]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Move ELF section headers to end of object file
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 s = first_tls;
4121 for (i = 0; i < (unsigned int) tls_count; ++i)
4122 {
4123 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4124 {
4125 _bfd_error_handler
4126 (_("%B: TLS sections are not adjacent:"), abfd);
4127 s = first_tls;
4128 i = 0;
4129 while (i < (unsigned int) tls_count)
4130 {
4131 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4132 {
4133 _bfd_error_handler (_(" TLS: %A"), s);
4134 i++;
4135 }
4136 else
4137 _bfd_error_handler (_(" non-TLS: %A"), s);
4138 s = s->next;
4139 }
4140 bfd_set_error (bfd_error_bad_value);
4141 goto error_return;
4142 }
4143 m->sections[i] = s;
4144 s = s->next;
4145 }
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4152 segment. */
4153 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4154 if (eh_frame_hdr != NULL
4155 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4156 {
4157 amt = sizeof (struct elf_segment_map);
4158 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4159 if (m == NULL)
4160 goto error_return;
4161 m->next = NULL;
4162 m->p_type = PT_GNU_EH_FRAME;
4163 m->count = 1;
4164 m->sections[0] = eh_frame_hdr->output_section;
4165
4166 *pm = m;
4167 pm = &m->next;
4168 }
4169
4170 if (elf_stack_flags (abfd))
4171 {
4172 amt = sizeof (struct elf_segment_map);
4173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4174 if (m == NULL)
4175 goto error_return;
4176 m->next = NULL;
4177 m->p_type = PT_GNU_STACK;
4178 m->p_flags = elf_stack_flags (abfd);
4179 m->p_align = bed->stack_align;
4180 m->p_flags_valid = 1;
4181 m->p_align_valid = m->p_align != 0;
4182 if (info->stacksize > 0)
4183 {
4184 m->p_size = info->stacksize;
4185 m->p_size_valid = 1;
4186 }
4187
4188 *pm = m;
4189 pm = &m->next;
4190 }
4191
4192 if (info != NULL && info->relro)
4193 {
4194 for (m = mfirst; m != NULL; m = m->next)
4195 {
4196 if (m->p_type == PT_LOAD
4197 && m->count != 0
4198 && m->sections[0]->vma >= info->relro_start
4199 && m->sections[0]->vma < info->relro_end)
4200 {
4201 i = m->count;
4202 while (--i != (unsigned) -1)
4203 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4204 == (SEC_LOAD | SEC_HAS_CONTENTS))
4205 break;
4206
4207 if (i != (unsigned) -1)
4208 break;
4209 }
4210 }
4211
4212 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4213 if (m != NULL)
4214 {
4215 amt = sizeof (struct elf_segment_map);
4216 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4217 if (m == NULL)
4218 goto error_return;
4219 m->next = NULL;
4220 m->p_type = PT_GNU_RELRO;
4221 m->p_flags = PF_R;
4222 m->p_flags_valid = 1;
4223
4224 *pm = m;
4225 pm = &m->next;
4226 }
4227 }
4228
4229 free (sections);
4230 elf_seg_map (abfd) = mfirst;
4231 }
4232
4233 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4234 return FALSE;
4235
4236 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4237 ++count;
4238 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4239
4240 return TRUE;
4241
4242 error_return:
4243 if (sections != NULL)
4244 free (sections);
4245 return FALSE;
4246 }
4247
4248 /* Sort sections by address. */
4249
4250 static int
4251 elf_sort_sections (const void *arg1, const void *arg2)
4252 {
4253 const asection *sec1 = *(const asection **) arg1;
4254 const asection *sec2 = *(const asection **) arg2;
4255 bfd_size_type size1, size2;
4256
4257 /* Sort by LMA first, since this is the address used to
4258 place the section into a segment. */
4259 if (sec1->lma < sec2->lma)
4260 return -1;
4261 else if (sec1->lma > sec2->lma)
4262 return 1;
4263
4264 /* Then sort by VMA. Normally the LMA and the VMA will be
4265 the same, and this will do nothing. */
4266 if (sec1->vma < sec2->vma)
4267 return -1;
4268 else if (sec1->vma > sec2->vma)
4269 return 1;
4270
4271 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4272
4273 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4274
4275 if (TOEND (sec1))
4276 {
4277 if (TOEND (sec2))
4278 {
4279 /* If the indicies are the same, do not return 0
4280 here, but continue to try the next comparison. */
4281 if (sec1->target_index - sec2->target_index != 0)
4282 return sec1->target_index - sec2->target_index;
4283 }
4284 else
4285 return 1;
4286 }
4287 else if (TOEND (sec2))
4288 return -1;
4289
4290 #undef TOEND
4291
4292 /* Sort by size, to put zero sized sections
4293 before others at the same address. */
4294
4295 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4296 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4297
4298 if (size1 < size2)
4299 return -1;
4300 if (size1 > size2)
4301 return 1;
4302
4303 return sec1->target_index - sec2->target_index;
4304 }
4305
4306 /* Ian Lance Taylor writes:
4307
4308 We shouldn't be using % with a negative signed number. That's just
4309 not good. We have to make sure either that the number is not
4310 negative, or that the number has an unsigned type. When the types
4311 are all the same size they wind up as unsigned. When file_ptr is a
4312 larger signed type, the arithmetic winds up as signed long long,
4313 which is wrong.
4314
4315 What we're trying to say here is something like ``increase OFF by
4316 the least amount that will cause it to be equal to the VMA modulo
4317 the page size.'' */
4318 /* In other words, something like:
4319
4320 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4321 off_offset = off % bed->maxpagesize;
4322 if (vma_offset < off_offset)
4323 adjustment = vma_offset + bed->maxpagesize - off_offset;
4324 else
4325 adjustment = vma_offset - off_offset;
4326
4327 which can can be collapsed into the expression below. */
4328
4329 static file_ptr
4330 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4331 {
4332 /* PR binutils/16199: Handle an alignment of zero. */
4333 if (maxpagesize == 0)
4334 maxpagesize = 1;
4335 return ((vma - off) % maxpagesize);
4336 }
4337
4338 static void
4339 print_segment_map (const struct elf_segment_map *m)
4340 {
4341 unsigned int j;
4342 const char *pt = get_segment_type (m->p_type);
4343 char buf[32];
4344
4345 if (pt == NULL)
4346 {
4347 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4348 sprintf (buf, "LOPROC+%7.7x",
4349 (unsigned int) (m->p_type - PT_LOPROC));
4350 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4351 sprintf (buf, "LOOS+%7.7x",
4352 (unsigned int) (m->p_type - PT_LOOS));
4353 else
4354 snprintf (buf, sizeof (buf), "%8.8x",
4355 (unsigned int) m->p_type);
4356 pt = buf;
4357 }
4358 fflush (stdout);
4359 fprintf (stderr, "%s:", pt);
4360 for (j = 0; j < m->count; j++)
4361 fprintf (stderr, " %s", m->sections [j]->name);
4362 putc ('\n',stderr);
4363 fflush (stderr);
4364 }
4365
4366 static bfd_boolean
4367 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4368 {
4369 void *buf;
4370 bfd_boolean ret;
4371
4372 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4373 return FALSE;
4374 buf = bfd_zmalloc (len);
4375 if (buf == NULL)
4376 return FALSE;
4377 ret = bfd_bwrite (buf, len, abfd) == len;
4378 free (buf);
4379 return ret;
4380 }
4381
4382 /* Assign file positions to the sections based on the mapping from
4383 sections to segments. This function also sets up some fields in
4384 the file header. */
4385
4386 static bfd_boolean
4387 assign_file_positions_for_load_sections (bfd *abfd,
4388 struct bfd_link_info *link_info)
4389 {
4390 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4391 struct elf_segment_map *m;
4392 Elf_Internal_Phdr *phdrs;
4393 Elf_Internal_Phdr *p;
4394 file_ptr off;
4395 bfd_size_type maxpagesize;
4396 unsigned int alloc;
4397 unsigned int i, j;
4398 bfd_vma header_pad = 0;
4399
4400 if (link_info == NULL
4401 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4402 return FALSE;
4403
4404 alloc = 0;
4405 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4406 {
4407 ++alloc;
4408 if (m->header_size)
4409 header_pad = m->header_size;
4410 }
4411
4412 if (alloc)
4413 {
4414 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4415 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4416 }
4417 else
4418 {
4419 /* PR binutils/12467. */
4420 elf_elfheader (abfd)->e_phoff = 0;
4421 elf_elfheader (abfd)->e_phentsize = 0;
4422 }
4423
4424 elf_elfheader (abfd)->e_phnum = alloc;
4425
4426 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4427 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4428 else
4429 BFD_ASSERT (elf_program_header_size (abfd)
4430 >= alloc * bed->s->sizeof_phdr);
4431
4432 if (alloc == 0)
4433 {
4434 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4435 return TRUE;
4436 }
4437
4438 /* We're writing the size in elf_program_header_size (abfd),
4439 see assign_file_positions_except_relocs, so make sure we have
4440 that amount allocated, with trailing space cleared.
4441 The variable alloc contains the computed need, while
4442 elf_program_header_size (abfd) contains the size used for the
4443 layout.
4444 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4445 where the layout is forced to according to a larger size in the
4446 last iterations for the testcase ld-elf/header. */
4447 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4448 == 0);
4449 phdrs = (Elf_Internal_Phdr *)
4450 bfd_zalloc2 (abfd,
4451 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4452 sizeof (Elf_Internal_Phdr));
4453 elf_tdata (abfd)->phdr = phdrs;
4454 if (phdrs == NULL)
4455 return FALSE;
4456
4457 maxpagesize = 1;
4458 if ((abfd->flags & D_PAGED) != 0)
4459 maxpagesize = bed->maxpagesize;
4460
4461 off = bed->s->sizeof_ehdr;
4462 off += alloc * bed->s->sizeof_phdr;
4463 if (header_pad < (bfd_vma) off)
4464 header_pad = 0;
4465 else
4466 header_pad -= off;
4467 off += header_pad;
4468
4469 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4470 m != NULL;
4471 m = m->next, p++, j++)
4472 {
4473 asection **secpp;
4474 bfd_vma off_adjust;
4475 bfd_boolean no_contents;
4476
4477 /* If elf_segment_map is not from map_sections_to_segments, the
4478 sections may not be correctly ordered. NOTE: sorting should
4479 not be done to the PT_NOTE section of a corefile, which may
4480 contain several pseudo-sections artificially created by bfd.
4481 Sorting these pseudo-sections breaks things badly. */
4482 if (m->count > 1
4483 && !(elf_elfheader (abfd)->e_type == ET_CORE
4484 && m->p_type == PT_NOTE))
4485 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4486 elf_sort_sections);
4487
4488 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4489 number of sections with contents contributing to both p_filesz
4490 and p_memsz, followed by a number of sections with no contents
4491 that just contribute to p_memsz. In this loop, OFF tracks next
4492 available file offset for PT_LOAD and PT_NOTE segments. */
4493 p->p_type = m->p_type;
4494 p->p_flags = m->p_flags;
4495
4496 if (m->count == 0)
4497 p->p_vaddr = 0;
4498 else
4499 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4500
4501 if (m->p_paddr_valid)
4502 p->p_paddr = m->p_paddr;
4503 else if (m->count == 0)
4504 p->p_paddr = 0;
4505 else
4506 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4507
4508 if (p->p_type == PT_LOAD
4509 && (abfd->flags & D_PAGED) != 0)
4510 {
4511 /* p_align in demand paged PT_LOAD segments effectively stores
4512 the maximum page size. When copying an executable with
4513 objcopy, we set m->p_align from the input file. Use this
4514 value for maxpagesize rather than bed->maxpagesize, which
4515 may be different. Note that we use maxpagesize for PT_TLS
4516 segment alignment later in this function, so we are relying
4517 on at least one PT_LOAD segment appearing before a PT_TLS
4518 segment. */
4519 if (m->p_align_valid)
4520 maxpagesize = m->p_align;
4521
4522 p->p_align = maxpagesize;
4523 }
4524 else if (m->p_align_valid)
4525 p->p_align = m->p_align;
4526 else if (m->count == 0)
4527 p->p_align = 1 << bed->s->log_file_align;
4528 else
4529 p->p_align = 0;
4530
4531 no_contents = FALSE;
4532 off_adjust = 0;
4533 if (p->p_type == PT_LOAD
4534 && m->count > 0)
4535 {
4536 bfd_size_type align;
4537 unsigned int align_power = 0;
4538
4539 if (m->p_align_valid)
4540 align = p->p_align;
4541 else
4542 {
4543 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4544 {
4545 unsigned int secalign;
4546
4547 secalign = bfd_get_section_alignment (abfd, *secpp);
4548 if (secalign > align_power)
4549 align_power = secalign;
4550 }
4551 align = (bfd_size_type) 1 << align_power;
4552 if (align < maxpagesize)
4553 align = maxpagesize;
4554 }
4555
4556 for (i = 0; i < m->count; i++)
4557 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4558 /* If we aren't making room for this section, then
4559 it must be SHT_NOBITS regardless of what we've
4560 set via struct bfd_elf_special_section. */
4561 elf_section_type (m->sections[i]) = SHT_NOBITS;
4562
4563 /* Find out whether this segment contains any loadable
4564 sections. */
4565 no_contents = TRUE;
4566 for (i = 0; i < m->count; i++)
4567 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4568 {
4569 no_contents = FALSE;
4570 break;
4571 }
4572
4573 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4574 off += off_adjust;
4575 if (no_contents)
4576 {
4577 /* We shouldn't need to align the segment on disk since
4578 the segment doesn't need file space, but the gABI
4579 arguably requires the alignment and glibc ld.so
4580 checks it. So to comply with the alignment
4581 requirement but not waste file space, we adjust
4582 p_offset for just this segment. (OFF_ADJUST is
4583 subtracted from OFF later.) This may put p_offset
4584 past the end of file, but that shouldn't matter. */
4585 }
4586 else
4587 off_adjust = 0;
4588 }
4589 /* Make sure the .dynamic section is the first section in the
4590 PT_DYNAMIC segment. */
4591 else if (p->p_type == PT_DYNAMIC
4592 && m->count > 1
4593 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4594 {
4595 _bfd_error_handler
4596 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4597 abfd);
4598 bfd_set_error (bfd_error_bad_value);
4599 return FALSE;
4600 }
4601 /* Set the note section type to SHT_NOTE. */
4602 else if (p->p_type == PT_NOTE)
4603 for (i = 0; i < m->count; i++)
4604 elf_section_type (m->sections[i]) = SHT_NOTE;
4605
4606 p->p_offset = 0;
4607 p->p_filesz = 0;
4608 p->p_memsz = 0;
4609
4610 if (m->includes_filehdr)
4611 {
4612 if (!m->p_flags_valid)
4613 p->p_flags |= PF_R;
4614 p->p_filesz = bed->s->sizeof_ehdr;
4615 p->p_memsz = bed->s->sizeof_ehdr;
4616 if (m->count > 0)
4617 {
4618 if (p->p_vaddr < (bfd_vma) off)
4619 {
4620 (*_bfd_error_handler)
4621 (_("%B: Not enough room for program headers, try linking with -N"),
4622 abfd);
4623 bfd_set_error (bfd_error_bad_value);
4624 return FALSE;
4625 }
4626
4627 p->p_vaddr -= off;
4628 if (!m->p_paddr_valid)
4629 p->p_paddr -= off;
4630 }
4631 }
4632
4633 if (m->includes_phdrs)
4634 {
4635 if (!m->p_flags_valid)
4636 p->p_flags |= PF_R;
4637
4638 if (!m->includes_filehdr)
4639 {
4640 p->p_offset = bed->s->sizeof_ehdr;
4641
4642 if (m->count > 0)
4643 {
4644 p->p_vaddr -= off - p->p_offset;
4645 if (!m->p_paddr_valid)
4646 p->p_paddr -= off - p->p_offset;
4647 }
4648 }
4649
4650 p->p_filesz += alloc * bed->s->sizeof_phdr;
4651 p->p_memsz += alloc * bed->s->sizeof_phdr;
4652 if (m->count)
4653 {
4654 p->p_filesz += header_pad;
4655 p->p_memsz += header_pad;
4656 }
4657 }
4658
4659 if (p->p_type == PT_LOAD
4660 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4661 {
4662 if (!m->includes_filehdr && !m->includes_phdrs)
4663 p->p_offset = off;
4664 else
4665 {
4666 file_ptr adjust;
4667
4668 adjust = off - (p->p_offset + p->p_filesz);
4669 if (!no_contents)
4670 p->p_filesz += adjust;
4671 p->p_memsz += adjust;
4672 }
4673 }
4674
4675 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4676 maps. Set filepos for sections in PT_LOAD segments, and in
4677 core files, for sections in PT_NOTE segments.
4678 assign_file_positions_for_non_load_sections will set filepos
4679 for other sections and update p_filesz for other segments. */
4680 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4681 {
4682 asection *sec;
4683 bfd_size_type align;
4684 Elf_Internal_Shdr *this_hdr;
4685
4686 sec = *secpp;
4687 this_hdr = &elf_section_data (sec)->this_hdr;
4688 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4689
4690 if ((p->p_type == PT_LOAD
4691 || p->p_type == PT_TLS)
4692 && (this_hdr->sh_type != SHT_NOBITS
4693 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4694 && ((this_hdr->sh_flags & SHF_TLS) == 0
4695 || p->p_type == PT_TLS))))
4696 {
4697 bfd_vma p_start = p->p_paddr;
4698 bfd_vma p_end = p_start + p->p_memsz;
4699 bfd_vma s_start = sec->lma;
4700 bfd_vma adjust = s_start - p_end;
4701
4702 if (adjust != 0
4703 && (s_start < p_end
4704 || p_end < p_start))
4705 {
4706 (*_bfd_error_handler)
4707 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4708 (unsigned long) s_start, (unsigned long) p_end);
4709 adjust = 0;
4710 sec->lma = p_end;
4711 }
4712 p->p_memsz += adjust;
4713
4714 if (this_hdr->sh_type != SHT_NOBITS)
4715 {
4716 if (p->p_filesz + adjust < p->p_memsz)
4717 {
4718 /* We have a PROGBITS section following NOBITS ones.
4719 Allocate file space for the NOBITS section(s) and
4720 zero it. */
4721 adjust = p->p_memsz - p->p_filesz;
4722 if (!write_zeros (abfd, off, adjust))
4723 return FALSE;
4724 }
4725 off += adjust;
4726 p->p_filesz += adjust;
4727 }
4728 }
4729
4730 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4731 {
4732 /* The section at i == 0 is the one that actually contains
4733 everything. */
4734 if (i == 0)
4735 {
4736 this_hdr->sh_offset = sec->filepos = off;
4737 off += this_hdr->sh_size;
4738 p->p_filesz = this_hdr->sh_size;
4739 p->p_memsz = 0;
4740 p->p_align = 1;
4741 }
4742 else
4743 {
4744 /* The rest are fake sections that shouldn't be written. */
4745 sec->filepos = 0;
4746 sec->size = 0;
4747 sec->flags = 0;
4748 continue;
4749 }
4750 }
4751 else
4752 {
4753 if (p->p_type == PT_LOAD)
4754 {
4755 this_hdr->sh_offset = sec->filepos = off;
4756 if (this_hdr->sh_type != SHT_NOBITS)
4757 off += this_hdr->sh_size;
4758 }
4759 else if (this_hdr->sh_type == SHT_NOBITS
4760 && (this_hdr->sh_flags & SHF_TLS) != 0
4761 && this_hdr->sh_offset == 0)
4762 {
4763 /* This is a .tbss section that didn't get a PT_LOAD.
4764 (See _bfd_elf_map_sections_to_segments "Create a
4765 final PT_LOAD".) Set sh_offset to the value it
4766 would have if we had created a zero p_filesz and
4767 p_memsz PT_LOAD header for the section. This
4768 also makes the PT_TLS header have the same
4769 p_offset value. */
4770 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4771 off, align);
4772 this_hdr->sh_offset = sec->filepos = off + adjust;
4773 }
4774
4775 if (this_hdr->sh_type != SHT_NOBITS)
4776 {
4777 p->p_filesz += this_hdr->sh_size;
4778 /* A load section without SHF_ALLOC is something like
4779 a note section in a PT_NOTE segment. These take
4780 file space but are not loaded into memory. */
4781 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4782 p->p_memsz += this_hdr->sh_size;
4783 }
4784 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4785 {
4786 if (p->p_type == PT_TLS)
4787 p->p_memsz += this_hdr->sh_size;
4788
4789 /* .tbss is special. It doesn't contribute to p_memsz of
4790 normal segments. */
4791 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4792 p->p_memsz += this_hdr->sh_size;
4793 }
4794
4795 if (align > p->p_align
4796 && !m->p_align_valid
4797 && (p->p_type != PT_LOAD
4798 || (abfd->flags & D_PAGED) == 0))
4799 p->p_align = align;
4800 }
4801
4802 if (!m->p_flags_valid)
4803 {
4804 p->p_flags |= PF_R;
4805 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4806 p->p_flags |= PF_X;
4807 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4808 p->p_flags |= PF_W;
4809 }
4810 }
4811
4812 off -= off_adjust;
4813
4814 /* Check that all sections are in a PT_LOAD segment.
4815 Don't check funky gdb generated core files. */
4816 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4817 {
4818 bfd_boolean check_vma = TRUE;
4819
4820 for (i = 1; i < m->count; i++)
4821 if (m->sections[i]->vma == m->sections[i - 1]->vma
4822 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4823 ->this_hdr), p) != 0
4824 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4825 ->this_hdr), p) != 0)
4826 {
4827 /* Looks like we have overlays packed into the segment. */
4828 check_vma = FALSE;
4829 break;
4830 }
4831
4832 for (i = 0; i < m->count; i++)
4833 {
4834 Elf_Internal_Shdr *this_hdr;
4835 asection *sec;
4836
4837 sec = m->sections[i];
4838 this_hdr = &(elf_section_data(sec)->this_hdr);
4839 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4840 && !ELF_TBSS_SPECIAL (this_hdr, p))
4841 {
4842 (*_bfd_error_handler)
4843 (_("%B: section `%A' can't be allocated in segment %d"),
4844 abfd, sec, j);
4845 print_segment_map (m);
4846 }
4847 }
4848 }
4849 }
4850
4851 elf_next_file_pos (abfd) = off;
4852 return TRUE;
4853 }
4854
4855 /* Assign file positions for the other sections. */
4856
4857 static bfd_boolean
4858 assign_file_positions_for_non_load_sections (bfd *abfd,
4859 struct bfd_link_info *link_info)
4860 {
4861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4862 Elf_Internal_Shdr **i_shdrpp;
4863 Elf_Internal_Shdr **hdrpp;
4864 Elf_Internal_Phdr *phdrs;
4865 Elf_Internal_Phdr *p;
4866 struct elf_segment_map *m;
4867 struct elf_segment_map *hdrs_segment;
4868 bfd_vma filehdr_vaddr, filehdr_paddr;
4869 bfd_vma phdrs_vaddr, phdrs_paddr;
4870 file_ptr off;
4871 unsigned int num_sec;
4872 unsigned int i;
4873 unsigned int count;
4874
4875 i_shdrpp = elf_elfsections (abfd);
4876 num_sec = elf_numsections (abfd);
4877 off = elf_next_file_pos (abfd);
4878 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4879 {
4880 Elf_Internal_Shdr *hdr;
4881
4882 hdr = *hdrpp;
4883 if (hdr->bfd_section != NULL
4884 && (hdr->bfd_section->filepos != 0
4885 || (hdr->sh_type == SHT_NOBITS
4886 && hdr->contents == NULL)))
4887 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4888 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4889 {
4890 if (hdr->sh_size != 0)
4891 (*_bfd_error_handler)
4892 (_("%B: warning: allocated section `%s' not in segment"),
4893 abfd,
4894 (hdr->bfd_section == NULL
4895 ? "*unknown*"
4896 : hdr->bfd_section->name));
4897 /* We don't need to page align empty sections. */
4898 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4899 off += vma_page_aligned_bias (hdr->sh_addr, off,
4900 bed->maxpagesize);
4901 else
4902 off += vma_page_aligned_bias (hdr->sh_addr, off,
4903 hdr->sh_addralign);
4904 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4905 FALSE);
4906 }
4907 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4908 && hdr->bfd_section == NULL)
4909 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4910 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4911 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4912 hdr->sh_offset = -1;
4913 else
4914 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4915 }
4916
4917 /* Now that we have set the section file positions, we can set up
4918 the file positions for the non PT_LOAD segments. */
4919 count = 0;
4920 filehdr_vaddr = 0;
4921 filehdr_paddr = 0;
4922 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4923 phdrs_paddr = 0;
4924 hdrs_segment = NULL;
4925 phdrs = elf_tdata (abfd)->phdr;
4926 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4927 {
4928 ++count;
4929 if (p->p_type != PT_LOAD)
4930 continue;
4931
4932 if (m->includes_filehdr)
4933 {
4934 filehdr_vaddr = p->p_vaddr;
4935 filehdr_paddr = p->p_paddr;
4936 }
4937 if (m->includes_phdrs)
4938 {
4939 phdrs_vaddr = p->p_vaddr;
4940 phdrs_paddr = p->p_paddr;
4941 if (m->includes_filehdr)
4942 {
4943 hdrs_segment = m;
4944 phdrs_vaddr += bed->s->sizeof_ehdr;
4945 phdrs_paddr += bed->s->sizeof_ehdr;
4946 }
4947 }
4948 }
4949
4950 if (hdrs_segment != NULL && link_info != NULL)
4951 {
4952 /* There is a segment that contains both the file headers and the
4953 program headers, so provide a symbol __ehdr_start pointing there.
4954 A program can use this to examine itself robustly. */
4955
4956 struct elf_link_hash_entry *hash
4957 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4958 FALSE, FALSE, TRUE);
4959 /* If the symbol was referenced and not defined, define it. */
4960 if (hash != NULL
4961 && (hash->root.type == bfd_link_hash_new
4962 || hash->root.type == bfd_link_hash_undefined
4963 || hash->root.type == bfd_link_hash_undefweak
4964 || hash->root.type == bfd_link_hash_common))
4965 {
4966 asection *s = NULL;
4967 if (hdrs_segment->count != 0)
4968 /* The segment contains sections, so use the first one. */
4969 s = hdrs_segment->sections[0];
4970 else
4971 /* Use the first (i.e. lowest-addressed) section in any segment. */
4972 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4973 if (m->count != 0)
4974 {
4975 s = m->sections[0];
4976 break;
4977 }
4978
4979 if (s != NULL)
4980 {
4981 hash->root.u.def.value = filehdr_vaddr - s->vma;
4982 hash->root.u.def.section = s;
4983 }
4984 else
4985 {
4986 hash->root.u.def.value = filehdr_vaddr;
4987 hash->root.u.def.section = bfd_abs_section_ptr;
4988 }
4989
4990 hash->root.type = bfd_link_hash_defined;
4991 hash->def_regular = 1;
4992 hash->non_elf = 0;
4993 }
4994 }
4995
4996 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4997 {
4998 if (p->p_type == PT_GNU_RELRO)
4999 {
5000 const Elf_Internal_Phdr *lp;
5001 struct elf_segment_map *lm;
5002
5003 if (link_info != NULL)
5004 {
5005 /* During linking the range of the RELRO segment is passed
5006 in link_info. */
5007 for (lm = elf_seg_map (abfd), lp = phdrs;
5008 lm != NULL;
5009 lm = lm->next, lp++)
5010 {
5011 if (lp->p_type == PT_LOAD
5012 && lp->p_vaddr < link_info->relro_end
5013 && lm->count != 0
5014 && lm->sections[0]->vma >= link_info->relro_start)
5015 break;
5016 }
5017
5018 BFD_ASSERT (lm != NULL);
5019 }
5020 else
5021 {
5022 /* Otherwise we are copying an executable or shared
5023 library, but we need to use the same linker logic. */
5024 for (lp = phdrs; lp < phdrs + count; ++lp)
5025 {
5026 if (lp->p_type == PT_LOAD
5027 && lp->p_paddr == p->p_paddr)
5028 break;
5029 }
5030 }
5031
5032 if (lp < phdrs + count)
5033 {
5034 p->p_vaddr = lp->p_vaddr;
5035 p->p_paddr = lp->p_paddr;
5036 p->p_offset = lp->p_offset;
5037 if (link_info != NULL)
5038 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5039 else if (m->p_size_valid)
5040 p->p_filesz = m->p_size;
5041 else
5042 abort ();
5043 p->p_memsz = p->p_filesz;
5044 /* Preserve the alignment and flags if they are valid. The
5045 gold linker generates RW/4 for the PT_GNU_RELRO section.
5046 It is better for objcopy/strip to honor these attributes
5047 otherwise gdb will choke when using separate debug files.
5048 */
5049 if (!m->p_align_valid)
5050 p->p_align = 1;
5051 if (!m->p_flags_valid)
5052 p->p_flags = (lp->p_flags & ~PF_W);
5053 }
5054 else
5055 {
5056 memset (p, 0, sizeof *p);
5057 p->p_type = PT_NULL;
5058 }
5059 }
5060 else if (p->p_type == PT_GNU_STACK)
5061 {
5062 if (m->p_size_valid)
5063 p->p_memsz = m->p_size;
5064 }
5065 else if (m->count != 0)
5066 {
5067 if (p->p_type != PT_LOAD
5068 && (p->p_type != PT_NOTE
5069 || bfd_get_format (abfd) != bfd_core))
5070 {
5071 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5072
5073 p->p_filesz = 0;
5074 p->p_offset = m->sections[0]->filepos;
5075 for (i = m->count; i-- != 0;)
5076 {
5077 asection *sect = m->sections[i];
5078 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5079 if (hdr->sh_type != SHT_NOBITS)
5080 {
5081 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5082 + hdr->sh_size);
5083 break;
5084 }
5085 }
5086 }
5087 }
5088 else if (m->includes_filehdr)
5089 {
5090 p->p_vaddr = filehdr_vaddr;
5091 if (! m->p_paddr_valid)
5092 p->p_paddr = filehdr_paddr;
5093 }
5094 else if (m->includes_phdrs)
5095 {
5096 p->p_vaddr = phdrs_vaddr;
5097 if (! m->p_paddr_valid)
5098 p->p_paddr = phdrs_paddr;
5099 }
5100 }
5101
5102 elf_next_file_pos (abfd) = off;
5103
5104 return TRUE;
5105 }
5106
5107 /* Work out the file positions of all the sections. This is called by
5108 _bfd_elf_compute_section_file_positions. All the section sizes and
5109 VMAs must be known before this is called.
5110
5111 Reloc sections come in two flavours: Those processed specially as
5112 "side-channel" data attached to a section to which they apply, and
5113 those that bfd doesn't process as relocations. The latter sort are
5114 stored in a normal bfd section by bfd_section_from_shdr. We don't
5115 consider the former sort here, unless they form part of the loadable
5116 image. Reloc sections not assigned here will be handled later by
5117 assign_file_positions_for_relocs.
5118
5119 We also don't set the positions of the .symtab and .strtab here. */
5120
5121 static bfd_boolean
5122 assign_file_positions_except_relocs (bfd *abfd,
5123 struct bfd_link_info *link_info)
5124 {
5125 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5126 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5128
5129 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5130 && bfd_get_format (abfd) != bfd_core)
5131 {
5132 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5133 unsigned int num_sec = elf_numsections (abfd);
5134 Elf_Internal_Shdr **hdrpp;
5135 unsigned int i;
5136 file_ptr off;
5137
5138 /* Start after the ELF header. */
5139 off = i_ehdrp->e_ehsize;
5140
5141 /* We are not creating an executable, which means that we are
5142 not creating a program header, and that the actual order of
5143 the sections in the file is unimportant. */
5144 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5145 {
5146 Elf_Internal_Shdr *hdr;
5147
5148 hdr = *hdrpp;
5149 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5150 && hdr->bfd_section == NULL)
5151 || i == elf_onesymtab (abfd)
5152 || i == elf_symtab_shndx (abfd)
5153 || i == elf_strtab_sec (abfd))
5154 {
5155 hdr->sh_offset = -1;
5156 }
5157 else
5158 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5159 }
5160
5161 elf_next_file_pos (abfd) = off;
5162 }
5163 else
5164 {
5165 unsigned int alloc;
5166
5167 /* Assign file positions for the loaded sections based on the
5168 assignment of sections to segments. */
5169 if (!assign_file_positions_for_load_sections (abfd, link_info))
5170 return FALSE;
5171
5172 /* And for non-load sections. */
5173 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5174 return FALSE;
5175
5176 if (bed->elf_backend_modify_program_headers != NULL)
5177 {
5178 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5179 return FALSE;
5180 }
5181
5182 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5183 if (link_info != NULL
5184 && link_info->executable
5185 && link_info->shared)
5186 {
5187 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5188 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5189 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5190
5191 /* Find the lowest p_vaddr in PT_LOAD segments. */
5192 bfd_vma p_vaddr = (bfd_vma) -1;
5193 for (; segment < end_segment; segment++)
5194 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5195 p_vaddr = segment->p_vaddr;
5196
5197 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5198 segments is non-zero. */
5199 if (p_vaddr)
5200 i_ehdrp->e_type = ET_EXEC;
5201 }
5202
5203 /* Write out the program headers. */
5204 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5205 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5206 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5207 return FALSE;
5208 }
5209
5210 return TRUE;
5211 }
5212
5213 static bfd_boolean
5214 prep_headers (bfd *abfd)
5215 {
5216 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5217 struct elf_strtab_hash *shstrtab;
5218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5219
5220 i_ehdrp = elf_elfheader (abfd);
5221
5222 shstrtab = _bfd_elf_strtab_init ();
5223 if (shstrtab == NULL)
5224 return FALSE;
5225
5226 elf_shstrtab (abfd) = shstrtab;
5227
5228 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5229 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5230 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5231 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5232
5233 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5234 i_ehdrp->e_ident[EI_DATA] =
5235 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5236 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5237
5238 if ((abfd->flags & DYNAMIC) != 0)
5239 i_ehdrp->e_type = ET_DYN;
5240 else if ((abfd->flags & EXEC_P) != 0)
5241 i_ehdrp->e_type = ET_EXEC;
5242 else if (bfd_get_format (abfd) == bfd_core)
5243 i_ehdrp->e_type = ET_CORE;
5244 else
5245 i_ehdrp->e_type = ET_REL;
5246
5247 switch (bfd_get_arch (abfd))
5248 {
5249 case bfd_arch_unknown:
5250 i_ehdrp->e_machine = EM_NONE;
5251 break;
5252
5253 /* There used to be a long list of cases here, each one setting
5254 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5255 in the corresponding bfd definition. To avoid duplication,
5256 the switch was removed. Machines that need special handling
5257 can generally do it in elf_backend_final_write_processing(),
5258 unless they need the information earlier than the final write.
5259 Such need can generally be supplied by replacing the tests for
5260 e_machine with the conditions used to determine it. */
5261 default:
5262 i_ehdrp->e_machine = bed->elf_machine_code;
5263 }
5264
5265 i_ehdrp->e_version = bed->s->ev_current;
5266 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5267
5268 /* No program header, for now. */
5269 i_ehdrp->e_phoff = 0;
5270 i_ehdrp->e_phentsize = 0;
5271 i_ehdrp->e_phnum = 0;
5272
5273 /* Each bfd section is section header entry. */
5274 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5275 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5276
5277 /* If we're building an executable, we'll need a program header table. */
5278 if (abfd->flags & EXEC_P)
5279 /* It all happens later. */
5280 ;
5281 else
5282 {
5283 i_ehdrp->e_phentsize = 0;
5284 i_ehdrp->e_phoff = 0;
5285 }
5286
5287 elf_tdata (abfd)->symtab_hdr.sh_name =
5288 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5289 elf_tdata (abfd)->strtab_hdr.sh_name =
5290 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5291 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5292 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5293 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5294 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5295 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5296 return FALSE;
5297
5298 return TRUE;
5299 }
5300
5301 /* Assign file positions for all the reloc sections which are not part
5302 of the loadable file image, and the file position of section headers. */
5303
5304 static void
5305 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5306 {
5307 file_ptr off;
5308 unsigned int i, num_sec;
5309 Elf_Internal_Shdr **shdrpp;
5310 Elf_Internal_Ehdr *i_ehdrp;
5311 const struct elf_backend_data *bed;
5312
5313 off = elf_next_file_pos (abfd);
5314
5315 num_sec = elf_numsections (abfd);
5316 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5317 {
5318 Elf_Internal_Shdr *shdrp;
5319
5320 shdrp = *shdrpp;
5321 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5322 && shdrp->sh_offset == -1)
5323 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5324 }
5325
5326 /* Place the section headers. */
5327 i_ehdrp = elf_elfheader (abfd);
5328 bed = get_elf_backend_data (abfd);
5329 off = align_file_position (off, 1 << bed->s->log_file_align);
5330 i_ehdrp->e_shoff = off;
5331 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5332 elf_next_file_pos (abfd) = off;
5333 }
5334
5335 bfd_boolean
5336 _bfd_elf_write_object_contents (bfd *abfd)
5337 {
5338 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5339 Elf_Internal_Shdr **i_shdrp;
5340 bfd_boolean failed;
5341 unsigned int count, num_sec;
5342 struct elf_obj_tdata *t;
5343
5344 if (! abfd->output_has_begun
5345 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5346 return FALSE;
5347
5348 i_shdrp = elf_elfsections (abfd);
5349
5350 failed = FALSE;
5351 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5352 if (failed)
5353 return FALSE;
5354
5355 _bfd_elf_assign_file_positions_for_relocs (abfd);
5356
5357 /* After writing the headers, we need to write the sections too... */
5358 num_sec = elf_numsections (abfd);
5359 for (count = 1; count < num_sec; count++)
5360 {
5361 if (bed->elf_backend_section_processing)
5362 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5363 if (i_shdrp[count]->contents)
5364 {
5365 bfd_size_type amt = i_shdrp[count]->sh_size;
5366
5367 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5368 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5369 return FALSE;
5370 }
5371 }
5372
5373 /* Write out the section header names. */
5374 t = elf_tdata (abfd);
5375 if (elf_shstrtab (abfd) != NULL
5376 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5377 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5378 return FALSE;
5379
5380 if (bed->elf_backend_final_write_processing)
5381 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5382
5383 if (!bed->s->write_shdrs_and_ehdr (abfd))
5384 return FALSE;
5385
5386 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5387 if (t->o->build_id.after_write_object_contents != NULL)
5388 return (*t->o->build_id.after_write_object_contents) (abfd);
5389
5390 return TRUE;
5391 }
5392
5393 bfd_boolean
5394 _bfd_elf_write_corefile_contents (bfd *abfd)
5395 {
5396 /* Hopefully this can be done just like an object file. */
5397 return _bfd_elf_write_object_contents (abfd);
5398 }
5399
5400 /* Given a section, search the header to find them. */
5401
5402 unsigned int
5403 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5404 {
5405 const struct elf_backend_data *bed;
5406 unsigned int sec_index;
5407
5408 if (elf_section_data (asect) != NULL
5409 && elf_section_data (asect)->this_idx != 0)
5410 return elf_section_data (asect)->this_idx;
5411
5412 if (bfd_is_abs_section (asect))
5413 sec_index = SHN_ABS;
5414 else if (bfd_is_com_section (asect))
5415 sec_index = SHN_COMMON;
5416 else if (bfd_is_und_section (asect))
5417 sec_index = SHN_UNDEF;
5418 else
5419 sec_index = SHN_BAD;
5420
5421 bed = get_elf_backend_data (abfd);
5422 if (bed->elf_backend_section_from_bfd_section)
5423 {
5424 int retval = sec_index;
5425
5426 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5427 return retval;
5428 }
5429
5430 if (sec_index == SHN_BAD)
5431 bfd_set_error (bfd_error_nonrepresentable_section);
5432
5433 return sec_index;
5434 }
5435
5436 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5437 on error. */
5438
5439 int
5440 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5441 {
5442 asymbol *asym_ptr = *asym_ptr_ptr;
5443 int idx;
5444 flagword flags = asym_ptr->flags;
5445
5446 /* When gas creates relocations against local labels, it creates its
5447 own symbol for the section, but does put the symbol into the
5448 symbol chain, so udata is 0. When the linker is generating
5449 relocatable output, this section symbol may be for one of the
5450 input sections rather than the output section. */
5451 if (asym_ptr->udata.i == 0
5452 && (flags & BSF_SECTION_SYM)
5453 && asym_ptr->section)
5454 {
5455 asection *sec;
5456 int indx;
5457
5458 sec = asym_ptr->section;
5459 if (sec->owner != abfd && sec->output_section != NULL)
5460 sec = sec->output_section;
5461 if (sec->owner == abfd
5462 && (indx = sec->index) < elf_num_section_syms (abfd)
5463 && elf_section_syms (abfd)[indx] != NULL)
5464 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5465 }
5466
5467 idx = asym_ptr->udata.i;
5468
5469 if (idx == 0)
5470 {
5471 /* This case can occur when using --strip-symbol on a symbol
5472 which is used in a relocation entry. */
5473 (*_bfd_error_handler)
5474 (_("%B: symbol `%s' required but not present"),
5475 abfd, bfd_asymbol_name (asym_ptr));
5476 bfd_set_error (bfd_error_no_symbols);
5477 return -1;
5478 }
5479
5480 #if DEBUG & 4
5481 {
5482 fprintf (stderr,
5483 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5484 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5485 fflush (stderr);
5486 }
5487 #endif
5488
5489 return idx;
5490 }
5491
5492 /* Rewrite program header information. */
5493
5494 static bfd_boolean
5495 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5496 {
5497 Elf_Internal_Ehdr *iehdr;
5498 struct elf_segment_map *map;
5499 struct elf_segment_map *map_first;
5500 struct elf_segment_map **pointer_to_map;
5501 Elf_Internal_Phdr *segment;
5502 asection *section;
5503 unsigned int i;
5504 unsigned int num_segments;
5505 bfd_boolean phdr_included = FALSE;
5506 bfd_boolean p_paddr_valid;
5507 bfd_vma maxpagesize;
5508 struct elf_segment_map *phdr_adjust_seg = NULL;
5509 unsigned int phdr_adjust_num = 0;
5510 const struct elf_backend_data *bed;
5511
5512 bed = get_elf_backend_data (ibfd);
5513 iehdr = elf_elfheader (ibfd);
5514
5515 map_first = NULL;
5516 pointer_to_map = &map_first;
5517
5518 num_segments = elf_elfheader (ibfd)->e_phnum;
5519 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5520
5521 /* Returns the end address of the segment + 1. */
5522 #define SEGMENT_END(segment, start) \
5523 (start + (segment->p_memsz > segment->p_filesz \
5524 ? segment->p_memsz : segment->p_filesz))
5525
5526 #define SECTION_SIZE(section, segment) \
5527 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5528 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5529 ? section->size : 0)
5530
5531 /* Returns TRUE if the given section is contained within
5532 the given segment. VMA addresses are compared. */
5533 #define IS_CONTAINED_BY_VMA(section, segment) \
5534 (section->vma >= segment->p_vaddr \
5535 && (section->vma + SECTION_SIZE (section, segment) \
5536 <= (SEGMENT_END (segment, segment->p_vaddr))))
5537
5538 /* Returns TRUE if the given section is contained within
5539 the given segment. LMA addresses are compared. */
5540 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5541 (section->lma >= base \
5542 && (section->lma + SECTION_SIZE (section, segment) \
5543 <= SEGMENT_END (segment, base)))
5544
5545 /* Handle PT_NOTE segment. */
5546 #define IS_NOTE(p, s) \
5547 (p->p_type == PT_NOTE \
5548 && elf_section_type (s) == SHT_NOTE \
5549 && (bfd_vma) s->filepos >= p->p_offset \
5550 && ((bfd_vma) s->filepos + s->size \
5551 <= p->p_offset + p->p_filesz))
5552
5553 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5554 etc. */
5555 #define IS_COREFILE_NOTE(p, s) \
5556 (IS_NOTE (p, s) \
5557 && bfd_get_format (ibfd) == bfd_core \
5558 && s->vma == 0 \
5559 && s->lma == 0)
5560
5561 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5562 linker, which generates a PT_INTERP section with p_vaddr and
5563 p_memsz set to 0. */
5564 #define IS_SOLARIS_PT_INTERP(p, s) \
5565 (p->p_vaddr == 0 \
5566 && p->p_paddr == 0 \
5567 && p->p_memsz == 0 \
5568 && p->p_filesz > 0 \
5569 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5570 && s->size > 0 \
5571 && (bfd_vma) s->filepos >= p->p_offset \
5572 && ((bfd_vma) s->filepos + s->size \
5573 <= p->p_offset + p->p_filesz))
5574
5575 /* Decide if the given section should be included in the given segment.
5576 A section will be included if:
5577 1. It is within the address space of the segment -- we use the LMA
5578 if that is set for the segment and the VMA otherwise,
5579 2. It is an allocated section or a NOTE section in a PT_NOTE
5580 segment.
5581 3. There is an output section associated with it,
5582 4. The section has not already been allocated to a previous segment.
5583 5. PT_GNU_STACK segments do not include any sections.
5584 6. PT_TLS segment includes only SHF_TLS sections.
5585 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5586 8. PT_DYNAMIC should not contain empty sections at the beginning
5587 (with the possible exception of .dynamic). */
5588 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5589 ((((segment->p_paddr \
5590 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5591 : IS_CONTAINED_BY_VMA (section, segment)) \
5592 && (section->flags & SEC_ALLOC) != 0) \
5593 || IS_NOTE (segment, section)) \
5594 && segment->p_type != PT_GNU_STACK \
5595 && (segment->p_type != PT_TLS \
5596 || (section->flags & SEC_THREAD_LOCAL)) \
5597 && (segment->p_type == PT_LOAD \
5598 || segment->p_type == PT_TLS \
5599 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5600 && (segment->p_type != PT_DYNAMIC \
5601 || SECTION_SIZE (section, segment) > 0 \
5602 || (segment->p_paddr \
5603 ? segment->p_paddr != section->lma \
5604 : segment->p_vaddr != section->vma) \
5605 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5606 == 0)) \
5607 && !section->segment_mark)
5608
5609 /* If the output section of a section in the input segment is NULL,
5610 it is removed from the corresponding output segment. */
5611 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5612 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5613 && section->output_section != NULL)
5614
5615 /* Returns TRUE iff seg1 starts after the end of seg2. */
5616 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5617 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5618
5619 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5620 their VMA address ranges and their LMA address ranges overlap.
5621 It is possible to have overlapping VMA ranges without overlapping LMA
5622 ranges. RedBoot images for example can have both .data and .bss mapped
5623 to the same VMA range, but with the .data section mapped to a different
5624 LMA. */
5625 #define SEGMENT_OVERLAPS(seg1, seg2) \
5626 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5627 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5628 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5629 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5630
5631 /* Initialise the segment mark field. */
5632 for (section = ibfd->sections; section != NULL; section = section->next)
5633 section->segment_mark = FALSE;
5634
5635 /* The Solaris linker creates program headers in which all the
5636 p_paddr fields are zero. When we try to objcopy or strip such a
5637 file, we get confused. Check for this case, and if we find it
5638 don't set the p_paddr_valid fields. */
5639 p_paddr_valid = FALSE;
5640 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5641 i < num_segments;
5642 i++, segment++)
5643 if (segment->p_paddr != 0)
5644 {
5645 p_paddr_valid = TRUE;
5646 break;
5647 }
5648
5649 /* Scan through the segments specified in the program header
5650 of the input BFD. For this first scan we look for overlaps
5651 in the loadable segments. These can be created by weird
5652 parameters to objcopy. Also, fix some solaris weirdness. */
5653 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5654 i < num_segments;
5655 i++, segment++)
5656 {
5657 unsigned int j;
5658 Elf_Internal_Phdr *segment2;
5659
5660 if (segment->p_type == PT_INTERP)
5661 for (section = ibfd->sections; section; section = section->next)
5662 if (IS_SOLARIS_PT_INTERP (segment, section))
5663 {
5664 /* Mininal change so that the normal section to segment
5665 assignment code will work. */
5666 segment->p_vaddr = section->vma;
5667 break;
5668 }
5669
5670 if (segment->p_type != PT_LOAD)
5671 {
5672 /* Remove PT_GNU_RELRO segment. */
5673 if (segment->p_type == PT_GNU_RELRO)
5674 segment->p_type = PT_NULL;
5675 continue;
5676 }
5677
5678 /* Determine if this segment overlaps any previous segments. */
5679 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5680 {
5681 bfd_signed_vma extra_length;
5682
5683 if (segment2->p_type != PT_LOAD
5684 || !SEGMENT_OVERLAPS (segment, segment2))
5685 continue;
5686
5687 /* Merge the two segments together. */
5688 if (segment2->p_vaddr < segment->p_vaddr)
5689 {
5690 /* Extend SEGMENT2 to include SEGMENT and then delete
5691 SEGMENT. */
5692 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5693 - SEGMENT_END (segment2, segment2->p_vaddr));
5694
5695 if (extra_length > 0)
5696 {
5697 segment2->p_memsz += extra_length;
5698 segment2->p_filesz += extra_length;
5699 }
5700
5701 segment->p_type = PT_NULL;
5702
5703 /* Since we have deleted P we must restart the outer loop. */
5704 i = 0;
5705 segment = elf_tdata (ibfd)->phdr;
5706 break;
5707 }
5708 else
5709 {
5710 /* Extend SEGMENT to include SEGMENT2 and then delete
5711 SEGMENT2. */
5712 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5713 - SEGMENT_END (segment, segment->p_vaddr));
5714
5715 if (extra_length > 0)
5716 {
5717 segment->p_memsz += extra_length;
5718 segment->p_filesz += extra_length;
5719 }
5720
5721 segment2->p_type = PT_NULL;
5722 }
5723 }
5724 }
5725
5726 /* The second scan attempts to assign sections to segments. */
5727 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5728 i < num_segments;
5729 i++, segment++)
5730 {
5731 unsigned int section_count;
5732 asection **sections;
5733 asection *output_section;
5734 unsigned int isec;
5735 bfd_vma matching_lma;
5736 bfd_vma suggested_lma;
5737 unsigned int j;
5738 bfd_size_type amt;
5739 asection *first_section;
5740 bfd_boolean first_matching_lma;
5741 bfd_boolean first_suggested_lma;
5742
5743 if (segment->p_type == PT_NULL)
5744 continue;
5745
5746 first_section = NULL;
5747 /* Compute how many sections might be placed into this segment. */
5748 for (section = ibfd->sections, section_count = 0;
5749 section != NULL;
5750 section = section->next)
5751 {
5752 /* Find the first section in the input segment, which may be
5753 removed from the corresponding output segment. */
5754 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5755 {
5756 if (first_section == NULL)
5757 first_section = section;
5758 if (section->output_section != NULL)
5759 ++section_count;
5760 }
5761 }
5762
5763 /* Allocate a segment map big enough to contain
5764 all of the sections we have selected. */
5765 amt = sizeof (struct elf_segment_map);
5766 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5767 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5768 if (map == NULL)
5769 return FALSE;
5770
5771 /* Initialise the fields of the segment map. Default to
5772 using the physical address of the segment in the input BFD. */
5773 map->next = NULL;
5774 map->p_type = segment->p_type;
5775 map->p_flags = segment->p_flags;
5776 map->p_flags_valid = 1;
5777
5778 /* If the first section in the input segment is removed, there is
5779 no need to preserve segment physical address in the corresponding
5780 output segment. */
5781 if (!first_section || first_section->output_section != NULL)
5782 {
5783 map->p_paddr = segment->p_paddr;
5784 map->p_paddr_valid = p_paddr_valid;
5785 }
5786
5787 /* Determine if this segment contains the ELF file header
5788 and if it contains the program headers themselves. */
5789 map->includes_filehdr = (segment->p_offset == 0
5790 && segment->p_filesz >= iehdr->e_ehsize);
5791 map->includes_phdrs = 0;
5792
5793 if (!phdr_included || segment->p_type != PT_LOAD)
5794 {
5795 map->includes_phdrs =
5796 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5797 && (segment->p_offset + segment->p_filesz
5798 >= ((bfd_vma) iehdr->e_phoff
5799 + iehdr->e_phnum * iehdr->e_phentsize)));
5800
5801 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5802 phdr_included = TRUE;
5803 }
5804
5805 if (section_count == 0)
5806 {
5807 /* Special segments, such as the PT_PHDR segment, may contain
5808 no sections, but ordinary, loadable segments should contain
5809 something. They are allowed by the ELF spec however, so only
5810 a warning is produced. */
5811 if (segment->p_type == PT_LOAD)
5812 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5813 " detected, is this intentional ?\n"),
5814 ibfd);
5815
5816 map->count = 0;
5817 *pointer_to_map = map;
5818 pointer_to_map = &map->next;
5819
5820 continue;
5821 }
5822
5823 /* Now scan the sections in the input BFD again and attempt
5824 to add their corresponding output sections to the segment map.
5825 The problem here is how to handle an output section which has
5826 been moved (ie had its LMA changed). There are four possibilities:
5827
5828 1. None of the sections have been moved.
5829 In this case we can continue to use the segment LMA from the
5830 input BFD.
5831
5832 2. All of the sections have been moved by the same amount.
5833 In this case we can change the segment's LMA to match the LMA
5834 of the first section.
5835
5836 3. Some of the sections have been moved, others have not.
5837 In this case those sections which have not been moved can be
5838 placed in the current segment which will have to have its size,
5839 and possibly its LMA changed, and a new segment or segments will
5840 have to be created to contain the other sections.
5841
5842 4. The sections have been moved, but not by the same amount.
5843 In this case we can change the segment's LMA to match the LMA
5844 of the first section and we will have to create a new segment
5845 or segments to contain the other sections.
5846
5847 In order to save time, we allocate an array to hold the section
5848 pointers that we are interested in. As these sections get assigned
5849 to a segment, they are removed from this array. */
5850
5851 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5852 if (sections == NULL)
5853 return FALSE;
5854
5855 /* Step One: Scan for segment vs section LMA conflicts.
5856 Also add the sections to the section array allocated above.
5857 Also add the sections to the current segment. In the common
5858 case, where the sections have not been moved, this means that
5859 we have completely filled the segment, and there is nothing
5860 more to do. */
5861 isec = 0;
5862 matching_lma = 0;
5863 suggested_lma = 0;
5864 first_matching_lma = TRUE;
5865 first_suggested_lma = TRUE;
5866
5867 for (section = ibfd->sections;
5868 section != NULL;
5869 section = section->next)
5870 if (section == first_section)
5871 break;
5872
5873 for (j = 0; section != NULL; section = section->next)
5874 {
5875 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5876 {
5877 output_section = section->output_section;
5878
5879 sections[j++] = section;
5880
5881 /* The Solaris native linker always sets p_paddr to 0.
5882 We try to catch that case here, and set it to the
5883 correct value. Note - some backends require that
5884 p_paddr be left as zero. */
5885 if (!p_paddr_valid
5886 && segment->p_vaddr != 0
5887 && !bed->want_p_paddr_set_to_zero
5888 && isec == 0
5889 && output_section->lma != 0
5890 && output_section->vma == (segment->p_vaddr
5891 + (map->includes_filehdr
5892 ? iehdr->e_ehsize
5893 : 0)
5894 + (map->includes_phdrs
5895 ? (iehdr->e_phnum
5896 * iehdr->e_phentsize)
5897 : 0)))
5898 map->p_paddr = segment->p_vaddr;
5899
5900 /* Match up the physical address of the segment with the
5901 LMA address of the output section. */
5902 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5903 || IS_COREFILE_NOTE (segment, section)
5904 || (bed->want_p_paddr_set_to_zero
5905 && IS_CONTAINED_BY_VMA (output_section, segment)))
5906 {
5907 if (first_matching_lma || output_section->lma < matching_lma)
5908 {
5909 matching_lma = output_section->lma;
5910 first_matching_lma = FALSE;
5911 }
5912
5913 /* We assume that if the section fits within the segment
5914 then it does not overlap any other section within that
5915 segment. */
5916 map->sections[isec++] = output_section;
5917 }
5918 else if (first_suggested_lma)
5919 {
5920 suggested_lma = output_section->lma;
5921 first_suggested_lma = FALSE;
5922 }
5923
5924 if (j == section_count)
5925 break;
5926 }
5927 }
5928
5929 BFD_ASSERT (j == section_count);
5930
5931 /* Step Two: Adjust the physical address of the current segment,
5932 if necessary. */
5933 if (isec == section_count)
5934 {
5935 /* All of the sections fitted within the segment as currently
5936 specified. This is the default case. Add the segment to
5937 the list of built segments and carry on to process the next
5938 program header in the input BFD. */
5939 map->count = section_count;
5940 *pointer_to_map = map;
5941 pointer_to_map = &map->next;
5942
5943 if (p_paddr_valid
5944 && !bed->want_p_paddr_set_to_zero
5945 && matching_lma != map->p_paddr
5946 && !map->includes_filehdr
5947 && !map->includes_phdrs)
5948 /* There is some padding before the first section in the
5949 segment. So, we must account for that in the output
5950 segment's vma. */
5951 map->p_vaddr_offset = matching_lma - map->p_paddr;
5952
5953 free (sections);
5954 continue;
5955 }
5956 else
5957 {
5958 if (!first_matching_lma)
5959 {
5960 /* At least one section fits inside the current segment.
5961 Keep it, but modify its physical address to match the
5962 LMA of the first section that fitted. */
5963 map->p_paddr = matching_lma;
5964 }
5965 else
5966 {
5967 /* None of the sections fitted inside the current segment.
5968 Change the current segment's physical address to match
5969 the LMA of the first section. */
5970 map->p_paddr = suggested_lma;
5971 }
5972
5973 /* Offset the segment physical address from the lma
5974 to allow for space taken up by elf headers. */
5975 if (map->includes_filehdr)
5976 {
5977 if (map->p_paddr >= iehdr->e_ehsize)
5978 map->p_paddr -= iehdr->e_ehsize;
5979 else
5980 {
5981 map->includes_filehdr = FALSE;
5982 map->includes_phdrs = FALSE;
5983 }
5984 }
5985
5986 if (map->includes_phdrs)
5987 {
5988 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5989 {
5990 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5991
5992 /* iehdr->e_phnum is just an estimate of the number
5993 of program headers that we will need. Make a note
5994 here of the number we used and the segment we chose
5995 to hold these headers, so that we can adjust the
5996 offset when we know the correct value. */
5997 phdr_adjust_num = iehdr->e_phnum;
5998 phdr_adjust_seg = map;
5999 }
6000 else
6001 map->includes_phdrs = FALSE;
6002 }
6003 }
6004
6005 /* Step Three: Loop over the sections again, this time assigning
6006 those that fit to the current segment and removing them from the
6007 sections array; but making sure not to leave large gaps. Once all
6008 possible sections have been assigned to the current segment it is
6009 added to the list of built segments and if sections still remain
6010 to be assigned, a new segment is constructed before repeating
6011 the loop. */
6012 isec = 0;
6013 do
6014 {
6015 map->count = 0;
6016 suggested_lma = 0;
6017 first_suggested_lma = TRUE;
6018
6019 /* Fill the current segment with sections that fit. */
6020 for (j = 0; j < section_count; j++)
6021 {
6022 section = sections[j];
6023
6024 if (section == NULL)
6025 continue;
6026
6027 output_section = section->output_section;
6028
6029 BFD_ASSERT (output_section != NULL);
6030
6031 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6032 || IS_COREFILE_NOTE (segment, section))
6033 {
6034 if (map->count == 0)
6035 {
6036 /* If the first section in a segment does not start at
6037 the beginning of the segment, then something is
6038 wrong. */
6039 if (output_section->lma
6040 != (map->p_paddr
6041 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6042 + (map->includes_phdrs
6043 ? iehdr->e_phnum * iehdr->e_phentsize
6044 : 0)))
6045 abort ();
6046 }
6047 else
6048 {
6049 asection *prev_sec;
6050
6051 prev_sec = map->sections[map->count - 1];
6052
6053 /* If the gap between the end of the previous section
6054 and the start of this section is more than
6055 maxpagesize then we need to start a new segment. */
6056 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6057 maxpagesize)
6058 < BFD_ALIGN (output_section->lma, maxpagesize))
6059 || (prev_sec->lma + prev_sec->size
6060 > output_section->lma))
6061 {
6062 if (first_suggested_lma)
6063 {
6064 suggested_lma = output_section->lma;
6065 first_suggested_lma = FALSE;
6066 }
6067
6068 continue;
6069 }
6070 }
6071
6072 map->sections[map->count++] = output_section;
6073 ++isec;
6074 sections[j] = NULL;
6075 section->segment_mark = TRUE;
6076 }
6077 else if (first_suggested_lma)
6078 {
6079 suggested_lma = output_section->lma;
6080 first_suggested_lma = FALSE;
6081 }
6082 }
6083
6084 BFD_ASSERT (map->count > 0);
6085
6086 /* Add the current segment to the list of built segments. */
6087 *pointer_to_map = map;
6088 pointer_to_map = &map->next;
6089
6090 if (isec < section_count)
6091 {
6092 /* We still have not allocated all of the sections to
6093 segments. Create a new segment here, initialise it
6094 and carry on looping. */
6095 amt = sizeof (struct elf_segment_map);
6096 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6097 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6098 if (map == NULL)
6099 {
6100 free (sections);
6101 return FALSE;
6102 }
6103
6104 /* Initialise the fields of the segment map. Set the physical
6105 physical address to the LMA of the first section that has
6106 not yet been assigned. */
6107 map->next = NULL;
6108 map->p_type = segment->p_type;
6109 map->p_flags = segment->p_flags;
6110 map->p_flags_valid = 1;
6111 map->p_paddr = suggested_lma;
6112 map->p_paddr_valid = p_paddr_valid;
6113 map->includes_filehdr = 0;
6114 map->includes_phdrs = 0;
6115 }
6116 }
6117 while (isec < section_count);
6118
6119 free (sections);
6120 }
6121
6122 elf_seg_map (obfd) = map_first;
6123
6124 /* If we had to estimate the number of program headers that were
6125 going to be needed, then check our estimate now and adjust
6126 the offset if necessary. */
6127 if (phdr_adjust_seg != NULL)
6128 {
6129 unsigned int count;
6130
6131 for (count = 0, map = map_first; map != NULL; map = map->next)
6132 count++;
6133
6134 if (count > phdr_adjust_num)
6135 phdr_adjust_seg->p_paddr
6136 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6137 }
6138
6139 #undef SEGMENT_END
6140 #undef SECTION_SIZE
6141 #undef IS_CONTAINED_BY_VMA
6142 #undef IS_CONTAINED_BY_LMA
6143 #undef IS_NOTE
6144 #undef IS_COREFILE_NOTE
6145 #undef IS_SOLARIS_PT_INTERP
6146 #undef IS_SECTION_IN_INPUT_SEGMENT
6147 #undef INCLUDE_SECTION_IN_SEGMENT
6148 #undef SEGMENT_AFTER_SEGMENT
6149 #undef SEGMENT_OVERLAPS
6150 return TRUE;
6151 }
6152
6153 /* Copy ELF program header information. */
6154
6155 static bfd_boolean
6156 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6157 {
6158 Elf_Internal_Ehdr *iehdr;
6159 struct elf_segment_map *map;
6160 struct elf_segment_map *map_first;
6161 struct elf_segment_map **pointer_to_map;
6162 Elf_Internal_Phdr *segment;
6163 unsigned int i;
6164 unsigned int num_segments;
6165 bfd_boolean phdr_included = FALSE;
6166 bfd_boolean p_paddr_valid;
6167
6168 iehdr = elf_elfheader (ibfd);
6169
6170 map_first = NULL;
6171 pointer_to_map = &map_first;
6172
6173 /* If all the segment p_paddr fields are zero, don't set
6174 map->p_paddr_valid. */
6175 p_paddr_valid = FALSE;
6176 num_segments = elf_elfheader (ibfd)->e_phnum;
6177 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6178 i < num_segments;
6179 i++, segment++)
6180 if (segment->p_paddr != 0)
6181 {
6182 p_paddr_valid = TRUE;
6183 break;
6184 }
6185
6186 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6187 i < num_segments;
6188 i++, segment++)
6189 {
6190 asection *section;
6191 unsigned int section_count;
6192 bfd_size_type amt;
6193 Elf_Internal_Shdr *this_hdr;
6194 asection *first_section = NULL;
6195 asection *lowest_section;
6196
6197 /* Compute how many sections are in this segment. */
6198 for (section = ibfd->sections, section_count = 0;
6199 section != NULL;
6200 section = section->next)
6201 {
6202 this_hdr = &(elf_section_data(section)->this_hdr);
6203 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6204 {
6205 if (first_section == NULL)
6206 first_section = section;
6207 section_count++;
6208 }
6209 }
6210
6211 /* Allocate a segment map big enough to contain
6212 all of the sections we have selected. */
6213 amt = sizeof (struct elf_segment_map);
6214 if (section_count != 0)
6215 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6216 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6217 if (map == NULL)
6218 return FALSE;
6219
6220 /* Initialize the fields of the output segment map with the
6221 input segment. */
6222 map->next = NULL;
6223 map->p_type = segment->p_type;
6224 map->p_flags = segment->p_flags;
6225 map->p_flags_valid = 1;
6226 map->p_paddr = segment->p_paddr;
6227 map->p_paddr_valid = p_paddr_valid;
6228 map->p_align = segment->p_align;
6229 map->p_align_valid = 1;
6230 map->p_vaddr_offset = 0;
6231
6232 if (map->p_type == PT_GNU_RELRO
6233 || map->p_type == PT_GNU_STACK)
6234 {
6235 /* The PT_GNU_RELRO segment may contain the first a few
6236 bytes in the .got.plt section even if the whole .got.plt
6237 section isn't in the PT_GNU_RELRO segment. We won't
6238 change the size of the PT_GNU_RELRO segment.
6239 Similarly, PT_GNU_STACK size is significant on uclinux
6240 systems. */
6241 map->p_size = segment->p_memsz;
6242 map->p_size_valid = 1;
6243 }
6244
6245 /* Determine if this segment contains the ELF file header
6246 and if it contains the program headers themselves. */
6247 map->includes_filehdr = (segment->p_offset == 0
6248 && segment->p_filesz >= iehdr->e_ehsize);
6249
6250 map->includes_phdrs = 0;
6251 if (! phdr_included || segment->p_type != PT_LOAD)
6252 {
6253 map->includes_phdrs =
6254 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6255 && (segment->p_offset + segment->p_filesz
6256 >= ((bfd_vma) iehdr->e_phoff
6257 + iehdr->e_phnum * iehdr->e_phentsize)));
6258
6259 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6260 phdr_included = TRUE;
6261 }
6262
6263 lowest_section = NULL;
6264 if (section_count != 0)
6265 {
6266 unsigned int isec = 0;
6267
6268 for (section = first_section;
6269 section != NULL;
6270 section = section->next)
6271 {
6272 this_hdr = &(elf_section_data(section)->this_hdr);
6273 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6274 {
6275 map->sections[isec++] = section->output_section;
6276 if ((section->flags & SEC_ALLOC) != 0)
6277 {
6278 bfd_vma seg_off;
6279
6280 if (lowest_section == NULL
6281 || section->lma < lowest_section->lma)
6282 lowest_section = section;
6283
6284 /* Section lmas are set up from PT_LOAD header
6285 p_paddr in _bfd_elf_make_section_from_shdr.
6286 If this header has a p_paddr that disagrees
6287 with the section lma, flag the p_paddr as
6288 invalid. */
6289 if ((section->flags & SEC_LOAD) != 0)
6290 seg_off = this_hdr->sh_offset - segment->p_offset;
6291 else
6292 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6293 if (section->lma - segment->p_paddr != seg_off)
6294 map->p_paddr_valid = FALSE;
6295 }
6296 if (isec == section_count)
6297 break;
6298 }
6299 }
6300 }
6301
6302 if (map->includes_filehdr && lowest_section != NULL)
6303 /* We need to keep the space used by the headers fixed. */
6304 map->header_size = lowest_section->vma - segment->p_vaddr;
6305
6306 if (!map->includes_phdrs
6307 && !map->includes_filehdr
6308 && map->p_paddr_valid)
6309 /* There is some other padding before the first section. */
6310 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6311 - segment->p_paddr);
6312
6313 map->count = section_count;
6314 *pointer_to_map = map;
6315 pointer_to_map = &map->next;
6316 }
6317
6318 elf_seg_map (obfd) = map_first;
6319 return TRUE;
6320 }
6321
6322 /* Copy private BFD data. This copies or rewrites ELF program header
6323 information. */
6324
6325 static bfd_boolean
6326 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6327 {
6328 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6329 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6330 return TRUE;
6331
6332 if (elf_tdata (ibfd)->phdr == NULL)
6333 return TRUE;
6334
6335 if (ibfd->xvec == obfd->xvec)
6336 {
6337 /* Check to see if any sections in the input BFD
6338 covered by ELF program header have changed. */
6339 Elf_Internal_Phdr *segment;
6340 asection *section, *osec;
6341 unsigned int i, num_segments;
6342 Elf_Internal_Shdr *this_hdr;
6343 const struct elf_backend_data *bed;
6344
6345 bed = get_elf_backend_data (ibfd);
6346
6347 /* Regenerate the segment map if p_paddr is set to 0. */
6348 if (bed->want_p_paddr_set_to_zero)
6349 goto rewrite;
6350
6351 /* Initialize the segment mark field. */
6352 for (section = obfd->sections; section != NULL;
6353 section = section->next)
6354 section->segment_mark = FALSE;
6355
6356 num_segments = elf_elfheader (ibfd)->e_phnum;
6357 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6358 i < num_segments;
6359 i++, segment++)
6360 {
6361 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6362 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6363 which severly confuses things, so always regenerate the segment
6364 map in this case. */
6365 if (segment->p_paddr == 0
6366 && segment->p_memsz == 0
6367 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6368 goto rewrite;
6369
6370 for (section = ibfd->sections;
6371 section != NULL; section = section->next)
6372 {
6373 /* We mark the output section so that we know it comes
6374 from the input BFD. */
6375 osec = section->output_section;
6376 if (osec)
6377 osec->segment_mark = TRUE;
6378
6379 /* Check if this section is covered by the segment. */
6380 this_hdr = &(elf_section_data(section)->this_hdr);
6381 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6382 {
6383 /* FIXME: Check if its output section is changed or
6384 removed. What else do we need to check? */
6385 if (osec == NULL
6386 || section->flags != osec->flags
6387 || section->lma != osec->lma
6388 || section->vma != osec->vma
6389 || section->size != osec->size
6390 || section->rawsize != osec->rawsize
6391 || section->alignment_power != osec->alignment_power)
6392 goto rewrite;
6393 }
6394 }
6395 }
6396
6397 /* Check to see if any output section do not come from the
6398 input BFD. */
6399 for (section = obfd->sections; section != NULL;
6400 section = section->next)
6401 {
6402 if (section->segment_mark == FALSE)
6403 goto rewrite;
6404 else
6405 section->segment_mark = FALSE;
6406 }
6407
6408 return copy_elf_program_header (ibfd, obfd);
6409 }
6410
6411 rewrite:
6412 if (ibfd->xvec == obfd->xvec)
6413 {
6414 /* When rewriting program header, set the output maxpagesize to
6415 the maximum alignment of input PT_LOAD segments. */
6416 Elf_Internal_Phdr *segment;
6417 unsigned int i;
6418 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6419 bfd_vma maxpagesize = 0;
6420
6421 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6422 i < num_segments;
6423 i++, segment++)
6424 if (segment->p_type == PT_LOAD
6425 && maxpagesize < segment->p_align)
6426 maxpagesize = segment->p_align;
6427
6428 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6429 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6430 }
6431
6432 return rewrite_elf_program_header (ibfd, obfd);
6433 }
6434
6435 /* Initialize private output section information from input section. */
6436
6437 bfd_boolean
6438 _bfd_elf_init_private_section_data (bfd *ibfd,
6439 asection *isec,
6440 bfd *obfd,
6441 asection *osec,
6442 struct bfd_link_info *link_info)
6443
6444 {
6445 Elf_Internal_Shdr *ihdr, *ohdr;
6446 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6447
6448 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6449 || obfd->xvec->flavour != bfd_target_elf_flavour)
6450 return TRUE;
6451
6452 BFD_ASSERT (elf_section_data (osec) != NULL);
6453
6454 /* For objcopy and relocatable link, don't copy the output ELF
6455 section type from input if the output BFD section flags have been
6456 set to something different. For a final link allow some flags
6457 that the linker clears to differ. */
6458 if (elf_section_type (osec) == SHT_NULL
6459 && (osec->flags == isec->flags
6460 || (final_link
6461 && ((osec->flags ^ isec->flags)
6462 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6463 elf_section_type (osec) = elf_section_type (isec);
6464
6465 /* FIXME: Is this correct for all OS/PROC specific flags? */
6466 elf_section_flags (osec) |= (elf_section_flags (isec)
6467 & (SHF_MASKOS | SHF_MASKPROC));
6468
6469 /* Set things up for objcopy and relocatable link. The output
6470 SHT_GROUP section will have its elf_next_in_group pointing back
6471 to the input group members. Ignore linker created group section.
6472 See elfNN_ia64_object_p in elfxx-ia64.c. */
6473 if (!final_link)
6474 {
6475 if (elf_sec_group (isec) == NULL
6476 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6477 {
6478 if (elf_section_flags (isec) & SHF_GROUP)
6479 elf_section_flags (osec) |= SHF_GROUP;
6480 elf_next_in_group (osec) = elf_next_in_group (isec);
6481 elf_section_data (osec)->group = elf_section_data (isec)->group;
6482 }
6483 }
6484
6485 ihdr = &elf_section_data (isec)->this_hdr;
6486
6487 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6488 don't use the output section of the linked-to section since it
6489 may be NULL at this point. */
6490 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6491 {
6492 ohdr = &elf_section_data (osec)->this_hdr;
6493 ohdr->sh_flags |= SHF_LINK_ORDER;
6494 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6495 }
6496
6497 osec->use_rela_p = isec->use_rela_p;
6498
6499 return TRUE;
6500 }
6501
6502 /* Copy private section information. This copies over the entsize
6503 field, and sometimes the info field. */
6504
6505 bfd_boolean
6506 _bfd_elf_copy_private_section_data (bfd *ibfd,
6507 asection *isec,
6508 bfd *obfd,
6509 asection *osec)
6510 {
6511 Elf_Internal_Shdr *ihdr, *ohdr;
6512
6513 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6514 || obfd->xvec->flavour != bfd_target_elf_flavour)
6515 return TRUE;
6516
6517 ihdr = &elf_section_data (isec)->this_hdr;
6518 ohdr = &elf_section_data (osec)->this_hdr;
6519
6520 ohdr->sh_entsize = ihdr->sh_entsize;
6521
6522 if (ihdr->sh_type == SHT_SYMTAB
6523 || ihdr->sh_type == SHT_DYNSYM
6524 || ihdr->sh_type == SHT_GNU_verneed
6525 || ihdr->sh_type == SHT_GNU_verdef)
6526 ohdr->sh_info = ihdr->sh_info;
6527
6528 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6529 NULL);
6530 }
6531
6532 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6533 necessary if we are removing either the SHT_GROUP section or any of
6534 the group member sections. DISCARDED is the value that a section's
6535 output_section has if the section will be discarded, NULL when this
6536 function is called from objcopy, bfd_abs_section_ptr when called
6537 from the linker. */
6538
6539 bfd_boolean
6540 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6541 {
6542 asection *isec;
6543
6544 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6545 if (elf_section_type (isec) == SHT_GROUP)
6546 {
6547 asection *first = elf_next_in_group (isec);
6548 asection *s = first;
6549 bfd_size_type removed = 0;
6550
6551 while (s != NULL)
6552 {
6553 /* If this member section is being output but the
6554 SHT_GROUP section is not, then clear the group info
6555 set up by _bfd_elf_copy_private_section_data. */
6556 if (s->output_section != discarded
6557 && isec->output_section == discarded)
6558 {
6559 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6560 elf_group_name (s->output_section) = NULL;
6561 }
6562 /* Conversely, if the member section is not being output
6563 but the SHT_GROUP section is, then adjust its size. */
6564 else if (s->output_section == discarded
6565 && isec->output_section != discarded)
6566 removed += 4;
6567 s = elf_next_in_group (s);
6568 if (s == first)
6569 break;
6570 }
6571 if (removed != 0)
6572 {
6573 if (discarded != NULL)
6574 {
6575 /* If we've been called for ld -r, then we need to
6576 adjust the input section size. This function may
6577 be called multiple times, so save the original
6578 size. */
6579 if (isec->rawsize == 0)
6580 isec->rawsize = isec->size;
6581 isec->size = isec->rawsize - removed;
6582 }
6583 else
6584 {
6585 /* Adjust the output section size when called from
6586 objcopy. */
6587 isec->output_section->size -= removed;
6588 }
6589 }
6590 }
6591
6592 return TRUE;
6593 }
6594
6595 /* Copy private header information. */
6596
6597 bfd_boolean
6598 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6599 {
6600 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6601 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6602 return TRUE;
6603
6604 /* Copy over private BFD data if it has not already been copied.
6605 This must be done here, rather than in the copy_private_bfd_data
6606 entry point, because the latter is called after the section
6607 contents have been set, which means that the program headers have
6608 already been worked out. */
6609 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6610 {
6611 if (! copy_private_bfd_data (ibfd, obfd))
6612 return FALSE;
6613 }
6614
6615 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6616 }
6617
6618 /* Copy private symbol information. If this symbol is in a section
6619 which we did not map into a BFD section, try to map the section
6620 index correctly. We use special macro definitions for the mapped
6621 section indices; these definitions are interpreted by the
6622 swap_out_syms function. */
6623
6624 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6625 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6626 #define MAP_STRTAB (SHN_HIOS + 3)
6627 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6628 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6629
6630 bfd_boolean
6631 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6632 asymbol *isymarg,
6633 bfd *obfd,
6634 asymbol *osymarg)
6635 {
6636 elf_symbol_type *isym, *osym;
6637
6638 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6639 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6640 return TRUE;
6641
6642 isym = elf_symbol_from (ibfd, isymarg);
6643 osym = elf_symbol_from (obfd, osymarg);
6644
6645 if (isym != NULL
6646 && isym->internal_elf_sym.st_shndx != 0
6647 && osym != NULL
6648 && bfd_is_abs_section (isym->symbol.section))
6649 {
6650 unsigned int shndx;
6651
6652 shndx = isym->internal_elf_sym.st_shndx;
6653 if (shndx == elf_onesymtab (ibfd))
6654 shndx = MAP_ONESYMTAB;
6655 else if (shndx == elf_dynsymtab (ibfd))
6656 shndx = MAP_DYNSYMTAB;
6657 else if (shndx == elf_strtab_sec (ibfd))
6658 shndx = MAP_STRTAB;
6659 else if (shndx == elf_shstrtab_sec (ibfd))
6660 shndx = MAP_SHSTRTAB;
6661 else if (shndx == elf_symtab_shndx (ibfd))
6662 shndx = MAP_SYM_SHNDX;
6663 osym->internal_elf_sym.st_shndx = shndx;
6664 }
6665
6666 return TRUE;
6667 }
6668
6669 /* Swap out the symbols. */
6670
6671 static bfd_boolean
6672 swap_out_syms (bfd *abfd,
6673 struct bfd_strtab_hash **sttp,
6674 int relocatable_p)
6675 {
6676 const struct elf_backend_data *bed;
6677 int symcount;
6678 asymbol **syms;
6679 struct bfd_strtab_hash *stt;
6680 Elf_Internal_Shdr *symtab_hdr;
6681 Elf_Internal_Shdr *symtab_shndx_hdr;
6682 Elf_Internal_Shdr *symstrtab_hdr;
6683 bfd_byte *outbound_syms;
6684 bfd_byte *outbound_shndx;
6685 int idx;
6686 unsigned int num_locals;
6687 bfd_size_type amt;
6688 bfd_boolean name_local_sections;
6689
6690 if (!elf_map_symbols (abfd, &num_locals))
6691 return FALSE;
6692
6693 /* Dump out the symtabs. */
6694 stt = _bfd_elf_stringtab_init ();
6695 if (stt == NULL)
6696 return FALSE;
6697
6698 bed = get_elf_backend_data (abfd);
6699 symcount = bfd_get_symcount (abfd);
6700 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6701 symtab_hdr->sh_type = SHT_SYMTAB;
6702 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6703 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6704 symtab_hdr->sh_info = num_locals + 1;
6705 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6706
6707 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6708 symstrtab_hdr->sh_type = SHT_STRTAB;
6709
6710 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6711 bed->s->sizeof_sym);
6712 if (outbound_syms == NULL)
6713 {
6714 _bfd_stringtab_free (stt);
6715 return FALSE;
6716 }
6717 symtab_hdr->contents = outbound_syms;
6718
6719 outbound_shndx = NULL;
6720 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6721 if (symtab_shndx_hdr->sh_name != 0)
6722 {
6723 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6724 outbound_shndx = (bfd_byte *)
6725 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6726 if (outbound_shndx == NULL)
6727 {
6728 _bfd_stringtab_free (stt);
6729 return FALSE;
6730 }
6731
6732 symtab_shndx_hdr->contents = outbound_shndx;
6733 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6734 symtab_shndx_hdr->sh_size = amt;
6735 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6736 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6737 }
6738
6739 /* Now generate the data (for "contents"). */
6740 {
6741 /* Fill in zeroth symbol and swap it out. */
6742 Elf_Internal_Sym sym;
6743 sym.st_name = 0;
6744 sym.st_value = 0;
6745 sym.st_size = 0;
6746 sym.st_info = 0;
6747 sym.st_other = 0;
6748 sym.st_shndx = SHN_UNDEF;
6749 sym.st_target_internal = 0;
6750 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6751 outbound_syms += bed->s->sizeof_sym;
6752 if (outbound_shndx != NULL)
6753 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6754 }
6755
6756 name_local_sections
6757 = (bed->elf_backend_name_local_section_symbols
6758 && bed->elf_backend_name_local_section_symbols (abfd));
6759
6760 syms = bfd_get_outsymbols (abfd);
6761 for (idx = 0; idx < symcount; idx++)
6762 {
6763 Elf_Internal_Sym sym;
6764 bfd_vma value = syms[idx]->value;
6765 elf_symbol_type *type_ptr;
6766 flagword flags = syms[idx]->flags;
6767 int type;
6768
6769 if (!name_local_sections
6770 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6771 {
6772 /* Local section symbols have no name. */
6773 sym.st_name = 0;
6774 }
6775 else
6776 {
6777 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6778 syms[idx]->name,
6779 TRUE, FALSE);
6780 if (sym.st_name == (unsigned long) -1)
6781 {
6782 _bfd_stringtab_free (stt);
6783 return FALSE;
6784 }
6785 }
6786
6787 type_ptr = elf_symbol_from (abfd, syms[idx]);
6788
6789 if ((flags & BSF_SECTION_SYM) == 0
6790 && bfd_is_com_section (syms[idx]->section))
6791 {
6792 /* ELF common symbols put the alignment into the `value' field,
6793 and the size into the `size' field. This is backwards from
6794 how BFD handles it, so reverse it here. */
6795 sym.st_size = value;
6796 if (type_ptr == NULL
6797 || type_ptr->internal_elf_sym.st_value == 0)
6798 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6799 else
6800 sym.st_value = type_ptr->internal_elf_sym.st_value;
6801 sym.st_shndx = _bfd_elf_section_from_bfd_section
6802 (abfd, syms[idx]->section);
6803 }
6804 else
6805 {
6806 asection *sec = syms[idx]->section;
6807 unsigned int shndx;
6808
6809 if (sec->output_section)
6810 {
6811 value += sec->output_offset;
6812 sec = sec->output_section;
6813 }
6814
6815 /* Don't add in the section vma for relocatable output. */
6816 if (! relocatable_p)
6817 value += sec->vma;
6818 sym.st_value = value;
6819 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6820
6821 if (bfd_is_abs_section (sec)
6822 && type_ptr != NULL
6823 && type_ptr->internal_elf_sym.st_shndx != 0)
6824 {
6825 /* This symbol is in a real ELF section which we did
6826 not create as a BFD section. Undo the mapping done
6827 by copy_private_symbol_data. */
6828 shndx = type_ptr->internal_elf_sym.st_shndx;
6829 switch (shndx)
6830 {
6831 case MAP_ONESYMTAB:
6832 shndx = elf_onesymtab (abfd);
6833 break;
6834 case MAP_DYNSYMTAB:
6835 shndx = elf_dynsymtab (abfd);
6836 break;
6837 case MAP_STRTAB:
6838 shndx = elf_strtab_sec (abfd);
6839 break;
6840 case MAP_SHSTRTAB:
6841 shndx = elf_shstrtab_sec (abfd);
6842 break;
6843 case MAP_SYM_SHNDX:
6844 shndx = elf_symtab_shndx (abfd);
6845 break;
6846 default:
6847 shndx = SHN_ABS;
6848 break;
6849 }
6850 }
6851 else
6852 {
6853 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6854
6855 if (shndx == SHN_BAD)
6856 {
6857 asection *sec2;
6858
6859 /* Writing this would be a hell of a lot easier if
6860 we had some decent documentation on bfd, and
6861 knew what to expect of the library, and what to
6862 demand of applications. For example, it
6863 appears that `objcopy' might not set the
6864 section of a symbol to be a section that is
6865 actually in the output file. */
6866 sec2 = bfd_get_section_by_name (abfd, sec->name);
6867 if (sec2 == NULL)
6868 {
6869 _bfd_error_handler (_("\
6870 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6871 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6872 sec->name);
6873 bfd_set_error (bfd_error_invalid_operation);
6874 _bfd_stringtab_free (stt);
6875 return FALSE;
6876 }
6877
6878 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6879 BFD_ASSERT (shndx != SHN_BAD);
6880 }
6881 }
6882
6883 sym.st_shndx = shndx;
6884 }
6885
6886 if ((flags & BSF_THREAD_LOCAL) != 0)
6887 type = STT_TLS;
6888 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6889 type = STT_GNU_IFUNC;
6890 else if ((flags & BSF_FUNCTION) != 0)
6891 type = STT_FUNC;
6892 else if ((flags & BSF_OBJECT) != 0)
6893 type = STT_OBJECT;
6894 else if ((flags & BSF_RELC) != 0)
6895 type = STT_RELC;
6896 else if ((flags & BSF_SRELC) != 0)
6897 type = STT_SRELC;
6898 else
6899 type = STT_NOTYPE;
6900
6901 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6902 type = STT_TLS;
6903
6904 /* Processor-specific types. */
6905 if (type_ptr != NULL
6906 && bed->elf_backend_get_symbol_type)
6907 type = ((*bed->elf_backend_get_symbol_type)
6908 (&type_ptr->internal_elf_sym, type));
6909
6910 if (flags & BSF_SECTION_SYM)
6911 {
6912 if (flags & BSF_GLOBAL)
6913 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6914 else
6915 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6916 }
6917 else if (bfd_is_com_section (syms[idx]->section))
6918 {
6919 #ifdef USE_STT_COMMON
6920 if (type == STT_OBJECT)
6921 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6922 else
6923 #endif
6924 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6925 }
6926 else if (bfd_is_und_section (syms[idx]->section))
6927 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6928 ? STB_WEAK
6929 : STB_GLOBAL),
6930 type);
6931 else if (flags & BSF_FILE)
6932 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6933 else
6934 {
6935 int bind = STB_LOCAL;
6936
6937 if (flags & BSF_LOCAL)
6938 bind = STB_LOCAL;
6939 else if (flags & BSF_GNU_UNIQUE)
6940 bind = STB_GNU_UNIQUE;
6941 else if (flags & BSF_WEAK)
6942 bind = STB_WEAK;
6943 else if (flags & BSF_GLOBAL)
6944 bind = STB_GLOBAL;
6945
6946 sym.st_info = ELF_ST_INFO (bind, type);
6947 }
6948
6949 if (type_ptr != NULL)
6950 {
6951 sym.st_other = type_ptr->internal_elf_sym.st_other;
6952 sym.st_target_internal
6953 = type_ptr->internal_elf_sym.st_target_internal;
6954 }
6955 else
6956 {
6957 sym.st_other = 0;
6958 sym.st_target_internal = 0;
6959 }
6960
6961 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6962 outbound_syms += bed->s->sizeof_sym;
6963 if (outbound_shndx != NULL)
6964 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6965 }
6966
6967 *sttp = stt;
6968 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6969 symstrtab_hdr->sh_type = SHT_STRTAB;
6970
6971 symstrtab_hdr->sh_flags = 0;
6972 symstrtab_hdr->sh_addr = 0;
6973 symstrtab_hdr->sh_entsize = 0;
6974 symstrtab_hdr->sh_link = 0;
6975 symstrtab_hdr->sh_info = 0;
6976 symstrtab_hdr->sh_addralign = 1;
6977
6978 return TRUE;
6979 }
6980
6981 /* Return the number of bytes required to hold the symtab vector.
6982
6983 Note that we base it on the count plus 1, since we will null terminate
6984 the vector allocated based on this size. However, the ELF symbol table
6985 always has a dummy entry as symbol #0, so it ends up even. */
6986
6987 long
6988 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6989 {
6990 long symcount;
6991 long symtab_size;
6992 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6993
6994 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6995 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6996 if (symcount > 0)
6997 symtab_size -= sizeof (asymbol *);
6998
6999 return symtab_size;
7000 }
7001
7002 long
7003 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7004 {
7005 long symcount;
7006 long symtab_size;
7007 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7008
7009 if (elf_dynsymtab (abfd) == 0)
7010 {
7011 bfd_set_error (bfd_error_invalid_operation);
7012 return -1;
7013 }
7014
7015 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7016 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7017 if (symcount > 0)
7018 symtab_size -= sizeof (asymbol *);
7019
7020 return symtab_size;
7021 }
7022
7023 long
7024 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7025 sec_ptr asect)
7026 {
7027 return (asect->reloc_count + 1) * sizeof (arelent *);
7028 }
7029
7030 /* Canonicalize the relocs. */
7031
7032 long
7033 _bfd_elf_canonicalize_reloc (bfd *abfd,
7034 sec_ptr section,
7035 arelent **relptr,
7036 asymbol **symbols)
7037 {
7038 arelent *tblptr;
7039 unsigned int i;
7040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7041
7042 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7043 return -1;
7044
7045 tblptr = section->relocation;
7046 for (i = 0; i < section->reloc_count; i++)
7047 *relptr++ = tblptr++;
7048
7049 *relptr = NULL;
7050
7051 return section->reloc_count;
7052 }
7053
7054 long
7055 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7056 {
7057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7058 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7059
7060 if (symcount >= 0)
7061 bfd_get_symcount (abfd) = symcount;
7062 return symcount;
7063 }
7064
7065 long
7066 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7067 asymbol **allocation)
7068 {
7069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7070 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7071
7072 if (symcount >= 0)
7073 bfd_get_dynamic_symcount (abfd) = symcount;
7074 return symcount;
7075 }
7076
7077 /* Return the size required for the dynamic reloc entries. Any loadable
7078 section that was actually installed in the BFD, and has type SHT_REL
7079 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7080 dynamic reloc section. */
7081
7082 long
7083 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7084 {
7085 long ret;
7086 asection *s;
7087
7088 if (elf_dynsymtab (abfd) == 0)
7089 {
7090 bfd_set_error (bfd_error_invalid_operation);
7091 return -1;
7092 }
7093
7094 ret = sizeof (arelent *);
7095 for (s = abfd->sections; s != NULL; s = s->next)
7096 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7097 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7098 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7099 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7100 * sizeof (arelent *));
7101
7102 return ret;
7103 }
7104
7105 /* Canonicalize the dynamic relocation entries. Note that we return the
7106 dynamic relocations as a single block, although they are actually
7107 associated with particular sections; the interface, which was
7108 designed for SunOS style shared libraries, expects that there is only
7109 one set of dynamic relocs. Any loadable section that was actually
7110 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7111 dynamic symbol table, is considered to be a dynamic reloc section. */
7112
7113 long
7114 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7115 arelent **storage,
7116 asymbol **syms)
7117 {
7118 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7119 asection *s;
7120 long ret;
7121
7122 if (elf_dynsymtab (abfd) == 0)
7123 {
7124 bfd_set_error (bfd_error_invalid_operation);
7125 return -1;
7126 }
7127
7128 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7129 ret = 0;
7130 for (s = abfd->sections; s != NULL; s = s->next)
7131 {
7132 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7133 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7134 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7135 {
7136 arelent *p;
7137 long count, i;
7138
7139 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7140 return -1;
7141 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7142 p = s->relocation;
7143 for (i = 0; i < count; i++)
7144 *storage++ = p++;
7145 ret += count;
7146 }
7147 }
7148
7149 *storage = NULL;
7150
7151 return ret;
7152 }
7153 \f
7154 /* Read in the version information. */
7155
7156 bfd_boolean
7157 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7158 {
7159 bfd_byte *contents = NULL;
7160 unsigned int freeidx = 0;
7161
7162 if (elf_dynverref (abfd) != 0)
7163 {
7164 Elf_Internal_Shdr *hdr;
7165 Elf_External_Verneed *everneed;
7166 Elf_Internal_Verneed *iverneed;
7167 unsigned int i;
7168 bfd_byte *contents_end;
7169
7170 hdr = &elf_tdata (abfd)->dynverref_hdr;
7171
7172 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7173 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7174 if (elf_tdata (abfd)->verref == NULL)
7175 goto error_return;
7176
7177 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7178
7179 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7180 if (contents == NULL)
7181 {
7182 error_return_verref:
7183 elf_tdata (abfd)->verref = NULL;
7184 elf_tdata (abfd)->cverrefs = 0;
7185 goto error_return;
7186 }
7187 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7188 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7189 goto error_return_verref;
7190
7191 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7192 goto error_return_verref;
7193
7194 BFD_ASSERT (sizeof (Elf_External_Verneed)
7195 == sizeof (Elf_External_Vernaux));
7196 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7197 everneed = (Elf_External_Verneed *) contents;
7198 iverneed = elf_tdata (abfd)->verref;
7199 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7200 {
7201 Elf_External_Vernaux *evernaux;
7202 Elf_Internal_Vernaux *ivernaux;
7203 unsigned int j;
7204
7205 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7206
7207 iverneed->vn_bfd = abfd;
7208
7209 iverneed->vn_filename =
7210 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7211 iverneed->vn_file);
7212 if (iverneed->vn_filename == NULL)
7213 goto error_return_verref;
7214
7215 if (iverneed->vn_cnt == 0)
7216 iverneed->vn_auxptr = NULL;
7217 else
7218 {
7219 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7220 bfd_alloc2 (abfd, iverneed->vn_cnt,
7221 sizeof (Elf_Internal_Vernaux));
7222 if (iverneed->vn_auxptr == NULL)
7223 goto error_return_verref;
7224 }
7225
7226 if (iverneed->vn_aux
7227 > (size_t) (contents_end - (bfd_byte *) everneed))
7228 goto error_return_verref;
7229
7230 evernaux = ((Elf_External_Vernaux *)
7231 ((bfd_byte *) everneed + iverneed->vn_aux));
7232 ivernaux = iverneed->vn_auxptr;
7233 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7234 {
7235 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7236
7237 ivernaux->vna_nodename =
7238 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7239 ivernaux->vna_name);
7240 if (ivernaux->vna_nodename == NULL)
7241 goto error_return_verref;
7242
7243 if (j + 1 < iverneed->vn_cnt)
7244 ivernaux->vna_nextptr = ivernaux + 1;
7245 else
7246 ivernaux->vna_nextptr = NULL;
7247
7248 if (ivernaux->vna_next
7249 > (size_t) (contents_end - (bfd_byte *) evernaux))
7250 goto error_return_verref;
7251
7252 evernaux = ((Elf_External_Vernaux *)
7253 ((bfd_byte *) evernaux + ivernaux->vna_next));
7254
7255 if (ivernaux->vna_other > freeidx)
7256 freeidx = ivernaux->vna_other;
7257 }
7258
7259 if (i + 1 < hdr->sh_info)
7260 iverneed->vn_nextref = iverneed + 1;
7261 else
7262 iverneed->vn_nextref = NULL;
7263
7264 if (iverneed->vn_next
7265 > (size_t) (contents_end - (bfd_byte *) everneed))
7266 goto error_return_verref;
7267
7268 everneed = ((Elf_External_Verneed *)
7269 ((bfd_byte *) everneed + iverneed->vn_next));
7270 }
7271
7272 free (contents);
7273 contents = NULL;
7274 }
7275
7276 if (elf_dynverdef (abfd) != 0)
7277 {
7278 Elf_Internal_Shdr *hdr;
7279 Elf_External_Verdef *everdef;
7280 Elf_Internal_Verdef *iverdef;
7281 Elf_Internal_Verdef *iverdefarr;
7282 Elf_Internal_Verdef iverdefmem;
7283 unsigned int i;
7284 unsigned int maxidx;
7285 bfd_byte *contents_end_def, *contents_end_aux;
7286
7287 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7288
7289 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7290 if (contents == NULL)
7291 goto error_return;
7292 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7293 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7294 goto error_return;
7295
7296 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7297 goto error_return;
7298
7299 BFD_ASSERT (sizeof (Elf_External_Verdef)
7300 >= sizeof (Elf_External_Verdaux));
7301 contents_end_def = contents + hdr->sh_size
7302 - sizeof (Elf_External_Verdef);
7303 contents_end_aux = contents + hdr->sh_size
7304 - sizeof (Elf_External_Verdaux);
7305
7306 /* We know the number of entries in the section but not the maximum
7307 index. Therefore we have to run through all entries and find
7308 the maximum. */
7309 everdef = (Elf_External_Verdef *) contents;
7310 maxidx = 0;
7311 for (i = 0; i < hdr->sh_info; ++i)
7312 {
7313 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7314
7315 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7316 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7317
7318 if (iverdefmem.vd_next
7319 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7320 goto error_return;
7321
7322 everdef = ((Elf_External_Verdef *)
7323 ((bfd_byte *) everdef + iverdefmem.vd_next));
7324 }
7325
7326 if (default_imported_symver)
7327 {
7328 if (freeidx > maxidx)
7329 maxidx = ++freeidx;
7330 else
7331 freeidx = ++maxidx;
7332 }
7333 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7334 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7335 if (elf_tdata (abfd)->verdef == NULL)
7336 goto error_return;
7337
7338 elf_tdata (abfd)->cverdefs = maxidx;
7339
7340 everdef = (Elf_External_Verdef *) contents;
7341 iverdefarr = elf_tdata (abfd)->verdef;
7342 for (i = 0; i < hdr->sh_info; i++)
7343 {
7344 Elf_External_Verdaux *everdaux;
7345 Elf_Internal_Verdaux *iverdaux;
7346 unsigned int j;
7347
7348 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7349
7350 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7351 {
7352 error_return_verdef:
7353 elf_tdata (abfd)->verdef = NULL;
7354 elf_tdata (abfd)->cverdefs = 0;
7355 goto error_return;
7356 }
7357
7358 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7359 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7360
7361 iverdef->vd_bfd = abfd;
7362
7363 if (iverdef->vd_cnt == 0)
7364 iverdef->vd_auxptr = NULL;
7365 else
7366 {
7367 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7368 bfd_alloc2 (abfd, iverdef->vd_cnt,
7369 sizeof (Elf_Internal_Verdaux));
7370 if (iverdef->vd_auxptr == NULL)
7371 goto error_return_verdef;
7372 }
7373
7374 if (iverdef->vd_aux
7375 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7376 goto error_return_verdef;
7377
7378 everdaux = ((Elf_External_Verdaux *)
7379 ((bfd_byte *) everdef + iverdef->vd_aux));
7380 iverdaux = iverdef->vd_auxptr;
7381 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7382 {
7383 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7384
7385 iverdaux->vda_nodename =
7386 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7387 iverdaux->vda_name);
7388 if (iverdaux->vda_nodename == NULL)
7389 goto error_return_verdef;
7390
7391 if (j + 1 < iverdef->vd_cnt)
7392 iverdaux->vda_nextptr = iverdaux + 1;
7393 else
7394 iverdaux->vda_nextptr = NULL;
7395
7396 if (iverdaux->vda_next
7397 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7398 goto error_return_verdef;
7399
7400 everdaux = ((Elf_External_Verdaux *)
7401 ((bfd_byte *) everdaux + iverdaux->vda_next));
7402 }
7403
7404 if (iverdef->vd_cnt)
7405 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7406
7407 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7408 iverdef->vd_nextdef = iverdef + 1;
7409 else
7410 iverdef->vd_nextdef = NULL;
7411
7412 everdef = ((Elf_External_Verdef *)
7413 ((bfd_byte *) everdef + iverdef->vd_next));
7414 }
7415
7416 free (contents);
7417 contents = NULL;
7418 }
7419 else if (default_imported_symver)
7420 {
7421 if (freeidx < 3)
7422 freeidx = 3;
7423 else
7424 freeidx++;
7425
7426 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7427 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7428 if (elf_tdata (abfd)->verdef == NULL)
7429 goto error_return;
7430
7431 elf_tdata (abfd)->cverdefs = freeidx;
7432 }
7433
7434 /* Create a default version based on the soname. */
7435 if (default_imported_symver)
7436 {
7437 Elf_Internal_Verdef *iverdef;
7438 Elf_Internal_Verdaux *iverdaux;
7439
7440 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7441
7442 iverdef->vd_version = VER_DEF_CURRENT;
7443 iverdef->vd_flags = 0;
7444 iverdef->vd_ndx = freeidx;
7445 iverdef->vd_cnt = 1;
7446
7447 iverdef->vd_bfd = abfd;
7448
7449 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7450 if (iverdef->vd_nodename == NULL)
7451 goto error_return_verdef;
7452 iverdef->vd_nextdef = NULL;
7453 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7454 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7455 if (iverdef->vd_auxptr == NULL)
7456 goto error_return_verdef;
7457
7458 iverdaux = iverdef->vd_auxptr;
7459 iverdaux->vda_nodename = iverdef->vd_nodename;
7460 iverdaux->vda_nextptr = NULL;
7461 }
7462
7463 return TRUE;
7464
7465 error_return:
7466 if (contents != NULL)
7467 free (contents);
7468 return FALSE;
7469 }
7470 \f
7471 asymbol *
7472 _bfd_elf_make_empty_symbol (bfd *abfd)
7473 {
7474 elf_symbol_type *newsym;
7475 bfd_size_type amt = sizeof (elf_symbol_type);
7476
7477 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7478 if (!newsym)
7479 return NULL;
7480 else
7481 {
7482 newsym->symbol.the_bfd = abfd;
7483 return &newsym->symbol;
7484 }
7485 }
7486
7487 void
7488 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7489 asymbol *symbol,
7490 symbol_info *ret)
7491 {
7492 bfd_symbol_info (symbol, ret);
7493 }
7494
7495 /* Return whether a symbol name implies a local symbol. Most targets
7496 use this function for the is_local_label_name entry point, but some
7497 override it. */
7498
7499 bfd_boolean
7500 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7501 const char *name)
7502 {
7503 /* Normal local symbols start with ``.L''. */
7504 if (name[0] == '.' && name[1] == 'L')
7505 return TRUE;
7506
7507 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7508 DWARF debugging symbols starting with ``..''. */
7509 if (name[0] == '.' && name[1] == '.')
7510 return TRUE;
7511
7512 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7513 emitting DWARF debugging output. I suspect this is actually a
7514 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7515 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7516 underscore to be emitted on some ELF targets). For ease of use,
7517 we treat such symbols as local. */
7518 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7519 return TRUE;
7520
7521 return FALSE;
7522 }
7523
7524 alent *
7525 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7526 asymbol *symbol ATTRIBUTE_UNUSED)
7527 {
7528 abort ();
7529 return NULL;
7530 }
7531
7532 bfd_boolean
7533 _bfd_elf_set_arch_mach (bfd *abfd,
7534 enum bfd_architecture arch,
7535 unsigned long machine)
7536 {
7537 /* If this isn't the right architecture for this backend, and this
7538 isn't the generic backend, fail. */
7539 if (arch != get_elf_backend_data (abfd)->arch
7540 && arch != bfd_arch_unknown
7541 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7542 return FALSE;
7543
7544 return bfd_default_set_arch_mach (abfd, arch, machine);
7545 }
7546
7547 /* Find the function to a particular section and offset,
7548 for error reporting. */
7549
7550 static bfd_boolean
7551 elf_find_function (bfd *abfd,
7552 asection *section,
7553 asymbol **symbols,
7554 bfd_vma offset,
7555 const char **filename_ptr,
7556 const char **functionname_ptr)
7557 {
7558 struct elf_find_function_cache
7559 {
7560 asection *last_section;
7561 asymbol *func;
7562 const char *filename;
7563 bfd_size_type func_size;
7564 } *cache;
7565
7566 if (symbols == NULL)
7567 return FALSE;
7568
7569 cache = elf_tdata (abfd)->elf_find_function_cache;
7570 if (cache == NULL)
7571 {
7572 cache = bfd_zalloc (abfd, sizeof (*cache));
7573 elf_tdata (abfd)->elf_find_function_cache = cache;
7574 if (cache == NULL)
7575 return FALSE;
7576 }
7577 if (cache->last_section != section
7578 || cache->func == NULL
7579 || offset < cache->func->value
7580 || offset >= cache->func->value + cache->func_size)
7581 {
7582 asymbol *file;
7583 bfd_vma low_func;
7584 asymbol **p;
7585 /* ??? Given multiple file symbols, it is impossible to reliably
7586 choose the right file name for global symbols. File symbols are
7587 local symbols, and thus all file symbols must sort before any
7588 global symbols. The ELF spec may be interpreted to say that a
7589 file symbol must sort before other local symbols, but currently
7590 ld -r doesn't do this. So, for ld -r output, it is possible to
7591 make a better choice of file name for local symbols by ignoring
7592 file symbols appearing after a given local symbol. */
7593 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7595
7596 file = NULL;
7597 low_func = 0;
7598 state = nothing_seen;
7599 cache->filename = NULL;
7600 cache->func = NULL;
7601 cache->func_size = 0;
7602 cache->last_section = section;
7603
7604 for (p = symbols; *p != NULL; p++)
7605 {
7606 asymbol *sym = *p;
7607 bfd_vma code_off;
7608 bfd_size_type size;
7609
7610 if ((sym->flags & BSF_FILE) != 0)
7611 {
7612 file = sym;
7613 if (state == symbol_seen)
7614 state = file_after_symbol_seen;
7615 continue;
7616 }
7617
7618 size = bed->maybe_function_sym (sym, section, &code_off);
7619 if (size != 0
7620 && code_off <= offset
7621 && (code_off > low_func
7622 || (code_off == low_func
7623 && size > cache->func_size)))
7624 {
7625 cache->func = sym;
7626 cache->func_size = size;
7627 cache->filename = NULL;
7628 low_func = code_off;
7629 if (file != NULL
7630 && ((sym->flags & BSF_LOCAL) != 0
7631 || state != file_after_symbol_seen))
7632 cache->filename = bfd_asymbol_name (file);
7633 }
7634 if (state == nothing_seen)
7635 state = symbol_seen;
7636 }
7637 }
7638
7639 if (cache->func == NULL)
7640 return FALSE;
7641
7642 if (filename_ptr)
7643 *filename_ptr = cache->filename;
7644 if (functionname_ptr)
7645 *functionname_ptr = bfd_asymbol_name (cache->func);
7646
7647 return TRUE;
7648 }
7649
7650 /* Find the nearest line to a particular section and offset,
7651 for error reporting. */
7652
7653 bfd_boolean
7654 _bfd_elf_find_nearest_line (bfd *abfd,
7655 asection *section,
7656 asymbol **symbols,
7657 bfd_vma offset,
7658 const char **filename_ptr,
7659 const char **functionname_ptr,
7660 unsigned int *line_ptr)
7661 {
7662 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7663 offset, filename_ptr,
7664 functionname_ptr,
7665 line_ptr,
7666 NULL);
7667 }
7668
7669 bfd_boolean
7670 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7671 asection *section,
7672 asymbol **symbols,
7673 bfd_vma offset,
7674 const char **filename_ptr,
7675 const char **functionname_ptr,
7676 unsigned int *line_ptr,
7677 unsigned int *discriminator_ptr)
7678 {
7679 bfd_boolean found;
7680
7681 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7682 filename_ptr, functionname_ptr,
7683 line_ptr))
7684 {
7685 if (!*functionname_ptr)
7686 elf_find_function (abfd, section, symbols, offset,
7687 *filename_ptr ? NULL : filename_ptr,
7688 functionname_ptr);
7689
7690 return TRUE;
7691 }
7692
7693 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7694 section, symbols, offset,
7695 filename_ptr, functionname_ptr,
7696 line_ptr, discriminator_ptr, 0,
7697 &elf_tdata (abfd)->dwarf2_find_line_info))
7698 {
7699 if (!*functionname_ptr)
7700 elf_find_function (abfd, section, symbols, offset,
7701 *filename_ptr ? NULL : filename_ptr,
7702 functionname_ptr);
7703
7704 return TRUE;
7705 }
7706
7707 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7708 &found, filename_ptr,
7709 functionname_ptr, line_ptr,
7710 &elf_tdata (abfd)->line_info))
7711 return FALSE;
7712 if (found && (*functionname_ptr || *line_ptr))
7713 return TRUE;
7714
7715 if (symbols == NULL)
7716 return FALSE;
7717
7718 if (! elf_find_function (abfd, section, symbols, offset,
7719 filename_ptr, functionname_ptr))
7720 return FALSE;
7721
7722 *line_ptr = 0;
7723 return TRUE;
7724 }
7725
7726 /* Find the line for a symbol. */
7727
7728 bfd_boolean
7729 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7730 const char **filename_ptr, unsigned int *line_ptr)
7731 {
7732 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7733 filename_ptr, line_ptr,
7734 NULL);
7735 }
7736
7737 bfd_boolean
7738 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7739 const char **filename_ptr,
7740 unsigned int *line_ptr,
7741 unsigned int *discriminator_ptr)
7742 {
7743 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7744 filename_ptr, line_ptr, discriminator_ptr, 0,
7745 &elf_tdata (abfd)->dwarf2_find_line_info);
7746 }
7747
7748 /* After a call to bfd_find_nearest_line, successive calls to
7749 bfd_find_inliner_info can be used to get source information about
7750 each level of function inlining that terminated at the address
7751 passed to bfd_find_nearest_line. Currently this is only supported
7752 for DWARF2 with appropriate DWARF3 extensions. */
7753
7754 bfd_boolean
7755 _bfd_elf_find_inliner_info (bfd *abfd,
7756 const char **filename_ptr,
7757 const char **functionname_ptr,
7758 unsigned int *line_ptr)
7759 {
7760 bfd_boolean found;
7761 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7762 functionname_ptr, line_ptr,
7763 & elf_tdata (abfd)->dwarf2_find_line_info);
7764 return found;
7765 }
7766
7767 int
7768 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7769 {
7770 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7771 int ret = bed->s->sizeof_ehdr;
7772
7773 if (!info->relocatable)
7774 {
7775 bfd_size_type phdr_size = elf_program_header_size (abfd);
7776
7777 if (phdr_size == (bfd_size_type) -1)
7778 {
7779 struct elf_segment_map *m;
7780
7781 phdr_size = 0;
7782 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7783 phdr_size += bed->s->sizeof_phdr;
7784
7785 if (phdr_size == 0)
7786 phdr_size = get_program_header_size (abfd, info);
7787 }
7788
7789 elf_program_header_size (abfd) = phdr_size;
7790 ret += phdr_size;
7791 }
7792
7793 return ret;
7794 }
7795
7796 bfd_boolean
7797 _bfd_elf_set_section_contents (bfd *abfd,
7798 sec_ptr section,
7799 const void *location,
7800 file_ptr offset,
7801 bfd_size_type count)
7802 {
7803 Elf_Internal_Shdr *hdr;
7804 file_ptr pos;
7805
7806 if (! abfd->output_has_begun
7807 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7808 return FALSE;
7809
7810 hdr = &elf_section_data (section)->this_hdr;
7811 pos = hdr->sh_offset + offset;
7812 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7813 || bfd_bwrite (location, count, abfd) != count)
7814 return FALSE;
7815
7816 return TRUE;
7817 }
7818
7819 void
7820 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7821 arelent *cache_ptr ATTRIBUTE_UNUSED,
7822 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7823 {
7824 abort ();
7825 }
7826
7827 /* Try to convert a non-ELF reloc into an ELF one. */
7828
7829 bfd_boolean
7830 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7831 {
7832 /* Check whether we really have an ELF howto. */
7833
7834 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7835 {
7836 bfd_reloc_code_real_type code;
7837 reloc_howto_type *howto;
7838
7839 /* Alien reloc: Try to determine its type to replace it with an
7840 equivalent ELF reloc. */
7841
7842 if (areloc->howto->pc_relative)
7843 {
7844 switch (areloc->howto->bitsize)
7845 {
7846 case 8:
7847 code = BFD_RELOC_8_PCREL;
7848 break;
7849 case 12:
7850 code = BFD_RELOC_12_PCREL;
7851 break;
7852 case 16:
7853 code = BFD_RELOC_16_PCREL;
7854 break;
7855 case 24:
7856 code = BFD_RELOC_24_PCREL;
7857 break;
7858 case 32:
7859 code = BFD_RELOC_32_PCREL;
7860 break;
7861 case 64:
7862 code = BFD_RELOC_64_PCREL;
7863 break;
7864 default:
7865 goto fail;
7866 }
7867
7868 howto = bfd_reloc_type_lookup (abfd, code);
7869
7870 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7871 {
7872 if (howto->pcrel_offset)
7873 areloc->addend += areloc->address;
7874 else
7875 areloc->addend -= areloc->address; /* addend is unsigned!! */
7876 }
7877 }
7878 else
7879 {
7880 switch (areloc->howto->bitsize)
7881 {
7882 case 8:
7883 code = BFD_RELOC_8;
7884 break;
7885 case 14:
7886 code = BFD_RELOC_14;
7887 break;
7888 case 16:
7889 code = BFD_RELOC_16;
7890 break;
7891 case 26:
7892 code = BFD_RELOC_26;
7893 break;
7894 case 32:
7895 code = BFD_RELOC_32;
7896 break;
7897 case 64:
7898 code = BFD_RELOC_64;
7899 break;
7900 default:
7901 goto fail;
7902 }
7903
7904 howto = bfd_reloc_type_lookup (abfd, code);
7905 }
7906
7907 if (howto)
7908 areloc->howto = howto;
7909 else
7910 goto fail;
7911 }
7912
7913 return TRUE;
7914
7915 fail:
7916 (*_bfd_error_handler)
7917 (_("%B: unsupported relocation type %s"),
7918 abfd, areloc->howto->name);
7919 bfd_set_error (bfd_error_bad_value);
7920 return FALSE;
7921 }
7922
7923 bfd_boolean
7924 _bfd_elf_close_and_cleanup (bfd *abfd)
7925 {
7926 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7927 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7928 {
7929 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7930 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7931 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7932 }
7933
7934 return _bfd_generic_close_and_cleanup (abfd);
7935 }
7936
7937 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7938 in the relocation's offset. Thus we cannot allow any sort of sanity
7939 range-checking to interfere. There is nothing else to do in processing
7940 this reloc. */
7941
7942 bfd_reloc_status_type
7943 _bfd_elf_rel_vtable_reloc_fn
7944 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7945 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7946 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7947 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7948 {
7949 return bfd_reloc_ok;
7950 }
7951 \f
7952 /* Elf core file support. Much of this only works on native
7953 toolchains, since we rely on knowing the
7954 machine-dependent procfs structure in order to pick
7955 out details about the corefile. */
7956
7957 #ifdef HAVE_SYS_PROCFS_H
7958 /* Needed for new procfs interface on sparc-solaris. */
7959 # define _STRUCTURED_PROC 1
7960 # include <sys/procfs.h>
7961 #endif
7962
7963 /* Return a PID that identifies a "thread" for threaded cores, or the
7964 PID of the main process for non-threaded cores. */
7965
7966 static int
7967 elfcore_make_pid (bfd *abfd)
7968 {
7969 int pid;
7970
7971 pid = elf_tdata (abfd)->core->lwpid;
7972 if (pid == 0)
7973 pid = elf_tdata (abfd)->core->pid;
7974
7975 return pid;
7976 }
7977
7978 /* If there isn't a section called NAME, make one, using
7979 data from SECT. Note, this function will generate a
7980 reference to NAME, so you shouldn't deallocate or
7981 overwrite it. */
7982
7983 static bfd_boolean
7984 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7985 {
7986 asection *sect2;
7987
7988 if (bfd_get_section_by_name (abfd, name) != NULL)
7989 return TRUE;
7990
7991 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7992 if (sect2 == NULL)
7993 return FALSE;
7994
7995 sect2->size = sect->size;
7996 sect2->filepos = sect->filepos;
7997 sect2->alignment_power = sect->alignment_power;
7998 return TRUE;
7999 }
8000
8001 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8002 actually creates up to two pseudosections:
8003 - For the single-threaded case, a section named NAME, unless
8004 such a section already exists.
8005 - For the multi-threaded case, a section named "NAME/PID", where
8006 PID is elfcore_make_pid (abfd).
8007 Both pseudosections have identical contents. */
8008 bfd_boolean
8009 _bfd_elfcore_make_pseudosection (bfd *abfd,
8010 char *name,
8011 size_t size,
8012 ufile_ptr filepos)
8013 {
8014 char buf[100];
8015 char *threaded_name;
8016 size_t len;
8017 asection *sect;
8018
8019 /* Build the section name. */
8020
8021 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8022 len = strlen (buf) + 1;
8023 threaded_name = (char *) bfd_alloc (abfd, len);
8024 if (threaded_name == NULL)
8025 return FALSE;
8026 memcpy (threaded_name, buf, len);
8027
8028 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8029 SEC_HAS_CONTENTS);
8030 if (sect == NULL)
8031 return FALSE;
8032 sect->size = size;
8033 sect->filepos = filepos;
8034 sect->alignment_power = 2;
8035
8036 return elfcore_maybe_make_sect (abfd, name, sect);
8037 }
8038
8039 /* prstatus_t exists on:
8040 solaris 2.5+
8041 linux 2.[01] + glibc
8042 unixware 4.2
8043 */
8044
8045 #if defined (HAVE_PRSTATUS_T)
8046
8047 static bfd_boolean
8048 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8049 {
8050 size_t size;
8051 int offset;
8052
8053 if (note->descsz == sizeof (prstatus_t))
8054 {
8055 prstatus_t prstat;
8056
8057 size = sizeof (prstat.pr_reg);
8058 offset = offsetof (prstatus_t, pr_reg);
8059 memcpy (&prstat, note->descdata, sizeof (prstat));
8060
8061 /* Do not overwrite the core signal if it
8062 has already been set by another thread. */
8063 if (elf_tdata (abfd)->core->signal == 0)
8064 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8065 if (elf_tdata (abfd)->core->pid == 0)
8066 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8067
8068 /* pr_who exists on:
8069 solaris 2.5+
8070 unixware 4.2
8071 pr_who doesn't exist on:
8072 linux 2.[01]
8073 */
8074 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8075 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8076 #else
8077 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8078 #endif
8079 }
8080 #if defined (HAVE_PRSTATUS32_T)
8081 else if (note->descsz == sizeof (prstatus32_t))
8082 {
8083 /* 64-bit host, 32-bit corefile */
8084 prstatus32_t prstat;
8085
8086 size = sizeof (prstat.pr_reg);
8087 offset = offsetof (prstatus32_t, pr_reg);
8088 memcpy (&prstat, note->descdata, sizeof (prstat));
8089
8090 /* Do not overwrite the core signal if it
8091 has already been set by another thread. */
8092 if (elf_tdata (abfd)->core->signal == 0)
8093 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8094 if (elf_tdata (abfd)->core->pid == 0)
8095 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8096
8097 /* pr_who exists on:
8098 solaris 2.5+
8099 unixware 4.2
8100 pr_who doesn't exist on:
8101 linux 2.[01]
8102 */
8103 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8104 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8105 #else
8106 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8107 #endif
8108 }
8109 #endif /* HAVE_PRSTATUS32_T */
8110 else
8111 {
8112 /* Fail - we don't know how to handle any other
8113 note size (ie. data object type). */
8114 return TRUE;
8115 }
8116
8117 /* Make a ".reg/999" section and a ".reg" section. */
8118 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8119 size, note->descpos + offset);
8120 }
8121 #endif /* defined (HAVE_PRSTATUS_T) */
8122
8123 /* Create a pseudosection containing the exact contents of NOTE. */
8124 static bfd_boolean
8125 elfcore_make_note_pseudosection (bfd *abfd,
8126 char *name,
8127 Elf_Internal_Note *note)
8128 {
8129 return _bfd_elfcore_make_pseudosection (abfd, name,
8130 note->descsz, note->descpos);
8131 }
8132
8133 /* There isn't a consistent prfpregset_t across platforms,
8134 but it doesn't matter, because we don't have to pick this
8135 data structure apart. */
8136
8137 static bfd_boolean
8138 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8139 {
8140 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8141 }
8142
8143 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8144 type of NT_PRXFPREG. Just include the whole note's contents
8145 literally. */
8146
8147 static bfd_boolean
8148 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8149 {
8150 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8151 }
8152
8153 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8154 with a note type of NT_X86_XSTATE. Just include the whole note's
8155 contents literally. */
8156
8157 static bfd_boolean
8158 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8159 {
8160 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8161 }
8162
8163 static bfd_boolean
8164 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8165 {
8166 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8167 }
8168
8169 static bfd_boolean
8170 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8171 {
8172 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8173 }
8174
8175 static bfd_boolean
8176 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8177 {
8178 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8179 }
8180
8181 static bfd_boolean
8182 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8183 {
8184 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8185 }
8186
8187 static bfd_boolean
8188 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8189 {
8190 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8191 }
8192
8193 static bfd_boolean
8194 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8195 {
8196 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8197 }
8198
8199 static bfd_boolean
8200 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8201 {
8202 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8203 }
8204
8205 static bfd_boolean
8206 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8207 {
8208 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8209 }
8210
8211 static bfd_boolean
8212 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8213 {
8214 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8215 }
8216
8217 static bfd_boolean
8218 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8219 {
8220 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8221 }
8222
8223 static bfd_boolean
8224 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8225 {
8226 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8227 }
8228
8229 static bfd_boolean
8230 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8231 {
8232 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8233 }
8234
8235 static bfd_boolean
8236 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8237 {
8238 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8239 }
8240
8241 static bfd_boolean
8242 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8243 {
8244 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8245 }
8246
8247 static bfd_boolean
8248 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8249 {
8250 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8251 }
8252
8253 #if defined (HAVE_PRPSINFO_T)
8254 typedef prpsinfo_t elfcore_psinfo_t;
8255 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8256 typedef prpsinfo32_t elfcore_psinfo32_t;
8257 #endif
8258 #endif
8259
8260 #if defined (HAVE_PSINFO_T)
8261 typedef psinfo_t elfcore_psinfo_t;
8262 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8263 typedef psinfo32_t elfcore_psinfo32_t;
8264 #endif
8265 #endif
8266
8267 /* return a malloc'ed copy of a string at START which is at
8268 most MAX bytes long, possibly without a terminating '\0'.
8269 the copy will always have a terminating '\0'. */
8270
8271 char *
8272 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8273 {
8274 char *dups;
8275 char *end = (char *) memchr (start, '\0', max);
8276 size_t len;
8277
8278 if (end == NULL)
8279 len = max;
8280 else
8281 len = end - start;
8282
8283 dups = (char *) bfd_alloc (abfd, len + 1);
8284 if (dups == NULL)
8285 return NULL;
8286
8287 memcpy (dups, start, len);
8288 dups[len] = '\0';
8289
8290 return dups;
8291 }
8292
8293 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8294 static bfd_boolean
8295 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8296 {
8297 if (note->descsz == sizeof (elfcore_psinfo_t))
8298 {
8299 elfcore_psinfo_t psinfo;
8300
8301 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8302
8303 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8304 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8305 #endif
8306 elf_tdata (abfd)->core->program
8307 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8308 sizeof (psinfo.pr_fname));
8309
8310 elf_tdata (abfd)->core->command
8311 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8312 sizeof (psinfo.pr_psargs));
8313 }
8314 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8315 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8316 {
8317 /* 64-bit host, 32-bit corefile */
8318 elfcore_psinfo32_t psinfo;
8319
8320 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8321
8322 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8323 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8324 #endif
8325 elf_tdata (abfd)->core->program
8326 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8327 sizeof (psinfo.pr_fname));
8328
8329 elf_tdata (abfd)->core->command
8330 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8331 sizeof (psinfo.pr_psargs));
8332 }
8333 #endif
8334
8335 else
8336 {
8337 /* Fail - we don't know how to handle any other
8338 note size (ie. data object type). */
8339 return TRUE;
8340 }
8341
8342 /* Note that for some reason, a spurious space is tacked
8343 onto the end of the args in some (at least one anyway)
8344 implementations, so strip it off if it exists. */
8345
8346 {
8347 char *command = elf_tdata (abfd)->core->command;
8348 int n = strlen (command);
8349
8350 if (0 < n && command[n - 1] == ' ')
8351 command[n - 1] = '\0';
8352 }
8353
8354 return TRUE;
8355 }
8356 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8357
8358 #if defined (HAVE_PSTATUS_T)
8359 static bfd_boolean
8360 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8361 {
8362 if (note->descsz == sizeof (pstatus_t)
8363 #if defined (HAVE_PXSTATUS_T)
8364 || note->descsz == sizeof (pxstatus_t)
8365 #endif
8366 )
8367 {
8368 pstatus_t pstat;
8369
8370 memcpy (&pstat, note->descdata, sizeof (pstat));
8371
8372 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8373 }
8374 #if defined (HAVE_PSTATUS32_T)
8375 else if (note->descsz == sizeof (pstatus32_t))
8376 {
8377 /* 64-bit host, 32-bit corefile */
8378 pstatus32_t pstat;
8379
8380 memcpy (&pstat, note->descdata, sizeof (pstat));
8381
8382 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8383 }
8384 #endif
8385 /* Could grab some more details from the "representative"
8386 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8387 NT_LWPSTATUS note, presumably. */
8388
8389 return TRUE;
8390 }
8391 #endif /* defined (HAVE_PSTATUS_T) */
8392
8393 #if defined (HAVE_LWPSTATUS_T)
8394 static bfd_boolean
8395 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8396 {
8397 lwpstatus_t lwpstat;
8398 char buf[100];
8399 char *name;
8400 size_t len;
8401 asection *sect;
8402
8403 if (note->descsz != sizeof (lwpstat)
8404 #if defined (HAVE_LWPXSTATUS_T)
8405 && note->descsz != sizeof (lwpxstatus_t)
8406 #endif
8407 )
8408 return TRUE;
8409
8410 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8411
8412 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8413 /* Do not overwrite the core signal if it has already been set by
8414 another thread. */
8415 if (elf_tdata (abfd)->core->signal == 0)
8416 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8417
8418 /* Make a ".reg/999" section. */
8419
8420 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8421 len = strlen (buf) + 1;
8422 name = bfd_alloc (abfd, len);
8423 if (name == NULL)
8424 return FALSE;
8425 memcpy (name, buf, len);
8426
8427 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8428 if (sect == NULL)
8429 return FALSE;
8430
8431 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8432 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8433 sect->filepos = note->descpos
8434 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8435 #endif
8436
8437 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8438 sect->size = sizeof (lwpstat.pr_reg);
8439 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8440 #endif
8441
8442 sect->alignment_power = 2;
8443
8444 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8445 return FALSE;
8446
8447 /* Make a ".reg2/999" section */
8448
8449 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8450 len = strlen (buf) + 1;
8451 name = bfd_alloc (abfd, len);
8452 if (name == NULL)
8453 return FALSE;
8454 memcpy (name, buf, len);
8455
8456 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8457 if (sect == NULL)
8458 return FALSE;
8459
8460 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8461 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8462 sect->filepos = note->descpos
8463 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8464 #endif
8465
8466 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8467 sect->size = sizeof (lwpstat.pr_fpreg);
8468 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8469 #endif
8470
8471 sect->alignment_power = 2;
8472
8473 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8474 }
8475 #endif /* defined (HAVE_LWPSTATUS_T) */
8476
8477 static bfd_boolean
8478 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8479 {
8480 char buf[30];
8481 char *name;
8482 size_t len;
8483 asection *sect;
8484 int type;
8485 int is_active_thread;
8486 bfd_vma base_addr;
8487
8488 if (note->descsz < 728)
8489 return TRUE;
8490
8491 if (! CONST_STRNEQ (note->namedata, "win32"))
8492 return TRUE;
8493
8494 type = bfd_get_32 (abfd, note->descdata);
8495
8496 switch (type)
8497 {
8498 case 1 /* NOTE_INFO_PROCESS */:
8499 /* FIXME: need to add ->core->command. */
8500 /* process_info.pid */
8501 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8502 /* process_info.signal */
8503 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8504 break;
8505
8506 case 2 /* NOTE_INFO_THREAD */:
8507 /* Make a ".reg/999" section. */
8508 /* thread_info.tid */
8509 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8510
8511 len = strlen (buf) + 1;
8512 name = (char *) bfd_alloc (abfd, len);
8513 if (name == NULL)
8514 return FALSE;
8515
8516 memcpy (name, buf, len);
8517
8518 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8519 if (sect == NULL)
8520 return FALSE;
8521
8522 /* sizeof (thread_info.thread_context) */
8523 sect->size = 716;
8524 /* offsetof (thread_info.thread_context) */
8525 sect->filepos = note->descpos + 12;
8526 sect->alignment_power = 2;
8527
8528 /* thread_info.is_active_thread */
8529 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8530
8531 if (is_active_thread)
8532 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8533 return FALSE;
8534 break;
8535
8536 case 3 /* NOTE_INFO_MODULE */:
8537 /* Make a ".module/xxxxxxxx" section. */
8538 /* module_info.base_address */
8539 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8540 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8541
8542 len = strlen (buf) + 1;
8543 name = (char *) bfd_alloc (abfd, len);
8544 if (name == NULL)
8545 return FALSE;
8546
8547 memcpy (name, buf, len);
8548
8549 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8550
8551 if (sect == NULL)
8552 return FALSE;
8553
8554 sect->size = note->descsz;
8555 sect->filepos = note->descpos;
8556 sect->alignment_power = 2;
8557 break;
8558
8559 default:
8560 return TRUE;
8561 }
8562
8563 return TRUE;
8564 }
8565
8566 static bfd_boolean
8567 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8568 {
8569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8570
8571 switch (note->type)
8572 {
8573 default:
8574 return TRUE;
8575
8576 case NT_PRSTATUS:
8577 if (bed->elf_backend_grok_prstatus)
8578 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8579 return TRUE;
8580 #if defined (HAVE_PRSTATUS_T)
8581 return elfcore_grok_prstatus (abfd, note);
8582 #else
8583 return TRUE;
8584 #endif
8585
8586 #if defined (HAVE_PSTATUS_T)
8587 case NT_PSTATUS:
8588 return elfcore_grok_pstatus (abfd, note);
8589 #endif
8590
8591 #if defined (HAVE_LWPSTATUS_T)
8592 case NT_LWPSTATUS:
8593 return elfcore_grok_lwpstatus (abfd, note);
8594 #endif
8595
8596 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8597 return elfcore_grok_prfpreg (abfd, note);
8598
8599 case NT_WIN32PSTATUS:
8600 return elfcore_grok_win32pstatus (abfd, note);
8601
8602 case NT_PRXFPREG: /* Linux SSE extension */
8603 if (note->namesz == 6
8604 && strcmp (note->namedata, "LINUX") == 0)
8605 return elfcore_grok_prxfpreg (abfd, note);
8606 else
8607 return TRUE;
8608
8609 case NT_X86_XSTATE: /* Linux XSAVE extension */
8610 if (note->namesz == 6
8611 && strcmp (note->namedata, "LINUX") == 0)
8612 return elfcore_grok_xstatereg (abfd, note);
8613 else
8614 return TRUE;
8615
8616 case NT_PPC_VMX:
8617 if (note->namesz == 6
8618 && strcmp (note->namedata, "LINUX") == 0)
8619 return elfcore_grok_ppc_vmx (abfd, note);
8620 else
8621 return TRUE;
8622
8623 case NT_PPC_VSX:
8624 if (note->namesz == 6
8625 && strcmp (note->namedata, "LINUX") == 0)
8626 return elfcore_grok_ppc_vsx (abfd, note);
8627 else
8628 return TRUE;
8629
8630 case NT_S390_HIGH_GPRS:
8631 if (note->namesz == 6
8632 && strcmp (note->namedata, "LINUX") == 0)
8633 return elfcore_grok_s390_high_gprs (abfd, note);
8634 else
8635 return TRUE;
8636
8637 case NT_S390_TIMER:
8638 if (note->namesz == 6
8639 && strcmp (note->namedata, "LINUX") == 0)
8640 return elfcore_grok_s390_timer (abfd, note);
8641 else
8642 return TRUE;
8643
8644 case NT_S390_TODCMP:
8645 if (note->namesz == 6
8646 && strcmp (note->namedata, "LINUX") == 0)
8647 return elfcore_grok_s390_todcmp (abfd, note);
8648 else
8649 return TRUE;
8650
8651 case NT_S390_TODPREG:
8652 if (note->namesz == 6
8653 && strcmp (note->namedata, "LINUX") == 0)
8654 return elfcore_grok_s390_todpreg (abfd, note);
8655 else
8656 return TRUE;
8657
8658 case NT_S390_CTRS:
8659 if (note->namesz == 6
8660 && strcmp (note->namedata, "LINUX") == 0)
8661 return elfcore_grok_s390_ctrs (abfd, note);
8662 else
8663 return TRUE;
8664
8665 case NT_S390_PREFIX:
8666 if (note->namesz == 6
8667 && strcmp (note->namedata, "LINUX") == 0)
8668 return elfcore_grok_s390_prefix (abfd, note);
8669 else
8670 return TRUE;
8671
8672 case NT_S390_LAST_BREAK:
8673 if (note->namesz == 6
8674 && strcmp (note->namedata, "LINUX") == 0)
8675 return elfcore_grok_s390_last_break (abfd, note);
8676 else
8677 return TRUE;
8678
8679 case NT_S390_SYSTEM_CALL:
8680 if (note->namesz == 6
8681 && strcmp (note->namedata, "LINUX") == 0)
8682 return elfcore_grok_s390_system_call (abfd, note);
8683 else
8684 return TRUE;
8685
8686 case NT_S390_TDB:
8687 if (note->namesz == 6
8688 && strcmp (note->namedata, "LINUX") == 0)
8689 return elfcore_grok_s390_tdb (abfd, note);
8690 else
8691 return TRUE;
8692
8693 case NT_ARM_VFP:
8694 if (note->namesz == 6
8695 && strcmp (note->namedata, "LINUX") == 0)
8696 return elfcore_grok_arm_vfp (abfd, note);
8697 else
8698 return TRUE;
8699
8700 case NT_ARM_TLS:
8701 if (note->namesz == 6
8702 && strcmp (note->namedata, "LINUX") == 0)
8703 return elfcore_grok_aarch_tls (abfd, note);
8704 else
8705 return TRUE;
8706
8707 case NT_ARM_HW_BREAK:
8708 if (note->namesz == 6
8709 && strcmp (note->namedata, "LINUX") == 0)
8710 return elfcore_grok_aarch_hw_break (abfd, note);
8711 else
8712 return TRUE;
8713
8714 case NT_ARM_HW_WATCH:
8715 if (note->namesz == 6
8716 && strcmp (note->namedata, "LINUX") == 0)
8717 return elfcore_grok_aarch_hw_watch (abfd, note);
8718 else
8719 return TRUE;
8720
8721 case NT_PRPSINFO:
8722 case NT_PSINFO:
8723 if (bed->elf_backend_grok_psinfo)
8724 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8725 return TRUE;
8726 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8727 return elfcore_grok_psinfo (abfd, note);
8728 #else
8729 return TRUE;
8730 #endif
8731
8732 case NT_AUXV:
8733 {
8734 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8735 SEC_HAS_CONTENTS);
8736
8737 if (sect == NULL)
8738 return FALSE;
8739 sect->size = note->descsz;
8740 sect->filepos = note->descpos;
8741 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8742
8743 return TRUE;
8744 }
8745
8746 case NT_FILE:
8747 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8748 note);
8749
8750 case NT_SIGINFO:
8751 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8752 note);
8753 }
8754 }
8755
8756 static bfd_boolean
8757 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8758 {
8759 struct elf_obj_tdata *t;
8760
8761 if (note->descsz == 0)
8762 return FALSE;
8763
8764 t = elf_tdata (abfd);
8765 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8766 if (t->build_id == NULL)
8767 return FALSE;
8768
8769 t->build_id->size = note->descsz;
8770 memcpy (t->build_id->data, note->descdata, note->descsz);
8771
8772 return TRUE;
8773 }
8774
8775 static bfd_boolean
8776 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8777 {
8778 switch (note->type)
8779 {
8780 default:
8781 return TRUE;
8782
8783 case NT_GNU_BUILD_ID:
8784 return elfobj_grok_gnu_build_id (abfd, note);
8785 }
8786 }
8787
8788 static bfd_boolean
8789 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8790 {
8791 struct sdt_note *cur =
8792 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8793 + note->descsz);
8794
8795 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8796 cur->size = (bfd_size_type) note->descsz;
8797 memcpy (cur->data, note->descdata, note->descsz);
8798
8799 elf_tdata (abfd)->sdt_note_head = cur;
8800
8801 return TRUE;
8802 }
8803
8804 static bfd_boolean
8805 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8806 {
8807 switch (note->type)
8808 {
8809 case NT_STAPSDT:
8810 return elfobj_grok_stapsdt_note_1 (abfd, note);
8811
8812 default:
8813 return TRUE;
8814 }
8815 }
8816
8817 static bfd_boolean
8818 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8819 {
8820 char *cp;
8821
8822 cp = strchr (note->namedata, '@');
8823 if (cp != NULL)
8824 {
8825 *lwpidp = atoi(cp + 1);
8826 return TRUE;
8827 }
8828 return FALSE;
8829 }
8830
8831 static bfd_boolean
8832 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8833 {
8834 /* Signal number at offset 0x08. */
8835 elf_tdata (abfd)->core->signal
8836 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8837
8838 /* Process ID at offset 0x50. */
8839 elf_tdata (abfd)->core->pid
8840 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8841
8842 /* Command name at 0x7c (max 32 bytes, including nul). */
8843 elf_tdata (abfd)->core->command
8844 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8845
8846 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8847 note);
8848 }
8849
8850 static bfd_boolean
8851 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8852 {
8853 int lwp;
8854
8855 if (elfcore_netbsd_get_lwpid (note, &lwp))
8856 elf_tdata (abfd)->core->lwpid = lwp;
8857
8858 if (note->type == NT_NETBSDCORE_PROCINFO)
8859 {
8860 /* NetBSD-specific core "procinfo". Note that we expect to
8861 find this note before any of the others, which is fine,
8862 since the kernel writes this note out first when it
8863 creates a core file. */
8864
8865 return elfcore_grok_netbsd_procinfo (abfd, note);
8866 }
8867
8868 /* As of Jan 2002 there are no other machine-independent notes
8869 defined for NetBSD core files. If the note type is less
8870 than the start of the machine-dependent note types, we don't
8871 understand it. */
8872
8873 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8874 return TRUE;
8875
8876
8877 switch (bfd_get_arch (abfd))
8878 {
8879 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8880 PT_GETFPREGS == mach+2. */
8881
8882 case bfd_arch_alpha:
8883 case bfd_arch_sparc:
8884 switch (note->type)
8885 {
8886 case NT_NETBSDCORE_FIRSTMACH+0:
8887 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8888
8889 case NT_NETBSDCORE_FIRSTMACH+2:
8890 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8891
8892 default:
8893 return TRUE;
8894 }
8895
8896 /* On all other arch's, PT_GETREGS == mach+1 and
8897 PT_GETFPREGS == mach+3. */
8898
8899 default:
8900 switch (note->type)
8901 {
8902 case NT_NETBSDCORE_FIRSTMACH+1:
8903 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8904
8905 case NT_NETBSDCORE_FIRSTMACH+3:
8906 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8907
8908 default:
8909 return TRUE;
8910 }
8911 }
8912 /* NOTREACHED */
8913 }
8914
8915 static bfd_boolean
8916 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8917 {
8918 /* Signal number at offset 0x08. */
8919 elf_tdata (abfd)->core->signal
8920 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8921
8922 /* Process ID at offset 0x20. */
8923 elf_tdata (abfd)->core->pid
8924 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8925
8926 /* Command name at 0x48 (max 32 bytes, including nul). */
8927 elf_tdata (abfd)->core->command
8928 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8929
8930 return TRUE;
8931 }
8932
8933 static bfd_boolean
8934 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8935 {
8936 if (note->type == NT_OPENBSD_PROCINFO)
8937 return elfcore_grok_openbsd_procinfo (abfd, note);
8938
8939 if (note->type == NT_OPENBSD_REGS)
8940 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8941
8942 if (note->type == NT_OPENBSD_FPREGS)
8943 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8944
8945 if (note->type == NT_OPENBSD_XFPREGS)
8946 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8947
8948 if (note->type == NT_OPENBSD_AUXV)
8949 {
8950 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8951 SEC_HAS_CONTENTS);
8952
8953 if (sect == NULL)
8954 return FALSE;
8955 sect->size = note->descsz;
8956 sect->filepos = note->descpos;
8957 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8958
8959 return TRUE;
8960 }
8961
8962 if (note->type == NT_OPENBSD_WCOOKIE)
8963 {
8964 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8965 SEC_HAS_CONTENTS);
8966
8967 if (sect == NULL)
8968 return FALSE;
8969 sect->size = note->descsz;
8970 sect->filepos = note->descpos;
8971 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8972
8973 return TRUE;
8974 }
8975
8976 return TRUE;
8977 }
8978
8979 static bfd_boolean
8980 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8981 {
8982 void *ddata = note->descdata;
8983 char buf[100];
8984 char *name;
8985 asection *sect;
8986 short sig;
8987 unsigned flags;
8988
8989 /* nto_procfs_status 'pid' field is at offset 0. */
8990 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8991
8992 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8993 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8994
8995 /* nto_procfs_status 'flags' field is at offset 8. */
8996 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8997
8998 /* nto_procfs_status 'what' field is at offset 14. */
8999 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9000 {
9001 elf_tdata (abfd)->core->signal = sig;
9002 elf_tdata (abfd)->core->lwpid = *tid;
9003 }
9004
9005 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9006 do not come from signals so we make sure we set the current
9007 thread just in case. */
9008 if (flags & 0x00000080)
9009 elf_tdata (abfd)->core->lwpid = *tid;
9010
9011 /* Make a ".qnx_core_status/%d" section. */
9012 sprintf (buf, ".qnx_core_status/%ld", *tid);
9013
9014 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9015 if (name == NULL)
9016 return FALSE;
9017 strcpy (name, buf);
9018
9019 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9020 if (sect == NULL)
9021 return FALSE;
9022
9023 sect->size = note->descsz;
9024 sect->filepos = note->descpos;
9025 sect->alignment_power = 2;
9026
9027 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9028 }
9029
9030 static bfd_boolean
9031 elfcore_grok_nto_regs (bfd *abfd,
9032 Elf_Internal_Note *note,
9033 long tid,
9034 char *base)
9035 {
9036 char buf[100];
9037 char *name;
9038 asection *sect;
9039
9040 /* Make a "(base)/%d" section. */
9041 sprintf (buf, "%s/%ld", base, tid);
9042
9043 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9044 if (name == NULL)
9045 return FALSE;
9046 strcpy (name, buf);
9047
9048 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9049 if (sect == NULL)
9050 return FALSE;
9051
9052 sect->size = note->descsz;
9053 sect->filepos = note->descpos;
9054 sect->alignment_power = 2;
9055
9056 /* This is the current thread. */
9057 if (elf_tdata (abfd)->core->lwpid == tid)
9058 return elfcore_maybe_make_sect (abfd, base, sect);
9059
9060 return TRUE;
9061 }
9062
9063 #define BFD_QNT_CORE_INFO 7
9064 #define BFD_QNT_CORE_STATUS 8
9065 #define BFD_QNT_CORE_GREG 9
9066 #define BFD_QNT_CORE_FPREG 10
9067
9068 static bfd_boolean
9069 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9070 {
9071 /* Every GREG section has a STATUS section before it. Store the
9072 tid from the previous call to pass down to the next gregs
9073 function. */
9074 static long tid = 1;
9075
9076 switch (note->type)
9077 {
9078 case BFD_QNT_CORE_INFO:
9079 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9080 case BFD_QNT_CORE_STATUS:
9081 return elfcore_grok_nto_status (abfd, note, &tid);
9082 case BFD_QNT_CORE_GREG:
9083 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9084 case BFD_QNT_CORE_FPREG:
9085 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9086 default:
9087 return TRUE;
9088 }
9089 }
9090
9091 static bfd_boolean
9092 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9093 {
9094 char *name;
9095 asection *sect;
9096 size_t len;
9097
9098 /* Use note name as section name. */
9099 len = note->namesz;
9100 name = (char *) bfd_alloc (abfd, len);
9101 if (name == NULL)
9102 return FALSE;
9103 memcpy (name, note->namedata, len);
9104 name[len - 1] = '\0';
9105
9106 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9107 if (sect == NULL)
9108 return FALSE;
9109
9110 sect->size = note->descsz;
9111 sect->filepos = note->descpos;
9112 sect->alignment_power = 1;
9113
9114 return TRUE;
9115 }
9116
9117 /* Function: elfcore_write_note
9118
9119 Inputs:
9120 buffer to hold note, and current size of buffer
9121 name of note
9122 type of note
9123 data for note
9124 size of data for note
9125
9126 Writes note to end of buffer. ELF64 notes are written exactly as
9127 for ELF32, despite the current (as of 2006) ELF gabi specifying
9128 that they ought to have 8-byte namesz and descsz field, and have
9129 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9130
9131 Return:
9132 Pointer to realloc'd buffer, *BUFSIZ updated. */
9133
9134 char *
9135 elfcore_write_note (bfd *abfd,
9136 char *buf,
9137 int *bufsiz,
9138 const char *name,
9139 int type,
9140 const void *input,
9141 int size)
9142 {
9143 Elf_External_Note *xnp;
9144 size_t namesz;
9145 size_t newspace;
9146 char *dest;
9147
9148 namesz = 0;
9149 if (name != NULL)
9150 namesz = strlen (name) + 1;
9151
9152 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9153
9154 buf = (char *) realloc (buf, *bufsiz + newspace);
9155 if (buf == NULL)
9156 return buf;
9157 dest = buf + *bufsiz;
9158 *bufsiz += newspace;
9159 xnp = (Elf_External_Note *) dest;
9160 H_PUT_32 (abfd, namesz, xnp->namesz);
9161 H_PUT_32 (abfd, size, xnp->descsz);
9162 H_PUT_32 (abfd, type, xnp->type);
9163 dest = xnp->name;
9164 if (name != NULL)
9165 {
9166 memcpy (dest, name, namesz);
9167 dest += namesz;
9168 while (namesz & 3)
9169 {
9170 *dest++ = '\0';
9171 ++namesz;
9172 }
9173 }
9174 memcpy (dest, input, size);
9175 dest += size;
9176 while (size & 3)
9177 {
9178 *dest++ = '\0';
9179 ++size;
9180 }
9181 return buf;
9182 }
9183
9184 char *
9185 elfcore_write_prpsinfo (bfd *abfd,
9186 char *buf,
9187 int *bufsiz,
9188 const char *fname,
9189 const char *psargs)
9190 {
9191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9192
9193 if (bed->elf_backend_write_core_note != NULL)
9194 {
9195 char *ret;
9196 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9197 NT_PRPSINFO, fname, psargs);
9198 if (ret != NULL)
9199 return ret;
9200 }
9201
9202 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9203 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9204 if (bed->s->elfclass == ELFCLASS32)
9205 {
9206 #if defined (HAVE_PSINFO32_T)
9207 psinfo32_t data;
9208 int note_type = NT_PSINFO;
9209 #else
9210 prpsinfo32_t data;
9211 int note_type = NT_PRPSINFO;
9212 #endif
9213
9214 memset (&data, 0, sizeof (data));
9215 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9216 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9217 return elfcore_write_note (abfd, buf, bufsiz,
9218 "CORE", note_type, &data, sizeof (data));
9219 }
9220 else
9221 #endif
9222 {
9223 #if defined (HAVE_PSINFO_T)
9224 psinfo_t data;
9225 int note_type = NT_PSINFO;
9226 #else
9227 prpsinfo_t data;
9228 int note_type = NT_PRPSINFO;
9229 #endif
9230
9231 memset (&data, 0, sizeof (data));
9232 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9233 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9234 return elfcore_write_note (abfd, buf, bufsiz,
9235 "CORE", note_type, &data, sizeof (data));
9236 }
9237 #endif /* PSINFO_T or PRPSINFO_T */
9238
9239 free (buf);
9240 return NULL;
9241 }
9242
9243 char *
9244 elfcore_write_linux_prpsinfo32
9245 (bfd *abfd, char *buf, int *bufsiz,
9246 const struct elf_internal_linux_prpsinfo *prpsinfo)
9247 {
9248 struct elf_external_linux_prpsinfo32 data;
9249
9250 memset (&data, 0, sizeof (data));
9251 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9252
9253 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9254 &data, sizeof (data));
9255 }
9256
9257 char *
9258 elfcore_write_linux_prpsinfo64
9259 (bfd *abfd, char *buf, int *bufsiz,
9260 const struct elf_internal_linux_prpsinfo *prpsinfo)
9261 {
9262 struct elf_external_linux_prpsinfo64 data;
9263
9264 memset (&data, 0, sizeof (data));
9265 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9266
9267 return elfcore_write_note (abfd, buf, bufsiz,
9268 "CORE", NT_PRPSINFO, &data, sizeof (data));
9269 }
9270
9271 char *
9272 elfcore_write_prstatus (bfd *abfd,
9273 char *buf,
9274 int *bufsiz,
9275 long pid,
9276 int cursig,
9277 const void *gregs)
9278 {
9279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9280
9281 if (bed->elf_backend_write_core_note != NULL)
9282 {
9283 char *ret;
9284 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9285 NT_PRSTATUS,
9286 pid, cursig, gregs);
9287 if (ret != NULL)
9288 return ret;
9289 }
9290
9291 #if defined (HAVE_PRSTATUS_T)
9292 #if defined (HAVE_PRSTATUS32_T)
9293 if (bed->s->elfclass == ELFCLASS32)
9294 {
9295 prstatus32_t prstat;
9296
9297 memset (&prstat, 0, sizeof (prstat));
9298 prstat.pr_pid = pid;
9299 prstat.pr_cursig = cursig;
9300 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9301 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9302 NT_PRSTATUS, &prstat, sizeof (prstat));
9303 }
9304 else
9305 #endif
9306 {
9307 prstatus_t prstat;
9308
9309 memset (&prstat, 0, sizeof (prstat));
9310 prstat.pr_pid = pid;
9311 prstat.pr_cursig = cursig;
9312 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9313 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9314 NT_PRSTATUS, &prstat, sizeof (prstat));
9315 }
9316 #endif /* HAVE_PRSTATUS_T */
9317
9318 free (buf);
9319 return NULL;
9320 }
9321
9322 #if defined (HAVE_LWPSTATUS_T)
9323 char *
9324 elfcore_write_lwpstatus (bfd *abfd,
9325 char *buf,
9326 int *bufsiz,
9327 long pid,
9328 int cursig,
9329 const void *gregs)
9330 {
9331 lwpstatus_t lwpstat;
9332 const char *note_name = "CORE";
9333
9334 memset (&lwpstat, 0, sizeof (lwpstat));
9335 lwpstat.pr_lwpid = pid >> 16;
9336 lwpstat.pr_cursig = cursig;
9337 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9338 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9339 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9340 #if !defined(gregs)
9341 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9342 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9343 #else
9344 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9345 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9346 #endif
9347 #endif
9348 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9349 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9350 }
9351 #endif /* HAVE_LWPSTATUS_T */
9352
9353 #if defined (HAVE_PSTATUS_T)
9354 char *
9355 elfcore_write_pstatus (bfd *abfd,
9356 char *buf,
9357 int *bufsiz,
9358 long pid,
9359 int cursig ATTRIBUTE_UNUSED,
9360 const void *gregs ATTRIBUTE_UNUSED)
9361 {
9362 const char *note_name = "CORE";
9363 #if defined (HAVE_PSTATUS32_T)
9364 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9365
9366 if (bed->s->elfclass == ELFCLASS32)
9367 {
9368 pstatus32_t pstat;
9369
9370 memset (&pstat, 0, sizeof (pstat));
9371 pstat.pr_pid = pid & 0xffff;
9372 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9373 NT_PSTATUS, &pstat, sizeof (pstat));
9374 return buf;
9375 }
9376 else
9377 #endif
9378 {
9379 pstatus_t pstat;
9380
9381 memset (&pstat, 0, sizeof (pstat));
9382 pstat.pr_pid = pid & 0xffff;
9383 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9384 NT_PSTATUS, &pstat, sizeof (pstat));
9385 return buf;
9386 }
9387 }
9388 #endif /* HAVE_PSTATUS_T */
9389
9390 char *
9391 elfcore_write_prfpreg (bfd *abfd,
9392 char *buf,
9393 int *bufsiz,
9394 const void *fpregs,
9395 int size)
9396 {
9397 const char *note_name = "CORE";
9398 return elfcore_write_note (abfd, buf, bufsiz,
9399 note_name, NT_FPREGSET, fpregs, size);
9400 }
9401
9402 char *
9403 elfcore_write_prxfpreg (bfd *abfd,
9404 char *buf,
9405 int *bufsiz,
9406 const void *xfpregs,
9407 int size)
9408 {
9409 char *note_name = "LINUX";
9410 return elfcore_write_note (abfd, buf, bufsiz,
9411 note_name, NT_PRXFPREG, xfpregs, size);
9412 }
9413
9414 char *
9415 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9416 const void *xfpregs, int size)
9417 {
9418 char *note_name = "LINUX";
9419 return elfcore_write_note (abfd, buf, bufsiz,
9420 note_name, NT_X86_XSTATE, xfpregs, size);
9421 }
9422
9423 char *
9424 elfcore_write_ppc_vmx (bfd *abfd,
9425 char *buf,
9426 int *bufsiz,
9427 const void *ppc_vmx,
9428 int size)
9429 {
9430 char *note_name = "LINUX";
9431 return elfcore_write_note (abfd, buf, bufsiz,
9432 note_name, NT_PPC_VMX, ppc_vmx, size);
9433 }
9434
9435 char *
9436 elfcore_write_ppc_vsx (bfd *abfd,
9437 char *buf,
9438 int *bufsiz,
9439 const void *ppc_vsx,
9440 int size)
9441 {
9442 char *note_name = "LINUX";
9443 return elfcore_write_note (abfd, buf, bufsiz,
9444 note_name, NT_PPC_VSX, ppc_vsx, size);
9445 }
9446
9447 static char *
9448 elfcore_write_s390_high_gprs (bfd *abfd,
9449 char *buf,
9450 int *bufsiz,
9451 const void *s390_high_gprs,
9452 int size)
9453 {
9454 char *note_name = "LINUX";
9455 return elfcore_write_note (abfd, buf, bufsiz,
9456 note_name, NT_S390_HIGH_GPRS,
9457 s390_high_gprs, size);
9458 }
9459
9460 char *
9461 elfcore_write_s390_timer (bfd *abfd,
9462 char *buf,
9463 int *bufsiz,
9464 const void *s390_timer,
9465 int size)
9466 {
9467 char *note_name = "LINUX";
9468 return elfcore_write_note (abfd, buf, bufsiz,
9469 note_name, NT_S390_TIMER, s390_timer, size);
9470 }
9471
9472 char *
9473 elfcore_write_s390_todcmp (bfd *abfd,
9474 char *buf,
9475 int *bufsiz,
9476 const void *s390_todcmp,
9477 int size)
9478 {
9479 char *note_name = "LINUX";
9480 return elfcore_write_note (abfd, buf, bufsiz,
9481 note_name, NT_S390_TODCMP, s390_todcmp, size);
9482 }
9483
9484 char *
9485 elfcore_write_s390_todpreg (bfd *abfd,
9486 char *buf,
9487 int *bufsiz,
9488 const void *s390_todpreg,
9489 int size)
9490 {
9491 char *note_name = "LINUX";
9492 return elfcore_write_note (abfd, buf, bufsiz,
9493 note_name, NT_S390_TODPREG, s390_todpreg, size);
9494 }
9495
9496 char *
9497 elfcore_write_s390_ctrs (bfd *abfd,
9498 char *buf,
9499 int *bufsiz,
9500 const void *s390_ctrs,
9501 int size)
9502 {
9503 char *note_name = "LINUX";
9504 return elfcore_write_note (abfd, buf, bufsiz,
9505 note_name, NT_S390_CTRS, s390_ctrs, size);
9506 }
9507
9508 char *
9509 elfcore_write_s390_prefix (bfd *abfd,
9510 char *buf,
9511 int *bufsiz,
9512 const void *s390_prefix,
9513 int size)
9514 {
9515 char *note_name = "LINUX";
9516 return elfcore_write_note (abfd, buf, bufsiz,
9517 note_name, NT_S390_PREFIX, s390_prefix, size);
9518 }
9519
9520 char *
9521 elfcore_write_s390_last_break (bfd *abfd,
9522 char *buf,
9523 int *bufsiz,
9524 const void *s390_last_break,
9525 int size)
9526 {
9527 char *note_name = "LINUX";
9528 return elfcore_write_note (abfd, buf, bufsiz,
9529 note_name, NT_S390_LAST_BREAK,
9530 s390_last_break, size);
9531 }
9532
9533 char *
9534 elfcore_write_s390_system_call (bfd *abfd,
9535 char *buf,
9536 int *bufsiz,
9537 const void *s390_system_call,
9538 int size)
9539 {
9540 char *note_name = "LINUX";
9541 return elfcore_write_note (abfd, buf, bufsiz,
9542 note_name, NT_S390_SYSTEM_CALL,
9543 s390_system_call, size);
9544 }
9545
9546 char *
9547 elfcore_write_s390_tdb (bfd *abfd,
9548 char *buf,
9549 int *bufsiz,
9550 const void *s390_tdb,
9551 int size)
9552 {
9553 char *note_name = "LINUX";
9554 return elfcore_write_note (abfd, buf, bufsiz,
9555 note_name, NT_S390_TDB, s390_tdb, size);
9556 }
9557
9558 char *
9559 elfcore_write_arm_vfp (bfd *abfd,
9560 char *buf,
9561 int *bufsiz,
9562 const void *arm_vfp,
9563 int size)
9564 {
9565 char *note_name = "LINUX";
9566 return elfcore_write_note (abfd, buf, bufsiz,
9567 note_name, NT_ARM_VFP, arm_vfp, size);
9568 }
9569
9570 char *
9571 elfcore_write_aarch_tls (bfd *abfd,
9572 char *buf,
9573 int *bufsiz,
9574 const void *aarch_tls,
9575 int size)
9576 {
9577 char *note_name = "LINUX";
9578 return elfcore_write_note (abfd, buf, bufsiz,
9579 note_name, NT_ARM_TLS, aarch_tls, size);
9580 }
9581
9582 char *
9583 elfcore_write_aarch_hw_break (bfd *abfd,
9584 char *buf,
9585 int *bufsiz,
9586 const void *aarch_hw_break,
9587 int size)
9588 {
9589 char *note_name = "LINUX";
9590 return elfcore_write_note (abfd, buf, bufsiz,
9591 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9592 }
9593
9594 char *
9595 elfcore_write_aarch_hw_watch (bfd *abfd,
9596 char *buf,
9597 int *bufsiz,
9598 const void *aarch_hw_watch,
9599 int size)
9600 {
9601 char *note_name = "LINUX";
9602 return elfcore_write_note (abfd, buf, bufsiz,
9603 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9604 }
9605
9606 char *
9607 elfcore_write_register_note (bfd *abfd,
9608 char *buf,
9609 int *bufsiz,
9610 const char *section,
9611 const void *data,
9612 int size)
9613 {
9614 if (strcmp (section, ".reg2") == 0)
9615 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9616 if (strcmp (section, ".reg-xfp") == 0)
9617 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9618 if (strcmp (section, ".reg-xstate") == 0)
9619 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9620 if (strcmp (section, ".reg-ppc-vmx") == 0)
9621 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9622 if (strcmp (section, ".reg-ppc-vsx") == 0)
9623 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9624 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9625 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9626 if (strcmp (section, ".reg-s390-timer") == 0)
9627 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9628 if (strcmp (section, ".reg-s390-todcmp") == 0)
9629 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9630 if (strcmp (section, ".reg-s390-todpreg") == 0)
9631 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9632 if (strcmp (section, ".reg-s390-ctrs") == 0)
9633 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9634 if (strcmp (section, ".reg-s390-prefix") == 0)
9635 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9636 if (strcmp (section, ".reg-s390-last-break") == 0)
9637 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9638 if (strcmp (section, ".reg-s390-system-call") == 0)
9639 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9640 if (strcmp (section, ".reg-s390-tdb") == 0)
9641 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9642 if (strcmp (section, ".reg-arm-vfp") == 0)
9643 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9644 if (strcmp (section, ".reg-aarch-tls") == 0)
9645 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9646 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9647 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9648 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9649 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9650 return NULL;
9651 }
9652
9653 static bfd_boolean
9654 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9655 {
9656 char *p;
9657
9658 p = buf;
9659 while (p < buf + size)
9660 {
9661 /* FIXME: bad alignment assumption. */
9662 Elf_External_Note *xnp = (Elf_External_Note *) p;
9663 Elf_Internal_Note in;
9664
9665 if (offsetof (Elf_External_Note, name) > buf - p + size)
9666 return FALSE;
9667
9668 in.type = H_GET_32 (abfd, xnp->type);
9669
9670 in.namesz = H_GET_32 (abfd, xnp->namesz);
9671 in.namedata = xnp->name;
9672 if (in.namesz > buf - in.namedata + size)
9673 return FALSE;
9674
9675 in.descsz = H_GET_32 (abfd, xnp->descsz);
9676 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9677 in.descpos = offset + (in.descdata - buf);
9678 if (in.descsz != 0
9679 && (in.descdata >= buf + size
9680 || in.descsz > buf - in.descdata + size))
9681 return FALSE;
9682
9683 switch (bfd_get_format (abfd))
9684 {
9685 default:
9686 return TRUE;
9687
9688 case bfd_core:
9689 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9690 {
9691 if (! elfcore_grok_netbsd_note (abfd, &in))
9692 return FALSE;
9693 }
9694 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9695 {
9696 if (! elfcore_grok_openbsd_note (abfd, &in))
9697 return FALSE;
9698 }
9699 else if (CONST_STRNEQ (in.namedata, "QNX"))
9700 {
9701 if (! elfcore_grok_nto_note (abfd, &in))
9702 return FALSE;
9703 }
9704 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9705 {
9706 if (! elfcore_grok_spu_note (abfd, &in))
9707 return FALSE;
9708 }
9709 else
9710 {
9711 if (! elfcore_grok_note (abfd, &in))
9712 return FALSE;
9713 }
9714 break;
9715
9716 case bfd_object:
9717 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9718 {
9719 if (! elfobj_grok_gnu_note (abfd, &in))
9720 return FALSE;
9721 }
9722 else if (in.namesz == sizeof "stapsdt"
9723 && strcmp (in.namedata, "stapsdt") == 0)
9724 {
9725 if (! elfobj_grok_stapsdt_note (abfd, &in))
9726 return FALSE;
9727 }
9728 break;
9729 }
9730
9731 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9732 }
9733
9734 return TRUE;
9735 }
9736
9737 static bfd_boolean
9738 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9739 {
9740 char *buf;
9741
9742 if (size <= 0)
9743 return TRUE;
9744
9745 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9746 return FALSE;
9747
9748 buf = (char *) bfd_malloc (size);
9749 if (buf == NULL)
9750 return FALSE;
9751
9752 if (bfd_bread (buf, size, abfd) != size
9753 || !elf_parse_notes (abfd, buf, size, offset))
9754 {
9755 free (buf);
9756 return FALSE;
9757 }
9758
9759 free (buf);
9760 return TRUE;
9761 }
9762 \f
9763 /* Providing external access to the ELF program header table. */
9764
9765 /* Return an upper bound on the number of bytes required to store a
9766 copy of ABFD's program header table entries. Return -1 if an error
9767 occurs; bfd_get_error will return an appropriate code. */
9768
9769 long
9770 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9771 {
9772 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9773 {
9774 bfd_set_error (bfd_error_wrong_format);
9775 return -1;
9776 }
9777
9778 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9779 }
9780
9781 /* Copy ABFD's program header table entries to *PHDRS. The entries
9782 will be stored as an array of Elf_Internal_Phdr structures, as
9783 defined in include/elf/internal.h. To find out how large the
9784 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9785
9786 Return the number of program header table entries read, or -1 if an
9787 error occurs; bfd_get_error will return an appropriate code. */
9788
9789 int
9790 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9791 {
9792 int num_phdrs;
9793
9794 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9795 {
9796 bfd_set_error (bfd_error_wrong_format);
9797 return -1;
9798 }
9799
9800 num_phdrs = elf_elfheader (abfd)->e_phnum;
9801 memcpy (phdrs, elf_tdata (abfd)->phdr,
9802 num_phdrs * sizeof (Elf_Internal_Phdr));
9803
9804 return num_phdrs;
9805 }
9806
9807 enum elf_reloc_type_class
9808 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9809 const asection *rel_sec ATTRIBUTE_UNUSED,
9810 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9811 {
9812 return reloc_class_normal;
9813 }
9814
9815 /* For RELA architectures, return the relocation value for a
9816 relocation against a local symbol. */
9817
9818 bfd_vma
9819 _bfd_elf_rela_local_sym (bfd *abfd,
9820 Elf_Internal_Sym *sym,
9821 asection **psec,
9822 Elf_Internal_Rela *rel)
9823 {
9824 asection *sec = *psec;
9825 bfd_vma relocation;
9826
9827 relocation = (sec->output_section->vma
9828 + sec->output_offset
9829 + sym->st_value);
9830 if ((sec->flags & SEC_MERGE)
9831 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9832 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9833 {
9834 rel->r_addend =
9835 _bfd_merged_section_offset (abfd, psec,
9836 elf_section_data (sec)->sec_info,
9837 sym->st_value + rel->r_addend);
9838 if (sec != *psec)
9839 {
9840 /* If we have changed the section, and our original section is
9841 marked with SEC_EXCLUDE, it means that the original
9842 SEC_MERGE section has been completely subsumed in some
9843 other SEC_MERGE section. In this case, we need to leave
9844 some info around for --emit-relocs. */
9845 if ((sec->flags & SEC_EXCLUDE) != 0)
9846 sec->kept_section = *psec;
9847 sec = *psec;
9848 }
9849 rel->r_addend -= relocation;
9850 rel->r_addend += sec->output_section->vma + sec->output_offset;
9851 }
9852 return relocation;
9853 }
9854
9855 bfd_vma
9856 _bfd_elf_rel_local_sym (bfd *abfd,
9857 Elf_Internal_Sym *sym,
9858 asection **psec,
9859 bfd_vma addend)
9860 {
9861 asection *sec = *psec;
9862
9863 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9864 return sym->st_value + addend;
9865
9866 return _bfd_merged_section_offset (abfd, psec,
9867 elf_section_data (sec)->sec_info,
9868 sym->st_value + addend);
9869 }
9870
9871 bfd_vma
9872 _bfd_elf_section_offset (bfd *abfd,
9873 struct bfd_link_info *info,
9874 asection *sec,
9875 bfd_vma offset)
9876 {
9877 switch (sec->sec_info_type)
9878 {
9879 case SEC_INFO_TYPE_STABS:
9880 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9881 offset);
9882 case SEC_INFO_TYPE_EH_FRAME:
9883 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9884 default:
9885 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9886 {
9887 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9888 bfd_size_type address_size = bed->s->arch_size / 8;
9889 offset = sec->size - offset - address_size;
9890 }
9891 return offset;
9892 }
9893 }
9894 \f
9895 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9896 reconstruct an ELF file by reading the segments out of remote memory
9897 based on the ELF file header at EHDR_VMA and the ELF program headers it
9898 points to. If not null, *LOADBASEP is filled in with the difference
9899 between the VMAs from which the segments were read, and the VMAs the
9900 file headers (and hence BFD's idea of each section's VMA) put them at.
9901
9902 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9903 remote memory at target address VMA into the local buffer at MYADDR; it
9904 should return zero on success or an `errno' code on failure. TEMPL must
9905 be a BFD for an ELF target with the word size and byte order found in
9906 the remote memory. */
9907
9908 bfd *
9909 bfd_elf_bfd_from_remote_memory
9910 (bfd *templ,
9911 bfd_vma ehdr_vma,
9912 bfd_size_type size,
9913 bfd_vma *loadbasep,
9914 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9915 {
9916 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9917 (templ, ehdr_vma, size, loadbasep, target_read_memory);
9918 }
9919 \f
9920 long
9921 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9922 long symcount ATTRIBUTE_UNUSED,
9923 asymbol **syms ATTRIBUTE_UNUSED,
9924 long dynsymcount,
9925 asymbol **dynsyms,
9926 asymbol **ret)
9927 {
9928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9929 asection *relplt;
9930 asymbol *s;
9931 const char *relplt_name;
9932 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9933 arelent *p;
9934 long count, i, n;
9935 size_t size;
9936 Elf_Internal_Shdr *hdr;
9937 char *names;
9938 asection *plt;
9939
9940 *ret = NULL;
9941
9942 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9943 return 0;
9944
9945 if (dynsymcount <= 0)
9946 return 0;
9947
9948 if (!bed->plt_sym_val)
9949 return 0;
9950
9951 relplt_name = bed->relplt_name;
9952 if (relplt_name == NULL)
9953 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9954 relplt = bfd_get_section_by_name (abfd, relplt_name);
9955 if (relplt == NULL)
9956 return 0;
9957
9958 hdr = &elf_section_data (relplt)->this_hdr;
9959 if (hdr->sh_link != elf_dynsymtab (abfd)
9960 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9961 return 0;
9962
9963 plt = bfd_get_section_by_name (abfd, ".plt");
9964 if (plt == NULL)
9965 return 0;
9966
9967 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9968 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9969 return -1;
9970
9971 count = relplt->size / hdr->sh_entsize;
9972 size = count * sizeof (asymbol);
9973 p = relplt->relocation;
9974 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9975 {
9976 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9977 if (p->addend != 0)
9978 {
9979 #ifdef BFD64
9980 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9981 #else
9982 size += sizeof ("+0x") - 1 + 8;
9983 #endif
9984 }
9985 }
9986
9987 s = *ret = (asymbol *) bfd_malloc (size);
9988 if (s == NULL)
9989 return -1;
9990
9991 names = (char *) (s + count);
9992 p = relplt->relocation;
9993 n = 0;
9994 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9995 {
9996 size_t len;
9997 bfd_vma addr;
9998
9999 addr = bed->plt_sym_val (i, plt, p);
10000 if (addr == (bfd_vma) -1)
10001 continue;
10002
10003 *s = **p->sym_ptr_ptr;
10004 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10005 we are defining a symbol, ensure one of them is set. */
10006 if ((s->flags & BSF_LOCAL) == 0)
10007 s->flags |= BSF_GLOBAL;
10008 s->flags |= BSF_SYNTHETIC;
10009 s->section = plt;
10010 s->value = addr - plt->vma;
10011 s->name = names;
10012 s->udata.p = NULL;
10013 len = strlen ((*p->sym_ptr_ptr)->name);
10014 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10015 names += len;
10016 if (p->addend != 0)
10017 {
10018 char buf[30], *a;
10019
10020 memcpy (names, "+0x", sizeof ("+0x") - 1);
10021 names += sizeof ("+0x") - 1;
10022 bfd_sprintf_vma (abfd, buf, p->addend);
10023 for (a = buf; *a == '0'; ++a)
10024 ;
10025 len = strlen (a);
10026 memcpy (names, a, len);
10027 names += len;
10028 }
10029 memcpy (names, "@plt", sizeof ("@plt"));
10030 names += sizeof ("@plt");
10031 ++s, ++n;
10032 }
10033
10034 return n;
10035 }
10036
10037 /* It is only used by x86-64 so far. */
10038 asection _bfd_elf_large_com_section
10039 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10040 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10041
10042 void
10043 _bfd_elf_post_process_headers (bfd * abfd,
10044 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10045 {
10046 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10047
10048 i_ehdrp = elf_elfheader (abfd);
10049
10050 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10051
10052 /* To make things simpler for the loader on Linux systems we set the
10053 osabi field to ELFOSABI_GNU if the binary contains symbols of
10054 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10055 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10056 && elf_tdata (abfd)->has_gnu_symbols)
10057 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10058 }
10059
10060
10061 /* Return TRUE for ELF symbol types that represent functions.
10062 This is the default version of this function, which is sufficient for
10063 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10064
10065 bfd_boolean
10066 _bfd_elf_is_function_type (unsigned int type)
10067 {
10068 return (type == STT_FUNC
10069 || type == STT_GNU_IFUNC);
10070 }
10071
10072 /* If the ELF symbol SYM might be a function in SEC, return the
10073 function size and set *CODE_OFF to the function's entry point,
10074 otherwise return zero. */
10075
10076 bfd_size_type
10077 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10078 bfd_vma *code_off)
10079 {
10080 bfd_size_type size;
10081
10082 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10083 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10084 || sym->section != sec)
10085 return 0;
10086
10087 *code_off = sym->value;
10088 size = 0;
10089 if (!(sym->flags & BSF_SYNTHETIC))
10090 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10091 if (size == 0)
10092 size = 1;
10093 return size;
10094 }