]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
PR 16056
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 BFD_ASSERT (!elf_flags_init (obfd)
1121 || (elf_elfheader (obfd)->e_flags
1122 == elf_elfheader (ibfd)->e_flags));
1123
1124 elf_gp (obfd) = elf_gp (ibfd);
1125 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1126 elf_flags_init (obfd) = TRUE;
1127
1128 /* Copy object attributes. */
1129 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1130 return TRUE;
1131 }
1132
1133 static const char *
1134 get_segment_type (unsigned int p_type)
1135 {
1136 const char *pt;
1137 switch (p_type)
1138 {
1139 case PT_NULL: pt = "NULL"; break;
1140 case PT_LOAD: pt = "LOAD"; break;
1141 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1142 case PT_INTERP: pt = "INTERP"; break;
1143 case PT_NOTE: pt = "NOTE"; break;
1144 case PT_SHLIB: pt = "SHLIB"; break;
1145 case PT_PHDR: pt = "PHDR"; break;
1146 case PT_TLS: pt = "TLS"; break;
1147 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1148 case PT_GNU_STACK: pt = "STACK"; break;
1149 case PT_GNU_RELRO: pt = "RELRO"; break;
1150 default: pt = NULL; break;
1151 }
1152 return pt;
1153 }
1154
1155 /* Print out the program headers. */
1156
1157 bfd_boolean
1158 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1159 {
1160 FILE *f = (FILE *) farg;
1161 Elf_Internal_Phdr *p;
1162 asection *s;
1163 bfd_byte *dynbuf = NULL;
1164
1165 p = elf_tdata (abfd)->phdr;
1166 if (p != NULL)
1167 {
1168 unsigned int i, c;
1169
1170 fprintf (f, _("\nProgram Header:\n"));
1171 c = elf_elfheader (abfd)->e_phnum;
1172 for (i = 0; i < c; i++, p++)
1173 {
1174 const char *pt = get_segment_type (p->p_type);
1175 char buf[20];
1176
1177 if (pt == NULL)
1178 {
1179 sprintf (buf, "0x%lx", p->p_type);
1180 pt = buf;
1181 }
1182 fprintf (f, "%8s off 0x", pt);
1183 bfd_fprintf_vma (abfd, f, p->p_offset);
1184 fprintf (f, " vaddr 0x");
1185 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1186 fprintf (f, " paddr 0x");
1187 bfd_fprintf_vma (abfd, f, p->p_paddr);
1188 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1189 fprintf (f, " filesz 0x");
1190 bfd_fprintf_vma (abfd, f, p->p_filesz);
1191 fprintf (f, " memsz 0x");
1192 bfd_fprintf_vma (abfd, f, p->p_memsz);
1193 fprintf (f, " flags %c%c%c",
1194 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1195 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1196 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1197 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1198 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1199 fprintf (f, "\n");
1200 }
1201 }
1202
1203 s = bfd_get_section_by_name (abfd, ".dynamic");
1204 if (s != NULL)
1205 {
1206 unsigned int elfsec;
1207 unsigned long shlink;
1208 bfd_byte *extdyn, *extdynend;
1209 size_t extdynsize;
1210 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1211
1212 fprintf (f, _("\nDynamic Section:\n"));
1213
1214 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1215 goto error_return;
1216
1217 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1218 if (elfsec == SHN_BAD)
1219 goto error_return;
1220 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1221
1222 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1223 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1224
1225 extdyn = dynbuf;
1226 extdynend = extdyn + s->size;
1227 for (; extdyn < extdynend; extdyn += extdynsize)
1228 {
1229 Elf_Internal_Dyn dyn;
1230 const char *name = "";
1231 char ab[20];
1232 bfd_boolean stringp;
1233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1234
1235 (*swap_dyn_in) (abfd, extdyn, &dyn);
1236
1237 if (dyn.d_tag == DT_NULL)
1238 break;
1239
1240 stringp = FALSE;
1241 switch (dyn.d_tag)
1242 {
1243 default:
1244 if (bed->elf_backend_get_target_dtag)
1245 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1246
1247 if (!strcmp (name, ""))
1248 {
1249 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1250 name = ab;
1251 }
1252 break;
1253
1254 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1255 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1256 case DT_PLTGOT: name = "PLTGOT"; break;
1257 case DT_HASH: name = "HASH"; break;
1258 case DT_STRTAB: name = "STRTAB"; break;
1259 case DT_SYMTAB: name = "SYMTAB"; break;
1260 case DT_RELA: name = "RELA"; break;
1261 case DT_RELASZ: name = "RELASZ"; break;
1262 case DT_RELAENT: name = "RELAENT"; break;
1263 case DT_STRSZ: name = "STRSZ"; break;
1264 case DT_SYMENT: name = "SYMENT"; break;
1265 case DT_INIT: name = "INIT"; break;
1266 case DT_FINI: name = "FINI"; break;
1267 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1268 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1269 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1270 case DT_REL: name = "REL"; break;
1271 case DT_RELSZ: name = "RELSZ"; break;
1272 case DT_RELENT: name = "RELENT"; break;
1273 case DT_PLTREL: name = "PLTREL"; break;
1274 case DT_DEBUG: name = "DEBUG"; break;
1275 case DT_TEXTREL: name = "TEXTREL"; break;
1276 case DT_JMPREL: name = "JMPREL"; break;
1277 case DT_BIND_NOW: name = "BIND_NOW"; break;
1278 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1279 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1280 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1281 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1282 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1283 case DT_FLAGS: name = "FLAGS"; break;
1284 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1285 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1286 case DT_CHECKSUM: name = "CHECKSUM"; break;
1287 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1288 case DT_MOVEENT: name = "MOVEENT"; break;
1289 case DT_MOVESZ: name = "MOVESZ"; break;
1290 case DT_FEATURE: name = "FEATURE"; break;
1291 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1292 case DT_SYMINSZ: name = "SYMINSZ"; break;
1293 case DT_SYMINENT: name = "SYMINENT"; break;
1294 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1295 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1296 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1297 case DT_PLTPAD: name = "PLTPAD"; break;
1298 case DT_MOVETAB: name = "MOVETAB"; break;
1299 case DT_SYMINFO: name = "SYMINFO"; break;
1300 case DT_RELACOUNT: name = "RELACOUNT"; break;
1301 case DT_RELCOUNT: name = "RELCOUNT"; break;
1302 case DT_FLAGS_1: name = "FLAGS_1"; break;
1303 case DT_VERSYM: name = "VERSYM"; break;
1304 case DT_VERDEF: name = "VERDEF"; break;
1305 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1306 case DT_VERNEED: name = "VERNEED"; break;
1307 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1308 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1309 case DT_USED: name = "USED"; break;
1310 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1311 case DT_GNU_HASH: name = "GNU_HASH"; break;
1312 }
1313
1314 fprintf (f, " %-20s ", name);
1315 if (! stringp)
1316 {
1317 fprintf (f, "0x");
1318 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1319 }
1320 else
1321 {
1322 const char *string;
1323 unsigned int tagv = dyn.d_un.d_val;
1324
1325 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1326 if (string == NULL)
1327 goto error_return;
1328 fprintf (f, "%s", string);
1329 }
1330 fprintf (f, "\n");
1331 }
1332
1333 free (dynbuf);
1334 dynbuf = NULL;
1335 }
1336
1337 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1338 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1339 {
1340 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1341 return FALSE;
1342 }
1343
1344 if (elf_dynverdef (abfd) != 0)
1345 {
1346 Elf_Internal_Verdef *t;
1347
1348 fprintf (f, _("\nVersion definitions:\n"));
1349 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1350 {
1351 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1352 t->vd_flags, t->vd_hash,
1353 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1354 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1355 {
1356 Elf_Internal_Verdaux *a;
1357
1358 fprintf (f, "\t");
1359 for (a = t->vd_auxptr->vda_nextptr;
1360 a != NULL;
1361 a = a->vda_nextptr)
1362 fprintf (f, "%s ",
1363 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1364 fprintf (f, "\n");
1365 }
1366 }
1367 }
1368
1369 if (elf_dynverref (abfd) != 0)
1370 {
1371 Elf_Internal_Verneed *t;
1372
1373 fprintf (f, _("\nVersion References:\n"));
1374 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1375 {
1376 Elf_Internal_Vernaux *a;
1377
1378 fprintf (f, _(" required from %s:\n"),
1379 t->vn_filename ? t->vn_filename : "<corrupt>");
1380 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1381 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1382 a->vna_flags, a->vna_other,
1383 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1384 }
1385 }
1386
1387 return TRUE;
1388
1389 error_return:
1390 if (dynbuf != NULL)
1391 free (dynbuf);
1392 return FALSE;
1393 }
1394
1395 /* Display ELF-specific fields of a symbol. */
1396
1397 void
1398 bfd_elf_print_symbol (bfd *abfd,
1399 void *filep,
1400 asymbol *symbol,
1401 bfd_print_symbol_type how)
1402 {
1403 FILE *file = (FILE *) filep;
1404 switch (how)
1405 {
1406 case bfd_print_symbol_name:
1407 fprintf (file, "%s", symbol->name);
1408 break;
1409 case bfd_print_symbol_more:
1410 fprintf (file, "elf ");
1411 bfd_fprintf_vma (abfd, file, symbol->value);
1412 fprintf (file, " %lx", (unsigned long) symbol->flags);
1413 break;
1414 case bfd_print_symbol_all:
1415 {
1416 const char *section_name;
1417 const char *name = NULL;
1418 const struct elf_backend_data *bed;
1419 unsigned char st_other;
1420 bfd_vma val;
1421
1422 section_name = symbol->section ? symbol->section->name : "(*none*)";
1423
1424 bed = get_elf_backend_data (abfd);
1425 if (bed->elf_backend_print_symbol_all)
1426 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1427
1428 if (name == NULL)
1429 {
1430 name = symbol->name;
1431 bfd_print_symbol_vandf (abfd, file, symbol);
1432 }
1433
1434 fprintf (file, " %s\t", section_name);
1435 /* Print the "other" value for a symbol. For common symbols,
1436 we've already printed the size; now print the alignment.
1437 For other symbols, we have no specified alignment, and
1438 we've printed the address; now print the size. */
1439 if (symbol->section && bfd_is_com_section (symbol->section))
1440 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1441 else
1442 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1443 bfd_fprintf_vma (abfd, file, val);
1444
1445 /* If we have version information, print it. */
1446 if (elf_dynversym (abfd) != 0
1447 && (elf_dynverdef (abfd) != 0
1448 || elf_dynverref (abfd) != 0))
1449 {
1450 unsigned int vernum;
1451 const char *version_string;
1452
1453 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1454
1455 if (vernum == 0)
1456 version_string = "";
1457 else if (vernum == 1)
1458 version_string = "Base";
1459 else if (vernum <= elf_tdata (abfd)->cverdefs)
1460 version_string =
1461 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1462 else
1463 {
1464 Elf_Internal_Verneed *t;
1465
1466 version_string = "";
1467 for (t = elf_tdata (abfd)->verref;
1468 t != NULL;
1469 t = t->vn_nextref)
1470 {
1471 Elf_Internal_Vernaux *a;
1472
1473 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1474 {
1475 if (a->vna_other == vernum)
1476 {
1477 version_string = a->vna_nodename;
1478 break;
1479 }
1480 }
1481 }
1482 }
1483
1484 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1485 fprintf (file, " %-11s", version_string);
1486 else
1487 {
1488 int i;
1489
1490 fprintf (file, " (%s)", version_string);
1491 for (i = 10 - strlen (version_string); i > 0; --i)
1492 putc (' ', file);
1493 }
1494 }
1495
1496 /* If the st_other field is not zero, print it. */
1497 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1498
1499 switch (st_other)
1500 {
1501 case 0: break;
1502 case STV_INTERNAL: fprintf (file, " .internal"); break;
1503 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1504 case STV_PROTECTED: fprintf (file, " .protected"); break;
1505 default:
1506 /* Some other non-defined flags are also present, so print
1507 everything hex. */
1508 fprintf (file, " 0x%02x", (unsigned int) st_other);
1509 }
1510
1511 fprintf (file, " %s", name);
1512 }
1513 break;
1514 }
1515 }
1516
1517 /* Allocate an ELF string table--force the first byte to be zero. */
1518
1519 struct bfd_strtab_hash *
1520 _bfd_elf_stringtab_init (void)
1521 {
1522 struct bfd_strtab_hash *ret;
1523
1524 ret = _bfd_stringtab_init ();
1525 if (ret != NULL)
1526 {
1527 bfd_size_type loc;
1528
1529 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1530 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1531 if (loc == (bfd_size_type) -1)
1532 {
1533 _bfd_stringtab_free (ret);
1534 ret = NULL;
1535 }
1536 }
1537 return ret;
1538 }
1539 \f
1540 /* ELF .o/exec file reading */
1541
1542 /* Create a new bfd section from an ELF section header. */
1543
1544 bfd_boolean
1545 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1546 {
1547 Elf_Internal_Shdr *hdr;
1548 Elf_Internal_Ehdr *ehdr;
1549 const struct elf_backend_data *bed;
1550 const char *name;
1551
1552 if (shindex >= elf_numsections (abfd))
1553 return FALSE;
1554
1555 hdr = elf_elfsections (abfd)[shindex];
1556 ehdr = elf_elfheader (abfd);
1557 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1558 hdr->sh_name);
1559 if (name == NULL)
1560 return FALSE;
1561
1562 bed = get_elf_backend_data (abfd);
1563 switch (hdr->sh_type)
1564 {
1565 case SHT_NULL:
1566 /* Inactive section. Throw it away. */
1567 return TRUE;
1568
1569 case SHT_PROGBITS: /* Normal section with contents. */
1570 case SHT_NOBITS: /* .bss section. */
1571 case SHT_HASH: /* .hash section. */
1572 case SHT_NOTE: /* .note section. */
1573 case SHT_INIT_ARRAY: /* .init_array section. */
1574 case SHT_FINI_ARRAY: /* .fini_array section. */
1575 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1576 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1577 case SHT_GNU_HASH: /* .gnu.hash section. */
1578 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1579
1580 case SHT_DYNAMIC: /* Dynamic linking information. */
1581 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1582 return FALSE;
1583 if (hdr->sh_link > elf_numsections (abfd))
1584 {
1585 /* PR 10478: Accept Solaris binaries with a sh_link
1586 field set to SHN_BEFORE or SHN_AFTER. */
1587 switch (bfd_get_arch (abfd))
1588 {
1589 case bfd_arch_i386:
1590 case bfd_arch_sparc:
1591 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1592 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1593 break;
1594 /* Otherwise fall through. */
1595 default:
1596 return FALSE;
1597 }
1598 }
1599 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1600 return FALSE;
1601 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1602 {
1603 Elf_Internal_Shdr *dynsymhdr;
1604
1605 /* The shared libraries distributed with hpux11 have a bogus
1606 sh_link field for the ".dynamic" section. Find the
1607 string table for the ".dynsym" section instead. */
1608 if (elf_dynsymtab (abfd) != 0)
1609 {
1610 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1611 hdr->sh_link = dynsymhdr->sh_link;
1612 }
1613 else
1614 {
1615 unsigned int i, num_sec;
1616
1617 num_sec = elf_numsections (abfd);
1618 for (i = 1; i < num_sec; i++)
1619 {
1620 dynsymhdr = elf_elfsections (abfd)[i];
1621 if (dynsymhdr->sh_type == SHT_DYNSYM)
1622 {
1623 hdr->sh_link = dynsymhdr->sh_link;
1624 break;
1625 }
1626 }
1627 }
1628 }
1629 break;
1630
1631 case SHT_SYMTAB: /* A symbol table */
1632 if (elf_onesymtab (abfd) == shindex)
1633 return TRUE;
1634
1635 if (hdr->sh_entsize != bed->s->sizeof_sym)
1636 return FALSE;
1637 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1638 {
1639 if (hdr->sh_size != 0)
1640 return FALSE;
1641 /* Some assemblers erroneously set sh_info to one with a
1642 zero sh_size. ld sees this as a global symbol count
1643 of (unsigned) -1. Fix it here. */
1644 hdr->sh_info = 0;
1645 return TRUE;
1646 }
1647 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1648 elf_onesymtab (abfd) = shindex;
1649 elf_tdata (abfd)->symtab_hdr = *hdr;
1650 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1651 abfd->flags |= HAS_SYMS;
1652
1653 /* Sometimes a shared object will map in the symbol table. If
1654 SHF_ALLOC is set, and this is a shared object, then we also
1655 treat this section as a BFD section. We can not base the
1656 decision purely on SHF_ALLOC, because that flag is sometimes
1657 set in a relocatable object file, which would confuse the
1658 linker. */
1659 if ((hdr->sh_flags & SHF_ALLOC) != 0
1660 && (abfd->flags & DYNAMIC) != 0
1661 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1662 shindex))
1663 return FALSE;
1664
1665 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1666 can't read symbols without that section loaded as well. It
1667 is most likely specified by the next section header. */
1668 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1669 {
1670 unsigned int i, num_sec;
1671
1672 num_sec = elf_numsections (abfd);
1673 for (i = shindex + 1; i < num_sec; i++)
1674 {
1675 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1676 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1677 && hdr2->sh_link == shindex)
1678 break;
1679 }
1680 if (i == num_sec)
1681 for (i = 1; i < shindex; i++)
1682 {
1683 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1684 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1685 && hdr2->sh_link == shindex)
1686 break;
1687 }
1688 if (i != shindex)
1689 return bfd_section_from_shdr (abfd, i);
1690 }
1691 return TRUE;
1692
1693 case SHT_DYNSYM: /* A dynamic symbol table */
1694 if (elf_dynsymtab (abfd) == shindex)
1695 return TRUE;
1696
1697 if (hdr->sh_entsize != bed->s->sizeof_sym)
1698 return FALSE;
1699 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1700 {
1701 if (hdr->sh_size != 0)
1702 return FALSE;
1703 /* Some linkers erroneously set sh_info to one with a
1704 zero sh_size. ld sees this as a global symbol count
1705 of (unsigned) -1. Fix it here. */
1706 hdr->sh_info = 0;
1707 return TRUE;
1708 }
1709 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1710 elf_dynsymtab (abfd) = shindex;
1711 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1712 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1713 abfd->flags |= HAS_SYMS;
1714
1715 /* Besides being a symbol table, we also treat this as a regular
1716 section, so that objcopy can handle it. */
1717 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1718
1719 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1720 if (elf_symtab_shndx (abfd) == shindex)
1721 return TRUE;
1722
1723 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1724 elf_symtab_shndx (abfd) = shindex;
1725 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1727 return TRUE;
1728
1729 case SHT_STRTAB: /* A string table */
1730 if (hdr->bfd_section != NULL)
1731 return TRUE;
1732 if (ehdr->e_shstrndx == shindex)
1733 {
1734 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1739 {
1740 symtab_strtab:
1741 elf_tdata (abfd)->strtab_hdr = *hdr;
1742 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1743 return TRUE;
1744 }
1745 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1746 {
1747 dynsymtab_strtab:
1748 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1749 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1750 elf_elfsections (abfd)[shindex] = hdr;
1751 /* We also treat this as a regular section, so that objcopy
1752 can handle it. */
1753 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1754 shindex);
1755 }
1756
1757 /* If the string table isn't one of the above, then treat it as a
1758 regular section. We need to scan all the headers to be sure,
1759 just in case this strtab section appeared before the above. */
1760 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1761 {
1762 unsigned int i, num_sec;
1763
1764 num_sec = elf_numsections (abfd);
1765 for (i = 1; i < num_sec; i++)
1766 {
1767 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1768 if (hdr2->sh_link == shindex)
1769 {
1770 /* Prevent endless recursion on broken objects. */
1771 if (i == shindex)
1772 return FALSE;
1773 if (! bfd_section_from_shdr (abfd, i))
1774 return FALSE;
1775 if (elf_onesymtab (abfd) == i)
1776 goto symtab_strtab;
1777 if (elf_dynsymtab (abfd) == i)
1778 goto dynsymtab_strtab;
1779 }
1780 }
1781 }
1782 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1783
1784 case SHT_REL:
1785 case SHT_RELA:
1786 /* *These* do a lot of work -- but build no sections! */
1787 {
1788 asection *target_sect;
1789 Elf_Internal_Shdr *hdr2, **p_hdr;
1790 unsigned int num_sec = elf_numsections (abfd);
1791 struct bfd_elf_section_data *esdt;
1792 bfd_size_type amt;
1793
1794 if (hdr->sh_entsize
1795 != (bfd_size_type) (hdr->sh_type == SHT_REL
1796 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1797 return FALSE;
1798
1799 /* Check for a bogus link to avoid crashing. */
1800 if (hdr->sh_link >= num_sec)
1801 {
1802 ((*_bfd_error_handler)
1803 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1804 abfd, hdr->sh_link, name, shindex));
1805 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1806 shindex);
1807 }
1808
1809 /* For some incomprehensible reason Oracle distributes
1810 libraries for Solaris in which some of the objects have
1811 bogus sh_link fields. It would be nice if we could just
1812 reject them, but, unfortunately, some people need to use
1813 them. We scan through the section headers; if we find only
1814 one suitable symbol table, we clobber the sh_link to point
1815 to it. I hope this doesn't break anything.
1816
1817 Don't do it on executable nor shared library. */
1818 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1819 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1820 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1821 {
1822 unsigned int scan;
1823 int found;
1824
1825 found = 0;
1826 for (scan = 1; scan < num_sec; scan++)
1827 {
1828 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1829 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1830 {
1831 if (found != 0)
1832 {
1833 found = 0;
1834 break;
1835 }
1836 found = scan;
1837 }
1838 }
1839 if (found != 0)
1840 hdr->sh_link = found;
1841 }
1842
1843 /* Get the symbol table. */
1844 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1845 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1846 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1847 return FALSE;
1848
1849 /* If this reloc section does not use the main symbol table we
1850 don't treat it as a reloc section. BFD can't adequately
1851 represent such a section, so at least for now, we don't
1852 try. We just present it as a normal section. We also
1853 can't use it as a reloc section if it points to the null
1854 section, an invalid section, another reloc section, or its
1855 sh_link points to the null section. */
1856 if (hdr->sh_link != elf_onesymtab (abfd)
1857 || hdr->sh_link == SHN_UNDEF
1858 || hdr->sh_info == SHN_UNDEF
1859 || hdr->sh_info >= num_sec
1860 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1861 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1862 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1863 shindex);
1864
1865 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1866 return FALSE;
1867 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1868 if (target_sect == NULL)
1869 return FALSE;
1870
1871 esdt = elf_section_data (target_sect);
1872 if (hdr->sh_type == SHT_RELA)
1873 p_hdr = &esdt->rela.hdr;
1874 else
1875 p_hdr = &esdt->rel.hdr;
1876
1877 BFD_ASSERT (*p_hdr == NULL);
1878 amt = sizeof (*hdr2);
1879 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1880 if (hdr2 == NULL)
1881 return FALSE;
1882 *hdr2 = *hdr;
1883 *p_hdr = hdr2;
1884 elf_elfsections (abfd)[shindex] = hdr2;
1885 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1886 target_sect->flags |= SEC_RELOC;
1887 target_sect->relocation = NULL;
1888 target_sect->rel_filepos = hdr->sh_offset;
1889 /* In the section to which the relocations apply, mark whether
1890 its relocations are of the REL or RELA variety. */
1891 if (hdr->sh_size != 0)
1892 {
1893 if (hdr->sh_type == SHT_RELA)
1894 target_sect->use_rela_p = 1;
1895 }
1896 abfd->flags |= HAS_RELOC;
1897 return TRUE;
1898 }
1899
1900 case SHT_GNU_verdef:
1901 elf_dynverdef (abfd) = shindex;
1902 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_versym:
1906 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1907 return FALSE;
1908 elf_dynversym (abfd) = shindex;
1909 elf_tdata (abfd)->dynversym_hdr = *hdr;
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1911
1912 case SHT_GNU_verneed:
1913 elf_dynverref (abfd) = shindex;
1914 elf_tdata (abfd)->dynverref_hdr = *hdr;
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1916
1917 case SHT_SHLIB:
1918 return TRUE;
1919
1920 case SHT_GROUP:
1921 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1922 return FALSE;
1923 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1924 return FALSE;
1925 if (hdr->contents != NULL)
1926 {
1927 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1928 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1929 asection *s;
1930
1931 if (idx->flags & GRP_COMDAT)
1932 hdr->bfd_section->flags
1933 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1934
1935 /* We try to keep the same section order as it comes in. */
1936 idx += n_elt;
1937 while (--n_elt != 0)
1938 {
1939 --idx;
1940
1941 if (idx->shdr != NULL
1942 && (s = idx->shdr->bfd_section) != NULL
1943 && elf_next_in_group (s) != NULL)
1944 {
1945 elf_next_in_group (hdr->bfd_section) = s;
1946 break;
1947 }
1948 }
1949 }
1950 break;
1951
1952 default:
1953 /* Possibly an attributes section. */
1954 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1955 || hdr->sh_type == bed->obj_attrs_section_type)
1956 {
1957 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1958 return FALSE;
1959 _bfd_elf_parse_attributes (abfd, hdr);
1960 return TRUE;
1961 }
1962
1963 /* Check for any processor-specific section types. */
1964 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1965 return TRUE;
1966
1967 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1968 {
1969 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1970 /* FIXME: How to properly handle allocated section reserved
1971 for applications? */
1972 (*_bfd_error_handler)
1973 (_("%B: don't know how to handle allocated, application "
1974 "specific section `%s' [0x%8x]"),
1975 abfd, name, hdr->sh_type);
1976 else
1977 /* Allow sections reserved for applications. */
1978 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1979 shindex);
1980 }
1981 else if (hdr->sh_type >= SHT_LOPROC
1982 && hdr->sh_type <= SHT_HIPROC)
1983 /* FIXME: We should handle this section. */
1984 (*_bfd_error_handler)
1985 (_("%B: don't know how to handle processor specific section "
1986 "`%s' [0x%8x]"),
1987 abfd, name, hdr->sh_type);
1988 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1989 {
1990 /* Unrecognised OS-specific sections. */
1991 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1992 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1993 required to correctly process the section and the file should
1994 be rejected with an error message. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle OS specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else
2000 /* Otherwise it should be processed. */
2001 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2002 }
2003 else
2004 /* FIXME: We should handle this section. */
2005 (*_bfd_error_handler)
2006 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2007 abfd, name, hdr->sh_type);
2008
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013 }
2014
2015 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2016
2017 Elf_Internal_Sym *
2018 bfd_sym_from_r_symndx (struct sym_cache *cache,
2019 bfd *abfd,
2020 unsigned long r_symndx)
2021 {
2022 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2023
2024 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2025 {
2026 Elf_Internal_Shdr *symtab_hdr;
2027 unsigned char esym[sizeof (Elf64_External_Sym)];
2028 Elf_External_Sym_Shndx eshndx;
2029
2030 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2031 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2032 &cache->sym[ent], esym, &eshndx) == NULL)
2033 return NULL;
2034
2035 if (cache->abfd != abfd)
2036 {
2037 memset (cache->indx, -1, sizeof (cache->indx));
2038 cache->abfd = abfd;
2039 }
2040 cache->indx[ent] = r_symndx;
2041 }
2042
2043 return &cache->sym[ent];
2044 }
2045
2046 /* Given an ELF section number, retrieve the corresponding BFD
2047 section. */
2048
2049 asection *
2050 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2051 {
2052 if (sec_index >= elf_numsections (abfd))
2053 return NULL;
2054 return elf_elfsections (abfd)[sec_index]->bfd_section;
2055 }
2056
2057 static const struct bfd_elf_special_section special_sections_b[] =
2058 {
2059 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2060 { NULL, 0, 0, 0, 0 }
2061 };
2062
2063 static const struct bfd_elf_special_section special_sections_c[] =
2064 {
2065 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2066 { NULL, 0, 0, 0, 0 }
2067 };
2068
2069 static const struct bfd_elf_special_section special_sections_d[] =
2070 {
2071 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2072 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2073 /* There are more DWARF sections than these, but they needn't be added here
2074 unless you have to cope with broken compilers that don't emit section
2075 attributes or you want to help the user writing assembler. */
2076 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2077 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2078 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2079 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2080 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2082 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2083 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2084 { NULL, 0, 0, 0, 0 }
2085 };
2086
2087 static const struct bfd_elf_special_section special_sections_f[] =
2088 {
2089 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2090 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2091 { NULL, 0, 0, 0, 0 }
2092 };
2093
2094 static const struct bfd_elf_special_section special_sections_g[] =
2095 {
2096 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2097 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2098 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2099 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2100 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2101 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2102 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2103 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2104 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2105 { NULL, 0, 0, 0, 0 }
2106 };
2107
2108 static const struct bfd_elf_special_section special_sections_h[] =
2109 {
2110 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2111 { NULL, 0, 0, 0, 0 }
2112 };
2113
2114 static const struct bfd_elf_special_section special_sections_i[] =
2115 {
2116 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2118 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_l[] =
2123 {
2124 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2125 { NULL, 0, 0, 0, 0 }
2126 };
2127
2128 static const struct bfd_elf_special_section special_sections_n[] =
2129 {
2130 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2131 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2132 { NULL, 0, 0, 0, 0 }
2133 };
2134
2135 static const struct bfd_elf_special_section special_sections_p[] =
2136 {
2137 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2138 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2139 { NULL, 0, 0, 0, 0 }
2140 };
2141
2142 static const struct bfd_elf_special_section special_sections_r[] =
2143 {
2144 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2145 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2146 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2147 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2148 { NULL, 0, 0, 0, 0 }
2149 };
2150
2151 static const struct bfd_elf_special_section special_sections_s[] =
2152 {
2153 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2154 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2155 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2156 /* See struct bfd_elf_special_section declaration for the semantics of
2157 this special case where .prefix_length != strlen (.prefix). */
2158 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2159 { NULL, 0, 0, 0, 0 }
2160 };
2161
2162 static const struct bfd_elf_special_section special_sections_t[] =
2163 {
2164 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2165 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2166 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_z[] =
2171 {
2172 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2173 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2174 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2175 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2176 { NULL, 0, 0, 0, 0 }
2177 };
2178
2179 static const struct bfd_elf_special_section * const special_sections[] =
2180 {
2181 special_sections_b, /* 'b' */
2182 special_sections_c, /* 'c' */
2183 special_sections_d, /* 'd' */
2184 NULL, /* 'e' */
2185 special_sections_f, /* 'f' */
2186 special_sections_g, /* 'g' */
2187 special_sections_h, /* 'h' */
2188 special_sections_i, /* 'i' */
2189 NULL, /* 'j' */
2190 NULL, /* 'k' */
2191 special_sections_l, /* 'l' */
2192 NULL, /* 'm' */
2193 special_sections_n, /* 'n' */
2194 NULL, /* 'o' */
2195 special_sections_p, /* 'p' */
2196 NULL, /* 'q' */
2197 special_sections_r, /* 'r' */
2198 special_sections_s, /* 's' */
2199 special_sections_t, /* 't' */
2200 NULL, /* 'u' */
2201 NULL, /* 'v' */
2202 NULL, /* 'w' */
2203 NULL, /* 'x' */
2204 NULL, /* 'y' */
2205 special_sections_z /* 'z' */
2206 };
2207
2208 const struct bfd_elf_special_section *
2209 _bfd_elf_get_special_section (const char *name,
2210 const struct bfd_elf_special_section *spec,
2211 unsigned int rela)
2212 {
2213 int i;
2214 int len;
2215
2216 len = strlen (name);
2217
2218 for (i = 0; spec[i].prefix != NULL; i++)
2219 {
2220 int suffix_len;
2221 int prefix_len = spec[i].prefix_length;
2222
2223 if (len < prefix_len)
2224 continue;
2225 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2226 continue;
2227
2228 suffix_len = spec[i].suffix_length;
2229 if (suffix_len <= 0)
2230 {
2231 if (name[prefix_len] != 0)
2232 {
2233 if (suffix_len == 0)
2234 continue;
2235 if (name[prefix_len] != '.'
2236 && (suffix_len == -2
2237 || (rela && spec[i].type == SHT_REL)))
2238 continue;
2239 }
2240 }
2241 else
2242 {
2243 if (len < prefix_len + suffix_len)
2244 continue;
2245 if (memcmp (name + len - suffix_len,
2246 spec[i].prefix + prefix_len,
2247 suffix_len) != 0)
2248 continue;
2249 }
2250 return &spec[i];
2251 }
2252
2253 return NULL;
2254 }
2255
2256 const struct bfd_elf_special_section *
2257 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2258 {
2259 int i;
2260 const struct bfd_elf_special_section *spec;
2261 const struct elf_backend_data *bed;
2262
2263 /* See if this is one of the special sections. */
2264 if (sec->name == NULL)
2265 return NULL;
2266
2267 bed = get_elf_backend_data (abfd);
2268 spec = bed->special_sections;
2269 if (spec)
2270 {
2271 spec = _bfd_elf_get_special_section (sec->name,
2272 bed->special_sections,
2273 sec->use_rela_p);
2274 if (spec != NULL)
2275 return spec;
2276 }
2277
2278 if (sec->name[0] != '.')
2279 return NULL;
2280
2281 i = sec->name[1] - 'b';
2282 if (i < 0 || i > 'z' - 'b')
2283 return NULL;
2284
2285 spec = special_sections[i];
2286
2287 if (spec == NULL)
2288 return NULL;
2289
2290 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2291 }
2292
2293 bfd_boolean
2294 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2295 {
2296 struct bfd_elf_section_data *sdata;
2297 const struct elf_backend_data *bed;
2298 const struct bfd_elf_special_section *ssect;
2299
2300 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2301 if (sdata == NULL)
2302 {
2303 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2304 sizeof (*sdata));
2305 if (sdata == NULL)
2306 return FALSE;
2307 sec->used_by_bfd = sdata;
2308 }
2309
2310 /* Indicate whether or not this section should use RELA relocations. */
2311 bed = get_elf_backend_data (abfd);
2312 sec->use_rela_p = bed->default_use_rela_p;
2313
2314 /* When we read a file, we don't need to set ELF section type and
2315 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2316 anyway. We will set ELF section type and flags for all linker
2317 created sections. If user specifies BFD section flags, we will
2318 set ELF section type and flags based on BFD section flags in
2319 elf_fake_sections. Special handling for .init_array/.fini_array
2320 output sections since they may contain .ctors/.dtors input
2321 sections. We don't want _bfd_elf_init_private_section_data to
2322 copy ELF section type from .ctors/.dtors input sections. */
2323 if (abfd->direction != read_direction
2324 || (sec->flags & SEC_LINKER_CREATED) != 0)
2325 {
2326 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2327 if (ssect != NULL
2328 && (!sec->flags
2329 || (sec->flags & SEC_LINKER_CREATED) != 0
2330 || ssect->type == SHT_INIT_ARRAY
2331 || ssect->type == SHT_FINI_ARRAY))
2332 {
2333 elf_section_type (sec) = ssect->type;
2334 elf_section_flags (sec) = ssect->attr;
2335 }
2336 }
2337
2338 return _bfd_generic_new_section_hook (abfd, sec);
2339 }
2340
2341 /* Create a new bfd section from an ELF program header.
2342
2343 Since program segments have no names, we generate a synthetic name
2344 of the form segment<NUM>, where NUM is generally the index in the
2345 program header table. For segments that are split (see below) we
2346 generate the names segment<NUM>a and segment<NUM>b.
2347
2348 Note that some program segments may have a file size that is different than
2349 (less than) the memory size. All this means is that at execution the
2350 system must allocate the amount of memory specified by the memory size,
2351 but only initialize it with the first "file size" bytes read from the
2352 file. This would occur for example, with program segments consisting
2353 of combined data+bss.
2354
2355 To handle the above situation, this routine generates TWO bfd sections
2356 for the single program segment. The first has the length specified by
2357 the file size of the segment, and the second has the length specified
2358 by the difference between the two sizes. In effect, the segment is split
2359 into its initialized and uninitialized parts.
2360
2361 */
2362
2363 bfd_boolean
2364 _bfd_elf_make_section_from_phdr (bfd *abfd,
2365 Elf_Internal_Phdr *hdr,
2366 int hdr_index,
2367 const char *type_name)
2368 {
2369 asection *newsect;
2370 char *name;
2371 char namebuf[64];
2372 size_t len;
2373 int split;
2374
2375 split = ((hdr->p_memsz > 0)
2376 && (hdr->p_filesz > 0)
2377 && (hdr->p_memsz > hdr->p_filesz));
2378
2379 if (hdr->p_filesz > 0)
2380 {
2381 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2382 len = strlen (namebuf) + 1;
2383 name = (char *) bfd_alloc (abfd, len);
2384 if (!name)
2385 return FALSE;
2386 memcpy (name, namebuf, len);
2387 newsect = bfd_make_section (abfd, name);
2388 if (newsect == NULL)
2389 return FALSE;
2390 newsect->vma = hdr->p_vaddr;
2391 newsect->lma = hdr->p_paddr;
2392 newsect->size = hdr->p_filesz;
2393 newsect->filepos = hdr->p_offset;
2394 newsect->flags |= SEC_HAS_CONTENTS;
2395 newsect->alignment_power = bfd_log2 (hdr->p_align);
2396 if (hdr->p_type == PT_LOAD)
2397 {
2398 newsect->flags |= SEC_ALLOC;
2399 newsect->flags |= SEC_LOAD;
2400 if (hdr->p_flags & PF_X)
2401 {
2402 /* FIXME: all we known is that it has execute PERMISSION,
2403 may be data. */
2404 newsect->flags |= SEC_CODE;
2405 }
2406 }
2407 if (!(hdr->p_flags & PF_W))
2408 {
2409 newsect->flags |= SEC_READONLY;
2410 }
2411 }
2412
2413 if (hdr->p_memsz > hdr->p_filesz)
2414 {
2415 bfd_vma align;
2416
2417 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2418 len = strlen (namebuf) + 1;
2419 name = (char *) bfd_alloc (abfd, len);
2420 if (!name)
2421 return FALSE;
2422 memcpy (name, namebuf, len);
2423 newsect = bfd_make_section (abfd, name);
2424 if (newsect == NULL)
2425 return FALSE;
2426 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2427 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2428 newsect->size = hdr->p_memsz - hdr->p_filesz;
2429 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2430 align = newsect->vma & -newsect->vma;
2431 if (align == 0 || align > hdr->p_align)
2432 align = hdr->p_align;
2433 newsect->alignment_power = bfd_log2 (align);
2434 if (hdr->p_type == PT_LOAD)
2435 {
2436 /* Hack for gdb. Segments that have not been modified do
2437 not have their contents written to a core file, on the
2438 assumption that a debugger can find the contents in the
2439 executable. We flag this case by setting the fake
2440 section size to zero. Note that "real" bss sections will
2441 always have their contents dumped to the core file. */
2442 if (bfd_get_format (abfd) == bfd_core)
2443 newsect->size = 0;
2444 newsect->flags |= SEC_ALLOC;
2445 if (hdr->p_flags & PF_X)
2446 newsect->flags |= SEC_CODE;
2447 }
2448 if (!(hdr->p_flags & PF_W))
2449 newsect->flags |= SEC_READONLY;
2450 }
2451
2452 return TRUE;
2453 }
2454
2455 bfd_boolean
2456 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2457 {
2458 const struct elf_backend_data *bed;
2459
2460 switch (hdr->p_type)
2461 {
2462 case PT_NULL:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2464
2465 case PT_LOAD:
2466 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2467
2468 case PT_DYNAMIC:
2469 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2470
2471 case PT_INTERP:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2473
2474 case PT_NOTE:
2475 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2476 return FALSE;
2477 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2478 return FALSE;
2479 return TRUE;
2480
2481 case PT_SHLIB:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2483
2484 case PT_PHDR:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2486
2487 case PT_GNU_EH_FRAME:
2488 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2489 "eh_frame_hdr");
2490
2491 case PT_GNU_STACK:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2493
2494 case PT_GNU_RELRO:
2495 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2496
2497 default:
2498 /* Check for any processor-specific program segment types. */
2499 bed = get_elf_backend_data (abfd);
2500 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2501 }
2502 }
2503
2504 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2505 REL or RELA. */
2506
2507 Elf_Internal_Shdr *
2508 _bfd_elf_single_rel_hdr (asection *sec)
2509 {
2510 if (elf_section_data (sec)->rel.hdr)
2511 {
2512 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2513 return elf_section_data (sec)->rel.hdr;
2514 }
2515 else
2516 return elf_section_data (sec)->rela.hdr;
2517 }
2518
2519 /* Allocate and initialize a section-header for a new reloc section,
2520 containing relocations against ASECT. It is stored in RELDATA. If
2521 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2522 relocations. */
2523
2524 static bfd_boolean
2525 _bfd_elf_init_reloc_shdr (bfd *abfd,
2526 struct bfd_elf_section_reloc_data *reldata,
2527 asection *asect,
2528 bfd_boolean use_rela_p)
2529 {
2530 Elf_Internal_Shdr *rel_hdr;
2531 char *name;
2532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2533 bfd_size_type amt;
2534
2535 amt = sizeof (Elf_Internal_Shdr);
2536 BFD_ASSERT (reldata->hdr == NULL);
2537 rel_hdr = bfd_zalloc (abfd, amt);
2538 reldata->hdr = rel_hdr;
2539
2540 amt = sizeof ".rela" + strlen (asect->name);
2541 name = (char *) bfd_alloc (abfd, amt);
2542 if (name == NULL)
2543 return FALSE;
2544 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2545 rel_hdr->sh_name =
2546 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2547 FALSE);
2548 if (rel_hdr->sh_name == (unsigned int) -1)
2549 return FALSE;
2550 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2551 rel_hdr->sh_entsize = (use_rela_p
2552 ? bed->s->sizeof_rela
2553 : bed->s->sizeof_rel);
2554 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2555 rel_hdr->sh_flags = 0;
2556 rel_hdr->sh_addr = 0;
2557 rel_hdr->sh_size = 0;
2558 rel_hdr->sh_offset = 0;
2559
2560 return TRUE;
2561 }
2562
2563 /* Return the default section type based on the passed in section flags. */
2564
2565 int
2566 bfd_elf_get_default_section_type (flagword flags)
2567 {
2568 if ((flags & SEC_ALLOC) != 0
2569 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2570 return SHT_NOBITS;
2571 return SHT_PROGBITS;
2572 }
2573
2574 struct fake_section_arg
2575 {
2576 struct bfd_link_info *link_info;
2577 bfd_boolean failed;
2578 };
2579
2580 /* Set up an ELF internal section header for a section. */
2581
2582 static void
2583 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2584 {
2585 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2586 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2587 struct bfd_elf_section_data *esd = elf_section_data (asect);
2588 Elf_Internal_Shdr *this_hdr;
2589 unsigned int sh_type;
2590
2591 if (arg->failed)
2592 {
2593 /* We already failed; just get out of the bfd_map_over_sections
2594 loop. */
2595 return;
2596 }
2597
2598 this_hdr = &esd->this_hdr;
2599
2600 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2601 asect->name, FALSE);
2602 if (this_hdr->sh_name == (unsigned int) -1)
2603 {
2604 arg->failed = TRUE;
2605 return;
2606 }
2607
2608 /* Don't clear sh_flags. Assembler may set additional bits. */
2609
2610 if ((asect->flags & SEC_ALLOC) != 0
2611 || asect->user_set_vma)
2612 this_hdr->sh_addr = asect->vma;
2613 else
2614 this_hdr->sh_addr = 0;
2615
2616 this_hdr->sh_offset = 0;
2617 this_hdr->sh_size = asect->size;
2618 this_hdr->sh_link = 0;
2619 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2620 /* The sh_entsize and sh_info fields may have been set already by
2621 copy_private_section_data. */
2622
2623 this_hdr->bfd_section = asect;
2624 this_hdr->contents = NULL;
2625
2626 /* If the section type is unspecified, we set it based on
2627 asect->flags. */
2628 if ((asect->flags & SEC_GROUP) != 0)
2629 sh_type = SHT_GROUP;
2630 else
2631 sh_type = bfd_elf_get_default_section_type (asect->flags);
2632
2633 if (this_hdr->sh_type == SHT_NULL)
2634 this_hdr->sh_type = sh_type;
2635 else if (this_hdr->sh_type == SHT_NOBITS
2636 && sh_type == SHT_PROGBITS
2637 && (asect->flags & SEC_ALLOC) != 0)
2638 {
2639 /* Warn if we are changing a NOBITS section to PROGBITS, but
2640 allow the link to proceed. This can happen when users link
2641 non-bss input sections to bss output sections, or emit data
2642 to a bss output section via a linker script. */
2643 (*_bfd_error_handler)
2644 (_("warning: section `%A' type changed to PROGBITS"), asect);
2645 this_hdr->sh_type = sh_type;
2646 }
2647
2648 switch (this_hdr->sh_type)
2649 {
2650 default:
2651 break;
2652
2653 case SHT_STRTAB:
2654 case SHT_INIT_ARRAY:
2655 case SHT_FINI_ARRAY:
2656 case SHT_PREINIT_ARRAY:
2657 case SHT_NOTE:
2658 case SHT_NOBITS:
2659 case SHT_PROGBITS:
2660 break;
2661
2662 case SHT_HASH:
2663 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2664 break;
2665
2666 case SHT_DYNSYM:
2667 this_hdr->sh_entsize = bed->s->sizeof_sym;
2668 break;
2669
2670 case SHT_DYNAMIC:
2671 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2672 break;
2673
2674 case SHT_RELA:
2675 if (get_elf_backend_data (abfd)->may_use_rela_p)
2676 this_hdr->sh_entsize = bed->s->sizeof_rela;
2677 break;
2678
2679 case SHT_REL:
2680 if (get_elf_backend_data (abfd)->may_use_rel_p)
2681 this_hdr->sh_entsize = bed->s->sizeof_rel;
2682 break;
2683
2684 case SHT_GNU_versym:
2685 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2686 break;
2687
2688 case SHT_GNU_verdef:
2689 this_hdr->sh_entsize = 0;
2690 /* objcopy or strip will copy over sh_info, but may not set
2691 cverdefs. The linker will set cverdefs, but sh_info will be
2692 zero. */
2693 if (this_hdr->sh_info == 0)
2694 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2695 else
2696 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2697 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2698 break;
2699
2700 case SHT_GNU_verneed:
2701 this_hdr->sh_entsize = 0;
2702 /* objcopy or strip will copy over sh_info, but may not set
2703 cverrefs. The linker will set cverrefs, but sh_info will be
2704 zero. */
2705 if (this_hdr->sh_info == 0)
2706 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2707 else
2708 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2709 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2710 break;
2711
2712 case SHT_GROUP:
2713 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2714 break;
2715
2716 case SHT_GNU_HASH:
2717 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2718 break;
2719 }
2720
2721 if ((asect->flags & SEC_ALLOC) != 0)
2722 this_hdr->sh_flags |= SHF_ALLOC;
2723 if ((asect->flags & SEC_READONLY) == 0)
2724 this_hdr->sh_flags |= SHF_WRITE;
2725 if ((asect->flags & SEC_CODE) != 0)
2726 this_hdr->sh_flags |= SHF_EXECINSTR;
2727 if ((asect->flags & SEC_MERGE) != 0)
2728 {
2729 this_hdr->sh_flags |= SHF_MERGE;
2730 this_hdr->sh_entsize = asect->entsize;
2731 if ((asect->flags & SEC_STRINGS) != 0)
2732 this_hdr->sh_flags |= SHF_STRINGS;
2733 }
2734 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2735 this_hdr->sh_flags |= SHF_GROUP;
2736 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2737 {
2738 this_hdr->sh_flags |= SHF_TLS;
2739 if (asect->size == 0
2740 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2741 {
2742 struct bfd_link_order *o = asect->map_tail.link_order;
2743
2744 this_hdr->sh_size = 0;
2745 if (o != NULL)
2746 {
2747 this_hdr->sh_size = o->offset + o->size;
2748 if (this_hdr->sh_size != 0)
2749 this_hdr->sh_type = SHT_NOBITS;
2750 }
2751 }
2752 }
2753 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2754 this_hdr->sh_flags |= SHF_EXCLUDE;
2755
2756 /* If the section has relocs, set up a section header for the
2757 SHT_REL[A] section. If two relocation sections are required for
2758 this section, it is up to the processor-specific back-end to
2759 create the other. */
2760 if ((asect->flags & SEC_RELOC) != 0)
2761 {
2762 /* When doing a relocatable link, create both REL and RELA sections if
2763 needed. */
2764 if (arg->link_info
2765 /* Do the normal setup if we wouldn't create any sections here. */
2766 && esd->rel.count + esd->rela.count > 0
2767 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2768 {
2769 if (esd->rel.count && esd->rel.hdr == NULL
2770 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2771 {
2772 arg->failed = TRUE;
2773 return;
2774 }
2775 if (esd->rela.count && esd->rela.hdr == NULL
2776 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2777 {
2778 arg->failed = TRUE;
2779 return;
2780 }
2781 }
2782 else if (!_bfd_elf_init_reloc_shdr (abfd,
2783 (asect->use_rela_p
2784 ? &esd->rela : &esd->rel),
2785 asect,
2786 asect->use_rela_p))
2787 arg->failed = TRUE;
2788 }
2789
2790 /* Check for processor-specific section types. */
2791 sh_type = this_hdr->sh_type;
2792 if (bed->elf_backend_fake_sections
2793 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2794 arg->failed = TRUE;
2795
2796 if (sh_type == SHT_NOBITS && asect->size != 0)
2797 {
2798 /* Don't change the header type from NOBITS if we are being
2799 called for objcopy --only-keep-debug. */
2800 this_hdr->sh_type = sh_type;
2801 }
2802 }
2803
2804 /* Fill in the contents of a SHT_GROUP section. Called from
2805 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2806 when ELF targets use the generic linker, ld. Called for ld -r
2807 from bfd_elf_final_link. */
2808
2809 void
2810 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2811 {
2812 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2813 asection *elt, *first;
2814 unsigned char *loc;
2815 bfd_boolean gas;
2816
2817 /* Ignore linker created group section. See elfNN_ia64_object_p in
2818 elfxx-ia64.c. */
2819 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2820 || *failedptr)
2821 return;
2822
2823 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2824 {
2825 unsigned long symindx = 0;
2826
2827 /* elf_group_id will have been set up by objcopy and the
2828 generic linker. */
2829 if (elf_group_id (sec) != NULL)
2830 symindx = elf_group_id (sec)->udata.i;
2831
2832 if (symindx == 0)
2833 {
2834 /* If called from the assembler, swap_out_syms will have set up
2835 elf_section_syms. */
2836 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2837 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2838 }
2839 elf_section_data (sec)->this_hdr.sh_info = symindx;
2840 }
2841 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2842 {
2843 /* The ELF backend linker sets sh_info to -2 when the group
2844 signature symbol is global, and thus the index can't be
2845 set until all local symbols are output. */
2846 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2847 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2848 unsigned long symndx = sec_data->this_hdr.sh_info;
2849 unsigned long extsymoff = 0;
2850 struct elf_link_hash_entry *h;
2851
2852 if (!elf_bad_symtab (igroup->owner))
2853 {
2854 Elf_Internal_Shdr *symtab_hdr;
2855
2856 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2857 extsymoff = symtab_hdr->sh_info;
2858 }
2859 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2860 while (h->root.type == bfd_link_hash_indirect
2861 || h->root.type == bfd_link_hash_warning)
2862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2863
2864 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2865 }
2866
2867 /* The contents won't be allocated for "ld -r" or objcopy. */
2868 gas = TRUE;
2869 if (sec->contents == NULL)
2870 {
2871 gas = FALSE;
2872 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2873
2874 /* Arrange for the section to be written out. */
2875 elf_section_data (sec)->this_hdr.contents = sec->contents;
2876 if (sec->contents == NULL)
2877 {
2878 *failedptr = TRUE;
2879 return;
2880 }
2881 }
2882
2883 loc = sec->contents + sec->size;
2884
2885 /* Get the pointer to the first section in the group that gas
2886 squirreled away here. objcopy arranges for this to be set to the
2887 start of the input section group. */
2888 first = elt = elf_next_in_group (sec);
2889
2890 /* First element is a flag word. Rest of section is elf section
2891 indices for all the sections of the group. Write them backwards
2892 just to keep the group in the same order as given in .section
2893 directives, not that it matters. */
2894 while (elt != NULL)
2895 {
2896 asection *s;
2897
2898 s = elt;
2899 if (!gas)
2900 s = s->output_section;
2901 if (s != NULL
2902 && !bfd_is_abs_section (s))
2903 {
2904 unsigned int idx = elf_section_data (s)->this_idx;
2905
2906 loc -= 4;
2907 H_PUT_32 (abfd, idx, loc);
2908 }
2909 elt = elf_next_in_group (elt);
2910 if (elt == first)
2911 break;
2912 }
2913
2914 if ((loc -= 4) != sec->contents)
2915 abort ();
2916
2917 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2918 }
2919
2920 /* Assign all ELF section numbers. The dummy first section is handled here
2921 too. The link/info pointers for the standard section types are filled
2922 in here too, while we're at it. */
2923
2924 static bfd_boolean
2925 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2926 {
2927 struct elf_obj_tdata *t = elf_tdata (abfd);
2928 asection *sec;
2929 unsigned int section_number, secn;
2930 Elf_Internal_Shdr **i_shdrp;
2931 struct bfd_elf_section_data *d;
2932 bfd_boolean need_symtab;
2933
2934 section_number = 1;
2935
2936 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2937
2938 /* SHT_GROUP sections are in relocatable files only. */
2939 if (link_info == NULL || link_info->relocatable)
2940 {
2941 /* Put SHT_GROUP sections first. */
2942 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2943 {
2944 d = elf_section_data (sec);
2945
2946 if (d->this_hdr.sh_type == SHT_GROUP)
2947 {
2948 if (sec->flags & SEC_LINKER_CREATED)
2949 {
2950 /* Remove the linker created SHT_GROUP sections. */
2951 bfd_section_list_remove (abfd, sec);
2952 abfd->section_count--;
2953 }
2954 else
2955 d->this_idx = section_number++;
2956 }
2957 }
2958 }
2959
2960 for (sec = abfd->sections; sec; sec = sec->next)
2961 {
2962 d = elf_section_data (sec);
2963
2964 if (d->this_hdr.sh_type != SHT_GROUP)
2965 d->this_idx = section_number++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2967 if (d->rel.hdr)
2968 {
2969 d->rel.idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2971 }
2972 else
2973 d->rel.idx = 0;
2974
2975 if (d->rela.hdr)
2976 {
2977 d->rela.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2979 }
2980 else
2981 d->rela.idx = 0;
2982 }
2983
2984 elf_shstrtab_sec (abfd) = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2986 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2987
2988 need_symtab = (bfd_get_symcount (abfd) > 0
2989 || (link_info == NULL
2990 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2991 == HAS_RELOC)));
2992 if (need_symtab)
2993 {
2994 elf_onesymtab (abfd) = section_number++;
2995 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2996 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2997 {
2998 elf_symtab_shndx (abfd) = section_number++;
2999 t->symtab_shndx_hdr.sh_name
3000 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3001 ".symtab_shndx", FALSE);
3002 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3003 return FALSE;
3004 }
3005 elf_strtab_sec (abfd) = section_number++;
3006 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3007 }
3008
3009 if (section_number >= SHN_LORESERVE)
3010 {
3011 _bfd_error_handler (_("%B: too many sections: %u"),
3012 abfd, section_number);
3013 return FALSE;
3014 }
3015
3016 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3017 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3018
3019 elf_numsections (abfd) = section_number;
3020 elf_elfheader (abfd)->e_shnum = section_number;
3021
3022 /* Set up the list of section header pointers, in agreement with the
3023 indices. */
3024 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3025 sizeof (Elf_Internal_Shdr *));
3026 if (i_shdrp == NULL)
3027 return FALSE;
3028
3029 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3030 sizeof (Elf_Internal_Shdr));
3031 if (i_shdrp[0] == NULL)
3032 {
3033 bfd_release (abfd, i_shdrp);
3034 return FALSE;
3035 }
3036
3037 elf_elfsections (abfd) = i_shdrp;
3038
3039 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3040 if (need_symtab)
3041 {
3042 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3043 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3044 {
3045 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3046 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3047 }
3048 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3049 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3050 }
3051
3052 for (sec = abfd->sections; sec; sec = sec->next)
3053 {
3054 asection *s;
3055 const char *name;
3056
3057 d = elf_section_data (sec);
3058
3059 i_shdrp[d->this_idx] = &d->this_hdr;
3060 if (d->rel.idx != 0)
3061 i_shdrp[d->rel.idx] = d->rel.hdr;
3062 if (d->rela.idx != 0)
3063 i_shdrp[d->rela.idx] = d->rela.hdr;
3064
3065 /* Fill in the sh_link and sh_info fields while we're at it. */
3066
3067 /* sh_link of a reloc section is the section index of the symbol
3068 table. sh_info is the section index of the section to which
3069 the relocation entries apply. */
3070 if (d->rel.idx != 0)
3071 {
3072 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3073 d->rel.hdr->sh_info = d->this_idx;
3074 }
3075 if (d->rela.idx != 0)
3076 {
3077 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3078 d->rela.hdr->sh_info = d->this_idx;
3079 }
3080
3081 /* We need to set up sh_link for SHF_LINK_ORDER. */
3082 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3083 {
3084 s = elf_linked_to_section (sec);
3085 if (s)
3086 {
3087 /* elf_linked_to_section points to the input section. */
3088 if (link_info != NULL)
3089 {
3090 /* Check discarded linkonce section. */
3091 if (discarded_section (s))
3092 {
3093 asection *kept;
3094 (*_bfd_error_handler)
3095 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3096 abfd, d->this_hdr.bfd_section,
3097 s, s->owner);
3098 /* Point to the kept section if it has the same
3099 size as the discarded one. */
3100 kept = _bfd_elf_check_kept_section (s, link_info);
3101 if (kept == NULL)
3102 {
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = kept;
3107 }
3108
3109 s = s->output_section;
3110 BFD_ASSERT (s != NULL);
3111 }
3112 else
3113 {
3114 /* Handle objcopy. */
3115 if (s->output_section == NULL)
3116 {
3117 (*_bfd_error_handler)
3118 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3119 abfd, d->this_hdr.bfd_section, s, s->owner);
3120 bfd_set_error (bfd_error_bad_value);
3121 return FALSE;
3122 }
3123 s = s->output_section;
3124 }
3125 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3126 }
3127 else
3128 {
3129 /* PR 290:
3130 The Intel C compiler generates SHT_IA_64_UNWIND with
3131 SHF_LINK_ORDER. But it doesn't set the sh_link or
3132 sh_info fields. Hence we could get the situation
3133 where s is NULL. */
3134 const struct elf_backend_data *bed
3135 = get_elf_backend_data (abfd);
3136 if (bed->link_order_error_handler)
3137 bed->link_order_error_handler
3138 (_("%B: warning: sh_link not set for section `%A'"),
3139 abfd, sec);
3140 }
3141 }
3142
3143 switch (d->this_hdr.sh_type)
3144 {
3145 case SHT_REL:
3146 case SHT_RELA:
3147 /* A reloc section which we are treating as a normal BFD
3148 section. sh_link is the section index of the symbol
3149 table. sh_info is the section index of the section to
3150 which the relocation entries apply. We assume that an
3151 allocated reloc section uses the dynamic symbol table.
3152 FIXME: How can we be sure? */
3153 s = bfd_get_section_by_name (abfd, ".dynsym");
3154 if (s != NULL)
3155 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3156
3157 /* We look up the section the relocs apply to by name. */
3158 name = sec->name;
3159 if (d->this_hdr.sh_type == SHT_REL)
3160 name += 4;
3161 else
3162 name += 5;
3163 s = bfd_get_section_by_name (abfd, name);
3164 if (s != NULL)
3165 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3166 break;
3167
3168 case SHT_STRTAB:
3169 /* We assume that a section named .stab*str is a stabs
3170 string section. We look for a section with the same name
3171 but without the trailing ``str'', and set its sh_link
3172 field to point to this section. */
3173 if (CONST_STRNEQ (sec->name, ".stab")
3174 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3175 {
3176 size_t len;
3177 char *alc;
3178
3179 len = strlen (sec->name);
3180 alc = (char *) bfd_malloc (len - 2);
3181 if (alc == NULL)
3182 return FALSE;
3183 memcpy (alc, sec->name, len - 3);
3184 alc[len - 3] = '\0';
3185 s = bfd_get_section_by_name (abfd, alc);
3186 free (alc);
3187 if (s != NULL)
3188 {
3189 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3190
3191 /* This is a .stab section. */
3192 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3193 elf_section_data (s)->this_hdr.sh_entsize
3194 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3195 }
3196 }
3197 break;
3198
3199 case SHT_DYNAMIC:
3200 case SHT_DYNSYM:
3201 case SHT_GNU_verneed:
3202 case SHT_GNU_verdef:
3203 /* sh_link is the section header index of the string table
3204 used for the dynamic entries, or the symbol table, or the
3205 version strings. */
3206 s = bfd_get_section_by_name (abfd, ".dynstr");
3207 if (s != NULL)
3208 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3209 break;
3210
3211 case SHT_GNU_LIBLIST:
3212 /* sh_link is the section header index of the prelink library
3213 list used for the dynamic entries, or the symbol table, or
3214 the version strings. */
3215 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3216 ? ".dynstr" : ".gnu.libstr");
3217 if (s != NULL)
3218 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3219 break;
3220
3221 case SHT_HASH:
3222 case SHT_GNU_HASH:
3223 case SHT_GNU_versym:
3224 /* sh_link is the section header index of the symbol table
3225 this hash table or version table is for. */
3226 s = bfd_get_section_by_name (abfd, ".dynsym");
3227 if (s != NULL)
3228 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3229 break;
3230
3231 case SHT_GROUP:
3232 d->this_hdr.sh_link = elf_onesymtab (abfd);
3233 }
3234 }
3235
3236 for (secn = 1; secn < section_number; ++secn)
3237 if (i_shdrp[secn] == NULL)
3238 i_shdrp[secn] = i_shdrp[0];
3239 else
3240 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3241 i_shdrp[secn]->sh_name);
3242 return TRUE;
3243 }
3244
3245 static bfd_boolean
3246 sym_is_global (bfd *abfd, asymbol *sym)
3247 {
3248 /* If the backend has a special mapping, use it. */
3249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3250 if (bed->elf_backend_sym_is_global)
3251 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3252
3253 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3254 || bfd_is_und_section (bfd_get_section (sym))
3255 || bfd_is_com_section (bfd_get_section (sym)));
3256 }
3257
3258 /* Don't output section symbols for sections that are not going to be
3259 output, that are duplicates or there is no BFD section. */
3260
3261 static bfd_boolean
3262 ignore_section_sym (bfd *abfd, asymbol *sym)
3263 {
3264 elf_symbol_type *type_ptr;
3265
3266 if ((sym->flags & BSF_SECTION_SYM) == 0)
3267 return FALSE;
3268
3269 type_ptr = elf_symbol_from (abfd, sym);
3270 return ((type_ptr != NULL
3271 && type_ptr->internal_elf_sym.st_shndx != 0
3272 && bfd_is_abs_section (sym->section))
3273 || !(sym->section->owner == abfd
3274 || (sym->section->output_section->owner == abfd
3275 && sym->section->output_offset == 0)
3276 || bfd_is_abs_section (sym->section)));
3277 }
3278
3279 /* Map symbol from it's internal number to the external number, moving
3280 all local symbols to be at the head of the list. */
3281
3282 static bfd_boolean
3283 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3284 {
3285 unsigned int symcount = bfd_get_symcount (abfd);
3286 asymbol **syms = bfd_get_outsymbols (abfd);
3287 asymbol **sect_syms;
3288 unsigned int num_locals = 0;
3289 unsigned int num_globals = 0;
3290 unsigned int num_locals2 = 0;
3291 unsigned int num_globals2 = 0;
3292 int max_index = 0;
3293 unsigned int idx;
3294 asection *asect;
3295 asymbol **new_syms;
3296
3297 #ifdef DEBUG
3298 fprintf (stderr, "elf_map_symbols\n");
3299 fflush (stderr);
3300 #endif
3301
3302 for (asect = abfd->sections; asect; asect = asect->next)
3303 {
3304 if (max_index < asect->index)
3305 max_index = asect->index;
3306 }
3307
3308 max_index++;
3309 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3310 if (sect_syms == NULL)
3311 return FALSE;
3312 elf_section_syms (abfd) = sect_syms;
3313 elf_num_section_syms (abfd) = max_index;
3314
3315 /* Init sect_syms entries for any section symbols we have already
3316 decided to output. */
3317 for (idx = 0; idx < symcount; idx++)
3318 {
3319 asymbol *sym = syms[idx];
3320
3321 if ((sym->flags & BSF_SECTION_SYM) != 0
3322 && sym->value == 0
3323 && !ignore_section_sym (abfd, sym)
3324 && !bfd_is_abs_section (sym->section))
3325 {
3326 asection *sec = sym->section;
3327
3328 if (sec->owner != abfd)
3329 sec = sec->output_section;
3330
3331 sect_syms[sec->index] = syms[idx];
3332 }
3333 }
3334
3335 /* Classify all of the symbols. */
3336 for (idx = 0; idx < symcount; idx++)
3337 {
3338 if (sym_is_global (abfd, syms[idx]))
3339 num_globals++;
3340 else if (!ignore_section_sym (abfd, syms[idx]))
3341 num_locals++;
3342 }
3343
3344 /* We will be adding a section symbol for each normal BFD section. Most
3345 sections will already have a section symbol in outsymbols, but
3346 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3347 at least in that case. */
3348 for (asect = abfd->sections; asect; asect = asect->next)
3349 {
3350 if (sect_syms[asect->index] == NULL)
3351 {
3352 if (!sym_is_global (abfd, asect->symbol))
3353 num_locals++;
3354 else
3355 num_globals++;
3356 }
3357 }
3358
3359 /* Now sort the symbols so the local symbols are first. */
3360 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3361 sizeof (asymbol *));
3362
3363 if (new_syms == NULL)
3364 return FALSE;
3365
3366 for (idx = 0; idx < symcount; idx++)
3367 {
3368 asymbol *sym = syms[idx];
3369 unsigned int i;
3370
3371 if (sym_is_global (abfd, sym))
3372 i = num_locals + num_globals2++;
3373 else if (!ignore_section_sym (abfd, sym))
3374 i = num_locals2++;
3375 else
3376 continue;
3377 new_syms[i] = sym;
3378 sym->udata.i = i + 1;
3379 }
3380 for (asect = abfd->sections; asect; asect = asect->next)
3381 {
3382 if (sect_syms[asect->index] == NULL)
3383 {
3384 asymbol *sym = asect->symbol;
3385 unsigned int i;
3386
3387 sect_syms[asect->index] = sym;
3388 if (!sym_is_global (abfd, sym))
3389 i = num_locals2++;
3390 else
3391 i = num_locals + num_globals2++;
3392 new_syms[i] = sym;
3393 sym->udata.i = i + 1;
3394 }
3395 }
3396
3397 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3398
3399 *pnum_locals = num_locals;
3400 return TRUE;
3401 }
3402
3403 /* Align to the maximum file alignment that could be required for any
3404 ELF data structure. */
3405
3406 static inline file_ptr
3407 align_file_position (file_ptr off, int align)
3408 {
3409 return (off + align - 1) & ~(align - 1);
3410 }
3411
3412 /* Assign a file position to a section, optionally aligning to the
3413 required section alignment. */
3414
3415 file_ptr
3416 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3417 file_ptr offset,
3418 bfd_boolean align)
3419 {
3420 if (align && i_shdrp->sh_addralign > 1)
3421 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3422 i_shdrp->sh_offset = offset;
3423 if (i_shdrp->bfd_section != NULL)
3424 i_shdrp->bfd_section->filepos = offset;
3425 if (i_shdrp->sh_type != SHT_NOBITS)
3426 offset += i_shdrp->sh_size;
3427 return offset;
3428 }
3429
3430 /* Compute the file positions we are going to put the sections at, and
3431 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3432 is not NULL, this is being called by the ELF backend linker. */
3433
3434 bfd_boolean
3435 _bfd_elf_compute_section_file_positions (bfd *abfd,
3436 struct bfd_link_info *link_info)
3437 {
3438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3439 struct fake_section_arg fsargs;
3440 bfd_boolean failed;
3441 struct bfd_strtab_hash *strtab = NULL;
3442 Elf_Internal_Shdr *shstrtab_hdr;
3443 bfd_boolean need_symtab;
3444
3445 if (abfd->output_has_begun)
3446 return TRUE;
3447
3448 /* Do any elf backend specific processing first. */
3449 if (bed->elf_backend_begin_write_processing)
3450 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3451
3452 if (! prep_headers (abfd))
3453 return FALSE;
3454
3455 /* Post process the headers if necessary. */
3456 if (bed->elf_backend_post_process_headers)
3457 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3458
3459 fsargs.failed = FALSE;
3460 fsargs.link_info = link_info;
3461 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3462 if (fsargs.failed)
3463 return FALSE;
3464
3465 if (!assign_section_numbers (abfd, link_info))
3466 return FALSE;
3467
3468 /* The backend linker builds symbol table information itself. */
3469 need_symtab = (link_info == NULL
3470 && (bfd_get_symcount (abfd) > 0
3471 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3472 == HAS_RELOC)));
3473 if (need_symtab)
3474 {
3475 /* Non-zero if doing a relocatable link. */
3476 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3477
3478 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3479 return FALSE;
3480 }
3481
3482 failed = FALSE;
3483 if (link_info == NULL)
3484 {
3485 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3486 if (failed)
3487 return FALSE;
3488 }
3489
3490 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3491 /* sh_name was set in prep_headers. */
3492 shstrtab_hdr->sh_type = SHT_STRTAB;
3493 shstrtab_hdr->sh_flags = 0;
3494 shstrtab_hdr->sh_addr = 0;
3495 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3496 shstrtab_hdr->sh_entsize = 0;
3497 shstrtab_hdr->sh_link = 0;
3498 shstrtab_hdr->sh_info = 0;
3499 /* sh_offset is set in assign_file_positions_except_relocs. */
3500 shstrtab_hdr->sh_addralign = 1;
3501
3502 if (!assign_file_positions_except_relocs (abfd, link_info))
3503 return FALSE;
3504
3505 if (need_symtab)
3506 {
3507 file_ptr off;
3508 Elf_Internal_Shdr *hdr;
3509
3510 off = elf_next_file_pos (abfd);
3511
3512 hdr = &elf_tdata (abfd)->symtab_hdr;
3513 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3514
3515 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3516 if (hdr->sh_size != 0)
3517 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3518
3519 hdr = &elf_tdata (abfd)->strtab_hdr;
3520 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3521
3522 elf_next_file_pos (abfd) = off;
3523
3524 /* Now that we know where the .strtab section goes, write it
3525 out. */
3526 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3527 || ! _bfd_stringtab_emit (abfd, strtab))
3528 return FALSE;
3529 _bfd_stringtab_free (strtab);
3530 }
3531
3532 abfd->output_has_begun = TRUE;
3533
3534 return TRUE;
3535 }
3536
3537 /* Make an initial estimate of the size of the program header. If we
3538 get the number wrong here, we'll redo section placement. */
3539
3540 static bfd_size_type
3541 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3542 {
3543 size_t segs;
3544 asection *s;
3545 const struct elf_backend_data *bed;
3546
3547 /* Assume we will need exactly two PT_LOAD segments: one for text
3548 and one for data. */
3549 segs = 2;
3550
3551 s = bfd_get_section_by_name (abfd, ".interp");
3552 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3553 {
3554 /* If we have a loadable interpreter section, we need a
3555 PT_INTERP segment. In this case, assume we also need a
3556 PT_PHDR segment, although that may not be true for all
3557 targets. */
3558 segs += 2;
3559 }
3560
3561 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3562 {
3563 /* We need a PT_DYNAMIC segment. */
3564 ++segs;
3565 }
3566
3567 if (info != NULL && info->relro)
3568 {
3569 /* We need a PT_GNU_RELRO segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_eh_frame_hdr (abfd))
3574 {
3575 /* We need a PT_GNU_EH_FRAME segment. */
3576 ++segs;
3577 }
3578
3579 if (elf_stack_flags (abfd))
3580 {
3581 /* We need a PT_GNU_STACK segment. */
3582 ++segs;
3583 }
3584
3585 for (s = abfd->sections; s != NULL; s = s->next)
3586 {
3587 if ((s->flags & SEC_LOAD) != 0
3588 && CONST_STRNEQ (s->name, ".note"))
3589 {
3590 /* We need a PT_NOTE segment. */
3591 ++segs;
3592 /* Try to create just one PT_NOTE segment
3593 for all adjacent loadable .note* sections.
3594 gABI requires that within a PT_NOTE segment
3595 (and also inside of each SHT_NOTE section)
3596 each note is padded to a multiple of 4 size,
3597 so we check whether the sections are correctly
3598 aligned. */
3599 if (s->alignment_power == 2)
3600 while (s->next != NULL
3601 && s->next->alignment_power == 2
3602 && (s->next->flags & SEC_LOAD) != 0
3603 && CONST_STRNEQ (s->next->name, ".note"))
3604 s = s->next;
3605 }
3606 }
3607
3608 for (s = abfd->sections; s != NULL; s = s->next)
3609 {
3610 if (s->flags & SEC_THREAD_LOCAL)
3611 {
3612 /* We need a PT_TLS segment. */
3613 ++segs;
3614 break;
3615 }
3616 }
3617
3618 /* Let the backend count up any program headers it might need. */
3619 bed = get_elf_backend_data (abfd);
3620 if (bed->elf_backend_additional_program_headers)
3621 {
3622 int a;
3623
3624 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3625 if (a == -1)
3626 abort ();
3627 segs += a;
3628 }
3629
3630 return segs * bed->s->sizeof_phdr;
3631 }
3632
3633 /* Find the segment that contains the output_section of section. */
3634
3635 Elf_Internal_Phdr *
3636 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3637 {
3638 struct elf_segment_map *m;
3639 Elf_Internal_Phdr *p;
3640
3641 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3642 m != NULL;
3643 m = m->next, p++)
3644 {
3645 int i;
3646
3647 for (i = m->count - 1; i >= 0; i--)
3648 if (m->sections[i] == section)
3649 return p;
3650 }
3651
3652 return NULL;
3653 }
3654
3655 /* Create a mapping from a set of sections to a program segment. */
3656
3657 static struct elf_segment_map *
3658 make_mapping (bfd *abfd,
3659 asection **sections,
3660 unsigned int from,
3661 unsigned int to,
3662 bfd_boolean phdr)
3663 {
3664 struct elf_segment_map *m;
3665 unsigned int i;
3666 asection **hdrpp;
3667 bfd_size_type amt;
3668
3669 amt = sizeof (struct elf_segment_map);
3670 amt += (to - from - 1) * sizeof (asection *);
3671 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3672 if (m == NULL)
3673 return NULL;
3674 m->next = NULL;
3675 m->p_type = PT_LOAD;
3676 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3677 m->sections[i - from] = *hdrpp;
3678 m->count = to - from;
3679
3680 if (from == 0 && phdr)
3681 {
3682 /* Include the headers in the first PT_LOAD segment. */
3683 m->includes_filehdr = 1;
3684 m->includes_phdrs = 1;
3685 }
3686
3687 return m;
3688 }
3689
3690 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3691 on failure. */
3692
3693 struct elf_segment_map *
3694 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3695 {
3696 struct elf_segment_map *m;
3697
3698 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3699 sizeof (struct elf_segment_map));
3700 if (m == NULL)
3701 return NULL;
3702 m->next = NULL;
3703 m->p_type = PT_DYNAMIC;
3704 m->count = 1;
3705 m->sections[0] = dynsec;
3706
3707 return m;
3708 }
3709
3710 /* Possibly add or remove segments from the segment map. */
3711
3712 static bfd_boolean
3713 elf_modify_segment_map (bfd *abfd,
3714 struct bfd_link_info *info,
3715 bfd_boolean remove_empty_load)
3716 {
3717 struct elf_segment_map **m;
3718 const struct elf_backend_data *bed;
3719
3720 /* The placement algorithm assumes that non allocated sections are
3721 not in PT_LOAD segments. We ensure this here by removing such
3722 sections from the segment map. We also remove excluded
3723 sections. Finally, any PT_LOAD segment without sections is
3724 removed. */
3725 m = &elf_seg_map (abfd);
3726 while (*m)
3727 {
3728 unsigned int i, new_count;
3729
3730 for (new_count = 0, i = 0; i < (*m)->count; i++)
3731 {
3732 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3733 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3734 || (*m)->p_type != PT_LOAD))
3735 {
3736 (*m)->sections[new_count] = (*m)->sections[i];
3737 new_count++;
3738 }
3739 }
3740 (*m)->count = new_count;
3741
3742 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3743 *m = (*m)->next;
3744 else
3745 m = &(*m)->next;
3746 }
3747
3748 bed = get_elf_backend_data (abfd);
3749 if (bed->elf_backend_modify_segment_map != NULL)
3750 {
3751 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3752 return FALSE;
3753 }
3754
3755 return TRUE;
3756 }
3757
3758 /* Set up a mapping from BFD sections to program segments. */
3759
3760 bfd_boolean
3761 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3762 {
3763 unsigned int count;
3764 struct elf_segment_map *m;
3765 asection **sections = NULL;
3766 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3767 bfd_boolean no_user_phdrs;
3768
3769 no_user_phdrs = elf_seg_map (abfd) == NULL;
3770
3771 if (info != NULL)
3772 info->user_phdrs = !no_user_phdrs;
3773
3774 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3775 {
3776 asection *s;
3777 unsigned int i;
3778 struct elf_segment_map *mfirst;
3779 struct elf_segment_map **pm;
3780 asection *last_hdr;
3781 bfd_vma last_size;
3782 unsigned int phdr_index;
3783 bfd_vma maxpagesize;
3784 asection **hdrpp;
3785 bfd_boolean phdr_in_segment = TRUE;
3786 bfd_boolean writable;
3787 int tls_count = 0;
3788 asection *first_tls = NULL;
3789 asection *dynsec, *eh_frame_hdr;
3790 bfd_size_type amt;
3791 bfd_vma addr_mask, wrap_to = 0;
3792
3793 /* Select the allocated sections, and sort them. */
3794
3795 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3796 sizeof (asection *));
3797 if (sections == NULL)
3798 goto error_return;
3799
3800 /* Calculate top address, avoiding undefined behaviour of shift
3801 left operator when shift count is equal to size of type
3802 being shifted. */
3803 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3804 addr_mask = (addr_mask << 1) + 1;
3805
3806 i = 0;
3807 for (s = abfd->sections; s != NULL; s = s->next)
3808 {
3809 if ((s->flags & SEC_ALLOC) != 0)
3810 {
3811 sections[i] = s;
3812 ++i;
3813 /* A wrapping section potentially clashes with header. */
3814 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3815 wrap_to = (s->lma + s->size) & addr_mask;
3816 }
3817 }
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3820
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3822
3823 /* Build the mapping. */
3824
3825 mfirst = NULL;
3826 pm = &mfirst;
3827
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3833 {
3834 amt = sizeof (struct elf_segment_map);
3835 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3844
3845 *pm = m;
3846 pm = &m->next;
3847
3848 amt = sizeof (struct elf_segment_map);
3849 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3856
3857 *pm = m;
3858 pm = &m->next;
3859 }
3860
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3873
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3879 {
3880 bfd_size_type phdr_size = elf_program_header_size (abfd);
3881
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 phdr_size += bed->s->sizeof_ehdr;
3885 if ((abfd->flags & D_PAGED) == 0
3886 || (sections[0]->lma & addr_mask) < phdr_size
3887 || ((sections[0]->lma & addr_mask) % maxpagesize
3888 < phdr_size % maxpagesize)
3889 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3890 phdr_in_segment = FALSE;
3891 }
3892
3893 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3894 {
3895 asection *hdr;
3896 bfd_boolean new_segment;
3897
3898 hdr = *hdrpp;
3899
3900 /* See if this section and the last one will fit in the same
3901 segment. */
3902
3903 if (last_hdr == NULL)
3904 {
3905 /* If we don't have a segment yet, then we don't need a new
3906 one (we build the last one after this loop). */
3907 new_segment = FALSE;
3908 }
3909 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3910 {
3911 /* If this section has a different relation between the
3912 virtual address and the load address, then we need a new
3913 segment. */
3914 new_segment = TRUE;
3915 }
3916 else if (hdr->lma < last_hdr->lma + last_size
3917 || last_hdr->lma + last_size < last_hdr->lma)
3918 {
3919 /* If this section has a load address that makes it overlap
3920 the previous section, then we need a new segment. */
3921 new_segment = TRUE;
3922 }
3923 /* In the next test we have to be careful when last_hdr->lma is close
3924 to the end of the address space. If the aligned address wraps
3925 around to the start of the address space, then there are no more
3926 pages left in memory and it is OK to assume that the current
3927 section can be included in the current segment. */
3928 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3929 > last_hdr->lma)
3930 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3931 <= hdr->lma))
3932 {
3933 /* If putting this section in this segment would force us to
3934 skip a page in the segment, then we need a new segment. */
3935 new_segment = TRUE;
3936 }
3937 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3938 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3939 {
3940 /* We don't want to put a loadable section after a
3941 nonloadable section in the same segment.
3942 Consider .tbss sections as loadable for this purpose. */
3943 new_segment = TRUE;
3944 }
3945 else if ((abfd->flags & D_PAGED) == 0)
3946 {
3947 /* If the file is not demand paged, which means that we
3948 don't require the sections to be correctly aligned in the
3949 file, then there is no other reason for a new segment. */
3950 new_segment = FALSE;
3951 }
3952 else if (! writable
3953 && (hdr->flags & SEC_READONLY) == 0
3954 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3955 != (hdr->lma & -maxpagesize)))
3956 {
3957 /* We don't want to put a writable section in a read only
3958 segment, unless they are on the same page in memory
3959 anyhow. We already know that the last section does not
3960 bring us past the current section on the page, so the
3961 only case in which the new section is not on the same
3962 page as the previous section is when the previous section
3963 ends precisely on a page boundary. */
3964 new_segment = TRUE;
3965 }
3966 else
3967 {
3968 /* Otherwise, we can use the same segment. */
3969 new_segment = FALSE;
3970 }
3971
3972 /* Allow interested parties a chance to override our decision. */
3973 if (last_hdr != NULL
3974 && info != NULL
3975 && info->callbacks->override_segment_assignment != NULL)
3976 new_segment
3977 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3978 last_hdr,
3979 new_segment);
3980
3981 if (! new_segment)
3982 {
3983 if ((hdr->flags & SEC_READONLY) == 0)
3984 writable = TRUE;
3985 last_hdr = hdr;
3986 /* .tbss sections effectively have zero size. */
3987 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3988 != SEC_THREAD_LOCAL)
3989 last_size = hdr->size;
3990 else
3991 last_size = 0;
3992 continue;
3993 }
3994
3995 /* We need a new program segment. We must create a new program
3996 header holding all the sections from phdr_index until hdr. */
3997
3998 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3999 if (m == NULL)
4000 goto error_return;
4001
4002 *pm = m;
4003 pm = &m->next;
4004
4005 if ((hdr->flags & SEC_READONLY) == 0)
4006 writable = TRUE;
4007 else
4008 writable = FALSE;
4009
4010 last_hdr = hdr;
4011 /* .tbss sections effectively have zero size. */
4012 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4013 last_size = hdr->size;
4014 else
4015 last_size = 0;
4016 phdr_index = i;
4017 phdr_in_segment = FALSE;
4018 }
4019
4020 /* Create a final PT_LOAD program segment, but not if it's just
4021 for .tbss. */
4022 if (last_hdr != NULL
4023 && (i - phdr_index != 1
4024 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4025 != SEC_THREAD_LOCAL)))
4026 {
4027 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4028 if (m == NULL)
4029 goto error_return;
4030
4031 *pm = m;
4032 pm = &m->next;
4033 }
4034
4035 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4036 if (dynsec != NULL)
4037 {
4038 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4039 if (m == NULL)
4040 goto error_return;
4041 *pm = m;
4042 pm = &m->next;
4043 }
4044
4045 /* For each batch of consecutive loadable .note sections,
4046 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4047 because if we link together nonloadable .note sections and
4048 loadable .note sections, we will generate two .note sections
4049 in the output file. FIXME: Using names for section types is
4050 bogus anyhow. */
4051 for (s = abfd->sections; s != NULL; s = s->next)
4052 {
4053 if ((s->flags & SEC_LOAD) != 0
4054 && CONST_STRNEQ (s->name, ".note"))
4055 {
4056 asection *s2;
4057
4058 count = 1;
4059 amt = sizeof (struct elf_segment_map);
4060 if (s->alignment_power == 2)
4061 for (s2 = s; s2->next != NULL; s2 = s2->next)
4062 {
4063 if (s2->next->alignment_power == 2
4064 && (s2->next->flags & SEC_LOAD) != 0
4065 && CONST_STRNEQ (s2->next->name, ".note")
4066 && align_power (s2->lma + s2->size, 2)
4067 == s2->next->lma)
4068 count++;
4069 else
4070 break;
4071 }
4072 amt += (count - 1) * sizeof (asection *);
4073 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4074 if (m == NULL)
4075 goto error_return;
4076 m->next = NULL;
4077 m->p_type = PT_NOTE;
4078 m->count = count;
4079 while (count > 1)
4080 {
4081 m->sections[m->count - count--] = s;
4082 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4083 s = s->next;
4084 }
4085 m->sections[m->count - 1] = s;
4086 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4087 *pm = m;
4088 pm = &m->next;
4089 }
4090 if (s->flags & SEC_THREAD_LOCAL)
4091 {
4092 if (! tls_count)
4093 first_tls = s;
4094 tls_count++;
4095 }
4096 }
4097
4098 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4099 if (tls_count > 0)
4100 {
4101 amt = sizeof (struct elf_segment_map);
4102 amt += (tls_count - 1) * sizeof (asection *);
4103 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4104 if (m == NULL)
4105 goto error_return;
4106 m->next = NULL;
4107 m->p_type = PT_TLS;
4108 m->count = tls_count;
4109 /* Mandated PF_R. */
4110 m->p_flags = PF_R;
4111 m->p_flags_valid = 1;
4112 for (i = 0; i < (unsigned int) tls_count; ++i)
4113 {
4114 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4115 m->sections[i] = first_tls;
4116 first_tls = first_tls->next;
4117 }
4118
4119 *pm = m;
4120 pm = &m->next;
4121 }
4122
4123 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4124 segment. */
4125 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4126 if (eh_frame_hdr != NULL
4127 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4128 {
4129 amt = sizeof (struct elf_segment_map);
4130 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4131 if (m == NULL)
4132 goto error_return;
4133 m->next = NULL;
4134 m->p_type = PT_GNU_EH_FRAME;
4135 m->count = 1;
4136 m->sections[0] = eh_frame_hdr->output_section;
4137
4138 *pm = m;
4139 pm = &m->next;
4140 }
4141
4142 if (elf_stack_flags (abfd))
4143 {
4144 amt = sizeof (struct elf_segment_map);
4145 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4146 if (m == NULL)
4147 goto error_return;
4148 m->next = NULL;
4149 m->p_type = PT_GNU_STACK;
4150 m->p_flags = elf_stack_flags (abfd);
4151 m->p_align = bed->stack_align;
4152 m->p_flags_valid = 1;
4153 m->p_align_valid = m->p_align != 0;
4154 if (info->stacksize > 0)
4155 {
4156 m->p_size = info->stacksize;
4157 m->p_size_valid = 1;
4158 }
4159
4160 *pm = m;
4161 pm = &m->next;
4162 }
4163
4164 if (info != NULL && info->relro)
4165 {
4166 for (m = mfirst; m != NULL; m = m->next)
4167 {
4168 if (m->p_type == PT_LOAD
4169 && m->count != 0
4170 && m->sections[0]->vma >= info->relro_start
4171 && m->sections[0]->vma < info->relro_end)
4172 {
4173 i = m->count;
4174 while (--i != (unsigned) -1)
4175 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4176 == (SEC_LOAD | SEC_HAS_CONTENTS))
4177 break;
4178
4179 if (i == (unsigned) -1)
4180 continue;
4181
4182 if (m->sections[i]->vma + m->sections[i]->size
4183 >= info->relro_end)
4184 break;
4185 }
4186 }
4187
4188 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4189 if (m != NULL)
4190 {
4191 amt = sizeof (struct elf_segment_map);
4192 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4193 if (m == NULL)
4194 goto error_return;
4195 m->next = NULL;
4196 m->p_type = PT_GNU_RELRO;
4197 m->p_flags = PF_R;
4198 m->p_flags_valid = 1;
4199
4200 *pm = m;
4201 pm = &m->next;
4202 }
4203 }
4204
4205 free (sections);
4206 elf_seg_map (abfd) = mfirst;
4207 }
4208
4209 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4210 return FALSE;
4211
4212 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4213 ++count;
4214 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4215
4216 return TRUE;
4217
4218 error_return:
4219 if (sections != NULL)
4220 free (sections);
4221 return FALSE;
4222 }
4223
4224 /* Sort sections by address. */
4225
4226 static int
4227 elf_sort_sections (const void *arg1, const void *arg2)
4228 {
4229 const asection *sec1 = *(const asection **) arg1;
4230 const asection *sec2 = *(const asection **) arg2;
4231 bfd_size_type size1, size2;
4232
4233 /* Sort by LMA first, since this is the address used to
4234 place the section into a segment. */
4235 if (sec1->lma < sec2->lma)
4236 return -1;
4237 else if (sec1->lma > sec2->lma)
4238 return 1;
4239
4240 /* Then sort by VMA. Normally the LMA and the VMA will be
4241 the same, and this will do nothing. */
4242 if (sec1->vma < sec2->vma)
4243 return -1;
4244 else if (sec1->vma > sec2->vma)
4245 return 1;
4246
4247 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4248
4249 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4250
4251 if (TOEND (sec1))
4252 {
4253 if (TOEND (sec2))
4254 {
4255 /* If the indicies are the same, do not return 0
4256 here, but continue to try the next comparison. */
4257 if (sec1->target_index - sec2->target_index != 0)
4258 return sec1->target_index - sec2->target_index;
4259 }
4260 else
4261 return 1;
4262 }
4263 else if (TOEND (sec2))
4264 return -1;
4265
4266 #undef TOEND
4267
4268 /* Sort by size, to put zero sized sections
4269 before others at the same address. */
4270
4271 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4272 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4273
4274 if (size1 < size2)
4275 return -1;
4276 if (size1 > size2)
4277 return 1;
4278
4279 return sec1->target_index - sec2->target_index;
4280 }
4281
4282 /* Ian Lance Taylor writes:
4283
4284 We shouldn't be using % with a negative signed number. That's just
4285 not good. We have to make sure either that the number is not
4286 negative, or that the number has an unsigned type. When the types
4287 are all the same size they wind up as unsigned. When file_ptr is a
4288 larger signed type, the arithmetic winds up as signed long long,
4289 which is wrong.
4290
4291 What we're trying to say here is something like ``increase OFF by
4292 the least amount that will cause it to be equal to the VMA modulo
4293 the page size.'' */
4294 /* In other words, something like:
4295
4296 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4297 off_offset = off % bed->maxpagesize;
4298 if (vma_offset < off_offset)
4299 adjustment = vma_offset + bed->maxpagesize - off_offset;
4300 else
4301 adjustment = vma_offset - off_offset;
4302
4303 which can can be collapsed into the expression below. */
4304
4305 static file_ptr
4306 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4307 {
4308 return ((vma - off) % maxpagesize);
4309 }
4310
4311 static void
4312 print_segment_map (const struct elf_segment_map *m)
4313 {
4314 unsigned int j;
4315 const char *pt = get_segment_type (m->p_type);
4316 char buf[32];
4317
4318 if (pt == NULL)
4319 {
4320 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4321 sprintf (buf, "LOPROC+%7.7x",
4322 (unsigned int) (m->p_type - PT_LOPROC));
4323 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4324 sprintf (buf, "LOOS+%7.7x",
4325 (unsigned int) (m->p_type - PT_LOOS));
4326 else
4327 snprintf (buf, sizeof (buf), "%8.8x",
4328 (unsigned int) m->p_type);
4329 pt = buf;
4330 }
4331 fflush (stdout);
4332 fprintf (stderr, "%s:", pt);
4333 for (j = 0; j < m->count; j++)
4334 fprintf (stderr, " %s", m->sections [j]->name);
4335 putc ('\n',stderr);
4336 fflush (stderr);
4337 }
4338
4339 static bfd_boolean
4340 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4341 {
4342 void *buf;
4343 bfd_boolean ret;
4344
4345 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4346 return FALSE;
4347 buf = bfd_zmalloc (len);
4348 if (buf == NULL)
4349 return FALSE;
4350 ret = bfd_bwrite (buf, len, abfd) == len;
4351 free (buf);
4352 return ret;
4353 }
4354
4355 /* Assign file positions to the sections based on the mapping from
4356 sections to segments. This function also sets up some fields in
4357 the file header. */
4358
4359 static bfd_boolean
4360 assign_file_positions_for_load_sections (bfd *abfd,
4361 struct bfd_link_info *link_info)
4362 {
4363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4364 struct elf_segment_map *m;
4365 Elf_Internal_Phdr *phdrs;
4366 Elf_Internal_Phdr *p;
4367 file_ptr off;
4368 bfd_size_type maxpagesize;
4369 unsigned int alloc;
4370 unsigned int i, j;
4371 bfd_vma header_pad = 0;
4372
4373 if (link_info == NULL
4374 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4375 return FALSE;
4376
4377 alloc = 0;
4378 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4379 {
4380 ++alloc;
4381 if (m->header_size)
4382 header_pad = m->header_size;
4383 }
4384
4385 if (alloc)
4386 {
4387 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4388 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4389 }
4390 else
4391 {
4392 /* PR binutils/12467. */
4393 elf_elfheader (abfd)->e_phoff = 0;
4394 elf_elfheader (abfd)->e_phentsize = 0;
4395 }
4396
4397 elf_elfheader (abfd)->e_phnum = alloc;
4398
4399 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4400 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4401 else
4402 BFD_ASSERT (elf_program_header_size (abfd)
4403 >= alloc * bed->s->sizeof_phdr);
4404
4405 if (alloc == 0)
4406 {
4407 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4408 return TRUE;
4409 }
4410
4411 /* We're writing the size in elf_program_header_size (abfd),
4412 see assign_file_positions_except_relocs, so make sure we have
4413 that amount allocated, with trailing space cleared.
4414 The variable alloc contains the computed need, while
4415 elf_program_header_size (abfd) contains the size used for the
4416 layout.
4417 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4418 where the layout is forced to according to a larger size in the
4419 last iterations for the testcase ld-elf/header. */
4420 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4421 == 0);
4422 phdrs = (Elf_Internal_Phdr *)
4423 bfd_zalloc2 (abfd,
4424 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4425 sizeof (Elf_Internal_Phdr));
4426 elf_tdata (abfd)->phdr = phdrs;
4427 if (phdrs == NULL)
4428 return FALSE;
4429
4430 maxpagesize = 1;
4431 if ((abfd->flags & D_PAGED) != 0)
4432 maxpagesize = bed->maxpagesize;
4433
4434 off = bed->s->sizeof_ehdr;
4435 off += alloc * bed->s->sizeof_phdr;
4436 if (header_pad < (bfd_vma) off)
4437 header_pad = 0;
4438 else
4439 header_pad -= off;
4440 off += header_pad;
4441
4442 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4443 m != NULL;
4444 m = m->next, p++, j++)
4445 {
4446 asection **secpp;
4447 bfd_vma off_adjust;
4448 bfd_boolean no_contents;
4449
4450 /* If elf_segment_map is not from map_sections_to_segments, the
4451 sections may not be correctly ordered. NOTE: sorting should
4452 not be done to the PT_NOTE section of a corefile, which may
4453 contain several pseudo-sections artificially created by bfd.
4454 Sorting these pseudo-sections breaks things badly. */
4455 if (m->count > 1
4456 && !(elf_elfheader (abfd)->e_type == ET_CORE
4457 && m->p_type == PT_NOTE))
4458 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4459 elf_sort_sections);
4460
4461 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4462 number of sections with contents contributing to both p_filesz
4463 and p_memsz, followed by a number of sections with no contents
4464 that just contribute to p_memsz. In this loop, OFF tracks next
4465 available file offset for PT_LOAD and PT_NOTE segments. */
4466 p->p_type = m->p_type;
4467 p->p_flags = m->p_flags;
4468
4469 if (m->count == 0)
4470 p->p_vaddr = 0;
4471 else
4472 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4473
4474 if (m->p_paddr_valid)
4475 p->p_paddr = m->p_paddr;
4476 else if (m->count == 0)
4477 p->p_paddr = 0;
4478 else
4479 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4480
4481 if (p->p_type == PT_LOAD
4482 && (abfd->flags & D_PAGED) != 0)
4483 {
4484 /* p_align in demand paged PT_LOAD segments effectively stores
4485 the maximum page size. When copying an executable with
4486 objcopy, we set m->p_align from the input file. Use this
4487 value for maxpagesize rather than bed->maxpagesize, which
4488 may be different. Note that we use maxpagesize for PT_TLS
4489 segment alignment later in this function, so we are relying
4490 on at least one PT_LOAD segment appearing before a PT_TLS
4491 segment. */
4492 if (m->p_align_valid)
4493 maxpagesize = m->p_align;
4494
4495 p->p_align = maxpagesize;
4496 }
4497 else if (m->p_align_valid)
4498 p->p_align = m->p_align;
4499 else if (m->count == 0)
4500 p->p_align = 1 << bed->s->log_file_align;
4501 else
4502 p->p_align = 0;
4503
4504 no_contents = FALSE;
4505 off_adjust = 0;
4506 if (p->p_type == PT_LOAD
4507 && m->count > 0)
4508 {
4509 bfd_size_type align;
4510 unsigned int align_power = 0;
4511
4512 if (m->p_align_valid)
4513 align = p->p_align;
4514 else
4515 {
4516 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4517 {
4518 unsigned int secalign;
4519
4520 secalign = bfd_get_section_alignment (abfd, *secpp);
4521 if (secalign > align_power)
4522 align_power = secalign;
4523 }
4524 align = (bfd_size_type) 1 << align_power;
4525 if (align < maxpagesize)
4526 align = maxpagesize;
4527 }
4528
4529 for (i = 0; i < m->count; i++)
4530 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4531 /* If we aren't making room for this section, then
4532 it must be SHT_NOBITS regardless of what we've
4533 set via struct bfd_elf_special_section. */
4534 elf_section_type (m->sections[i]) = SHT_NOBITS;
4535
4536 /* Find out whether this segment contains any loadable
4537 sections. */
4538 no_contents = TRUE;
4539 for (i = 0; i < m->count; i++)
4540 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4541 {
4542 no_contents = FALSE;
4543 break;
4544 }
4545
4546 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4547 off += off_adjust;
4548 if (no_contents)
4549 {
4550 /* We shouldn't need to align the segment on disk since
4551 the segment doesn't need file space, but the gABI
4552 arguably requires the alignment and glibc ld.so
4553 checks it. So to comply with the alignment
4554 requirement but not waste file space, we adjust
4555 p_offset for just this segment. (OFF_ADJUST is
4556 subtracted from OFF later.) This may put p_offset
4557 past the end of file, but that shouldn't matter. */
4558 }
4559 else
4560 off_adjust = 0;
4561 }
4562 /* Make sure the .dynamic section is the first section in the
4563 PT_DYNAMIC segment. */
4564 else if (p->p_type == PT_DYNAMIC
4565 && m->count > 1
4566 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4567 {
4568 _bfd_error_handler
4569 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4570 abfd);
4571 bfd_set_error (bfd_error_bad_value);
4572 return FALSE;
4573 }
4574 /* Set the note section type to SHT_NOTE. */
4575 else if (p->p_type == PT_NOTE)
4576 for (i = 0; i < m->count; i++)
4577 elf_section_type (m->sections[i]) = SHT_NOTE;
4578
4579 p->p_offset = 0;
4580 p->p_filesz = 0;
4581 p->p_memsz = 0;
4582
4583 if (m->includes_filehdr)
4584 {
4585 if (!m->p_flags_valid)
4586 p->p_flags |= PF_R;
4587 p->p_filesz = bed->s->sizeof_ehdr;
4588 p->p_memsz = bed->s->sizeof_ehdr;
4589 if (m->count > 0)
4590 {
4591 if (p->p_vaddr < (bfd_vma) off)
4592 {
4593 (*_bfd_error_handler)
4594 (_("%B: Not enough room for program headers, try linking with -N"),
4595 abfd);
4596 bfd_set_error (bfd_error_bad_value);
4597 return FALSE;
4598 }
4599
4600 p->p_vaddr -= off;
4601 if (!m->p_paddr_valid)
4602 p->p_paddr -= off;
4603 }
4604 }
4605
4606 if (m->includes_phdrs)
4607 {
4608 if (!m->p_flags_valid)
4609 p->p_flags |= PF_R;
4610
4611 if (!m->includes_filehdr)
4612 {
4613 p->p_offset = bed->s->sizeof_ehdr;
4614
4615 if (m->count > 0)
4616 {
4617 p->p_vaddr -= off - p->p_offset;
4618 if (!m->p_paddr_valid)
4619 p->p_paddr -= off - p->p_offset;
4620 }
4621 }
4622
4623 p->p_filesz += alloc * bed->s->sizeof_phdr;
4624 p->p_memsz += alloc * bed->s->sizeof_phdr;
4625 if (m->count)
4626 {
4627 p->p_filesz += header_pad;
4628 p->p_memsz += header_pad;
4629 }
4630 }
4631
4632 if (p->p_type == PT_LOAD
4633 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4634 {
4635 if (!m->includes_filehdr && !m->includes_phdrs)
4636 p->p_offset = off;
4637 else
4638 {
4639 file_ptr adjust;
4640
4641 adjust = off - (p->p_offset + p->p_filesz);
4642 if (!no_contents)
4643 p->p_filesz += adjust;
4644 p->p_memsz += adjust;
4645 }
4646 }
4647
4648 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4649 maps. Set filepos for sections in PT_LOAD segments, and in
4650 core files, for sections in PT_NOTE segments.
4651 assign_file_positions_for_non_load_sections will set filepos
4652 for other sections and update p_filesz for other segments. */
4653 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4654 {
4655 asection *sec;
4656 bfd_size_type align;
4657 Elf_Internal_Shdr *this_hdr;
4658
4659 sec = *secpp;
4660 this_hdr = &elf_section_data (sec)->this_hdr;
4661 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4662
4663 if ((p->p_type == PT_LOAD
4664 || p->p_type == PT_TLS)
4665 && (this_hdr->sh_type != SHT_NOBITS
4666 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4667 && ((this_hdr->sh_flags & SHF_TLS) == 0
4668 || p->p_type == PT_TLS))))
4669 {
4670 bfd_vma p_start = p->p_paddr;
4671 bfd_vma p_end = p_start + p->p_memsz;
4672 bfd_vma s_start = sec->lma;
4673 bfd_vma adjust = s_start - p_end;
4674
4675 if (adjust != 0
4676 && (s_start < p_end
4677 || p_end < p_start))
4678 {
4679 (*_bfd_error_handler)
4680 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4681 (unsigned long) s_start, (unsigned long) p_end);
4682 adjust = 0;
4683 sec->lma = p_end;
4684 }
4685 p->p_memsz += adjust;
4686
4687 if (this_hdr->sh_type != SHT_NOBITS)
4688 {
4689 if (p->p_filesz + adjust < p->p_memsz)
4690 {
4691 /* We have a PROGBITS section following NOBITS ones.
4692 Allocate file space for the NOBITS section(s) and
4693 zero it. */
4694 adjust = p->p_memsz - p->p_filesz;
4695 if (!write_zeros (abfd, off, adjust))
4696 return FALSE;
4697 }
4698 off += adjust;
4699 p->p_filesz += adjust;
4700 }
4701 }
4702
4703 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4704 {
4705 /* The section at i == 0 is the one that actually contains
4706 everything. */
4707 if (i == 0)
4708 {
4709 this_hdr->sh_offset = sec->filepos = off;
4710 off += this_hdr->sh_size;
4711 p->p_filesz = this_hdr->sh_size;
4712 p->p_memsz = 0;
4713 p->p_align = 1;
4714 }
4715 else
4716 {
4717 /* The rest are fake sections that shouldn't be written. */
4718 sec->filepos = 0;
4719 sec->size = 0;
4720 sec->flags = 0;
4721 continue;
4722 }
4723 }
4724 else
4725 {
4726 if (p->p_type == PT_LOAD)
4727 {
4728 this_hdr->sh_offset = sec->filepos = off;
4729 if (this_hdr->sh_type != SHT_NOBITS)
4730 off += this_hdr->sh_size;
4731 }
4732 else if (this_hdr->sh_type == SHT_NOBITS
4733 && (this_hdr->sh_flags & SHF_TLS) != 0
4734 && this_hdr->sh_offset == 0)
4735 {
4736 /* This is a .tbss section that didn't get a PT_LOAD.
4737 (See _bfd_elf_map_sections_to_segments "Create a
4738 final PT_LOAD".) Set sh_offset to the value it
4739 would have if we had created a zero p_filesz and
4740 p_memsz PT_LOAD header for the section. This
4741 also makes the PT_TLS header have the same
4742 p_offset value. */
4743 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4744 off, align);
4745 this_hdr->sh_offset = sec->filepos = off + adjust;
4746 }
4747
4748 if (this_hdr->sh_type != SHT_NOBITS)
4749 {
4750 p->p_filesz += this_hdr->sh_size;
4751 /* A load section without SHF_ALLOC is something like
4752 a note section in a PT_NOTE segment. These take
4753 file space but are not loaded into memory. */
4754 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4755 p->p_memsz += this_hdr->sh_size;
4756 }
4757 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4758 {
4759 if (p->p_type == PT_TLS)
4760 p->p_memsz += this_hdr->sh_size;
4761
4762 /* .tbss is special. It doesn't contribute to p_memsz of
4763 normal segments. */
4764 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4765 p->p_memsz += this_hdr->sh_size;
4766 }
4767
4768 if (align > p->p_align
4769 && !m->p_align_valid
4770 && (p->p_type != PT_LOAD
4771 || (abfd->flags & D_PAGED) == 0))
4772 p->p_align = align;
4773 }
4774
4775 if (!m->p_flags_valid)
4776 {
4777 p->p_flags |= PF_R;
4778 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4779 p->p_flags |= PF_X;
4780 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4781 p->p_flags |= PF_W;
4782 }
4783 }
4784 off -= off_adjust;
4785
4786 /* Check that all sections are in a PT_LOAD segment.
4787 Don't check funky gdb generated core files. */
4788 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4789 {
4790 bfd_boolean check_vma = TRUE;
4791
4792 for (i = 1; i < m->count; i++)
4793 if (m->sections[i]->vma == m->sections[i - 1]->vma
4794 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4795 ->this_hdr), p) != 0
4796 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4797 ->this_hdr), p) != 0)
4798 {
4799 /* Looks like we have overlays packed into the segment. */
4800 check_vma = FALSE;
4801 break;
4802 }
4803
4804 for (i = 0; i < m->count; i++)
4805 {
4806 Elf_Internal_Shdr *this_hdr;
4807 asection *sec;
4808
4809 sec = m->sections[i];
4810 this_hdr = &(elf_section_data(sec)->this_hdr);
4811 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4812 && !ELF_TBSS_SPECIAL (this_hdr, p))
4813 {
4814 (*_bfd_error_handler)
4815 (_("%B: section `%A' can't be allocated in segment %d"),
4816 abfd, sec, j);
4817 print_segment_map (m);
4818 }
4819 }
4820 }
4821 }
4822
4823 elf_next_file_pos (abfd) = off;
4824 return TRUE;
4825 }
4826
4827 /* Assign file positions for the other sections. */
4828
4829 static bfd_boolean
4830 assign_file_positions_for_non_load_sections (bfd *abfd,
4831 struct bfd_link_info *link_info)
4832 {
4833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4834 Elf_Internal_Shdr **i_shdrpp;
4835 Elf_Internal_Shdr **hdrpp;
4836 Elf_Internal_Phdr *phdrs;
4837 Elf_Internal_Phdr *p;
4838 struct elf_segment_map *m;
4839 struct elf_segment_map *hdrs_segment;
4840 bfd_vma filehdr_vaddr, filehdr_paddr;
4841 bfd_vma phdrs_vaddr, phdrs_paddr;
4842 file_ptr off;
4843 unsigned int num_sec;
4844 unsigned int i;
4845 unsigned int count;
4846
4847 i_shdrpp = elf_elfsections (abfd);
4848 num_sec = elf_numsections (abfd);
4849 off = elf_next_file_pos (abfd);
4850 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4851 {
4852 Elf_Internal_Shdr *hdr;
4853
4854 hdr = *hdrpp;
4855 if (hdr->bfd_section != NULL
4856 && (hdr->bfd_section->filepos != 0
4857 || (hdr->sh_type == SHT_NOBITS
4858 && hdr->contents == NULL)))
4859 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4860 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4861 {
4862 if (hdr->sh_size != 0)
4863 (*_bfd_error_handler)
4864 (_("%B: warning: allocated section `%s' not in segment"),
4865 abfd,
4866 (hdr->bfd_section == NULL
4867 ? "*unknown*"
4868 : hdr->bfd_section->name));
4869 /* We don't need to page align empty sections. */
4870 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4871 off += vma_page_aligned_bias (hdr->sh_addr, off,
4872 bed->maxpagesize);
4873 else
4874 off += vma_page_aligned_bias (hdr->sh_addr, off,
4875 hdr->sh_addralign);
4876 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4877 FALSE);
4878 }
4879 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4880 && hdr->bfd_section == NULL)
4881 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4882 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4883 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4884 hdr->sh_offset = -1;
4885 else
4886 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4887 }
4888
4889 /* Now that we have set the section file positions, we can set up
4890 the file positions for the non PT_LOAD segments. */
4891 count = 0;
4892 filehdr_vaddr = 0;
4893 filehdr_paddr = 0;
4894 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4895 phdrs_paddr = 0;
4896 hdrs_segment = NULL;
4897 phdrs = elf_tdata (abfd)->phdr;
4898 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4899 {
4900 ++count;
4901 if (p->p_type != PT_LOAD)
4902 continue;
4903
4904 if (m->includes_filehdr)
4905 {
4906 filehdr_vaddr = p->p_vaddr;
4907 filehdr_paddr = p->p_paddr;
4908 }
4909 if (m->includes_phdrs)
4910 {
4911 phdrs_vaddr = p->p_vaddr;
4912 phdrs_paddr = p->p_paddr;
4913 if (m->includes_filehdr)
4914 {
4915 hdrs_segment = m;
4916 phdrs_vaddr += bed->s->sizeof_ehdr;
4917 phdrs_paddr += bed->s->sizeof_ehdr;
4918 }
4919 }
4920 }
4921
4922 if (hdrs_segment != NULL && link_info != NULL)
4923 {
4924 /* There is a segment that contains both the file headers and the
4925 program headers, so provide a symbol __ehdr_start pointing there.
4926 A program can use this to examine itself robustly. */
4927
4928 struct elf_link_hash_entry *hash
4929 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4930 FALSE, FALSE, TRUE);
4931 /* If the symbol was referenced and not defined, define it. */
4932 if (hash != NULL
4933 && (hash->root.type == bfd_link_hash_new
4934 || hash->root.type == bfd_link_hash_undefined
4935 || hash->root.type == bfd_link_hash_undefweak
4936 || hash->root.type == bfd_link_hash_common))
4937 {
4938 asection *s = NULL;
4939 if (hdrs_segment->count != 0)
4940 /* The segment contains sections, so use the first one. */
4941 s = hdrs_segment->sections[0];
4942 else
4943 /* Use the first (i.e. lowest-addressed) section in any segment. */
4944 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4945 if (m->count != 0)
4946 {
4947 s = m->sections[0];
4948 break;
4949 }
4950
4951 if (s != NULL)
4952 {
4953 hash->root.u.def.value = filehdr_vaddr - s->vma;
4954 hash->root.u.def.section = s;
4955 }
4956 else
4957 {
4958 hash->root.u.def.value = filehdr_vaddr;
4959 hash->root.u.def.section = bfd_abs_section_ptr;
4960 }
4961
4962 hash->root.type = bfd_link_hash_defined;
4963 hash->def_regular = 1;
4964 hash->non_elf = 0;
4965 }
4966 }
4967
4968 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4969 {
4970 if (p->p_type == PT_GNU_RELRO)
4971 {
4972 const Elf_Internal_Phdr *lp;
4973 struct elf_segment_map *lm;
4974
4975 if (link_info != NULL)
4976 {
4977 /* During linking the range of the RELRO segment is passed
4978 in link_info. */
4979 for (lm = elf_seg_map (abfd), lp = phdrs;
4980 lm != NULL;
4981 lm = lm->next, lp++)
4982 {
4983 if (lp->p_type == PT_LOAD
4984 && lp->p_vaddr < link_info->relro_end
4985 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4986 && lm->count != 0
4987 && lm->sections[0]->vma >= link_info->relro_start)
4988 break;
4989 }
4990
4991 /* PR ld/14207. If the RELRO segment doesn't fit in the
4992 LOAD segment, it should be removed. */
4993 BFD_ASSERT (lm != NULL);
4994 }
4995 else
4996 {
4997 /* Otherwise we are copying an executable or shared
4998 library, but we need to use the same linker logic. */
4999 for (lp = phdrs; lp < phdrs + count; ++lp)
5000 {
5001 if (lp->p_type == PT_LOAD
5002 && lp->p_paddr == p->p_paddr)
5003 break;
5004 }
5005 }
5006
5007 if (lp < phdrs + count)
5008 {
5009 p->p_vaddr = lp->p_vaddr;
5010 p->p_paddr = lp->p_paddr;
5011 p->p_offset = lp->p_offset;
5012 if (link_info != NULL)
5013 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5014 else if (m->p_size_valid)
5015 p->p_filesz = m->p_size;
5016 else
5017 abort ();
5018 p->p_memsz = p->p_filesz;
5019 /* Preserve the alignment and flags if they are valid. The
5020 gold linker generates RW/4 for the PT_GNU_RELRO section.
5021 It is better for objcopy/strip to honor these attributes
5022 otherwise gdb will choke when using separate debug files.
5023 */
5024 if (!m->p_align_valid)
5025 p->p_align = 1;
5026 if (!m->p_flags_valid)
5027 p->p_flags = (lp->p_flags & ~PF_W);
5028 }
5029 else
5030 {
5031 memset (p, 0, sizeof *p);
5032 p->p_type = PT_NULL;
5033 }
5034 }
5035 else if (p->p_type == PT_GNU_STACK)
5036 {
5037 if (m->p_size_valid)
5038 p->p_memsz = m->p_size;
5039 }
5040 else if (m->count != 0)
5041 {
5042 if (p->p_type != PT_LOAD
5043 && (p->p_type != PT_NOTE
5044 || bfd_get_format (abfd) != bfd_core))
5045 {
5046 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5047
5048 p->p_filesz = 0;
5049 p->p_offset = m->sections[0]->filepos;
5050 for (i = m->count; i-- != 0;)
5051 {
5052 asection *sect = m->sections[i];
5053 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5054 if (hdr->sh_type != SHT_NOBITS)
5055 {
5056 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5057 + hdr->sh_size);
5058 break;
5059 }
5060 }
5061 }
5062 }
5063 else if (m->includes_filehdr)
5064 {
5065 p->p_vaddr = filehdr_vaddr;
5066 if (! m->p_paddr_valid)
5067 p->p_paddr = filehdr_paddr;
5068 }
5069 else if (m->includes_phdrs)
5070 {
5071 p->p_vaddr = phdrs_vaddr;
5072 if (! m->p_paddr_valid)
5073 p->p_paddr = phdrs_paddr;
5074 }
5075 }
5076
5077 elf_next_file_pos (abfd) = off;
5078
5079 return TRUE;
5080 }
5081
5082 /* Work out the file positions of all the sections. This is called by
5083 _bfd_elf_compute_section_file_positions. All the section sizes and
5084 VMAs must be known before this is called.
5085
5086 Reloc sections come in two flavours: Those processed specially as
5087 "side-channel" data attached to a section to which they apply, and
5088 those that bfd doesn't process as relocations. The latter sort are
5089 stored in a normal bfd section by bfd_section_from_shdr. We don't
5090 consider the former sort here, unless they form part of the loadable
5091 image. Reloc sections not assigned here will be handled later by
5092 assign_file_positions_for_relocs.
5093
5094 We also don't set the positions of the .symtab and .strtab here. */
5095
5096 static bfd_boolean
5097 assign_file_positions_except_relocs (bfd *abfd,
5098 struct bfd_link_info *link_info)
5099 {
5100 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5101 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5102 file_ptr off;
5103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5104
5105 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5106 && bfd_get_format (abfd) != bfd_core)
5107 {
5108 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5109 unsigned int num_sec = elf_numsections (abfd);
5110 Elf_Internal_Shdr **hdrpp;
5111 unsigned int i;
5112
5113 /* Start after the ELF header. */
5114 off = i_ehdrp->e_ehsize;
5115
5116 /* We are not creating an executable, which means that we are
5117 not creating a program header, and that the actual order of
5118 the sections in the file is unimportant. */
5119 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5120 {
5121 Elf_Internal_Shdr *hdr;
5122
5123 hdr = *hdrpp;
5124 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5125 && hdr->bfd_section == NULL)
5126 || i == elf_onesymtab (abfd)
5127 || i == elf_symtab_shndx (abfd)
5128 || i == elf_strtab_sec (abfd))
5129 {
5130 hdr->sh_offset = -1;
5131 }
5132 else
5133 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5134 }
5135 }
5136 else
5137 {
5138 unsigned int alloc;
5139
5140 /* Assign file positions for the loaded sections based on the
5141 assignment of sections to segments. */
5142 if (!assign_file_positions_for_load_sections (abfd, link_info))
5143 return FALSE;
5144
5145 /* And for non-load sections. */
5146 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5147 return FALSE;
5148
5149 if (bed->elf_backend_modify_program_headers != NULL)
5150 {
5151 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5152 return FALSE;
5153 }
5154
5155 /* Write out the program headers. */
5156 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5157 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5158 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5159 return FALSE;
5160
5161 off = elf_next_file_pos (abfd);
5162 }
5163
5164 /* Place the section headers. */
5165 off = align_file_position (off, 1 << bed->s->log_file_align);
5166 i_ehdrp->e_shoff = off;
5167 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5168
5169 elf_next_file_pos (abfd) = off;
5170
5171 return TRUE;
5172 }
5173
5174 static bfd_boolean
5175 prep_headers (bfd *abfd)
5176 {
5177 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5178 struct elf_strtab_hash *shstrtab;
5179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5180
5181 i_ehdrp = elf_elfheader (abfd);
5182
5183 shstrtab = _bfd_elf_strtab_init ();
5184 if (shstrtab == NULL)
5185 return FALSE;
5186
5187 elf_shstrtab (abfd) = shstrtab;
5188
5189 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5190 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5191 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5192 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5193
5194 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5195 i_ehdrp->e_ident[EI_DATA] =
5196 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5197 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5198
5199 if ((abfd->flags & DYNAMIC) != 0)
5200 i_ehdrp->e_type = ET_DYN;
5201 else if ((abfd->flags & EXEC_P) != 0)
5202 i_ehdrp->e_type = ET_EXEC;
5203 else if (bfd_get_format (abfd) == bfd_core)
5204 i_ehdrp->e_type = ET_CORE;
5205 else
5206 i_ehdrp->e_type = ET_REL;
5207
5208 switch (bfd_get_arch (abfd))
5209 {
5210 case bfd_arch_unknown:
5211 i_ehdrp->e_machine = EM_NONE;
5212 break;
5213
5214 /* There used to be a long list of cases here, each one setting
5215 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5216 in the corresponding bfd definition. To avoid duplication,
5217 the switch was removed. Machines that need special handling
5218 can generally do it in elf_backend_final_write_processing(),
5219 unless they need the information earlier than the final write.
5220 Such need can generally be supplied by replacing the tests for
5221 e_machine with the conditions used to determine it. */
5222 default:
5223 i_ehdrp->e_machine = bed->elf_machine_code;
5224 }
5225
5226 i_ehdrp->e_version = bed->s->ev_current;
5227 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5228
5229 /* No program header, for now. */
5230 i_ehdrp->e_phoff = 0;
5231 i_ehdrp->e_phentsize = 0;
5232 i_ehdrp->e_phnum = 0;
5233
5234 /* Each bfd section is section header entry. */
5235 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5236 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5237
5238 /* If we're building an executable, we'll need a program header table. */
5239 if (abfd->flags & EXEC_P)
5240 /* It all happens later. */
5241 ;
5242 else
5243 {
5244 i_ehdrp->e_phentsize = 0;
5245 i_ehdrp->e_phoff = 0;
5246 }
5247
5248 elf_tdata (abfd)->symtab_hdr.sh_name =
5249 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5250 elf_tdata (abfd)->strtab_hdr.sh_name =
5251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5252 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5253 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5254 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5255 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5256 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5257 return FALSE;
5258
5259 return TRUE;
5260 }
5261
5262 /* Assign file positions for all the reloc sections which are not part
5263 of the loadable file image. */
5264
5265 void
5266 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5267 {
5268 file_ptr off;
5269 unsigned int i, num_sec;
5270 Elf_Internal_Shdr **shdrpp;
5271
5272 off = elf_next_file_pos (abfd);
5273
5274 num_sec = elf_numsections (abfd);
5275 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5276 {
5277 Elf_Internal_Shdr *shdrp;
5278
5279 shdrp = *shdrpp;
5280 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5281 && shdrp->sh_offset == -1)
5282 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5283 }
5284
5285 elf_next_file_pos (abfd) = off;
5286 }
5287
5288 bfd_boolean
5289 _bfd_elf_write_object_contents (bfd *abfd)
5290 {
5291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5292 Elf_Internal_Shdr **i_shdrp;
5293 bfd_boolean failed;
5294 unsigned int count, num_sec;
5295 struct elf_obj_tdata *t;
5296
5297 if (! abfd->output_has_begun
5298 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5299 return FALSE;
5300
5301 i_shdrp = elf_elfsections (abfd);
5302
5303 failed = FALSE;
5304 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5305 if (failed)
5306 return FALSE;
5307
5308 _bfd_elf_assign_file_positions_for_relocs (abfd);
5309
5310 /* After writing the headers, we need to write the sections too... */
5311 num_sec = elf_numsections (abfd);
5312 for (count = 1; count < num_sec; count++)
5313 {
5314 if (bed->elf_backend_section_processing)
5315 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5316 if (i_shdrp[count]->contents)
5317 {
5318 bfd_size_type amt = i_shdrp[count]->sh_size;
5319
5320 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5321 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5322 return FALSE;
5323 }
5324 }
5325
5326 /* Write out the section header names. */
5327 t = elf_tdata (abfd);
5328 if (elf_shstrtab (abfd) != NULL
5329 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5330 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5331 return FALSE;
5332
5333 if (bed->elf_backend_final_write_processing)
5334 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5335
5336 if (!bed->s->write_shdrs_and_ehdr (abfd))
5337 return FALSE;
5338
5339 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5340 if (t->o->build_id.after_write_object_contents != NULL)
5341 return (*t->o->build_id.after_write_object_contents) (abfd);
5342
5343 return TRUE;
5344 }
5345
5346 bfd_boolean
5347 _bfd_elf_write_corefile_contents (bfd *abfd)
5348 {
5349 /* Hopefully this can be done just like an object file. */
5350 return _bfd_elf_write_object_contents (abfd);
5351 }
5352
5353 /* Given a section, search the header to find them. */
5354
5355 unsigned int
5356 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5357 {
5358 const struct elf_backend_data *bed;
5359 unsigned int sec_index;
5360
5361 if (elf_section_data (asect) != NULL
5362 && elf_section_data (asect)->this_idx != 0)
5363 return elf_section_data (asect)->this_idx;
5364
5365 if (bfd_is_abs_section (asect))
5366 sec_index = SHN_ABS;
5367 else if (bfd_is_com_section (asect))
5368 sec_index = SHN_COMMON;
5369 else if (bfd_is_und_section (asect))
5370 sec_index = SHN_UNDEF;
5371 else
5372 sec_index = SHN_BAD;
5373
5374 bed = get_elf_backend_data (abfd);
5375 if (bed->elf_backend_section_from_bfd_section)
5376 {
5377 int retval = sec_index;
5378
5379 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5380 return retval;
5381 }
5382
5383 if (sec_index == SHN_BAD)
5384 bfd_set_error (bfd_error_nonrepresentable_section);
5385
5386 return sec_index;
5387 }
5388
5389 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5390 on error. */
5391
5392 int
5393 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5394 {
5395 asymbol *asym_ptr = *asym_ptr_ptr;
5396 int idx;
5397 flagword flags = asym_ptr->flags;
5398
5399 /* When gas creates relocations against local labels, it creates its
5400 own symbol for the section, but does put the symbol into the
5401 symbol chain, so udata is 0. When the linker is generating
5402 relocatable output, this section symbol may be for one of the
5403 input sections rather than the output section. */
5404 if (asym_ptr->udata.i == 0
5405 && (flags & BSF_SECTION_SYM)
5406 && asym_ptr->section)
5407 {
5408 asection *sec;
5409 int indx;
5410
5411 sec = asym_ptr->section;
5412 if (sec->owner != abfd && sec->output_section != NULL)
5413 sec = sec->output_section;
5414 if (sec->owner == abfd
5415 && (indx = sec->index) < elf_num_section_syms (abfd)
5416 && elf_section_syms (abfd)[indx] != NULL)
5417 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5418 }
5419
5420 idx = asym_ptr->udata.i;
5421
5422 if (idx == 0)
5423 {
5424 /* This case can occur when using --strip-symbol on a symbol
5425 which is used in a relocation entry. */
5426 (*_bfd_error_handler)
5427 (_("%B: symbol `%s' required but not present"),
5428 abfd, bfd_asymbol_name (asym_ptr));
5429 bfd_set_error (bfd_error_no_symbols);
5430 return -1;
5431 }
5432
5433 #if DEBUG & 4
5434 {
5435 fprintf (stderr,
5436 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5437 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5438 fflush (stderr);
5439 }
5440 #endif
5441
5442 return idx;
5443 }
5444
5445 /* Rewrite program header information. */
5446
5447 static bfd_boolean
5448 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5449 {
5450 Elf_Internal_Ehdr *iehdr;
5451 struct elf_segment_map *map;
5452 struct elf_segment_map *map_first;
5453 struct elf_segment_map **pointer_to_map;
5454 Elf_Internal_Phdr *segment;
5455 asection *section;
5456 unsigned int i;
5457 unsigned int num_segments;
5458 bfd_boolean phdr_included = FALSE;
5459 bfd_boolean p_paddr_valid;
5460 bfd_vma maxpagesize;
5461 struct elf_segment_map *phdr_adjust_seg = NULL;
5462 unsigned int phdr_adjust_num = 0;
5463 const struct elf_backend_data *bed;
5464
5465 bed = get_elf_backend_data (ibfd);
5466 iehdr = elf_elfheader (ibfd);
5467
5468 map_first = NULL;
5469 pointer_to_map = &map_first;
5470
5471 num_segments = elf_elfheader (ibfd)->e_phnum;
5472 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5473
5474 /* Returns the end address of the segment + 1. */
5475 #define SEGMENT_END(segment, start) \
5476 (start + (segment->p_memsz > segment->p_filesz \
5477 ? segment->p_memsz : segment->p_filesz))
5478
5479 #define SECTION_SIZE(section, segment) \
5480 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5481 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5482 ? section->size : 0)
5483
5484 /* Returns TRUE if the given section is contained within
5485 the given segment. VMA addresses are compared. */
5486 #define IS_CONTAINED_BY_VMA(section, segment) \
5487 (section->vma >= segment->p_vaddr \
5488 && (section->vma + SECTION_SIZE (section, segment) \
5489 <= (SEGMENT_END (segment, segment->p_vaddr))))
5490
5491 /* Returns TRUE if the given section is contained within
5492 the given segment. LMA addresses are compared. */
5493 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5494 (section->lma >= base \
5495 && (section->lma + SECTION_SIZE (section, segment) \
5496 <= SEGMENT_END (segment, base)))
5497
5498 /* Handle PT_NOTE segment. */
5499 #define IS_NOTE(p, s) \
5500 (p->p_type == PT_NOTE \
5501 && elf_section_type (s) == SHT_NOTE \
5502 && (bfd_vma) s->filepos >= p->p_offset \
5503 && ((bfd_vma) s->filepos + s->size \
5504 <= p->p_offset + p->p_filesz))
5505
5506 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5507 etc. */
5508 #define IS_COREFILE_NOTE(p, s) \
5509 (IS_NOTE (p, s) \
5510 && bfd_get_format (ibfd) == bfd_core \
5511 && s->vma == 0 \
5512 && s->lma == 0)
5513
5514 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5515 linker, which generates a PT_INTERP section with p_vaddr and
5516 p_memsz set to 0. */
5517 #define IS_SOLARIS_PT_INTERP(p, s) \
5518 (p->p_vaddr == 0 \
5519 && p->p_paddr == 0 \
5520 && p->p_memsz == 0 \
5521 && p->p_filesz > 0 \
5522 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5523 && s->size > 0 \
5524 && (bfd_vma) s->filepos >= p->p_offset \
5525 && ((bfd_vma) s->filepos + s->size \
5526 <= p->p_offset + p->p_filesz))
5527
5528 /* Decide if the given section should be included in the given segment.
5529 A section will be included if:
5530 1. It is within the address space of the segment -- we use the LMA
5531 if that is set for the segment and the VMA otherwise,
5532 2. It is an allocated section or a NOTE section in a PT_NOTE
5533 segment.
5534 3. There is an output section associated with it,
5535 4. The section has not already been allocated to a previous segment.
5536 5. PT_GNU_STACK segments do not include any sections.
5537 6. PT_TLS segment includes only SHF_TLS sections.
5538 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5539 8. PT_DYNAMIC should not contain empty sections at the beginning
5540 (with the possible exception of .dynamic). */
5541 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5542 ((((segment->p_paddr \
5543 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5544 : IS_CONTAINED_BY_VMA (section, segment)) \
5545 && (section->flags & SEC_ALLOC) != 0) \
5546 || IS_NOTE (segment, section)) \
5547 && segment->p_type != PT_GNU_STACK \
5548 && (segment->p_type != PT_TLS \
5549 || (section->flags & SEC_THREAD_LOCAL)) \
5550 && (segment->p_type == PT_LOAD \
5551 || segment->p_type == PT_TLS \
5552 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5553 && (segment->p_type != PT_DYNAMIC \
5554 || SECTION_SIZE (section, segment) > 0 \
5555 || (segment->p_paddr \
5556 ? segment->p_paddr != section->lma \
5557 : segment->p_vaddr != section->vma) \
5558 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5559 == 0)) \
5560 && !section->segment_mark)
5561
5562 /* If the output section of a section in the input segment is NULL,
5563 it is removed from the corresponding output segment. */
5564 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5565 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5566 && section->output_section != NULL)
5567
5568 /* Returns TRUE iff seg1 starts after the end of seg2. */
5569 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5570 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5571
5572 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5573 their VMA address ranges and their LMA address ranges overlap.
5574 It is possible to have overlapping VMA ranges without overlapping LMA
5575 ranges. RedBoot images for example can have both .data and .bss mapped
5576 to the same VMA range, but with the .data section mapped to a different
5577 LMA. */
5578 #define SEGMENT_OVERLAPS(seg1, seg2) \
5579 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5580 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5581 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5582 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5583
5584 /* Initialise the segment mark field. */
5585 for (section = ibfd->sections; section != NULL; section = section->next)
5586 section->segment_mark = FALSE;
5587
5588 /* The Solaris linker creates program headers in which all the
5589 p_paddr fields are zero. When we try to objcopy or strip such a
5590 file, we get confused. Check for this case, and if we find it
5591 don't set the p_paddr_valid fields. */
5592 p_paddr_valid = FALSE;
5593 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5594 i < num_segments;
5595 i++, segment++)
5596 if (segment->p_paddr != 0)
5597 {
5598 p_paddr_valid = TRUE;
5599 break;
5600 }
5601
5602 /* Scan through the segments specified in the program header
5603 of the input BFD. For this first scan we look for overlaps
5604 in the loadable segments. These can be created by weird
5605 parameters to objcopy. Also, fix some solaris weirdness. */
5606 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5607 i < num_segments;
5608 i++, segment++)
5609 {
5610 unsigned int j;
5611 Elf_Internal_Phdr *segment2;
5612
5613 if (segment->p_type == PT_INTERP)
5614 for (section = ibfd->sections; section; section = section->next)
5615 if (IS_SOLARIS_PT_INTERP (segment, section))
5616 {
5617 /* Mininal change so that the normal section to segment
5618 assignment code will work. */
5619 segment->p_vaddr = section->vma;
5620 break;
5621 }
5622
5623 if (segment->p_type != PT_LOAD)
5624 {
5625 /* Remove PT_GNU_RELRO segment. */
5626 if (segment->p_type == PT_GNU_RELRO)
5627 segment->p_type = PT_NULL;
5628 continue;
5629 }
5630
5631 /* Determine if this segment overlaps any previous segments. */
5632 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5633 {
5634 bfd_signed_vma extra_length;
5635
5636 if (segment2->p_type != PT_LOAD
5637 || !SEGMENT_OVERLAPS (segment, segment2))
5638 continue;
5639
5640 /* Merge the two segments together. */
5641 if (segment2->p_vaddr < segment->p_vaddr)
5642 {
5643 /* Extend SEGMENT2 to include SEGMENT and then delete
5644 SEGMENT. */
5645 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5646 - SEGMENT_END (segment2, segment2->p_vaddr));
5647
5648 if (extra_length > 0)
5649 {
5650 segment2->p_memsz += extra_length;
5651 segment2->p_filesz += extra_length;
5652 }
5653
5654 segment->p_type = PT_NULL;
5655
5656 /* Since we have deleted P we must restart the outer loop. */
5657 i = 0;
5658 segment = elf_tdata (ibfd)->phdr;
5659 break;
5660 }
5661 else
5662 {
5663 /* Extend SEGMENT to include SEGMENT2 and then delete
5664 SEGMENT2. */
5665 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5666 - SEGMENT_END (segment, segment->p_vaddr));
5667
5668 if (extra_length > 0)
5669 {
5670 segment->p_memsz += extra_length;
5671 segment->p_filesz += extra_length;
5672 }
5673
5674 segment2->p_type = PT_NULL;
5675 }
5676 }
5677 }
5678
5679 /* The second scan attempts to assign sections to segments. */
5680 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5681 i < num_segments;
5682 i++, segment++)
5683 {
5684 unsigned int section_count;
5685 asection **sections;
5686 asection *output_section;
5687 unsigned int isec;
5688 bfd_vma matching_lma;
5689 bfd_vma suggested_lma;
5690 unsigned int j;
5691 bfd_size_type amt;
5692 asection *first_section;
5693 bfd_boolean first_matching_lma;
5694 bfd_boolean first_suggested_lma;
5695
5696 if (segment->p_type == PT_NULL)
5697 continue;
5698
5699 first_section = NULL;
5700 /* Compute how many sections might be placed into this segment. */
5701 for (section = ibfd->sections, section_count = 0;
5702 section != NULL;
5703 section = section->next)
5704 {
5705 /* Find the first section in the input segment, which may be
5706 removed from the corresponding output segment. */
5707 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5708 {
5709 if (first_section == NULL)
5710 first_section = section;
5711 if (section->output_section != NULL)
5712 ++section_count;
5713 }
5714 }
5715
5716 /* Allocate a segment map big enough to contain
5717 all of the sections we have selected. */
5718 amt = sizeof (struct elf_segment_map);
5719 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5720 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5721 if (map == NULL)
5722 return FALSE;
5723
5724 /* Initialise the fields of the segment map. Default to
5725 using the physical address of the segment in the input BFD. */
5726 map->next = NULL;
5727 map->p_type = segment->p_type;
5728 map->p_flags = segment->p_flags;
5729 map->p_flags_valid = 1;
5730
5731 /* If the first section in the input segment is removed, there is
5732 no need to preserve segment physical address in the corresponding
5733 output segment. */
5734 if (!first_section || first_section->output_section != NULL)
5735 {
5736 map->p_paddr = segment->p_paddr;
5737 map->p_paddr_valid = p_paddr_valid;
5738 }
5739
5740 /* Determine if this segment contains the ELF file header
5741 and if it contains the program headers themselves. */
5742 map->includes_filehdr = (segment->p_offset == 0
5743 && segment->p_filesz >= iehdr->e_ehsize);
5744 map->includes_phdrs = 0;
5745
5746 if (!phdr_included || segment->p_type != PT_LOAD)
5747 {
5748 map->includes_phdrs =
5749 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5750 && (segment->p_offset + segment->p_filesz
5751 >= ((bfd_vma) iehdr->e_phoff
5752 + iehdr->e_phnum * iehdr->e_phentsize)));
5753
5754 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5755 phdr_included = TRUE;
5756 }
5757
5758 if (section_count == 0)
5759 {
5760 /* Special segments, such as the PT_PHDR segment, may contain
5761 no sections, but ordinary, loadable segments should contain
5762 something. They are allowed by the ELF spec however, so only
5763 a warning is produced. */
5764 if (segment->p_type == PT_LOAD)
5765 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5766 " detected, is this intentional ?\n"),
5767 ibfd);
5768
5769 map->count = 0;
5770 *pointer_to_map = map;
5771 pointer_to_map = &map->next;
5772
5773 continue;
5774 }
5775
5776 /* Now scan the sections in the input BFD again and attempt
5777 to add their corresponding output sections to the segment map.
5778 The problem here is how to handle an output section which has
5779 been moved (ie had its LMA changed). There are four possibilities:
5780
5781 1. None of the sections have been moved.
5782 In this case we can continue to use the segment LMA from the
5783 input BFD.
5784
5785 2. All of the sections have been moved by the same amount.
5786 In this case we can change the segment's LMA to match the LMA
5787 of the first section.
5788
5789 3. Some of the sections have been moved, others have not.
5790 In this case those sections which have not been moved can be
5791 placed in the current segment which will have to have its size,
5792 and possibly its LMA changed, and a new segment or segments will
5793 have to be created to contain the other sections.
5794
5795 4. The sections have been moved, but not by the same amount.
5796 In this case we can change the segment's LMA to match the LMA
5797 of the first section and we will have to create a new segment
5798 or segments to contain the other sections.
5799
5800 In order to save time, we allocate an array to hold the section
5801 pointers that we are interested in. As these sections get assigned
5802 to a segment, they are removed from this array. */
5803
5804 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5805 if (sections == NULL)
5806 return FALSE;
5807
5808 /* Step One: Scan for segment vs section LMA conflicts.
5809 Also add the sections to the section array allocated above.
5810 Also add the sections to the current segment. In the common
5811 case, where the sections have not been moved, this means that
5812 we have completely filled the segment, and there is nothing
5813 more to do. */
5814 isec = 0;
5815 matching_lma = 0;
5816 suggested_lma = 0;
5817 first_matching_lma = TRUE;
5818 first_suggested_lma = TRUE;
5819
5820 for (section = ibfd->sections;
5821 section != NULL;
5822 section = section->next)
5823 if (section == first_section)
5824 break;
5825
5826 for (j = 0; section != NULL; section = section->next)
5827 {
5828 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5829 {
5830 output_section = section->output_section;
5831
5832 sections[j++] = section;
5833
5834 /* The Solaris native linker always sets p_paddr to 0.
5835 We try to catch that case here, and set it to the
5836 correct value. Note - some backends require that
5837 p_paddr be left as zero. */
5838 if (!p_paddr_valid
5839 && segment->p_vaddr != 0
5840 && !bed->want_p_paddr_set_to_zero
5841 && isec == 0
5842 && output_section->lma != 0
5843 && output_section->vma == (segment->p_vaddr
5844 + (map->includes_filehdr
5845 ? iehdr->e_ehsize
5846 : 0)
5847 + (map->includes_phdrs
5848 ? (iehdr->e_phnum
5849 * iehdr->e_phentsize)
5850 : 0)))
5851 map->p_paddr = segment->p_vaddr;
5852
5853 /* Match up the physical address of the segment with the
5854 LMA address of the output section. */
5855 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5856 || IS_COREFILE_NOTE (segment, section)
5857 || (bed->want_p_paddr_set_to_zero
5858 && IS_CONTAINED_BY_VMA (output_section, segment)))
5859 {
5860 if (first_matching_lma || output_section->lma < matching_lma)
5861 {
5862 matching_lma = output_section->lma;
5863 first_matching_lma = FALSE;
5864 }
5865
5866 /* We assume that if the section fits within the segment
5867 then it does not overlap any other section within that
5868 segment. */
5869 map->sections[isec++] = output_section;
5870 }
5871 else if (first_suggested_lma)
5872 {
5873 suggested_lma = output_section->lma;
5874 first_suggested_lma = FALSE;
5875 }
5876
5877 if (j == section_count)
5878 break;
5879 }
5880 }
5881
5882 BFD_ASSERT (j == section_count);
5883
5884 /* Step Two: Adjust the physical address of the current segment,
5885 if necessary. */
5886 if (isec == section_count)
5887 {
5888 /* All of the sections fitted within the segment as currently
5889 specified. This is the default case. Add the segment to
5890 the list of built segments and carry on to process the next
5891 program header in the input BFD. */
5892 map->count = section_count;
5893 *pointer_to_map = map;
5894 pointer_to_map = &map->next;
5895
5896 if (p_paddr_valid
5897 && !bed->want_p_paddr_set_to_zero
5898 && matching_lma != map->p_paddr
5899 && !map->includes_filehdr
5900 && !map->includes_phdrs)
5901 /* There is some padding before the first section in the
5902 segment. So, we must account for that in the output
5903 segment's vma. */
5904 map->p_vaddr_offset = matching_lma - map->p_paddr;
5905
5906 free (sections);
5907 continue;
5908 }
5909 else
5910 {
5911 if (!first_matching_lma)
5912 {
5913 /* At least one section fits inside the current segment.
5914 Keep it, but modify its physical address to match the
5915 LMA of the first section that fitted. */
5916 map->p_paddr = matching_lma;
5917 }
5918 else
5919 {
5920 /* None of the sections fitted inside the current segment.
5921 Change the current segment's physical address to match
5922 the LMA of the first section. */
5923 map->p_paddr = suggested_lma;
5924 }
5925
5926 /* Offset the segment physical address from the lma
5927 to allow for space taken up by elf headers. */
5928 if (map->includes_filehdr)
5929 {
5930 if (map->p_paddr >= iehdr->e_ehsize)
5931 map->p_paddr -= iehdr->e_ehsize;
5932 else
5933 {
5934 map->includes_filehdr = FALSE;
5935 map->includes_phdrs = FALSE;
5936 }
5937 }
5938
5939 if (map->includes_phdrs)
5940 {
5941 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5942 {
5943 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5944
5945 /* iehdr->e_phnum is just an estimate of the number
5946 of program headers that we will need. Make a note
5947 here of the number we used and the segment we chose
5948 to hold these headers, so that we can adjust the
5949 offset when we know the correct value. */
5950 phdr_adjust_num = iehdr->e_phnum;
5951 phdr_adjust_seg = map;
5952 }
5953 else
5954 map->includes_phdrs = FALSE;
5955 }
5956 }
5957
5958 /* Step Three: Loop over the sections again, this time assigning
5959 those that fit to the current segment and removing them from the
5960 sections array; but making sure not to leave large gaps. Once all
5961 possible sections have been assigned to the current segment it is
5962 added to the list of built segments and if sections still remain
5963 to be assigned, a new segment is constructed before repeating
5964 the loop. */
5965 isec = 0;
5966 do
5967 {
5968 map->count = 0;
5969 suggested_lma = 0;
5970 first_suggested_lma = TRUE;
5971
5972 /* Fill the current segment with sections that fit. */
5973 for (j = 0; j < section_count; j++)
5974 {
5975 section = sections[j];
5976
5977 if (section == NULL)
5978 continue;
5979
5980 output_section = section->output_section;
5981
5982 BFD_ASSERT (output_section != NULL);
5983
5984 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5985 || IS_COREFILE_NOTE (segment, section))
5986 {
5987 if (map->count == 0)
5988 {
5989 /* If the first section in a segment does not start at
5990 the beginning of the segment, then something is
5991 wrong. */
5992 if (output_section->lma
5993 != (map->p_paddr
5994 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5995 + (map->includes_phdrs
5996 ? iehdr->e_phnum * iehdr->e_phentsize
5997 : 0)))
5998 abort ();
5999 }
6000 else
6001 {
6002 asection *prev_sec;
6003
6004 prev_sec = map->sections[map->count - 1];
6005
6006 /* If the gap between the end of the previous section
6007 and the start of this section is more than
6008 maxpagesize then we need to start a new segment. */
6009 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6010 maxpagesize)
6011 < BFD_ALIGN (output_section->lma, maxpagesize))
6012 || (prev_sec->lma + prev_sec->size
6013 > output_section->lma))
6014 {
6015 if (first_suggested_lma)
6016 {
6017 suggested_lma = output_section->lma;
6018 first_suggested_lma = FALSE;
6019 }
6020
6021 continue;
6022 }
6023 }
6024
6025 map->sections[map->count++] = output_section;
6026 ++isec;
6027 sections[j] = NULL;
6028 section->segment_mark = TRUE;
6029 }
6030 else if (first_suggested_lma)
6031 {
6032 suggested_lma = output_section->lma;
6033 first_suggested_lma = FALSE;
6034 }
6035 }
6036
6037 BFD_ASSERT (map->count > 0);
6038
6039 /* Add the current segment to the list of built segments. */
6040 *pointer_to_map = map;
6041 pointer_to_map = &map->next;
6042
6043 if (isec < section_count)
6044 {
6045 /* We still have not allocated all of the sections to
6046 segments. Create a new segment here, initialise it
6047 and carry on looping. */
6048 amt = sizeof (struct elf_segment_map);
6049 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6050 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6051 if (map == NULL)
6052 {
6053 free (sections);
6054 return FALSE;
6055 }
6056
6057 /* Initialise the fields of the segment map. Set the physical
6058 physical address to the LMA of the first section that has
6059 not yet been assigned. */
6060 map->next = NULL;
6061 map->p_type = segment->p_type;
6062 map->p_flags = segment->p_flags;
6063 map->p_flags_valid = 1;
6064 map->p_paddr = suggested_lma;
6065 map->p_paddr_valid = p_paddr_valid;
6066 map->includes_filehdr = 0;
6067 map->includes_phdrs = 0;
6068 }
6069 }
6070 while (isec < section_count);
6071
6072 free (sections);
6073 }
6074
6075 elf_seg_map (obfd) = map_first;
6076
6077 /* If we had to estimate the number of program headers that were
6078 going to be needed, then check our estimate now and adjust
6079 the offset if necessary. */
6080 if (phdr_adjust_seg != NULL)
6081 {
6082 unsigned int count;
6083
6084 for (count = 0, map = map_first; map != NULL; map = map->next)
6085 count++;
6086
6087 if (count > phdr_adjust_num)
6088 phdr_adjust_seg->p_paddr
6089 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6090 }
6091
6092 #undef SEGMENT_END
6093 #undef SECTION_SIZE
6094 #undef IS_CONTAINED_BY_VMA
6095 #undef IS_CONTAINED_BY_LMA
6096 #undef IS_NOTE
6097 #undef IS_COREFILE_NOTE
6098 #undef IS_SOLARIS_PT_INTERP
6099 #undef IS_SECTION_IN_INPUT_SEGMENT
6100 #undef INCLUDE_SECTION_IN_SEGMENT
6101 #undef SEGMENT_AFTER_SEGMENT
6102 #undef SEGMENT_OVERLAPS
6103 return TRUE;
6104 }
6105
6106 /* Copy ELF program header information. */
6107
6108 static bfd_boolean
6109 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6110 {
6111 Elf_Internal_Ehdr *iehdr;
6112 struct elf_segment_map *map;
6113 struct elf_segment_map *map_first;
6114 struct elf_segment_map **pointer_to_map;
6115 Elf_Internal_Phdr *segment;
6116 unsigned int i;
6117 unsigned int num_segments;
6118 bfd_boolean phdr_included = FALSE;
6119 bfd_boolean p_paddr_valid;
6120
6121 iehdr = elf_elfheader (ibfd);
6122
6123 map_first = NULL;
6124 pointer_to_map = &map_first;
6125
6126 /* If all the segment p_paddr fields are zero, don't set
6127 map->p_paddr_valid. */
6128 p_paddr_valid = FALSE;
6129 num_segments = elf_elfheader (ibfd)->e_phnum;
6130 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6131 i < num_segments;
6132 i++, segment++)
6133 if (segment->p_paddr != 0)
6134 {
6135 p_paddr_valid = TRUE;
6136 break;
6137 }
6138
6139 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6140 i < num_segments;
6141 i++, segment++)
6142 {
6143 asection *section;
6144 unsigned int section_count;
6145 bfd_size_type amt;
6146 Elf_Internal_Shdr *this_hdr;
6147 asection *first_section = NULL;
6148 asection *lowest_section;
6149
6150 /* Compute how many sections are in this segment. */
6151 for (section = ibfd->sections, section_count = 0;
6152 section != NULL;
6153 section = section->next)
6154 {
6155 this_hdr = &(elf_section_data(section)->this_hdr);
6156 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6157 {
6158 if (first_section == NULL)
6159 first_section = section;
6160 section_count++;
6161 }
6162 }
6163
6164 /* Allocate a segment map big enough to contain
6165 all of the sections we have selected. */
6166 amt = sizeof (struct elf_segment_map);
6167 if (section_count != 0)
6168 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6169 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6170 if (map == NULL)
6171 return FALSE;
6172
6173 /* Initialize the fields of the output segment map with the
6174 input segment. */
6175 map->next = NULL;
6176 map->p_type = segment->p_type;
6177 map->p_flags = segment->p_flags;
6178 map->p_flags_valid = 1;
6179 map->p_paddr = segment->p_paddr;
6180 map->p_paddr_valid = p_paddr_valid;
6181 map->p_align = segment->p_align;
6182 map->p_align_valid = 1;
6183 map->p_vaddr_offset = 0;
6184
6185 if (map->p_type == PT_GNU_RELRO
6186 || map->p_type == PT_GNU_STACK)
6187 {
6188 /* The PT_GNU_RELRO segment may contain the first a few
6189 bytes in the .got.plt section even if the whole .got.plt
6190 section isn't in the PT_GNU_RELRO segment. We won't
6191 change the size of the PT_GNU_RELRO segment.
6192 Similarly, PT_GNU_STACK size is significant on uclinux
6193 systems. */
6194 map->p_size = segment->p_memsz;
6195 map->p_size_valid = 1;
6196 }
6197
6198 /* Determine if this segment contains the ELF file header
6199 and if it contains the program headers themselves. */
6200 map->includes_filehdr = (segment->p_offset == 0
6201 && segment->p_filesz >= iehdr->e_ehsize);
6202
6203 map->includes_phdrs = 0;
6204 if (! phdr_included || segment->p_type != PT_LOAD)
6205 {
6206 map->includes_phdrs =
6207 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6208 && (segment->p_offset + segment->p_filesz
6209 >= ((bfd_vma) iehdr->e_phoff
6210 + iehdr->e_phnum * iehdr->e_phentsize)));
6211
6212 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6213 phdr_included = TRUE;
6214 }
6215
6216 lowest_section = first_section;
6217 if (section_count != 0)
6218 {
6219 unsigned int isec = 0;
6220
6221 for (section = first_section;
6222 section != NULL;
6223 section = section->next)
6224 {
6225 this_hdr = &(elf_section_data(section)->this_hdr);
6226 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6227 {
6228 map->sections[isec++] = section->output_section;
6229 if ((section->flags & SEC_ALLOC) != 0)
6230 {
6231 bfd_vma seg_off;
6232
6233 if (section->lma < lowest_section->lma)
6234 lowest_section = section;
6235
6236 /* Section lmas are set up from PT_LOAD header
6237 p_paddr in _bfd_elf_make_section_from_shdr.
6238 If this header has a p_paddr that disagrees
6239 with the section lma, flag the p_paddr as
6240 invalid. */
6241 if ((section->flags & SEC_LOAD) != 0)
6242 seg_off = this_hdr->sh_offset - segment->p_offset;
6243 else
6244 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6245 if (section->lma - segment->p_paddr != seg_off)
6246 map->p_paddr_valid = FALSE;
6247 }
6248 if (isec == section_count)
6249 break;
6250 }
6251 }
6252 }
6253
6254 if (map->includes_filehdr && lowest_section != NULL)
6255 /* We need to keep the space used by the headers fixed. */
6256 map->header_size = lowest_section->vma - segment->p_vaddr;
6257
6258 if (!map->includes_phdrs
6259 && !map->includes_filehdr
6260 && map->p_paddr_valid)
6261 /* There is some other padding before the first section. */
6262 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6263 - segment->p_paddr);
6264
6265 map->count = section_count;
6266 *pointer_to_map = map;
6267 pointer_to_map = &map->next;
6268 }
6269
6270 elf_seg_map (obfd) = map_first;
6271 return TRUE;
6272 }
6273
6274 /* Copy private BFD data. This copies or rewrites ELF program header
6275 information. */
6276
6277 static bfd_boolean
6278 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6279 {
6280 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6281 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6282 return TRUE;
6283
6284 if (elf_tdata (ibfd)->phdr == NULL)
6285 return TRUE;
6286
6287 if (ibfd->xvec == obfd->xvec)
6288 {
6289 /* Check to see if any sections in the input BFD
6290 covered by ELF program header have changed. */
6291 Elf_Internal_Phdr *segment;
6292 asection *section, *osec;
6293 unsigned int i, num_segments;
6294 Elf_Internal_Shdr *this_hdr;
6295 const struct elf_backend_data *bed;
6296
6297 bed = get_elf_backend_data (ibfd);
6298
6299 /* Regenerate the segment map if p_paddr is set to 0. */
6300 if (bed->want_p_paddr_set_to_zero)
6301 goto rewrite;
6302
6303 /* Initialize the segment mark field. */
6304 for (section = obfd->sections; section != NULL;
6305 section = section->next)
6306 section->segment_mark = FALSE;
6307
6308 num_segments = elf_elfheader (ibfd)->e_phnum;
6309 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6310 i < num_segments;
6311 i++, segment++)
6312 {
6313 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6314 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6315 which severly confuses things, so always regenerate the segment
6316 map in this case. */
6317 if (segment->p_paddr == 0
6318 && segment->p_memsz == 0
6319 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6320 goto rewrite;
6321
6322 for (section = ibfd->sections;
6323 section != NULL; section = section->next)
6324 {
6325 /* We mark the output section so that we know it comes
6326 from the input BFD. */
6327 osec = section->output_section;
6328 if (osec)
6329 osec->segment_mark = TRUE;
6330
6331 /* Check if this section is covered by the segment. */
6332 this_hdr = &(elf_section_data(section)->this_hdr);
6333 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6334 {
6335 /* FIXME: Check if its output section is changed or
6336 removed. What else do we need to check? */
6337 if (osec == NULL
6338 || section->flags != osec->flags
6339 || section->lma != osec->lma
6340 || section->vma != osec->vma
6341 || section->size != osec->size
6342 || section->rawsize != osec->rawsize
6343 || section->alignment_power != osec->alignment_power)
6344 goto rewrite;
6345 }
6346 }
6347 }
6348
6349 /* Check to see if any output section do not come from the
6350 input BFD. */
6351 for (section = obfd->sections; section != NULL;
6352 section = section->next)
6353 {
6354 if (section->segment_mark == FALSE)
6355 goto rewrite;
6356 else
6357 section->segment_mark = FALSE;
6358 }
6359
6360 return copy_elf_program_header (ibfd, obfd);
6361 }
6362
6363 rewrite:
6364 if (ibfd->xvec == obfd->xvec)
6365 {
6366 /* When rewriting program header, set the output maxpagesize to
6367 the maximum alignment of input PT_LOAD segments. */
6368 Elf_Internal_Phdr *segment;
6369 unsigned int i;
6370 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6371 bfd_vma maxpagesize = 0;
6372
6373 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6374 i < num_segments;
6375 i++, segment++)
6376 if (segment->p_type == PT_LOAD
6377 && maxpagesize < segment->p_align)
6378 maxpagesize = segment->p_align;
6379
6380 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6381 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6382 }
6383
6384 return rewrite_elf_program_header (ibfd, obfd);
6385 }
6386
6387 /* Initialize private output section information from input section. */
6388
6389 bfd_boolean
6390 _bfd_elf_init_private_section_data (bfd *ibfd,
6391 asection *isec,
6392 bfd *obfd,
6393 asection *osec,
6394 struct bfd_link_info *link_info)
6395
6396 {
6397 Elf_Internal_Shdr *ihdr, *ohdr;
6398 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6399
6400 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6401 || obfd->xvec->flavour != bfd_target_elf_flavour)
6402 return TRUE;
6403
6404 BFD_ASSERT (elf_section_data (osec) != NULL);
6405
6406 /* For objcopy and relocatable link, don't copy the output ELF
6407 section type from input if the output BFD section flags have been
6408 set to something different. For a final link allow some flags
6409 that the linker clears to differ. */
6410 if (elf_section_type (osec) == SHT_NULL
6411 && (osec->flags == isec->flags
6412 || (final_link
6413 && ((osec->flags ^ isec->flags)
6414 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6415 elf_section_type (osec) = elf_section_type (isec);
6416
6417 /* FIXME: Is this correct for all OS/PROC specific flags? */
6418 elf_section_flags (osec) |= (elf_section_flags (isec)
6419 & (SHF_MASKOS | SHF_MASKPROC));
6420
6421 /* Set things up for objcopy and relocatable link. The output
6422 SHT_GROUP section will have its elf_next_in_group pointing back
6423 to the input group members. Ignore linker created group section.
6424 See elfNN_ia64_object_p in elfxx-ia64.c. */
6425 if (!final_link)
6426 {
6427 if (elf_sec_group (isec) == NULL
6428 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6429 {
6430 if (elf_section_flags (isec) & SHF_GROUP)
6431 elf_section_flags (osec) |= SHF_GROUP;
6432 elf_next_in_group (osec) = elf_next_in_group (isec);
6433 elf_section_data (osec)->group = elf_section_data (isec)->group;
6434 }
6435 }
6436
6437 ihdr = &elf_section_data (isec)->this_hdr;
6438
6439 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6440 don't use the output section of the linked-to section since it
6441 may be NULL at this point. */
6442 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6443 {
6444 ohdr = &elf_section_data (osec)->this_hdr;
6445 ohdr->sh_flags |= SHF_LINK_ORDER;
6446 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6447 }
6448
6449 osec->use_rela_p = isec->use_rela_p;
6450
6451 return TRUE;
6452 }
6453
6454 /* Copy private section information. This copies over the entsize
6455 field, and sometimes the info field. */
6456
6457 bfd_boolean
6458 _bfd_elf_copy_private_section_data (bfd *ibfd,
6459 asection *isec,
6460 bfd *obfd,
6461 asection *osec)
6462 {
6463 Elf_Internal_Shdr *ihdr, *ohdr;
6464
6465 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6466 || obfd->xvec->flavour != bfd_target_elf_flavour)
6467 return TRUE;
6468
6469 ihdr = &elf_section_data (isec)->this_hdr;
6470 ohdr = &elf_section_data (osec)->this_hdr;
6471
6472 ohdr->sh_entsize = ihdr->sh_entsize;
6473
6474 if (ihdr->sh_type == SHT_SYMTAB
6475 || ihdr->sh_type == SHT_DYNSYM
6476 || ihdr->sh_type == SHT_GNU_verneed
6477 || ihdr->sh_type == SHT_GNU_verdef)
6478 ohdr->sh_info = ihdr->sh_info;
6479
6480 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6481 NULL);
6482 }
6483
6484 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6485 necessary if we are removing either the SHT_GROUP section or any of
6486 the group member sections. DISCARDED is the value that a section's
6487 output_section has if the section will be discarded, NULL when this
6488 function is called from objcopy, bfd_abs_section_ptr when called
6489 from the linker. */
6490
6491 bfd_boolean
6492 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6493 {
6494 asection *isec;
6495
6496 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6497 if (elf_section_type (isec) == SHT_GROUP)
6498 {
6499 asection *first = elf_next_in_group (isec);
6500 asection *s = first;
6501 bfd_size_type removed = 0;
6502
6503 while (s != NULL)
6504 {
6505 /* If this member section is being output but the
6506 SHT_GROUP section is not, then clear the group info
6507 set up by _bfd_elf_copy_private_section_data. */
6508 if (s->output_section != discarded
6509 && isec->output_section == discarded)
6510 {
6511 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6512 elf_group_name (s->output_section) = NULL;
6513 }
6514 /* Conversely, if the member section is not being output
6515 but the SHT_GROUP section is, then adjust its size. */
6516 else if (s->output_section == discarded
6517 && isec->output_section != discarded)
6518 removed += 4;
6519 s = elf_next_in_group (s);
6520 if (s == first)
6521 break;
6522 }
6523 if (removed != 0)
6524 {
6525 if (discarded != NULL)
6526 {
6527 /* If we've been called for ld -r, then we need to
6528 adjust the input section size. This function may
6529 be called multiple times, so save the original
6530 size. */
6531 if (isec->rawsize == 0)
6532 isec->rawsize = isec->size;
6533 isec->size = isec->rawsize - removed;
6534 }
6535 else
6536 {
6537 /* Adjust the output section size when called from
6538 objcopy. */
6539 isec->output_section->size -= removed;
6540 }
6541 }
6542 }
6543
6544 return TRUE;
6545 }
6546
6547 /* Copy private header information. */
6548
6549 bfd_boolean
6550 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6551 {
6552 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6553 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6554 return TRUE;
6555
6556 /* Copy over private BFD data if it has not already been copied.
6557 This must be done here, rather than in the copy_private_bfd_data
6558 entry point, because the latter is called after the section
6559 contents have been set, which means that the program headers have
6560 already been worked out. */
6561 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6562 {
6563 if (! copy_private_bfd_data (ibfd, obfd))
6564 return FALSE;
6565 }
6566
6567 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6568 }
6569
6570 /* Copy private symbol information. If this symbol is in a section
6571 which we did not map into a BFD section, try to map the section
6572 index correctly. We use special macro definitions for the mapped
6573 section indices; these definitions are interpreted by the
6574 swap_out_syms function. */
6575
6576 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6577 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6578 #define MAP_STRTAB (SHN_HIOS + 3)
6579 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6580 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6581
6582 bfd_boolean
6583 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6584 asymbol *isymarg,
6585 bfd *obfd,
6586 asymbol *osymarg)
6587 {
6588 elf_symbol_type *isym, *osym;
6589
6590 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6591 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6592 return TRUE;
6593
6594 isym = elf_symbol_from (ibfd, isymarg);
6595 osym = elf_symbol_from (obfd, osymarg);
6596
6597 if (isym != NULL
6598 && isym->internal_elf_sym.st_shndx != 0
6599 && osym != NULL
6600 && bfd_is_abs_section (isym->symbol.section))
6601 {
6602 unsigned int shndx;
6603
6604 shndx = isym->internal_elf_sym.st_shndx;
6605 if (shndx == elf_onesymtab (ibfd))
6606 shndx = MAP_ONESYMTAB;
6607 else if (shndx == elf_dynsymtab (ibfd))
6608 shndx = MAP_DYNSYMTAB;
6609 else if (shndx == elf_strtab_sec (ibfd))
6610 shndx = MAP_STRTAB;
6611 else if (shndx == elf_shstrtab_sec (ibfd))
6612 shndx = MAP_SHSTRTAB;
6613 else if (shndx == elf_symtab_shndx (ibfd))
6614 shndx = MAP_SYM_SHNDX;
6615 osym->internal_elf_sym.st_shndx = shndx;
6616 }
6617
6618 return TRUE;
6619 }
6620
6621 /* Swap out the symbols. */
6622
6623 static bfd_boolean
6624 swap_out_syms (bfd *abfd,
6625 struct bfd_strtab_hash **sttp,
6626 int relocatable_p)
6627 {
6628 const struct elf_backend_data *bed;
6629 int symcount;
6630 asymbol **syms;
6631 struct bfd_strtab_hash *stt;
6632 Elf_Internal_Shdr *symtab_hdr;
6633 Elf_Internal_Shdr *symtab_shndx_hdr;
6634 Elf_Internal_Shdr *symstrtab_hdr;
6635 bfd_byte *outbound_syms;
6636 bfd_byte *outbound_shndx;
6637 int idx;
6638 unsigned int num_locals;
6639 bfd_size_type amt;
6640 bfd_boolean name_local_sections;
6641
6642 if (!elf_map_symbols (abfd, &num_locals))
6643 return FALSE;
6644
6645 /* Dump out the symtabs. */
6646 stt = _bfd_elf_stringtab_init ();
6647 if (stt == NULL)
6648 return FALSE;
6649
6650 bed = get_elf_backend_data (abfd);
6651 symcount = bfd_get_symcount (abfd);
6652 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6653 symtab_hdr->sh_type = SHT_SYMTAB;
6654 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6655 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6656 symtab_hdr->sh_info = num_locals + 1;
6657 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6658
6659 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6660 symstrtab_hdr->sh_type = SHT_STRTAB;
6661
6662 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6663 bed->s->sizeof_sym);
6664 if (outbound_syms == NULL)
6665 {
6666 _bfd_stringtab_free (stt);
6667 return FALSE;
6668 }
6669 symtab_hdr->contents = outbound_syms;
6670
6671 outbound_shndx = NULL;
6672 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6673 if (symtab_shndx_hdr->sh_name != 0)
6674 {
6675 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6676 outbound_shndx = (bfd_byte *)
6677 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6678 if (outbound_shndx == NULL)
6679 {
6680 _bfd_stringtab_free (stt);
6681 return FALSE;
6682 }
6683
6684 symtab_shndx_hdr->contents = outbound_shndx;
6685 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6686 symtab_shndx_hdr->sh_size = amt;
6687 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6688 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6689 }
6690
6691 /* Now generate the data (for "contents"). */
6692 {
6693 /* Fill in zeroth symbol and swap it out. */
6694 Elf_Internal_Sym sym;
6695 sym.st_name = 0;
6696 sym.st_value = 0;
6697 sym.st_size = 0;
6698 sym.st_info = 0;
6699 sym.st_other = 0;
6700 sym.st_shndx = SHN_UNDEF;
6701 sym.st_target_internal = 0;
6702 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6703 outbound_syms += bed->s->sizeof_sym;
6704 if (outbound_shndx != NULL)
6705 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6706 }
6707
6708 name_local_sections
6709 = (bed->elf_backend_name_local_section_symbols
6710 && bed->elf_backend_name_local_section_symbols (abfd));
6711
6712 syms = bfd_get_outsymbols (abfd);
6713 for (idx = 0; idx < symcount; idx++)
6714 {
6715 Elf_Internal_Sym sym;
6716 bfd_vma value = syms[idx]->value;
6717 elf_symbol_type *type_ptr;
6718 flagword flags = syms[idx]->flags;
6719 int type;
6720
6721 if (!name_local_sections
6722 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6723 {
6724 /* Local section symbols have no name. */
6725 sym.st_name = 0;
6726 }
6727 else
6728 {
6729 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6730 syms[idx]->name,
6731 TRUE, FALSE);
6732 if (sym.st_name == (unsigned long) -1)
6733 {
6734 _bfd_stringtab_free (stt);
6735 return FALSE;
6736 }
6737 }
6738
6739 type_ptr = elf_symbol_from (abfd, syms[idx]);
6740
6741 if ((flags & BSF_SECTION_SYM) == 0
6742 && bfd_is_com_section (syms[idx]->section))
6743 {
6744 /* ELF common symbols put the alignment into the `value' field,
6745 and the size into the `size' field. This is backwards from
6746 how BFD handles it, so reverse it here. */
6747 sym.st_size = value;
6748 if (type_ptr == NULL
6749 || type_ptr->internal_elf_sym.st_value == 0)
6750 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6751 else
6752 sym.st_value = type_ptr->internal_elf_sym.st_value;
6753 sym.st_shndx = _bfd_elf_section_from_bfd_section
6754 (abfd, syms[idx]->section);
6755 }
6756 else
6757 {
6758 asection *sec = syms[idx]->section;
6759 unsigned int shndx;
6760
6761 if (sec->output_section)
6762 {
6763 value += sec->output_offset;
6764 sec = sec->output_section;
6765 }
6766
6767 /* Don't add in the section vma for relocatable output. */
6768 if (! relocatable_p)
6769 value += sec->vma;
6770 sym.st_value = value;
6771 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6772
6773 if (bfd_is_abs_section (sec)
6774 && type_ptr != NULL
6775 && type_ptr->internal_elf_sym.st_shndx != 0)
6776 {
6777 /* This symbol is in a real ELF section which we did
6778 not create as a BFD section. Undo the mapping done
6779 by copy_private_symbol_data. */
6780 shndx = type_ptr->internal_elf_sym.st_shndx;
6781 switch (shndx)
6782 {
6783 case MAP_ONESYMTAB:
6784 shndx = elf_onesymtab (abfd);
6785 break;
6786 case MAP_DYNSYMTAB:
6787 shndx = elf_dynsymtab (abfd);
6788 break;
6789 case MAP_STRTAB:
6790 shndx = elf_strtab_sec (abfd);
6791 break;
6792 case MAP_SHSTRTAB:
6793 shndx = elf_shstrtab_sec (abfd);
6794 break;
6795 case MAP_SYM_SHNDX:
6796 shndx = elf_symtab_shndx (abfd);
6797 break;
6798 default:
6799 shndx = SHN_ABS;
6800 break;
6801 }
6802 }
6803 else
6804 {
6805 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6806
6807 if (shndx == SHN_BAD)
6808 {
6809 asection *sec2;
6810
6811 /* Writing this would be a hell of a lot easier if
6812 we had some decent documentation on bfd, and
6813 knew what to expect of the library, and what to
6814 demand of applications. For example, it
6815 appears that `objcopy' might not set the
6816 section of a symbol to be a section that is
6817 actually in the output file. */
6818 sec2 = bfd_get_section_by_name (abfd, sec->name);
6819 if (sec2 == NULL)
6820 {
6821 _bfd_error_handler (_("\
6822 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6823 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6824 sec->name);
6825 bfd_set_error (bfd_error_invalid_operation);
6826 _bfd_stringtab_free (stt);
6827 return FALSE;
6828 }
6829
6830 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6831 BFD_ASSERT (shndx != SHN_BAD);
6832 }
6833 }
6834
6835 sym.st_shndx = shndx;
6836 }
6837
6838 if ((flags & BSF_THREAD_LOCAL) != 0)
6839 type = STT_TLS;
6840 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6841 type = STT_GNU_IFUNC;
6842 else if ((flags & BSF_FUNCTION) != 0)
6843 type = STT_FUNC;
6844 else if ((flags & BSF_OBJECT) != 0)
6845 type = STT_OBJECT;
6846 else if ((flags & BSF_RELC) != 0)
6847 type = STT_RELC;
6848 else if ((flags & BSF_SRELC) != 0)
6849 type = STT_SRELC;
6850 else
6851 type = STT_NOTYPE;
6852
6853 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6854 type = STT_TLS;
6855
6856 /* Processor-specific types. */
6857 if (type_ptr != NULL
6858 && bed->elf_backend_get_symbol_type)
6859 type = ((*bed->elf_backend_get_symbol_type)
6860 (&type_ptr->internal_elf_sym, type));
6861
6862 if (flags & BSF_SECTION_SYM)
6863 {
6864 if (flags & BSF_GLOBAL)
6865 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6866 else
6867 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6868 }
6869 else if (bfd_is_com_section (syms[idx]->section))
6870 {
6871 #ifdef USE_STT_COMMON
6872 if (type == STT_OBJECT)
6873 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6874 else
6875 #endif
6876 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6877 }
6878 else if (bfd_is_und_section (syms[idx]->section))
6879 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6880 ? STB_WEAK
6881 : STB_GLOBAL),
6882 type);
6883 else if (flags & BSF_FILE)
6884 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6885 else
6886 {
6887 int bind = STB_LOCAL;
6888
6889 if (flags & BSF_LOCAL)
6890 bind = STB_LOCAL;
6891 else if (flags & BSF_GNU_UNIQUE)
6892 bind = STB_GNU_UNIQUE;
6893 else if (flags & BSF_WEAK)
6894 bind = STB_WEAK;
6895 else if (flags & BSF_GLOBAL)
6896 bind = STB_GLOBAL;
6897
6898 sym.st_info = ELF_ST_INFO (bind, type);
6899 }
6900
6901 if (type_ptr != NULL)
6902 {
6903 sym.st_other = type_ptr->internal_elf_sym.st_other;
6904 sym.st_target_internal
6905 = type_ptr->internal_elf_sym.st_target_internal;
6906 }
6907 else
6908 {
6909 sym.st_other = 0;
6910 sym.st_target_internal = 0;
6911 }
6912
6913 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6914 outbound_syms += bed->s->sizeof_sym;
6915 if (outbound_shndx != NULL)
6916 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6917 }
6918
6919 *sttp = stt;
6920 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6921 symstrtab_hdr->sh_type = SHT_STRTAB;
6922
6923 symstrtab_hdr->sh_flags = 0;
6924 symstrtab_hdr->sh_addr = 0;
6925 symstrtab_hdr->sh_entsize = 0;
6926 symstrtab_hdr->sh_link = 0;
6927 symstrtab_hdr->sh_info = 0;
6928 symstrtab_hdr->sh_addralign = 1;
6929
6930 return TRUE;
6931 }
6932
6933 /* Return the number of bytes required to hold the symtab vector.
6934
6935 Note that we base it on the count plus 1, since we will null terminate
6936 the vector allocated based on this size. However, the ELF symbol table
6937 always has a dummy entry as symbol #0, so it ends up even. */
6938
6939 long
6940 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6941 {
6942 long symcount;
6943 long symtab_size;
6944 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6945
6946 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6947 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6948 if (symcount > 0)
6949 symtab_size -= sizeof (asymbol *);
6950
6951 return symtab_size;
6952 }
6953
6954 long
6955 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6956 {
6957 long symcount;
6958 long symtab_size;
6959 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6960
6961 if (elf_dynsymtab (abfd) == 0)
6962 {
6963 bfd_set_error (bfd_error_invalid_operation);
6964 return -1;
6965 }
6966
6967 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6968 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6969 if (symcount > 0)
6970 symtab_size -= sizeof (asymbol *);
6971
6972 return symtab_size;
6973 }
6974
6975 long
6976 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6977 sec_ptr asect)
6978 {
6979 return (asect->reloc_count + 1) * sizeof (arelent *);
6980 }
6981
6982 /* Canonicalize the relocs. */
6983
6984 long
6985 _bfd_elf_canonicalize_reloc (bfd *abfd,
6986 sec_ptr section,
6987 arelent **relptr,
6988 asymbol **symbols)
6989 {
6990 arelent *tblptr;
6991 unsigned int i;
6992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6993
6994 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6995 return -1;
6996
6997 tblptr = section->relocation;
6998 for (i = 0; i < section->reloc_count; i++)
6999 *relptr++ = tblptr++;
7000
7001 *relptr = NULL;
7002
7003 return section->reloc_count;
7004 }
7005
7006 long
7007 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7008 {
7009 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7010 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7011
7012 if (symcount >= 0)
7013 bfd_get_symcount (abfd) = symcount;
7014 return symcount;
7015 }
7016
7017 long
7018 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7019 asymbol **allocation)
7020 {
7021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7022 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7023
7024 if (symcount >= 0)
7025 bfd_get_dynamic_symcount (abfd) = symcount;
7026 return symcount;
7027 }
7028
7029 /* Return the size required for the dynamic reloc entries. Any loadable
7030 section that was actually installed in the BFD, and has type SHT_REL
7031 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7032 dynamic reloc section. */
7033
7034 long
7035 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7036 {
7037 long ret;
7038 asection *s;
7039
7040 if (elf_dynsymtab (abfd) == 0)
7041 {
7042 bfd_set_error (bfd_error_invalid_operation);
7043 return -1;
7044 }
7045
7046 ret = sizeof (arelent *);
7047 for (s = abfd->sections; s != NULL; s = s->next)
7048 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7049 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7050 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7051 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7052 * sizeof (arelent *));
7053
7054 return ret;
7055 }
7056
7057 /* Canonicalize the dynamic relocation entries. Note that we return the
7058 dynamic relocations as a single block, although they are actually
7059 associated with particular sections; the interface, which was
7060 designed for SunOS style shared libraries, expects that there is only
7061 one set of dynamic relocs. Any loadable section that was actually
7062 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7063 dynamic symbol table, is considered to be a dynamic reloc section. */
7064
7065 long
7066 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7067 arelent **storage,
7068 asymbol **syms)
7069 {
7070 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7071 asection *s;
7072 long ret;
7073
7074 if (elf_dynsymtab (abfd) == 0)
7075 {
7076 bfd_set_error (bfd_error_invalid_operation);
7077 return -1;
7078 }
7079
7080 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7081 ret = 0;
7082 for (s = abfd->sections; s != NULL; s = s->next)
7083 {
7084 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7085 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7086 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7087 {
7088 arelent *p;
7089 long count, i;
7090
7091 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7092 return -1;
7093 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7094 p = s->relocation;
7095 for (i = 0; i < count; i++)
7096 *storage++ = p++;
7097 ret += count;
7098 }
7099 }
7100
7101 *storage = NULL;
7102
7103 return ret;
7104 }
7105 \f
7106 /* Read in the version information. */
7107
7108 bfd_boolean
7109 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7110 {
7111 bfd_byte *contents = NULL;
7112 unsigned int freeidx = 0;
7113
7114 if (elf_dynverref (abfd) != 0)
7115 {
7116 Elf_Internal_Shdr *hdr;
7117 Elf_External_Verneed *everneed;
7118 Elf_Internal_Verneed *iverneed;
7119 unsigned int i;
7120 bfd_byte *contents_end;
7121
7122 hdr = &elf_tdata (abfd)->dynverref_hdr;
7123
7124 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7125 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7126 if (elf_tdata (abfd)->verref == NULL)
7127 goto error_return;
7128
7129 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7130
7131 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7132 if (contents == NULL)
7133 {
7134 error_return_verref:
7135 elf_tdata (abfd)->verref = NULL;
7136 elf_tdata (abfd)->cverrefs = 0;
7137 goto error_return;
7138 }
7139 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7140 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7141 goto error_return_verref;
7142
7143 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7144 goto error_return_verref;
7145
7146 BFD_ASSERT (sizeof (Elf_External_Verneed)
7147 == sizeof (Elf_External_Vernaux));
7148 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7149 everneed = (Elf_External_Verneed *) contents;
7150 iverneed = elf_tdata (abfd)->verref;
7151 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7152 {
7153 Elf_External_Vernaux *evernaux;
7154 Elf_Internal_Vernaux *ivernaux;
7155 unsigned int j;
7156
7157 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7158
7159 iverneed->vn_bfd = abfd;
7160
7161 iverneed->vn_filename =
7162 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7163 iverneed->vn_file);
7164 if (iverneed->vn_filename == NULL)
7165 goto error_return_verref;
7166
7167 if (iverneed->vn_cnt == 0)
7168 iverneed->vn_auxptr = NULL;
7169 else
7170 {
7171 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7172 bfd_alloc2 (abfd, iverneed->vn_cnt,
7173 sizeof (Elf_Internal_Vernaux));
7174 if (iverneed->vn_auxptr == NULL)
7175 goto error_return_verref;
7176 }
7177
7178 if (iverneed->vn_aux
7179 > (size_t) (contents_end - (bfd_byte *) everneed))
7180 goto error_return_verref;
7181
7182 evernaux = ((Elf_External_Vernaux *)
7183 ((bfd_byte *) everneed + iverneed->vn_aux));
7184 ivernaux = iverneed->vn_auxptr;
7185 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7186 {
7187 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7188
7189 ivernaux->vna_nodename =
7190 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7191 ivernaux->vna_name);
7192 if (ivernaux->vna_nodename == NULL)
7193 goto error_return_verref;
7194
7195 if (j + 1 < iverneed->vn_cnt)
7196 ivernaux->vna_nextptr = ivernaux + 1;
7197 else
7198 ivernaux->vna_nextptr = NULL;
7199
7200 if (ivernaux->vna_next
7201 > (size_t) (contents_end - (bfd_byte *) evernaux))
7202 goto error_return_verref;
7203
7204 evernaux = ((Elf_External_Vernaux *)
7205 ((bfd_byte *) evernaux + ivernaux->vna_next));
7206
7207 if (ivernaux->vna_other > freeidx)
7208 freeidx = ivernaux->vna_other;
7209 }
7210
7211 if (i + 1 < hdr->sh_info)
7212 iverneed->vn_nextref = iverneed + 1;
7213 else
7214 iverneed->vn_nextref = NULL;
7215
7216 if (iverneed->vn_next
7217 > (size_t) (contents_end - (bfd_byte *) everneed))
7218 goto error_return_verref;
7219
7220 everneed = ((Elf_External_Verneed *)
7221 ((bfd_byte *) everneed + iverneed->vn_next));
7222 }
7223
7224 free (contents);
7225 contents = NULL;
7226 }
7227
7228 if (elf_dynverdef (abfd) != 0)
7229 {
7230 Elf_Internal_Shdr *hdr;
7231 Elf_External_Verdef *everdef;
7232 Elf_Internal_Verdef *iverdef;
7233 Elf_Internal_Verdef *iverdefarr;
7234 Elf_Internal_Verdef iverdefmem;
7235 unsigned int i;
7236 unsigned int maxidx;
7237 bfd_byte *contents_end_def, *contents_end_aux;
7238
7239 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7240
7241 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7242 if (contents == NULL)
7243 goto error_return;
7244 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7245 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7246 goto error_return;
7247
7248 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7249 goto error_return;
7250
7251 BFD_ASSERT (sizeof (Elf_External_Verdef)
7252 >= sizeof (Elf_External_Verdaux));
7253 contents_end_def = contents + hdr->sh_size
7254 - sizeof (Elf_External_Verdef);
7255 contents_end_aux = contents + hdr->sh_size
7256 - sizeof (Elf_External_Verdaux);
7257
7258 /* We know the number of entries in the section but not the maximum
7259 index. Therefore we have to run through all entries and find
7260 the maximum. */
7261 everdef = (Elf_External_Verdef *) contents;
7262 maxidx = 0;
7263 for (i = 0; i < hdr->sh_info; ++i)
7264 {
7265 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7266
7267 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7268 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7269
7270 if (iverdefmem.vd_next
7271 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7272 goto error_return;
7273
7274 everdef = ((Elf_External_Verdef *)
7275 ((bfd_byte *) everdef + iverdefmem.vd_next));
7276 }
7277
7278 if (default_imported_symver)
7279 {
7280 if (freeidx > maxidx)
7281 maxidx = ++freeidx;
7282 else
7283 freeidx = ++maxidx;
7284 }
7285 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7286 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7287 if (elf_tdata (abfd)->verdef == NULL)
7288 goto error_return;
7289
7290 elf_tdata (abfd)->cverdefs = maxidx;
7291
7292 everdef = (Elf_External_Verdef *) contents;
7293 iverdefarr = elf_tdata (abfd)->verdef;
7294 for (i = 0; i < hdr->sh_info; i++)
7295 {
7296 Elf_External_Verdaux *everdaux;
7297 Elf_Internal_Verdaux *iverdaux;
7298 unsigned int j;
7299
7300 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7301
7302 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7303 {
7304 error_return_verdef:
7305 elf_tdata (abfd)->verdef = NULL;
7306 elf_tdata (abfd)->cverdefs = 0;
7307 goto error_return;
7308 }
7309
7310 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7311 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7312
7313 iverdef->vd_bfd = abfd;
7314
7315 if (iverdef->vd_cnt == 0)
7316 iverdef->vd_auxptr = NULL;
7317 else
7318 {
7319 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7320 bfd_alloc2 (abfd, iverdef->vd_cnt,
7321 sizeof (Elf_Internal_Verdaux));
7322 if (iverdef->vd_auxptr == NULL)
7323 goto error_return_verdef;
7324 }
7325
7326 if (iverdef->vd_aux
7327 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7328 goto error_return_verdef;
7329
7330 everdaux = ((Elf_External_Verdaux *)
7331 ((bfd_byte *) everdef + iverdef->vd_aux));
7332 iverdaux = iverdef->vd_auxptr;
7333 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7334 {
7335 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7336
7337 iverdaux->vda_nodename =
7338 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7339 iverdaux->vda_name);
7340 if (iverdaux->vda_nodename == NULL)
7341 goto error_return_verdef;
7342
7343 if (j + 1 < iverdef->vd_cnt)
7344 iverdaux->vda_nextptr = iverdaux + 1;
7345 else
7346 iverdaux->vda_nextptr = NULL;
7347
7348 if (iverdaux->vda_next
7349 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7350 goto error_return_verdef;
7351
7352 everdaux = ((Elf_External_Verdaux *)
7353 ((bfd_byte *) everdaux + iverdaux->vda_next));
7354 }
7355
7356 if (iverdef->vd_cnt)
7357 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7358
7359 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7360 iverdef->vd_nextdef = iverdef + 1;
7361 else
7362 iverdef->vd_nextdef = NULL;
7363
7364 everdef = ((Elf_External_Verdef *)
7365 ((bfd_byte *) everdef + iverdef->vd_next));
7366 }
7367
7368 free (contents);
7369 contents = NULL;
7370 }
7371 else if (default_imported_symver)
7372 {
7373 if (freeidx < 3)
7374 freeidx = 3;
7375 else
7376 freeidx++;
7377
7378 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7379 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7380 if (elf_tdata (abfd)->verdef == NULL)
7381 goto error_return;
7382
7383 elf_tdata (abfd)->cverdefs = freeidx;
7384 }
7385
7386 /* Create a default version based on the soname. */
7387 if (default_imported_symver)
7388 {
7389 Elf_Internal_Verdef *iverdef;
7390 Elf_Internal_Verdaux *iverdaux;
7391
7392 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7393
7394 iverdef->vd_version = VER_DEF_CURRENT;
7395 iverdef->vd_flags = 0;
7396 iverdef->vd_ndx = freeidx;
7397 iverdef->vd_cnt = 1;
7398
7399 iverdef->vd_bfd = abfd;
7400
7401 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7402 if (iverdef->vd_nodename == NULL)
7403 goto error_return_verdef;
7404 iverdef->vd_nextdef = NULL;
7405 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7406 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7407 if (iverdef->vd_auxptr == NULL)
7408 goto error_return_verdef;
7409
7410 iverdaux = iverdef->vd_auxptr;
7411 iverdaux->vda_nodename = iverdef->vd_nodename;
7412 iverdaux->vda_nextptr = NULL;
7413 }
7414
7415 return TRUE;
7416
7417 error_return:
7418 if (contents != NULL)
7419 free (contents);
7420 return FALSE;
7421 }
7422 \f
7423 asymbol *
7424 _bfd_elf_make_empty_symbol (bfd *abfd)
7425 {
7426 elf_symbol_type *newsym;
7427 bfd_size_type amt = sizeof (elf_symbol_type);
7428
7429 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7430 if (!newsym)
7431 return NULL;
7432 else
7433 {
7434 newsym->symbol.the_bfd = abfd;
7435 return &newsym->symbol;
7436 }
7437 }
7438
7439 void
7440 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7441 asymbol *symbol,
7442 symbol_info *ret)
7443 {
7444 bfd_symbol_info (symbol, ret);
7445 }
7446
7447 /* Return whether a symbol name implies a local symbol. Most targets
7448 use this function for the is_local_label_name entry point, but some
7449 override it. */
7450
7451 bfd_boolean
7452 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7453 const char *name)
7454 {
7455 /* Normal local symbols start with ``.L''. */
7456 if (name[0] == '.' && name[1] == 'L')
7457 return TRUE;
7458
7459 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7460 DWARF debugging symbols starting with ``..''. */
7461 if (name[0] == '.' && name[1] == '.')
7462 return TRUE;
7463
7464 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7465 emitting DWARF debugging output. I suspect this is actually a
7466 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7467 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7468 underscore to be emitted on some ELF targets). For ease of use,
7469 we treat such symbols as local. */
7470 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7471 return TRUE;
7472
7473 return FALSE;
7474 }
7475
7476 alent *
7477 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7478 asymbol *symbol ATTRIBUTE_UNUSED)
7479 {
7480 abort ();
7481 return NULL;
7482 }
7483
7484 bfd_boolean
7485 _bfd_elf_set_arch_mach (bfd *abfd,
7486 enum bfd_architecture arch,
7487 unsigned long machine)
7488 {
7489 /* If this isn't the right architecture for this backend, and this
7490 isn't the generic backend, fail. */
7491 if (arch != get_elf_backend_data (abfd)->arch
7492 && arch != bfd_arch_unknown
7493 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7494 return FALSE;
7495
7496 return bfd_default_set_arch_mach (abfd, arch, machine);
7497 }
7498
7499 /* Find the function to a particular section and offset,
7500 for error reporting. */
7501
7502 static bfd_boolean
7503 elf_find_function (bfd *abfd,
7504 asection *section,
7505 asymbol **symbols,
7506 bfd_vma offset,
7507 const char **filename_ptr,
7508 const char **functionname_ptr)
7509 {
7510 struct elf_find_function_cache
7511 {
7512 asection *last_section;
7513 asymbol *func;
7514 const char *filename;
7515 bfd_size_type func_size;
7516 } *cache;
7517
7518 if (symbols == NULL)
7519 return FALSE;
7520
7521 cache = elf_tdata (abfd)->elf_find_function_cache;
7522 if (cache == NULL)
7523 {
7524 cache = bfd_zalloc (abfd, sizeof (*cache));
7525 elf_tdata (abfd)->elf_find_function_cache = cache;
7526 if (cache == NULL)
7527 return FALSE;
7528 }
7529 if (cache->last_section != section
7530 || cache->func == NULL
7531 || offset < cache->func->value
7532 || offset >= cache->func->value + cache->func_size)
7533 {
7534 asymbol *file;
7535 bfd_vma low_func;
7536 asymbol **p;
7537 /* ??? Given multiple file symbols, it is impossible to reliably
7538 choose the right file name for global symbols. File symbols are
7539 local symbols, and thus all file symbols must sort before any
7540 global symbols. The ELF spec may be interpreted to say that a
7541 file symbol must sort before other local symbols, but currently
7542 ld -r doesn't do this. So, for ld -r output, it is possible to
7543 make a better choice of file name for local symbols by ignoring
7544 file symbols appearing after a given local symbol. */
7545 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7547
7548 file = NULL;
7549 low_func = 0;
7550 state = nothing_seen;
7551 cache->filename = NULL;
7552 cache->func = NULL;
7553 cache->func_size = 0;
7554 cache->last_section = section;
7555
7556 for (p = symbols; *p != NULL; p++)
7557 {
7558 asymbol *sym = *p;
7559 bfd_vma code_off;
7560 bfd_size_type size;
7561
7562 if ((sym->flags & BSF_FILE) != 0)
7563 {
7564 file = sym;
7565 if (state == symbol_seen)
7566 state = file_after_symbol_seen;
7567 continue;
7568 }
7569
7570 size = bed->maybe_function_sym (sym, section, &code_off);
7571 if (size != 0
7572 && code_off <= offset
7573 && (code_off > low_func
7574 || (code_off == low_func
7575 && size > cache->func_size)))
7576 {
7577 cache->func = sym;
7578 cache->func_size = size;
7579 cache->filename = NULL;
7580 low_func = code_off;
7581 if (file != NULL
7582 && ((sym->flags & BSF_LOCAL) != 0
7583 || state != file_after_symbol_seen))
7584 cache->filename = bfd_asymbol_name (file);
7585 }
7586 if (state == nothing_seen)
7587 state = symbol_seen;
7588 }
7589 }
7590
7591 if (cache->func == NULL)
7592 return FALSE;
7593
7594 if (filename_ptr)
7595 *filename_ptr = cache->filename;
7596 if (functionname_ptr)
7597 *functionname_ptr = bfd_asymbol_name (cache->func);
7598
7599 return TRUE;
7600 }
7601
7602 /* Find the nearest line to a particular section and offset,
7603 for error reporting. */
7604
7605 bfd_boolean
7606 _bfd_elf_find_nearest_line (bfd *abfd,
7607 asection *section,
7608 asymbol **symbols,
7609 bfd_vma offset,
7610 const char **filename_ptr,
7611 const char **functionname_ptr,
7612 unsigned int *line_ptr)
7613 {
7614 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7615 offset, filename_ptr,
7616 functionname_ptr,
7617 line_ptr,
7618 NULL);
7619 }
7620
7621 bfd_boolean
7622 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7623 asection *section,
7624 asymbol **symbols,
7625 bfd_vma offset,
7626 const char **filename_ptr,
7627 const char **functionname_ptr,
7628 unsigned int *line_ptr,
7629 unsigned int *discriminator_ptr)
7630 {
7631 bfd_boolean found;
7632
7633 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7634 filename_ptr, functionname_ptr,
7635 line_ptr))
7636 {
7637 if (!*functionname_ptr)
7638 elf_find_function (abfd, section, symbols, offset,
7639 *filename_ptr ? NULL : filename_ptr,
7640 functionname_ptr);
7641
7642 return TRUE;
7643 }
7644
7645 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7646 section, symbols, offset,
7647 filename_ptr, functionname_ptr,
7648 line_ptr, discriminator_ptr, 0,
7649 &elf_tdata (abfd)->dwarf2_find_line_info))
7650 {
7651 if (!*functionname_ptr)
7652 elf_find_function (abfd, section, symbols, offset,
7653 *filename_ptr ? NULL : filename_ptr,
7654 functionname_ptr);
7655
7656 return TRUE;
7657 }
7658
7659 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7660 &found, filename_ptr,
7661 functionname_ptr, line_ptr,
7662 &elf_tdata (abfd)->line_info))
7663 return FALSE;
7664 if (found && (*functionname_ptr || *line_ptr))
7665 return TRUE;
7666
7667 if (symbols == NULL)
7668 return FALSE;
7669
7670 if (! elf_find_function (abfd, section, symbols, offset,
7671 filename_ptr, functionname_ptr))
7672 return FALSE;
7673
7674 *line_ptr = 0;
7675 return TRUE;
7676 }
7677
7678 /* Find the line for a symbol. */
7679
7680 bfd_boolean
7681 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7682 const char **filename_ptr, unsigned int *line_ptr)
7683 {
7684 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7685 filename_ptr, line_ptr,
7686 NULL);
7687 }
7688
7689 bfd_boolean
7690 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7691 const char **filename_ptr,
7692 unsigned int *line_ptr,
7693 unsigned int *discriminator_ptr)
7694 {
7695 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7696 filename_ptr, line_ptr, discriminator_ptr, 0,
7697 &elf_tdata (abfd)->dwarf2_find_line_info);
7698 }
7699
7700 /* After a call to bfd_find_nearest_line, successive calls to
7701 bfd_find_inliner_info can be used to get source information about
7702 each level of function inlining that terminated at the address
7703 passed to bfd_find_nearest_line. Currently this is only supported
7704 for DWARF2 with appropriate DWARF3 extensions. */
7705
7706 bfd_boolean
7707 _bfd_elf_find_inliner_info (bfd *abfd,
7708 const char **filename_ptr,
7709 const char **functionname_ptr,
7710 unsigned int *line_ptr)
7711 {
7712 bfd_boolean found;
7713 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7714 functionname_ptr, line_ptr,
7715 & elf_tdata (abfd)->dwarf2_find_line_info);
7716 return found;
7717 }
7718
7719 int
7720 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7721 {
7722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7723 int ret = bed->s->sizeof_ehdr;
7724
7725 if (!info->relocatable)
7726 {
7727 bfd_size_type phdr_size = elf_program_header_size (abfd);
7728
7729 if (phdr_size == (bfd_size_type) -1)
7730 {
7731 struct elf_segment_map *m;
7732
7733 phdr_size = 0;
7734 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7735 phdr_size += bed->s->sizeof_phdr;
7736
7737 if (phdr_size == 0)
7738 phdr_size = get_program_header_size (abfd, info);
7739 }
7740
7741 elf_program_header_size (abfd) = phdr_size;
7742 ret += phdr_size;
7743 }
7744
7745 return ret;
7746 }
7747
7748 bfd_boolean
7749 _bfd_elf_set_section_contents (bfd *abfd,
7750 sec_ptr section,
7751 const void *location,
7752 file_ptr offset,
7753 bfd_size_type count)
7754 {
7755 Elf_Internal_Shdr *hdr;
7756 bfd_signed_vma pos;
7757
7758 if (! abfd->output_has_begun
7759 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7760 return FALSE;
7761
7762 hdr = &elf_section_data (section)->this_hdr;
7763 pos = hdr->sh_offset + offset;
7764 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7765 || bfd_bwrite (location, count, abfd) != count)
7766 return FALSE;
7767
7768 return TRUE;
7769 }
7770
7771 void
7772 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7773 arelent *cache_ptr ATTRIBUTE_UNUSED,
7774 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7775 {
7776 abort ();
7777 }
7778
7779 /* Try to convert a non-ELF reloc into an ELF one. */
7780
7781 bfd_boolean
7782 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7783 {
7784 /* Check whether we really have an ELF howto. */
7785
7786 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7787 {
7788 bfd_reloc_code_real_type code;
7789 reloc_howto_type *howto;
7790
7791 /* Alien reloc: Try to determine its type to replace it with an
7792 equivalent ELF reloc. */
7793
7794 if (areloc->howto->pc_relative)
7795 {
7796 switch (areloc->howto->bitsize)
7797 {
7798 case 8:
7799 code = BFD_RELOC_8_PCREL;
7800 break;
7801 case 12:
7802 code = BFD_RELOC_12_PCREL;
7803 break;
7804 case 16:
7805 code = BFD_RELOC_16_PCREL;
7806 break;
7807 case 24:
7808 code = BFD_RELOC_24_PCREL;
7809 break;
7810 case 32:
7811 code = BFD_RELOC_32_PCREL;
7812 break;
7813 case 64:
7814 code = BFD_RELOC_64_PCREL;
7815 break;
7816 default:
7817 goto fail;
7818 }
7819
7820 howto = bfd_reloc_type_lookup (abfd, code);
7821
7822 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7823 {
7824 if (howto->pcrel_offset)
7825 areloc->addend += areloc->address;
7826 else
7827 areloc->addend -= areloc->address; /* addend is unsigned!! */
7828 }
7829 }
7830 else
7831 {
7832 switch (areloc->howto->bitsize)
7833 {
7834 case 8:
7835 code = BFD_RELOC_8;
7836 break;
7837 case 14:
7838 code = BFD_RELOC_14;
7839 break;
7840 case 16:
7841 code = BFD_RELOC_16;
7842 break;
7843 case 26:
7844 code = BFD_RELOC_26;
7845 break;
7846 case 32:
7847 code = BFD_RELOC_32;
7848 break;
7849 case 64:
7850 code = BFD_RELOC_64;
7851 break;
7852 default:
7853 goto fail;
7854 }
7855
7856 howto = bfd_reloc_type_lookup (abfd, code);
7857 }
7858
7859 if (howto)
7860 areloc->howto = howto;
7861 else
7862 goto fail;
7863 }
7864
7865 return TRUE;
7866
7867 fail:
7868 (*_bfd_error_handler)
7869 (_("%B: unsupported relocation type %s"),
7870 abfd, areloc->howto->name);
7871 bfd_set_error (bfd_error_bad_value);
7872 return FALSE;
7873 }
7874
7875 bfd_boolean
7876 _bfd_elf_close_and_cleanup (bfd *abfd)
7877 {
7878 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7879 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7880 {
7881 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7882 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7883 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7884 }
7885
7886 return _bfd_generic_close_and_cleanup (abfd);
7887 }
7888
7889 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7890 in the relocation's offset. Thus we cannot allow any sort of sanity
7891 range-checking to interfere. There is nothing else to do in processing
7892 this reloc. */
7893
7894 bfd_reloc_status_type
7895 _bfd_elf_rel_vtable_reloc_fn
7896 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7897 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7898 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7899 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7900 {
7901 return bfd_reloc_ok;
7902 }
7903 \f
7904 /* Elf core file support. Much of this only works on native
7905 toolchains, since we rely on knowing the
7906 machine-dependent procfs structure in order to pick
7907 out details about the corefile. */
7908
7909 #ifdef HAVE_SYS_PROCFS_H
7910 /* Needed for new procfs interface on sparc-solaris. */
7911 # define _STRUCTURED_PROC 1
7912 # include <sys/procfs.h>
7913 #endif
7914
7915 /* Return a PID that identifies a "thread" for threaded cores, or the
7916 PID of the main process for non-threaded cores. */
7917
7918 static int
7919 elfcore_make_pid (bfd *abfd)
7920 {
7921 int pid;
7922
7923 pid = elf_tdata (abfd)->core->lwpid;
7924 if (pid == 0)
7925 pid = elf_tdata (abfd)->core->pid;
7926
7927 return pid;
7928 }
7929
7930 /* If there isn't a section called NAME, make one, using
7931 data from SECT. Note, this function will generate a
7932 reference to NAME, so you shouldn't deallocate or
7933 overwrite it. */
7934
7935 static bfd_boolean
7936 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7937 {
7938 asection *sect2;
7939
7940 if (bfd_get_section_by_name (abfd, name) != NULL)
7941 return TRUE;
7942
7943 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7944 if (sect2 == NULL)
7945 return FALSE;
7946
7947 sect2->size = sect->size;
7948 sect2->filepos = sect->filepos;
7949 sect2->alignment_power = sect->alignment_power;
7950 return TRUE;
7951 }
7952
7953 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7954 actually creates up to two pseudosections:
7955 - For the single-threaded case, a section named NAME, unless
7956 such a section already exists.
7957 - For the multi-threaded case, a section named "NAME/PID", where
7958 PID is elfcore_make_pid (abfd).
7959 Both pseudosections have identical contents. */
7960 bfd_boolean
7961 _bfd_elfcore_make_pseudosection (bfd *abfd,
7962 char *name,
7963 size_t size,
7964 ufile_ptr filepos)
7965 {
7966 char buf[100];
7967 char *threaded_name;
7968 size_t len;
7969 asection *sect;
7970
7971 /* Build the section name. */
7972
7973 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7974 len = strlen (buf) + 1;
7975 threaded_name = (char *) bfd_alloc (abfd, len);
7976 if (threaded_name == NULL)
7977 return FALSE;
7978 memcpy (threaded_name, buf, len);
7979
7980 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7981 SEC_HAS_CONTENTS);
7982 if (sect == NULL)
7983 return FALSE;
7984 sect->size = size;
7985 sect->filepos = filepos;
7986 sect->alignment_power = 2;
7987
7988 return elfcore_maybe_make_sect (abfd, name, sect);
7989 }
7990
7991 /* prstatus_t exists on:
7992 solaris 2.5+
7993 linux 2.[01] + glibc
7994 unixware 4.2
7995 */
7996
7997 #if defined (HAVE_PRSTATUS_T)
7998
7999 static bfd_boolean
8000 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8001 {
8002 size_t size;
8003 int offset;
8004
8005 if (note->descsz == sizeof (prstatus_t))
8006 {
8007 prstatus_t prstat;
8008
8009 size = sizeof (prstat.pr_reg);
8010 offset = offsetof (prstatus_t, pr_reg);
8011 memcpy (&prstat, note->descdata, sizeof (prstat));
8012
8013 /* Do not overwrite the core signal if it
8014 has already been set by another thread. */
8015 if (elf_tdata (abfd)->core->signal == 0)
8016 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8017 if (elf_tdata (abfd)->core->pid == 0)
8018 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8019
8020 /* pr_who exists on:
8021 solaris 2.5+
8022 unixware 4.2
8023 pr_who doesn't exist on:
8024 linux 2.[01]
8025 */
8026 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8027 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8028 #else
8029 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8030 #endif
8031 }
8032 #if defined (HAVE_PRSTATUS32_T)
8033 else if (note->descsz == sizeof (prstatus32_t))
8034 {
8035 /* 64-bit host, 32-bit corefile */
8036 prstatus32_t prstat;
8037
8038 size = sizeof (prstat.pr_reg);
8039 offset = offsetof (prstatus32_t, pr_reg);
8040 memcpy (&prstat, note->descdata, sizeof (prstat));
8041
8042 /* Do not overwrite the core signal if it
8043 has already been set by another thread. */
8044 if (elf_tdata (abfd)->core->signal == 0)
8045 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8046 if (elf_tdata (abfd)->core->pid == 0)
8047 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8048
8049 /* pr_who exists on:
8050 solaris 2.5+
8051 unixware 4.2
8052 pr_who doesn't exist on:
8053 linux 2.[01]
8054 */
8055 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8056 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8057 #else
8058 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8059 #endif
8060 }
8061 #endif /* HAVE_PRSTATUS32_T */
8062 else
8063 {
8064 /* Fail - we don't know how to handle any other
8065 note size (ie. data object type). */
8066 return TRUE;
8067 }
8068
8069 /* Make a ".reg/999" section and a ".reg" section. */
8070 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8071 size, note->descpos + offset);
8072 }
8073 #endif /* defined (HAVE_PRSTATUS_T) */
8074
8075 /* Create a pseudosection containing the exact contents of NOTE. */
8076 static bfd_boolean
8077 elfcore_make_note_pseudosection (bfd *abfd,
8078 char *name,
8079 Elf_Internal_Note *note)
8080 {
8081 return _bfd_elfcore_make_pseudosection (abfd, name,
8082 note->descsz, note->descpos);
8083 }
8084
8085 /* There isn't a consistent prfpregset_t across platforms,
8086 but it doesn't matter, because we don't have to pick this
8087 data structure apart. */
8088
8089 static bfd_boolean
8090 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8091 {
8092 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8093 }
8094
8095 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8096 type of NT_PRXFPREG. Just include the whole note's contents
8097 literally. */
8098
8099 static bfd_boolean
8100 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8101 {
8102 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8103 }
8104
8105 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8106 with a note type of NT_X86_XSTATE. Just include the whole note's
8107 contents literally. */
8108
8109 static bfd_boolean
8110 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8111 {
8112 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8113 }
8114
8115 static bfd_boolean
8116 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8119 }
8120
8121 static bfd_boolean
8122 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8123 {
8124 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8125 }
8126
8127 static bfd_boolean
8128 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8129 {
8130 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8131 }
8132
8133 static bfd_boolean
8134 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8137 }
8138
8139 static bfd_boolean
8140 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8141 {
8142 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8143 }
8144
8145 static bfd_boolean
8146 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8149 }
8150
8151 static bfd_boolean
8152 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8153 {
8154 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8155 }
8156
8157 static bfd_boolean
8158 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8159 {
8160 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8161 }
8162
8163 static bfd_boolean
8164 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8165 {
8166 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8167 }
8168
8169 static bfd_boolean
8170 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8171 {
8172 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8173 }
8174
8175 static bfd_boolean
8176 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8177 {
8178 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8179 }
8180
8181 static bfd_boolean
8182 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8183 {
8184 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8185 }
8186
8187 static bfd_boolean
8188 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8189 {
8190 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8191 }
8192
8193 static bfd_boolean
8194 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8195 {
8196 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8197 }
8198
8199 static bfd_boolean
8200 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8201 {
8202 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8203 }
8204
8205 #if defined (HAVE_PRPSINFO_T)
8206 typedef prpsinfo_t elfcore_psinfo_t;
8207 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8208 typedef prpsinfo32_t elfcore_psinfo32_t;
8209 #endif
8210 #endif
8211
8212 #if defined (HAVE_PSINFO_T)
8213 typedef psinfo_t elfcore_psinfo_t;
8214 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8215 typedef psinfo32_t elfcore_psinfo32_t;
8216 #endif
8217 #endif
8218
8219 /* return a malloc'ed copy of a string at START which is at
8220 most MAX bytes long, possibly without a terminating '\0'.
8221 the copy will always have a terminating '\0'. */
8222
8223 char *
8224 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8225 {
8226 char *dups;
8227 char *end = (char *) memchr (start, '\0', max);
8228 size_t len;
8229
8230 if (end == NULL)
8231 len = max;
8232 else
8233 len = end - start;
8234
8235 dups = (char *) bfd_alloc (abfd, len + 1);
8236 if (dups == NULL)
8237 return NULL;
8238
8239 memcpy (dups, start, len);
8240 dups[len] = '\0';
8241
8242 return dups;
8243 }
8244
8245 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8246 static bfd_boolean
8247 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8248 {
8249 if (note->descsz == sizeof (elfcore_psinfo_t))
8250 {
8251 elfcore_psinfo_t psinfo;
8252
8253 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8254
8255 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8256 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8257 #endif
8258 elf_tdata (abfd)->core->program
8259 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8260 sizeof (psinfo.pr_fname));
8261
8262 elf_tdata (abfd)->core->command
8263 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8264 sizeof (psinfo.pr_psargs));
8265 }
8266 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8267 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8268 {
8269 /* 64-bit host, 32-bit corefile */
8270 elfcore_psinfo32_t psinfo;
8271
8272 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8273
8274 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8275 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8276 #endif
8277 elf_tdata (abfd)->core->program
8278 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8279 sizeof (psinfo.pr_fname));
8280
8281 elf_tdata (abfd)->core->command
8282 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8283 sizeof (psinfo.pr_psargs));
8284 }
8285 #endif
8286
8287 else
8288 {
8289 /* Fail - we don't know how to handle any other
8290 note size (ie. data object type). */
8291 return TRUE;
8292 }
8293
8294 /* Note that for some reason, a spurious space is tacked
8295 onto the end of the args in some (at least one anyway)
8296 implementations, so strip it off if it exists. */
8297
8298 {
8299 char *command = elf_tdata (abfd)->core->command;
8300 int n = strlen (command);
8301
8302 if (0 < n && command[n - 1] == ' ')
8303 command[n - 1] = '\0';
8304 }
8305
8306 return TRUE;
8307 }
8308 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8309
8310 #if defined (HAVE_PSTATUS_T)
8311 static bfd_boolean
8312 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8313 {
8314 if (note->descsz == sizeof (pstatus_t)
8315 #if defined (HAVE_PXSTATUS_T)
8316 || note->descsz == sizeof (pxstatus_t)
8317 #endif
8318 )
8319 {
8320 pstatus_t pstat;
8321
8322 memcpy (&pstat, note->descdata, sizeof (pstat));
8323
8324 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8325 }
8326 #if defined (HAVE_PSTATUS32_T)
8327 else if (note->descsz == sizeof (pstatus32_t))
8328 {
8329 /* 64-bit host, 32-bit corefile */
8330 pstatus32_t pstat;
8331
8332 memcpy (&pstat, note->descdata, sizeof (pstat));
8333
8334 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8335 }
8336 #endif
8337 /* Could grab some more details from the "representative"
8338 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8339 NT_LWPSTATUS note, presumably. */
8340
8341 return TRUE;
8342 }
8343 #endif /* defined (HAVE_PSTATUS_T) */
8344
8345 #if defined (HAVE_LWPSTATUS_T)
8346 static bfd_boolean
8347 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8348 {
8349 lwpstatus_t lwpstat;
8350 char buf[100];
8351 char *name;
8352 size_t len;
8353 asection *sect;
8354
8355 if (note->descsz != sizeof (lwpstat)
8356 #if defined (HAVE_LWPXSTATUS_T)
8357 && note->descsz != sizeof (lwpxstatus_t)
8358 #endif
8359 )
8360 return TRUE;
8361
8362 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8363
8364 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8365 /* Do not overwrite the core signal if it has already been set by
8366 another thread. */
8367 if (elf_tdata (abfd)->core->signal == 0)
8368 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8369
8370 /* Make a ".reg/999" section. */
8371
8372 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8373 len = strlen (buf) + 1;
8374 name = bfd_alloc (abfd, len);
8375 if (name == NULL)
8376 return FALSE;
8377 memcpy (name, buf, len);
8378
8379 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8380 if (sect == NULL)
8381 return FALSE;
8382
8383 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8384 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8385 sect->filepos = note->descpos
8386 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8387 #endif
8388
8389 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8390 sect->size = sizeof (lwpstat.pr_reg);
8391 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8392 #endif
8393
8394 sect->alignment_power = 2;
8395
8396 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8397 return FALSE;
8398
8399 /* Make a ".reg2/999" section */
8400
8401 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8402 len = strlen (buf) + 1;
8403 name = bfd_alloc (abfd, len);
8404 if (name == NULL)
8405 return FALSE;
8406 memcpy (name, buf, len);
8407
8408 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8409 if (sect == NULL)
8410 return FALSE;
8411
8412 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8413 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8414 sect->filepos = note->descpos
8415 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8416 #endif
8417
8418 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8419 sect->size = sizeof (lwpstat.pr_fpreg);
8420 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8421 #endif
8422
8423 sect->alignment_power = 2;
8424
8425 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8426 }
8427 #endif /* defined (HAVE_LWPSTATUS_T) */
8428
8429 static bfd_boolean
8430 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8431 {
8432 char buf[30];
8433 char *name;
8434 size_t len;
8435 asection *sect;
8436 int type;
8437 int is_active_thread;
8438 bfd_vma base_addr;
8439
8440 if (note->descsz < 728)
8441 return TRUE;
8442
8443 if (! CONST_STRNEQ (note->namedata, "win32"))
8444 return TRUE;
8445
8446 type = bfd_get_32 (abfd, note->descdata);
8447
8448 switch (type)
8449 {
8450 case 1 /* NOTE_INFO_PROCESS */:
8451 /* FIXME: need to add ->core->command. */
8452 /* process_info.pid */
8453 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8454 /* process_info.signal */
8455 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8456 break;
8457
8458 case 2 /* NOTE_INFO_THREAD */:
8459 /* Make a ".reg/999" section. */
8460 /* thread_info.tid */
8461 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8462
8463 len = strlen (buf) + 1;
8464 name = (char *) bfd_alloc (abfd, len);
8465 if (name == NULL)
8466 return FALSE;
8467
8468 memcpy (name, buf, len);
8469
8470 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8471 if (sect == NULL)
8472 return FALSE;
8473
8474 /* sizeof (thread_info.thread_context) */
8475 sect->size = 716;
8476 /* offsetof (thread_info.thread_context) */
8477 sect->filepos = note->descpos + 12;
8478 sect->alignment_power = 2;
8479
8480 /* thread_info.is_active_thread */
8481 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8482
8483 if (is_active_thread)
8484 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8485 return FALSE;
8486 break;
8487
8488 case 3 /* NOTE_INFO_MODULE */:
8489 /* Make a ".module/xxxxxxxx" section. */
8490 /* module_info.base_address */
8491 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8492 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8493
8494 len = strlen (buf) + 1;
8495 name = (char *) bfd_alloc (abfd, len);
8496 if (name == NULL)
8497 return FALSE;
8498
8499 memcpy (name, buf, len);
8500
8501 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8502
8503 if (sect == NULL)
8504 return FALSE;
8505
8506 sect->size = note->descsz;
8507 sect->filepos = note->descpos;
8508 sect->alignment_power = 2;
8509 break;
8510
8511 default:
8512 return TRUE;
8513 }
8514
8515 return TRUE;
8516 }
8517
8518 static bfd_boolean
8519 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8520 {
8521 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8522
8523 switch (note->type)
8524 {
8525 default:
8526 return TRUE;
8527
8528 case NT_PRSTATUS:
8529 if (bed->elf_backend_grok_prstatus)
8530 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8531 return TRUE;
8532 #if defined (HAVE_PRSTATUS_T)
8533 return elfcore_grok_prstatus (abfd, note);
8534 #else
8535 return TRUE;
8536 #endif
8537
8538 #if defined (HAVE_PSTATUS_T)
8539 case NT_PSTATUS:
8540 return elfcore_grok_pstatus (abfd, note);
8541 #endif
8542
8543 #if defined (HAVE_LWPSTATUS_T)
8544 case NT_LWPSTATUS:
8545 return elfcore_grok_lwpstatus (abfd, note);
8546 #endif
8547
8548 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8549 return elfcore_grok_prfpreg (abfd, note);
8550
8551 case NT_WIN32PSTATUS:
8552 return elfcore_grok_win32pstatus (abfd, note);
8553
8554 case NT_PRXFPREG: /* Linux SSE extension */
8555 if (note->namesz == 6
8556 && strcmp (note->namedata, "LINUX") == 0)
8557 return elfcore_grok_prxfpreg (abfd, note);
8558 else
8559 return TRUE;
8560
8561 case NT_X86_XSTATE: /* Linux XSAVE extension */
8562 if (note->namesz == 6
8563 && strcmp (note->namedata, "LINUX") == 0)
8564 return elfcore_grok_xstatereg (abfd, note);
8565 else
8566 return TRUE;
8567
8568 case NT_PPC_VMX:
8569 if (note->namesz == 6
8570 && strcmp (note->namedata, "LINUX") == 0)
8571 return elfcore_grok_ppc_vmx (abfd, note);
8572 else
8573 return TRUE;
8574
8575 case NT_PPC_VSX:
8576 if (note->namesz == 6
8577 && strcmp (note->namedata, "LINUX") == 0)
8578 return elfcore_grok_ppc_vsx (abfd, note);
8579 else
8580 return TRUE;
8581
8582 case NT_S390_HIGH_GPRS:
8583 if (note->namesz == 6
8584 && strcmp (note->namedata, "LINUX") == 0)
8585 return elfcore_grok_s390_high_gprs (abfd, note);
8586 else
8587 return TRUE;
8588
8589 case NT_S390_TIMER:
8590 if (note->namesz == 6
8591 && strcmp (note->namedata, "LINUX") == 0)
8592 return elfcore_grok_s390_timer (abfd, note);
8593 else
8594 return TRUE;
8595
8596 case NT_S390_TODCMP:
8597 if (note->namesz == 6
8598 && strcmp (note->namedata, "LINUX") == 0)
8599 return elfcore_grok_s390_todcmp (abfd, note);
8600 else
8601 return TRUE;
8602
8603 case NT_S390_TODPREG:
8604 if (note->namesz == 6
8605 && strcmp (note->namedata, "LINUX") == 0)
8606 return elfcore_grok_s390_todpreg (abfd, note);
8607 else
8608 return TRUE;
8609
8610 case NT_S390_CTRS:
8611 if (note->namesz == 6
8612 && strcmp (note->namedata, "LINUX") == 0)
8613 return elfcore_grok_s390_ctrs (abfd, note);
8614 else
8615 return TRUE;
8616
8617 case NT_S390_PREFIX:
8618 if (note->namesz == 6
8619 && strcmp (note->namedata, "LINUX") == 0)
8620 return elfcore_grok_s390_prefix (abfd, note);
8621 else
8622 return TRUE;
8623
8624 case NT_S390_LAST_BREAK:
8625 if (note->namesz == 6
8626 && strcmp (note->namedata, "LINUX") == 0)
8627 return elfcore_grok_s390_last_break (abfd, note);
8628 else
8629 return TRUE;
8630
8631 case NT_S390_SYSTEM_CALL:
8632 if (note->namesz == 6
8633 && strcmp (note->namedata, "LINUX") == 0)
8634 return elfcore_grok_s390_system_call (abfd, note);
8635 else
8636 return TRUE;
8637
8638 case NT_S390_TDB:
8639 if (note->namesz == 6
8640 && strcmp (note->namedata, "LINUX") == 0)
8641 return elfcore_grok_s390_tdb (abfd, note);
8642 else
8643 return TRUE;
8644
8645 case NT_ARM_VFP:
8646 if (note->namesz == 6
8647 && strcmp (note->namedata, "LINUX") == 0)
8648 return elfcore_grok_arm_vfp (abfd, note);
8649 else
8650 return TRUE;
8651
8652 case NT_ARM_TLS:
8653 if (note->namesz == 6
8654 && strcmp (note->namedata, "LINUX") == 0)
8655 return elfcore_grok_aarch_tls (abfd, note);
8656 else
8657 return TRUE;
8658
8659 case NT_ARM_HW_BREAK:
8660 if (note->namesz == 6
8661 && strcmp (note->namedata, "LINUX") == 0)
8662 return elfcore_grok_aarch_hw_break (abfd, note);
8663 else
8664 return TRUE;
8665
8666 case NT_ARM_HW_WATCH:
8667 if (note->namesz == 6
8668 && strcmp (note->namedata, "LINUX") == 0)
8669 return elfcore_grok_aarch_hw_watch (abfd, note);
8670 else
8671 return TRUE;
8672
8673 case NT_PRPSINFO:
8674 case NT_PSINFO:
8675 if (bed->elf_backend_grok_psinfo)
8676 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8677 return TRUE;
8678 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8679 return elfcore_grok_psinfo (abfd, note);
8680 #else
8681 return TRUE;
8682 #endif
8683
8684 case NT_AUXV:
8685 {
8686 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8687 SEC_HAS_CONTENTS);
8688
8689 if (sect == NULL)
8690 return FALSE;
8691 sect->size = note->descsz;
8692 sect->filepos = note->descpos;
8693 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8694
8695 return TRUE;
8696 }
8697
8698 case NT_FILE:
8699 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8700 note);
8701
8702 case NT_SIGINFO:
8703 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8704 note);
8705 }
8706 }
8707
8708 static bfd_boolean
8709 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8710 {
8711 struct elf_obj_tdata *t;
8712
8713 if (note->descsz == 0)
8714 return FALSE;
8715
8716 t = elf_tdata (abfd);
8717 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8718 if (t->build_id == NULL)
8719 return FALSE;
8720
8721 t->build_id->size = note->descsz;
8722 memcpy (t->build_id->data, note->descdata, note->descsz);
8723
8724 return TRUE;
8725 }
8726
8727 static bfd_boolean
8728 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8729 {
8730 switch (note->type)
8731 {
8732 default:
8733 return TRUE;
8734
8735 case NT_GNU_BUILD_ID:
8736 return elfobj_grok_gnu_build_id (abfd, note);
8737 }
8738 }
8739
8740 static bfd_boolean
8741 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8742 {
8743 struct sdt_note *cur =
8744 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8745 + note->descsz);
8746
8747 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8748 cur->size = (bfd_size_type) note->descsz;
8749 memcpy (cur->data, note->descdata, note->descsz);
8750
8751 elf_tdata (abfd)->sdt_note_head = cur;
8752
8753 return TRUE;
8754 }
8755
8756 static bfd_boolean
8757 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8758 {
8759 switch (note->type)
8760 {
8761 case NT_STAPSDT:
8762 return elfobj_grok_stapsdt_note_1 (abfd, note);
8763
8764 default:
8765 return TRUE;
8766 }
8767 }
8768
8769 static bfd_boolean
8770 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8771 {
8772 char *cp;
8773
8774 cp = strchr (note->namedata, '@');
8775 if (cp != NULL)
8776 {
8777 *lwpidp = atoi(cp + 1);
8778 return TRUE;
8779 }
8780 return FALSE;
8781 }
8782
8783 static bfd_boolean
8784 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8785 {
8786 /* Signal number at offset 0x08. */
8787 elf_tdata (abfd)->core->signal
8788 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8789
8790 /* Process ID at offset 0x50. */
8791 elf_tdata (abfd)->core->pid
8792 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8793
8794 /* Command name at 0x7c (max 32 bytes, including nul). */
8795 elf_tdata (abfd)->core->command
8796 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8797
8798 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8799 note);
8800 }
8801
8802 static bfd_boolean
8803 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8804 {
8805 int lwp;
8806
8807 if (elfcore_netbsd_get_lwpid (note, &lwp))
8808 elf_tdata (abfd)->core->lwpid = lwp;
8809
8810 if (note->type == NT_NETBSDCORE_PROCINFO)
8811 {
8812 /* NetBSD-specific core "procinfo". Note that we expect to
8813 find this note before any of the others, which is fine,
8814 since the kernel writes this note out first when it
8815 creates a core file. */
8816
8817 return elfcore_grok_netbsd_procinfo (abfd, note);
8818 }
8819
8820 /* As of Jan 2002 there are no other machine-independent notes
8821 defined for NetBSD core files. If the note type is less
8822 than the start of the machine-dependent note types, we don't
8823 understand it. */
8824
8825 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8826 return TRUE;
8827
8828
8829 switch (bfd_get_arch (abfd))
8830 {
8831 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8832 PT_GETFPREGS == mach+2. */
8833
8834 case bfd_arch_alpha:
8835 case bfd_arch_sparc:
8836 switch (note->type)
8837 {
8838 case NT_NETBSDCORE_FIRSTMACH+0:
8839 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8840
8841 case NT_NETBSDCORE_FIRSTMACH+2:
8842 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8843
8844 default:
8845 return TRUE;
8846 }
8847
8848 /* On all other arch's, PT_GETREGS == mach+1 and
8849 PT_GETFPREGS == mach+3. */
8850
8851 default:
8852 switch (note->type)
8853 {
8854 case NT_NETBSDCORE_FIRSTMACH+1:
8855 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8856
8857 case NT_NETBSDCORE_FIRSTMACH+3:
8858 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8859
8860 default:
8861 return TRUE;
8862 }
8863 }
8864 /* NOTREACHED */
8865 }
8866
8867 static bfd_boolean
8868 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8869 {
8870 /* Signal number at offset 0x08. */
8871 elf_tdata (abfd)->core->signal
8872 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8873
8874 /* Process ID at offset 0x20. */
8875 elf_tdata (abfd)->core->pid
8876 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8877
8878 /* Command name at 0x48 (max 32 bytes, including nul). */
8879 elf_tdata (abfd)->core->command
8880 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8881
8882 return TRUE;
8883 }
8884
8885 static bfd_boolean
8886 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8887 {
8888 if (note->type == NT_OPENBSD_PROCINFO)
8889 return elfcore_grok_openbsd_procinfo (abfd, note);
8890
8891 if (note->type == NT_OPENBSD_REGS)
8892 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8893
8894 if (note->type == NT_OPENBSD_FPREGS)
8895 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8896
8897 if (note->type == NT_OPENBSD_XFPREGS)
8898 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8899
8900 if (note->type == NT_OPENBSD_AUXV)
8901 {
8902 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8903 SEC_HAS_CONTENTS);
8904
8905 if (sect == NULL)
8906 return FALSE;
8907 sect->size = note->descsz;
8908 sect->filepos = note->descpos;
8909 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8910
8911 return TRUE;
8912 }
8913
8914 if (note->type == NT_OPENBSD_WCOOKIE)
8915 {
8916 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8917 SEC_HAS_CONTENTS);
8918
8919 if (sect == NULL)
8920 return FALSE;
8921 sect->size = note->descsz;
8922 sect->filepos = note->descpos;
8923 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8924
8925 return TRUE;
8926 }
8927
8928 return TRUE;
8929 }
8930
8931 static bfd_boolean
8932 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8933 {
8934 void *ddata = note->descdata;
8935 char buf[100];
8936 char *name;
8937 asection *sect;
8938 short sig;
8939 unsigned flags;
8940
8941 /* nto_procfs_status 'pid' field is at offset 0. */
8942 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8943
8944 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8945 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8946
8947 /* nto_procfs_status 'flags' field is at offset 8. */
8948 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8949
8950 /* nto_procfs_status 'what' field is at offset 14. */
8951 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8952 {
8953 elf_tdata (abfd)->core->signal = sig;
8954 elf_tdata (abfd)->core->lwpid = *tid;
8955 }
8956
8957 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8958 do not come from signals so we make sure we set the current
8959 thread just in case. */
8960 if (flags & 0x00000080)
8961 elf_tdata (abfd)->core->lwpid = *tid;
8962
8963 /* Make a ".qnx_core_status/%d" section. */
8964 sprintf (buf, ".qnx_core_status/%ld", *tid);
8965
8966 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8967 if (name == NULL)
8968 return FALSE;
8969 strcpy (name, buf);
8970
8971 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8972 if (sect == NULL)
8973 return FALSE;
8974
8975 sect->size = note->descsz;
8976 sect->filepos = note->descpos;
8977 sect->alignment_power = 2;
8978
8979 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8980 }
8981
8982 static bfd_boolean
8983 elfcore_grok_nto_regs (bfd *abfd,
8984 Elf_Internal_Note *note,
8985 long tid,
8986 char *base)
8987 {
8988 char buf[100];
8989 char *name;
8990 asection *sect;
8991
8992 /* Make a "(base)/%d" section. */
8993 sprintf (buf, "%s/%ld", base, tid);
8994
8995 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8996 if (name == NULL)
8997 return FALSE;
8998 strcpy (name, buf);
8999
9000 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9001 if (sect == NULL)
9002 return FALSE;
9003
9004 sect->size = note->descsz;
9005 sect->filepos = note->descpos;
9006 sect->alignment_power = 2;
9007
9008 /* This is the current thread. */
9009 if (elf_tdata (abfd)->core->lwpid == tid)
9010 return elfcore_maybe_make_sect (abfd, base, sect);
9011
9012 return TRUE;
9013 }
9014
9015 #define BFD_QNT_CORE_INFO 7
9016 #define BFD_QNT_CORE_STATUS 8
9017 #define BFD_QNT_CORE_GREG 9
9018 #define BFD_QNT_CORE_FPREG 10
9019
9020 static bfd_boolean
9021 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9022 {
9023 /* Every GREG section has a STATUS section before it. Store the
9024 tid from the previous call to pass down to the next gregs
9025 function. */
9026 static long tid = 1;
9027
9028 switch (note->type)
9029 {
9030 case BFD_QNT_CORE_INFO:
9031 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9032 case BFD_QNT_CORE_STATUS:
9033 return elfcore_grok_nto_status (abfd, note, &tid);
9034 case BFD_QNT_CORE_GREG:
9035 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9036 case BFD_QNT_CORE_FPREG:
9037 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9038 default:
9039 return TRUE;
9040 }
9041 }
9042
9043 static bfd_boolean
9044 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9045 {
9046 char *name;
9047 asection *sect;
9048 size_t len;
9049
9050 /* Use note name as section name. */
9051 len = note->namesz;
9052 name = (char *) bfd_alloc (abfd, len);
9053 if (name == NULL)
9054 return FALSE;
9055 memcpy (name, note->namedata, len);
9056 name[len - 1] = '\0';
9057
9058 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9059 if (sect == NULL)
9060 return FALSE;
9061
9062 sect->size = note->descsz;
9063 sect->filepos = note->descpos;
9064 sect->alignment_power = 1;
9065
9066 return TRUE;
9067 }
9068
9069 /* Function: elfcore_write_note
9070
9071 Inputs:
9072 buffer to hold note, and current size of buffer
9073 name of note
9074 type of note
9075 data for note
9076 size of data for note
9077
9078 Writes note to end of buffer. ELF64 notes are written exactly as
9079 for ELF32, despite the current (as of 2006) ELF gabi specifying
9080 that they ought to have 8-byte namesz and descsz field, and have
9081 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9082
9083 Return:
9084 Pointer to realloc'd buffer, *BUFSIZ updated. */
9085
9086 char *
9087 elfcore_write_note (bfd *abfd,
9088 char *buf,
9089 int *bufsiz,
9090 const char *name,
9091 int type,
9092 const void *input,
9093 int size)
9094 {
9095 Elf_External_Note *xnp;
9096 size_t namesz;
9097 size_t newspace;
9098 char *dest;
9099
9100 namesz = 0;
9101 if (name != NULL)
9102 namesz = strlen (name) + 1;
9103
9104 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9105
9106 buf = (char *) realloc (buf, *bufsiz + newspace);
9107 if (buf == NULL)
9108 return buf;
9109 dest = buf + *bufsiz;
9110 *bufsiz += newspace;
9111 xnp = (Elf_External_Note *) dest;
9112 H_PUT_32 (abfd, namesz, xnp->namesz);
9113 H_PUT_32 (abfd, size, xnp->descsz);
9114 H_PUT_32 (abfd, type, xnp->type);
9115 dest = xnp->name;
9116 if (name != NULL)
9117 {
9118 memcpy (dest, name, namesz);
9119 dest += namesz;
9120 while (namesz & 3)
9121 {
9122 *dest++ = '\0';
9123 ++namesz;
9124 }
9125 }
9126 memcpy (dest, input, size);
9127 dest += size;
9128 while (size & 3)
9129 {
9130 *dest++ = '\0';
9131 ++size;
9132 }
9133 return buf;
9134 }
9135
9136 char *
9137 elfcore_write_prpsinfo (bfd *abfd,
9138 char *buf,
9139 int *bufsiz,
9140 const char *fname,
9141 const char *psargs)
9142 {
9143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9144
9145 if (bed->elf_backend_write_core_note != NULL)
9146 {
9147 char *ret;
9148 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9149 NT_PRPSINFO, fname, psargs);
9150 if (ret != NULL)
9151 return ret;
9152 }
9153
9154 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9155 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9156 if (bed->s->elfclass == ELFCLASS32)
9157 {
9158 #if defined (HAVE_PSINFO32_T)
9159 psinfo32_t data;
9160 int note_type = NT_PSINFO;
9161 #else
9162 prpsinfo32_t data;
9163 int note_type = NT_PRPSINFO;
9164 #endif
9165
9166 memset (&data, 0, sizeof (data));
9167 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9168 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9169 return elfcore_write_note (abfd, buf, bufsiz,
9170 "CORE", note_type, &data, sizeof (data));
9171 }
9172 else
9173 #endif
9174 {
9175 #if defined (HAVE_PSINFO_T)
9176 psinfo_t data;
9177 int note_type = NT_PSINFO;
9178 #else
9179 prpsinfo_t data;
9180 int note_type = NT_PRPSINFO;
9181 #endif
9182
9183 memset (&data, 0, sizeof (data));
9184 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9185 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9186 return elfcore_write_note (abfd, buf, bufsiz,
9187 "CORE", note_type, &data, sizeof (data));
9188 }
9189 #endif /* PSINFO_T or PRPSINFO_T */
9190
9191 free (buf);
9192 return NULL;
9193 }
9194
9195 char *
9196 elfcore_write_linux_prpsinfo32
9197 (bfd *abfd, char *buf, int *bufsiz,
9198 const struct elf_internal_linux_prpsinfo *prpsinfo)
9199 {
9200 struct elf_external_linux_prpsinfo32 data;
9201
9202 memset (&data, 0, sizeof (data));
9203 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9204
9205 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9206 &data, sizeof (data));
9207 }
9208
9209 char *
9210 elfcore_write_linux_prpsinfo64
9211 (bfd *abfd, char *buf, int *bufsiz,
9212 const struct elf_internal_linux_prpsinfo *prpsinfo)
9213 {
9214 struct elf_external_linux_prpsinfo64 data;
9215
9216 memset (&data, 0, sizeof (data));
9217 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9218
9219 return elfcore_write_note (abfd, buf, bufsiz,
9220 "CORE", NT_PRPSINFO, &data, sizeof (data));
9221 }
9222
9223 char *
9224 elfcore_write_prstatus (bfd *abfd,
9225 char *buf,
9226 int *bufsiz,
9227 long pid,
9228 int cursig,
9229 const void *gregs)
9230 {
9231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9232
9233 if (bed->elf_backend_write_core_note != NULL)
9234 {
9235 char *ret;
9236 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9237 NT_PRSTATUS,
9238 pid, cursig, gregs);
9239 if (ret != NULL)
9240 return ret;
9241 }
9242
9243 #if defined (HAVE_PRSTATUS_T)
9244 #if defined (HAVE_PRSTATUS32_T)
9245 if (bed->s->elfclass == ELFCLASS32)
9246 {
9247 prstatus32_t prstat;
9248
9249 memset (&prstat, 0, sizeof (prstat));
9250 prstat.pr_pid = pid;
9251 prstat.pr_cursig = cursig;
9252 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9253 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9254 NT_PRSTATUS, &prstat, sizeof (prstat));
9255 }
9256 else
9257 #endif
9258 {
9259 prstatus_t prstat;
9260
9261 memset (&prstat, 0, sizeof (prstat));
9262 prstat.pr_pid = pid;
9263 prstat.pr_cursig = cursig;
9264 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9265 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9266 NT_PRSTATUS, &prstat, sizeof (prstat));
9267 }
9268 #endif /* HAVE_PRSTATUS_T */
9269
9270 free (buf);
9271 return NULL;
9272 }
9273
9274 #if defined (HAVE_LWPSTATUS_T)
9275 char *
9276 elfcore_write_lwpstatus (bfd *abfd,
9277 char *buf,
9278 int *bufsiz,
9279 long pid,
9280 int cursig,
9281 const void *gregs)
9282 {
9283 lwpstatus_t lwpstat;
9284 const char *note_name = "CORE";
9285
9286 memset (&lwpstat, 0, sizeof (lwpstat));
9287 lwpstat.pr_lwpid = pid >> 16;
9288 lwpstat.pr_cursig = cursig;
9289 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9290 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9291 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9292 #if !defined(gregs)
9293 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9294 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9295 #else
9296 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9297 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9298 #endif
9299 #endif
9300 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9301 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9302 }
9303 #endif /* HAVE_LWPSTATUS_T */
9304
9305 #if defined (HAVE_PSTATUS_T)
9306 char *
9307 elfcore_write_pstatus (bfd *abfd,
9308 char *buf,
9309 int *bufsiz,
9310 long pid,
9311 int cursig ATTRIBUTE_UNUSED,
9312 const void *gregs ATTRIBUTE_UNUSED)
9313 {
9314 const char *note_name = "CORE";
9315 #if defined (HAVE_PSTATUS32_T)
9316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9317
9318 if (bed->s->elfclass == ELFCLASS32)
9319 {
9320 pstatus32_t pstat;
9321
9322 memset (&pstat, 0, sizeof (pstat));
9323 pstat.pr_pid = pid & 0xffff;
9324 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9325 NT_PSTATUS, &pstat, sizeof (pstat));
9326 return buf;
9327 }
9328 else
9329 #endif
9330 {
9331 pstatus_t pstat;
9332
9333 memset (&pstat, 0, sizeof (pstat));
9334 pstat.pr_pid = pid & 0xffff;
9335 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9336 NT_PSTATUS, &pstat, sizeof (pstat));
9337 return buf;
9338 }
9339 }
9340 #endif /* HAVE_PSTATUS_T */
9341
9342 char *
9343 elfcore_write_prfpreg (bfd *abfd,
9344 char *buf,
9345 int *bufsiz,
9346 const void *fpregs,
9347 int size)
9348 {
9349 const char *note_name = "CORE";
9350 return elfcore_write_note (abfd, buf, bufsiz,
9351 note_name, NT_FPREGSET, fpregs, size);
9352 }
9353
9354 char *
9355 elfcore_write_prxfpreg (bfd *abfd,
9356 char *buf,
9357 int *bufsiz,
9358 const void *xfpregs,
9359 int size)
9360 {
9361 char *note_name = "LINUX";
9362 return elfcore_write_note (abfd, buf, bufsiz,
9363 note_name, NT_PRXFPREG, xfpregs, size);
9364 }
9365
9366 char *
9367 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9368 const void *xfpregs, int size)
9369 {
9370 char *note_name = "LINUX";
9371 return elfcore_write_note (abfd, buf, bufsiz,
9372 note_name, NT_X86_XSTATE, xfpregs, size);
9373 }
9374
9375 char *
9376 elfcore_write_ppc_vmx (bfd *abfd,
9377 char *buf,
9378 int *bufsiz,
9379 const void *ppc_vmx,
9380 int size)
9381 {
9382 char *note_name = "LINUX";
9383 return elfcore_write_note (abfd, buf, bufsiz,
9384 note_name, NT_PPC_VMX, ppc_vmx, size);
9385 }
9386
9387 char *
9388 elfcore_write_ppc_vsx (bfd *abfd,
9389 char *buf,
9390 int *bufsiz,
9391 const void *ppc_vsx,
9392 int size)
9393 {
9394 char *note_name = "LINUX";
9395 return elfcore_write_note (abfd, buf, bufsiz,
9396 note_name, NT_PPC_VSX, ppc_vsx, size);
9397 }
9398
9399 static char *
9400 elfcore_write_s390_high_gprs (bfd *abfd,
9401 char *buf,
9402 int *bufsiz,
9403 const void *s390_high_gprs,
9404 int size)
9405 {
9406 char *note_name = "LINUX";
9407 return elfcore_write_note (abfd, buf, bufsiz,
9408 note_name, NT_S390_HIGH_GPRS,
9409 s390_high_gprs, size);
9410 }
9411
9412 char *
9413 elfcore_write_s390_timer (bfd *abfd,
9414 char *buf,
9415 int *bufsiz,
9416 const void *s390_timer,
9417 int size)
9418 {
9419 char *note_name = "LINUX";
9420 return elfcore_write_note (abfd, buf, bufsiz,
9421 note_name, NT_S390_TIMER, s390_timer, size);
9422 }
9423
9424 char *
9425 elfcore_write_s390_todcmp (bfd *abfd,
9426 char *buf,
9427 int *bufsiz,
9428 const void *s390_todcmp,
9429 int size)
9430 {
9431 char *note_name = "LINUX";
9432 return elfcore_write_note (abfd, buf, bufsiz,
9433 note_name, NT_S390_TODCMP, s390_todcmp, size);
9434 }
9435
9436 char *
9437 elfcore_write_s390_todpreg (bfd *abfd,
9438 char *buf,
9439 int *bufsiz,
9440 const void *s390_todpreg,
9441 int size)
9442 {
9443 char *note_name = "LINUX";
9444 return elfcore_write_note (abfd, buf, bufsiz,
9445 note_name, NT_S390_TODPREG, s390_todpreg, size);
9446 }
9447
9448 char *
9449 elfcore_write_s390_ctrs (bfd *abfd,
9450 char *buf,
9451 int *bufsiz,
9452 const void *s390_ctrs,
9453 int size)
9454 {
9455 char *note_name = "LINUX";
9456 return elfcore_write_note (abfd, buf, bufsiz,
9457 note_name, NT_S390_CTRS, s390_ctrs, size);
9458 }
9459
9460 char *
9461 elfcore_write_s390_prefix (bfd *abfd,
9462 char *buf,
9463 int *bufsiz,
9464 const void *s390_prefix,
9465 int size)
9466 {
9467 char *note_name = "LINUX";
9468 return elfcore_write_note (abfd, buf, bufsiz,
9469 note_name, NT_S390_PREFIX, s390_prefix, size);
9470 }
9471
9472 char *
9473 elfcore_write_s390_last_break (bfd *abfd,
9474 char *buf,
9475 int *bufsiz,
9476 const void *s390_last_break,
9477 int size)
9478 {
9479 char *note_name = "LINUX";
9480 return elfcore_write_note (abfd, buf, bufsiz,
9481 note_name, NT_S390_LAST_BREAK,
9482 s390_last_break, size);
9483 }
9484
9485 char *
9486 elfcore_write_s390_system_call (bfd *abfd,
9487 char *buf,
9488 int *bufsiz,
9489 const void *s390_system_call,
9490 int size)
9491 {
9492 char *note_name = "LINUX";
9493 return elfcore_write_note (abfd, buf, bufsiz,
9494 note_name, NT_S390_SYSTEM_CALL,
9495 s390_system_call, size);
9496 }
9497
9498 char *
9499 elfcore_write_s390_tdb (bfd *abfd,
9500 char *buf,
9501 int *bufsiz,
9502 const void *s390_tdb,
9503 int size)
9504 {
9505 char *note_name = "LINUX";
9506 return elfcore_write_note (abfd, buf, bufsiz,
9507 note_name, NT_S390_TDB, s390_tdb, size);
9508 }
9509
9510 char *
9511 elfcore_write_arm_vfp (bfd *abfd,
9512 char *buf,
9513 int *bufsiz,
9514 const void *arm_vfp,
9515 int size)
9516 {
9517 char *note_name = "LINUX";
9518 return elfcore_write_note (abfd, buf, bufsiz,
9519 note_name, NT_ARM_VFP, arm_vfp, size);
9520 }
9521
9522 char *
9523 elfcore_write_aarch_tls (bfd *abfd,
9524 char *buf,
9525 int *bufsiz,
9526 const void *aarch_tls,
9527 int size)
9528 {
9529 char *note_name = "LINUX";
9530 return elfcore_write_note (abfd, buf, bufsiz,
9531 note_name, NT_ARM_TLS, aarch_tls, size);
9532 }
9533
9534 char *
9535 elfcore_write_aarch_hw_break (bfd *abfd,
9536 char *buf,
9537 int *bufsiz,
9538 const void *aarch_hw_break,
9539 int size)
9540 {
9541 char *note_name = "LINUX";
9542 return elfcore_write_note (abfd, buf, bufsiz,
9543 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9544 }
9545
9546 char *
9547 elfcore_write_aarch_hw_watch (bfd *abfd,
9548 char *buf,
9549 int *bufsiz,
9550 const void *aarch_hw_watch,
9551 int size)
9552 {
9553 char *note_name = "LINUX";
9554 return elfcore_write_note (abfd, buf, bufsiz,
9555 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9556 }
9557
9558 char *
9559 elfcore_write_register_note (bfd *abfd,
9560 char *buf,
9561 int *bufsiz,
9562 const char *section,
9563 const void *data,
9564 int size)
9565 {
9566 if (strcmp (section, ".reg2") == 0)
9567 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9568 if (strcmp (section, ".reg-xfp") == 0)
9569 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9570 if (strcmp (section, ".reg-xstate") == 0)
9571 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9572 if (strcmp (section, ".reg-ppc-vmx") == 0)
9573 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9574 if (strcmp (section, ".reg-ppc-vsx") == 0)
9575 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9576 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9577 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9578 if (strcmp (section, ".reg-s390-timer") == 0)
9579 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9580 if (strcmp (section, ".reg-s390-todcmp") == 0)
9581 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9582 if (strcmp (section, ".reg-s390-todpreg") == 0)
9583 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9584 if (strcmp (section, ".reg-s390-ctrs") == 0)
9585 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9586 if (strcmp (section, ".reg-s390-prefix") == 0)
9587 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9588 if (strcmp (section, ".reg-s390-last-break") == 0)
9589 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9590 if (strcmp (section, ".reg-s390-system-call") == 0)
9591 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9592 if (strcmp (section, ".reg-s390-tdb") == 0)
9593 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9594 if (strcmp (section, ".reg-arm-vfp") == 0)
9595 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9596 if (strcmp (section, ".reg-aarch-tls") == 0)
9597 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9598 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9599 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9600 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9601 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9602 return NULL;
9603 }
9604
9605 static bfd_boolean
9606 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9607 {
9608 char *p;
9609
9610 p = buf;
9611 while (p < buf + size)
9612 {
9613 /* FIXME: bad alignment assumption. */
9614 Elf_External_Note *xnp = (Elf_External_Note *) p;
9615 Elf_Internal_Note in;
9616
9617 if (offsetof (Elf_External_Note, name) > buf - p + size)
9618 return FALSE;
9619
9620 in.type = H_GET_32 (abfd, xnp->type);
9621
9622 in.namesz = H_GET_32 (abfd, xnp->namesz);
9623 in.namedata = xnp->name;
9624 if (in.namesz > buf - in.namedata + size)
9625 return FALSE;
9626
9627 in.descsz = H_GET_32 (abfd, xnp->descsz);
9628 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9629 in.descpos = offset + (in.descdata - buf);
9630 if (in.descsz != 0
9631 && (in.descdata >= buf + size
9632 || in.descsz > buf - in.descdata + size))
9633 return FALSE;
9634
9635 switch (bfd_get_format (abfd))
9636 {
9637 default:
9638 return TRUE;
9639
9640 case bfd_core:
9641 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9642 {
9643 if (! elfcore_grok_netbsd_note (abfd, &in))
9644 return FALSE;
9645 }
9646 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9647 {
9648 if (! elfcore_grok_openbsd_note (abfd, &in))
9649 return FALSE;
9650 }
9651 else if (CONST_STRNEQ (in.namedata, "QNX"))
9652 {
9653 if (! elfcore_grok_nto_note (abfd, &in))
9654 return FALSE;
9655 }
9656 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9657 {
9658 if (! elfcore_grok_spu_note (abfd, &in))
9659 return FALSE;
9660 }
9661 else
9662 {
9663 if (! elfcore_grok_note (abfd, &in))
9664 return FALSE;
9665 }
9666 break;
9667
9668 case bfd_object:
9669 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9670 {
9671 if (! elfobj_grok_gnu_note (abfd, &in))
9672 return FALSE;
9673 }
9674 else if (in.namesz == sizeof "stapsdt"
9675 && strcmp (in.namedata, "stapsdt") == 0)
9676 {
9677 if (! elfobj_grok_stapsdt_note (abfd, &in))
9678 return FALSE;
9679 }
9680 break;
9681 }
9682
9683 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9684 }
9685
9686 return TRUE;
9687 }
9688
9689 static bfd_boolean
9690 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9691 {
9692 char *buf;
9693
9694 if (size <= 0)
9695 return TRUE;
9696
9697 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9698 return FALSE;
9699
9700 buf = (char *) bfd_malloc (size);
9701 if (buf == NULL)
9702 return FALSE;
9703
9704 if (bfd_bread (buf, size, abfd) != size
9705 || !elf_parse_notes (abfd, buf, size, offset))
9706 {
9707 free (buf);
9708 return FALSE;
9709 }
9710
9711 free (buf);
9712 return TRUE;
9713 }
9714 \f
9715 /* Providing external access to the ELF program header table. */
9716
9717 /* Return an upper bound on the number of bytes required to store a
9718 copy of ABFD's program header table entries. Return -1 if an error
9719 occurs; bfd_get_error will return an appropriate code. */
9720
9721 long
9722 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9723 {
9724 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9725 {
9726 bfd_set_error (bfd_error_wrong_format);
9727 return -1;
9728 }
9729
9730 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9731 }
9732
9733 /* Copy ABFD's program header table entries to *PHDRS. The entries
9734 will be stored as an array of Elf_Internal_Phdr structures, as
9735 defined in include/elf/internal.h. To find out how large the
9736 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9737
9738 Return the number of program header table entries read, or -1 if an
9739 error occurs; bfd_get_error will return an appropriate code. */
9740
9741 int
9742 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9743 {
9744 int num_phdrs;
9745
9746 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9747 {
9748 bfd_set_error (bfd_error_wrong_format);
9749 return -1;
9750 }
9751
9752 num_phdrs = elf_elfheader (abfd)->e_phnum;
9753 memcpy (phdrs, elf_tdata (abfd)->phdr,
9754 num_phdrs * sizeof (Elf_Internal_Phdr));
9755
9756 return num_phdrs;
9757 }
9758
9759 enum elf_reloc_type_class
9760 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9761 const asection *rel_sec ATTRIBUTE_UNUSED,
9762 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9763 {
9764 return reloc_class_normal;
9765 }
9766
9767 /* For RELA architectures, return the relocation value for a
9768 relocation against a local symbol. */
9769
9770 bfd_vma
9771 _bfd_elf_rela_local_sym (bfd *abfd,
9772 Elf_Internal_Sym *sym,
9773 asection **psec,
9774 Elf_Internal_Rela *rel)
9775 {
9776 asection *sec = *psec;
9777 bfd_vma relocation;
9778
9779 relocation = (sec->output_section->vma
9780 + sec->output_offset
9781 + sym->st_value);
9782 if ((sec->flags & SEC_MERGE)
9783 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9784 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9785 {
9786 rel->r_addend =
9787 _bfd_merged_section_offset (abfd, psec,
9788 elf_section_data (sec)->sec_info,
9789 sym->st_value + rel->r_addend);
9790 if (sec != *psec)
9791 {
9792 /* If we have changed the section, and our original section is
9793 marked with SEC_EXCLUDE, it means that the original
9794 SEC_MERGE section has been completely subsumed in some
9795 other SEC_MERGE section. In this case, we need to leave
9796 some info around for --emit-relocs. */
9797 if ((sec->flags & SEC_EXCLUDE) != 0)
9798 sec->kept_section = *psec;
9799 sec = *psec;
9800 }
9801 rel->r_addend -= relocation;
9802 rel->r_addend += sec->output_section->vma + sec->output_offset;
9803 }
9804 return relocation;
9805 }
9806
9807 bfd_vma
9808 _bfd_elf_rel_local_sym (bfd *abfd,
9809 Elf_Internal_Sym *sym,
9810 asection **psec,
9811 bfd_vma addend)
9812 {
9813 asection *sec = *psec;
9814
9815 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9816 return sym->st_value + addend;
9817
9818 return _bfd_merged_section_offset (abfd, psec,
9819 elf_section_data (sec)->sec_info,
9820 sym->st_value + addend);
9821 }
9822
9823 bfd_vma
9824 _bfd_elf_section_offset (bfd *abfd,
9825 struct bfd_link_info *info,
9826 asection *sec,
9827 bfd_vma offset)
9828 {
9829 switch (sec->sec_info_type)
9830 {
9831 case SEC_INFO_TYPE_STABS:
9832 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9833 offset);
9834 case SEC_INFO_TYPE_EH_FRAME:
9835 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9836 default:
9837 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9838 {
9839 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9840 bfd_size_type address_size = bed->s->arch_size / 8;
9841 offset = sec->size - offset - address_size;
9842 }
9843 return offset;
9844 }
9845 }
9846 \f
9847 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9848 reconstruct an ELF file by reading the segments out of remote memory
9849 based on the ELF file header at EHDR_VMA and the ELF program headers it
9850 points to. If not null, *LOADBASEP is filled in with the difference
9851 between the VMAs from which the segments were read, and the VMAs the
9852 file headers (and hence BFD's idea of each section's VMA) put them at.
9853
9854 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9855 remote memory at target address VMA into the local buffer at MYADDR; it
9856 should return zero on success or an `errno' code on failure. TEMPL must
9857 be a BFD for an ELF target with the word size and byte order found in
9858 the remote memory. */
9859
9860 bfd *
9861 bfd_elf_bfd_from_remote_memory
9862 (bfd *templ,
9863 bfd_vma ehdr_vma,
9864 bfd_vma *loadbasep,
9865 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9866 {
9867 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9868 (templ, ehdr_vma, loadbasep, target_read_memory);
9869 }
9870 \f
9871 long
9872 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9873 long symcount ATTRIBUTE_UNUSED,
9874 asymbol **syms ATTRIBUTE_UNUSED,
9875 long dynsymcount,
9876 asymbol **dynsyms,
9877 asymbol **ret)
9878 {
9879 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9880 asection *relplt;
9881 asymbol *s;
9882 const char *relplt_name;
9883 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9884 arelent *p;
9885 long count, i, n;
9886 size_t size;
9887 Elf_Internal_Shdr *hdr;
9888 char *names;
9889 asection *plt;
9890
9891 *ret = NULL;
9892
9893 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9894 return 0;
9895
9896 if (dynsymcount <= 0)
9897 return 0;
9898
9899 if (!bed->plt_sym_val)
9900 return 0;
9901
9902 relplt_name = bed->relplt_name;
9903 if (relplt_name == NULL)
9904 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9905 relplt = bfd_get_section_by_name (abfd, relplt_name);
9906 if (relplt == NULL)
9907 return 0;
9908
9909 hdr = &elf_section_data (relplt)->this_hdr;
9910 if (hdr->sh_link != elf_dynsymtab (abfd)
9911 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9912 return 0;
9913
9914 plt = bfd_get_section_by_name (abfd, ".plt");
9915 if (plt == NULL)
9916 return 0;
9917
9918 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9919 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9920 return -1;
9921
9922 count = relplt->size / hdr->sh_entsize;
9923 size = count * sizeof (asymbol);
9924 p = relplt->relocation;
9925 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9926 {
9927 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9928 if (p->addend != 0)
9929 {
9930 #ifdef BFD64
9931 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9932 #else
9933 size += sizeof ("+0x") - 1 + 8;
9934 #endif
9935 }
9936 }
9937
9938 s = *ret = (asymbol *) bfd_malloc (size);
9939 if (s == NULL)
9940 return -1;
9941
9942 names = (char *) (s + count);
9943 p = relplt->relocation;
9944 n = 0;
9945 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9946 {
9947 size_t len;
9948 bfd_vma addr;
9949
9950 addr = bed->plt_sym_val (i, plt, p);
9951 if (addr == (bfd_vma) -1)
9952 continue;
9953
9954 *s = **p->sym_ptr_ptr;
9955 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9956 we are defining a symbol, ensure one of them is set. */
9957 if ((s->flags & BSF_LOCAL) == 0)
9958 s->flags |= BSF_GLOBAL;
9959 s->flags |= BSF_SYNTHETIC;
9960 s->section = plt;
9961 s->value = addr - plt->vma;
9962 s->name = names;
9963 s->udata.p = NULL;
9964 len = strlen ((*p->sym_ptr_ptr)->name);
9965 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9966 names += len;
9967 if (p->addend != 0)
9968 {
9969 char buf[30], *a;
9970
9971 memcpy (names, "+0x", sizeof ("+0x") - 1);
9972 names += sizeof ("+0x") - 1;
9973 bfd_sprintf_vma (abfd, buf, p->addend);
9974 for (a = buf; *a == '0'; ++a)
9975 ;
9976 len = strlen (a);
9977 memcpy (names, a, len);
9978 names += len;
9979 }
9980 memcpy (names, "@plt", sizeof ("@plt"));
9981 names += sizeof ("@plt");
9982 ++s, ++n;
9983 }
9984
9985 return n;
9986 }
9987
9988 /* It is only used by x86-64 so far. */
9989 asection _bfd_elf_large_com_section
9990 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9991 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9992
9993 void
9994 _bfd_elf_set_osabi (bfd * abfd,
9995 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9996 {
9997 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9998
9999 i_ehdrp = elf_elfheader (abfd);
10000
10001 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10002
10003 /* To make things simpler for the loader on Linux systems we set the
10004 osabi field to ELFOSABI_GNU if the binary contains symbols of
10005 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10006 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10007 && elf_tdata (abfd)->has_gnu_symbols)
10008 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10009 }
10010
10011
10012 /* Return TRUE for ELF symbol types that represent functions.
10013 This is the default version of this function, which is sufficient for
10014 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10015
10016 bfd_boolean
10017 _bfd_elf_is_function_type (unsigned int type)
10018 {
10019 return (type == STT_FUNC
10020 || type == STT_GNU_IFUNC);
10021 }
10022
10023 /* If the ELF symbol SYM might be a function in SEC, return the
10024 function size and set *CODE_OFF to the function's entry point,
10025 otherwise return zero. */
10026
10027 bfd_size_type
10028 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10029 bfd_vma *code_off)
10030 {
10031 bfd_size_type size;
10032
10033 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10034 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10035 || sym->section != sec)
10036 return 0;
10037
10038 *code_off = sym->value;
10039 size = 0;
10040 if (!(sym->flags & BSF_SYNTHETIC))
10041 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10042 if (size == 0)
10043 size = 1;
10044 return size;
10045 }