
3757 asection **hdrpp;
3758 bfd_boolean phdr_in_segment = TRUE;
3759 bfd_boolean writable;
3760 int tls_count = 0;
3761 asection *first_tls = NULL;
3762 asection *dynsec, *eh_frame_hdr;
3763 bfd_size_type amt;
3764 bfd_vma addr_mask, wrap_to = 0;
3765
3766 /* Select the allocated sections, and sort them. */
3767
3768 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3769 sizeof (asection *));
3770 if (sections == NULL)
3771 goto error_return;
3772
3773 /* Calculate top address, avoiding undefined behaviour of shift
3774 left operator when shift count is equal to size of type
3775 being shifted. */
3776 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3777 addr_mask = (addr_mask << 1) + 1;
3778
3779 i = 0;
3780 for (s = abfd->sections; s != NULL; s = s->next)
3781 {
3782 if ((s->flags & SEC_ALLOC) != 0)
3783 {
3784 sections[i] = s;
3785 ++i;
3786 /* A wrapping section potentially clashes with header. */
3787 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3788 wrap_to = (s->lma + s->size) & addr_mask;
3789 }
3790 }
3791 BFD_ASSERT (i <= bfd_count_sections (abfd));
3792 count = i;
3793
3794 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3795
3796 /* Build the mapping. */
3797
3798 mfirst = NULL;
3799 pm = &mfirst;
3800
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3803 section. */
3804 s = bfd_get_section_by_name (abfd, ".interp");
3805 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3806 {
3807 amt = sizeof (struct elf_segment_map);
3808 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3809 if (m == NULL)
3810 goto error_return;
3811 m->next = NULL;
3812 m->p_type = PT_PHDR;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m->p_flags = PF_R | PF_X;
3815 m->p_flags_valid = 1;
3816 m->includes_phdrs = 1;
3817
3818 *pm = m;
3819 pm = &m->next;
3820
3821 amt = sizeof (struct elf_segment_map);
3822 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3823 if (m == NULL)
3824 goto error_return;
3825 m->next = NULL;
3826 m->p_type = PT_INTERP;
3827 m->count = 1;
3828 m->sections[0] = s;
3829
3830 *pm = m;
3831 pm = &m->next;
3832 }
3833
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3837 last_hdr = NULL;
3838 last_size = 0;
3839 phdr_index = 0;
3840 maxpagesize = bed->maxpagesize;
3841 writable = FALSE;
3842 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3843 if (dynsec != NULL
3844 && (dynsec->flags & SEC_LOAD) == 0)
3845 dynsec = NULL;
3846
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3851 if (count > 0)
3852 {
3853 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3854
3855 if (phdr_size == (bfd_size_type) -1)
3856 phdr_size = get_program_header_size (abfd, info);
3857 if ((abfd->flags & D_PAGED) == 0
3858 || (sections[0]->lma & addr_mask) < phdr_size
3859 || ((sections[0]->lma & addr_mask) % maxpagesize
3860 < phdr_size % maxpagesize)
3861 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3862 phdr_in_segment = FALSE;
3863 }
3864
3865 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3866 {
3867 asection *hdr;
3868 bfd_boolean new_segment;
3869
3870 hdr = *hdrpp;
3871
3872 /* See if this section and the last one will fit in the same
3873 segment. */
3874
3875 if (last_hdr == NULL)
3876 {
3877 /* If we don't have a segment yet, then we don't need a new
3878 one (we build the last one after this loop). */
3879 new_segment = FALSE;
3880 }
3881 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3882 {
3883 /* If this section has a different relation between the
3884 virtual address and the load address, then we need a new
3885 segment. */
3886 new_segment = TRUE;
3887 }
3888 else if (hdr->lma < last_hdr->lma + last_size
3889 || last_hdr->lma + last_size < last_hdr->lma)
3890 {
3891 /* If this section has a load address that makes it overlap
3892 the previous section, then we need a new segment. */
3893 new_segment = TRUE;
3894 }
3895 /* In the next test we have to be careful when last_hdr->lma is close
3896 to the end of the address space. If the aligned address wraps
3897 around to the start of the address space, then there are no more
3898 pages left in memory and it is OK to assume that the current
3899 section can be included in the current segment. */
3900 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3901 > last_hdr->lma)
3902 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3903 <= hdr->lma))
3904 {
3905 /* If putting this section in this segment would force us to
3906 skip a page in the segment, then we need a new segment. */
3907 new_segment = TRUE;
3908 }
3909 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3910 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3911 {
3912 /* We don't want to put a loadable section after a
3913 nonloadable section in the same segment.
3914 Consider .tbss sections as loadable for this purpose. */
3915 new_segment = TRUE;
3916 }
3917 else if ((abfd->flags & D_PAGED) == 0)
3918 {
3919 /* If the file is not demand paged, which means that we
3920 don't require the sections to be correctly aligned in the
3921 file, then there is no other reason for a new segment. */
3922 new_segment = FALSE;
3923 }
3924 else if (! writable
3925 && (hdr->flags & SEC_READONLY) == 0
3926 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3927 != (hdr->lma & -maxpagesize)))
3928 {
3929 /* We don't want to put a writable section in a read only
3930 segment, unless they are on the same page in memory
3931 anyhow. We already know that the last section does not
3932 bring us past the current section on the page, so the
3933 only case in which the new section is not on the same
3934 page as the previous section is when the previous section
3935 ends precisely on a page boundary. */
3936 new_segment = TRUE;
3937 }
3938 else
3939 {
3940 /* Otherwise, we can use the same segment. */
3941 new_segment = FALSE;
3942 }
3943
3944 /* Allow interested parties a chance to override our decision. */
3945 if (last_hdr != NULL
3946 && info != NULL
3947 && info->callbacks->override_segment_assignment != NULL)
3948 new_segment
3949 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3950 last_hdr,
3951 new_segment);
3952
3953 if (! new_segment)
3954 {
3955 if ((hdr->flags & SEC_READONLY) == 0)
3956 writable = TRUE;
3957 last_hdr = hdr;
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3960 != SEC_THREAD_LOCAL)
3961 last_size = hdr->size;
3962 else
3963 last_size = 0;
3964 continue;
3965 }
3966
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3969
3970 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3971 if (m == NULL)
3972 goto error_return;
3973
3974 *pm = m;
3975 pm = &m->next;
3976
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 else
3980 writable = FALSE;
3981
3982 last_hdr = hdr;
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3985 last_size = hdr->size;
3986 else
3987 last_size = 0;
3988 phdr_index = i;
3989 phdr_in_segment = FALSE;
3990 }
3991
3992 /* Create a final PT_LOAD program segment, but not if it's just
3993 for .tbss. */
3994 if (last_hdr != NULL
3995 && (i - phdr_index != 1
3996 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3997 != SEC_THREAD_LOCAL)))
3998 {
3999 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4000 if (m == NULL)
4001 goto error_return;
4002
4003 *pm = m;
4004 pm = &m->next;
4005 }
4006
4007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4008 if (dynsec != NULL)
4009 {
4010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4011 if (m == NULL)
4012 goto error_return;
4013 *pm = m;
4014 pm = &m->next;
4015 }
4016
4017 /* For each batch of consecutive loadable .note sections,
4018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4019 because if we link together nonloadable .note sections and
4020 loadable .note sections, we will generate two .note sections
4021 in the output file. FIXME: Using names for section types is
4022 bogus anyhow. */
4023 for (s = abfd->sections; s != NULL; s = s->next)
4024 {
4025 if ((s->flags & SEC_LOAD) != 0
4026 && CONST_STRNEQ (s->name, ".note"))
4027 {
4028 asection *s2;
4029
4030 count = 1;
4031 amt = sizeof (struct elf_segment_map);
4032 if (s->alignment_power == 2)
4033 for (s2 = s; s2->next != NULL; s2 = s2->next)
4034 {
4035 if (s2->next->alignment_power == 2
4036 && (s2->next->flags & SEC_LOAD) != 0
4037 && CONST_STRNEQ (s2->next->name, ".note")
4038 && align_power (s2->lma + s2->size, 2)
4039 == s2->next->lma)
4040 count++;
4041 else
4042 break;
4043 }
4044 amt += (count - 1) * sizeof (asection *);
4045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4046 if (m == NULL)
4047 goto error_return;
4048 m->next = NULL;
4049 m->p_type = PT_NOTE;
4050 m->count = count;
4051 while (count > 1)
4052 {
4053 m->sections[m->count - count--] = s;
4054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4055 s = s->next;
4056 }
4057 m->sections[m->count - 1] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 *pm = m;
4060 pm = &m->next;
4061 }
4062 if (s->flags & SEC_THREAD_LOCAL)
4063 {
4064 if (! tls_count)
4065 first_tls = s;
4066 tls_count++;
4067 }
4068 }
4069
4070 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4071 if (tls_count > 0)
4072 {
4073 amt = sizeof (struct elf_segment_map);
4074 amt += (tls_count - 1) * sizeof (asection *);
4075 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4076 if (m == NULL)
4077 goto error_return;
4078 m->next = NULL;
4079 m->p_type = PT_TLS;
4080 m->count = tls_count;
4081 /* Mandated PF_R. */
4082 m->p_flags = PF_R;
4083 m->p_flags_valid = 1;
4084 for (i = 0; i < (unsigned int) tls_count; ++i)
4085 {
4086 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4087 m->sections[i] = first_tls;
4088 first_tls = first_tls->next;
4089 }
4090
4091 *pm = m;
4092 pm = &m->next;
4093 }
4094
4095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4096 segment. */
4097 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4098 if (eh_frame_hdr != NULL
4099 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4100 {
4101 amt = sizeof (struct elf_segment_map);
4102 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4103 if (m == NULL)
4104 goto error_return;
4105 m->next = NULL;
4106 m->p_type = PT_GNU_EH_FRAME;
4107 m->count = 1;
4108 m->sections[0] = eh_frame_hdr->output_section;
4109
4110 *pm = m;
4111 pm = &m->next;
4112 }
4113
4114 if (elf_tdata (abfd)->stack_flags)
4115 {
4116 amt = sizeof (struct elf_segment_map);
4117 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4118 if (m == NULL)
4119 goto error_return;
4120 m->next = NULL;
4121 m->p_type = PT_GNU_STACK;
4122 m->p_flags = elf_tdata (abfd)->stack_flags;
4123 m->p_flags_valid = 1;
4124
4125 *pm = m;
4126 pm = &m->next;
4127 }
4128
4129 if (info != NULL && info->relro)
4130 {
4131 for (m = mfirst; m != NULL; m = m->next)
4132 {
4133 if (m->p_type == PT_LOAD)
4134 {
4135 asection *last = m->sections[m->count - 1];
4136 bfd_vma vaddr = m->sections[0]->vma;
4137 bfd_vma filesz = last->vma - vaddr + last->size;
4138
4139 if (vaddr < info->relro_end
4140 && vaddr >= info->relro_start
4141 && (vaddr + filesz) >= info->relro_end)
4142 break;
4143 }
4144 }
4145
4146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4147 if (m != NULL)
4148 {
4149 amt = sizeof (struct elf_segment_map);
4150 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4151 if (m == NULL)
4152 goto error_return;
4153 m->next = NULL;
4154 m->p_type = PT_GNU_RELRO;
4155 m->p_flags = PF_R;
4156 m->p_flags_valid = 1;
4157
4158 *pm = m;
4159 pm = &m->next;
4160 }
4161 }
4162
4163 free (sections);
4164 elf_tdata (abfd)->segment_map = mfirst;
4165 }
4166
4167 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4168 return FALSE;
4169
4170 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4171 ++count;
4172 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4173
4174 return TRUE;
4175
4176 error_return:
4177 if (sections != NULL)
4178 free (sections);
4179 return FALSE;
4180 }
4181
4182 /* Sort sections by address. */
4183
4184 static int
4185 elf_sort_sections (const void *arg1, const void *arg2)
4186 {
4187 const asection *sec1 = *(const asection **) arg1;
4188 const asection *sec2 = *(const asection **) arg2;
4189 bfd_size_type size1, size2;
4190
4191 /* Sort by LMA first, since this is the address used to
4192 place the section into a segment. */
4193 if (sec1->lma < sec2->lma)
4194 return -1;
4195 else if (sec1->lma > sec2->lma)
4196 return 1;
4197
4198 /* Then sort by VMA. Normally the LMA and the VMA will be
4199 the same, and this will do nothing. */
4200 if (sec1->vma < sec2->vma)
4201 return -1;
4202 else if (sec1->vma > sec2->vma)
4203 return 1;
4204
4205 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4206
4207 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4208
4209 if (TOEND (sec1))
4210 {
4211 if (TOEND (sec2))
4212 {
4213 /* If the indicies are the same, do not return 0
4214 here, but continue to try the next comparison. */
4215 if (sec1->target_index - sec2->target_index != 0)
4216 return sec1->target_index - sec2->target_index;
4217 }
4218 else
4219 return 1;
4220 }
4221 else if (TOEND (sec2))
4222 return -1;
4223
4224 #undef TOEND
4225
4226 /* Sort by size, to put zero sized sections
4227 before others at the same address. */
4228
4229 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4230 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4231
4232 if (size1 < size2)
4233 return -1;
4234 if (size1 > size2)
4235 return 1;
4236
4237 return sec1->target_index - sec2->target_index;
4238 }
4239
4240 /* Ian Lance Taylor writes:
4241
4242 We shouldn't be using % with a negative signed number. That's just
4243 not good. We have to make sure either that the number is not
4244 negative, or that the number has an unsigned type. When the types
4245 are all the same size they wind up as unsigned. When file_ptr is a
4246 larger signed type, the arithmetic winds up as signed long long,
4247 which is wrong.
4248
4249 What we're trying to say here is something like ``increase OFF by
4250 the least amount that will cause it to be equal to the VMA modulo
4251 the page size.'' */
4252 /* In other words, something like:
4253
4254 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4255 off_offset = off % bed->maxpagesize;
4256 if (vma_offset < off_offset)
4257 adjustment = vma_offset + bed->maxpagesize - off_offset;
4258 else
4259 adjustment = vma_offset - off_offset;
4260
4261 which can can be collapsed into the expression below. */
4262
4263 static file_ptr
4264 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4265 {
4266 return ((vma - off) % maxpagesize);
4267 }
4268
4269 static void
4270 print_segment_map (const struct elf_segment_map *m)
4271 {
4272 unsigned int j;
4273 const char *pt = get_segment_type (m->p_type);
4274 char buf[32];
4275
4276 if (pt == NULL)
4277 {
4278 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4279 sprintf (buf, "LOPROC+%7.7x",
4280 (unsigned int) (m->p_type - PT_LOPROC));
4281 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4282 sprintf (buf, "LOOS+%7.7x",
4283 (unsigned int) (m->p_type - PT_LOOS));
4284 else
4285 snprintf (buf, sizeof (buf), "%8.8x",
4286 (unsigned int) m->p_type);
4287 pt = buf;
4288 }
4289 fflush (stdout);
4290 fprintf (stderr, "%s:", pt);
4291 for (j = 0; j < m->count; j++)
4292 fprintf (stderr, " %s", m->sections [j]->name);
4293 putc ('\n',stderr);
4294 fflush (stderr);
4295 }
4296
4297 static bfd_boolean
4298 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4299 {
4300 void *buf;
4301 bfd_boolean ret;
4302
4303 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4304 return FALSE;
4305 buf = bfd_zmalloc (len);
4306 if (buf == NULL)
4307 return FALSE;
4308 ret = bfd_bwrite (buf, len, abfd) == len;
4309 free (buf);
4310 return ret;
4311 }
4312
4313 /* Assign file positions to the sections based on the mapping from
4314 sections to segments. This function also sets up some fields in
4315 the file header. */
4316
4317 static bfd_boolean
4318 assign_file_positions_for_load_sections (bfd *abfd,
4319 struct bfd_link_info *link_info)
4320 {
4321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4322 struct elf_segment_map *m;
4323 Elf_Internal_Phdr *phdrs;
4324 Elf_Internal_Phdr *p;
4325 file_ptr off;
4326 bfd_size_type maxpagesize;
4327 unsigned int alloc;
4328 unsigned int i, j;
4329 bfd_vma header_pad = 0;
4330
4331 if (link_info == NULL
4332 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4333 return FALSE;
4334
4335 alloc = 0;
4336 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4337 {
4338 ++alloc;
4339 if (m->header_size)
4340 header_pad = m->header_size;
4341 }
4342
4343 if (alloc)
4344 {
4345 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4346 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4347 }
4348 else
4349 {
4350 /* PR binutils/12467. */
4351 elf_elfheader (abfd)->e_phoff = 0;
4352 elf_elfheader (abfd)->e_phentsize = 0;
4353 }
4354
4355 elf_elfheader (abfd)->e_phnum = alloc;
4356
4357 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4358 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4359 else
4360 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4361 >= alloc * bed->s->sizeof_phdr);
4362
4363 if (alloc == 0)
4364 {
4365 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4366 return TRUE;
4367 }
4368
4369 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4370 see assign_file_positions_except_relocs, so make sure we have
4371 that amount allocated, with trailing space cleared.
4372 The variable alloc contains the computed need, while elf_tdata
4373 (abfd)->program_header_size contains the size used for the
4374 layout.
4375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4376 where the layout is forced to according to a larger size in the
4377 last iterations for the testcase ld-elf/header. */
4378 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4379 == 0);
4380 phdrs = (Elf_Internal_Phdr *)
4381 bfd_zalloc2 (abfd,
4382 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4383 sizeof (Elf_Internal_Phdr));
4384 elf_tdata (abfd)->phdr = phdrs;
4385 if (phdrs == NULL)
4386 return FALSE;
4387
4388 maxpagesize = 1;
4389 if ((abfd->flags & D_PAGED) != 0)
4390 maxpagesize = bed->maxpagesize;
4391
4392 off = bed->s->sizeof_ehdr;
4393 off += alloc * bed->s->sizeof_phdr;
4394 if (header_pad < (bfd_vma) off)
4395 header_pad = 0;
4396 else
4397 header_pad -= off;
4398 off += header_pad;
4399
4400 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4401 m != NULL;
4402 m = m->next, p++, j++)
4403 {
4404 asection **secpp;
4405 bfd_vma off_adjust;
4406 bfd_boolean no_contents;
4407
4408 /* If elf_segment_map is not from map_sections_to_segments, the
4409 sections may not be correctly ordered. NOTE: sorting should
4410 not be done to the PT_NOTE section of a corefile, which may
4411 contain several pseudo-sections artificially created by bfd.
4412 Sorting these pseudo-sections breaks things badly. */
4413 if (m->count > 1
4414 && !(elf_elfheader (abfd)->e_type == ET_CORE
4415 && m->p_type == PT_NOTE))
4416 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4417 elf_sort_sections);
4418
4419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4420 number of sections with contents contributing to both p_filesz
4421 and p_memsz, followed by a number of sections with no contents
4422 that just contribute to p_memsz. In this loop, OFF tracks next
4423 available file offset for PT_LOAD and PT_NOTE segments. */
4424 p->p_type = m->p_type;
4425 p->p_flags = m->p_flags;
4426
4427 if (m->count == 0)
4428 p->p_vaddr = 0;
4429 else
4430 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4431
4432 if (m->p_paddr_valid)
4433 p->p_paddr = m->p_paddr;
4434 else if (m->count == 0)
4435 p->p_paddr = 0;
4436 else
4437 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4438
4439 if (p->p_type == PT_LOAD
4440 && (abfd->flags & D_PAGED) != 0)
4441 {
4442 /* p_align in demand paged PT_LOAD segments effectively stores
4443 the maximum page size. When copying an executable with
4444 objcopy, we set m->p_align from the input file. Use this
4445 value for maxpagesize rather than bed->maxpagesize, which
4446 may be different. Note that we use maxpagesize for PT_TLS
4447 segment alignment later in this function, so we are relying
4448 on at least one PT_LOAD segment appearing before a PT_TLS
4449 segment. */
4450 if (m->p_align_valid)
4451 maxpagesize = m->p_align;
4452
4453 p->p_align = maxpagesize;
4454 }
4455 else if (m->p_align_valid)
4456 p->p_align = m->p_align;
4457 else if (m->count == 0)
4458 p->p_align = 1 << bed->s->log_file_align;
4459 else
4460 p->p_align = 0;
4461
4462 no_contents = FALSE;
4463 off_adjust = 0;
4464 if (p->p_type == PT_LOAD
4465 && m->count > 0)
4466 {
4467 bfd_size_type align;
4468 unsigned int align_power = 0;
4469
4470 if (m->p_align_valid)
4471 align = p->p_align;
4472 else
4473 {
4474 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4475 {
4476 unsigned int secalign;
4477
4478 secalign = bfd_get_section_alignment (abfd, *secpp);
4479 if (secalign > align_power)
4480 align_power = secalign;
4481 }
4482 align = (bfd_size_type) 1 << align_power;
4483 if (align < maxpagesize)
4484 align = maxpagesize;
4485 }
4486
4487 for (i = 0; i < m->count; i++)
4488 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4489 /* If we aren't making room for this section, then
4490 it must be SHT_NOBITS regardless of what we've
4491 set via struct bfd_elf_special_section. */
4492 elf_section_type (m->sections[i]) = SHT_NOBITS;
4493
4494 /* Find out whether this segment contains any loadable
4495 sections. */
4496 no_contents = TRUE;
4497 for (i = 0; i < m->count; i++)
4498 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4499 {
4500 no_contents = FALSE;
4501 break;
4502 }
4503
4504 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4505 off += off_adjust;
4506 if (no_contents)
4507 {
4508 /* We shouldn't need to align the segment on disk since
4509 the segment doesn't need file space, but the gABI
4510 arguably requires the alignment and glibc ld.so
4511 checks it. So to comply with the alignment
4512 requirement but not waste file space, we adjust
4513 p_offset for just this segment. (OFF_ADJUST is
4514 subtracted from OFF later.) This may put p_offset
4515 past the end of file, but that shouldn't matter. */
4516 }
4517 else
4518 off_adjust = 0;
4519 }
4520 /* Make sure the .dynamic section is the first section in the
4521 PT_DYNAMIC segment. */
4522 else if (p->p_type == PT_DYNAMIC
4523 && m->count > 1
4524 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4525 {
4526 _bfd_error_handler
4527 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4528 abfd);
4529 bfd_set_error (bfd_error_bad_value);
4530 return FALSE;
4531 }
4532 /* Set the note section type to SHT_NOTE. */
4533 else if (p->p_type == PT_NOTE)
4534 for (i = 0; i < m->count; i++)
4535 elf_section_type (m->sections[i]) = SHT_NOTE;
4536
4537 p->p_offset = 0;
4538 p->p_filesz = 0;
4539 p->p_memsz = 0;
4540
4541 if (m->includes_filehdr)
4542 {
4543 if (!m->p_flags_valid)
4544 p->p_flags |= PF_R;
4545 p->p_filesz = bed->s->sizeof_ehdr;
4546 p->p_memsz = bed->s->sizeof_ehdr;
4547 if (m->count > 0)
4548 {
4549 BFD_ASSERT (p->p_type == PT_LOAD);
4550
4551 if (p->p_vaddr < (bfd_vma) off)
4552 {
4553 (*_bfd_error_handler)
4554 (_("%B: Not enough room for program headers, try linking with -N"),
4555 abfd);
4556 bfd_set_error (bfd_error_bad_value);
4557 return FALSE;
4558 }
4559
4560 p->p_vaddr -= off;
4561 if (!m->p_paddr_valid)
4562 p->p_paddr -= off;
4563 }
4564 }
4565
4566 if (m->includes_phdrs)
4567 {
4568 if (!m->p_flags_valid)
4569 p->p_flags |= PF_R;
4570
4571 if (!m->includes_filehdr)
4572 {
4573 p->p_offset = bed->s->sizeof_ehdr;
4574
4575 if (m->count > 0)
4576 {
4577 BFD_ASSERT (p->p_type == PT_LOAD);
4578 p->p_vaddr -= off - p->p_offset;
4579 if (!m->p_paddr_valid)
4580 p->p_paddr -= off - p->p_offset;
4581 }
4582 }
4583
4584 p->p_filesz += alloc * bed->s->sizeof_phdr;
4585 p->p_memsz += alloc * bed->s->sizeof_phdr;
4586 if (m->count)
4587 {
4588 p->p_filesz += header_pad;
4589 p->p_memsz += header_pad;
4590 }
4591 }
4592
4593 if (p->p_type == PT_LOAD
4594 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4595 {
4596 if (!m->includes_filehdr && !m->includes_phdrs)
4597 p->p_offset = off;
4598 else
4599 {
4600 file_ptr adjust;
4601
4602 adjust = off - (p->p_offset + p->p_filesz);
4603 if (!no_contents)
4604 p->p_filesz += adjust;
4605 p->p_memsz += adjust;
4606 }
4607 }
4608
4609 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4610 maps. Set filepos for sections in PT_LOAD segments, and in
4611 core files, for sections in PT_NOTE segments.
4612 assign_file_positions_for_non_load_sections will set filepos
4613 for other sections and update p_filesz for other segments. */
4614 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4615 {
4616 asection *sec;
4617 bfd_size_type align;
4618 Elf_Internal_Shdr *this_hdr;
4619
4620 sec = *secpp;
4621 this_hdr = &elf_section_data (sec)->this_hdr;
4622 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4623
4624 if ((p->p_type == PT_LOAD
4625 || p->p_type == PT_TLS)
4626 && (this_hdr->sh_type != SHT_NOBITS
4627 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4628 && ((this_hdr->sh_flags & SHF_TLS) == 0
4629 || p->p_type == PT_TLS))))
4630 {
4631 bfd_vma p_start = p->p_paddr;
4632 bfd_vma p_end = p_start + p->p_memsz;
4633 bfd_vma s_start = sec->lma;
4634 bfd_vma adjust = s_start - p_end;
4635
4636 if (adjust != 0
4637 && (s_start < p_end
4638 || p_end < p_start))
4639 {
4640 (*_bfd_error_handler)
4641 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4642 (unsigned long) s_start, (unsigned long) p_end);
4643 adjust = 0;
4644 sec->lma = p_end;
4645 }
4646 p->p_memsz += adjust;
4647
4648 if (this_hdr->sh_type != SHT_NOBITS)
4649 {
4650 if (p->p_filesz + adjust < p->p_memsz)
4651 {
4652 /* We have a PROGBITS section following NOBITS ones.
4653 Allocate file space for the NOBITS section(s) and
4654 zero it. */
4655 adjust = p->p_memsz - p->p_filesz;
4656 if (!write_zeros (abfd, off, adjust))
4657 return FALSE;
4658 }
4659 off += adjust;
4660 p->p_filesz += adjust;
4661 }
4662 }
4663
4664 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4665 {
4666 /* The section at i == 0 is the one that actually contains
4667 everything. */
4668 if (i == 0)
4669 {
4670 this_hdr->sh_offset = sec->filepos = off;
4671 off += this_hdr->sh_size;
4672 p->p_filesz = this_hdr->sh_size;
4673 p->p_memsz = 0;
4674 p->p_align = 1;
4675 }
4676 else
4677 {
4678 /* The rest are fake sections that shouldn't be written. */
4679 sec->filepos = 0;
4680 sec->size = 0;
4681 sec->flags = 0;
4682 continue;
4683 }
4684 }
4685 else
4686 {
4687 if (p->p_type == PT_LOAD)
4688 {
4689 this_hdr->sh_offset = sec->filepos = off;
4690 if (this_hdr->sh_type != SHT_NOBITS)
4691 off += this_hdr->sh_size;
4692 }
4693
4694 if (this_hdr->sh_type != SHT_NOBITS)
4695 {
4696 p->p_filesz += this_hdr->sh_size;
4697 /* A load section without SHF_ALLOC is something like
4698 a note section in a PT_NOTE segment. These take
4699 file space but are not loaded into memory. */
4700 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4701 p->p_memsz += this_hdr->sh_size;
4702 }
4703 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4704 {
4705 if (p->p_type == PT_TLS)
4706 p->p_memsz += this_hdr->sh_size;
4707
4708 /* .tbss is special. It doesn't contribute to p_memsz of
4709 normal segments. */
4710 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4711 p->p_memsz += this_hdr->sh_size;
4712 }
4713
4714 if (align > p->p_align
4715 && !m->p_align_valid
4716 && (p->p_type != PT_LOAD
4717 || (abfd->flags & D_PAGED) == 0))
4718 p->p_align = align;
4719 }
4720
4721 if (!m->p_flags_valid)
4722 {
4723 p->p_flags |= PF_R;
4724 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4725 p->p_flags |= PF_X;
4726 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4727 p->p_flags |= PF_W;
4728 }
4729 }
4730 off -= off_adjust;
4731
4732 /* Check that all sections are in a PT_LOAD segment.
4733 Don't check funky gdb generated core files. */
4734 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4735 {
4736 bfd_boolean check_vma = TRUE;
4737
4738 for (i = 1; i < m->count; i++)
4739 if (m->sections[i]->vma == m->sections[i - 1]->vma
4740 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4741 ->this_hdr), p) != 0
4742 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4743 ->this_hdr), p) != 0)
4744 {
4745 /* Looks like we have overlays packed into the segment. */
4746 check_vma = FALSE;
4747 break;
4748 }
4749
4750 for (i = 0; i < m->count; i++)
4751 {
4752 Elf_Internal_Shdr *this_hdr;
4753 asection *sec;
4754
4755 sec = m->sections[i];
4756 this_hdr = &(elf_section_data(sec)->this_hdr);
4757 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4758 && !ELF_TBSS_SPECIAL (this_hdr, p))
4759 {
4760 (*_bfd_error_handler)
4761 (_("%B: section `%A' can't be allocated in segment %d"),
4762 abfd, sec, j);
4763 print_segment_map (m);
4764 }
4765 }
4766 }
4767 }
4768
4769 elf_tdata (abfd)->next_file_pos = off;
4770 return TRUE;
4771 }
4772
4773 /* Assign file positions for the other sections. */
4774
4775 static bfd_boolean
4776 assign_file_positions_for_non_load_sections (bfd *abfd,
4777 struct bfd_link_info *link_info)
4778 {
4779 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4780 Elf_Internal_Shdr **i_shdrpp;
4781 Elf_Internal_Shdr **hdrpp;
4782 Elf_Internal_Phdr *phdrs;
4783 Elf_Internal_Phdr *p;
4784 struct elf_segment_map *m;
4785 bfd_vma filehdr_vaddr, filehdr_paddr;
4786 bfd_vma phdrs_vaddr, phdrs_paddr;
4787 file_ptr off;
4788 unsigned int num_sec;
4789 unsigned int i;
4790 unsigned int count;
4791
4792 i_shdrpp = elf_elfsections (abfd);
4793 num_sec = elf_numsections (abfd);
4794 off = elf_tdata (abfd)->next_file_pos;
4795 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4796 {
4797 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4798 Elf_Internal_Shdr *hdr;
4799
4800 hdr = *hdrpp;
4801 if (hdr->bfd_section != NULL
4802 && (hdr->bfd_section->filepos != 0
4803 || (hdr->sh_type == SHT_NOBITS
4804 && hdr->contents == NULL)))
4805 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4806 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4807 {
4808 (*_bfd_error_handler)
4809 (_("%B: warning: allocated section `%s' not in segment"),
4810 abfd,
4811 (hdr->bfd_section == NULL
4812 ? "*unknown*"
4813 : hdr->bfd_section->name));
4814 /* We don't need to page align empty sections. */
4815 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4816 off += vma_page_aligned_bias (hdr->sh_addr, off,
4817 bed->maxpagesize);
4818 else
4819 off += vma_page_aligned_bias (hdr->sh_addr, off,
4820 hdr->sh_addralign);
4821 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4822 FALSE);
4823 }
4824 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4825 && hdr->bfd_section == NULL)
4826 || hdr == i_shdrpp[tdata->symtab_section]
4827 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4828 || hdr == i_shdrpp[tdata->strtab_section])
4829 hdr->sh_offset = -1;
4830 else
4831 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4832 }
4833
4834 /* Now that we have set the section file positions, we can set up
4835 the file positions for the non PT_LOAD segments. */
4836 count = 0;
4837 filehdr_vaddr = 0;
4838 filehdr_paddr = 0;
4839 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4840 phdrs_paddr = 0;
4841 phdrs = elf_tdata (abfd)->phdr;
4842 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4843 m != NULL;
4844 m = m->next, p++)
4845 {
4846 ++count;
4847 if (p->p_type != PT_LOAD)
4848 continue;
4849
4850 if (m->includes_filehdr)
4851 {
4852 filehdr_vaddr = p->p_vaddr;
4853 filehdr_paddr = p->p_paddr;
4854 }
4855 if (m->includes_phdrs)
4856 {
4857 phdrs_vaddr = p->p_vaddr;
4858 phdrs_paddr = p->p_paddr;
4859 if (m->includes_filehdr)
4860 {
4861 phdrs_vaddr += bed->s->sizeof_ehdr;
4862 phdrs_paddr += bed->s->sizeof_ehdr;
4863 }
4864 }
4865 }
4866
4867 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4868 m != NULL;
4869 m = m->next, p++)
4870 {
4871 if (p->p_type == PT_GNU_RELRO)
4872 {
4873 const Elf_Internal_Phdr *lp;
4874
4875 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4876
4877 if (link_info != NULL)
4878 {
4879 /* During linking the range of the RELRO segment is passed
4880 in link_info. */
4881 for (lp = phdrs; lp < phdrs + count; ++lp)
4882 {
4883 if (lp->p_type == PT_LOAD
4884 && lp->p_vaddr >= link_info->relro_start
4885 && lp->p_vaddr < link_info->relro_end
4886 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4887 break;
4888 }
4889 }
4890 else
4891 {
4892 /* Otherwise we are copying an executable or shared
4893 library, but we need to use the same linker logic. */
4894 for (lp = phdrs; lp < phdrs + count; ++lp)
4895 {
4896 if (lp->p_type == PT_LOAD
4897 && lp->p_paddr == p->p_paddr)
4898 break;
4899 }
4900 }
4901
4902 if (lp < phdrs + count)
4903 {
4904 p->p_vaddr = lp->p_vaddr;
4905 p->p_paddr = lp->p_paddr;
4906 p->p_offset = lp->p_offset;
4907 if (link_info != NULL)
4908 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4909 else if (m->p_size_valid)
4910 p->p_filesz = m->p_size;
4911 else
4912 abort ();
4913 p->p_memsz = p->p_filesz;
4914 p->p_align = 1;
4915 p->p_flags = (lp->p_flags & ~PF_W);
4916 }
4917 else
4918 {
4919 memset (p, 0, sizeof *p);
4920 p->p_type = PT_NULL;
4921 }
4922 }
4923 else if (m->count != 0)
4924 {
4925 if (p->p_type != PT_LOAD
4926 && (p->p_type != PT_NOTE
4927 || bfd_get_format (abfd) != bfd_core))
4928 {
4929 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4930
4931 p->p_filesz = 0;
4932 p->p_offset = m->sections[0]->filepos;
4933 for (i = m->count; i-- != 0;)
4934 {
4935 asection *sect = m->sections[i];
4936 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4937 if (hdr->sh_type != SHT_NOBITS)
4938 {
4939 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4940 + hdr->sh_size);
4941 break;
4942 }
4943 }
4944 }
4945 }
4946 else if (m->includes_filehdr)
4947 {
4948 p->p_vaddr = filehdr_vaddr;
4949 if (! m->p_paddr_valid)
4950 p->p_paddr = filehdr_paddr;
4951 }
4952 else if (m->includes_phdrs)
4953 {
4954 p->p_vaddr = phdrs_vaddr;
4955 if (! m->p_paddr_valid)
4956 p->p_paddr = phdrs_paddr;
4957 }
4958 }
4959
4960 elf_tdata (abfd)->next_file_pos = off;
4961
4962 return TRUE;
4963 }
4964
4965 /* Work out the file positions of all the sections. This is called by
4966 _bfd_elf_compute_section_file_positions. All the section sizes and
4967 VMAs must be known before this is called.
4968
4969 Reloc sections come in two flavours: Those processed specially as
4970 "side-channel" data attached to a section to which they apply, and
4971 those that bfd doesn't process as relocations. The latter sort are
4972 stored in a normal bfd section by bfd_section_from_shdr. We don't
4973 consider the former sort here, unless they form part of the loadable
4974 image. Reloc sections not assigned here will be handled later by
4975 assign_file_positions_for_relocs.
4976
4977 We also don't set the positions of the .symtab and .strtab here. */
4978
4979 static bfd_boolean
4980 assign_file_positions_except_relocs (bfd *abfd,
4981 struct bfd_link_info *link_info)
4982 {
4983 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4984 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4985 file_ptr off;
4986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4987
4988 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4989 && bfd_get_format (abfd) != bfd_core)
4990 {
4991 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4992 unsigned int num_sec = elf_numsections (abfd);
4993 Elf_Internal_Shdr **hdrpp;
4994 unsigned int i;
4995
4996 /* Start after the ELF header. */
4997 off = i_ehdrp->e_ehsize;
4998
4999 /* We are not creating an executable, which means that we are
5000 not creating a program header, and that the actual order of
5001 the sections in the file is unimportant. */
5002 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5003 {
5004 Elf_Internal_Shdr *hdr;
5005
5006 hdr = *hdrpp;
5007 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5008 && hdr->bfd_section == NULL)
5009 || i == tdata->symtab_section
5010 || i == tdata->symtab_shndx_section
5011 || i == tdata->strtab_section)
5012 {
5013 hdr->sh_offset = -1;
5014 }
5015 else
5016 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5017 }
5018 }
5019 else
5020 {
5021 unsigned int alloc;
5022
5023 /* Assign file positions for the loaded sections based on the
5024 assignment of sections to segments. */
5025 if (!assign_file_positions_for_load_sections (abfd, link_info))
5026 return FALSE;
5027
5028 /* And for non-load sections. */
5029 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5030 return FALSE;
5031
5032 if (bed->elf_backend_modify_program_headers != NULL)
5033 {
5034 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5035 return FALSE;
5036 }
5037
5038 /* Write out the program headers. */
5039 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5040 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5041 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5042 return FALSE;
5043
5044 off = tdata->next_file_pos;
5045 }
5046
5047 /* Place the section headers. */
5048 off = align_file_position (off, 1 << bed->s->log_file_align);
5049 i_ehdrp->e_shoff = off;
5050 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5051
5052 tdata->next_file_pos = off;
5053
5054 return TRUE;
5055 }
5056
5057 static bfd_boolean
5058 prep_headers (bfd *abfd)
5059 {
5060 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5061 struct elf_strtab_hash *shstrtab;
5062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5063
5064 i_ehdrp = elf_elfheader (abfd);
5065
5066 shstrtab = _bfd_elf_strtab_init ();
5067 if (shstrtab == NULL)
5068 return FALSE;
5069
5070 elf_shstrtab (abfd) = shstrtab;
5071
5072 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5073 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5074 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5075 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5076
5077 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5078 i_ehdrp->e_ident[EI_DATA] =
5079 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5080 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5081
5082 if ((abfd->flags & DYNAMIC) != 0)
5083 i_ehdrp->e_type = ET_DYN;
5084 else if ((abfd->flags & EXEC_P) != 0)
5085 i_ehdrp->e_type = ET_EXEC;
5086 else if (bfd_get_format (abfd) == bfd_core)
5087 i_ehdrp->e_type = ET_CORE;
5088 else
5089 i_ehdrp->e_type = ET_REL;
5090
5091 switch (bfd_get_arch (abfd))
5092 {
5093 case bfd_arch_unknown:
5094 i_ehdrp->e_machine = EM_NONE;
5095 break;
5096
5097 /* There used to be a long list of cases here, each one setting
5098 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5099 in the corresponding bfd definition. To avoid duplication,
5100 the switch was removed. Machines that need special handling
5101 can generally do it in elf_backend_final_write_processing(),
5102 unless they need the information earlier than the final write.
5103 Such need can generally be supplied by replacing the tests for
5104 e_machine with the conditions used to determine it. */
5105 default:
5106 i_ehdrp->e_machine = bed->elf_machine_code;
5107 }
5108
5109 i_ehdrp->e_version = bed->s->ev_current;
5110 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5111
5112 /* No program header, for now. */
5113 i_ehdrp->e_phoff = 0;
5114 i_ehdrp->e_phentsize = 0;
5115 i_ehdrp->e_phnum = 0;
5116
5117 /* Each bfd section is section header entry. */
5118 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5119 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5120
5121 /* If we're building an executable, we'll need a program header table. */
5122 if (abfd->flags & EXEC_P)
5123 /* It all happens later. */
5124 ;
5125 else
5126 {
5127 i_ehdrp->e_phentsize = 0;
5128 i_ehdrp->e_phoff = 0;
5129 }
5130
5131 elf_tdata (abfd)->symtab_hdr.sh_name =
5132 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5133 elf_tdata (abfd)->strtab_hdr.sh_name =
5134 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5135 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5136 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5137 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5138 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5139 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5140 return FALSE;
5141
5142 return TRUE;
5143 }
5144
5145 /* Assign file positions for all the reloc sections which are not part
5146 of the loadable file image. */
5147
5148 void
5149 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5150 {
5151 file_ptr off;
5152 unsigned int i, num_sec;
5153 Elf_Internal_Shdr **shdrpp;
5154
5155 off = elf_tdata (abfd)->next_file_pos;
5156
5157 num_sec = elf_numsections (abfd);
5158 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5159 {
5160 Elf_Internal_Shdr *shdrp;
5161
5162 shdrp = *shdrpp;
5163 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5164 && shdrp->sh_offset == -1)
5165 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5166 }
5167
5168 elf_tdata (abfd)->next_file_pos = off;
5169 }
5170
5171 bfd_boolean
5172 _bfd_elf_write_object_contents (bfd *abfd)
5173 {
5174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5175 Elf_Internal_Shdr **i_shdrp;
5176 bfd_boolean failed;
5177 unsigned int count, num_sec;
5178
5179 if (! abfd->output_has_begun
5180 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5181 return FALSE;
5182
5183 i_shdrp = elf_elfsections (abfd);
5184
5185 failed = FALSE;
5186 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5187 if (failed)
5188 return FALSE;
5189
5190 _bfd_elf_assign_file_positions_for_relocs (abfd);
5191
5192 /* After writing the headers, we need to write the sections too... */
5193 num_sec = elf_numsections (abfd);
5194 for (count = 1; count < num_sec; count++)
5195 {
5196 if (bed->elf_backend_section_processing)
5197 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5198 if (i_shdrp[count]->contents)
5199 {
5200 bfd_size_type amt = i_shdrp[count]->sh_size;
5201
5202 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5203 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5204 return FALSE;
5205 }
5206 }
5207
5208 /* Write out the section header names. */
5209 if (elf_shstrtab (abfd) != NULL
5210 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5211 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5212 return FALSE;
5213
5214 if (bed->elf_backend_final_write_processing)
5215 (*bed->elf_backend_final_write_processing) (abfd,
5216 elf_tdata (abfd)->linker);
5217
5218 if (!bed->s->write_shdrs_and_ehdr (abfd))
5219 return FALSE;
5220
5221 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5222 if (elf_tdata (abfd)->after_write_object_contents)
5223 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5224
5225 return TRUE;
5226 }
5227
5228 bfd_boolean
5229 _bfd_elf_write_corefile_contents (bfd *abfd)
5230 {
5231 /* Hopefully this can be done just like an object file. */
5232 return _bfd_elf_write_object_contents (abfd);
5233 }
5234
5235 /* Given a section, search the header to find them. */
5236
5237 unsigned int
5238 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5239 {
5240 const struct elf_backend_data *bed;
5241 unsigned int sec_index;
5242
5243 if (elf_section_data (asect) != NULL
5244 && elf_section_data (asect)->this_idx != 0)
5245 return elf_section_data (asect)->this_idx;
5246
5247 if (bfd_is_abs_section (asect))
5248 sec_index = SHN_ABS;
5249 else if (bfd_is_com_section (asect))
5250 sec_index = SHN_COMMON;
5251 else if (bfd_is_und_section (asect))
5252 sec_index = SHN_UNDEF;
5253 else
5254 sec_index = SHN_BAD;
5255
5256 bed = get_elf_backend_data (abfd);
5257 if (bed->elf_backend_section_from_bfd_section)
5258 {
5259 int retval = sec_index;
5260
5261 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5262 return retval;
5263 }
5264
5265 if (sec_index == SHN_BAD)
5266 bfd_set_error (bfd_error_nonrepresentable_section);
5267
5268 return sec_index;
5269 }
5270
5271 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5272 on error. */
5273
5274 int
5275 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5276 {
5277 asymbol *asym_ptr = *asym_ptr_ptr;
5278 int idx;
5279 flagword flags = asym_ptr->flags;
5280
5281 /* When gas creates relocations against local labels, it creates its
5282 own symbol for the section, but does put the symbol into the
5283 symbol chain, so udata is 0. When the linker is generating
5284 relocatable output, this section symbol may be for one of the
5285 input sections rather than the output section. */
5286 if (asym_ptr->udata.i == 0
5287 && (flags & BSF_SECTION_SYM)
5288 && asym_ptr->section)
5289 {
5290 asection *sec;
5291 int indx;
5292
5293 sec = asym_ptr->section;
5294 if (sec->owner != abfd && sec->output_section != NULL)
5295 sec = sec->output_section;
5296 if (sec->owner == abfd
5297 && (indx = sec->index) < elf_num_section_syms (abfd)
5298 && elf_section_syms (abfd)[indx] != NULL)
5299 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5300 }
5301
5302 idx = asym_ptr->udata.i;
5303
5304 if (idx == 0)
5305 {
5306 /* This case can occur when using --strip-symbol on a symbol
5307 which is used in a relocation entry. */
5308 (*_bfd_error_handler)
5309 (_("%B: symbol `%s' required but not present"),
5310 abfd, bfd_asymbol_name (asym_ptr));
5311 bfd_set_error (bfd_error_no_symbols);
5312 return -1;
5313 }
5314
5315 #if DEBUG & 4
5316 {
5317 fprintf (stderr,
5318 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5319 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5320 fflush (stderr);
5321 }
5322 #endif
5323
5324 return idx;
5325 }
5326
5327 /* Rewrite program header information. */
5328
5329 static bfd_boolean
5330 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5331 {
5332 Elf_Internal_Ehdr *iehdr;
5333 struct elf_segment_map *map;
5334 struct elf_segment_map *map_first;
5335 struct elf_segment_map **pointer_to_map;
5336 Elf_Internal_Phdr *segment;
5337 asection *section;
5338 unsigned int i;
5339 unsigned int num_segments;
5340 bfd_boolean phdr_included = FALSE;
5341 bfd_boolean p_paddr_valid;
5342 bfd_vma maxpagesize;
5343 struct elf_segment_map *phdr_adjust_seg = NULL;
5344 unsigned int phdr_adjust_num = 0;
5345 const struct elf_backend_data *bed;
5346
5347 bed = get_elf_backend_data (ibfd);
5348 iehdr = elf_elfheader (ibfd);
5349
5350 map_first = NULL;
5351 pointer_to_map = &map_first;
5352
5353 num_segments = elf_elfheader (ibfd)->e_phnum;
5354 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5355
5356 /* Returns the end address of the segment + 1. */
5357 #define SEGMENT_END(segment, start) \
5358 (start + (segment->p_memsz > segment->p_filesz \
5359 ? segment->p_memsz : segment->p_filesz))
5360
5361 #define SECTION_SIZE(section, segment) \
5362 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5363 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5364 ? section->size : 0)
5365
5366 /* Returns TRUE if the given section is contained within
5367 the given segment. VMA addresses are compared. */
5368 #define IS_CONTAINED_BY_VMA(section, segment) \
5369 (section->vma >= segment->p_vaddr \
5370 && (section->vma + SECTION_SIZE (section, segment) \
5371 <= (SEGMENT_END (segment, segment->p_vaddr))))
5372
5373 /* Returns TRUE if the given section is contained within
5374 the given segment. LMA addresses are compared. */
5375 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5376 (section->lma >= base \
5377 && (section->lma + SECTION_SIZE (section, segment) \
5378 <= SEGMENT_END (segment, base)))
5379
5380 /* Handle PT_NOTE segment. */
5381 #define IS_NOTE(p, s) \
5382 (p->p_type == PT_NOTE \
5383 && elf_section_type (s) == SHT_NOTE \
5384 && (bfd_vma) s->filepos >= p->p_offset \
5385 && ((bfd_vma) s->filepos + s->size \
5386 <= p->p_offset + p->p_filesz))
5387
5388 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5389 etc. */
5390 #define IS_COREFILE_NOTE(p, s) \
5391 (IS_NOTE (p, s) \
5392 && bfd_get_format (ibfd) == bfd_core \
5393 && s->vma == 0 \
5394 && s->lma == 0)
5395
5396 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5397 linker, which generates a PT_INTERP section with p_vaddr and
5398 p_memsz set to 0. */
5399 #define IS_SOLARIS_PT_INTERP(p, s) \
5400 (p->p_vaddr == 0 \
5401 && p->p_paddr == 0 \
5402 && p->p_memsz == 0 \
5403 && p->p_filesz > 0 \
5404 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5405 && s->size > 0 \
5406 && (bfd_vma) s->filepos >= p->p_offset \
5407 && ((bfd_vma) s->filepos + s->size \
5408 <= p->p_offset + p->p_filesz))
5409
5410 /* Decide if the given section should be included in the given segment.
5411 A section will be included if:
5412 1. It is within the address space of the segment -- we use the LMA
5413 if that is set for the segment and the VMA otherwise,
5414 2. It is an allocated section or a NOTE section in a PT_NOTE
5415 segment.
5416 3. There is an output section associated with it,
5417 4. The section has not already been allocated to a previous segment.
5418 5. PT_GNU_STACK segments do not include any sections.
5419 6. PT_TLS segment includes only SHF_TLS sections.
5420 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5421 8. PT_DYNAMIC should not contain empty sections at the beginning
5422 (with the possible exception of .dynamic). */
5423 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5424 ((((segment->p_paddr \
5425 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5426 : IS_CONTAINED_BY_VMA (section, segment)) \
5427 && (section->flags & SEC_ALLOC) != 0) \
5428 || IS_NOTE (segment, section)) \
5429 && segment->p_type != PT_GNU_STACK \
5430 && (segment->p_type != PT_TLS \
5431 || (section->flags & SEC_THREAD_LOCAL)) \
5432 && (segment->p_type == PT_LOAD \
5433 || segment->p_type == PT_TLS \
5434 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5435 && (segment->p_type != PT_DYNAMIC \
5436 || SECTION_SIZE (section, segment) > 0 \
5437 || (segment->p_paddr \
5438 ? segment->p_paddr != section->lma \
5439 : segment->p_vaddr != section->vma) \
5440 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5441 == 0)) \
5442 && !section->segment_mark)
5443
5444 /* If the output section of a section in the input segment is NULL,
5445 it is removed from the corresponding output segment. */
5446 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5447 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5448 && section->output_section != NULL)
5449
5450 /* Returns TRUE iff seg1 starts after the end of seg2. */
5451 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5452 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5453
5454 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5455 their VMA address ranges and their LMA address ranges overlap.
5456 It is possible to have overlapping VMA ranges without overlapping LMA
5457 ranges. RedBoot images for example can have both .data and .bss mapped
5458 to the same VMA range, but with the .data section mapped to a different
5459 LMA. */
5460 #define SEGMENT_OVERLAPS(seg1, seg2) \
5461 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5462 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5463 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5464 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5465
5466 /* Initialise the segment mark field. */
5467 for (section = ibfd->sections; section != NULL; section = section->next)
5468 section->segment_mark = FALSE;
5469
5470 /* The Solaris linker creates program headers in which all the
5471 p_paddr fields are zero. When we try to objcopy or strip such a
5472 file, we get confused. Check for this case, and if we find it
5473 don't set the p_paddr_valid fields. */
5474 p_paddr_valid = FALSE;
5475 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5476 i < num_segments;
5477 i++, segment++)
5478 if (segment->p_paddr != 0)
5479 {
5480 p_paddr_valid = TRUE;
5481 break;
5482 }
5483
5484 /* Scan through the segments specified in the program header
5485 of the input BFD. For this first scan we look for overlaps
5486 in the loadable segments. These can be created by weird
5487 parameters to objcopy. Also, fix some solaris weirdness. */
5488 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5489 i < num_segments;
5490 i++, segment++)
5491 {
5492 unsigned int j;
5493 Elf_Internal_Phdr *segment2;
5494
5495 if (segment->p_type == PT_INTERP)
5496 for (section = ibfd->sections; section; section = section->next)
5497 if (IS_SOLARIS_PT_INTERP (segment, section))
5498 {
5499 /* Mininal change so that the normal section to segment
5500 assignment code will work. */
5501 segment->p_vaddr = section->vma;
5502 break;
5503 }
5504
5505 if (segment->p_type != PT_LOAD)
5506 {
5507 /* Remove PT_GNU_RELRO segment. */
5508 if (segment->p_type == PT_GNU_RELRO)
5509 segment->p_type = PT_NULL;
5510 continue;
5511 }
5512
5513 /* Determine if this segment overlaps any previous segments. */
5514 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5515 {
5516 bfd_signed_vma extra_length;
5517
5518 if (segment2->p_type != PT_LOAD
5519 || !SEGMENT_OVERLAPS (segment, segment2))
5520 continue;
5521
5522 /* Merge the two segments together. */
5523 if (segment2->p_vaddr < segment->p_vaddr)
5524 {
5525 /* Extend SEGMENT2 to include SEGMENT and then delete
5526 SEGMENT. */
5527 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5528 - SEGMENT_END (segment2, segment2->p_vaddr));
5529
5530 if (extra_length > 0)
5531 {
5532 segment2->p_memsz += extra_length;
5533 segment2->p_filesz += extra_length;
5534 }
5535
5536 segment->p_type = PT_NULL;
5537
5538 /* Since we have deleted P we must restart the outer loop. */
5539 i = 0;
5540 segment = elf_tdata (ibfd)->phdr;
5541 break;
5542 }
5543 else
5544 {
5545 /* Extend SEGMENT to include SEGMENT2 and then delete
5546 SEGMENT2. */
5547 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5548 - SEGMENT_END (segment, segment->p_vaddr));
5549
5550 if (extra_length > 0)
5551 {
5552 segment->p_memsz += extra_length;
5553 segment->p_filesz += extra_length;
5554 }
5555
5556 segment2->p_type = PT_NULL;
5557 }
5558 }
5559 }
5560
5561 /* The second scan attempts to assign sections to segments. */
5562 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5563 i < num_segments;
5564 i++, segment++)
5565 {
5566 unsigned int section_count;
5567 asection **sections;
5568 asection *output_section;
5569 unsigned int isec;
5570 bfd_vma matching_lma;
5571 bfd_vma suggested_lma;
5572 unsigned int j;
5573 bfd_size_type amt;
5574 asection *first_section;
5575 bfd_boolean first_matching_lma;
5576 bfd_boolean first_suggested_lma;
5577
5578 if (segment->p_type == PT_NULL)
5579 continue;
5580
5581 first_section = NULL;
5582 /* Compute how many sections might be placed into this segment. */
5583 for (section = ibfd->sections, section_count = 0;
5584 section != NULL;
5585 section = section->next)
5586 {
5587 /* Find the first section in the input segment, which may be
5588 removed from the corresponding output segment. */
5589 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5590 {
5591 if (first_section == NULL)
5592 first_section = section;
5593 if (section->output_section != NULL)
5594 ++section_count;
5595 }
5596 }
5597
5598 /* Allocate a segment map big enough to contain
5599 all of the sections we have selected. */
5600 amt = sizeof (struct elf_segment_map);
5601 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5602 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5603 if (map == NULL)
5604 return FALSE;
5605
5606 /* Initialise the fields of the segment map. Default to
5607 using the physical address of the segment in the input BFD. */
5608 map->next = NULL;
5609 map->p_type = segment->p_type;
5610 map->p_flags = segment->p_flags;
5611 map->p_flags_valid = 1;
5612
5613 /* If the first section in the input segment is removed, there is
5614 no need to preserve segment physical address in the corresponding
5615 output segment. */
5616 if (!first_section || first_section->output_section != NULL)
5617 {
5618 map->p_paddr = segment->p_paddr;
5619 map->p_paddr_valid = p_paddr_valid;
5620 }
5621
5622 /* Determine if this segment contains the ELF file header
5623 and if it contains the program headers themselves. */
5624 map->includes_filehdr = (segment->p_offset == 0
5625 && segment->p_filesz >= iehdr->e_ehsize);
5626 map->includes_phdrs = 0;
5627
5628 if (!phdr_included || segment->p_type != PT_LOAD)
5629 {
5630 map->includes_phdrs =
5631 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5632 && (segment->p_offset + segment->p_filesz
5633 >= ((bfd_vma) iehdr->e_phoff
5634 + iehdr->e_phnum * iehdr->e_phentsize)));
5635
5636 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5637 phdr_included = TRUE;
5638 }
5639
5640 if (section_count == 0)
5641 {
5642 /* Special segments, such as the PT_PHDR segment, may contain
5643 no sections, but ordinary, loadable segments should contain
5644 something. They are allowed by the ELF spec however, so only
5645 a warning is produced. */
5646 if (segment->p_type == PT_LOAD)
5647 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5648 " detected, is this intentional ?\n"),
5649 ibfd);
5650
5651 map->count = 0;
5652 *pointer_to_map = map;
5653 pointer_to_map = &map->next;
5654
5655 continue;
5656 }
5657
5658 /* Now scan the sections in the input BFD again and attempt
5659 to add their corresponding output sections to the segment map.
5660 The problem here is how to handle an output section which has
5661 been moved (ie had its LMA changed). There are four possibilities:
5662
5663 1. None of the sections have been moved.
5664 In this case we can continue to use the segment LMA from the
5665 input BFD.
5666
5667 2. All of the sections have been moved by the same amount.
5668 In this case we can change the segment's LMA to match the LMA
5669 of the first section.
5670
5671 3. Some of the sections have been moved, others have not.
5672 In this case those sections which have not been moved can be
5673 placed in the current segment which will have to have its size,
5674 and possibly its LMA changed, and a new segment or segments will
5675 have to be created to contain the other sections.
5676
5677 4. The sections have been moved, but not by the same amount.
5678 In this case we can change the segment's LMA to match the LMA
5679 of the first section and we will have to create a new segment
5680 or segments to contain the other sections.
5681
5682 In order to save time, we allocate an array to hold the section
5683 pointers that we are interested in. As these sections get assigned
5684 to a segment, they are removed from this array. */
5685
5686 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5687 if (sections == NULL)
5688 return FALSE;
5689
5690 /* Step One: Scan for segment vs section LMA conflicts.
5691 Also add the sections to the section array allocated above.
5692 Also add the sections to the current segment. In the common
5693 case, where the sections have not been moved, this means that
5694 we have completely filled the segment, and there is nothing
5695 more to do. */
5696 isec = 0;
5697 matching_lma = 0;
5698 suggested_lma = 0;
5699 first_matching_lma = TRUE;
5700 first_suggested_lma = TRUE;
5701
5702 for (section = ibfd->sections;
5703 section != NULL;
5704 section = section->next)
5705 if (section == first_section)
5706 break;
5707
5708 for (j = 0; section != NULL; section = section->next)
5709 {
5710 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5711 {
5712 output_section = section->output_section;
5713
5714 sections[j++] = section;
5715
5716 /* The Solaris native linker always sets p_paddr to 0.
5717 We try to catch that case here, and set it to the
5718 correct value. Note - some backends require that
5719 p_paddr be left as zero. */
5720 if (!p_paddr_valid
5721 && segment->p_vaddr != 0
5722 && !bed->want_p_paddr_set_to_zero
5723 && isec == 0
5724 && output_section->lma != 0
5725 && output_section->vma == (segment->p_vaddr
5726 + (map->includes_filehdr
5727 ? iehdr->e_ehsize
5728 : 0)
5729 + (map->includes_phdrs
5730 ? (iehdr->e_phnum
5731 * iehdr->e_phentsize)
5732 : 0)))
5733 map->p_paddr = segment->p_vaddr;
5734
5735 /* Match up the physical address of the segment with the
5736 LMA address of the output section. */
5737 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5738 || IS_COREFILE_NOTE (segment, section)
5739 || (bed->want_p_paddr_set_to_zero
5740 && IS_CONTAINED_BY_VMA (output_section, segment)))
5741 {
5742 if (first_matching_lma || output_section->lma < matching_lma)
5743 {
5744 matching_lma = output_section->lma;
5745 first_matching_lma = FALSE;
5746 }
5747
5748 /* We assume that if the section fits within the segment
5749 then it does not overlap any other section within that
5750 segment. */
5751 map->sections[isec++] = output_section;
5752 }
5753 else if (first_suggested_lma)
5754 {
5755 suggested_lma = output_section->lma;
5756 first_suggested_lma = FALSE;
5757 }
5758
5759 if (j == section_count)
5760 break;
5761 }
5762 }
5763
5764 BFD_ASSERT (j == section_count);
5765
5766 /* Step Two: Adjust the physical address of the current segment,
5767 if necessary. */
5768 if (isec == section_count)
5769 {
5770 /* All of the sections fitted within the segment as currently
5771 specified. This is the default case. Add the segment to
5772 the list of built segments and carry on to process the next
5773 program header in the input BFD. */
5774 map->count = section_count;
5775 *pointer_to_map = map;
5776 pointer_to_map = &map->next;
5777
5778 if (p_paddr_valid
5779 && !bed->want_p_paddr_set_to_zero
5780 && matching_lma != map->p_paddr
5781 && !map->includes_filehdr
5782 && !map->includes_phdrs)
5783 /* There is some padding before the first section in the
5784 segment. So, we must account for that in the output
5785 segment's vma. */
5786 map->p_vaddr_offset = matching_lma - map->p_paddr;
5787
5788 free (sections);
5789 continue;
5790 }
5791 else
5792 {
5793 if (!first_matching_lma)
5794 {
5795 /* At least one section fits inside the current segment.
5796 Keep it, but modify its physical address to match the
5797 LMA of the first section that fitted. */
5798 map->p_paddr = matching_lma;
5799 }
5800 else
5801 {
5802 /* None of the sections fitted inside the current segment.
5803 Change the current segment's physical address to match
5804 the LMA of the first section. */
5805 map->p_paddr = suggested_lma;
5806 }
5807
5808 /* Offset the segment physical address from the lma
5809 to allow for space taken up by elf headers. */
5810 if (map->includes_filehdr)
5811 {
5812 if (map->p_paddr >= iehdr->e_ehsize)
5813 map->p_paddr -= iehdr->e_ehsize;
5814 else
5815 {
5816 map->includes_filehdr = FALSE;
5817 map->includes_phdrs = FALSE;
5818 }
5819 }
5820
5821 if (map->includes_phdrs)
5822 {
5823 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5824 {
5825 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5826
5827 /* iehdr->e_phnum is just an estimate of the number
5828 of program headers that we will need. Make a note
5829 here of the number we used and the segment we chose
5830 to hold these headers, so that we can adjust the
5831 offset when we know the correct value. */
5832 phdr_adjust_num = iehdr->e_phnum;
5833 phdr_adjust_seg = map;
5834 }
5835 else
5836 map->includes_phdrs = FALSE;
5837 }
5838 }
5839
5840 /* Step Three: Loop over the sections again, this time assigning
5841 those that fit to the current segment and removing them from the
5842 sections array; but making sure not to leave large gaps. Once all
5843 possible sections have been assigned to the current segment it is
5844 added to the list of built segments and if sections still remain
5845 to be assigned, a new segment is constructed before repeating
5846 the loop. */
5847 isec = 0;
5848 do
5849 {
5850 map->count = 0;
5851 suggested_lma = 0;
5852 first_suggested_lma = TRUE;
5853
5854 /* Fill the current segment with sections that fit. */
5855 for (j = 0; j < section_count; j++)
5856 {
5857 section = sections[j];
5858
5859 if (section == NULL)
5860 continue;
5861
5862 output_section = section->output_section;
5863
5864 BFD_ASSERT (output_section != NULL);
5865
5866 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5867 || IS_COREFILE_NOTE (segment, section))
5868 {
5869 if (map->count == 0)
5870 {
5871 /* If the first section in a segment does not start at
5872 the beginning of the segment, then something is
5873 wrong. */
5874 if (output_section->lma
5875 != (map->p_paddr
5876 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5877 + (map->includes_phdrs
5878 ? iehdr->e_phnum * iehdr->e_phentsize
5879 : 0)))
5880 abort ();
5881 }
5882 else
5883 {
5884 asection *prev_sec;
5885
5886 prev_sec = map->sections[map->count - 1];
5887
5888 /* If the gap between the end of the previous section
5889 and the start of this section is more than
5890 maxpagesize then we need to start a new segment. */
5891 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5892 maxpagesize)
5893 < BFD_ALIGN (output_section->lma, maxpagesize))
5894 || (prev_sec->lma + prev_sec->size
5895 > output_section->lma))
5896 {
5897 if (first_suggested_lma)
5898 {
5899 suggested_lma = output_section->lma;
5900 first_suggested_lma = FALSE;
5901 }
5902
5903 continue;
5904 }
5905 }
5906
5907 map->sections[map->count++] = output_section;
5908 ++isec;
5909 sections[j] = NULL;
5910 section->segment_mark = TRUE;
5911 }
5912 else if (first_suggested_lma)
5913 {
5914 suggested_lma = output_section->lma;
5915 first_suggested_lma = FALSE;
5916 }
5917 }
5918
5919 BFD_ASSERT (map->count > 0);
5920
5921 /* Add the current segment to the list of built segments. */
5922 *pointer_to_map = map;
5923 pointer_to_map = &map->next;
5924
5925 if (isec < section_count)
5926 {
5927 /* We still have not allocated all of the sections to
5928 segments. Create a new segment here, initialise it
5929 and carry on looping. */
5930 amt = sizeof (struct elf_segment_map);
5931 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5932 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5933 if (map == NULL)
5934 {
5935 free (sections);
5936 return FALSE;
5937 }
5938
5939 /* Initialise the fields of the segment map. Set the physical
5940 physical address to the LMA of the first section that has
5941 not yet been assigned. */
5942 map->next = NULL;
5943 map->p_type = segment->p_type;
5944 map->p_flags = segment->p_flags;
5945 map->p_flags_valid = 1;
5946 map->p_paddr = suggested_lma;
5947 map->p_paddr_valid = p_paddr_valid;
5948 map->includes_filehdr = 0;
5949 map->includes_phdrs = 0;
5950 }
5951 }
5952 while (isec < section_count);
5953
5954 free (sections);
5955 }
5956
5957 elf_tdata (obfd)->segment_map = map_first;
5958
5959 /* If we had to estimate the number of program headers that were
5960 going to be needed, then check our estimate now and adjust
5961 the offset if necessary. */
5962 if (phdr_adjust_seg != NULL)
5963 {
5964 unsigned int count;
5965
5966 for (count = 0, map = map_first; map != NULL; map = map->next)
5967 count++;
5968
5969 if (count > phdr_adjust_num)
5970 phdr_adjust_seg->p_paddr
5971 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5972 }
5973
5974 #undef SEGMENT_END
5975 #undef SECTION_SIZE
5976 #undef IS_CONTAINED_BY_VMA
5977 #undef IS_CONTAINED_BY_LMA
5978 #undef IS_NOTE
5979 #undef IS_COREFILE_NOTE
5980 #undef IS_SOLARIS_PT_INTERP
5981 #undef IS_SECTION_IN_INPUT_SEGMENT
5982 #undef INCLUDE_SECTION_IN_SEGMENT
5983 #undef SEGMENT_AFTER_SEGMENT
5984 #undef SEGMENT_OVERLAPS
5985 return TRUE;
5986 }
5987
5988 /* Copy ELF program header information. */
5989
5990 static bfd_boolean
5991 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5992 {
5993 Elf_Internal_Ehdr *iehdr;
5994 struct elf_segment_map *map;
5995 struct elf_segment_map *map_first;
5996 struct elf_segment_map **pointer_to_map;
5997 Elf_Internal_Phdr *segment;
5998 unsigned int i;
5999 unsigned int num_segments;
6000 bfd_boolean phdr_included = FALSE;
6001 bfd_boolean p_paddr_valid;
6002
6003 iehdr = elf_elfheader (ibfd);
6004
6005 map_first = NULL;
6006 pointer_to_map = &map_first;
6007
6008 /* If all the segment p_paddr fields are zero, don't set
6009 map->p_paddr_valid. */
6010 p_paddr_valid = FALSE;
6011 num_segments = elf_elfheader (ibfd)->e_phnum;
6012 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6013 i < num_segments;
6014 i++, segment++)
6015 if (segment->p_paddr != 0)
6016 {
6017 p_paddr_valid = TRUE;
6018 break;
6019 }
6020
6021 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6022 i < num_segments;
6023 i++, segment++)
6024 {
6025 asection *section;
6026 unsigned int section_count;
6027 bfd_size_type amt;
6028 Elf_Internal_Shdr *this_hdr;
6029 asection *first_section = NULL;
6030 asection *lowest_section;
6031
6032 /* Compute how many sections are in this segment. */
6033 for (section = ibfd->sections, section_count = 0;
6034 section != NULL;
6035 section = section->next)
6036 {
6037 this_hdr = &(elf_section_data(section)->this_hdr);
6038 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6039 {
6040 if (first_section == NULL)
6041 first_section = section;
6042 section_count++;
6043 }
6044 }
6045
6046 /* Allocate a segment map big enough to contain
6047 all of the sections we have selected. */
6048 amt = sizeof (struct elf_segment_map);
6049 if (section_count != 0)
6050 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6051 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6052 if (map == NULL)
6053 return FALSE;
6054
6055 /* Initialize the fields of the output segment map with the
6056 input segment. */
6057 map->next = NULL;
6058 map->p_type = segment->p_type;
6059 map->p_flags = segment->p_flags;
6060 map->p_flags_valid = 1;
6061 map->p_paddr = segment->p_paddr;
6062 map->p_paddr_valid = p_paddr_valid;
6063 map->p_align = segment->p_align;
6064 map->p_align_valid = 1;
6065 map->p_vaddr_offset = 0;
6066
6067 if (map->p_type == PT_GNU_RELRO)
6068 {
6069 /* The PT_GNU_RELRO segment may contain the first a few
6070 bytes in the .got.plt section even if the whole .got.plt
6071 section isn't in the PT_GNU_RELRO segment. We won't
6072 change the size of the PT_GNU_RELRO segment. */
6073 map->p_size = segment->p_memsz;
6074 map->p_size_valid = 1;
6075 }
6076
6077 /* Determine if this segment contains the ELF file header
6078 and if it contains the program headers themselves. */
6079 map->includes_filehdr = (segment->p_offset == 0
6080 && segment->p_filesz >= iehdr->e_ehsize);
6081
6082 map->includes_phdrs = 0;
6083 if (! phdr_included || segment->p_type != PT_LOAD)
6084 {
6085 map->includes_phdrs =
6086 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6087 && (segment->p_offset + segment->p_filesz
6088 >= ((bfd_vma) iehdr->e_phoff
6089 + iehdr->e_phnum * iehdr->e_phentsize)));
6090
6091 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6092 phdr_included = TRUE;
6093 }
6094
6095 lowest_section = first_section;
6096 if (section_count != 0)
6097 {
6098 unsigned int isec = 0;
6099
6100 for (section = first_section;
6101 section != NULL;
6102 section = section->next)
6103 {
6104 this_hdr = &(elf_section_data(section)->this_hdr);
6105 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6106 {
6107 map->sections[isec++] = section->output_section;
6108 if (section->lma < lowest_section->lma)
6109 lowest_section = section;
6110 if ((section->flags & SEC_ALLOC) != 0)
6111 {
6112 bfd_vma seg_off;
6113
6114 /* Section lmas are set up from PT_LOAD header
6115 p_paddr in _bfd_elf_make_section_from_shdr.
6116 If this header has a p_paddr that disagrees
6117 with the section lma, flag the p_paddr as
6118 invalid. */
6119 if ((section->flags & SEC_LOAD) != 0)
6120 seg_off = this_hdr->sh_offset - segment->p_offset;
6121 else
6122 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6123 if (section->lma - segment->p_paddr != seg_off)
6124 map->p_paddr_valid = FALSE;
6125 }
6126 if (isec == section_count)
6127 break;
6128 }
6129 }
6130 }
6131
6132 if (map->includes_filehdr && lowest_section != NULL)
6133 /* We need to keep the space used by the headers fixed. */
6134 map->header_size = lowest_section->vma - segment->p_vaddr;
6135
6136 if (!map->includes_phdrs
6137 && !map->includes_filehdr
6138 && map->p_paddr_valid)
6139 /* There is some other padding before the first section. */
6140 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6141 - segment->p_paddr);
6142
6143 map->count = section_count;
6144 *pointer_to_map = map;
6145 pointer_to_map = &map->next;
6146 }
6147
6148 elf_tdata (obfd)->segment_map = map_first;
6149 return TRUE;
6150 }
6151
6152 /* Copy private BFD data. This copies or rewrites ELF program header
6153 information. */
6154
6155 static bfd_boolean
6156 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6157 {
6158 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6159 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6160 return TRUE;
6161
6162 if (elf_tdata (ibfd)->phdr == NULL)
6163 return TRUE;
6164
6165 if (ibfd->xvec == obfd->xvec)
6166 {
6167 /* Check to see if any sections in the input BFD
6168 covered by ELF program header have changed. */
6169 Elf_Internal_Phdr *segment;
6170 asection *section, *osec;
6171 unsigned int i, num_segments;
6172 Elf_Internal_Shdr *this_hdr;
6173 const struct elf_backend_data *bed;
6174
6175 bed = get_elf_backend_data (ibfd);
6176
6177 /* Regenerate the segment map if p_paddr is set to 0. */
6178 if (bed->want_p_paddr_set_to_zero)
6179 goto rewrite;
6180
6181 /* Initialize the segment mark field. */
6182 for (section = obfd->sections; section != NULL;
6183 section = section->next)
6184 section->segment_mark = FALSE;
6185
6186 num_segments = elf_elfheader (ibfd)->e_phnum;
6187 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6188 i < num_segments;
6189 i++, segment++)
6190 {
6191 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6192 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6193 which severly confuses things, so always regenerate the segment
6194 map in this case. */
6195 if (segment->p_paddr == 0
6196 && segment->p_memsz == 0
6197 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6198 goto rewrite;
6199
6200 for (section = ibfd->sections;
6201 section != NULL; section = section->next)
6202 {
6203 /* We mark the output section so that we know it comes
6204 from the input BFD. */
6205 osec = section->output_section;
6206 if (osec)
6207 osec->segment_mark = TRUE;
6208
6209 /* Check if this section is covered by the segment. */
6210 this_hdr = &(elf_section_data(section)->this_hdr);
6211 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6212 {
6213 /* FIXME: Check if its output section is changed or
6214 removed. What else do we need to check? */
6215 if (osec == NULL
6216 || section->flags != osec->flags
6217 || section->lma != osec->lma
6218 || section->vma != osec->vma
6219 || section->size != osec->size
6220 || section->rawsize != osec->rawsize
6221 || section->alignment_power != osec->alignment_power)
6222 goto rewrite;
6223 }
6224 }
6225 }
6226
6227 /* Check to see if any output section do not come from the
6228 input BFD. */
6229 for (section = obfd->sections; section != NULL;
6230 section = section->next)
6231 {
6232 if (section->segment_mark == FALSE)
6233 goto rewrite;
6234 else
6235 section->segment_mark = FALSE;
6236 }
6237
6238 return copy_elf_program_header (ibfd, obfd);
6239 }
6240
6241 rewrite:
6242 return rewrite_elf_program_header (ibfd, obfd);
6243 }
6244
6245 /* Initialize private output section information from input section. */
6246
6247 bfd_boolean
6248 _bfd_elf_init_private_section_data (bfd *ibfd,
6249 asection *isec,
6250 bfd *obfd,
6251 asection *osec,
6252 struct bfd_link_info *link_info)
6253
6254 {
6255 Elf_Internal_Shdr *ihdr, *ohdr;
6256 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6257
6258 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6259 || obfd->xvec->flavour != bfd_target_elf_flavour)
6260 return TRUE;
6261
6262 /* For objcopy and relocatable link, don't copy the output ELF
6263 section type from input if the output BFD section flags have been
6264 set to something different. For a final link allow some flags
6265 that the linker clears to differ. */
6266 if (elf_section_type (osec) == SHT_NULL
6267 && (osec->flags == isec->flags
6268 || (final_link
6269 && ((osec->flags ^ isec->flags)
6270 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6271 elf_section_type (osec) = elf_section_type (isec);
6272
6273 /* FIXME: Is this correct for all OS/PROC specific flags? */
6274 elf_section_flags (osec) |= (elf_section_flags (isec)
6275 & (SHF_MASKOS | SHF_MASKPROC));
6276
6277 /* Set things up for objcopy and relocatable link. The output
6278 SHT_GROUP section will have its elf_next_in_group pointing back
6279 to the input group members. Ignore linker created group section.
6280 See elfNN_ia64_object_p in elfxx-ia64.c. */
6281 if (!final_link)
6282 {
6283 if (elf_sec_group (isec) == NULL
6284 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6285 {
6286 if (elf_section_flags (isec) & SHF_GROUP)
6287 elf_section_flags (osec) |= SHF_GROUP;
6288 elf_next_in_group (osec) = elf_next_in_group (isec);
6289 elf_section_data (osec)->group = elf_section_data (isec)->group;
6290 }
6291 }
6292
6293 ihdr = &elf_section_data (isec)->this_hdr;
6294
6295 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6296 don't use the output section of the linked-to section since it
6297 may be NULL at this point. */
6298 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6299 {
6300 ohdr = &elf_section_data (osec)->this_hdr;
6301 ohdr->sh_flags |= SHF_LINK_ORDER;
6302 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6303 }
6304
6305 osec->use_rela_p = isec->use_rela_p;
6306
6307 return TRUE;
6308 }
6309
6310 /* Copy private section information. This copies over the entsize
6311 field, and sometimes the info field. */
6312
6313 bfd_boolean
6314 _bfd_elf_copy_private_section_data (bfd *ibfd,
6315 asection *isec,
6316 bfd *obfd,
6317 asection *osec)
6318 {
6319 Elf_Internal_Shdr *ihdr, *ohdr;
6320
6321 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6322 || obfd->xvec->flavour != bfd_target_elf_flavour)
6323 return TRUE;
6324
6325 ihdr = &elf_section_data (isec)->this_hdr;
6326 ohdr = &elf_section_data (osec)->this_hdr;
6327
6328 ohdr->sh_entsize = ihdr->sh_entsize;
6329
6330 if (ihdr->sh_type == SHT_SYMTAB
6331 || ihdr->sh_type == SHT_DYNSYM
6332 || ihdr->sh_type == SHT_GNU_verneed
6333 || ihdr->sh_type == SHT_GNU_verdef)
6334 ohdr->sh_info = ihdr->sh_info;
6335
6336 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6337 NULL);
6338 }
6339
6340 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6341 necessary if we are removing either the SHT_GROUP section or any of
6342 the group member sections. DISCARDED is the value that a section's
6343 output_section has if the section will be discarded, NULL when this
6344 function is called from objcopy, bfd_abs_section_ptr when called
6345 from the linker. */
6346
6347 bfd_boolean
6348 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6349 {
6350 asection *isec;
6351
6352 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6353 if (elf_section_type (isec) == SHT_GROUP)
6354 {
6355 asection *first = elf_next_in_group (isec);
6356 asection *s = first;
6357 bfd_size_type removed = 0;
6358
6359 while (s != NULL)
6360 {
6361 /* If this member section is being output but the
6362 SHT_GROUP section is not, then clear the group info
6363 set up by _bfd_elf_copy_private_section_data. */
6364 if (s->output_section != discarded
6365 && isec->output_section == discarded)
6366 {
6367 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6368 elf_group_name (s->output_section) = NULL;
6369 }
6370 /* Conversely, if the member section is not being output
6371 but the SHT_GROUP section is, then adjust its size. */
6372 else if (s->output_section == discarded
6373 && isec->output_section != discarded)
6374 removed += 4;
6375 s = elf_next_in_group (s);
6376 if (s == first)
6377 break;
6378 }
6379 if (removed != 0)
6380 {
6381 if (discarded != NULL)
6382 {
6383 /* If we've been called for ld -r, then we need to
6384 adjust the input section size. This function may
6385 be called multiple times, so save the original
6386 size. */
6387 if (isec->rawsize == 0)
6388 isec->rawsize = isec->size;
6389 isec->size = isec->rawsize - removed;
6390 }
6391 else
6392 {
6393 /* Adjust the output section size when called from
6394 objcopy. */
6395 isec->output_section->size -= removed;
6396 }
6397 }
6398 }
6399
6400 return TRUE;
6401 }
6402
6403 /* Copy private header information. */
6404
6405 bfd_boolean
6406 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6407 {
6408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6409 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6410 return TRUE;
6411
6412 /* Copy over private BFD data if it has not already been copied.
6413 This must be done here, rather than in the copy_private_bfd_data
6414 entry point, because the latter is called after the section
6415 contents have been set, which means that the program headers have
6416 already been worked out. */
6417 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6418 {
6419 if (! copy_private_bfd_data (ibfd, obfd))
6420 return FALSE;
6421 }
6422
6423 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6424 }
6425
6426 /* Copy private symbol information. If this symbol is in a section
6427 which we did not map into a BFD section, try to map the section
6428 index correctly. We use special macro definitions for the mapped
6429 section indices; these definitions are interpreted by the
6430 swap_out_syms function. */
6431
6432 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6433 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6434 #define MAP_STRTAB (SHN_HIOS + 3)
6435 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6436 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6437
6438 bfd_boolean
6439 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6440 asymbol *isymarg,
6441 bfd *obfd,
6442 asymbol *osymarg)
6443 {
6444 elf_symbol_type *isym, *osym;
6445
6446 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6447 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6448 return TRUE;
6449
6450 isym = elf_symbol_from (ibfd, isymarg);
6451 osym = elf_symbol_from (obfd, osymarg);
6452
6453 if (isym != NULL
6454 && isym->internal_elf_sym.st_shndx != 0
6455 && osym != NULL
6456 && bfd_is_abs_section (isym->symbol.section))
6457 {
6458 unsigned int shndx;
6459
6460 shndx = isym->internal_elf_sym.st_shndx;
6461 if (shndx == elf_onesymtab (ibfd))
6462 shndx = MAP_ONESYMTAB;
6463 else if (shndx == elf_dynsymtab (ibfd))
6464 shndx = MAP_DYNSYMTAB;
6465 else if (shndx == elf_tdata (ibfd)->strtab_section)
6466 shndx = MAP_STRTAB;
6467 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6468 shndx = MAP_SHSTRTAB;
6469 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6470 shndx = MAP_SYM_SHNDX;
6471 osym->internal_elf_sym.st_shndx = shndx;
6472 }
6473
6474 return TRUE;
6475 }
6476
6477 /* Swap out the symbols. */
6478
6479 static bfd_boolean
6480 swap_out_syms (bfd *abfd,
6481 struct bfd_strtab_hash **sttp,
6482 int relocatable_p)
6483 {
6484 const struct elf_backend_data *bed;
6485 int symcount;
6486 asymbol **syms;
6487 struct bfd_strtab_hash *stt;
6488 Elf_Internal_Shdr *symtab_hdr;
6489 Elf_Internal_Shdr *symtab_shndx_hdr;
6490 Elf_Internal_Shdr *symstrtab_hdr;
6491 bfd_byte *outbound_syms;
6492 bfd_byte *outbound_shndx;
6493 int idx;
6494 bfd_size_type amt;
6495 bfd_boolean name_local_sections;
6496
6497 if (!elf_map_symbols (abfd))
6498 return FALSE;
6499
6500 /* Dump out the symtabs. */
6501 stt = _bfd_elf_stringtab_init ();
6502 if (stt == NULL)
6503 return FALSE;
6504
6505 bed = get_elf_backend_data (abfd);
6506 symcount = bfd_get_symcount (abfd);
6507 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6508 symtab_hdr->sh_type = SHT_SYMTAB;
6509 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6510 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6511 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6512 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6513
6514 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6515 symstrtab_hdr->sh_type = SHT_STRTAB;
6516
6517 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6518 bed->s->sizeof_sym);
6519 if (outbound_syms == NULL)
6520 {
6521 _bfd_stringtab_free (stt);
6522 return FALSE;
6523 }
6524 symtab_hdr->contents = outbound_syms;
6525
6526 outbound_shndx = NULL;
6527 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6528 if (symtab_shndx_hdr->sh_name != 0)
6529 {
6530 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6531 outbound_shndx = (bfd_byte *)
6532 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6533 if (outbound_shndx == NULL)
6534 {
6535 _bfd_stringtab_free (stt);
6536 return FALSE;
6537 }
6538
6539 symtab_shndx_hdr->contents = outbound_shndx;
6540 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6541 symtab_shndx_hdr->sh_size = amt;
6542 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6543 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6544 }
6545
6546 /* Now generate the data (for "contents"). */
6547 {
6548 /* Fill in zeroth symbol and swap it out. */
6549 Elf_Internal_Sym sym;
6550 sym.st_name = 0;
6551 sym.st_value = 0;
6552 sym.st_size = 0;
6553 sym.st_info = 0;
6554 sym.st_other = 0;
6555 sym.st_shndx = SHN_UNDEF;
6556 sym.st_target_internal = 0;
6557 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6558 outbound_syms += bed->s->sizeof_sym;
6559 if (outbound_shndx != NULL)
6560 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6561 }
6562
6563 name_local_sections
6564 = (bed->elf_backend_name_local_section_symbols
6565 && bed->elf_backend_name_local_section_symbols (abfd));
6566
6567 syms = bfd_get_outsymbols (abfd);
6568 for (idx = 0; idx < symcount; idx++)
6569 {
6570 Elf_Internal_Sym sym;
6571 bfd_vma value = syms[idx]->value;
6572 elf_symbol_type *type_ptr;
6573 flagword flags = syms[idx]->flags;
6574 int type;
6575
6576 if (!name_local_sections
6577 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6578 {
6579 /* Local section symbols have no name. */
6580 sym.st_name = 0;
6581 }
6582 else
6583 {
6584 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6585 syms[idx]->name,
6586 TRUE, FALSE);
6587 if (sym.st_name == (unsigned long) -1)
6588 {
6589 _bfd_stringtab_free (stt);
6590 return FALSE;
6591 }
6592 }
6593
6594 type_ptr = elf_symbol_from (abfd, syms[idx]);
6595
6596 if ((flags & BSF_SECTION_SYM) == 0
6597 && bfd_is_com_section (syms[idx]->section))
6598 {
6599 /* ELF common symbols put the alignment into the `value' field,
6600 and the size into the `size' field. This is backwards from
6601 how BFD handles it, so reverse it here. */
6602 sym.st_size = value;
6603 if (type_ptr == NULL
6604 || type_ptr->internal_elf_sym.st_value == 0)
6605 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6606 else
6607 sym.st_value = type_ptr->internal_elf_sym.st_value;
6608 sym.st_shndx = _bfd_elf_section_from_bfd_section
6609 (abfd, syms[idx]->section);
6610 }
6611 else
6612 {
6613 asection *sec = syms[idx]->section;
6614 unsigned int shndx;
6615
6616 if (sec->output_section)
6617 {
6618 value += sec->output_offset;
6619 sec = sec->output_section;
6620 }
6621
6622 /* Don't add in the section vma for relocatable output. */
6623 if (! relocatable_p)
6624 value += sec->vma;
6625 sym.st_value = value;
6626 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6627
6628 if (bfd_is_abs_section (sec)
6629 && type_ptr != NULL
6630 && type_ptr->internal_elf_sym.st_shndx != 0)
6631 {
6632 /* This symbol is in a real ELF section which we did
6633 not create as a BFD section. Undo the mapping done
6634 by copy_private_symbol_data. */
6635 shndx = type_ptr->internal_elf_sym.st_shndx;
6636 switch (shndx)
6637 {
6638 case MAP_ONESYMTAB:
6639 shndx = elf_onesymtab (abfd);
6640 break;
6641 case MAP_DYNSYMTAB:
6642 shndx = elf_dynsymtab (abfd);
6643 break;
6644 case MAP_STRTAB:
6645 shndx = elf_tdata (abfd)->strtab_section;
6646 break;
6647 case MAP_SHSTRTAB:
6648 shndx = elf_tdata (abfd)->shstrtab_section;
6649 break;
6650 case MAP_SYM_SHNDX:
6651 shndx = elf_tdata (abfd)->symtab_shndx_section;
6652 break;
6653 default:
6654 break;
6655 }
6656 }
6657 else
6658 {
6659 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6660
6661 if (shndx == SHN_BAD)
6662 {
6663 asection *sec2;
6664
6665 /* Writing this would be a hell of a lot easier if
6666 we had some decent documentation on bfd, and
6667 knew what to expect of the library, and what to
6668 demand of applications. For example, it
6669 appears that `objcopy' might not set the
6670 section of a symbol to be a section that is
6671 actually in the output file. */
6672 sec2 = bfd_get_section_by_name (abfd, sec->name);
6673 if (sec2 == NULL)
6674 {
6675 _bfd_error_handler (_("\
6676 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6677 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6678 sec->name);
6679 bfd_set_error (bfd_error_invalid_operation);
6680 _bfd_stringtab_free (stt);
6681 return FALSE;
6682 }
6683
6684 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6685 BFD_ASSERT (shndx != SHN_BAD);
6686 }
6687 }
6688
6689 sym.st_shndx = shndx;
6690 }
6691
6692 if ((flags & BSF_THREAD_LOCAL) != 0)
6693 type = STT_TLS;
6694 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6695 type = STT_GNU_IFUNC;
6696 else if ((flags & BSF_FUNCTION) != 0)
6697 type = STT_FUNC;
6698 else if ((flags & BSF_OBJECT) != 0)
6699 type = STT_OBJECT;
6700 else if ((flags & BSF_RELC) != 0)
6701 type = STT_RELC;
6702 else if ((flags & BSF_SRELC) != 0)
6703 type = STT_SRELC;
6704 else
6705 type = STT_NOTYPE;
6706
6707 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6708 type = STT_TLS;
6709
6710 /* Processor-specific types. */
6711 if (type_ptr != NULL
6712 && bed->elf_backend_get_symbol_type)
6713 type = ((*bed->elf_backend_get_symbol_type)
6714 (&type_ptr->internal_elf_sym, type));
6715
6716 if (flags & BSF_SECTION_SYM)
6717 {
6718 if (flags & BSF_GLOBAL)
6719 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6720 else
6721 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6722 }
6723 else if (bfd_is_com_section (syms[idx]->section))
6724 {
6725 #ifdef USE_STT_COMMON
6726 if (type == STT_OBJECT)
6727 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6728 else
6729 #endif
6730 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6731 }
6732 else if (bfd_is_und_section (syms[idx]->section))
6733 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6734 ? STB_WEAK
6735 : STB_GLOBAL),
6736 type);
6737 else if (flags & BSF_FILE)
6738 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6739 else
6740 {
6741 int bind = STB_LOCAL;
6742
6743 if (flags & BSF_LOCAL)
6744 bind = STB_LOCAL;
6745 else if (flags & BSF_GNU_UNIQUE)
6746 bind = STB_GNU_UNIQUE;
6747 else if (flags & BSF_WEAK)
6748 bind = STB_WEAK;
6749 else if (flags & BSF_GLOBAL)
6750 bind = STB_GLOBAL;
6751
6752 sym.st_info = ELF_ST_INFO (bind, type);
6753 }
6754
6755 if (type_ptr != NULL)
6756 {
6757 sym.st_other = type_ptr->internal_elf_sym.st_other;
6758 sym.st_target_internal
6759 = type_ptr->internal_elf_sym.st_target_internal;
6760 }
6761 else
6762 {
6763 sym.st_other = 0;
6764 sym.st_target_internal = 0;
6765 }
6766
6767 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6768 outbound_syms += bed->s->sizeof_sym;
6769 if (outbound_shndx != NULL)
6770 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6771 }
6772
6773 *sttp = stt;
6774 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6775 symstrtab_hdr->sh_type = SHT_STRTAB;
6776
6777 symstrtab_hdr->sh_flags = 0;
6778 symstrtab_hdr->sh_addr = 0;
6779 symstrtab_hdr->sh_entsize = 0;
6780 symstrtab_hdr->sh_link = 0;
6781 symstrtab_hdr->sh_info = 0;
6782 symstrtab_hdr->sh_addralign = 1;
6783
6784 return TRUE;
6785 }
6786
6787 /* Return the number of bytes required to hold the symtab vector.
6788
6789 Note that we base it on the count plus 1, since we will null terminate
6790 the vector allocated based on this size. However, the ELF symbol table
6791 always has a dummy entry as symbol #0, so it ends up even. */
6792
6793 long
6794 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6795 {
6796 long symcount;
6797 long symtab_size;
6798 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6799
6800 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6801 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6802 if (symcount > 0)
6803 symtab_size -= sizeof (asymbol *);
6804
6805 return symtab_size;
6806 }
6807
6808 long
6809 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6810 {
6811 long symcount;
6812 long symtab_size;
6813 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6814
6815 if (elf_dynsymtab (abfd) == 0)
6816 {
6817 bfd_set_error (bfd_error_invalid_operation);
6818 return -1;
6819 }
6820
6821 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6822 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6823 if (symcount > 0)
6824 symtab_size -= sizeof (asymbol *);
6825
6826 return symtab_size;
6827 }
6828
6829 long
6830 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6831 sec_ptr asect)
6832 {
6833 return (asect->reloc_count + 1) * sizeof (arelent *);
6834 }
6835
6836 /* Canonicalize the relocs. */
6837
6838 long
6839 _bfd_elf_canonicalize_reloc (bfd *abfd,
6840 sec_ptr section,
6841 arelent **relptr,
6842 asymbol **symbols)
6843 {
6844 arelent *tblptr;
6845 unsigned int i;
6846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6847
6848 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6849 return -1;
6850
6851 tblptr = section->relocation;
6852 for (i = 0; i < section->reloc_count; i++)
6853 *relptr++ = tblptr++;
6854
6855 *relptr = NULL;
6856
6857 return section->reloc_count;
6858 }
6859
6860 long
6861 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6862 {
6863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6864 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6865
6866 if (symcount >= 0)
6867 bfd_get_symcount (abfd) = symcount;
6868 return symcount;
6869 }
6870
6871 long
6872 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6873 asymbol **allocation)
6874 {
6875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6876 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6877
6878 if (symcount >= 0)
6879 bfd_get_dynamic_symcount (abfd) = symcount;
6880 return symcount;
6881 }
6882
6883 /* Return the size required for the dynamic reloc entries. Any loadable
6884 section that was actually installed in the BFD, and has type SHT_REL
6885 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6886 dynamic reloc section. */
6887
6888 long
6889 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6890 {
6891 long ret;
6892 asection *s;
6893
6894 if (elf_dynsymtab (abfd) == 0)
6895 {
6896 bfd_set_error (bfd_error_invalid_operation);
6897 return -1;
6898 }
6899
6900 ret = sizeof (arelent *);
6901 for (s = abfd->sections; s != NULL; s = s->next)
6902 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6903 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6904 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6905 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6906 * sizeof (arelent *));
6907
6908 return ret;
6909 }
6910
6911 /* Canonicalize the dynamic relocation entries. Note that we return the
6912 dynamic relocations as a single block, although they are actually
6913 associated with particular sections; the interface, which was
6914 designed for SunOS style shared libraries, expects that there is only
6915 one set of dynamic relocs. Any loadable section that was actually
6916 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6917 dynamic symbol table, is considered to be a dynamic reloc section. */
6918
6919 long
6920 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6921 arelent **storage,
6922 asymbol **syms)
6923 {
6924 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6925 asection *s;
6926 long ret;
6927
6928 if (elf_dynsymtab (abfd) == 0)
6929 {
6930 bfd_set_error (bfd_error_invalid_operation);
6931 return -1;
6932 }
6933
6934 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6935 ret = 0;
6936 for (s = abfd->sections; s != NULL; s = s->next)
6937 {
6938 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6939 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6940 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6941 {
6942 arelent *p;
6943 long count, i;
6944
6945 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6946 return -1;
6947 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6948 p = s->relocation;
6949 for (i = 0; i < count; i++)
6950 *storage++ = p++;
6951 ret += count;
6952 }
6953 }
6954
6955 *storage = NULL;
6956
6957 return ret;
6958 }
6959 \f
6960 /* Read in the version information. */
6961
6962 bfd_boolean
6963 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6964 {
6965 bfd_byte *contents = NULL;
6966 unsigned int freeidx = 0;
6967
6968 if (elf_dynverref (abfd) != 0)
6969 {
6970 Elf_Internal_Shdr *hdr;
6971 Elf_External_Verneed *everneed;
6972 Elf_Internal_Verneed *iverneed;
6973 unsigned int i;
6974 bfd_byte *contents_end;
6975
6976 hdr = &elf_tdata (abfd)->dynverref_hdr;
6977
6978 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6979 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6980 if (elf_tdata (abfd)->verref == NULL)
6981 goto error_return;
6982
6983 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6984
6985 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6986 if (contents == NULL)
6987 {
6988 error_return_verref:
6989 elf_tdata (abfd)->verref = NULL;
6990 elf_tdata (abfd)->cverrefs = 0;
6991 goto error_return;
6992 }
6993 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6994 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6995 goto error_return_verref;
6996
6997 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6998 goto error_return_verref;
6999
7000 BFD_ASSERT (sizeof (Elf_External_Verneed)
7001 == sizeof (Elf_External_Vernaux));
7002 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7003 everneed = (Elf_External_Verneed *) contents;
7004 iverneed = elf_tdata (abfd)->verref;
7005 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7006 {
7007 Elf_External_Vernaux *evernaux;
7008 Elf_Internal_Vernaux *ivernaux;
7009 unsigned int j;
7010
7011 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7012
7013 iverneed->vn_bfd = abfd;
7014
7015 iverneed->vn_filename =
7016 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7017 iverneed->vn_file);
7018 if (iverneed->vn_filename == NULL)
7019 goto error_return_verref;
7020
7021 if (iverneed->vn_cnt == 0)
7022 iverneed->vn_auxptr = NULL;
7023 else
7024 {
7025 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7026 bfd_alloc2 (abfd, iverneed->vn_cnt,
7027 sizeof (Elf_Internal_Vernaux));
7028 if (iverneed->vn_auxptr == NULL)
7029 goto error_return_verref;
7030 }
7031
7032 if (iverneed->vn_aux
7033 > (size_t) (contents_end - (bfd_byte *) everneed))
7034 goto error_return_verref;
7035
7036 evernaux = ((Elf_External_Vernaux *)
7037 ((bfd_byte *) everneed + iverneed->vn_aux));
7038 ivernaux = iverneed->vn_auxptr;
7039 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7040 {
7041 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7042
7043 ivernaux->vna_nodename =
7044 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7045 ivernaux->vna_name);
7046 if (ivernaux->vna_nodename == NULL)
7047 goto error_return_verref;
7048
7049 if (j + 1 < iverneed->vn_cnt)
7050 ivernaux->vna_nextptr = ivernaux + 1;
7051 else
7052 ivernaux->vna_nextptr = NULL;
7053
7054 if (ivernaux->vna_next
7055 > (size_t) (contents_end - (bfd_byte *) evernaux))
7056 goto error_return_verref;
7057
7058 evernaux = ((Elf_External_Vernaux *)
7059 ((bfd_byte *) evernaux + ivernaux->vna_next));
7060
7061 if (ivernaux->vna_other > freeidx)
7062 freeidx = ivernaux->vna_other;
7063 }
7064
7065 if (i + 1 < hdr->sh_info)
7066 iverneed->vn_nextref = iverneed + 1;
7067 else
7068 iverneed->vn_nextref = NULL;
7069
7070 if (iverneed->vn_next
7071 > (size_t) (contents_end - (bfd_byte *) everneed))
7072 goto error_return_verref;
7073
7074 everneed = ((Elf_External_Verneed *)
7075 ((bfd_byte *) everneed + iverneed->vn_next));
7076 }
7077
7078 free (contents);
7079 contents = NULL;
7080 }
7081
7082 if (elf_dynverdef (abfd) != 0)
7083 {
7084 Elf_Internal_Shdr *hdr;
7085 Elf_External_Verdef *everdef;
7086 Elf_Internal_Verdef *iverdef;
7087 Elf_Internal_Verdef *iverdefarr;
7088 Elf_Internal_Verdef iverdefmem;
7089 unsigned int i;
7090 unsigned int maxidx;
7091 bfd_byte *contents_end_def, *contents_end_aux;
7092
7093 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7094
7095 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7096 if (contents == NULL)
7097 goto error_return;
7098 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7099 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7100 goto error_return;
7101
7102 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7103 goto error_return;
7104
7105 BFD_ASSERT (sizeof (Elf_External_Verdef)
7106 >= sizeof (Elf_External_Verdaux));
7107 contents_end_def = contents + hdr->sh_size
7108 - sizeof (Elf_External_Verdef);
7109 contents_end_aux = contents + hdr->sh_size
7110 - sizeof (Elf_External_Verdaux);
7111
7112 /* We know the number of entries in the section but not the maximum
7113 index. Therefore we have to run through all entries and find
7114 the maximum. */
7115 everdef = (Elf_External_Verdef *) contents;
7116 maxidx = 0;
7117 for (i = 0; i < hdr->sh_info; ++i)
7118 {
7119 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7120
7121 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7122 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7123
7124 if (iverdefmem.vd_next
7125 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7126 goto error_return;
7127
7128 everdef = ((Elf_External_Verdef *)
7129 ((bfd_byte *) everdef + iverdefmem.vd_next));
7130 }
7131
7132 if (default_imported_symver)
7133 {
7134 if (freeidx > maxidx)
7135 maxidx = ++freeidx;
7136 else
7137 freeidx = ++maxidx;
7138 }
7139 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7140 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7141 if (elf_tdata (abfd)->verdef == NULL)
7142 goto error_return;
7143
7144 elf_tdata (abfd)->cverdefs = maxidx;
7145
7146 everdef = (Elf_External_Verdef *) contents;
7147 iverdefarr = elf_tdata (abfd)->verdef;
7148 for (i = 0; i < hdr->sh_info; i++)
7149 {
7150 Elf_External_Verdaux *everdaux;
7151 Elf_Internal_Verdaux *iverdaux;
7152 unsigned int j;
7153
7154 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7155
7156 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7157 {
7158 error_return_verdef:
7159 elf_tdata (abfd)->verdef = NULL;
7160 elf_tdata (abfd)->cverdefs = 0;
7161 goto error_return;
7162 }
7163
7164 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7165 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7166
7167 iverdef->vd_bfd = abfd;
7168
7169 if (iverdef->vd_cnt == 0)
7170 iverdef->vd_auxptr = NULL;
7171 else
7172 {
7173 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7174 bfd_alloc2 (abfd, iverdef->vd_cnt,
7175 sizeof (Elf_Internal_Verdaux));
7176 if (iverdef->vd_auxptr == NULL)
7177 goto error_return_verdef;
7178 }
7179
7180 if (iverdef->vd_aux
7181 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7182 goto error_return_verdef;
7183
7184 everdaux = ((Elf_External_Verdaux *)
7185 ((bfd_byte *) everdef + iverdef->vd_aux));
7186 iverdaux = iverdef->vd_auxptr;
7187 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7188 {
7189 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7190
7191 iverdaux->vda_nodename =
7192 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7193 iverdaux->vda_name);
7194 if (iverdaux->vda_nodename == NULL)
7195 goto error_return_verdef;
7196
7197 if (j + 1 < iverdef->vd_cnt)
7198 iverdaux->vda_nextptr = iverdaux + 1;
7199 else
7200 iverdaux->vda_nextptr = NULL;
7201
7202 if (iverdaux->vda_next
7203 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7204 goto error_return_verdef;
7205
7206 everdaux = ((Elf_External_Verdaux *)
7207 ((bfd_byte *) everdaux + iverdaux->vda_next));
7208 }
7209
7210 if (iverdef->vd_cnt)
7211 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7212
7213 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7214 iverdef->vd_nextdef = iverdef + 1;
7215 else
7216 iverdef->vd_nextdef = NULL;
7217
7218 everdef = ((Elf_External_Verdef *)
7219 ((bfd_byte *) everdef + iverdef->vd_next));
7220 }
7221
7222 free (contents);
7223 contents = NULL;
7224 }
7225 else if (default_imported_symver)
7226 {
7227 if (freeidx < 3)
7228 freeidx = 3;
7229 else
7230 freeidx++;
7231
7232 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7233 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7234 if (elf_tdata (abfd)->verdef == NULL)
7235 goto error_return;
7236
7237 elf_tdata (abfd)->cverdefs = freeidx;
7238 }
7239
7240 /* Create a default version based on the soname. */
7241 if (default_imported_symver)
7242 {
7243 Elf_Internal_Verdef *iverdef;
7244 Elf_Internal_Verdaux *iverdaux;
7245
7246 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7247
7248 iverdef->vd_version = VER_DEF_CURRENT;
7249 iverdef->vd_flags = 0;
7250 iverdef->vd_ndx = freeidx;
7251 iverdef->vd_cnt = 1;
7252
7253 iverdef->vd_bfd = abfd;
7254
7255 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7256 if (iverdef->vd_nodename == NULL)
7257 goto error_return_verdef;
7258 iverdef->vd_nextdef = NULL;
7259 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7260 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7261 if (iverdef->vd_auxptr == NULL)
7262 goto error_return_verdef;
7263
7264 iverdaux = iverdef->vd_auxptr;
7265 iverdaux->vda_nodename = iverdef->vd_nodename;
7266 iverdaux->vda_nextptr = NULL;
7267 }
7268
7269 return TRUE;
7270
7271 error_return:
7272 if (contents != NULL)
7273 free (contents);
7274 return FALSE;
7275 }
7276 \f
7277 asymbol *
7278 _bfd_elf_make_empty_symbol (bfd *abfd)
7279 {
7280 elf_symbol_type *newsym;
7281 bfd_size_type amt = sizeof (elf_symbol_type);
7282
7283 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7284 if (!newsym)
7285 return NULL;
7286 else
7287 {
7288 newsym->symbol.the_bfd = abfd;
7289 return &newsym->symbol;
7290 }
7291 }
7292
7293 void
7294 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7295 asymbol *symbol,
7296 symbol_info *ret)
7297 {
7298 bfd_symbol_info (symbol, ret);
7299 }
7300
7301 /* Return whether a symbol name implies a local symbol. Most targets
7302 use this function for the is_local_label_name entry point, but some
7303 override it. */
7304
7305 bfd_boolean
7306 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7307 const char *name)
7308 {
7309 /* Normal local symbols start with ``.L''. */
7310 if (name[0] == '.' && name[1] == 'L')
7311 return TRUE;
7312
7313 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7314 DWARF debugging symbols starting with ``..''. */
7315 if (name[0] == '.' && name[1] == '.')
7316 return TRUE;
7317
7318 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7319 emitting DWARF debugging output. I suspect this is actually a
7320 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7321 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7322 underscore to be emitted on some ELF targets). For ease of use,
7323 we treat such symbols as local. */
7324 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7325 return TRUE;
7326
7327 return FALSE;
7328 }
7329
7330 alent *
7331 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7332 asymbol *symbol ATTRIBUTE_UNUSED)
7333 {
7334 abort ();
7335 return NULL;
7336 }
7337
7338 bfd_boolean
7339 _bfd_elf_set_arch_mach (bfd *abfd,
7340 enum bfd_architecture arch,
7341 unsigned long machine)
7342 {
7343 /* If this isn't the right architecture for this backend, and this
7344 isn't the generic backend, fail. */
7345 if (arch != get_elf_backend_data (abfd)->arch
7346 && arch != bfd_arch_unknown
7347 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7348 return FALSE;
7349
7350 return bfd_default_set_arch_mach (abfd, arch, machine);
7351 }
7352
7353 /* Find the function to a particular section and offset,
7354 for error reporting. */
7355
7356 static bfd_boolean
7357 elf_find_function (bfd *abfd,
7358 asection *section,
7359 asymbol **symbols,
7360 bfd_vma offset,
7361 const char **filename_ptr,
7362 const char **functionname_ptr)
7363 {
7364 const char *filename;
7365 asymbol *func, *file;
7366 bfd_vma low_func;
7367 asymbol **p;
7368 /* ??? Given multiple file symbols, it is impossible to reliably
7369 choose the right file name for global symbols. File symbols are
7370 local symbols, and thus all file symbols must sort before any
7371 global symbols. The ELF spec may be interpreted to say that a
7372 file symbol must sort before other local symbols, but currently
7373 ld -r doesn't do this. So, for ld -r output, it is possible to
7374 make a better choice of file name for local symbols by ignoring
7375 file symbols appearing after a given local symbol. */
7376 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7378
7379 filename = NULL;
7380 func = NULL;
7381 file = NULL;
7382 low_func = 0;
7383 state = nothing_seen;
7384
7385 for (p = symbols; *p != NULL; p++)
7386 {
7387 elf_symbol_type *q;
7388 unsigned int type;
7389
7390 q = (elf_symbol_type *) *p;
7391
7392 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7393 switch (type)
7394 {
7395 case STT_FILE:
7396 file = &q->symbol;
7397 if (state == symbol_seen)
7398 state = file_after_symbol_seen;
7399 continue;
7400 default:
7401 if (!bed->is_function_type (type))
7402 break;
7403 case STT_NOTYPE:
7404 if (bfd_get_section (&q->symbol) == section
7405 && q->symbol.value >= low_func
7406 && q->symbol.value <= offset)
7407 {
7408 func = (asymbol *) q;
7409 low_func = q->symbol.value;
7410 filename = NULL;
7411 if (file != NULL
7412 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7413 || state != file_after_symbol_seen))
7414 filename = bfd_asymbol_name (file);
7415 }
7416 break;
7417 }
7418 if (state == nothing_seen)
7419 state = symbol_seen;
7420 }
7421
7422 if (func == NULL)
7423 return FALSE;
7424
7425 if (filename_ptr)
7426 *filename_ptr = filename;
7427 if (functionname_ptr)
7428 *functionname_ptr = bfd_asymbol_name (func);
7429
7430 return TRUE;
7431 }
7432
7433 /* Find the nearest line to a particular section and offset,
7434 for error reporting. */
7435
7436 bfd_boolean
7437 _bfd_elf_find_nearest_line (bfd *abfd,
7438 asection *section,
7439 asymbol **symbols,
7440 bfd_vma offset,
7441 const char **filename_ptr,
7442 const char **functionname_ptr,
7443 unsigned int *line_ptr)
7444 {
7445 bfd_boolean found;
7446
7447 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7448 filename_ptr, functionname_ptr,
7449 line_ptr))
7450 {
7451 if (!*functionname_ptr)
7452 elf_find_function (abfd, section, symbols, offset,
7453 *filename_ptr ? NULL : filename_ptr,
7454 functionname_ptr);
7455
7456 return TRUE;
7457 }
7458
7459 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7460 filename_ptr, functionname_ptr,
7461 line_ptr, 0,
7462 &elf_tdata (abfd)->dwarf2_find_line_info))
7463 {
7464 if (!*functionname_ptr)
7465 elf_find_function (abfd, section, symbols, offset,
7466 *filename_ptr ? NULL : filename_ptr,
7467 functionname_ptr);
7468
7469 return TRUE;
7470 }
7471
7472 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7473 &found, filename_ptr,
7474 functionname_ptr, line_ptr,
7475 &elf_tdata (abfd)->line_info))
7476 return FALSE;
7477 if (found && (*functionname_ptr || *line_ptr))
7478 return TRUE;
7479
7480 if (symbols == NULL)
7481 return FALSE;
7482
7483 if (! elf_find_function (abfd, section, symbols, offset,
7484 filename_ptr, functionname_ptr))
7485 return FALSE;
7486
7487 *line_ptr = 0;
7488 return TRUE;
7489 }
7490
7491 /* Find the line for a symbol. */
7492
7493 bfd_boolean
7494 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7495 const char **filename_ptr, unsigned int *line_ptr)
7496 {
7497 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7498 filename_ptr, line_ptr, 0,
7499 &elf_tdata (abfd)->dwarf2_find_line_info);
7500 }
7501
7502 /* After a call to bfd_find_nearest_line, successive calls to
7503 bfd_find_inliner_info can be used to get source information about
7504 each level of function inlining that terminated at the address
7505 passed to bfd_find_nearest_line. Currently this is only supported
7506 for DWARF2 with appropriate DWARF3 extensions. */
7507
7508 bfd_boolean
7509 _bfd_elf_find_inliner_info (bfd *abfd,
7510 const char **filename_ptr,
7511 const char **functionname_ptr,
7512 unsigned int *line_ptr)
7513 {
7514 bfd_boolean found;
7515 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7516 functionname_ptr, line_ptr,
7517 & elf_tdata (abfd)->dwarf2_find_line_info);
7518 return found;
7519 }
7520
7521 int
7522 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7523 {
7524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7525 int ret = bed->s->sizeof_ehdr;
7526
7527 if (!info->relocatable)
7528 {
7529 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7530
7531 if (phdr_size == (bfd_size_type) -1)
7532 {
7533 struct elf_segment_map *m;
7534
7535 phdr_size = 0;
7536 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7537 phdr_size += bed->s->sizeof_phdr;
7538
7539 if (phdr_size == 0)
7540 phdr_size = get_program_header_size (abfd, info);
7541 }
7542
7543 elf_tdata (abfd)->program_header_size = phdr_size;
7544 ret += phdr_size;
7545 }
7546
7547 return ret;
7548 }
7549
7550 bfd_boolean
7551 _bfd_elf_set_section_contents (bfd *abfd,
7552 sec_ptr section,
7553 const void *location,
7554 file_ptr offset,
7555 bfd_size_type count)
7556 {
7557 Elf_Internal_Shdr *hdr;
7558 bfd_signed_vma pos;
7559
7560 if (! abfd->output_has_begun
7561 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7562 return FALSE;
7563
7564 hdr = &elf_section_data (section)->this_hdr;
7565 pos = hdr->sh_offset + offset;
7566 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7567 || bfd_bwrite (location, count, abfd) != count)
7568 return FALSE;
7569
7570 return TRUE;
7571 }
7572
7573 void
7574 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7575 arelent *cache_ptr ATTRIBUTE_UNUSED,
7576 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7577 {
7578 abort ();
7579 }
7580
7581 /* Try to convert a non-ELF reloc into an ELF one. */
7582
7583 bfd_boolean
7584 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7585 {
7586 /* Check whether we really have an ELF howto. */
7587
7588 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7589 {
7590 bfd_reloc_code_real_type code;
7591 reloc_howto_type *howto;
7592
7593 /* Alien reloc: Try to determine its type to replace it with an
7594 equivalent ELF reloc. */
7595
7596 if (areloc->howto->pc_relative)
7597 {
7598 switch (areloc->howto->bitsize)
7599 {
7600 case 8:
7601 code = BFD_RELOC_8_PCREL;
7602 break;
7603 case 12:
7604 code = BFD_RELOC_12_PCREL;
7605 break;
7606 case 16:
7607 code = BFD_RELOC_16_PCREL;
7608 break;
7609 case 24:
7610 code = BFD_RELOC_24_PCREL;
7611 break;
7612 case 32:
7613 code = BFD_RELOC_32_PCREL;
7614 break;
7615 case 64:
7616 code = BFD_RELOC_64_PCREL;
7617 break;
7618 default:
7619 goto fail;
7620 }
7621
7622 howto = bfd_reloc_type_lookup (abfd, code);
7623
7624 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7625 {
7626 if (howto->pcrel_offset)
7627 areloc->addend += areloc->address;
7628 else
7629 areloc->addend -= areloc->address; /* addend is unsigned!! */
7630 }
7631 }
7632 else
7633 {
7634 switch (areloc->howto->bitsize)
7635 {
7636 case 8:
7637 code = BFD_RELOC_8;
7638 break;
7639 case 14:
7640 code = BFD_RELOC_14;
7641 break;
7642 case 16:
7643 code = BFD_RELOC_16;
7644 break;
7645 case 26:
7646 code = BFD_RELOC_26;
7647 break;
7648 case 32:
7649 code = BFD_RELOC_32;
7650 break;
7651 case 64:
7652 code = BFD_RELOC_64;
7653 break;
7654 default:
7655 goto fail;
7656 }
7657
7658 howto = bfd_reloc_type_lookup (abfd, code);
7659 }
7660
7661 if (howto)
7662 areloc->howto = howto;
7663 else
7664 goto fail;
7665 }
7666
7667 return TRUE;
7668
7669 fail:
7670 (*_bfd_error_handler)
7671 (_("%B: unsupported relocation type %s"),
7672 abfd, areloc->howto->name);
7673 bfd_set_error (bfd_error_bad_value);
7674 return FALSE;
7675 }
7676
7677 bfd_boolean
7678 _bfd_elf_close_and_cleanup (bfd *abfd)
7679 {
7680 if (bfd_get_format (abfd) == bfd_object)
7681 {
7682 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7683 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7684 _bfd_dwarf2_cleanup_debug_info (abfd);
7685 }
7686
7687 return _bfd_generic_close_and_cleanup (abfd);
7688 }
7689
7690 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7691 in the relocation's offset. Thus we cannot allow any sort of sanity
7692 range-checking to interfere. There is nothing else to do in processing
7693 this reloc. */
7694
7695 bfd_reloc_status_type
7696 _bfd_elf_rel_vtable_reloc_fn
7697 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7698 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7699 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7700 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7701 {
7702 return bfd_reloc_ok;
7703 }
7704 \f
7705 /* Elf core file support. Much of this only works on native
7706 toolchains, since we rely on knowing the
7707 machine-dependent procfs structure in order to pick
7708 out details about the corefile. */
7709
7710 #ifdef HAVE_SYS_PROCFS_H
7711 /* Needed for new procfs interface on sparc-solaris. */
7712 # define _STRUCTURED_PROC 1
7713 # include <sys/procfs.h>
7714 #endif
7715
7716 /* Return a PID that identifies a "thread" for threaded cores, or the
7717 PID of the main process for non-threaded cores. */
7718
7719 static int
7720 elfcore_make_pid (bfd *abfd)
7721 {
7722 int pid;
7723
7724 pid = elf_tdata (abfd)->core_lwpid;
7725 if (pid == 0)
7726 pid = elf_tdata (abfd)->core_pid;
7727
7728 return pid;
7729 }
7730
7731 /* If there isn't a section called NAME, make one, using
7732 data from SECT. Note, this function will generate a
7733 reference to NAME, so you shouldn't deallocate or
7734 overwrite it. */
7735
7736 static bfd_boolean
7737 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7738 {
7739 asection *sect2;
7740
7741 if (bfd_get_section_by_name (abfd, name) != NULL)
7742 return TRUE;
7743
7744 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7745 if (sect2 == NULL)
7746 return FALSE;
7747
7748 sect2->size = sect->size;
7749 sect2->filepos = sect->filepos;
7750 sect2->alignment_power = sect->alignment_power;
7751 return TRUE;
7752 }
7753
7754 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7755 actually creates up to two pseudosections:
7756 - For the single-threaded case, a section named NAME, unless
7757 such a section already exists.
7758 - For the multi-threaded case, a section named "NAME/PID", where
7759 PID is elfcore_make_pid (abfd).
7760 Both pseudosections have identical contents. */
7761 bfd_boolean
7762 _bfd_elfcore_make_pseudosection (bfd *abfd,
7763 char *name,
7764 size_t size,
7765 ufile_ptr filepos)
7766 {
7767 char buf[100];
7768 char *threaded_name;
7769 size_t len;
7770 asection *sect;
7771
7772 /* Build the section name. */
7773
7774 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7775 len = strlen (buf) + 1;
7776 threaded_name = (char *) bfd_alloc (abfd, len);
7777 if (threaded_name == NULL)
7778 return FALSE;
7779 memcpy (threaded_name, buf, len);
7780
7781 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7782 SEC_HAS_CONTENTS);
7783 if (sect == NULL)
7784 return FALSE;
7785 sect->size = size;
7786 sect->filepos = filepos;
7787 sect->alignment_power = 2;
7788
7789 return elfcore_maybe_make_sect (abfd, name, sect);
7790 }
7791
7792 /* prstatus_t exists on:
7793 solaris 2.5+
7794 linux 2.[01] + glibc
7795 unixware 4.2
7796 */
7797
7798 #if defined (HAVE_PRSTATUS_T)
7799
7800 static bfd_boolean
7801 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7802 {
7803 size_t size;
7804 int offset;
7805
7806 if (note->descsz == sizeof (prstatus_t))
7807 {
7808 prstatus_t prstat;
7809
7810 size = sizeof (prstat.pr_reg);
7811 offset = offsetof (prstatus_t, pr_reg);
7812 memcpy (&prstat, note->descdata, sizeof (prstat));
7813
7814 /* Do not overwrite the core signal if it
7815 has already been set by another thread. */
7816 if (elf_tdata (abfd)->core_signal == 0)
7817 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7818 if (elf_tdata (abfd)->core_pid == 0)
7819 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7820
7821 /* pr_who exists on:
7822 solaris 2.5+
7823 unixware 4.2
7824 pr_who doesn't exist on:
7825 linux 2.[01]
7826 */
7827 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7828 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7829 #else
7830 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7831 #endif
7832 }
7833 #if defined (HAVE_PRSTATUS32_T)
7834 else if (note->descsz == sizeof (prstatus32_t))
7835 {
7836 /* 64-bit host, 32-bit corefile */
7837 prstatus32_t prstat;
7838
7839 size = sizeof (prstat.pr_reg);
7840 offset = offsetof (prstatus32_t, pr_reg);
7841 memcpy (&prstat, note->descdata, sizeof (prstat));
7842
7843 /* Do not overwrite the core signal if it
7844 has already been set by another thread. */
7845 if (elf_tdata (abfd)->core_signal == 0)
7846 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7847 if (elf_tdata (abfd)->core_pid == 0)
7848 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7849
7850 /* pr_who exists on:
7851 solaris 2.5+
7852 unixware 4.2
7853 pr_who doesn't exist on:
7854 linux 2.[01]
7855 */
7856 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7857 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7858 #else
7859 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7860 #endif
7861 }
7862 #endif /* HAVE_PRSTATUS32_T */
7863 else
7864 {
7865 /* Fail - we don't know how to handle any other
7866 note size (ie. data object type). */
7867 return TRUE;
7868 }
7869
7870 /* Make a ".reg/999" section and a ".reg" section. */
7871 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7872 size, note->descpos + offset);
7873 }
7874 #endif /* defined (HAVE_PRSTATUS_T) */
7875
7876 /* Create a pseudosection containing the exact contents of NOTE. */
7877 static bfd_boolean
7878 elfcore_make_note_pseudosection (bfd *abfd,
7879 char *name,
7880 Elf_Internal_Note *note)
7881 {
7882 return _bfd_elfcore_make_pseudosection (abfd, name,
7883 note->descsz, note->descpos);
7884 }
7885
7886 /* There isn't a consistent prfpregset_t across platforms,
7887 but it doesn't matter, because we don't have to pick this
7888 data structure apart. */
7889
7890 static bfd_boolean
7891 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7892 {
7893 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7894 }
7895
7896 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7897 type of NT_PRXFPREG. Just include the whole note's contents
7898 literally. */
7899
7900 static bfd_boolean
7901 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7902 {
7903 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7904 }
7905
7906 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7907 with a note type of NT_X86_XSTATE. Just include the whole note's
7908 contents literally. */
7909
7910 static bfd_boolean
7911 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7912 {
7913 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7914 }
7915
7916 static bfd_boolean
7917 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7918 {
7919 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7920 }
7921
7922 static bfd_boolean
7923 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7924 {
7925 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7926 }
7927
7928 static bfd_boolean
7929 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7930 {
7931 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7932 }
7933
7934 static bfd_boolean
7935 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7936 {
7937 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7938 }
7939
7940 static bfd_boolean
7941 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7942 {
7943 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7944 }
7945
7946 static bfd_boolean
7947 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7948 {
7949 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7950 }
7951
7952 static bfd_boolean
7953 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7954 {
7955 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7956 }
7957
7958 static bfd_boolean
7959 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7960 {
7961 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7962 }
7963
7964 #if defined (HAVE_PRPSINFO_T)
7965 typedef prpsinfo_t elfcore_psinfo_t;
7966 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7967 typedef prpsinfo32_t elfcore_psinfo32_t;
7968 #endif
7969 #endif
7970
7971 #if defined (HAVE_PSINFO_T)
7972 typedef psinfo_t elfcore_psinfo_t;
7973 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7974 typedef psinfo32_t elfcore_psinfo32_t;
7975 #endif
7976 #endif
7977
7978 /* return a malloc'ed copy of a string at START which is at
7979 most MAX bytes long, possibly without a terminating '\0'.
7980 the copy will always have a terminating '\0'. */
7981
7982 char *
7983 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7984 {
7985 char *dups;
7986 char *end = (char *) memchr (start, '\0', max);
7987 size_t len;
7988
7989 if (end == NULL)
7990 len = max;
7991 else
7992 len = end - start;
7993
7994 dups = (char *) bfd_alloc (abfd, len + 1);
7995 if (dups == NULL)
7996 return NULL;
7997
7998 memcpy (dups, start, len);
7999 dups[len] = '\0';
8000
8001 return dups;
8002 }
8003
8004 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8005 static bfd_boolean
8006 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8007 {
8008 if (note->descsz == sizeof (elfcore_psinfo_t))
8009 {
8010 elfcore_psinfo_t psinfo;
8011
8012 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8013
8014 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8015 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8016 #endif
8017 elf_tdata (abfd)->core_program
8018 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8019 sizeof (psinfo.pr_fname));
8020
8021 elf_tdata (abfd)->core_command
8022 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8023 sizeof (psinfo.pr_psargs));
8024 }
8025 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8026 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8027 {
8028 /* 64-bit host, 32-bit corefile */
8029 elfcore_psinfo32_t psinfo;
8030
8031 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8032
8033 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8034 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8035 #endif
8036 elf_tdata (abfd)->core_program
8037 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8038 sizeof (psinfo.pr_fname));
8039
8040 elf_tdata (abfd)->core_command
8041 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8042 sizeof (psinfo.pr_psargs));
8043 }
8044 #endif
8045
8046 else
8047 {
8048 /* Fail - we don't know how to handle any other
8049 note size (ie. data object type). */
8050 return TRUE;
8051 }
8052
8053 /* Note that for some reason, a spurious space is tacked
8054 onto the end of the args in some (at least one anyway)
8055 implementations, so strip it off if it exists. */
8056
8057 {
8058 char *command = elf_tdata (abfd)->core_command;
8059 int n = strlen (command);
8060
8061 if (0 < n && command[n - 1] == ' ')
8062 command[n - 1] = '\0';
8063 }
8064
8065 return TRUE;
8066 }
8067 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8068
8069 #if defined (HAVE_PSTATUS_T)
8070 static bfd_boolean
8071 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8072 {
8073 if (note->descsz == sizeof (pstatus_t)
8074 #if defined (HAVE_PXSTATUS_T)
8075 || note->descsz == sizeof (pxstatus_t)
8076 #endif
8077 )
8078 {
8079 pstatus_t pstat;
8080
8081 memcpy (&pstat, note->descdata, sizeof (pstat));
8082
8083 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8084 }
8085 #if defined (HAVE_PSTATUS32_T)
8086 else if (note->descsz == sizeof (pstatus32_t))
8087 {
8088 /* 64-bit host, 32-bit corefile */
8089 pstatus32_t pstat;
8090
8091 memcpy (&pstat, note->descdata, sizeof (pstat));
8092
8093 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8094 }
8095 #endif
8096 /* Could grab some more details from the "representative"
8097 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8098 NT_LWPSTATUS note, presumably. */
8099
8100 return TRUE;
8101 }
8102 #endif /* defined (HAVE_PSTATUS_T) */
8103
8104 #if defined (HAVE_LWPSTATUS_T)
8105 static bfd_boolean
8106 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8107 {
8108 lwpstatus_t lwpstat;
8109 char buf[100];
8110 char *name;
8111 size_t len;
8112 asection *sect;
8113
8114 if (note->descsz != sizeof (lwpstat)
8115 #if defined (HAVE_LWPXSTATUS_T)
8116 && note->descsz != sizeof (lwpxstatus_t)
8117 #endif
8118 )
8119 return TRUE;
8120
8121 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8122
8123 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8124 /* Do not overwrite the core signal if it has already been set by
8125 another thread. */
8126 if (elf_tdata (abfd)->core_signal == 0)
8127 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8128
8129 /* Make a ".reg/999" section. */
8130
8131 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8132 len = strlen (buf) + 1;
8133 name = bfd_alloc (abfd, len);
8134 if (name == NULL)
8135 return FALSE;
8136 memcpy (name, buf, len);
8137
8138 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8139 if (sect == NULL)
8140 return FALSE;
8141
8142 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8143 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8144 sect->filepos = note->descpos
8145 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8146 #endif
8147
8148 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8149 sect->size = sizeof (lwpstat.pr_reg);
8150 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8151 #endif
8152
8153 sect->alignment_power = 2;
8154
8155 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8156 return FALSE;
8157
8158 /* Make a ".reg2/999" section */
8159
8160 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8161 len = strlen (buf) + 1;
8162 name = bfd_alloc (abfd, len);
8163 if (name == NULL)
8164 return FALSE;
8165 memcpy (name, buf, len);
8166
8167 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8168 if (sect == NULL)
8169 return FALSE;
8170
8171 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8172 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8173 sect->filepos = note->descpos
8174 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8175 #endif
8176
8177 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8178 sect->size = sizeof (lwpstat.pr_fpreg);
8179 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8180 #endif
8181
8182 sect->alignment_power = 2;
8183
8184 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8185 }
8186 #endif /* defined (HAVE_LWPSTATUS_T) */
8187
8188 static bfd_boolean
8189 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8190 {
8191 char buf[30];
8192 char *name;
8193 size_t len;
8194 asection *sect;
8195 int type;
8196 int is_active_thread;
8197 bfd_vma base_addr;
8198
8199 if (note->descsz < 728)
8200 return TRUE;
8201
8202 if (! CONST_STRNEQ (note->namedata, "win32"))
8203 return TRUE;
8204
8205 type = bfd_get_32 (abfd, note->descdata);
8206
8207 switch (type)
8208 {
8209 case 1 /* NOTE_INFO_PROCESS */:
8210 /* FIXME: need to add ->core_command. */
8211 /* process_info.pid */
8212 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8213 /* process_info.signal */
8214 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8215 break;
8216
8217 case 2 /* NOTE_INFO_THREAD */:
8218 /* Make a ".reg/999" section. */
8219 /* thread_info.tid */
8220 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8221
8222 len = strlen (buf) + 1;
8223 name = (char *) bfd_alloc (abfd, len);
8224 if (name == NULL)
8225 return FALSE;
8226
8227 memcpy (name, buf, len);
8228
8229 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8230 if (sect == NULL)
8231 return FALSE;
8232
8233 /* sizeof (thread_info.thread_context) */
8234 sect->size = 716;
8235 /* offsetof (thread_info.thread_context) */
8236 sect->filepos = note->descpos + 12;
8237 sect->alignment_power = 2;
8238
8239 /* thread_info.is_active_thread */
8240 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8241
8242 if (is_active_thread)
8243 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8244 return FALSE;
8245 break;
8246
8247 case 3 /* NOTE_INFO_MODULE */:
8248 /* Make a ".module/xxxxxxxx" section. */
8249 /* module_info.base_address */
8250 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8251 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8252
8253 len = strlen (buf) + 1;
8254 name = (char *) bfd_alloc (abfd, len);
8255 if (name == NULL)
8256 return FALSE;
8257
8258 memcpy (name, buf, len);
8259
8260 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8261
8262 if (sect == NULL)
8263 return FALSE;
8264
8265 sect->size = note->descsz;
8266 sect->filepos = note->descpos;
8267 sect->alignment_power = 2;
8268 break;
8269
8270 default:
8271 return TRUE;
8272 }
8273
8274 return TRUE;
8275 }
8276
8277 static bfd_boolean
8278 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8279 {
8280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8281
8282 switch (note->type)
8283 {
8284 default:
8285 return TRUE;
8286
8287 case NT_PRSTATUS:
8288 if (bed->elf_backend_grok_prstatus)
8289 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8290 return TRUE;
8291 #if defined (HAVE_PRSTATUS_T)
8292 return elfcore_grok_prstatus (abfd, note);
8293 #else
8294 return TRUE;
8295 #endif
8296
8297 #if defined (HAVE_PSTATUS_T)
8298 case NT_PSTATUS:
8299 return elfcore_grok_pstatus (abfd, note);
8300 #endif
8301
8302 #if defined (HAVE_LWPSTATUS_T)
8303 case NT_LWPSTATUS:
8304 return elfcore_grok_lwpstatus (abfd, note);
8305 #endif
8306
8307 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8308 return elfcore_grok_prfpreg (abfd, note);
8309
8310 case NT_WIN32PSTATUS:
8311 return elfcore_grok_win32pstatus (abfd, note);
8312
8313 case NT_PRXFPREG: /* Linux SSE extension */
8314 if (note->namesz == 6
8315 && strcmp (note->namedata, "LINUX") == 0)
8316 return elfcore_grok_prxfpreg (abfd, note);
8317 else
8318 return TRUE;
8319
8320 case NT_X86_XSTATE: /* Linux XSAVE extension */
8321 if (note->namesz == 6
8322 && strcmp (note->namedata, "LINUX") == 0)
8323 return elfcore_grok_xstatereg (abfd, note);
8324 else
8325 return TRUE;
8326
8327 case NT_PPC_VMX:
8328 if (note->namesz == 6
8329 && strcmp (note->namedata, "LINUX") == 0)
8330 return elfcore_grok_ppc_vmx (abfd, note);
8331 else
8332 return TRUE;
8333
8334 case NT_PPC_VSX:
8335 if (note->namesz == 6
8336 && strcmp (note->namedata, "LINUX") == 0)
8337 return elfcore_grok_ppc_vsx (abfd, note);
8338 else
8339 return TRUE;
8340
8341 case NT_S390_HIGH_GPRS:
8342 if (note->namesz == 6
8343 && strcmp (note->namedata, "LINUX") == 0)
8344 return elfcore_grok_s390_high_gprs (abfd, note);
8345 else
8346 return TRUE;
8347
8348 case NT_S390_TIMER:
8349 if (note->namesz == 6
8350 && strcmp (note->namedata, "LINUX") == 0)
8351 return elfcore_grok_s390_timer (abfd, note);
8352 else
8353 return TRUE;
8354
8355 case NT_S390_TODCMP:
8356 if (note->namesz == 6
8357 && strcmp (note->namedata, "LINUX") == 0)
8358 return elfcore_grok_s390_todcmp (abfd, note);
8359 else
8360 return TRUE;
8361
8362 case NT_S390_TODPREG:
8363 if (note->namesz == 6
8364 && strcmp (note->namedata, "LINUX") == 0)
8365 return elfcore_grok_s390_todpreg (abfd, note);
8366 else
8367 return TRUE;
8368
8369 case NT_S390_CTRS:
8370 if (note->namesz == 6
8371 && strcmp (note->namedata, "LINUX") == 0)
8372 return elfcore_grok_s390_ctrs (abfd, note);
8373 else
8374 return TRUE;
8375
8376 case NT_S390_PREFIX:
8377 if (note->namesz == 6
8378 && strcmp (note->namedata, "LINUX") == 0)
8379 return elfcore_grok_s390_prefix (abfd, note);
8380 else
8381 return TRUE;
8382
8383 case NT_PRPSINFO:
8384 case NT_PSINFO:
8385 if (bed->elf_backend_grok_psinfo)
8386 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8387 return TRUE;
8388 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8389 return elfcore_grok_psinfo (abfd, note);
8390 #else
8391 return TRUE;
8392 #endif
8393
8394 case NT_AUXV:
8395 {
8396 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8397 SEC_HAS_CONTENTS);
8398
8399 if (sect == NULL)
8400 return FALSE;
8401 sect->size = note->descsz;
8402 sect->filepos = note->descpos;
8403 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8404
8405 return TRUE;
8406 }
8407 }
8408 }
8409
8410 static bfd_boolean
8411 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8412 {
8413 elf_tdata (abfd)->build_id_size = note->descsz;
8414 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8415 if (elf_tdata (abfd)->build_id == NULL)
8416 return FALSE;
8417
8418 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8419
8420 return TRUE;
8421 }
8422
8423 static bfd_boolean
8424 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8425 {
8426 switch (note->type)
8427 {
8428 default:
8429 return TRUE;
8430
8431 case NT_GNU_BUILD_ID:
8432 return elfobj_grok_gnu_build_id (abfd, note);
8433 }
8434 }
8435
8436 static bfd_boolean
8437 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8438 {
8439 struct sdt_note *cur =
8440 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8441 + note->descsz);
8442
8443 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8444 cur->size = (bfd_size_type) note->descsz;
8445 memcpy (cur->data, note->descdata, note->descsz);
8446
8447 elf_tdata (abfd)->sdt_note_head = cur;
8448
8449 return TRUE;
8450 }
8451
8452 static bfd_boolean
8453 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8454 {
8455 switch (note->type)
8456 {
8457 case NT_STAPSDT:
8458 return elfobj_grok_stapsdt_note_1 (abfd, note);
8459
8460 default:
8461 return TRUE;
8462 }
8463 }
8464
8465 static bfd_boolean
8466 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8467 {
8468 char *cp;
8469
8470 cp = strchr (note->namedata, '@');
8471 if (cp != NULL)
8472 {
8473 *lwpidp = atoi(cp + 1);
8474 return TRUE;
8475 }
8476 return FALSE;
8477 }
8478
8479 static bfd_boolean
8480 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8481 {
8482 /* Signal number at offset 0x08. */
8483 elf_tdata (abfd)->core_signal
8484 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8485
8486 /* Process ID at offset 0x50. */
8487 elf_tdata (abfd)->core_pid
8488 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8489
8490 /* Command name at 0x7c (max 32 bytes, including nul). */
8491 elf_tdata (abfd)->core_command
8492 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8493
8494 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8495 note);
8496 }
8497
8498 static bfd_boolean
8499 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8500 {
8501 int lwp;
8502
8503 if (elfcore_netbsd_get_lwpid (note, &lwp))
8504 elf_tdata (abfd)->core_lwpid = lwp;
8505
8506 if (note->type == NT_NETBSDCORE_PROCINFO)
8507 {
8508 /* NetBSD-specific core "procinfo". Note that we expect to
8509 find this note before any of the others, which is fine,
8510 since the kernel writes this note out first when it
8511 creates a core file. */
8512
8513 return elfcore_grok_netbsd_procinfo (abfd, note);
8514 }
8515
8516 /* As of Jan 2002 there are no other machine-independent notes
8517 defined for NetBSD core files. If the note type is less
8518 than the start of the machine-dependent note types, we don't
8519 understand it. */
8520
8521 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8522 return TRUE;
8523
8524
8525 switch (bfd_get_arch (abfd))
8526 {
8527 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8528 PT_GETFPREGS == mach+2. */
8529
8530 case bfd_arch_alpha:
8531 case bfd_arch_sparc:
8532 switch (note->type)
8533 {
8534 case NT_NETBSDCORE_FIRSTMACH+0:
8535 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8536
8537 case NT_NETBSDCORE_FIRSTMACH+2:
8538 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8539
8540 default:
8541 return TRUE;
8542 }
8543
8544 /* On all other arch's, PT_GETREGS == mach+1 and
8545 PT_GETFPREGS == mach+3. */
8546
8547 default:
8548 switch (note->type)
8549 {
8550 case NT_NETBSDCORE_FIRSTMACH+1:
8551 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8552
8553 case NT_NETBSDCORE_FIRSTMACH+3:
8554 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8555
8556 default:
8557 return TRUE;
8558 }
8559 }
8560 /* NOTREACHED */
8561 }
8562
8563 static bfd_boolean
8564 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8565 {
8566 /* Signal number at offset 0x08. */
8567 elf_tdata (abfd)->core_signal
8568 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8569
8570 /* Process ID at offset 0x20. */
8571 elf_tdata (abfd)->core_pid
8572 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8573
8574 /* Command name at 0x48 (max 32 bytes, including nul). */
8575 elf_tdata (abfd)->core_command
8576 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8577
8578 return TRUE;
8579 }
8580
8581 static bfd_boolean
8582 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8583 {
8584 if (note->type == NT_OPENBSD_PROCINFO)
8585 return elfcore_grok_openbsd_procinfo (abfd, note);
8586
8587 if (note->type == NT_OPENBSD_REGS)
8588 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8589
8590 if (note->type == NT_OPENBSD_FPREGS)
8591 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8592
8593 if (note->type == NT_OPENBSD_XFPREGS)
8594 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8595
8596 if (note->type == NT_OPENBSD_AUXV)
8597 {
8598 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8599 SEC_HAS_CONTENTS);
8600
8601 if (sect == NULL)
8602 return FALSE;
8603 sect->size = note->descsz;
8604 sect->filepos = note->descpos;
8605 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8606
8607 return TRUE;
8608 }
8609
8610 if (note->type == NT_OPENBSD_WCOOKIE)
8611 {
8612 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8613 SEC_HAS_CONTENTS);
8614
8615 if (sect == NULL)
8616 return FALSE;
8617 sect->size = note->descsz;
8618 sect->filepos = note->descpos;
8619 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8620
8621 return TRUE;
8622 }
8623
8624 return TRUE;
8625 }
8626
8627 static bfd_boolean
8628 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8629 {
8630 void *ddata = note->descdata;
8631 char buf[100];
8632 char *name;
8633 asection *sect;
8634 short sig;
8635 unsigned flags;
8636
8637 /* nto_procfs_status 'pid' field is at offset 0. */
8638 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8639
8640 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8641 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8642
8643 /* nto_procfs_status 'flags' field is at offset 8. */
8644 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8645
8646 /* nto_procfs_status 'what' field is at offset 14. */
8647 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8648 {
8649 elf_tdata (abfd)->core_signal = sig;
8650 elf_tdata (abfd)->core_lwpid = *tid;
8651 }
8652
8653 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8654 do not come from signals so we make sure we set the current
8655 thread just in case. */
8656 if (flags & 0x00000080)
8657 elf_tdata (abfd)->core_lwpid = *tid;
8658
8659 /* Make a ".qnx_core_status/%d" section. */
8660 sprintf (buf, ".qnx_core_status/%ld", *tid);
8661
8662 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8663 if (name == NULL)
8664 return FALSE;
8665 strcpy (name, buf);
8666
8667 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8668 if (sect == NULL)
8669 return FALSE;
8670
8671 sect->size = note->descsz;
8672 sect->filepos = note->descpos;
8673 sect->alignment_power = 2;
8674
8675 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8676 }
8677
8678 static bfd_boolean
8679 elfcore_grok_nto_regs (bfd *abfd,
8680 Elf_Internal_Note *note,
8681 long tid,
8682 char *base)
8683 {
8684 char buf[100];
8685 char *name;
8686 asection *sect;
8687
8688 /* Make a "(base)/%d" section. */
8689 sprintf (buf, "%s/%ld", base, tid);
8690
8691 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8692 if (name == NULL)
8693 return FALSE;
8694 strcpy (name, buf);
8695
8696 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8697 if (sect == NULL)
8698 return FALSE;
8699
8700 sect->size = note->descsz;
8701 sect->filepos = note->descpos;
8702 sect->alignment_power = 2;
8703
8704 /* This is the current thread. */
8705 if (elf_tdata (abfd)->core_lwpid == tid)
8706 return elfcore_maybe_make_sect (abfd, base, sect);
8707
8708 return TRUE;
8709 }
8710
8711 #define BFD_QNT_CORE_INFO 7
8712 #define BFD_QNT_CORE_STATUS 8
8713 #define BFD_QNT_CORE_GREG 9
8714 #define BFD_QNT_CORE_FPREG 10
8715
8716 static bfd_boolean
8717 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8718 {
8719 /* Every GREG section has a STATUS section before it. Store the
8720 tid from the previous call to pass down to the next gregs
8721 function. */
8722 static long tid = 1;
8723
8724 switch (note->type)
8725 {
8726 case BFD_QNT_CORE_INFO:
8727 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8728 case BFD_QNT_CORE_STATUS:
8729 return elfcore_grok_nto_status (abfd, note, &tid);
8730 case BFD_QNT_CORE_GREG:
8731 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8732 case BFD_QNT_CORE_FPREG:
8733 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8734 default:
8735 return TRUE;
8736 }
8737 }
8738
8739 static bfd_boolean
8740 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8741 {
8742 char *name;
8743 asection *sect;
8744 size_t len;
8745
8746 /* Use note name as section name. */
8747 len = note->namesz;
8748 name = (char *) bfd_alloc (abfd, len);
8749 if (name == NULL)
8750 return FALSE;
8751 memcpy (name, note->namedata, len);
8752 name[len - 1] = '\0';
8753
8754 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8755 if (sect == NULL)
8756 return FALSE;
8757
8758 sect->size = note->descsz;
8759 sect->filepos = note->descpos;
8760 sect->alignment_power = 1;
8761
8762 return TRUE;
8763 }
8764
8765 /* Function: elfcore_write_note
8766
8767 Inputs:
8768 buffer to hold note, and current size of buffer
8769 name of note
8770 type of note
8771 data for note
8772 size of data for note
8773
8774 Writes note to end of buffer. ELF64 notes are written exactly as
8775 for ELF32, despite the current (as of 2006) ELF gabi specifying
8776 that they ought to have 8-byte namesz and descsz field, and have
8777 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8778
8779 Return:
8780 Pointer to realloc'd buffer, *BUFSIZ updated. */
8781
8782 char *
8783 elfcore_write_note (bfd *abfd,
8784 char *buf,
8785 int *bufsiz,
8786 const char *name,
8787 int type,
8788 const void *input,
8789 int size)
8790 {
8791 Elf_External_Note *xnp;
8792 size_t namesz;
8793 size_t newspace;
8794 char *dest;
8795
8796 namesz = 0;
8797 if (name != NULL)
8798 namesz = strlen (name) + 1;
8799
8800 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8801
8802 buf = (char *) realloc (buf, *bufsiz + newspace);
8803 if (buf == NULL)
8804 return buf;
8805 dest = buf + *bufsiz;
8806 *bufsiz += newspace;
8807 xnp = (Elf_External_Note *) dest;
8808 H_PUT_32 (abfd, namesz, xnp->namesz);
8809 H_PUT_32 (abfd, size, xnp->descsz);
8810 H_PUT_32 (abfd, type, xnp->type);
8811 dest = xnp->name;
8812 if (name != NULL)
8813 {
8814 memcpy (dest, name, namesz);
8815 dest += namesz;
8816 while (namesz & 3)
8817 {
8818 *dest++ = '\0';
8819 ++namesz;
8820 }
8821 }
8822 memcpy (dest, input, size);
8823 dest += size;
8824 while (size & 3)
8825 {
8826 *dest++ = '\0';
8827 ++size;
8828 }
8829 return buf;
8830 }
8831
8832 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8833 char *
8834 elfcore_write_prpsinfo (bfd *abfd,
8835 char *buf,
8836 int *bufsiz,
8837 const char *fname,
8838 const char *psargs)
8839 {
8840 const char *note_name = "CORE";
8841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8842
8843 if (bed->elf_backend_write_core_note != NULL)
8844 {
8845 char *ret;
8846 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8847 NT_PRPSINFO, fname, psargs);
8848 if (ret != NULL)
8849 return ret;
8850 }
8851
8852 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8853 if (bed->s->elfclass == ELFCLASS32)
8854 {
8855 #if defined (HAVE_PSINFO32_T)
8856 psinfo32_t data;
8857 int note_type = NT_PSINFO;
8858 #else
8859 prpsinfo32_t data;
8860 int note_type = NT_PRPSINFO;
8861 #endif
8862
8863 memset (&data, 0, sizeof (data));
8864 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8865 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8866 return elfcore_write_note (abfd, buf, bufsiz,
8867 note_name, note_type, &data, sizeof (data));
8868 }
8869 else
8870 #endif
8871 {
8872 #if defined (HAVE_PSINFO_T)
8873 psinfo_t data;
8874 int note_type = NT_PSINFO;
8875 #else
8876 prpsinfo_t data;
8877 int note_type = NT_PRPSINFO;
8878 #endif
8879
8880 memset (&data, 0, sizeof (data));
8881 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8882 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8883 return elfcore_write_note (abfd, buf, bufsiz,
8884 note_name, note_type, &data, sizeof (data));
8885 }
8886 }
8887 #endif /* PSINFO_T or PRPSINFO_T */
8888
8889 #if defined (HAVE_PRSTATUS_T)
8890 char *
8891 elfcore_write_prstatus (bfd *abfd,
8892 char *buf,
8893 int *bufsiz,
8894 long pid,
8895 int cursig,
8896 const void *gregs)
8897 {
8898 const char *note_name = "CORE";
8899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8900
8901 if (bed->elf_backend_write_core_note != NULL)
8902 {
8903 char *ret;
8904 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8905 NT_PRSTATUS,
8906 pid, cursig, gregs);
8907 if (ret != NULL)
8908 return ret;
8909 }
8910
8911 #if defined (HAVE_PRSTATUS32_T)
8912 if (bed->s->elfclass == ELFCLASS32)
8913 {
8914 prstatus32_t prstat;
8915
8916 memset (&prstat, 0, sizeof (prstat));
8917 prstat.pr_pid = pid;
8918 prstat.pr_cursig = cursig;
8919 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8920 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8921 NT_PRSTATUS, &prstat, sizeof (prstat));
8922 }
8923 else
8924 #endif
8925 {
8926 prstatus_t prstat;
8927
8928 memset (&prstat, 0, sizeof (prstat));
8929 prstat.pr_pid = pid;
8930 prstat.pr_cursig = cursig;
8931 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8932 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8933 NT_PRSTATUS, &prstat, sizeof (prstat));
8934 }
8935 }
8936 #endif /* HAVE_PRSTATUS_T */
8937
8938 #if defined (HAVE_LWPSTATUS_T)
8939 char *
8940 elfcore_write_lwpstatus (bfd *abfd,
8941 char *buf,
8942 int *bufsiz,
8943 long pid,
8944 int cursig,
8945 const void *gregs)
8946 {
8947 lwpstatus_t lwpstat;
8948 const char *note_name = "CORE";
8949
8950 memset (&lwpstat, 0, sizeof (lwpstat));
8951 lwpstat.pr_lwpid = pid >> 16;
8952 lwpstat.pr_cursig = cursig;
8953 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8954 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8955 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8956 #if !defined(gregs)
8957 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8958 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8959 #else
8960 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8961 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8962 #endif
8963 #endif
8964 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8965 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8966 }
8967 #endif /* HAVE_LWPSTATUS_T */
8968
8969 #if defined (HAVE_PSTATUS_T)
8970 char *
8971 elfcore_write_pstatus (bfd *abfd,
8972 char *buf,
8973 int *bufsiz,
8974 long pid,
8975 int cursig ATTRIBUTE_UNUSED,
8976 const void *gregs ATTRIBUTE_UNUSED)
8977 {
8978 const char *note_name = "CORE";
8979 #if defined (HAVE_PSTATUS32_T)
8980 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8981
8982 if (bed->s->elfclass == ELFCLASS32)
8983 {
8984 pstatus32_t pstat;
8985
8986 memset (&pstat, 0, sizeof (pstat));
8987 pstat.pr_pid = pid & 0xffff;
8988 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8989 NT_PSTATUS, &pstat, sizeof (pstat));
8990 return buf;
8991 }
8992 else
8993 #endif
8994 {
8995 pstatus_t pstat;
8996
8997 memset (&pstat, 0, sizeof (pstat));
8998 pstat.pr_pid = pid & 0xffff;
8999 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9000 NT_PSTATUS, &pstat, sizeof (pstat));
9001 return buf;
9002 }
9003 }
9004 #endif /* HAVE_PSTATUS_T */
9005
9006 char *
9007 elfcore_write_prfpreg (bfd *abfd,
9008 char *buf,
9009 int *bufsiz,
9010 const void *fpregs,
9011 int size)
9012 {
9013 const char *note_name = "CORE";
9014 return elfcore_write_note (abfd, buf, bufsiz,
9015 note_name, NT_FPREGSET, fpregs, size);
9016 }
9017
9018 char *
9019 elfcore_write_prxfpreg (bfd *abfd,
9020 char *buf,
9021 int *bufsiz,
9022 const void *xfpregs,
9023 int size)
9024 {
9025 char *note_name = "LINUX";
9026 return elfcore_write_note (abfd, buf, bufsiz,
9027 note_name, NT_PRXFPREG, xfpregs, size);
9028 }
9029
9030 char *
9031 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9032 const void *xfpregs, int size)
9033 {
9034 char *note_name = "LINUX";
9035 return elfcore_write_note (abfd, buf, bufsiz,
9036 note_name, NT_X86_XSTATE, xfpregs, size);
9037 }
9038
9039 char *
9040 elfcore_write_ppc_vmx (bfd *abfd,
9041 char *buf,
9042 int *bufsiz,
9043 const void *ppc_vmx,
9044 int size)
9045 {
9046 char *note_name = "LINUX";
9047 return elfcore_write_note (abfd, buf, bufsiz,
9048 note_name, NT_PPC_VMX, ppc_vmx, size);
9049 }
9050
9051 char *
9052 elfcore_write_ppc_vsx (bfd *abfd,
9053 char *buf,
9054 int *bufsiz,
9055 const void *ppc_vsx,
9056 int size)
9057 {
9058 char *note_name = "LINUX";
9059 return elfcore_write_note (abfd, buf, bufsiz,
9060 note_name, NT_PPC_VSX, ppc_vsx, size);
9061 }
9062
9063 static char *
9064 elfcore_write_s390_high_gprs (bfd *abfd,
9065 char *buf,
9066 int *bufsiz,
9067 const void *s390_high_gprs,
9068 int size)
9069 {
9070 char *note_name = "LINUX";
9071 return elfcore_write_note (abfd, buf, bufsiz,
9072 note_name, NT_S390_HIGH_GPRS,
9073 s390_high_gprs, size);
9074 }
9075
9076 char *
9077 elfcore_write_s390_timer (bfd *abfd,
9078 char *buf,
9079 int *bufsiz,
9080 const void *s390_timer,
9081 int size)
9082 {
9083 char *note_name = "LINUX";
9084 return elfcore_write_note (abfd, buf, bufsiz,
9085 note_name, NT_S390_TIMER, s390_timer, size);
9086 }
9087
9088 char *
9089 elfcore_write_s390_todcmp (bfd *abfd,
9090 char *buf,
9091 int *bufsiz,
9092 const void *s390_todcmp,
9093 int size)
9094 {
9095 char *note_name = "LINUX";
9096 return elfcore_write_note (abfd, buf, bufsiz,
9097 note_name, NT_S390_TODCMP, s390_todcmp, size);
9098 }
9099
9100 char *
9101 elfcore_write_s390_todpreg (bfd *abfd,
9102 char *buf,
9103 int *bufsiz,
9104 const void *s390_todpreg,
9105 int size)
9106 {
9107 char *note_name = "LINUX";
9108 return elfcore_write_note (abfd, buf, bufsiz,
9109 note_name, NT_S390_TODPREG, s390_todpreg, size);
9110 }
9111
9112 char *
9113 elfcore_write_s390_ctrs (bfd *abfd,
9114 char *buf,
9115 int *bufsiz,
9116 const void *s390_ctrs,
9117 int size)
9118 {
9119 char *note_name = "LINUX";
9120 return elfcore_write_note (abfd, buf, bufsiz,
9121 note_name, NT_S390_CTRS, s390_ctrs, size);
9122 }
9123
9124 char *
9125 elfcore_write_s390_prefix (bfd *abfd,
9126 char *buf,
9127 int *bufsiz,
9128 const void *s390_prefix,
9129 int size)
9130 {
9131 char *note_name = "LINUX";
9132 return elfcore_write_note (abfd, buf, bufsiz,
9133 note_name, NT_S390_PREFIX, s390_prefix, size);
9134 }
9135
9136 char *
9137 elfcore_write_register_note (bfd *abfd,
9138 char *buf,
9139 int *bufsiz,
9140 const char *section,
9141 const void *data,
9142 int size)
9143 {
9144 if (strcmp (section, ".reg2") == 0)
9145 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9146 if (strcmp (section, ".reg-xfp") == 0)
9147 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9148 if (strcmp (section, ".reg-xstate") == 0)
9149 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9150 if (strcmp (section, ".reg-ppc-vmx") == 0)
9151 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9152 if (strcmp (section, ".reg-ppc-vsx") == 0)
9153 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9154 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9155 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9156 if (strcmp (section, ".reg-s390-timer") == 0)
9157 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9158 if (strcmp (section, ".reg-s390-todcmp") == 0)
9159 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9160 if (strcmp (section, ".reg-s390-todpreg") == 0)
9161 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9162 if (strcmp (section, ".reg-s390-ctrs") == 0)
9163 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9164 if (strcmp (section, ".reg-s390-prefix") == 0)
9165 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9166 return NULL;
9167 }
9168
9169 static bfd_boolean
9170 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9171 {
9172 char *p;
9173
9174 p = buf;
9175 while (p < buf + size)
9176 {
9177 /* FIXME: bad alignment assumption. */
9178 Elf_External_Note *xnp = (Elf_External_Note *) p;
9179 Elf_Internal_Note in;
9180
9181 if (offsetof (Elf_External_Note, name) > buf - p + size)
9182 return FALSE;
9183
9184 in.type = H_GET_32 (abfd, xnp->type);
9185
9186 in.namesz = H_GET_32 (abfd, xnp->namesz);
9187 in.namedata = xnp->name;
9188 if (in.namesz > buf - in.namedata + size)
9189 return FALSE;
9190
9191 in.descsz = H_GET_32 (abfd, xnp->descsz);
9192 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9193 in.descpos = offset + (in.descdata - buf);
9194 if (in.descsz != 0
9195 && (in.descdata >= buf + size
9196 || in.descsz > buf - in.descdata + size))
9197 return FALSE;
9198
9199 switch (bfd_get_format (abfd))
9200 {
9201 default:
9202 return TRUE;
9203
9204 case bfd_core:
9205 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9206 {
9207 if (! elfcore_grok_netbsd_note (abfd, &in))
9208 return FALSE;
9209 }
9210 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9211 {
9212 if (! elfcore_grok_openbsd_note (abfd, &in))
9213 return FALSE;
9214 }
9215 else if (CONST_STRNEQ (in.namedata, "QNX"))
9216 {
9217 if (! elfcore_grok_nto_note (abfd, &in))
9218 return FALSE;
9219 }
9220 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9221 {
9222 if (! elfcore_grok_spu_note (abfd, &in))
9223 return FALSE;
9224 }
9225 else
9226 {
9227 if (! elfcore_grok_note (abfd, &in))
9228 return FALSE;
9229 }
9230 break;
9231
9232 case bfd_object:
9233 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9234 {
9235 if (! elfobj_grok_gnu_note (abfd, &in))
9236 return FALSE;
9237 }
9238 else if (in.namesz == sizeof "stapsdt"
9239 && strcmp (in.namedata, "stapsdt") == 0)
9240 {
9241 if (! elfobj_grok_stapsdt_note (abfd, &in))
9242 return FALSE;
9243 }
9244 break;
9245 }
9246
9247 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9248 }
9249
9250 return TRUE;
9251 }
9252
9253 static bfd_boolean
9254 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9255 {
9256 char *buf;
9257
9258 if (size <= 0)
9259 return TRUE;
9260
9261 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9262 return FALSE;
9263
9264 buf = (char *) bfd_malloc (size);
9265 if (buf == NULL)
9266 return FALSE;
9267
9268 if (bfd_bread (buf, size, abfd) != size
9269 || !elf_parse_notes (abfd, buf, size, offset))
9270 {
9271 free (buf);
9272 return FALSE;
9273 }
9274
9275 free (buf);
9276 return TRUE;
9277 }
9278 \f
9279 /* Providing external access to the ELF program header table. */
9280
9281 /* Return an upper bound on the number of bytes required to store a
9282 copy of ABFD's program header table entries. Return -1 if an error
9283 occurs; bfd_get_error will return an appropriate code. */
9284
9285 long
9286 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9287 {
9288 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9289 {
9290 bfd_set_error (bfd_error_wrong_format);
9291 return -1;
9292 }
9293
9294 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9295 }
9296
9297 /* Copy ABFD's program header table entries to *PHDRS. The entries
9298 will be stored as an array of Elf_Internal_Phdr structures, as
9299 defined in include/elf/internal.h. To find out how large the
9300 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9301
9302 Return the number of program header table entries read, or -1 if an
9303 error occurs; bfd_get_error will return an appropriate code. */
9304
9305 int
9306 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9307 {
9308 int num_phdrs;
9309
9310 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9311 {
9312 bfd_set_error (bfd_error_wrong_format);
9313 return -1;
9314 }
9315
9316 num_phdrs = elf_elfheader (abfd)->e_phnum;
9317 memcpy (phdrs, elf_tdata (abfd)->phdr,
9318 num_phdrs * sizeof (Elf_Internal_Phdr));
9319
9320 return num_phdrs;
9321 }
9322
9323 enum elf_reloc_type_class
9324 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9325 {
9326 return reloc_class_normal;
9327 }
9328
9329 /* For RELA architectures, return the relocation value for a
9330 relocation against a local symbol. */
9331
9332 bfd_vma
9333 _bfd_elf_rela_local_sym (bfd *abfd,
9334 Elf_Internal_Sym *sym,
9335 asection **psec,
9336 Elf_Internal_Rela *rel)
9337 {
9338 asection *sec = *psec;
9339 bfd_vma relocation;
9340
9341 relocation = (sec->output_section->vma
9342 + sec->output_offset
9343 + sym->st_value);
9344 if ((sec->flags & SEC_MERGE)
9345 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9346 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9347 {
9348 rel->r_addend =
9349 _bfd_merged_section_offset (abfd, psec,
9350 elf_section_data (sec)->sec_info,
9351 sym->st_value + rel->r_addend);
9352 if (sec != *psec)
9353 {
9354 /* If we have changed the section, and our original section is
9355 marked with SEC_EXCLUDE, it means that the original
9356 SEC_MERGE section has been completely subsumed in some
9357 other SEC_MERGE section. In this case, we need to leave
9358 some info around for --emit-relocs. */
9359 if ((sec->flags & SEC_EXCLUDE) != 0)
9360 sec->kept_section = *psec;
9361 sec = *psec;
9362 }
9363 rel->r_addend -= relocation;
9364 rel->r_addend += sec->output_section->vma + sec->output_offset;
9365 }
9366 return relocation;
9367 }
9368
9369 bfd_vma
9370 _bfd_elf_rel_local_sym (bfd *abfd,
9371 Elf_Internal_Sym *sym,
9372 asection **psec,
9373 bfd_vma addend)
9374 {
9375 asection *sec = *psec;
9376
9377 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9378 return sym->st_value + addend;
9379
9380 return _bfd_merged_section_offset (abfd, psec,
9381 elf_section_data (sec)->sec_info,
9382 sym->st_value + addend);
9383 }
9384
9385 bfd_vma
9386 _bfd_elf_section_offset (bfd *abfd,
9387 struct bfd_link_info *info,
9388 asection *sec,
9389 bfd_vma offset)
9390 {
9391 switch (sec->sec_info_type)
9392 {
9393 case ELF_INFO_TYPE_STABS:
9394 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9395 offset);
9396 case ELF_INFO_TYPE_EH_FRAME:
9397 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9398 default:
9399 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9400 {
9401 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9402 bfd_size_type address_size = bed->s->arch_size / 8;
9403 offset = sec->size - offset - address_size;
9404 }
9405 return offset;
9406 }
9407 }
9408 \f
9409 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9410 reconstruct an ELF file by reading the segments out of remote memory
9411 based on the ELF file header at EHDR_VMA and the ELF program headers it
9412 points to. If not null, *LOADBASEP is filled in with the difference
9413 between the VMAs from which the segments were read, and the VMAs the
9414 file headers (and hence BFD's idea of each section's VMA) put them at.
9415
9416 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9417 remote memory at target address VMA into the local buffer at MYADDR; it
9418 should return zero on success or an `errno' code on failure. TEMPL must
9419 be a BFD for an ELF target with the word size and byte order found in
9420 the remote memory. */
9421
9422 bfd *
9423 bfd_elf_bfd_from_remote_memory
9424 (bfd *templ,
9425 bfd_vma ehdr_vma,
9426 bfd_vma *loadbasep,
9427 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9428 {
9429 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9430 (templ, ehdr_vma, loadbasep, target_read_memory);
9431 }
9432 \f
9433 long
9434 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9435 long symcount ATTRIBUTE_UNUSED,
9436 asymbol **syms ATTRIBUTE_UNUSED,
9437 long dynsymcount,
9438 asymbol **dynsyms,
9439 asymbol **ret)
9440 {
9441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9442 asection *relplt;
9443 asymbol *s;
9444 const char *relplt_name;
9445 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9446 arelent *p;
9447 long count, i, n;
9448 size_t size;
9449 Elf_Internal_Shdr *hdr;
9450 char *names;
9451 asection *plt;
9452
9453 *ret = NULL;
9454
9455 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9456 return 0;
9457
9458 if (dynsymcount <= 0)
9459 return 0;
9460
9461 if (!bed->plt_sym_val)
9462 return 0;
9463
9464 relplt_name = bed->relplt_name;
9465 if (relplt_name == NULL)
9466 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9467 relplt = bfd_get_section_by_name (abfd, relplt_name);
9468 if (relplt == NULL)
9469 return 0;
9470
9471 hdr = &elf_section_data (relplt)->this_hdr;
9472 if (hdr->sh_link != elf_dynsymtab (abfd)
9473 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9474 return 0;
9475
9476 plt = bfd_get_section_by_name (abfd, ".plt");
9477 if (plt == NULL)
9478 return 0;
9479
9480 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9481 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9482 return -1;
9483
9484 count = relplt->size / hdr->sh_entsize;
9485 size = count * sizeof (asymbol);
9486 p = relplt->relocation;
9487 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9488 {
9489 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9490 if (p->addend != 0)
9491 {
9492 #ifdef BFD64
9493 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9494 #else
9495 size += sizeof ("+0x") - 1 + 8;
9496 #endif
9497 }
9498 }
9499
9500 s = *ret = (asymbol *) bfd_malloc (size);
9501 if (s == NULL)
9502 return -1;
9503
9504 names = (char *) (s + count);
9505 p = relplt->relocation;
9506 n = 0;
9507 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9508 {
9509 size_t len;
9510 bfd_vma addr;
9511
9512 addr = bed->plt_sym_val (i, plt, p);
9513 if (addr == (bfd_vma) -1)
9514 continue;
9515
9516 *s = **p->sym_ptr_ptr;
9517 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9518 we are defining a symbol, ensure one of them is set. */
9519 if ((s->flags & BSF_LOCAL) == 0)
9520 s->flags |= BSF_GLOBAL;
9521 s->flags |= BSF_SYNTHETIC;
9522 s->section = plt;
9523 s->value = addr - plt->vma;
9524 s->name = names;
9525 s->udata.p = NULL;
9526 len = strlen ((*p->sym_ptr_ptr)->name);
9527 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9528 names += len;
9529 if (p->addend != 0)
9530 {
9531 char buf[30], *a;
9532
9533 memcpy (names, "+0x", sizeof ("+0x") - 1);
9534 names += sizeof ("+0x") - 1;
9535 bfd_sprintf_vma (abfd, buf, p->addend);
9536 for (a = buf; *a == '0'; ++a)
9537 ;
9538 len = strlen (a);
9539 memcpy (names, a, len);
9540 names += len;
9541 }
9542 memcpy (names, "@plt", sizeof ("@plt"));
9543 names += sizeof ("@plt");
9544 ++s, ++n;
9545 }
9546
9547 return n;
9548 }
9549
9550 /* It is only used by x86-64 so far. */
9551 asection _bfd_elf_large_com_section
9552 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9553 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9554
9555 void
9556 _bfd_elf_set_osabi (bfd * abfd,
9557 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9558 {
9559 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9560
9561 i_ehdrp = elf_elfheader (abfd);
9562
9563 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9564
9565 /* To make things simpler for the loader on Linux systems we set the
9566 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9567 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9568 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9569 && elf_tdata (abfd)->has_gnu_symbols)
9570 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9571 }
9572
9573
9574 /* Return TRUE for ELF symbol types that represent functions.
9575 This is the default version of this function, which is sufficient for
9576 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9577
9578 bfd_boolean
9579 _bfd_elf_is_function_type (unsigned int type)
9580 {
9581 return (type == STT_FUNC
9582 || type == STT_GNU_IFUNC);
9583 }