]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
* ld-pe/pe.exp: Special diff file for x86_64-mingw target.
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
52
53 /* Swap version information in and out. The version information is
54 currently size independent. If that ever changes, this code will
55 need to move into elfcode.h. */
56
57 /* Swap in a Verdef structure. */
58
59 void
60 _bfd_elf_swap_verdef_in (bfd *abfd,
61 const Elf_External_Verdef *src,
62 Elf_Internal_Verdef *dst)
63 {
64 dst->vd_version = H_GET_16 (abfd, src->vd_version);
65 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
66 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
67 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
68 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
69 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
70 dst->vd_next = H_GET_32 (abfd, src->vd_next);
71 }
72
73 /* Swap out a Verdef structure. */
74
75 void
76 _bfd_elf_swap_verdef_out (bfd *abfd,
77 const Elf_Internal_Verdef *src,
78 Elf_External_Verdef *dst)
79 {
80 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
81 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
82 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
83 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
84 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
85 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
86 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
87 }
88
89 /* Swap in a Verdaux structure. */
90
91 void
92 _bfd_elf_swap_verdaux_in (bfd *abfd,
93 const Elf_External_Verdaux *src,
94 Elf_Internal_Verdaux *dst)
95 {
96 dst->vda_name = H_GET_32 (abfd, src->vda_name);
97 dst->vda_next = H_GET_32 (abfd, src->vda_next);
98 }
99
100 /* Swap out a Verdaux structure. */
101
102 void
103 _bfd_elf_swap_verdaux_out (bfd *abfd,
104 const Elf_Internal_Verdaux *src,
105 Elf_External_Verdaux *dst)
106 {
107 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
108 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
109 }
110
111 /* Swap in a Verneed structure. */
112
113 void
114 _bfd_elf_swap_verneed_in (bfd *abfd,
115 const Elf_External_Verneed *src,
116 Elf_Internal_Verneed *dst)
117 {
118 dst->vn_version = H_GET_16 (abfd, src->vn_version);
119 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
120 dst->vn_file = H_GET_32 (abfd, src->vn_file);
121 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
122 dst->vn_next = H_GET_32 (abfd, src->vn_next);
123 }
124
125 /* Swap out a Verneed structure. */
126
127 void
128 _bfd_elf_swap_verneed_out (bfd *abfd,
129 const Elf_Internal_Verneed *src,
130 Elf_External_Verneed *dst)
131 {
132 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
133 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
134 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
135 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
136 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
137 }
138
139 /* Swap in a Vernaux structure. */
140
141 void
142 _bfd_elf_swap_vernaux_in (bfd *abfd,
143 const Elf_External_Vernaux *src,
144 Elf_Internal_Vernaux *dst)
145 {
146 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
147 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
148 dst->vna_other = H_GET_16 (abfd, src->vna_other);
149 dst->vna_name = H_GET_32 (abfd, src->vna_name);
150 dst->vna_next = H_GET_32 (abfd, src->vna_next);
151 }
152
153 /* Swap out a Vernaux structure. */
154
155 void
156 _bfd_elf_swap_vernaux_out (bfd *abfd,
157 const Elf_Internal_Vernaux *src,
158 Elf_External_Vernaux *dst)
159 {
160 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
161 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
162 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
163 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
164 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
165 }
166
167 /* Swap in a Versym structure. */
168
169 void
170 _bfd_elf_swap_versym_in (bfd *abfd,
171 const Elf_External_Versym *src,
172 Elf_Internal_Versym *dst)
173 {
174 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
175 }
176
177 /* Swap out a Versym structure. */
178
179 void
180 _bfd_elf_swap_versym_out (bfd *abfd,
181 const Elf_Internal_Versym *src,
182 Elf_External_Versym *dst)
183 {
184 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
185 }
186
187 /* Standard ELF hash function. Do not change this function; you will
188 cause invalid hash tables to be generated. */
189
190 unsigned long
191 bfd_elf_hash (const char *namearg)
192 {
193 const unsigned char *name = (const unsigned char *) namearg;
194 unsigned long h = 0;
195 unsigned long g;
196 int ch;
197
198 while ((ch = *name++) != '\0')
199 {
200 h = (h << 4) + ch;
201 if ((g = (h & 0xf0000000)) != 0)
202 {
203 h ^= g >> 24;
204 /* The ELF ABI says `h &= ~g', but this is equivalent in
205 this case and on some machines one insn instead of two. */
206 h ^= g;
207 }
208 }
209 return h & 0xffffffff;
210 }
211
212 /* DT_GNU_HASH hash function. Do not change this function; you will
213 cause invalid hash tables to be generated. */
214
215 unsigned long
216 bfd_elf_gnu_hash (const char *namearg)
217 {
218 const unsigned char *name = (const unsigned char *) namearg;
219 unsigned long h = 5381;
220 unsigned char ch;
221
222 while ((ch = *name++) != '\0')
223 h = (h << 5) + h + ch;
224 return h & 0xffffffff;
225 }
226
227 bfd_boolean
228 bfd_elf_mkobject (bfd *abfd)
229 {
230 if (abfd->tdata.any == NULL)
231 {
232 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
233 if (abfd->tdata.any == NULL)
234 return FALSE;
235 }
236
237 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
238
239 return TRUE;
240 }
241
242 bfd_boolean
243 bfd_elf_mkcorefile (bfd *abfd)
244 {
245 /* I think this can be done just like an object file. */
246 return bfd_elf_mkobject (abfd);
247 }
248
249 char *
250 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
251 {
252 Elf_Internal_Shdr **i_shdrp;
253 bfd_byte *shstrtab = NULL;
254 file_ptr offset;
255 bfd_size_type shstrtabsize;
256
257 i_shdrp = elf_elfsections (abfd);
258 if (i_shdrp == 0
259 || shindex >= elf_numsections (abfd)
260 || i_shdrp[shindex] == 0)
261 return NULL;
262
263 shstrtab = i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269
270 /* Allocate and clear an extra byte at the end, to prevent crashes
271 in case the string table is not terminated. */
272 if (shstrtabsize + 1 == 0
273 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
274 || bfd_seek (abfd, offset, SEEK_SET) != 0)
275 shstrtab = NULL;
276 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
277 {
278 if (bfd_get_error () != bfd_error_system_call)
279 bfd_set_error (bfd_error_file_truncated);
280 shstrtab = NULL;
281 }
282 else
283 shstrtab[shstrtabsize] = '\0';
284 i_shdrp[shindex]->contents = shstrtab;
285 }
286 return (char *) shstrtab;
287 }
288
289 char *
290 bfd_elf_string_from_elf_section (bfd *abfd,
291 unsigned int shindex,
292 unsigned int strindex)
293 {
294 Elf_Internal_Shdr *hdr;
295
296 if (strindex == 0)
297 return "";
298
299 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
300 return NULL;
301
302 hdr = elf_elfsections (abfd)[shindex];
303
304 if (hdr->contents == NULL
305 && bfd_elf_get_str_section (abfd, shindex) == NULL)
306 return NULL;
307
308 if (strindex >= hdr->sh_size)
309 {
310 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
311 (*_bfd_error_handler)
312 (_("%B: invalid string offset %u >= %lu for section `%s'"),
313 abfd, strindex, (unsigned long) hdr->sh_size,
314 (shindex == shstrndx && strindex == hdr->sh_name
315 ? ".shstrtab"
316 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
317 return "";
318 }
319
320 return ((char *) hdr->contents) + strindex;
321 }
322
323 /* Read and convert symbols to internal format.
324 SYMCOUNT specifies the number of symbols to read, starting from
325 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
326 are non-NULL, they are used to store the internal symbols, external
327 symbols, and symbol section index extensions, respectively. */
328
329 Elf_Internal_Sym *
330 bfd_elf_get_elf_syms (bfd *ibfd,
331 Elf_Internal_Shdr *symtab_hdr,
332 size_t symcount,
333 size_t symoffset,
334 Elf_Internal_Sym *intsym_buf,
335 void *extsym_buf,
336 Elf_External_Sym_Shndx *extshndx_buf)
337 {
338 Elf_Internal_Shdr *shndx_hdr;
339 void *alloc_ext;
340 const bfd_byte *esym;
341 Elf_External_Sym_Shndx *alloc_extshndx;
342 Elf_External_Sym_Shndx *shndx;
343 Elf_Internal_Sym *isym;
344 Elf_Internal_Sym *isymend;
345 const struct elf_backend_data *bed;
346 size_t extsym_size;
347 bfd_size_type amt;
348 file_ptr pos;
349
350 if (symcount == 0)
351 return intsym_buf;
352
353 /* Normal syms might have section extension entries. */
354 shndx_hdr = NULL;
355 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
356 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
357
358 /* Read the symbols. */
359 alloc_ext = NULL;
360 alloc_extshndx = NULL;
361 bed = get_elf_backend_data (ibfd);
362 extsym_size = bed->s->sizeof_sym;
363 amt = symcount * extsym_size;
364 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
365 if (extsym_buf == NULL)
366 {
367 alloc_ext = bfd_malloc2 (symcount, extsym_size);
368 extsym_buf = alloc_ext;
369 }
370 if (extsym_buf == NULL
371 || bfd_seek (ibfd, pos, SEEK_SET) != 0
372 || bfd_bread (extsym_buf, amt, ibfd) != amt)
373 {
374 intsym_buf = NULL;
375 goto out;
376 }
377
378 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
379 extshndx_buf = NULL;
380 else
381 {
382 amt = symcount * sizeof (Elf_External_Sym_Shndx);
383 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
384 if (extshndx_buf == NULL)
385 {
386 alloc_extshndx = bfd_malloc2 (symcount,
387 sizeof (Elf_External_Sym_Shndx));
388 extshndx_buf = alloc_extshndx;
389 }
390 if (extshndx_buf == NULL
391 || bfd_seek (ibfd, pos, SEEK_SET) != 0
392 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
393 {
394 intsym_buf = NULL;
395 goto out;
396 }
397 }
398
399 if (intsym_buf == NULL)
400 {
401 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
402 if (intsym_buf == NULL)
403 goto out;
404 }
405
406 /* Convert the symbols to internal form. */
407 isymend = intsym_buf + symcount;
408 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
409 isym < isymend;
410 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
411 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
412 {
413 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
414 (*_bfd_error_handler) (_("%B symbol number %lu references "
415 "nonexistent SHT_SYMTAB_SHNDX section"),
416 ibfd, (unsigned long) symoffset);
417 intsym_buf = NULL;
418 goto out;
419 }
420
421 out:
422 if (alloc_ext != NULL)
423 free (alloc_ext);
424 if (alloc_extshndx != NULL)
425 free (alloc_extshndx);
426
427 return intsym_buf;
428 }
429
430 /* Look up a symbol name. */
431 const char *
432 bfd_elf_sym_name (bfd *abfd,
433 Elf_Internal_Shdr *symtab_hdr,
434 Elf_Internal_Sym *isym,
435 asection *sym_sec)
436 {
437 const char *name;
438 unsigned int iname = isym->st_name;
439 unsigned int shindex = symtab_hdr->sh_link;
440
441 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
442 /* Check for a bogus st_shndx to avoid crashing. */
443 && isym->st_shndx < elf_numsections (abfd)
444 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
445 {
446 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
447 shindex = elf_elfheader (abfd)->e_shstrndx;
448 }
449
450 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
451 if (name == NULL)
452 name = "(null)";
453 else if (sym_sec && *name == '\0')
454 name = bfd_section_name (abfd, sym_sec);
455
456 return name;
457 }
458
459 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
460 sections. The first element is the flags, the rest are section
461 pointers. */
462
463 typedef union elf_internal_group {
464 Elf_Internal_Shdr *shdr;
465 unsigned int flags;
466 } Elf_Internal_Group;
467
468 /* Return the name of the group signature symbol. Why isn't the
469 signature just a string? */
470
471 static const char *
472 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
473 {
474 Elf_Internal_Shdr *hdr;
475 unsigned char esym[sizeof (Elf64_External_Sym)];
476 Elf_External_Sym_Shndx eshndx;
477 Elf_Internal_Sym isym;
478
479 /* First we need to ensure the symbol table is available. Make sure
480 that it is a symbol table section. */
481 hdr = elf_elfsections (abfd) [ghdr->sh_link];
482 if (hdr->sh_type != SHT_SYMTAB
483 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
484 return NULL;
485
486 /* Go read the symbol. */
487 hdr = &elf_tdata (abfd)->symtab_hdr;
488 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
489 &isym, esym, &eshndx) == NULL)
490 return NULL;
491
492 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
493 }
494
495 /* Set next_in_group list pointer, and group name for NEWSECT. */
496
497 static bfd_boolean
498 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
499 {
500 unsigned int num_group = elf_tdata (abfd)->num_group;
501
502 /* If num_group is zero, read in all SHT_GROUP sections. The count
503 is set to -1 if there are no SHT_GROUP sections. */
504 if (num_group == 0)
505 {
506 unsigned int i, shnum;
507
508 /* First count the number of groups. If we have a SHT_GROUP
509 section with just a flag word (ie. sh_size is 4), ignore it. */
510 shnum = elf_numsections (abfd);
511 num_group = 0;
512
513 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
514 ( (shdr)->sh_type == SHT_GROUP \
515 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
516 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
517 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
518
519 for (i = 0; i < shnum; i++)
520 {
521 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
522
523 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
524 num_group += 1;
525 }
526
527 if (num_group == 0)
528 {
529 num_group = (unsigned) -1;
530 elf_tdata (abfd)->num_group = num_group;
531 }
532 else
533 {
534 /* We keep a list of elf section headers for group sections,
535 so we can find them quickly. */
536 bfd_size_type amt;
537
538 elf_tdata (abfd)->num_group = num_group;
539 elf_tdata (abfd)->group_sect_ptr
540 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
541 if (elf_tdata (abfd)->group_sect_ptr == NULL)
542 return FALSE;
543
544 num_group = 0;
545 for (i = 0; i < shnum; i++)
546 {
547 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
548
549 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
550 {
551 unsigned char *src;
552 Elf_Internal_Group *dest;
553
554 /* Add to list of sections. */
555 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
556 num_group += 1;
557
558 /* Read the raw contents. */
559 BFD_ASSERT (sizeof (*dest) >= 4);
560 amt = shdr->sh_size * sizeof (*dest) / 4;
561 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
562 sizeof (*dest) / 4);
563 /* PR binutils/4110: Handle corrupt group headers. */
564 if (shdr->contents == NULL)
565 {
566 _bfd_error_handler
567 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
568 bfd_set_error (bfd_error_bad_value);
569 return FALSE;
570 }
571
572 memset (shdr->contents, 0, amt);
573
574 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
575 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
576 != shdr->sh_size))
577 return FALSE;
578
579 /* Translate raw contents, a flag word followed by an
580 array of elf section indices all in target byte order,
581 to the flag word followed by an array of elf section
582 pointers. */
583 src = shdr->contents + shdr->sh_size;
584 dest = (Elf_Internal_Group *) (shdr->contents + amt);
585 while (1)
586 {
587 unsigned int idx;
588
589 src -= 4;
590 --dest;
591 idx = H_GET_32 (abfd, src);
592 if (src == shdr->contents)
593 {
594 dest->flags = idx;
595 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
596 shdr->bfd_section->flags
597 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
598 break;
599 }
600 if (idx >= shnum)
601 {
602 ((*_bfd_error_handler)
603 (_("%B: invalid SHT_GROUP entry"), abfd));
604 idx = 0;
605 }
606 dest->shdr = elf_elfsections (abfd)[idx];
607 }
608 }
609 }
610 }
611 }
612
613 if (num_group != (unsigned) -1)
614 {
615 unsigned int i;
616
617 for (i = 0; i < num_group; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
620 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
621 unsigned int n_elt = shdr->sh_size / 4;
622
623 /* Look through this group's sections to see if current
624 section is a member. */
625 while (--n_elt != 0)
626 if ((++idx)->shdr == hdr)
627 {
628 asection *s = NULL;
629
630 /* We are a member of this group. Go looking through
631 other members to see if any others are linked via
632 next_in_group. */
633 idx = (Elf_Internal_Group *) shdr->contents;
634 n_elt = shdr->sh_size / 4;
635 while (--n_elt != 0)
636 if ((s = (++idx)->shdr->bfd_section) != NULL
637 && elf_next_in_group (s) != NULL)
638 break;
639 if (n_elt != 0)
640 {
641 /* Snarf the group name from other member, and
642 insert current section in circular list. */
643 elf_group_name (newsect) = elf_group_name (s);
644 elf_next_in_group (newsect) = elf_next_in_group (s);
645 elf_next_in_group (s) = newsect;
646 }
647 else
648 {
649 const char *gname;
650
651 gname = group_signature (abfd, shdr);
652 if (gname == NULL)
653 return FALSE;
654 elf_group_name (newsect) = gname;
655
656 /* Start a circular list with one element. */
657 elf_next_in_group (newsect) = newsect;
658 }
659
660 /* If the group section has been created, point to the
661 new member. */
662 if (shdr->bfd_section != NULL)
663 elf_next_in_group (shdr->bfd_section) = newsect;
664
665 i = num_group - 1;
666 break;
667 }
668 }
669 }
670
671 if (elf_group_name (newsect) == NULL)
672 {
673 (*_bfd_error_handler) (_("%B: no group info for section %A"),
674 abfd, newsect);
675 }
676 return TRUE;
677 }
678
679 bfd_boolean
680 _bfd_elf_setup_sections (bfd *abfd)
681 {
682 unsigned int i;
683 unsigned int num_group = elf_tdata (abfd)->num_group;
684 bfd_boolean result = TRUE;
685 asection *s;
686
687 /* Process SHF_LINK_ORDER. */
688 for (s = abfd->sections; s != NULL; s = s->next)
689 {
690 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
691 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
692 {
693 unsigned int elfsec = this_hdr->sh_link;
694 /* FIXME: The old Intel compiler and old strip/objcopy may
695 not set the sh_link or sh_info fields. Hence we could
696 get the situation where elfsec is 0. */
697 if (elfsec == 0)
698 {
699 const struct elf_backend_data *bed
700 = get_elf_backend_data (abfd);
701 if (bed->link_order_error_handler)
702 bed->link_order_error_handler
703 (_("%B: warning: sh_link not set for section `%A'"),
704 abfd, s);
705 }
706 else
707 {
708 asection *link;
709
710 this_hdr = elf_elfsections (abfd)[elfsec];
711
712 /* PR 1991, 2008:
713 Some strip/objcopy may leave an incorrect value in
714 sh_link. We don't want to proceed. */
715 link = this_hdr->bfd_section;
716 if (link == NULL)
717 {
718 (*_bfd_error_handler)
719 (_("%B: sh_link [%d] in section `%A' is incorrect"),
720 s->owner, s, elfsec);
721 result = FALSE;
722 }
723
724 elf_linked_to_section (s) = link;
725 }
726 }
727 }
728
729 /* Process section groups. */
730 if (num_group == (unsigned) -1)
731 return result;
732
733 for (i = 0; i < num_group; i++)
734 {
735 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
736 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
737 unsigned int n_elt = shdr->sh_size / 4;
738
739 while (--n_elt != 0)
740 if ((++idx)->shdr->bfd_section)
741 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
742 else if (idx->shdr->sh_type == SHT_RELA
743 || idx->shdr->sh_type == SHT_REL)
744 /* We won't include relocation sections in section groups in
745 output object files. We adjust the group section size here
746 so that relocatable link will work correctly when
747 relocation sections are in section group in input object
748 files. */
749 shdr->bfd_section->size -= 4;
750 else
751 {
752 /* There are some unknown sections in the group. */
753 (*_bfd_error_handler)
754 (_("%B: unknown [%d] section `%s' in group [%s]"),
755 abfd,
756 (unsigned int) idx->shdr->sh_type,
757 bfd_elf_string_from_elf_section (abfd,
758 (elf_elfheader (abfd)
759 ->e_shstrndx),
760 idx->shdr->sh_name),
761 shdr->bfd_section->name);
762 result = FALSE;
763 }
764 }
765 return result;
766 }
767
768 bfd_boolean
769 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
770 {
771 return elf_next_in_group (sec) != NULL;
772 }
773
774 /* Make a BFD section from an ELF section. We store a pointer to the
775 BFD section in the bfd_section field of the header. */
776
777 bfd_boolean
778 _bfd_elf_make_section_from_shdr (bfd *abfd,
779 Elf_Internal_Shdr *hdr,
780 const char *name,
781 int shindex)
782 {
783 asection *newsect;
784 flagword flags;
785 const struct elf_backend_data *bed;
786
787 if (hdr->bfd_section != NULL)
788 {
789 BFD_ASSERT (strcmp (name,
790 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
791 return TRUE;
792 }
793
794 newsect = bfd_make_section_anyway (abfd, name);
795 if (newsect == NULL)
796 return FALSE;
797
798 hdr->bfd_section = newsect;
799 elf_section_data (newsect)->this_hdr = *hdr;
800 elf_section_data (newsect)->this_idx = shindex;
801
802 /* Always use the real type/flags. */
803 elf_section_type (newsect) = hdr->sh_type;
804 elf_section_flags (newsect) = hdr->sh_flags;
805
806 newsect->filepos = hdr->sh_offset;
807
808 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
809 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
810 || ! bfd_set_section_alignment (abfd, newsect,
811 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
812 return FALSE;
813
814 flags = SEC_NO_FLAGS;
815 if (hdr->sh_type != SHT_NOBITS)
816 flags |= SEC_HAS_CONTENTS;
817 if (hdr->sh_type == SHT_GROUP)
818 flags |= SEC_GROUP | SEC_EXCLUDE;
819 if ((hdr->sh_flags & SHF_ALLOC) != 0)
820 {
821 flags |= SEC_ALLOC;
822 if (hdr->sh_type != SHT_NOBITS)
823 flags |= SEC_LOAD;
824 }
825 if ((hdr->sh_flags & SHF_WRITE) == 0)
826 flags |= SEC_READONLY;
827 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
828 flags |= SEC_CODE;
829 else if ((flags & SEC_LOAD) != 0)
830 flags |= SEC_DATA;
831 if ((hdr->sh_flags & SHF_MERGE) != 0)
832 {
833 flags |= SEC_MERGE;
834 newsect->entsize = hdr->sh_entsize;
835 if ((hdr->sh_flags & SHF_STRINGS) != 0)
836 flags |= SEC_STRINGS;
837 }
838 if (hdr->sh_flags & SHF_GROUP)
839 if (!setup_group (abfd, hdr, newsect))
840 return FALSE;
841 if ((hdr->sh_flags & SHF_TLS) != 0)
842 flags |= SEC_THREAD_LOCAL;
843
844 if ((flags & SEC_ALLOC) == 0)
845 {
846 /* The debugging sections appear to be recognized only by name,
847 not any sort of flag. Their SEC_ALLOC bits are cleared. */
848 static const struct
849 {
850 const char *name;
851 int len;
852 } debug_sections [] =
853 {
854 { STRING_COMMA_LEN ("debug") }, /* 'd' */
855 { NULL, 0 }, /* 'e' */
856 { NULL, 0 }, /* 'f' */
857 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
858 { NULL, 0 }, /* 'h' */
859 { NULL, 0 }, /* 'i' */
860 { NULL, 0 }, /* 'j' */
861 { NULL, 0 }, /* 'k' */
862 { STRING_COMMA_LEN ("line") }, /* 'l' */
863 { NULL, 0 }, /* 'm' */
864 { NULL, 0 }, /* 'n' */
865 { NULL, 0 }, /* 'o' */
866 { NULL, 0 }, /* 'p' */
867 { NULL, 0 }, /* 'q' */
868 { NULL, 0 }, /* 'r' */
869 { STRING_COMMA_LEN ("stab") } /* 's' */
870 };
871
872 if (name [0] == '.')
873 {
874 int i = name [1] - 'd';
875 if (i >= 0
876 && i < (int) ARRAY_SIZE (debug_sections)
877 && debug_sections [i].name != NULL
878 && strncmp (&name [1], debug_sections [i].name,
879 debug_sections [i].len) == 0)
880 flags |= SEC_DEBUGGING;
881 }
882 }
883
884 /* As a GNU extension, if the name begins with .gnu.linkonce, we
885 only link a single copy of the section. This is used to support
886 g++. g++ will emit each template expansion in its own section.
887 The symbols will be defined as weak, so that multiple definitions
888 are permitted. The GNU linker extension is to actually discard
889 all but one of the sections. */
890 if (CONST_STRNEQ (name, ".gnu.linkonce")
891 && elf_next_in_group (newsect) == NULL)
892 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
893
894 bed = get_elf_backend_data (abfd);
895 if (bed->elf_backend_section_flags)
896 if (! bed->elf_backend_section_flags (&flags, hdr))
897 return FALSE;
898
899 if (! bfd_set_section_flags (abfd, newsect, flags))
900 return FALSE;
901
902 if ((flags & SEC_ALLOC) != 0)
903 {
904 Elf_Internal_Phdr *phdr;
905 unsigned int i;
906
907 /* Look through the phdrs to see if we need to adjust the lma.
908 If all the p_paddr fields are zero, we ignore them, since
909 some ELF linkers produce such output. */
910 phdr = elf_tdata (abfd)->phdr;
911 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
912 {
913 if (phdr->p_paddr != 0)
914 break;
915 }
916 if (i < elf_elfheader (abfd)->e_phnum)
917 {
918 phdr = elf_tdata (abfd)->phdr;
919 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
920 {
921 /* This section is part of this segment if its file
922 offset plus size lies within the segment's memory
923 span and, if the section is loaded, the extent of the
924 loaded data lies within the extent of the segment.
925
926 Note - we used to check the p_paddr field as well, and
927 refuse to set the LMA if it was 0. This is wrong
928 though, as a perfectly valid initialised segment can
929 have a p_paddr of zero. Some architectures, eg ARM,
930 place special significance on the address 0 and
931 executables need to be able to have a segment which
932 covers this address. */
933 if (phdr->p_type == PT_LOAD
934 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
935 && (hdr->sh_offset + hdr->sh_size
936 <= phdr->p_offset + phdr->p_memsz)
937 && ((flags & SEC_LOAD) == 0
938 || (hdr->sh_offset + hdr->sh_size
939 <= phdr->p_offset + phdr->p_filesz)))
940 {
941 if ((flags & SEC_LOAD) == 0)
942 newsect->lma = (phdr->p_paddr
943 + hdr->sh_addr - phdr->p_vaddr);
944 else
945 /* We used to use the same adjustment for SEC_LOAD
946 sections, but that doesn't work if the segment
947 is packed with code from multiple VMAs.
948 Instead we calculate the section LMA based on
949 the segment LMA. It is assumed that the
950 segment will contain sections with contiguous
951 LMAs, even if the VMAs are not. */
952 newsect->lma = (phdr->p_paddr
953 + hdr->sh_offset - phdr->p_offset);
954
955 /* With contiguous segments, we can't tell from file
956 offsets whether a section with zero size should
957 be placed at the end of one segment or the
958 beginning of the next. Decide based on vaddr. */
959 if (hdr->sh_addr >= phdr->p_vaddr
960 && (hdr->sh_addr + hdr->sh_size
961 <= phdr->p_vaddr + phdr->p_memsz))
962 break;
963 }
964 }
965 }
966 }
967
968 return TRUE;
969 }
970
971 /*
972 INTERNAL_FUNCTION
973 bfd_elf_find_section
974
975 SYNOPSIS
976 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
977
978 DESCRIPTION
979 Helper functions for GDB to locate the string tables.
980 Since BFD hides string tables from callers, GDB needs to use an
981 internal hook to find them. Sun's .stabstr, in particular,
982 isn't even pointed to by the .stab section, so ordinary
983 mechanisms wouldn't work to find it, even if we had some.
984 */
985
986 struct elf_internal_shdr *
987 bfd_elf_find_section (bfd *abfd, char *name)
988 {
989 Elf_Internal_Shdr **i_shdrp;
990 char *shstrtab;
991 unsigned int max;
992 unsigned int i;
993
994 i_shdrp = elf_elfsections (abfd);
995 if (i_shdrp != NULL)
996 {
997 shstrtab = bfd_elf_get_str_section (abfd,
998 elf_elfheader (abfd)->e_shstrndx);
999 if (shstrtab != NULL)
1000 {
1001 max = elf_numsections (abfd);
1002 for (i = 1; i < max; i++)
1003 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1004 return i_shdrp[i];
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 const char *const bfd_elf_section_type_names[] = {
1011 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1012 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1013 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1014 };
1015
1016 /* ELF relocs are against symbols. If we are producing relocatable
1017 output, and the reloc is against an external symbol, and nothing
1018 has given us any additional addend, the resulting reloc will also
1019 be against the same symbol. In such a case, we don't want to
1020 change anything about the way the reloc is handled, since it will
1021 all be done at final link time. Rather than put special case code
1022 into bfd_perform_relocation, all the reloc types use this howto
1023 function. It just short circuits the reloc if producing
1024 relocatable output against an external symbol. */
1025
1026 bfd_reloc_status_type
1027 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1028 arelent *reloc_entry,
1029 asymbol *symbol,
1030 void *data ATTRIBUTE_UNUSED,
1031 asection *input_section,
1032 bfd *output_bfd,
1033 char **error_message ATTRIBUTE_UNUSED)
1034 {
1035 if (output_bfd != NULL
1036 && (symbol->flags & BSF_SECTION_SYM) == 0
1037 && (! reloc_entry->howto->partial_inplace
1038 || reloc_entry->addend == 0))
1039 {
1040 reloc_entry->address += input_section->output_offset;
1041 return bfd_reloc_ok;
1042 }
1043
1044 return bfd_reloc_continue;
1045 }
1046 \f
1047 /* Copy the program header and other data from one object module to
1048 another. */
1049
1050 bfd_boolean
1051 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1052 {
1053 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1054 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1055 return TRUE;
1056
1057 BFD_ASSERT (!elf_flags_init (obfd)
1058 || (elf_elfheader (obfd)->e_flags
1059 == elf_elfheader (ibfd)->e_flags));
1060
1061 elf_gp (obfd) = elf_gp (ibfd);
1062 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1063 elf_flags_init (obfd) = TRUE;
1064
1065 /* Copy object attributes. */
1066 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1067
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 case DT_GNU_HASH: name = "GNU_HASH"; break;
1243 }
1244
1245 fprintf (f, " %-11s ", name);
1246 if (! stringp)
1247 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1248 else
1249 {
1250 const char *string;
1251 unsigned int tagv = dyn.d_un.d_val;
1252
1253 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1254 if (string == NULL)
1255 goto error_return;
1256 fprintf (f, "%s", string);
1257 }
1258 fprintf (f, "\n");
1259 }
1260
1261 free (dynbuf);
1262 dynbuf = NULL;
1263 }
1264
1265 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1266 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1267 {
1268 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1269 return FALSE;
1270 }
1271
1272 if (elf_dynverdef (abfd) != 0)
1273 {
1274 Elf_Internal_Verdef *t;
1275
1276 fprintf (f, _("\nVersion definitions:\n"));
1277 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1278 {
1279 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1280 t->vd_flags, t->vd_hash,
1281 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1282 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1283 {
1284 Elf_Internal_Verdaux *a;
1285
1286 fprintf (f, "\t");
1287 for (a = t->vd_auxptr->vda_nextptr;
1288 a != NULL;
1289 a = a->vda_nextptr)
1290 fprintf (f, "%s ",
1291 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1292 fprintf (f, "\n");
1293 }
1294 }
1295 }
1296
1297 if (elf_dynverref (abfd) != 0)
1298 {
1299 Elf_Internal_Verneed *t;
1300
1301 fprintf (f, _("\nVersion References:\n"));
1302 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1303 {
1304 Elf_Internal_Vernaux *a;
1305
1306 fprintf (f, _(" required from %s:\n"),
1307 t->vn_filename ? t->vn_filename : "<corrupt>");
1308 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1309 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1310 a->vna_flags, a->vna_other,
1311 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1312 }
1313 }
1314
1315 return TRUE;
1316
1317 error_return:
1318 if (dynbuf != NULL)
1319 free (dynbuf);
1320 return FALSE;
1321 }
1322
1323 /* Display ELF-specific fields of a symbol. */
1324
1325 void
1326 bfd_elf_print_symbol (bfd *abfd,
1327 void *filep,
1328 asymbol *symbol,
1329 bfd_print_symbol_type how)
1330 {
1331 FILE *file = filep;
1332 switch (how)
1333 {
1334 case bfd_print_symbol_name:
1335 fprintf (file, "%s", symbol->name);
1336 break;
1337 case bfd_print_symbol_more:
1338 fprintf (file, "elf ");
1339 bfd_fprintf_vma (abfd, file, symbol->value);
1340 fprintf (file, " %lx", (long) symbol->flags);
1341 break;
1342 case bfd_print_symbol_all:
1343 {
1344 const char *section_name;
1345 const char *name = NULL;
1346 const struct elf_backend_data *bed;
1347 unsigned char st_other;
1348 bfd_vma val;
1349
1350 section_name = symbol->section ? symbol->section->name : "(*none*)";
1351
1352 bed = get_elf_backend_data (abfd);
1353 if (bed->elf_backend_print_symbol_all)
1354 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1355
1356 if (name == NULL)
1357 {
1358 name = symbol->name;
1359 bfd_print_symbol_vandf (abfd, file, symbol);
1360 }
1361
1362 fprintf (file, " %s\t", section_name);
1363 /* Print the "other" value for a symbol. For common symbols,
1364 we've already printed the size; now print the alignment.
1365 For other symbols, we have no specified alignment, and
1366 we've printed the address; now print the size. */
1367 if (symbol->section && bfd_is_com_section (symbol->section))
1368 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1369 else
1370 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1371 bfd_fprintf_vma (abfd, file, val);
1372
1373 /* If we have version information, print it. */
1374 if (elf_tdata (abfd)->dynversym_section != 0
1375 && (elf_tdata (abfd)->dynverdef_section != 0
1376 || elf_tdata (abfd)->dynverref_section != 0))
1377 {
1378 unsigned int vernum;
1379 const char *version_string;
1380
1381 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1382
1383 if (vernum == 0)
1384 version_string = "";
1385 else if (vernum == 1)
1386 version_string = "Base";
1387 else if (vernum <= elf_tdata (abfd)->cverdefs)
1388 version_string =
1389 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1390 else
1391 {
1392 Elf_Internal_Verneed *t;
1393
1394 version_string = "";
1395 for (t = elf_tdata (abfd)->verref;
1396 t != NULL;
1397 t = t->vn_nextref)
1398 {
1399 Elf_Internal_Vernaux *a;
1400
1401 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1402 {
1403 if (a->vna_other == vernum)
1404 {
1405 version_string = a->vna_nodename;
1406 break;
1407 }
1408 }
1409 }
1410 }
1411
1412 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1413 fprintf (file, " %-11s", version_string);
1414 else
1415 {
1416 int i;
1417
1418 fprintf (file, " (%s)", version_string);
1419 for (i = 10 - strlen (version_string); i > 0; --i)
1420 putc (' ', file);
1421 }
1422 }
1423
1424 /* If the st_other field is not zero, print it. */
1425 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1426
1427 switch (st_other)
1428 {
1429 case 0: break;
1430 case STV_INTERNAL: fprintf (file, " .internal"); break;
1431 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1432 case STV_PROTECTED: fprintf (file, " .protected"); break;
1433 default:
1434 /* Some other non-defined flags are also present, so print
1435 everything hex. */
1436 fprintf (file, " 0x%02x", (unsigned int) st_other);
1437 }
1438
1439 fprintf (file, " %s", name);
1440 }
1441 break;
1442 }
1443 }
1444
1445 /* Allocate an ELF string table--force the first byte to be zero. */
1446
1447 struct bfd_strtab_hash *
1448 _bfd_elf_stringtab_init (void)
1449 {
1450 struct bfd_strtab_hash *ret;
1451
1452 ret = _bfd_stringtab_init ();
1453 if (ret != NULL)
1454 {
1455 bfd_size_type loc;
1456
1457 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1458 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1459 if (loc == (bfd_size_type) -1)
1460 {
1461 _bfd_stringtab_free (ret);
1462 ret = NULL;
1463 }
1464 }
1465 return ret;
1466 }
1467 \f
1468 /* ELF .o/exec file reading */
1469
1470 /* Create a new bfd section from an ELF section header. */
1471
1472 bfd_boolean
1473 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1474 {
1475 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1476 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1478 const char *name;
1479
1480 name = bfd_elf_string_from_elf_section (abfd,
1481 elf_elfheader (abfd)->e_shstrndx,
1482 hdr->sh_name);
1483 if (name == NULL)
1484 return FALSE;
1485
1486 switch (hdr->sh_type)
1487 {
1488 case SHT_NULL:
1489 /* Inactive section. Throw it away. */
1490 return TRUE;
1491
1492 case SHT_PROGBITS: /* Normal section with contents. */
1493 case SHT_NOBITS: /* .bss section. */
1494 case SHT_HASH: /* .hash section. */
1495 case SHT_NOTE: /* .note section. */
1496 case SHT_INIT_ARRAY: /* .init_array section. */
1497 case SHT_FINI_ARRAY: /* .fini_array section. */
1498 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1499 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1500 case SHT_GNU_HASH: /* .gnu.hash section. */
1501 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1502
1503 case SHT_DYNAMIC: /* Dynamic linking information. */
1504 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1505 return FALSE;
1506 if (hdr->sh_link > elf_numsections (abfd)
1507 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1508 return FALSE;
1509 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1510 {
1511 Elf_Internal_Shdr *dynsymhdr;
1512
1513 /* The shared libraries distributed with hpux11 have a bogus
1514 sh_link field for the ".dynamic" section. Find the
1515 string table for the ".dynsym" section instead. */
1516 if (elf_dynsymtab (abfd) != 0)
1517 {
1518 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1519 hdr->sh_link = dynsymhdr->sh_link;
1520 }
1521 else
1522 {
1523 unsigned int i, num_sec;
1524
1525 num_sec = elf_numsections (abfd);
1526 for (i = 1; i < num_sec; i++)
1527 {
1528 dynsymhdr = elf_elfsections (abfd)[i];
1529 if (dynsymhdr->sh_type == SHT_DYNSYM)
1530 {
1531 hdr->sh_link = dynsymhdr->sh_link;
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 break;
1538
1539 case SHT_SYMTAB: /* A symbol table */
1540 if (elf_onesymtab (abfd) == shindex)
1541 return TRUE;
1542
1543 if (hdr->sh_entsize != bed->s->sizeof_sym)
1544 return FALSE;
1545 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1546 elf_onesymtab (abfd) = shindex;
1547 elf_tdata (abfd)->symtab_hdr = *hdr;
1548 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1549 abfd->flags |= HAS_SYMS;
1550
1551 /* Sometimes a shared object will map in the symbol table. If
1552 SHF_ALLOC is set, and this is a shared object, then we also
1553 treat this section as a BFD section. We can not base the
1554 decision purely on SHF_ALLOC, because that flag is sometimes
1555 set in a relocatable object file, which would confuse the
1556 linker. */
1557 if ((hdr->sh_flags & SHF_ALLOC) != 0
1558 && (abfd->flags & DYNAMIC) != 0
1559 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1560 shindex))
1561 return FALSE;
1562
1563 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1564 can't read symbols without that section loaded as well. It
1565 is most likely specified by the next section header. */
1566 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1567 {
1568 unsigned int i, num_sec;
1569
1570 num_sec = elf_numsections (abfd);
1571 for (i = shindex + 1; i < num_sec; i++)
1572 {
1573 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1574 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1575 && hdr2->sh_link == shindex)
1576 break;
1577 }
1578 if (i == num_sec)
1579 for (i = 1; i < shindex; i++)
1580 {
1581 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1582 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1583 && hdr2->sh_link == shindex)
1584 break;
1585 }
1586 if (i != shindex)
1587 return bfd_section_from_shdr (abfd, i);
1588 }
1589 return TRUE;
1590
1591 case SHT_DYNSYM: /* A dynamic symbol table */
1592 if (elf_dynsymtab (abfd) == shindex)
1593 return TRUE;
1594
1595 if (hdr->sh_entsize != bed->s->sizeof_sym)
1596 return FALSE;
1597 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1598 elf_dynsymtab (abfd) = shindex;
1599 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1600 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1601 abfd->flags |= HAS_SYMS;
1602
1603 /* Besides being a symbol table, we also treat this as a regular
1604 section, so that objcopy can handle it. */
1605 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1606
1607 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1608 if (elf_symtab_shndx (abfd) == shindex)
1609 return TRUE;
1610
1611 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1612 elf_symtab_shndx (abfd) = shindex;
1613 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1614 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1615 return TRUE;
1616
1617 case SHT_STRTAB: /* A string table */
1618 if (hdr->bfd_section != NULL)
1619 return TRUE;
1620 if (ehdr->e_shstrndx == shindex)
1621 {
1622 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1623 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1624 return TRUE;
1625 }
1626 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1627 {
1628 symtab_strtab:
1629 elf_tdata (abfd)->strtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1631 return TRUE;
1632 }
1633 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1634 {
1635 dynsymtab_strtab:
1636 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1637 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1638 elf_elfsections (abfd)[shindex] = hdr;
1639 /* We also treat this as a regular section, so that objcopy
1640 can handle it. */
1641 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1642 shindex);
1643 }
1644
1645 /* If the string table isn't one of the above, then treat it as a
1646 regular section. We need to scan all the headers to be sure,
1647 just in case this strtab section appeared before the above. */
1648 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1649 {
1650 unsigned int i, num_sec;
1651
1652 num_sec = elf_numsections (abfd);
1653 for (i = 1; i < num_sec; i++)
1654 {
1655 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1656 if (hdr2->sh_link == shindex)
1657 {
1658 /* Prevent endless recursion on broken objects. */
1659 if (i == shindex)
1660 return FALSE;
1661 if (! bfd_section_from_shdr (abfd, i))
1662 return FALSE;
1663 if (elf_onesymtab (abfd) == i)
1664 goto symtab_strtab;
1665 if (elf_dynsymtab (abfd) == i)
1666 goto dynsymtab_strtab;
1667 }
1668 }
1669 }
1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1671
1672 case SHT_REL:
1673 case SHT_RELA:
1674 /* *These* do a lot of work -- but build no sections! */
1675 {
1676 asection *target_sect;
1677 Elf_Internal_Shdr *hdr2;
1678 unsigned int num_sec = elf_numsections (abfd);
1679
1680 if (hdr->sh_entsize
1681 != (bfd_size_type) (hdr->sh_type == SHT_REL
1682 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1683 return FALSE;
1684
1685 /* Check for a bogus link to avoid crashing. */
1686 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1687 || hdr->sh_link >= num_sec)
1688 {
1689 ((*_bfd_error_handler)
1690 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1691 abfd, hdr->sh_link, name, shindex));
1692 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1693 shindex);
1694 }
1695
1696 /* For some incomprehensible reason Oracle distributes
1697 libraries for Solaris in which some of the objects have
1698 bogus sh_link fields. It would be nice if we could just
1699 reject them, but, unfortunately, some people need to use
1700 them. We scan through the section headers; if we find only
1701 one suitable symbol table, we clobber the sh_link to point
1702 to it. I hope this doesn't break anything. */
1703 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1704 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1705 {
1706 unsigned int scan;
1707 int found;
1708
1709 found = 0;
1710 for (scan = 1; scan < num_sec; scan++)
1711 {
1712 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1713 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1714 {
1715 if (found != 0)
1716 {
1717 found = 0;
1718 break;
1719 }
1720 found = scan;
1721 }
1722 }
1723 if (found != 0)
1724 hdr->sh_link = found;
1725 }
1726
1727 /* Get the symbol table. */
1728 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1729 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1730 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1731 return FALSE;
1732
1733 /* If this reloc section does not use the main symbol table we
1734 don't treat it as a reloc section. BFD can't adequately
1735 represent such a section, so at least for now, we don't
1736 try. We just present it as a normal section. We also
1737 can't use it as a reloc section if it points to the null
1738 section, an invalid section, or another reloc section. */
1739 if (hdr->sh_link != elf_onesymtab (abfd)
1740 || hdr->sh_info == SHN_UNDEF
1741 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1742 || hdr->sh_info >= num_sec
1743 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1744 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1745 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1746 shindex);
1747
1748 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1749 return FALSE;
1750 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1751 if (target_sect == NULL)
1752 return FALSE;
1753
1754 if ((target_sect->flags & SEC_RELOC) == 0
1755 || target_sect->reloc_count == 0)
1756 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1757 else
1758 {
1759 bfd_size_type amt;
1760 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1761 amt = sizeof (*hdr2);
1762 hdr2 = bfd_alloc (abfd, amt);
1763 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1764 }
1765 *hdr2 = *hdr;
1766 elf_elfsections (abfd)[shindex] = hdr2;
1767 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1768 target_sect->flags |= SEC_RELOC;
1769 target_sect->relocation = NULL;
1770 target_sect->rel_filepos = hdr->sh_offset;
1771 /* In the section to which the relocations apply, mark whether
1772 its relocations are of the REL or RELA variety. */
1773 if (hdr->sh_size != 0)
1774 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1775 abfd->flags |= HAS_RELOC;
1776 return TRUE;
1777 }
1778
1779 case SHT_GNU_verdef:
1780 elf_dynverdef (abfd) = shindex;
1781 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1782 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1783
1784 case SHT_GNU_versym:
1785 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1786 return FALSE;
1787 elf_dynversym (abfd) = shindex;
1788 elf_tdata (abfd)->dynversym_hdr = *hdr;
1789 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1790
1791 case SHT_GNU_verneed:
1792 elf_dynverref (abfd) = shindex;
1793 elf_tdata (abfd)->dynverref_hdr = *hdr;
1794 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1795
1796 case SHT_SHLIB:
1797 return TRUE;
1798
1799 case SHT_GROUP:
1800 /* We need a BFD section for objcopy and relocatable linking,
1801 and it's handy to have the signature available as the section
1802 name. */
1803 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1804 return FALSE;
1805 name = group_signature (abfd, hdr);
1806 if (name == NULL)
1807 return FALSE;
1808 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1809 return FALSE;
1810 if (hdr->contents != NULL)
1811 {
1812 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1813 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1814 asection *s;
1815
1816 if (idx->flags & GRP_COMDAT)
1817 hdr->bfd_section->flags
1818 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1819
1820 /* We try to keep the same section order as it comes in. */
1821 idx += n_elt;
1822 while (--n_elt != 0)
1823 {
1824 --idx;
1825
1826 if (idx->shdr != NULL
1827 && (s = idx->shdr->bfd_section) != NULL
1828 && elf_next_in_group (s) != NULL)
1829 {
1830 elf_next_in_group (hdr->bfd_section) = s;
1831 break;
1832 }
1833 }
1834 }
1835 break;
1836
1837 default:
1838 /* Possibly an attributes section. */
1839 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1840 || hdr->sh_type == bed->obj_attrs_section_type)
1841 {
1842 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1843 return FALSE;
1844 _bfd_elf_parse_attributes (abfd, hdr);
1845 return TRUE;
1846 }
1847
1848 /* Check for any processor-specific section types. */
1849 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1850 return TRUE;
1851
1852 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1853 {
1854 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1855 /* FIXME: How to properly handle allocated section reserved
1856 for applications? */
1857 (*_bfd_error_handler)
1858 (_("%B: don't know how to handle allocated, application "
1859 "specific section `%s' [0x%8x]"),
1860 abfd, name, hdr->sh_type);
1861 else
1862 /* Allow sections reserved for applications. */
1863 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1864 shindex);
1865 }
1866 else if (hdr->sh_type >= SHT_LOPROC
1867 && hdr->sh_type <= SHT_HIPROC)
1868 /* FIXME: We should handle this section. */
1869 (*_bfd_error_handler)
1870 (_("%B: don't know how to handle processor specific section "
1871 "`%s' [0x%8x]"),
1872 abfd, name, hdr->sh_type);
1873 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1874 {
1875 /* Unrecognised OS-specific sections. */
1876 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1877 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1878 required to correctly process the section and the file should
1879 be rejected with an error message. */
1880 (*_bfd_error_handler)
1881 (_("%B: don't know how to handle OS specific section "
1882 "`%s' [0x%8x]"),
1883 abfd, name, hdr->sh_type);
1884 else
1885 /* Otherwise it should be processed. */
1886 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1887 }
1888 else
1889 /* FIXME: We should handle this section. */
1890 (*_bfd_error_handler)
1891 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1892 abfd, name, hdr->sh_type);
1893
1894 return FALSE;
1895 }
1896
1897 return TRUE;
1898 }
1899
1900 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1901 Return SEC for sections that have no elf section, and NULL on error. */
1902
1903 asection *
1904 bfd_section_from_r_symndx (bfd *abfd,
1905 struct sym_sec_cache *cache,
1906 asection *sec,
1907 unsigned long r_symndx)
1908 {
1909 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1910 asection *s;
1911
1912 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1913 {
1914 Elf_Internal_Shdr *symtab_hdr;
1915 unsigned char esym[sizeof (Elf64_External_Sym)];
1916 Elf_External_Sym_Shndx eshndx;
1917 Elf_Internal_Sym isym;
1918
1919 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1920 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1921 &isym, esym, &eshndx) == NULL)
1922 return NULL;
1923
1924 if (cache->abfd != abfd)
1925 {
1926 memset (cache->indx, -1, sizeof (cache->indx));
1927 cache->abfd = abfd;
1928 }
1929 cache->indx[ent] = r_symndx;
1930 cache->shndx[ent] = isym.st_shndx;
1931 }
1932
1933 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1934 if (s != NULL)
1935 return s;
1936
1937 return sec;
1938 }
1939
1940 /* Given an ELF section number, retrieve the corresponding BFD
1941 section. */
1942
1943 asection *
1944 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1945 {
1946 if (index >= elf_numsections (abfd))
1947 return NULL;
1948 return elf_elfsections (abfd)[index]->bfd_section;
1949 }
1950
1951 static const struct bfd_elf_special_section special_sections_b[] =
1952 {
1953 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1954 { NULL, 0, 0, 0, 0 }
1955 };
1956
1957 static const struct bfd_elf_special_section special_sections_c[] =
1958 {
1959 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1960 { NULL, 0, 0, 0, 0 }
1961 };
1962
1963 static const struct bfd_elf_special_section special_sections_d[] =
1964 {
1965 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1966 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1967 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1968 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1969 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1970 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1971 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1972 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1973 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1974 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1975 { NULL, 0, 0, 0, 0 }
1976 };
1977
1978 static const struct bfd_elf_special_section special_sections_f[] =
1979 {
1980 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
1981 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
1982 { NULL, 0, 0, 0, 0 }
1983 };
1984
1985 static const struct bfd_elf_special_section special_sections_g[] =
1986 {
1987 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1988 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1989 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
1990 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
1991 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
1992 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
1993 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
1994 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
1995 { NULL, 0, 0, 0, 0 }
1996 };
1997
1998 static const struct bfd_elf_special_section special_sections_h[] =
1999 {
2000 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_i[] =
2005 {
2006 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2009 { NULL, 0, 0, 0, 0 }
2010 };
2011
2012 static const struct bfd_elf_special_section special_sections_l[] =
2013 {
2014 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2015 { NULL, 0, 0, 0, 0 }
2016 };
2017
2018 static const struct bfd_elf_special_section special_sections_n[] =
2019 {
2020 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2021 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2022 { NULL, 0, 0, 0, 0 }
2023 };
2024
2025 static const struct bfd_elf_special_section special_sections_p[] =
2026 {
2027 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2029 { NULL, 0, 0, 0, 0 }
2030 };
2031
2032 static const struct bfd_elf_special_section special_sections_r[] =
2033 {
2034 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2035 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2036 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2037 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2038 { NULL, 0, 0, 0, 0 }
2039 };
2040
2041 static const struct bfd_elf_special_section special_sections_s[] =
2042 {
2043 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2044 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2045 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2046 /* See struct bfd_elf_special_section declaration for the semantics of
2047 this special case where .prefix_length != strlen (.prefix). */
2048 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2049 { NULL, 0, 0, 0, 0 }
2050 };
2051
2052 static const struct bfd_elf_special_section special_sections_t[] =
2053 {
2054 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2056 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section *special_sections[] =
2061 {
2062 special_sections_b, /* 'b' */
2063 special_sections_c, /* 'b' */
2064 special_sections_d, /* 'd' */
2065 NULL, /* 'e' */
2066 special_sections_f, /* 'f' */
2067 special_sections_g, /* 'g' */
2068 special_sections_h, /* 'h' */
2069 special_sections_i, /* 'i' */
2070 NULL, /* 'j' */
2071 NULL, /* 'k' */
2072 special_sections_l, /* 'l' */
2073 NULL, /* 'm' */
2074 special_sections_n, /* 'n' */
2075 NULL, /* 'o' */
2076 special_sections_p, /* 'p' */
2077 NULL, /* 'q' */
2078 special_sections_r, /* 'r' */
2079 special_sections_s, /* 's' */
2080 special_sections_t, /* 't' */
2081 };
2082
2083 const struct bfd_elf_special_section *
2084 _bfd_elf_get_special_section (const char *name,
2085 const struct bfd_elf_special_section *spec,
2086 unsigned int rela)
2087 {
2088 int i;
2089 int len;
2090
2091 len = strlen (name);
2092
2093 for (i = 0; spec[i].prefix != NULL; i++)
2094 {
2095 int suffix_len;
2096 int prefix_len = spec[i].prefix_length;
2097
2098 if (len < prefix_len)
2099 continue;
2100 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2101 continue;
2102
2103 suffix_len = spec[i].suffix_length;
2104 if (suffix_len <= 0)
2105 {
2106 if (name[prefix_len] != 0)
2107 {
2108 if (suffix_len == 0)
2109 continue;
2110 if (name[prefix_len] != '.'
2111 && (suffix_len == -2
2112 || (rela && spec[i].type == SHT_REL)))
2113 continue;
2114 }
2115 }
2116 else
2117 {
2118 if (len < prefix_len + suffix_len)
2119 continue;
2120 if (memcmp (name + len - suffix_len,
2121 spec[i].prefix + prefix_len,
2122 suffix_len) != 0)
2123 continue;
2124 }
2125 return &spec[i];
2126 }
2127
2128 return NULL;
2129 }
2130
2131 const struct bfd_elf_special_section *
2132 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2133 {
2134 int i;
2135 const struct bfd_elf_special_section *spec;
2136 const struct elf_backend_data *bed;
2137
2138 /* See if this is one of the special sections. */
2139 if (sec->name == NULL)
2140 return NULL;
2141
2142 bed = get_elf_backend_data (abfd);
2143 spec = bed->special_sections;
2144 if (spec)
2145 {
2146 spec = _bfd_elf_get_special_section (sec->name,
2147 bed->special_sections,
2148 sec->use_rela_p);
2149 if (spec != NULL)
2150 return spec;
2151 }
2152
2153 if (sec->name[0] != '.')
2154 return NULL;
2155
2156 i = sec->name[1] - 'b';
2157 if (i < 0 || i > 't' - 'b')
2158 return NULL;
2159
2160 spec = special_sections[i];
2161
2162 if (spec == NULL)
2163 return NULL;
2164
2165 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2166 }
2167
2168 bfd_boolean
2169 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2170 {
2171 struct bfd_elf_section_data *sdata;
2172 const struct elf_backend_data *bed;
2173 const struct bfd_elf_special_section *ssect;
2174
2175 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2176 if (sdata == NULL)
2177 {
2178 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2179 if (sdata == NULL)
2180 return FALSE;
2181 sec->used_by_bfd = sdata;
2182 }
2183
2184 /* Indicate whether or not this section should use RELA relocations. */
2185 bed = get_elf_backend_data (abfd);
2186 sec->use_rela_p = bed->default_use_rela_p;
2187
2188 /* When we read a file, we don't need to set ELF section type and
2189 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2190 anyway. We will set ELF section type and flags for all linker
2191 created sections. If user specifies BFD section flags, we will
2192 set ELF section type and flags based on BFD section flags in
2193 elf_fake_sections. */
2194 if ((!sec->flags && abfd->direction != read_direction)
2195 || (sec->flags & SEC_LINKER_CREATED) != 0)
2196 {
2197 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2198 if (ssect != NULL)
2199 {
2200 elf_section_type (sec) = ssect->type;
2201 elf_section_flags (sec) = ssect->attr;
2202 }
2203 }
2204
2205 return _bfd_generic_new_section_hook (abfd, sec);
2206 }
2207
2208 /* Create a new bfd section from an ELF program header.
2209
2210 Since program segments have no names, we generate a synthetic name
2211 of the form segment<NUM>, where NUM is generally the index in the
2212 program header table. For segments that are split (see below) we
2213 generate the names segment<NUM>a and segment<NUM>b.
2214
2215 Note that some program segments may have a file size that is different than
2216 (less than) the memory size. All this means is that at execution the
2217 system must allocate the amount of memory specified by the memory size,
2218 but only initialize it with the first "file size" bytes read from the
2219 file. This would occur for example, with program segments consisting
2220 of combined data+bss.
2221
2222 To handle the above situation, this routine generates TWO bfd sections
2223 for the single program segment. The first has the length specified by
2224 the file size of the segment, and the second has the length specified
2225 by the difference between the two sizes. In effect, the segment is split
2226 into it's initialized and uninitialized parts.
2227
2228 */
2229
2230 bfd_boolean
2231 _bfd_elf_make_section_from_phdr (bfd *abfd,
2232 Elf_Internal_Phdr *hdr,
2233 int index,
2234 const char *typename)
2235 {
2236 asection *newsect;
2237 char *name;
2238 char namebuf[64];
2239 size_t len;
2240 int split;
2241
2242 split = ((hdr->p_memsz > 0)
2243 && (hdr->p_filesz > 0)
2244 && (hdr->p_memsz > hdr->p_filesz));
2245 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2246 len = strlen (namebuf) + 1;
2247 name = bfd_alloc (abfd, len);
2248 if (!name)
2249 return FALSE;
2250 memcpy (name, namebuf, len);
2251 newsect = bfd_make_section (abfd, name);
2252 if (newsect == NULL)
2253 return FALSE;
2254 newsect->vma = hdr->p_vaddr;
2255 newsect->lma = hdr->p_paddr;
2256 newsect->size = hdr->p_filesz;
2257 newsect->filepos = hdr->p_offset;
2258 newsect->flags |= SEC_HAS_CONTENTS;
2259 newsect->alignment_power = bfd_log2 (hdr->p_align);
2260 if (hdr->p_type == PT_LOAD)
2261 {
2262 newsect->flags |= SEC_ALLOC;
2263 newsect->flags |= SEC_LOAD;
2264 if (hdr->p_flags & PF_X)
2265 {
2266 /* FIXME: all we known is that it has execute PERMISSION,
2267 may be data. */
2268 newsect->flags |= SEC_CODE;
2269 }
2270 }
2271 if (!(hdr->p_flags & PF_W))
2272 {
2273 newsect->flags |= SEC_READONLY;
2274 }
2275
2276 if (split)
2277 {
2278 sprintf (namebuf, "%s%db", typename, index);
2279 len = strlen (namebuf) + 1;
2280 name = bfd_alloc (abfd, len);
2281 if (!name)
2282 return FALSE;
2283 memcpy (name, namebuf, len);
2284 newsect = bfd_make_section (abfd, name);
2285 if (newsect == NULL)
2286 return FALSE;
2287 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2288 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2289 newsect->size = hdr->p_memsz - hdr->p_filesz;
2290 if (hdr->p_type == PT_LOAD)
2291 {
2292 newsect->flags |= SEC_ALLOC;
2293 if (hdr->p_flags & PF_X)
2294 newsect->flags |= SEC_CODE;
2295 }
2296 if (!(hdr->p_flags & PF_W))
2297 newsect->flags |= SEC_READONLY;
2298 }
2299
2300 return TRUE;
2301 }
2302
2303 bfd_boolean
2304 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2305 {
2306 const struct elf_backend_data *bed;
2307
2308 switch (hdr->p_type)
2309 {
2310 case PT_NULL:
2311 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2312
2313 case PT_LOAD:
2314 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2315
2316 case PT_DYNAMIC:
2317 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2318
2319 case PT_INTERP:
2320 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2321
2322 case PT_NOTE:
2323 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2324 return FALSE;
2325 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2326 return FALSE;
2327 return TRUE;
2328
2329 case PT_SHLIB:
2330 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2331
2332 case PT_PHDR:
2333 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2334
2335 case PT_GNU_EH_FRAME:
2336 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2337 "eh_frame_hdr");
2338
2339 case PT_GNU_STACK:
2340 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2341
2342 case PT_GNU_RELRO:
2343 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2344
2345 default:
2346 /* Check for any processor-specific program segment types. */
2347 bed = get_elf_backend_data (abfd);
2348 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2349 }
2350 }
2351
2352 /* Initialize REL_HDR, the section-header for new section, containing
2353 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2354 relocations; otherwise, we use REL relocations. */
2355
2356 bfd_boolean
2357 _bfd_elf_init_reloc_shdr (bfd *abfd,
2358 Elf_Internal_Shdr *rel_hdr,
2359 asection *asect,
2360 bfd_boolean use_rela_p)
2361 {
2362 char *name;
2363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2364 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2365
2366 name = bfd_alloc (abfd, amt);
2367 if (name == NULL)
2368 return FALSE;
2369 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2370 rel_hdr->sh_name =
2371 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2372 FALSE);
2373 if (rel_hdr->sh_name == (unsigned int) -1)
2374 return FALSE;
2375 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2376 rel_hdr->sh_entsize = (use_rela_p
2377 ? bed->s->sizeof_rela
2378 : bed->s->sizeof_rel);
2379 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2380 rel_hdr->sh_flags = 0;
2381 rel_hdr->sh_addr = 0;
2382 rel_hdr->sh_size = 0;
2383 rel_hdr->sh_offset = 0;
2384
2385 return TRUE;
2386 }
2387
2388 /* Set up an ELF internal section header for a section. */
2389
2390 static void
2391 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2392 {
2393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2394 bfd_boolean *failedptr = failedptrarg;
2395 Elf_Internal_Shdr *this_hdr;
2396 unsigned int sh_type;
2397
2398 if (*failedptr)
2399 {
2400 /* We already failed; just get out of the bfd_map_over_sections
2401 loop. */
2402 return;
2403 }
2404
2405 this_hdr = &elf_section_data (asect)->this_hdr;
2406
2407 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2408 asect->name, FALSE);
2409 if (this_hdr->sh_name == (unsigned int) -1)
2410 {
2411 *failedptr = TRUE;
2412 return;
2413 }
2414
2415 /* Don't clear sh_flags. Assembler may set additional bits. */
2416
2417 if ((asect->flags & SEC_ALLOC) != 0
2418 || asect->user_set_vma)
2419 this_hdr->sh_addr = asect->vma;
2420 else
2421 this_hdr->sh_addr = 0;
2422
2423 this_hdr->sh_offset = 0;
2424 this_hdr->sh_size = asect->size;
2425 this_hdr->sh_link = 0;
2426 this_hdr->sh_addralign = 1 << asect->alignment_power;
2427 /* The sh_entsize and sh_info fields may have been set already by
2428 copy_private_section_data. */
2429
2430 this_hdr->bfd_section = asect;
2431 this_hdr->contents = NULL;
2432
2433 /* If the section type is unspecified, we set it based on
2434 asect->flags. */
2435 if (this_hdr->sh_type == SHT_NULL)
2436 {
2437 if ((asect->flags & SEC_GROUP) != 0)
2438 this_hdr->sh_type = SHT_GROUP;
2439 else if ((asect->flags & SEC_ALLOC) != 0
2440 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2441 || (asect->flags & SEC_NEVER_LOAD) != 0))
2442 this_hdr->sh_type = SHT_NOBITS;
2443 else
2444 this_hdr->sh_type = SHT_PROGBITS;
2445 }
2446
2447 switch (this_hdr->sh_type)
2448 {
2449 default:
2450 break;
2451
2452 case SHT_STRTAB:
2453 case SHT_INIT_ARRAY:
2454 case SHT_FINI_ARRAY:
2455 case SHT_PREINIT_ARRAY:
2456 case SHT_NOTE:
2457 case SHT_NOBITS:
2458 case SHT_PROGBITS:
2459 break;
2460
2461 case SHT_HASH:
2462 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2463 break;
2464
2465 case SHT_DYNSYM:
2466 this_hdr->sh_entsize = bed->s->sizeof_sym;
2467 break;
2468
2469 case SHT_DYNAMIC:
2470 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2471 break;
2472
2473 case SHT_RELA:
2474 if (get_elf_backend_data (abfd)->may_use_rela_p)
2475 this_hdr->sh_entsize = bed->s->sizeof_rela;
2476 break;
2477
2478 case SHT_REL:
2479 if (get_elf_backend_data (abfd)->may_use_rel_p)
2480 this_hdr->sh_entsize = bed->s->sizeof_rel;
2481 break;
2482
2483 case SHT_GNU_versym:
2484 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2485 break;
2486
2487 case SHT_GNU_verdef:
2488 this_hdr->sh_entsize = 0;
2489 /* objcopy or strip will copy over sh_info, but may not set
2490 cverdefs. The linker will set cverdefs, but sh_info will be
2491 zero. */
2492 if (this_hdr->sh_info == 0)
2493 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2494 else
2495 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2496 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2497 break;
2498
2499 case SHT_GNU_verneed:
2500 this_hdr->sh_entsize = 0;
2501 /* objcopy or strip will copy over sh_info, but may not set
2502 cverrefs. The linker will set cverrefs, but sh_info will be
2503 zero. */
2504 if (this_hdr->sh_info == 0)
2505 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2506 else
2507 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2508 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2509 break;
2510
2511 case SHT_GROUP:
2512 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2513 break;
2514
2515 case SHT_GNU_HASH:
2516 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2517 break;
2518 }
2519
2520 if ((asect->flags & SEC_ALLOC) != 0)
2521 this_hdr->sh_flags |= SHF_ALLOC;
2522 if ((asect->flags & SEC_READONLY) == 0)
2523 this_hdr->sh_flags |= SHF_WRITE;
2524 if ((asect->flags & SEC_CODE) != 0)
2525 this_hdr->sh_flags |= SHF_EXECINSTR;
2526 if ((asect->flags & SEC_MERGE) != 0)
2527 {
2528 this_hdr->sh_flags |= SHF_MERGE;
2529 this_hdr->sh_entsize = asect->entsize;
2530 if ((asect->flags & SEC_STRINGS) != 0)
2531 this_hdr->sh_flags |= SHF_STRINGS;
2532 }
2533 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2534 this_hdr->sh_flags |= SHF_GROUP;
2535 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2536 {
2537 this_hdr->sh_flags |= SHF_TLS;
2538 if (asect->size == 0
2539 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2540 {
2541 struct bfd_link_order *o = asect->map_tail.link_order;
2542
2543 this_hdr->sh_size = 0;
2544 if (o != NULL)
2545 {
2546 this_hdr->sh_size = o->offset + o->size;
2547 if (this_hdr->sh_size != 0)
2548 this_hdr->sh_type = SHT_NOBITS;
2549 }
2550 }
2551 }
2552
2553 /* Check for processor-specific section types. */
2554 sh_type = this_hdr->sh_type;
2555 if (bed->elf_backend_fake_sections
2556 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2557 *failedptr = TRUE;
2558
2559 if (sh_type == SHT_NOBITS && asect->size != 0)
2560 {
2561 /* Don't change the header type from NOBITS if we are being
2562 called for objcopy --only-keep-debug. */
2563 this_hdr->sh_type = sh_type;
2564 }
2565
2566 /* If the section has relocs, set up a section header for the
2567 SHT_REL[A] section. If two relocation sections are required for
2568 this section, it is up to the processor-specific back-end to
2569 create the other. */
2570 if ((asect->flags & SEC_RELOC) != 0
2571 && !_bfd_elf_init_reloc_shdr (abfd,
2572 &elf_section_data (asect)->rel_hdr,
2573 asect,
2574 asect->use_rela_p))
2575 *failedptr = TRUE;
2576 }
2577
2578 /* Fill in the contents of a SHT_GROUP section. */
2579
2580 void
2581 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2582 {
2583 bfd_boolean *failedptr = failedptrarg;
2584 unsigned long symindx;
2585 asection *elt, *first;
2586 unsigned char *loc;
2587 bfd_boolean gas;
2588
2589 /* Ignore linker created group section. See elfNN_ia64_object_p in
2590 elfxx-ia64.c. */
2591 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2592 || *failedptr)
2593 return;
2594
2595 symindx = 0;
2596 if (elf_group_id (sec) != NULL)
2597 symindx = elf_group_id (sec)->udata.i;
2598
2599 if (symindx == 0)
2600 {
2601 /* If called from the assembler, swap_out_syms will have set up
2602 elf_section_syms; If called for "ld -r", use target_index. */
2603 if (elf_section_syms (abfd) != NULL)
2604 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2605 else
2606 symindx = sec->target_index;
2607 }
2608 elf_section_data (sec)->this_hdr.sh_info = symindx;
2609
2610 /* The contents won't be allocated for "ld -r" or objcopy. */
2611 gas = TRUE;
2612 if (sec->contents == NULL)
2613 {
2614 gas = FALSE;
2615 sec->contents = bfd_alloc (abfd, sec->size);
2616
2617 /* Arrange for the section to be written out. */
2618 elf_section_data (sec)->this_hdr.contents = sec->contents;
2619 if (sec->contents == NULL)
2620 {
2621 *failedptr = TRUE;
2622 return;
2623 }
2624 }
2625
2626 loc = sec->contents + sec->size;
2627
2628 /* Get the pointer to the first section in the group that gas
2629 squirreled away here. objcopy arranges for this to be set to the
2630 start of the input section group. */
2631 first = elt = elf_next_in_group (sec);
2632
2633 /* First element is a flag word. Rest of section is elf section
2634 indices for all the sections of the group. Write them backwards
2635 just to keep the group in the same order as given in .section
2636 directives, not that it matters. */
2637 while (elt != NULL)
2638 {
2639 asection *s;
2640 unsigned int idx;
2641
2642 loc -= 4;
2643 s = elt;
2644 if (!gas)
2645 s = s->output_section;
2646 idx = 0;
2647 if (s != NULL)
2648 idx = elf_section_data (s)->this_idx;
2649 H_PUT_32 (abfd, idx, loc);
2650 elt = elf_next_in_group (elt);
2651 if (elt == first)
2652 break;
2653 }
2654
2655 if ((loc -= 4) != sec->contents)
2656 abort ();
2657
2658 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2659 }
2660
2661 /* Assign all ELF section numbers. The dummy first section is handled here
2662 too. The link/info pointers for the standard section types are filled
2663 in here too, while we're at it. */
2664
2665 static bfd_boolean
2666 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2667 {
2668 struct elf_obj_tdata *t = elf_tdata (abfd);
2669 asection *sec;
2670 unsigned int section_number, secn;
2671 Elf_Internal_Shdr **i_shdrp;
2672 struct bfd_elf_section_data *d;
2673
2674 section_number = 1;
2675
2676 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2677
2678 /* SHT_GROUP sections are in relocatable files only. */
2679 if (link_info == NULL || link_info->relocatable)
2680 {
2681 /* Put SHT_GROUP sections first. */
2682 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2683 {
2684 d = elf_section_data (sec);
2685
2686 if (d->this_hdr.sh_type == SHT_GROUP)
2687 {
2688 if (sec->flags & SEC_LINKER_CREATED)
2689 {
2690 /* Remove the linker created SHT_GROUP sections. */
2691 bfd_section_list_remove (abfd, sec);
2692 abfd->section_count--;
2693 }
2694 else
2695 {
2696 if (section_number == SHN_LORESERVE)
2697 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2698 d->this_idx = section_number++;
2699 }
2700 }
2701 }
2702 }
2703
2704 for (sec = abfd->sections; sec; sec = sec->next)
2705 {
2706 d = elf_section_data (sec);
2707
2708 if (d->this_hdr.sh_type != SHT_GROUP)
2709 {
2710 if (section_number == SHN_LORESERVE)
2711 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2712 d->this_idx = section_number++;
2713 }
2714 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2715 if ((sec->flags & SEC_RELOC) == 0)
2716 d->rel_idx = 0;
2717 else
2718 {
2719 if (section_number == SHN_LORESERVE)
2720 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2721 d->rel_idx = section_number++;
2722 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2723 }
2724
2725 if (d->rel_hdr2)
2726 {
2727 if (section_number == SHN_LORESERVE)
2728 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2729 d->rel_idx2 = section_number++;
2730 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2731 }
2732 else
2733 d->rel_idx2 = 0;
2734 }
2735
2736 if (section_number == SHN_LORESERVE)
2737 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2738 t->shstrtab_section = section_number++;
2739 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2740 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2741
2742 if (bfd_get_symcount (abfd) > 0)
2743 {
2744 if (section_number == SHN_LORESERVE)
2745 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2746 t->symtab_section = section_number++;
2747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2748 if (section_number > SHN_LORESERVE - 2)
2749 {
2750 if (section_number == SHN_LORESERVE)
2751 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2752 t->symtab_shndx_section = section_number++;
2753 t->symtab_shndx_hdr.sh_name
2754 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2755 ".symtab_shndx", FALSE);
2756 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2757 return FALSE;
2758 }
2759 if (section_number == SHN_LORESERVE)
2760 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2761 t->strtab_section = section_number++;
2762 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2763 }
2764
2765 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2766 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2767
2768 elf_numsections (abfd) = section_number;
2769 elf_elfheader (abfd)->e_shnum = section_number;
2770 if (section_number > SHN_LORESERVE)
2771 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2772
2773 /* Set up the list of section header pointers, in agreement with the
2774 indices. */
2775 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2776 if (i_shdrp == NULL)
2777 return FALSE;
2778
2779 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2780 if (i_shdrp[0] == NULL)
2781 {
2782 bfd_release (abfd, i_shdrp);
2783 return FALSE;
2784 }
2785
2786 elf_elfsections (abfd) = i_shdrp;
2787
2788 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2789 if (bfd_get_symcount (abfd) > 0)
2790 {
2791 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2792 if (elf_numsections (abfd) > SHN_LORESERVE)
2793 {
2794 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2795 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2796 }
2797 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2798 t->symtab_hdr.sh_link = t->strtab_section;
2799 }
2800
2801 for (sec = abfd->sections; sec; sec = sec->next)
2802 {
2803 struct bfd_elf_section_data *d = elf_section_data (sec);
2804 asection *s;
2805 const char *name;
2806
2807 i_shdrp[d->this_idx] = &d->this_hdr;
2808 if (d->rel_idx != 0)
2809 i_shdrp[d->rel_idx] = &d->rel_hdr;
2810 if (d->rel_idx2 != 0)
2811 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2812
2813 /* Fill in the sh_link and sh_info fields while we're at it. */
2814
2815 /* sh_link of a reloc section is the section index of the symbol
2816 table. sh_info is the section index of the section to which
2817 the relocation entries apply. */
2818 if (d->rel_idx != 0)
2819 {
2820 d->rel_hdr.sh_link = t->symtab_section;
2821 d->rel_hdr.sh_info = d->this_idx;
2822 }
2823 if (d->rel_idx2 != 0)
2824 {
2825 d->rel_hdr2->sh_link = t->symtab_section;
2826 d->rel_hdr2->sh_info = d->this_idx;
2827 }
2828
2829 /* We need to set up sh_link for SHF_LINK_ORDER. */
2830 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2831 {
2832 s = elf_linked_to_section (sec);
2833 if (s)
2834 {
2835 /* elf_linked_to_section points to the input section. */
2836 if (link_info != NULL)
2837 {
2838 /* Check discarded linkonce section. */
2839 if (elf_discarded_section (s))
2840 {
2841 asection *kept;
2842 (*_bfd_error_handler)
2843 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2844 abfd, d->this_hdr.bfd_section,
2845 s, s->owner);
2846 /* Point to the kept section if it has the same
2847 size as the discarded one. */
2848 kept = _bfd_elf_check_kept_section (s, link_info);
2849 if (kept == NULL)
2850 {
2851 bfd_set_error (bfd_error_bad_value);
2852 return FALSE;
2853 }
2854 s = kept;
2855 }
2856
2857 s = s->output_section;
2858 BFD_ASSERT (s != NULL);
2859 }
2860 else
2861 {
2862 /* Handle objcopy. */
2863 if (s->output_section == NULL)
2864 {
2865 (*_bfd_error_handler)
2866 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2867 abfd, d->this_hdr.bfd_section, s, s->owner);
2868 bfd_set_error (bfd_error_bad_value);
2869 return FALSE;
2870 }
2871 s = s->output_section;
2872 }
2873 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2874 }
2875 else
2876 {
2877 /* PR 290:
2878 The Intel C compiler generates SHT_IA_64_UNWIND with
2879 SHF_LINK_ORDER. But it doesn't set the sh_link or
2880 sh_info fields. Hence we could get the situation
2881 where s is NULL. */
2882 const struct elf_backend_data *bed
2883 = get_elf_backend_data (abfd);
2884 if (bed->link_order_error_handler)
2885 bed->link_order_error_handler
2886 (_("%B: warning: sh_link not set for section `%A'"),
2887 abfd, sec);
2888 }
2889 }
2890
2891 switch (d->this_hdr.sh_type)
2892 {
2893 case SHT_REL:
2894 case SHT_RELA:
2895 /* A reloc section which we are treating as a normal BFD
2896 section. sh_link is the section index of the symbol
2897 table. sh_info is the section index of the section to
2898 which the relocation entries apply. We assume that an
2899 allocated reloc section uses the dynamic symbol table.
2900 FIXME: How can we be sure? */
2901 s = bfd_get_section_by_name (abfd, ".dynsym");
2902 if (s != NULL)
2903 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2904
2905 /* We look up the section the relocs apply to by name. */
2906 name = sec->name;
2907 if (d->this_hdr.sh_type == SHT_REL)
2908 name += 4;
2909 else
2910 name += 5;
2911 s = bfd_get_section_by_name (abfd, name);
2912 if (s != NULL)
2913 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2914 break;
2915
2916 case SHT_STRTAB:
2917 /* We assume that a section named .stab*str is a stabs
2918 string section. We look for a section with the same name
2919 but without the trailing ``str'', and set its sh_link
2920 field to point to this section. */
2921 if (CONST_STRNEQ (sec->name, ".stab")
2922 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2923 {
2924 size_t len;
2925 char *alc;
2926
2927 len = strlen (sec->name);
2928 alc = bfd_malloc (len - 2);
2929 if (alc == NULL)
2930 return FALSE;
2931 memcpy (alc, sec->name, len - 3);
2932 alc[len - 3] = '\0';
2933 s = bfd_get_section_by_name (abfd, alc);
2934 free (alc);
2935 if (s != NULL)
2936 {
2937 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2938
2939 /* This is a .stab section. */
2940 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2941 elf_section_data (s)->this_hdr.sh_entsize
2942 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2943 }
2944 }
2945 break;
2946
2947 case SHT_DYNAMIC:
2948 case SHT_DYNSYM:
2949 case SHT_GNU_verneed:
2950 case SHT_GNU_verdef:
2951 /* sh_link is the section header index of the string table
2952 used for the dynamic entries, or the symbol table, or the
2953 version strings. */
2954 s = bfd_get_section_by_name (abfd, ".dynstr");
2955 if (s != NULL)
2956 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2957 break;
2958
2959 case SHT_GNU_LIBLIST:
2960 /* sh_link is the section header index of the prelink library
2961 list used for the dynamic entries, or the symbol table, or
2962 the version strings. */
2963 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
2964 ? ".dynstr" : ".gnu.libstr");
2965 if (s != NULL)
2966 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2967 break;
2968
2969 case SHT_HASH:
2970 case SHT_GNU_HASH:
2971 case SHT_GNU_versym:
2972 /* sh_link is the section header index of the symbol table
2973 this hash table or version table is for. */
2974 s = bfd_get_section_by_name (abfd, ".dynsym");
2975 if (s != NULL)
2976 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2977 break;
2978
2979 case SHT_GROUP:
2980 d->this_hdr.sh_link = t->symtab_section;
2981 }
2982 }
2983
2984 for (secn = 1; secn < section_number; ++secn)
2985 if (i_shdrp[secn] == NULL)
2986 i_shdrp[secn] = i_shdrp[0];
2987 else
2988 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2989 i_shdrp[secn]->sh_name);
2990 return TRUE;
2991 }
2992
2993 /* Map symbol from it's internal number to the external number, moving
2994 all local symbols to be at the head of the list. */
2995
2996 static bfd_boolean
2997 sym_is_global (bfd *abfd, asymbol *sym)
2998 {
2999 /* If the backend has a special mapping, use it. */
3000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3001 if (bed->elf_backend_sym_is_global)
3002 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3003
3004 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3005 || bfd_is_und_section (bfd_get_section (sym))
3006 || bfd_is_com_section (bfd_get_section (sym)));
3007 }
3008
3009 /* Don't output section symbols for sections that are not going to be
3010 output. Also, don't output section symbols for reloc and other
3011 special sections. */
3012
3013 static bfd_boolean
3014 ignore_section_sym (bfd *abfd, asymbol *sym)
3015 {
3016 return ((sym->flags & BSF_SECTION_SYM) != 0
3017 && (sym->value != 0
3018 || (sym->section->owner != abfd
3019 && (sym->section->output_section->owner != abfd
3020 || sym->section->output_offset != 0))));
3021 }
3022
3023 static bfd_boolean
3024 elf_map_symbols (bfd *abfd)
3025 {
3026 unsigned int symcount = bfd_get_symcount (abfd);
3027 asymbol **syms = bfd_get_outsymbols (abfd);
3028 asymbol **sect_syms;
3029 unsigned int num_locals = 0;
3030 unsigned int num_globals = 0;
3031 unsigned int num_locals2 = 0;
3032 unsigned int num_globals2 = 0;
3033 int max_index = 0;
3034 unsigned int idx;
3035 asection *asect;
3036 asymbol **new_syms;
3037
3038 #ifdef DEBUG
3039 fprintf (stderr, "elf_map_symbols\n");
3040 fflush (stderr);
3041 #endif
3042
3043 for (asect = abfd->sections; asect; asect = asect->next)
3044 {
3045 if (max_index < asect->index)
3046 max_index = asect->index;
3047 }
3048
3049 max_index++;
3050 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3051 if (sect_syms == NULL)
3052 return FALSE;
3053 elf_section_syms (abfd) = sect_syms;
3054 elf_num_section_syms (abfd) = max_index;
3055
3056 /* Init sect_syms entries for any section symbols we have already
3057 decided to output. */
3058 for (idx = 0; idx < symcount; idx++)
3059 {
3060 asymbol *sym = syms[idx];
3061
3062 if ((sym->flags & BSF_SECTION_SYM) != 0
3063 && !ignore_section_sym (abfd, sym))
3064 {
3065 asection *sec = sym->section;
3066
3067 if (sec->owner != abfd)
3068 sec = sec->output_section;
3069
3070 sect_syms[sec->index] = syms[idx];
3071 }
3072 }
3073
3074 /* Classify all of the symbols. */
3075 for (idx = 0; idx < symcount; idx++)
3076 {
3077 if (ignore_section_sym (abfd, syms[idx]))
3078 continue;
3079 if (!sym_is_global (abfd, syms[idx]))
3080 num_locals++;
3081 else
3082 num_globals++;
3083 }
3084
3085 /* We will be adding a section symbol for each normal BFD section. Most
3086 sections will already have a section symbol in outsymbols, but
3087 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3088 at least in that case. */
3089 for (asect = abfd->sections; asect; asect = asect->next)
3090 {
3091 if (sect_syms[asect->index] == NULL)
3092 {
3093 if (!sym_is_global (abfd, asect->symbol))
3094 num_locals++;
3095 else
3096 num_globals++;
3097 }
3098 }
3099
3100 /* Now sort the symbols so the local symbols are first. */
3101 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3102
3103 if (new_syms == NULL)
3104 return FALSE;
3105
3106 for (idx = 0; idx < symcount; idx++)
3107 {
3108 asymbol *sym = syms[idx];
3109 unsigned int i;
3110
3111 if (ignore_section_sym (abfd, sym))
3112 continue;
3113 if (!sym_is_global (abfd, sym))
3114 i = num_locals2++;
3115 else
3116 i = num_locals + num_globals2++;
3117 new_syms[i] = sym;
3118 sym->udata.i = i + 1;
3119 }
3120 for (asect = abfd->sections; asect; asect = asect->next)
3121 {
3122 if (sect_syms[asect->index] == NULL)
3123 {
3124 asymbol *sym = asect->symbol;
3125 unsigned int i;
3126
3127 sect_syms[asect->index] = sym;
3128 if (!sym_is_global (abfd, sym))
3129 i = num_locals2++;
3130 else
3131 i = num_locals + num_globals2++;
3132 new_syms[i] = sym;
3133 sym->udata.i = i + 1;
3134 }
3135 }
3136
3137 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3138
3139 elf_num_locals (abfd) = num_locals;
3140 elf_num_globals (abfd) = num_globals;
3141 return TRUE;
3142 }
3143
3144 /* Align to the maximum file alignment that could be required for any
3145 ELF data structure. */
3146
3147 static inline file_ptr
3148 align_file_position (file_ptr off, int align)
3149 {
3150 return (off + align - 1) & ~(align - 1);
3151 }
3152
3153 /* Assign a file position to a section, optionally aligning to the
3154 required section alignment. */
3155
3156 file_ptr
3157 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3158 file_ptr offset,
3159 bfd_boolean align)
3160 {
3161 if (align)
3162 {
3163 unsigned int al;
3164
3165 al = i_shdrp->sh_addralign;
3166 if (al > 1)
3167 offset = BFD_ALIGN (offset, al);
3168 }
3169 i_shdrp->sh_offset = offset;
3170 if (i_shdrp->bfd_section != NULL)
3171 i_shdrp->bfd_section->filepos = offset;
3172 if (i_shdrp->sh_type != SHT_NOBITS)
3173 offset += i_shdrp->sh_size;
3174 return offset;
3175 }
3176
3177 /* Compute the file positions we are going to put the sections at, and
3178 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3179 is not NULL, this is being called by the ELF backend linker. */
3180
3181 bfd_boolean
3182 _bfd_elf_compute_section_file_positions (bfd *abfd,
3183 struct bfd_link_info *link_info)
3184 {
3185 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3186 bfd_boolean failed;
3187 struct bfd_strtab_hash *strtab = NULL;
3188 Elf_Internal_Shdr *shstrtab_hdr;
3189
3190 if (abfd->output_has_begun)
3191 return TRUE;
3192
3193 /* Do any elf backend specific processing first. */
3194 if (bed->elf_backend_begin_write_processing)
3195 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3196
3197 if (! prep_headers (abfd))
3198 return FALSE;
3199
3200 /* Post process the headers if necessary. */
3201 if (bed->elf_backend_post_process_headers)
3202 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3203
3204 failed = FALSE;
3205 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3206 if (failed)
3207 return FALSE;
3208
3209 if (!assign_section_numbers (abfd, link_info))
3210 return FALSE;
3211
3212 /* The backend linker builds symbol table information itself. */
3213 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3214 {
3215 /* Non-zero if doing a relocatable link. */
3216 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3217
3218 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3219 return FALSE;
3220 }
3221
3222 if (link_info == NULL)
3223 {
3224 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3225 if (failed)
3226 return FALSE;
3227 }
3228
3229 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3230 /* sh_name was set in prep_headers. */
3231 shstrtab_hdr->sh_type = SHT_STRTAB;
3232 shstrtab_hdr->sh_flags = 0;
3233 shstrtab_hdr->sh_addr = 0;
3234 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3235 shstrtab_hdr->sh_entsize = 0;
3236 shstrtab_hdr->sh_link = 0;
3237 shstrtab_hdr->sh_info = 0;
3238 /* sh_offset is set in assign_file_positions_except_relocs. */
3239 shstrtab_hdr->sh_addralign = 1;
3240
3241 if (!assign_file_positions_except_relocs (abfd, link_info))
3242 return FALSE;
3243
3244 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3245 {
3246 file_ptr off;
3247 Elf_Internal_Shdr *hdr;
3248
3249 off = elf_tdata (abfd)->next_file_pos;
3250
3251 hdr = &elf_tdata (abfd)->symtab_hdr;
3252 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3253
3254 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3255 if (hdr->sh_size != 0)
3256 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3257
3258 hdr = &elf_tdata (abfd)->strtab_hdr;
3259 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3260
3261 elf_tdata (abfd)->next_file_pos = off;
3262
3263 /* Now that we know where the .strtab section goes, write it
3264 out. */
3265 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3266 || ! _bfd_stringtab_emit (abfd, strtab))
3267 return FALSE;
3268 _bfd_stringtab_free (strtab);
3269 }
3270
3271 abfd->output_has_begun = TRUE;
3272
3273 return TRUE;
3274 }
3275
3276 /* Make an initial estimate of the size of the program header. If we
3277 get the number wrong here, we'll redo section placement. */
3278
3279 static bfd_size_type
3280 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3281 {
3282 size_t segs;
3283 asection *s;
3284 const struct elf_backend_data *bed;
3285
3286 /* Assume we will need exactly two PT_LOAD segments: one for text
3287 and one for data. */
3288 segs = 2;
3289
3290 s = bfd_get_section_by_name (abfd, ".interp");
3291 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3292 {
3293 /* If we have a loadable interpreter section, we need a
3294 PT_INTERP segment. In this case, assume we also need a
3295 PT_PHDR segment, although that may not be true for all
3296 targets. */
3297 segs += 2;
3298 }
3299
3300 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3301 {
3302 /* We need a PT_DYNAMIC segment. */
3303 ++segs;
3304
3305 if (elf_tdata (abfd)->relro)
3306 {
3307 /* We need a PT_GNU_RELRO segment only when there is a
3308 PT_DYNAMIC segment. */
3309 ++segs;
3310 }
3311 }
3312
3313 if (elf_tdata (abfd)->eh_frame_hdr)
3314 {
3315 /* We need a PT_GNU_EH_FRAME segment. */
3316 ++segs;
3317 }
3318
3319 if (elf_tdata (abfd)->stack_flags)
3320 {
3321 /* We need a PT_GNU_STACK segment. */
3322 ++segs;
3323 }
3324
3325 for (s = abfd->sections; s != NULL; s = s->next)
3326 {
3327 if ((s->flags & SEC_LOAD) != 0
3328 && CONST_STRNEQ (s->name, ".note"))
3329 {
3330 /* We need a PT_NOTE segment. */
3331 ++segs;
3332 /* Try to create just one PT_NOTE segment
3333 for all adjacent loadable .note* sections.
3334 gABI requires that within a PT_NOTE segment
3335 (and also inside of each SHT_NOTE section)
3336 each note is padded to a multiple of 4 size,
3337 so we check whether the sections are correctly
3338 aligned. */
3339 if (s->alignment_power == 2)
3340 while (s->next != NULL
3341 && s->next->alignment_power == 2
3342 && (s->next->flags & SEC_LOAD) != 0
3343 && CONST_STRNEQ (s->next->name, ".note"))
3344 s = s->next;
3345 }
3346 }
3347
3348 for (s = abfd->sections; s != NULL; s = s->next)
3349 {
3350 if (s->flags & SEC_THREAD_LOCAL)
3351 {
3352 /* We need a PT_TLS segment. */
3353 ++segs;
3354 break;
3355 }
3356 }
3357
3358 /* Let the backend count up any program headers it might need. */
3359 bed = get_elf_backend_data (abfd);
3360 if (bed->elf_backend_additional_program_headers)
3361 {
3362 int a;
3363
3364 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3365 if (a == -1)
3366 abort ();
3367 segs += a;
3368 }
3369
3370 return segs * bed->s->sizeof_phdr;
3371 }
3372
3373 /* Create a mapping from a set of sections to a program segment. */
3374
3375 static struct elf_segment_map *
3376 make_mapping (bfd *abfd,
3377 asection **sections,
3378 unsigned int from,
3379 unsigned int to,
3380 bfd_boolean phdr)
3381 {
3382 struct elf_segment_map *m;
3383 unsigned int i;
3384 asection **hdrpp;
3385 bfd_size_type amt;
3386
3387 amt = sizeof (struct elf_segment_map);
3388 amt += (to - from - 1) * sizeof (asection *);
3389 m = bfd_zalloc (abfd, amt);
3390 if (m == NULL)
3391 return NULL;
3392 m->next = NULL;
3393 m->p_type = PT_LOAD;
3394 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3395 m->sections[i - from] = *hdrpp;
3396 m->count = to - from;
3397
3398 if (from == 0 && phdr)
3399 {
3400 /* Include the headers in the first PT_LOAD segment. */
3401 m->includes_filehdr = 1;
3402 m->includes_phdrs = 1;
3403 }
3404
3405 return m;
3406 }
3407
3408 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3409 on failure. */
3410
3411 struct elf_segment_map *
3412 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3413 {
3414 struct elf_segment_map *m;
3415
3416 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3417 if (m == NULL)
3418 return NULL;
3419 m->next = NULL;
3420 m->p_type = PT_DYNAMIC;
3421 m->count = 1;
3422 m->sections[0] = dynsec;
3423
3424 return m;
3425 }
3426
3427 /* Possibly add or remove segments from the segment map. */
3428
3429 static bfd_boolean
3430 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3431 {
3432 struct elf_segment_map **m;
3433 const struct elf_backend_data *bed;
3434
3435 /* The placement algorithm assumes that non allocated sections are
3436 not in PT_LOAD segments. We ensure this here by removing such
3437 sections from the segment map. We also remove excluded
3438 sections. Finally, any PT_LOAD segment without sections is
3439 removed. */
3440 m = &elf_tdata (abfd)->segment_map;
3441 while (*m)
3442 {
3443 unsigned int i, new_count;
3444
3445 for (new_count = 0, i = 0; i < (*m)->count; i++)
3446 {
3447 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3448 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3449 || (*m)->p_type != PT_LOAD))
3450 {
3451 (*m)->sections[new_count] = (*m)->sections[i];
3452 new_count++;
3453 }
3454 }
3455 (*m)->count = new_count;
3456
3457 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3458 *m = (*m)->next;
3459 else
3460 m = &(*m)->next;
3461 }
3462
3463 bed = get_elf_backend_data (abfd);
3464 if (bed->elf_backend_modify_segment_map != NULL)
3465 {
3466 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3467 return FALSE;
3468 }
3469
3470 return TRUE;
3471 }
3472
3473 /* Set up a mapping from BFD sections to program segments. */
3474
3475 bfd_boolean
3476 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3477 {
3478 unsigned int count;
3479 struct elf_segment_map *m;
3480 asection **sections = NULL;
3481 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3482
3483 if (elf_tdata (abfd)->segment_map == NULL
3484 && bfd_count_sections (abfd) != 0)
3485 {
3486 asection *s;
3487 unsigned int i;
3488 struct elf_segment_map *mfirst;
3489 struct elf_segment_map **pm;
3490 asection *last_hdr;
3491 bfd_vma last_size;
3492 unsigned int phdr_index;
3493 bfd_vma maxpagesize;
3494 asection **hdrpp;
3495 bfd_boolean phdr_in_segment = TRUE;
3496 bfd_boolean writable;
3497 int tls_count = 0;
3498 asection *first_tls = NULL;
3499 asection *dynsec, *eh_frame_hdr;
3500 bfd_size_type amt;
3501
3502 /* Select the allocated sections, and sort them. */
3503
3504 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3505 if (sections == NULL)
3506 goto error_return;
3507
3508 i = 0;
3509 for (s = abfd->sections; s != NULL; s = s->next)
3510 {
3511 if ((s->flags & SEC_ALLOC) != 0)
3512 {
3513 sections[i] = s;
3514 ++i;
3515 }
3516 }
3517 BFD_ASSERT (i <= bfd_count_sections (abfd));
3518 count = i;
3519
3520 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3521
3522 /* Build the mapping. */
3523
3524 mfirst = NULL;
3525 pm = &mfirst;
3526
3527 /* If we have a .interp section, then create a PT_PHDR segment for
3528 the program headers and a PT_INTERP segment for the .interp
3529 section. */
3530 s = bfd_get_section_by_name (abfd, ".interp");
3531 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3532 {
3533 amt = sizeof (struct elf_segment_map);
3534 m = bfd_zalloc (abfd, amt);
3535 if (m == NULL)
3536 goto error_return;
3537 m->next = NULL;
3538 m->p_type = PT_PHDR;
3539 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3540 m->p_flags = PF_R | PF_X;
3541 m->p_flags_valid = 1;
3542 m->includes_phdrs = 1;
3543
3544 *pm = m;
3545 pm = &m->next;
3546
3547 amt = sizeof (struct elf_segment_map);
3548 m = bfd_zalloc (abfd, amt);
3549 if (m == NULL)
3550 goto error_return;
3551 m->next = NULL;
3552 m->p_type = PT_INTERP;
3553 m->count = 1;
3554 m->sections[0] = s;
3555
3556 *pm = m;
3557 pm = &m->next;
3558 }
3559
3560 /* Look through the sections. We put sections in the same program
3561 segment when the start of the second section can be placed within
3562 a few bytes of the end of the first section. */
3563 last_hdr = NULL;
3564 last_size = 0;
3565 phdr_index = 0;
3566 maxpagesize = bed->maxpagesize;
3567 writable = FALSE;
3568 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3569 if (dynsec != NULL
3570 && (dynsec->flags & SEC_LOAD) == 0)
3571 dynsec = NULL;
3572
3573 /* Deal with -Ttext or something similar such that the first section
3574 is not adjacent to the program headers. This is an
3575 approximation, since at this point we don't know exactly how many
3576 program headers we will need. */
3577 if (count > 0)
3578 {
3579 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3580
3581 if (phdr_size == (bfd_size_type) -1)
3582 phdr_size = get_program_header_size (abfd, info);
3583 if ((abfd->flags & D_PAGED) == 0
3584 || sections[0]->lma < phdr_size
3585 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3586 phdr_in_segment = FALSE;
3587 }
3588
3589 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3590 {
3591 asection *hdr;
3592 bfd_boolean new_segment;
3593
3594 hdr = *hdrpp;
3595
3596 /* See if this section and the last one will fit in the same
3597 segment. */
3598
3599 if (last_hdr == NULL)
3600 {
3601 /* If we don't have a segment yet, then we don't need a new
3602 one (we build the last one after this loop). */
3603 new_segment = FALSE;
3604 }
3605 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3606 {
3607 /* If this section has a different relation between the
3608 virtual address and the load address, then we need a new
3609 segment. */
3610 new_segment = TRUE;
3611 }
3612 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3613 < BFD_ALIGN (hdr->lma, maxpagesize))
3614 {
3615 /* If putting this section in this segment would force us to
3616 skip a page in the segment, then we need a new segment. */
3617 new_segment = TRUE;
3618 }
3619 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3620 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3621 {
3622 /* We don't want to put a loadable section after a
3623 nonloadable section in the same segment.
3624 Consider .tbss sections as loadable for this purpose. */
3625 new_segment = TRUE;
3626 }
3627 else if ((abfd->flags & D_PAGED) == 0)
3628 {
3629 /* If the file is not demand paged, which means that we
3630 don't require the sections to be correctly aligned in the
3631 file, then there is no other reason for a new segment. */
3632 new_segment = FALSE;
3633 }
3634 else if (! writable
3635 && (hdr->flags & SEC_READONLY) == 0
3636 && (((last_hdr->lma + last_size - 1)
3637 & ~(maxpagesize - 1))
3638 != (hdr->lma & ~(maxpagesize - 1))))
3639 {
3640 /* We don't want to put a writable section in a read only
3641 segment, unless they are on the same page in memory
3642 anyhow. We already know that the last section does not
3643 bring us past the current section on the page, so the
3644 only case in which the new section is not on the same
3645 page as the previous section is when the previous section
3646 ends precisely on a page boundary. */
3647 new_segment = TRUE;
3648 }
3649 else
3650 {
3651 /* Otherwise, we can use the same segment. */
3652 new_segment = FALSE;
3653 }
3654
3655 /* Allow interested parties a chance to override our decision. */
3656 if (last_hdr && info->callbacks->override_segment_assignment)
3657 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3658
3659 if (! new_segment)
3660 {
3661 if ((hdr->flags & SEC_READONLY) == 0)
3662 writable = TRUE;
3663 last_hdr = hdr;
3664 /* .tbss sections effectively have zero size. */
3665 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3666 != SEC_THREAD_LOCAL)
3667 last_size = hdr->size;
3668 else
3669 last_size = 0;
3670 continue;
3671 }
3672
3673 /* We need a new program segment. We must create a new program
3674 header holding all the sections from phdr_index until hdr. */
3675
3676 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3677 if (m == NULL)
3678 goto error_return;
3679
3680 *pm = m;
3681 pm = &m->next;
3682
3683 if ((hdr->flags & SEC_READONLY) == 0)
3684 writable = TRUE;
3685 else
3686 writable = FALSE;
3687
3688 last_hdr = hdr;
3689 /* .tbss sections effectively have zero size. */
3690 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3691 last_size = hdr->size;
3692 else
3693 last_size = 0;
3694 phdr_index = i;
3695 phdr_in_segment = FALSE;
3696 }
3697
3698 /* Create a final PT_LOAD program segment. */
3699 if (last_hdr != NULL)
3700 {
3701 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3702 if (m == NULL)
3703 goto error_return;
3704
3705 *pm = m;
3706 pm = &m->next;
3707 }
3708
3709 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3710 if (dynsec != NULL)
3711 {
3712 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3713 if (m == NULL)
3714 goto error_return;
3715 *pm = m;
3716 pm = &m->next;
3717 }
3718
3719 /* For each batch of consecutive loadable .note sections,
3720 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3721 because if we link together nonloadable .note sections and
3722 loadable .note sections, we will generate two .note sections
3723 in the output file. FIXME: Using names for section types is
3724 bogus anyhow. */
3725 for (s = abfd->sections; s != NULL; s = s->next)
3726 {
3727 if ((s->flags & SEC_LOAD) != 0
3728 && CONST_STRNEQ (s->name, ".note"))
3729 {
3730 asection *s2;
3731 unsigned count = 1;
3732 amt = sizeof (struct elf_segment_map);
3733 if (s->alignment_power == 2)
3734 for (s2 = s; s2->next != NULL; s2 = s2->next)
3735 {
3736 if (s2->next->alignment_power == 2
3737 && (s2->next->flags & SEC_LOAD) != 0
3738 && CONST_STRNEQ (s2->next->name, ".note")
3739 && align_power (s2->vma + s2->size, 2)
3740 == s2->next->vma)
3741 count++;
3742 else
3743 break;
3744 }
3745 amt += (count - 1) * sizeof (asection *);
3746 m = bfd_zalloc (abfd, amt);
3747 if (m == NULL)
3748 goto error_return;
3749 m->next = NULL;
3750 m->p_type = PT_NOTE;
3751 m->count = count;
3752 while (count > 1)
3753 {
3754 m->sections[m->count - count--] = s;
3755 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3756 s = s->next;
3757 }
3758 m->sections[m->count - 1] = s;
3759 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3760 *pm = m;
3761 pm = &m->next;
3762 }
3763 if (s->flags & SEC_THREAD_LOCAL)
3764 {
3765 if (! tls_count)
3766 first_tls = s;
3767 tls_count++;
3768 }
3769 }
3770
3771 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3772 if (tls_count > 0)
3773 {
3774 int i;
3775
3776 amt = sizeof (struct elf_segment_map);
3777 amt += (tls_count - 1) * sizeof (asection *);
3778 m = bfd_zalloc (abfd, amt);
3779 if (m == NULL)
3780 goto error_return;
3781 m->next = NULL;
3782 m->p_type = PT_TLS;
3783 m->count = tls_count;
3784 /* Mandated PF_R. */
3785 m->p_flags = PF_R;
3786 m->p_flags_valid = 1;
3787 for (i = 0; i < tls_count; ++i)
3788 {
3789 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3790 m->sections[i] = first_tls;
3791 first_tls = first_tls->next;
3792 }
3793
3794 *pm = m;
3795 pm = &m->next;
3796 }
3797
3798 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3799 segment. */
3800 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3801 if (eh_frame_hdr != NULL
3802 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3803 {
3804 amt = sizeof (struct elf_segment_map);
3805 m = bfd_zalloc (abfd, amt);
3806 if (m == NULL)
3807 goto error_return;
3808 m->next = NULL;
3809 m->p_type = PT_GNU_EH_FRAME;
3810 m->count = 1;
3811 m->sections[0] = eh_frame_hdr->output_section;
3812
3813 *pm = m;
3814 pm = &m->next;
3815 }
3816
3817 if (elf_tdata (abfd)->stack_flags)
3818 {
3819 amt = sizeof (struct elf_segment_map);
3820 m = bfd_zalloc (abfd, amt);
3821 if (m == NULL)
3822 goto error_return;
3823 m->next = NULL;
3824 m->p_type = PT_GNU_STACK;
3825 m->p_flags = elf_tdata (abfd)->stack_flags;
3826 m->p_flags_valid = 1;
3827
3828 *pm = m;
3829 pm = &m->next;
3830 }
3831
3832 if (dynsec != NULL && elf_tdata (abfd)->relro)
3833 {
3834 /* We make a PT_GNU_RELRO segment only when there is a
3835 PT_DYNAMIC segment. */
3836 amt = sizeof (struct elf_segment_map);
3837 m = bfd_zalloc (abfd, amt);
3838 if (m == NULL)
3839 goto error_return;
3840 m->next = NULL;
3841 m->p_type = PT_GNU_RELRO;
3842 m->p_flags = PF_R;
3843 m->p_flags_valid = 1;
3844
3845 *pm = m;
3846 pm = &m->next;
3847 }
3848
3849 free (sections);
3850 elf_tdata (abfd)->segment_map = mfirst;
3851 }
3852
3853 if (!elf_modify_segment_map (abfd, info))
3854 return FALSE;
3855
3856 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3857 ++count;
3858 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3859
3860 return TRUE;
3861
3862 error_return:
3863 if (sections != NULL)
3864 free (sections);
3865 return FALSE;
3866 }
3867
3868 /* Sort sections by address. */
3869
3870 static int
3871 elf_sort_sections (const void *arg1, const void *arg2)
3872 {
3873 const asection *sec1 = *(const asection **) arg1;
3874 const asection *sec2 = *(const asection **) arg2;
3875 bfd_size_type size1, size2;
3876
3877 /* Sort by LMA first, since this is the address used to
3878 place the section into a segment. */
3879 if (sec1->lma < sec2->lma)
3880 return -1;
3881 else if (sec1->lma > sec2->lma)
3882 return 1;
3883
3884 /* Then sort by VMA. Normally the LMA and the VMA will be
3885 the same, and this will do nothing. */
3886 if (sec1->vma < sec2->vma)
3887 return -1;
3888 else if (sec1->vma > sec2->vma)
3889 return 1;
3890
3891 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3892
3893 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3894
3895 if (TOEND (sec1))
3896 {
3897 if (TOEND (sec2))
3898 {
3899 /* If the indicies are the same, do not return 0
3900 here, but continue to try the next comparison. */
3901 if (sec1->target_index - sec2->target_index != 0)
3902 return sec1->target_index - sec2->target_index;
3903 }
3904 else
3905 return 1;
3906 }
3907 else if (TOEND (sec2))
3908 return -1;
3909
3910 #undef TOEND
3911
3912 /* Sort by size, to put zero sized sections
3913 before others at the same address. */
3914
3915 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3916 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3917
3918 if (size1 < size2)
3919 return -1;
3920 if (size1 > size2)
3921 return 1;
3922
3923 return sec1->target_index - sec2->target_index;
3924 }
3925
3926 /* Ian Lance Taylor writes:
3927
3928 We shouldn't be using % with a negative signed number. That's just
3929 not good. We have to make sure either that the number is not
3930 negative, or that the number has an unsigned type. When the types
3931 are all the same size they wind up as unsigned. When file_ptr is a
3932 larger signed type, the arithmetic winds up as signed long long,
3933 which is wrong.
3934
3935 What we're trying to say here is something like ``increase OFF by
3936 the least amount that will cause it to be equal to the VMA modulo
3937 the page size.'' */
3938 /* In other words, something like:
3939
3940 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3941 off_offset = off % bed->maxpagesize;
3942 if (vma_offset < off_offset)
3943 adjustment = vma_offset + bed->maxpagesize - off_offset;
3944 else
3945 adjustment = vma_offset - off_offset;
3946
3947 which can can be collapsed into the expression below. */
3948
3949 static file_ptr
3950 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3951 {
3952 return ((vma - off) % maxpagesize);
3953 }
3954
3955 /* Assign file positions to the sections based on the mapping from
3956 sections to segments. This function also sets up some fields in
3957 the file header. */
3958
3959 static bfd_boolean
3960 assign_file_positions_for_load_sections (bfd *abfd,
3961 struct bfd_link_info *link_info)
3962 {
3963 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3964 struct elf_segment_map *m;
3965 Elf_Internal_Phdr *phdrs;
3966 Elf_Internal_Phdr *p;
3967 file_ptr off;
3968 bfd_size_type maxpagesize;
3969 unsigned int alloc;
3970 unsigned int i, j;
3971
3972 if (link_info == NULL
3973 && !elf_modify_segment_map (abfd, link_info))
3974 return FALSE;
3975
3976 alloc = 0;
3977 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3978 ++alloc;
3979
3980 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3981 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3982 elf_elfheader (abfd)->e_phnum = alloc;
3983
3984 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
3985 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
3986 else
3987 BFD_ASSERT (elf_tdata (abfd)->program_header_size
3988 >= alloc * bed->s->sizeof_phdr);
3989
3990 if (alloc == 0)
3991 {
3992 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3993 return TRUE;
3994 }
3995
3996 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
3997 elf_tdata (abfd)->phdr = phdrs;
3998 if (phdrs == NULL)
3999 return FALSE;
4000
4001 maxpagesize = 1;
4002 if ((abfd->flags & D_PAGED) != 0)
4003 maxpagesize = bed->maxpagesize;
4004
4005 off = bed->s->sizeof_ehdr;
4006 off += alloc * bed->s->sizeof_phdr;
4007
4008 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4009 m != NULL;
4010 m = m->next, p++, j++)
4011 {
4012 asection **secpp;
4013 bfd_vma off_adjust;
4014 bfd_boolean no_contents;
4015
4016 /* If elf_segment_map is not from map_sections_to_segments, the
4017 sections may not be correctly ordered. NOTE: sorting should
4018 not be done to the PT_NOTE section of a corefile, which may
4019 contain several pseudo-sections artificially created by bfd.
4020 Sorting these pseudo-sections breaks things badly. */
4021 if (m->count > 1
4022 && !(elf_elfheader (abfd)->e_type == ET_CORE
4023 && m->p_type == PT_NOTE))
4024 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4025 elf_sort_sections);
4026
4027 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4028 number of sections with contents contributing to both p_filesz
4029 and p_memsz, followed by a number of sections with no contents
4030 that just contribute to p_memsz. In this loop, OFF tracks next
4031 available file offset for PT_LOAD and PT_NOTE segments. */
4032 p->p_type = m->p_type;
4033 p->p_flags = m->p_flags;
4034
4035 if (m->count == 0)
4036 p->p_vaddr = 0;
4037 else
4038 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4039
4040 if (m->p_paddr_valid)
4041 p->p_paddr = m->p_paddr;
4042 else if (m->count == 0)
4043 p->p_paddr = 0;
4044 else
4045 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4046
4047 if (p->p_type == PT_LOAD
4048 && (abfd->flags & D_PAGED) != 0)
4049 {
4050 /* p_align in demand paged PT_LOAD segments effectively stores
4051 the maximum page size. When copying an executable with
4052 objcopy, we set m->p_align from the input file. Use this
4053 value for maxpagesize rather than bed->maxpagesize, which
4054 may be different. Note that we use maxpagesize for PT_TLS
4055 segment alignment later in this function, so we are relying
4056 on at least one PT_LOAD segment appearing before a PT_TLS
4057 segment. */
4058 if (m->p_align_valid)
4059 maxpagesize = m->p_align;
4060
4061 p->p_align = maxpagesize;
4062 }
4063 else if (m->count == 0)
4064 p->p_align = 1 << bed->s->log_file_align;
4065 else if (m->p_align_valid)
4066 p->p_align = m->p_align;
4067 else
4068 p->p_align = 0;
4069
4070 no_contents = FALSE;
4071 off_adjust = 0;
4072 if (p->p_type == PT_LOAD
4073 && m->count > 0)
4074 {
4075 bfd_size_type align;
4076 unsigned int align_power = 0;
4077
4078 if (m->p_align_valid)
4079 align = p->p_align;
4080 else
4081 {
4082 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4083 {
4084 unsigned int secalign;
4085
4086 secalign = bfd_get_section_alignment (abfd, *secpp);
4087 if (secalign > align_power)
4088 align_power = secalign;
4089 }
4090 align = (bfd_size_type) 1 << align_power;
4091 if (align < maxpagesize)
4092 align = maxpagesize;
4093 }
4094
4095 for (i = 0; i < m->count; i++)
4096 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4097 /* If we aren't making room for this section, then
4098 it must be SHT_NOBITS regardless of what we've
4099 set via struct bfd_elf_special_section. */
4100 elf_section_type (m->sections[i]) = SHT_NOBITS;
4101
4102 /* Find out whether this segment contains any loadable
4103 sections. If the first section isn't loadable, the same
4104 holds for any other sections. */
4105 i = 0;
4106 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4107 {
4108 /* If a segment starts with .tbss, we need to look
4109 at the next section to decide whether the segment
4110 has any loadable sections. */
4111 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4112 || ++i >= m->count)
4113 {
4114 no_contents = TRUE;
4115 break;
4116 }
4117 }
4118
4119 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4120 off += off_adjust;
4121 if (no_contents)
4122 {
4123 /* We shouldn't need to align the segment on disk since
4124 the segment doesn't need file space, but the gABI
4125 arguably requires the alignment and glibc ld.so
4126 checks it. So to comply with the alignment
4127 requirement but not waste file space, we adjust
4128 p_offset for just this segment. (OFF_ADJUST is
4129 subtracted from OFF later.) This may put p_offset
4130 past the end of file, but that shouldn't matter. */
4131 }
4132 else
4133 off_adjust = 0;
4134 }
4135 /* Make sure the .dynamic section is the first section in the
4136 PT_DYNAMIC segment. */
4137 else if (p->p_type == PT_DYNAMIC
4138 && m->count > 1
4139 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4140 {
4141 _bfd_error_handler
4142 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4143 abfd);
4144 bfd_set_error (bfd_error_bad_value);
4145 return FALSE;
4146 }
4147
4148 p->p_offset = 0;
4149 p->p_filesz = 0;
4150 p->p_memsz = 0;
4151
4152 if (m->includes_filehdr)
4153 {
4154 if (!m->p_flags_valid)
4155 p->p_flags |= PF_R;
4156 p->p_filesz = bed->s->sizeof_ehdr;
4157 p->p_memsz = bed->s->sizeof_ehdr;
4158 if (m->count > 0)
4159 {
4160 BFD_ASSERT (p->p_type == PT_LOAD);
4161
4162 if (p->p_vaddr < (bfd_vma) off)
4163 {
4164 (*_bfd_error_handler)
4165 (_("%B: Not enough room for program headers, try linking with -N"),
4166 abfd);
4167 bfd_set_error (bfd_error_bad_value);
4168 return FALSE;
4169 }
4170
4171 p->p_vaddr -= off;
4172 if (!m->p_paddr_valid)
4173 p->p_paddr -= off;
4174 }
4175 }
4176
4177 if (m->includes_phdrs)
4178 {
4179 if (!m->p_flags_valid)
4180 p->p_flags |= PF_R;
4181
4182 if (!m->includes_filehdr)
4183 {
4184 p->p_offset = bed->s->sizeof_ehdr;
4185
4186 if (m->count > 0)
4187 {
4188 BFD_ASSERT (p->p_type == PT_LOAD);
4189 p->p_vaddr -= off - p->p_offset;
4190 if (!m->p_paddr_valid)
4191 p->p_paddr -= off - p->p_offset;
4192 }
4193 }
4194
4195 p->p_filesz += alloc * bed->s->sizeof_phdr;
4196 p->p_memsz += alloc * bed->s->sizeof_phdr;
4197 }
4198
4199 if (p->p_type == PT_LOAD
4200 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4201 {
4202 if (!m->includes_filehdr && !m->includes_phdrs)
4203 p->p_offset = off;
4204 else
4205 {
4206 file_ptr adjust;
4207
4208 adjust = off - (p->p_offset + p->p_filesz);
4209 if (!no_contents)
4210 p->p_filesz += adjust;
4211 p->p_memsz += adjust;
4212 }
4213 }
4214
4215 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4216 maps. Set filepos for sections in PT_LOAD segments, and in
4217 core files, for sections in PT_NOTE segments.
4218 assign_file_positions_for_non_load_sections will set filepos
4219 for other sections and update p_filesz for other segments. */
4220 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4221 {
4222 asection *sec;
4223 bfd_size_type align;
4224 Elf_Internal_Shdr *this_hdr;
4225
4226 sec = *secpp;
4227 this_hdr = &elf_section_data (sec)->this_hdr;
4228 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4229
4230 if (p->p_type == PT_LOAD
4231 || p->p_type == PT_TLS)
4232 {
4233 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4234
4235 if (this_hdr->sh_type != SHT_NOBITS
4236 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4237 && ((this_hdr->sh_flags & SHF_TLS) == 0
4238 || p->p_type == PT_TLS)))
4239 {
4240 if (adjust < 0)
4241 {
4242 (*_bfd_error_handler)
4243 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4244 abfd, sec, (unsigned long) sec->lma);
4245 adjust = 0;
4246 }
4247 p->p_memsz += adjust;
4248
4249 if (this_hdr->sh_type != SHT_NOBITS)
4250 {
4251 off += adjust;
4252 p->p_filesz += adjust;
4253 }
4254 }
4255 }
4256
4257 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4258 {
4259 /* The section at i == 0 is the one that actually contains
4260 everything. */
4261 if (i == 0)
4262 {
4263 this_hdr->sh_offset = sec->filepos = off;
4264 off += this_hdr->sh_size;
4265 p->p_filesz = this_hdr->sh_size;
4266 p->p_memsz = 0;
4267 p->p_align = 1;
4268 }
4269 else
4270 {
4271 /* The rest are fake sections that shouldn't be written. */
4272 sec->filepos = 0;
4273 sec->size = 0;
4274 sec->flags = 0;
4275 continue;
4276 }
4277 }
4278 else
4279 {
4280 if (p->p_type == PT_LOAD)
4281 {
4282 this_hdr->sh_offset = sec->filepos = off;
4283 if (this_hdr->sh_type != SHT_NOBITS)
4284 off += this_hdr->sh_size;
4285 }
4286
4287 if (this_hdr->sh_type != SHT_NOBITS)
4288 {
4289 p->p_filesz += this_hdr->sh_size;
4290 /* A load section without SHF_ALLOC is something like
4291 a note section in a PT_NOTE segment. These take
4292 file space but are not loaded into memory. */
4293 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4294 p->p_memsz += this_hdr->sh_size;
4295 }
4296 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4297 {
4298 if (p->p_type == PT_TLS)
4299 p->p_memsz += this_hdr->sh_size;
4300
4301 /* .tbss is special. It doesn't contribute to p_memsz of
4302 normal segments. */
4303 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4304 p->p_memsz += this_hdr->sh_size;
4305 }
4306
4307 if (p->p_type == PT_GNU_RELRO)
4308 p->p_align = 1;
4309 else if (align > p->p_align
4310 && !m->p_align_valid
4311 && (p->p_type != PT_LOAD
4312 || (abfd->flags & D_PAGED) == 0))
4313 p->p_align = align;
4314 }
4315
4316 if (!m->p_flags_valid)
4317 {
4318 p->p_flags |= PF_R;
4319 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4320 p->p_flags |= PF_X;
4321 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4322 p->p_flags |= PF_W;
4323 }
4324 }
4325 off -= off_adjust;
4326
4327 /* Check that all sections are in a PT_LOAD segment.
4328 Don't check funky gdb generated core files. */
4329 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4330 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4331 {
4332 Elf_Internal_Shdr *this_hdr;
4333 asection *sec;
4334
4335 sec = *secpp;
4336 this_hdr = &(elf_section_data(sec)->this_hdr);
4337 if (this_hdr->sh_size != 0
4338 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4339 {
4340 (*_bfd_error_handler)
4341 (_("%B: section `%A' can't be allocated in segment %d"),
4342 abfd, sec, j);
4343 bfd_set_error (bfd_error_bad_value);
4344 return FALSE;
4345 }
4346 }
4347 }
4348
4349 elf_tdata (abfd)->next_file_pos = off;
4350 return TRUE;
4351 }
4352
4353 /* Assign file positions for the other sections. */
4354
4355 static bfd_boolean
4356 assign_file_positions_for_non_load_sections (bfd *abfd,
4357 struct bfd_link_info *link_info)
4358 {
4359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4360 Elf_Internal_Shdr **i_shdrpp;
4361 Elf_Internal_Shdr **hdrpp;
4362 Elf_Internal_Phdr *phdrs;
4363 Elf_Internal_Phdr *p;
4364 struct elf_segment_map *m;
4365 bfd_vma filehdr_vaddr, filehdr_paddr;
4366 bfd_vma phdrs_vaddr, phdrs_paddr;
4367 file_ptr off;
4368 unsigned int num_sec;
4369 unsigned int i;
4370 unsigned int count;
4371
4372 i_shdrpp = elf_elfsections (abfd);
4373 num_sec = elf_numsections (abfd);
4374 off = elf_tdata (abfd)->next_file_pos;
4375 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4376 {
4377 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4378 Elf_Internal_Shdr *hdr;
4379
4380 hdr = *hdrpp;
4381 if (hdr->bfd_section != NULL
4382 && (hdr->bfd_section->filepos != 0
4383 || (hdr->sh_type == SHT_NOBITS
4384 && hdr->contents == NULL)))
4385 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4386 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4387 {
4388 if (hdr->sh_size != 0)
4389 ((*_bfd_error_handler)
4390 (_("%B: warning: allocated section `%s' not in segment"),
4391 abfd,
4392 (hdr->bfd_section == NULL
4393 ? "*unknown*"
4394 : hdr->bfd_section->name)));
4395 /* We don't need to page align empty sections. */
4396 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4397 off += vma_page_aligned_bias (hdr->sh_addr, off,
4398 bed->maxpagesize);
4399 else
4400 off += vma_page_aligned_bias (hdr->sh_addr, off,
4401 hdr->sh_addralign);
4402 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4403 FALSE);
4404 }
4405 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4406 && hdr->bfd_section == NULL)
4407 || hdr == i_shdrpp[tdata->symtab_section]
4408 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4409 || hdr == i_shdrpp[tdata->strtab_section])
4410 hdr->sh_offset = -1;
4411 else
4412 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4413
4414 if (i == SHN_LORESERVE - 1)
4415 {
4416 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4417 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4418 }
4419 }
4420
4421 /* Now that we have set the section file positions, we can set up
4422 the file positions for the non PT_LOAD segments. */
4423 count = 0;
4424 filehdr_vaddr = 0;
4425 filehdr_paddr = 0;
4426 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4427 phdrs_paddr = 0;
4428 phdrs = elf_tdata (abfd)->phdr;
4429 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4430 m != NULL;
4431 m = m->next, p++)
4432 {
4433 ++count;
4434 if (p->p_type != PT_LOAD)
4435 continue;
4436
4437 if (m->includes_filehdr)
4438 {
4439 filehdr_vaddr = p->p_vaddr;
4440 filehdr_paddr = p->p_paddr;
4441 }
4442 if (m->includes_phdrs)
4443 {
4444 phdrs_vaddr = p->p_vaddr;
4445 phdrs_paddr = p->p_paddr;
4446 if (m->includes_filehdr)
4447 {
4448 phdrs_vaddr += bed->s->sizeof_ehdr;
4449 phdrs_paddr += bed->s->sizeof_ehdr;
4450 }
4451 }
4452 }
4453
4454 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4455 m != NULL;
4456 m = m->next, p++)
4457 {
4458 if (m->count != 0)
4459 {
4460 if (p->p_type != PT_LOAD
4461 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4462 {
4463 Elf_Internal_Shdr *hdr;
4464 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4465
4466 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4467 p->p_filesz = (m->sections[m->count - 1]->filepos
4468 - m->sections[0]->filepos);
4469 if (hdr->sh_type != SHT_NOBITS)
4470 p->p_filesz += hdr->sh_size;
4471
4472 p->p_offset = m->sections[0]->filepos;
4473 }
4474 }
4475 else
4476 {
4477 if (m->includes_filehdr)
4478 {
4479 p->p_vaddr = filehdr_vaddr;
4480 if (! m->p_paddr_valid)
4481 p->p_paddr = filehdr_paddr;
4482 }
4483 else if (m->includes_phdrs)
4484 {
4485 p->p_vaddr = phdrs_vaddr;
4486 if (! m->p_paddr_valid)
4487 p->p_paddr = phdrs_paddr;
4488 }
4489 else if (p->p_type == PT_GNU_RELRO)
4490 {
4491 Elf_Internal_Phdr *lp;
4492
4493 for (lp = phdrs; lp < phdrs + count; ++lp)
4494 {
4495 if (lp->p_type == PT_LOAD
4496 && lp->p_vaddr <= link_info->relro_end
4497 && lp->p_vaddr >= link_info->relro_start
4498 && (lp->p_vaddr + lp->p_filesz
4499 >= link_info->relro_end))
4500 break;
4501 }
4502
4503 if (lp < phdrs + count
4504 && link_info->relro_end > lp->p_vaddr)
4505 {
4506 p->p_vaddr = lp->p_vaddr;
4507 p->p_paddr = lp->p_paddr;
4508 p->p_offset = lp->p_offset;
4509 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4510 p->p_memsz = p->p_filesz;
4511 p->p_align = 1;
4512 p->p_flags = (lp->p_flags & ~PF_W);
4513 }
4514 else
4515 {
4516 memset (p, 0, sizeof *p);
4517 p->p_type = PT_NULL;
4518 }
4519 }
4520 }
4521 }
4522
4523 elf_tdata (abfd)->next_file_pos = off;
4524
4525 return TRUE;
4526 }
4527
4528 /* Work out the file positions of all the sections. This is called by
4529 _bfd_elf_compute_section_file_positions. All the section sizes and
4530 VMAs must be known before this is called.
4531
4532 Reloc sections come in two flavours: Those processed specially as
4533 "side-channel" data attached to a section to which they apply, and
4534 those that bfd doesn't process as relocations. The latter sort are
4535 stored in a normal bfd section by bfd_section_from_shdr. We don't
4536 consider the former sort here, unless they form part of the loadable
4537 image. Reloc sections not assigned here will be handled later by
4538 assign_file_positions_for_relocs.
4539
4540 We also don't set the positions of the .symtab and .strtab here. */
4541
4542 static bfd_boolean
4543 assign_file_positions_except_relocs (bfd *abfd,
4544 struct bfd_link_info *link_info)
4545 {
4546 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4547 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4548 file_ptr off;
4549 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4550
4551 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4552 && bfd_get_format (abfd) != bfd_core)
4553 {
4554 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4555 unsigned int num_sec = elf_numsections (abfd);
4556 Elf_Internal_Shdr **hdrpp;
4557 unsigned int i;
4558
4559 /* Start after the ELF header. */
4560 off = i_ehdrp->e_ehsize;
4561
4562 /* We are not creating an executable, which means that we are
4563 not creating a program header, and that the actual order of
4564 the sections in the file is unimportant. */
4565 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4566 {
4567 Elf_Internal_Shdr *hdr;
4568
4569 hdr = *hdrpp;
4570 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4571 && hdr->bfd_section == NULL)
4572 || i == tdata->symtab_section
4573 || i == tdata->symtab_shndx_section
4574 || i == tdata->strtab_section)
4575 {
4576 hdr->sh_offset = -1;
4577 }
4578 else
4579 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4580
4581 if (i == SHN_LORESERVE - 1)
4582 {
4583 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4584 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4585 }
4586 }
4587 }
4588 else
4589 {
4590 unsigned int alloc;
4591
4592 /* Assign file positions for the loaded sections based on the
4593 assignment of sections to segments. */
4594 if (!assign_file_positions_for_load_sections (abfd, link_info))
4595 return FALSE;
4596
4597 /* And for non-load sections. */
4598 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4599 return FALSE;
4600
4601 if (bed->elf_backend_modify_program_headers != NULL)
4602 {
4603 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4604 return FALSE;
4605 }
4606
4607 /* Write out the program headers. */
4608 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4609 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4610 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4611 return FALSE;
4612
4613 off = tdata->next_file_pos;
4614 }
4615
4616 /* Place the section headers. */
4617 off = align_file_position (off, 1 << bed->s->log_file_align);
4618 i_ehdrp->e_shoff = off;
4619 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4620
4621 tdata->next_file_pos = off;
4622
4623 return TRUE;
4624 }
4625
4626 static bfd_boolean
4627 prep_headers (bfd *abfd)
4628 {
4629 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4630 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4631 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4632 struct elf_strtab_hash *shstrtab;
4633 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4634
4635 i_ehdrp = elf_elfheader (abfd);
4636 i_shdrp = elf_elfsections (abfd);
4637
4638 shstrtab = _bfd_elf_strtab_init ();
4639 if (shstrtab == NULL)
4640 return FALSE;
4641
4642 elf_shstrtab (abfd) = shstrtab;
4643
4644 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4645 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4646 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4647 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4648
4649 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4650 i_ehdrp->e_ident[EI_DATA] =
4651 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4652 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4653
4654 if ((abfd->flags & DYNAMIC) != 0)
4655 i_ehdrp->e_type = ET_DYN;
4656 else if ((abfd->flags & EXEC_P) != 0)
4657 i_ehdrp->e_type = ET_EXEC;
4658 else if (bfd_get_format (abfd) == bfd_core)
4659 i_ehdrp->e_type = ET_CORE;
4660 else
4661 i_ehdrp->e_type = ET_REL;
4662
4663 switch (bfd_get_arch (abfd))
4664 {
4665 case bfd_arch_unknown:
4666 i_ehdrp->e_machine = EM_NONE;
4667 break;
4668
4669 /* There used to be a long list of cases here, each one setting
4670 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4671 in the corresponding bfd definition. To avoid duplication,
4672 the switch was removed. Machines that need special handling
4673 can generally do it in elf_backend_final_write_processing(),
4674 unless they need the information earlier than the final write.
4675 Such need can generally be supplied by replacing the tests for
4676 e_machine with the conditions used to determine it. */
4677 default:
4678 i_ehdrp->e_machine = bed->elf_machine_code;
4679 }
4680
4681 i_ehdrp->e_version = bed->s->ev_current;
4682 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4683
4684 /* No program header, for now. */
4685 i_ehdrp->e_phoff = 0;
4686 i_ehdrp->e_phentsize = 0;
4687 i_ehdrp->e_phnum = 0;
4688
4689 /* Each bfd section is section header entry. */
4690 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4691 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4692
4693 /* If we're building an executable, we'll need a program header table. */
4694 if (abfd->flags & EXEC_P)
4695 /* It all happens later. */
4696 ;
4697 else
4698 {
4699 i_ehdrp->e_phentsize = 0;
4700 i_phdrp = 0;
4701 i_ehdrp->e_phoff = 0;
4702 }
4703
4704 elf_tdata (abfd)->symtab_hdr.sh_name =
4705 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4706 elf_tdata (abfd)->strtab_hdr.sh_name =
4707 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4708 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4709 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4710 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4711 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4712 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4713 return FALSE;
4714
4715 return TRUE;
4716 }
4717
4718 /* Assign file positions for all the reloc sections which are not part
4719 of the loadable file image. */
4720
4721 void
4722 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4723 {
4724 file_ptr off;
4725 unsigned int i, num_sec;
4726 Elf_Internal_Shdr **shdrpp;
4727
4728 off = elf_tdata (abfd)->next_file_pos;
4729
4730 num_sec = elf_numsections (abfd);
4731 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4732 {
4733 Elf_Internal_Shdr *shdrp;
4734
4735 shdrp = *shdrpp;
4736 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4737 && shdrp->sh_offset == -1)
4738 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4739 }
4740
4741 elf_tdata (abfd)->next_file_pos = off;
4742 }
4743
4744 bfd_boolean
4745 _bfd_elf_write_object_contents (bfd *abfd)
4746 {
4747 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4748 Elf_Internal_Ehdr *i_ehdrp;
4749 Elf_Internal_Shdr **i_shdrp;
4750 bfd_boolean failed;
4751 unsigned int count, num_sec;
4752
4753 if (! abfd->output_has_begun
4754 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4755 return FALSE;
4756
4757 i_shdrp = elf_elfsections (abfd);
4758 i_ehdrp = elf_elfheader (abfd);
4759
4760 failed = FALSE;
4761 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4762 if (failed)
4763 return FALSE;
4764
4765 _bfd_elf_assign_file_positions_for_relocs (abfd);
4766
4767 /* After writing the headers, we need to write the sections too... */
4768 num_sec = elf_numsections (abfd);
4769 for (count = 1; count < num_sec; count++)
4770 {
4771 if (bed->elf_backend_section_processing)
4772 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4773 if (i_shdrp[count]->contents)
4774 {
4775 bfd_size_type amt = i_shdrp[count]->sh_size;
4776
4777 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4778 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4779 return FALSE;
4780 }
4781 if (count == SHN_LORESERVE - 1)
4782 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4783 }
4784
4785 /* Write out the section header names. */
4786 if (elf_shstrtab (abfd) != NULL
4787 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4788 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4789 return FALSE;
4790
4791 if (bed->elf_backend_final_write_processing)
4792 (*bed->elf_backend_final_write_processing) (abfd,
4793 elf_tdata (abfd)->linker);
4794
4795 if (!bed->s->write_shdrs_and_ehdr (abfd))
4796 return FALSE;
4797
4798 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4799 if (elf_tdata (abfd)->after_write_object_contents)
4800 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4801
4802 return TRUE;
4803 }
4804
4805 bfd_boolean
4806 _bfd_elf_write_corefile_contents (bfd *abfd)
4807 {
4808 /* Hopefully this can be done just like an object file. */
4809 return _bfd_elf_write_object_contents (abfd);
4810 }
4811
4812 /* Given a section, search the header to find them. */
4813
4814 int
4815 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4816 {
4817 const struct elf_backend_data *bed;
4818 int index;
4819
4820 if (elf_section_data (asect) != NULL
4821 && elf_section_data (asect)->this_idx != 0)
4822 return elf_section_data (asect)->this_idx;
4823
4824 if (bfd_is_abs_section (asect))
4825 index = SHN_ABS;
4826 else if (bfd_is_com_section (asect))
4827 index = SHN_COMMON;
4828 else if (bfd_is_und_section (asect))
4829 index = SHN_UNDEF;
4830 else
4831 index = -1;
4832
4833 bed = get_elf_backend_data (abfd);
4834 if (bed->elf_backend_section_from_bfd_section)
4835 {
4836 int retval = index;
4837
4838 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4839 return retval;
4840 }
4841
4842 if (index == -1)
4843 bfd_set_error (bfd_error_nonrepresentable_section);
4844
4845 return index;
4846 }
4847
4848 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4849 on error. */
4850
4851 int
4852 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4853 {
4854 asymbol *asym_ptr = *asym_ptr_ptr;
4855 int idx;
4856 flagword flags = asym_ptr->flags;
4857
4858 /* When gas creates relocations against local labels, it creates its
4859 own symbol for the section, but does put the symbol into the
4860 symbol chain, so udata is 0. When the linker is generating
4861 relocatable output, this section symbol may be for one of the
4862 input sections rather than the output section. */
4863 if (asym_ptr->udata.i == 0
4864 && (flags & BSF_SECTION_SYM)
4865 && asym_ptr->section)
4866 {
4867 asection *sec;
4868 int indx;
4869
4870 sec = asym_ptr->section;
4871 if (sec->owner != abfd && sec->output_section != NULL)
4872 sec = sec->output_section;
4873 if (sec->owner == abfd
4874 && (indx = sec->index) < elf_num_section_syms (abfd)
4875 && elf_section_syms (abfd)[indx] != NULL)
4876 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4877 }
4878
4879 idx = asym_ptr->udata.i;
4880
4881 if (idx == 0)
4882 {
4883 /* This case can occur when using --strip-symbol on a symbol
4884 which is used in a relocation entry. */
4885 (*_bfd_error_handler)
4886 (_("%B: symbol `%s' required but not present"),
4887 abfd, bfd_asymbol_name (asym_ptr));
4888 bfd_set_error (bfd_error_no_symbols);
4889 return -1;
4890 }
4891
4892 #if DEBUG & 4
4893 {
4894 fprintf (stderr,
4895 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4896 (long) asym_ptr, asym_ptr->name, idx, flags,
4897 elf_symbol_flags (flags));
4898 fflush (stderr);
4899 }
4900 #endif
4901
4902 return idx;
4903 }
4904
4905 /* Rewrite program header information. */
4906
4907 static bfd_boolean
4908 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
4909 {
4910 Elf_Internal_Ehdr *iehdr;
4911 struct elf_segment_map *map;
4912 struct elf_segment_map *map_first;
4913 struct elf_segment_map **pointer_to_map;
4914 Elf_Internal_Phdr *segment;
4915 asection *section;
4916 unsigned int i;
4917 unsigned int num_segments;
4918 bfd_boolean phdr_included = FALSE;
4919 bfd_vma maxpagesize;
4920 struct elf_segment_map *phdr_adjust_seg = NULL;
4921 unsigned int phdr_adjust_num = 0;
4922 const struct elf_backend_data *bed;
4923
4924 bed = get_elf_backend_data (ibfd);
4925 iehdr = elf_elfheader (ibfd);
4926
4927 map_first = NULL;
4928 pointer_to_map = &map_first;
4929
4930 num_segments = elf_elfheader (ibfd)->e_phnum;
4931 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4932
4933 /* Returns the end address of the segment + 1. */
4934 #define SEGMENT_END(segment, start) \
4935 (start + (segment->p_memsz > segment->p_filesz \
4936 ? segment->p_memsz : segment->p_filesz))
4937
4938 #define SECTION_SIZE(section, segment) \
4939 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4940 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4941 ? section->size : 0)
4942
4943 /* Returns TRUE if the given section is contained within
4944 the given segment. VMA addresses are compared. */
4945 #define IS_CONTAINED_BY_VMA(section, segment) \
4946 (section->vma >= segment->p_vaddr \
4947 && (section->vma + SECTION_SIZE (section, segment) \
4948 <= (SEGMENT_END (segment, segment->p_vaddr))))
4949
4950 /* Returns TRUE if the given section is contained within
4951 the given segment. LMA addresses are compared. */
4952 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4953 (section->lma >= base \
4954 && (section->lma + SECTION_SIZE (section, segment) \
4955 <= SEGMENT_END (segment, base)))
4956
4957 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4958 #define IS_COREFILE_NOTE(p, s) \
4959 (p->p_type == PT_NOTE \
4960 && bfd_get_format (ibfd) == bfd_core \
4961 && s->vma == 0 && s->lma == 0 \
4962 && (bfd_vma) s->filepos >= p->p_offset \
4963 && ((bfd_vma) s->filepos + s->size \
4964 <= p->p_offset + p->p_filesz))
4965
4966 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4967 linker, which generates a PT_INTERP section with p_vaddr and
4968 p_memsz set to 0. */
4969 #define IS_SOLARIS_PT_INTERP(p, s) \
4970 (p->p_vaddr == 0 \
4971 && p->p_paddr == 0 \
4972 && p->p_memsz == 0 \
4973 && p->p_filesz > 0 \
4974 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4975 && s->size > 0 \
4976 && (bfd_vma) s->filepos >= p->p_offset \
4977 && ((bfd_vma) s->filepos + s->size \
4978 <= p->p_offset + p->p_filesz))
4979
4980 /* Decide if the given section should be included in the given segment.
4981 A section will be included if:
4982 1. It is within the address space of the segment -- we use the LMA
4983 if that is set for the segment and the VMA otherwise,
4984 2. It is an allocated segment,
4985 3. There is an output section associated with it,
4986 4. The section has not already been allocated to a previous segment.
4987 5. PT_GNU_STACK segments do not include any sections.
4988 6. PT_TLS segment includes only SHF_TLS sections.
4989 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4990 8. PT_DYNAMIC should not contain empty sections at the beginning
4991 (with the possible exception of .dynamic). */
4992 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
4993 ((((segment->p_paddr \
4994 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4995 : IS_CONTAINED_BY_VMA (section, segment)) \
4996 && (section->flags & SEC_ALLOC) != 0) \
4997 || IS_COREFILE_NOTE (segment, section)) \
4998 && segment->p_type != PT_GNU_STACK \
4999 && (segment->p_type != PT_TLS \
5000 || (section->flags & SEC_THREAD_LOCAL)) \
5001 && (segment->p_type == PT_LOAD \
5002 || segment->p_type == PT_TLS \
5003 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5004 && (segment->p_type != PT_DYNAMIC \
5005 || SECTION_SIZE (section, segment) > 0 \
5006 || (segment->p_paddr \
5007 ? segment->p_paddr != section->lma \
5008 : segment->p_vaddr != section->vma) \
5009 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5010 == 0)) \
5011 && ! section->segment_mark)
5012
5013 /* If the output section of a section in the input segment is NULL,
5014 it is removed from the corresponding output segment. */
5015 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5016 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5017 && section->output_section != NULL)
5018
5019 /* Returns TRUE iff seg1 starts after the end of seg2. */
5020 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5021 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5022
5023 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5024 their VMA address ranges and their LMA address ranges overlap.
5025 It is possible to have overlapping VMA ranges without overlapping LMA
5026 ranges. RedBoot images for example can have both .data and .bss mapped
5027 to the same VMA range, but with the .data section mapped to a different
5028 LMA. */
5029 #define SEGMENT_OVERLAPS(seg1, seg2) \
5030 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5031 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5032 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5033 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5034
5035 /* Initialise the segment mark field. */
5036 for (section = ibfd->sections; section != NULL; section = section->next)
5037 section->segment_mark = FALSE;
5038
5039 /* Scan through the segments specified in the program header
5040 of the input BFD. For this first scan we look for overlaps
5041 in the loadable segments. These can be created by weird
5042 parameters to objcopy. Also, fix some solaris weirdness. */
5043 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5044 i < num_segments;
5045 i++, segment++)
5046 {
5047 unsigned int j;
5048 Elf_Internal_Phdr *segment2;
5049
5050 if (segment->p_type == PT_INTERP)
5051 for (section = ibfd->sections; section; section = section->next)
5052 if (IS_SOLARIS_PT_INTERP (segment, section))
5053 {
5054 /* Mininal change so that the normal section to segment
5055 assignment code will work. */
5056 segment->p_vaddr = section->vma;
5057 break;
5058 }
5059
5060 if (segment->p_type != PT_LOAD)
5061 continue;
5062
5063 /* Determine if this segment overlaps any previous segments. */
5064 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5065 {
5066 bfd_signed_vma extra_length;
5067
5068 if (segment2->p_type != PT_LOAD
5069 || ! SEGMENT_OVERLAPS (segment, segment2))
5070 continue;
5071
5072 /* Merge the two segments together. */
5073 if (segment2->p_vaddr < segment->p_vaddr)
5074 {
5075 /* Extend SEGMENT2 to include SEGMENT and then delete
5076 SEGMENT. */
5077 extra_length =
5078 SEGMENT_END (segment, segment->p_vaddr)
5079 - SEGMENT_END (segment2, segment2->p_vaddr);
5080
5081 if (extra_length > 0)
5082 {
5083 segment2->p_memsz += extra_length;
5084 segment2->p_filesz += extra_length;
5085 }
5086
5087 segment->p_type = PT_NULL;
5088
5089 /* Since we have deleted P we must restart the outer loop. */
5090 i = 0;
5091 segment = elf_tdata (ibfd)->phdr;
5092 break;
5093 }
5094 else
5095 {
5096 /* Extend SEGMENT to include SEGMENT2 and then delete
5097 SEGMENT2. */
5098 extra_length =
5099 SEGMENT_END (segment2, segment2->p_vaddr)
5100 - SEGMENT_END (segment, segment->p_vaddr);
5101
5102 if (extra_length > 0)
5103 {
5104 segment->p_memsz += extra_length;
5105 segment->p_filesz += extra_length;
5106 }
5107
5108 segment2->p_type = PT_NULL;
5109 }
5110 }
5111 }
5112
5113 /* The second scan attempts to assign sections to segments. */
5114 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5115 i < num_segments;
5116 i ++, segment ++)
5117 {
5118 unsigned int section_count;
5119 asection ** sections;
5120 asection * output_section;
5121 unsigned int isec;
5122 bfd_vma matching_lma;
5123 bfd_vma suggested_lma;
5124 unsigned int j;
5125 bfd_size_type amt;
5126 asection * first_section;
5127
5128 if (segment->p_type == PT_NULL)
5129 continue;
5130
5131 first_section = NULL;
5132 /* Compute how many sections might be placed into this segment. */
5133 for (section = ibfd->sections, section_count = 0;
5134 section != NULL;
5135 section = section->next)
5136 {
5137 /* Find the first section in the input segment, which may be
5138 removed from the corresponding output segment. */
5139 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5140 {
5141 if (first_section == NULL)
5142 first_section = section;
5143 if (section->output_section != NULL)
5144 ++section_count;
5145 }
5146 }
5147
5148 /* Allocate a segment map big enough to contain
5149 all of the sections we have selected. */
5150 amt = sizeof (struct elf_segment_map);
5151 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5152 map = bfd_zalloc (obfd, amt);
5153 if (map == NULL)
5154 return FALSE;
5155
5156 /* Initialise the fields of the segment map. Default to
5157 using the physical address of the segment in the input BFD. */
5158 map->next = NULL;
5159 map->p_type = segment->p_type;
5160 map->p_flags = segment->p_flags;
5161 map->p_flags_valid = 1;
5162
5163 /* If the first section in the input segment is removed, there is
5164 no need to preserve segment physical address in the corresponding
5165 output segment. */
5166 if (!first_section || first_section->output_section != NULL)
5167 {
5168 map->p_paddr = segment->p_paddr;
5169 map->p_paddr_valid = 1;
5170 }
5171
5172 /* Determine if this segment contains the ELF file header
5173 and if it contains the program headers themselves. */
5174 map->includes_filehdr = (segment->p_offset == 0
5175 && segment->p_filesz >= iehdr->e_ehsize);
5176
5177 map->includes_phdrs = 0;
5178
5179 if (! phdr_included || segment->p_type != PT_LOAD)
5180 {
5181 map->includes_phdrs =
5182 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5183 && (segment->p_offset + segment->p_filesz
5184 >= ((bfd_vma) iehdr->e_phoff
5185 + iehdr->e_phnum * iehdr->e_phentsize)));
5186
5187 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5188 phdr_included = TRUE;
5189 }
5190
5191 if (section_count == 0)
5192 {
5193 /* Special segments, such as the PT_PHDR segment, may contain
5194 no sections, but ordinary, loadable segments should contain
5195 something. They are allowed by the ELF spec however, so only
5196 a warning is produced. */
5197 if (segment->p_type == PT_LOAD)
5198 (*_bfd_error_handler)
5199 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5200 ibfd);
5201
5202 map->count = 0;
5203 *pointer_to_map = map;
5204 pointer_to_map = &map->next;
5205
5206 continue;
5207 }
5208
5209 /* Now scan the sections in the input BFD again and attempt
5210 to add their corresponding output sections to the segment map.
5211 The problem here is how to handle an output section which has
5212 been moved (ie had its LMA changed). There are four possibilities:
5213
5214 1. None of the sections have been moved.
5215 In this case we can continue to use the segment LMA from the
5216 input BFD.
5217
5218 2. All of the sections have been moved by the same amount.
5219 In this case we can change the segment's LMA to match the LMA
5220 of the first section.
5221
5222 3. Some of the sections have been moved, others have not.
5223 In this case those sections which have not been moved can be
5224 placed in the current segment which will have to have its size,
5225 and possibly its LMA changed, and a new segment or segments will
5226 have to be created to contain the other sections.
5227
5228 4. The sections have been moved, but not by the same amount.
5229 In this case we can change the segment's LMA to match the LMA
5230 of the first section and we will have to create a new segment
5231 or segments to contain the other sections.
5232
5233 In order to save time, we allocate an array to hold the section
5234 pointers that we are interested in. As these sections get assigned
5235 to a segment, they are removed from this array. */
5236
5237 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5238 to work around this long long bug. */
5239 sections = bfd_malloc2 (section_count, sizeof (asection *));
5240 if (sections == NULL)
5241 return FALSE;
5242
5243 /* Step One: Scan for segment vs section LMA conflicts.
5244 Also add the sections to the section array allocated above.
5245 Also add the sections to the current segment. In the common
5246 case, where the sections have not been moved, this means that
5247 we have completely filled the segment, and there is nothing
5248 more to do. */
5249 isec = 0;
5250 matching_lma = 0;
5251 suggested_lma = 0;
5252
5253 for (j = 0, section = ibfd->sections;
5254 section != NULL;
5255 section = section->next)
5256 {
5257 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5258 {
5259 output_section = section->output_section;
5260
5261 sections[j ++] = section;
5262
5263 /* The Solaris native linker always sets p_paddr to 0.
5264 We try to catch that case here, and set it to the
5265 correct value. Note - some backends require that
5266 p_paddr be left as zero. */
5267 if (segment->p_paddr == 0
5268 && segment->p_vaddr != 0
5269 && (! bed->want_p_paddr_set_to_zero)
5270 && isec == 0
5271 && output_section->lma != 0
5272 && (output_section->vma == (segment->p_vaddr
5273 + (map->includes_filehdr
5274 ? iehdr->e_ehsize
5275 : 0)
5276 + (map->includes_phdrs
5277 ? (iehdr->e_phnum
5278 * iehdr->e_phentsize)
5279 : 0))))
5280 map->p_paddr = segment->p_vaddr;
5281
5282 /* Match up the physical address of the segment with the
5283 LMA address of the output section. */
5284 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5285 || IS_COREFILE_NOTE (segment, section)
5286 || (bed->want_p_paddr_set_to_zero &&
5287 IS_CONTAINED_BY_VMA (output_section, segment)))
5288 {
5289 if (matching_lma == 0)
5290 matching_lma = output_section->lma;
5291
5292 /* We assume that if the section fits within the segment
5293 then it does not overlap any other section within that
5294 segment. */
5295 map->sections[isec ++] = output_section;
5296 }
5297 else if (suggested_lma == 0)
5298 suggested_lma = output_section->lma;
5299 }
5300 }
5301
5302 BFD_ASSERT (j == section_count);
5303
5304 /* Step Two: Adjust the physical address of the current segment,
5305 if necessary. */
5306 if (isec == section_count)
5307 {
5308 /* All of the sections fitted within the segment as currently
5309 specified. This is the default case. Add the segment to
5310 the list of built segments and carry on to process the next
5311 program header in the input BFD. */
5312 map->count = section_count;
5313 *pointer_to_map = map;
5314 pointer_to_map = &map->next;
5315
5316 if (matching_lma != map->p_paddr
5317 && !map->includes_filehdr && !map->includes_phdrs)
5318 /* There is some padding before the first section in the
5319 segment. So, we must account for that in the output
5320 segment's vma. */
5321 map->p_vaddr_offset = matching_lma - map->p_paddr;
5322
5323 free (sections);
5324 continue;
5325 }
5326 else
5327 {
5328 if (matching_lma != 0)
5329 {
5330 /* At least one section fits inside the current segment.
5331 Keep it, but modify its physical address to match the
5332 LMA of the first section that fitted. */
5333 map->p_paddr = matching_lma;
5334 }
5335 else
5336 {
5337 /* None of the sections fitted inside the current segment.
5338 Change the current segment's physical address to match
5339 the LMA of the first section. */
5340 map->p_paddr = suggested_lma;
5341 }
5342
5343 /* Offset the segment physical address from the lma
5344 to allow for space taken up by elf headers. */
5345 if (map->includes_filehdr)
5346 map->p_paddr -= iehdr->e_ehsize;
5347
5348 if (map->includes_phdrs)
5349 {
5350 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5351
5352 /* iehdr->e_phnum is just an estimate of the number
5353 of program headers that we will need. Make a note
5354 here of the number we used and the segment we chose
5355 to hold these headers, so that we can adjust the
5356 offset when we know the correct value. */
5357 phdr_adjust_num = iehdr->e_phnum;
5358 phdr_adjust_seg = map;
5359 }
5360 }
5361
5362 /* Step Three: Loop over the sections again, this time assigning
5363 those that fit to the current segment and removing them from the
5364 sections array; but making sure not to leave large gaps. Once all
5365 possible sections have been assigned to the current segment it is
5366 added to the list of built segments and if sections still remain
5367 to be assigned, a new segment is constructed before repeating
5368 the loop. */
5369 isec = 0;
5370 do
5371 {
5372 map->count = 0;
5373 suggested_lma = 0;
5374
5375 /* Fill the current segment with sections that fit. */
5376 for (j = 0; j < section_count; j++)
5377 {
5378 section = sections[j];
5379
5380 if (section == NULL)
5381 continue;
5382
5383 output_section = section->output_section;
5384
5385 BFD_ASSERT (output_section != NULL);
5386
5387 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5388 || IS_COREFILE_NOTE (segment, section))
5389 {
5390 if (map->count == 0)
5391 {
5392 /* If the first section in a segment does not start at
5393 the beginning of the segment, then something is
5394 wrong. */
5395 if (output_section->lma !=
5396 (map->p_paddr
5397 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5398 + (map->includes_phdrs
5399 ? iehdr->e_phnum * iehdr->e_phentsize
5400 : 0)))
5401 abort ();
5402 }
5403 else
5404 {
5405 asection * prev_sec;
5406
5407 prev_sec = map->sections[map->count - 1];
5408
5409 /* If the gap between the end of the previous section
5410 and the start of this section is more than
5411 maxpagesize then we need to start a new segment. */
5412 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5413 maxpagesize)
5414 < BFD_ALIGN (output_section->lma, maxpagesize))
5415 || ((prev_sec->lma + prev_sec->size)
5416 > output_section->lma))
5417 {
5418 if (suggested_lma == 0)
5419 suggested_lma = output_section->lma;
5420
5421 continue;
5422 }
5423 }
5424
5425 map->sections[map->count++] = output_section;
5426 ++isec;
5427 sections[j] = NULL;
5428 section->segment_mark = TRUE;
5429 }
5430 else if (suggested_lma == 0)
5431 suggested_lma = output_section->lma;
5432 }
5433
5434 BFD_ASSERT (map->count > 0);
5435
5436 /* Add the current segment to the list of built segments. */
5437 *pointer_to_map = map;
5438 pointer_to_map = &map->next;
5439
5440 if (isec < section_count)
5441 {
5442 /* We still have not allocated all of the sections to
5443 segments. Create a new segment here, initialise it
5444 and carry on looping. */
5445 amt = sizeof (struct elf_segment_map);
5446 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5447 map = bfd_alloc (obfd, amt);
5448 if (map == NULL)
5449 {
5450 free (sections);
5451 return FALSE;
5452 }
5453
5454 /* Initialise the fields of the segment map. Set the physical
5455 physical address to the LMA of the first section that has
5456 not yet been assigned. */
5457 map->next = NULL;
5458 map->p_type = segment->p_type;
5459 map->p_flags = segment->p_flags;
5460 map->p_flags_valid = 1;
5461 map->p_paddr = suggested_lma;
5462 map->p_paddr_valid = 1;
5463 map->includes_filehdr = 0;
5464 map->includes_phdrs = 0;
5465 }
5466 }
5467 while (isec < section_count);
5468
5469 free (sections);
5470 }
5471
5472 /* The Solaris linker creates program headers in which all the
5473 p_paddr fields are zero. When we try to objcopy or strip such a
5474 file, we get confused. Check for this case, and if we find it
5475 reset the p_paddr_valid fields. */
5476 for (map = map_first; map != NULL; map = map->next)
5477 if (map->p_paddr != 0)
5478 break;
5479 if (map == NULL)
5480 for (map = map_first; map != NULL; map = map->next)
5481 map->p_paddr_valid = 0;
5482
5483 elf_tdata (obfd)->segment_map = map_first;
5484
5485 /* If we had to estimate the number of program headers that were
5486 going to be needed, then check our estimate now and adjust
5487 the offset if necessary. */
5488 if (phdr_adjust_seg != NULL)
5489 {
5490 unsigned int count;
5491
5492 for (count = 0, map = map_first; map != NULL; map = map->next)
5493 count++;
5494
5495 if (count > phdr_adjust_num)
5496 phdr_adjust_seg->p_paddr
5497 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5498 }
5499
5500 #undef SEGMENT_END
5501 #undef SECTION_SIZE
5502 #undef IS_CONTAINED_BY_VMA
5503 #undef IS_CONTAINED_BY_LMA
5504 #undef IS_COREFILE_NOTE
5505 #undef IS_SOLARIS_PT_INTERP
5506 #undef IS_SECTION_IN_INPUT_SEGMENT
5507 #undef INCLUDE_SECTION_IN_SEGMENT
5508 #undef SEGMENT_AFTER_SEGMENT
5509 #undef SEGMENT_OVERLAPS
5510 return TRUE;
5511 }
5512
5513 /* Copy ELF program header information. */
5514
5515 static bfd_boolean
5516 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5517 {
5518 Elf_Internal_Ehdr *iehdr;
5519 struct elf_segment_map *map;
5520 struct elf_segment_map *map_first;
5521 struct elf_segment_map **pointer_to_map;
5522 Elf_Internal_Phdr *segment;
5523 unsigned int i;
5524 unsigned int num_segments;
5525 bfd_boolean phdr_included = FALSE;
5526
5527 iehdr = elf_elfheader (ibfd);
5528
5529 map_first = NULL;
5530 pointer_to_map = &map_first;
5531
5532 num_segments = elf_elfheader (ibfd)->e_phnum;
5533 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5534 i < num_segments;
5535 i++, segment++)
5536 {
5537 asection *section;
5538 unsigned int section_count;
5539 bfd_size_type amt;
5540 Elf_Internal_Shdr *this_hdr;
5541 asection *first_section = NULL;
5542
5543 /* FIXME: Do we need to copy PT_NULL segment? */
5544 if (segment->p_type == PT_NULL)
5545 continue;
5546
5547 /* Compute how many sections are in this segment. */
5548 for (section = ibfd->sections, section_count = 0;
5549 section != NULL;
5550 section = section->next)
5551 {
5552 this_hdr = &(elf_section_data(section)->this_hdr);
5553 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5554 {
5555 if (!first_section)
5556 first_section = section;
5557 section_count++;
5558 }
5559 }
5560
5561 /* Allocate a segment map big enough to contain
5562 all of the sections we have selected. */
5563 amt = sizeof (struct elf_segment_map);
5564 if (section_count != 0)
5565 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5566 map = bfd_zalloc (obfd, amt);
5567 if (map == NULL)
5568 return FALSE;
5569
5570 /* Initialize the fields of the output segment map with the
5571 input segment. */
5572 map->next = NULL;
5573 map->p_type = segment->p_type;
5574 map->p_flags = segment->p_flags;
5575 map->p_flags_valid = 1;
5576 map->p_paddr = segment->p_paddr;
5577 map->p_paddr_valid = 1;
5578 map->p_align = segment->p_align;
5579 map->p_align_valid = 1;
5580 map->p_vaddr_offset = 0;
5581
5582 /* Determine if this segment contains the ELF file header
5583 and if it contains the program headers themselves. */
5584 map->includes_filehdr = (segment->p_offset == 0
5585 && segment->p_filesz >= iehdr->e_ehsize);
5586
5587 map->includes_phdrs = 0;
5588 if (! phdr_included || segment->p_type != PT_LOAD)
5589 {
5590 map->includes_phdrs =
5591 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5592 && (segment->p_offset + segment->p_filesz
5593 >= ((bfd_vma) iehdr->e_phoff
5594 + iehdr->e_phnum * iehdr->e_phentsize)));
5595
5596 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5597 phdr_included = TRUE;
5598 }
5599
5600 if (!map->includes_phdrs && !map->includes_filehdr)
5601 /* There is some other padding before the first section. */
5602 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5603 - segment->p_paddr);
5604
5605 if (section_count != 0)
5606 {
5607 unsigned int isec = 0;
5608
5609 for (section = first_section;
5610 section != NULL;
5611 section = section->next)
5612 {
5613 this_hdr = &(elf_section_data(section)->this_hdr);
5614 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5615 {
5616 map->sections[isec++] = section->output_section;
5617 if (isec == section_count)
5618 break;
5619 }
5620 }
5621 }
5622
5623 map->count = section_count;
5624 *pointer_to_map = map;
5625 pointer_to_map = &map->next;
5626 }
5627
5628 elf_tdata (obfd)->segment_map = map_first;
5629 return TRUE;
5630 }
5631
5632 /* Copy private BFD data. This copies or rewrites ELF program header
5633 information. */
5634
5635 static bfd_boolean
5636 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5637 {
5638 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5639 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5640 return TRUE;
5641
5642 if (elf_tdata (ibfd)->phdr == NULL)
5643 return TRUE;
5644
5645 if (ibfd->xvec == obfd->xvec)
5646 {
5647 /* Check to see if any sections in the input BFD
5648 covered by ELF program header have changed. */
5649 Elf_Internal_Phdr *segment;
5650 asection *section, *osec;
5651 unsigned int i, num_segments;
5652 Elf_Internal_Shdr *this_hdr;
5653
5654 /* Initialize the segment mark field. */
5655 for (section = obfd->sections; section != NULL;
5656 section = section->next)
5657 section->segment_mark = FALSE;
5658
5659 num_segments = elf_elfheader (ibfd)->e_phnum;
5660 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5661 i < num_segments;
5662 i++, segment++)
5663 {
5664 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5665 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5666 which severly confuses things, so always regenerate the segment
5667 map in this case. */
5668 if (segment->p_paddr == 0
5669 && segment->p_memsz == 0
5670 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5671 goto rewrite;
5672
5673 for (section = ibfd->sections;
5674 section != NULL; section = section->next)
5675 {
5676 /* We mark the output section so that we know it comes
5677 from the input BFD. */
5678 osec = section->output_section;
5679 if (osec)
5680 osec->segment_mark = TRUE;
5681
5682 /* Check if this section is covered by the segment. */
5683 this_hdr = &(elf_section_data(section)->this_hdr);
5684 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5685 {
5686 /* FIXME: Check if its output section is changed or
5687 removed. What else do we need to check? */
5688 if (osec == NULL
5689 || section->flags != osec->flags
5690 || section->lma != osec->lma
5691 || section->vma != osec->vma
5692 || section->size != osec->size
5693 || section->rawsize != osec->rawsize
5694 || section->alignment_power != osec->alignment_power)
5695 goto rewrite;
5696 }
5697 }
5698 }
5699
5700 /* Check to see if any output section do not come from the
5701 input BFD. */
5702 for (section = obfd->sections; section != NULL;
5703 section = section->next)
5704 {
5705 if (section->segment_mark == FALSE)
5706 goto rewrite;
5707 else
5708 section->segment_mark = FALSE;
5709 }
5710
5711 return copy_elf_program_header (ibfd, obfd);
5712 }
5713
5714 rewrite:
5715 return rewrite_elf_program_header (ibfd, obfd);
5716 }
5717
5718 /* Initialize private output section information from input section. */
5719
5720 bfd_boolean
5721 _bfd_elf_init_private_section_data (bfd *ibfd,
5722 asection *isec,
5723 bfd *obfd,
5724 asection *osec,
5725 struct bfd_link_info *link_info)
5726
5727 {
5728 Elf_Internal_Shdr *ihdr, *ohdr;
5729 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5730
5731 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5732 || obfd->xvec->flavour != bfd_target_elf_flavour)
5733 return TRUE;
5734
5735 /* Don't copy the output ELF section type from input if the
5736 output BFD section flags have been set to something different.
5737 elf_fake_sections will set ELF section type based on BFD
5738 section flags. */
5739 if (elf_section_type (osec) == SHT_NULL
5740 && (osec->flags == isec->flags || !osec->flags))
5741 elf_section_type (osec) = elf_section_type (isec);
5742
5743 /* FIXME: Is this correct for all OS/PROC specific flags? */
5744 elf_section_flags (osec) |= (elf_section_flags (isec)
5745 & (SHF_MASKOS | SHF_MASKPROC));
5746
5747 /* Set things up for objcopy and relocatable link. The output
5748 SHT_GROUP section will have its elf_next_in_group pointing back
5749 to the input group members. Ignore linker created group section.
5750 See elfNN_ia64_object_p in elfxx-ia64.c. */
5751 if (need_group)
5752 {
5753 if (elf_sec_group (isec) == NULL
5754 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5755 {
5756 if (elf_section_flags (isec) & SHF_GROUP)
5757 elf_section_flags (osec) |= SHF_GROUP;
5758 elf_next_in_group (osec) = elf_next_in_group (isec);
5759 elf_group_name (osec) = elf_group_name (isec);
5760 }
5761 }
5762
5763 ihdr = &elf_section_data (isec)->this_hdr;
5764
5765 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5766 don't use the output section of the linked-to section since it
5767 may be NULL at this point. */
5768 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5769 {
5770 ohdr = &elf_section_data (osec)->this_hdr;
5771 ohdr->sh_flags |= SHF_LINK_ORDER;
5772 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5773 }
5774
5775 osec->use_rela_p = isec->use_rela_p;
5776
5777 return TRUE;
5778 }
5779
5780 /* Copy private section information. This copies over the entsize
5781 field, and sometimes the info field. */
5782
5783 bfd_boolean
5784 _bfd_elf_copy_private_section_data (bfd *ibfd,
5785 asection *isec,
5786 bfd *obfd,
5787 asection *osec)
5788 {
5789 Elf_Internal_Shdr *ihdr, *ohdr;
5790
5791 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5792 || obfd->xvec->flavour != bfd_target_elf_flavour)
5793 return TRUE;
5794
5795 ihdr = &elf_section_data (isec)->this_hdr;
5796 ohdr = &elf_section_data (osec)->this_hdr;
5797
5798 ohdr->sh_entsize = ihdr->sh_entsize;
5799
5800 if (ihdr->sh_type == SHT_SYMTAB
5801 || ihdr->sh_type == SHT_DYNSYM
5802 || ihdr->sh_type == SHT_GNU_verneed
5803 || ihdr->sh_type == SHT_GNU_verdef)
5804 ohdr->sh_info = ihdr->sh_info;
5805
5806 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5807 NULL);
5808 }
5809
5810 /* Copy private header information. */
5811
5812 bfd_boolean
5813 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5814 {
5815 asection *isec;
5816
5817 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5818 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5819 return TRUE;
5820
5821 /* Copy over private BFD data if it has not already been copied.
5822 This must be done here, rather than in the copy_private_bfd_data
5823 entry point, because the latter is called after the section
5824 contents have been set, which means that the program headers have
5825 already been worked out. */
5826 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5827 {
5828 if (! copy_private_bfd_data (ibfd, obfd))
5829 return FALSE;
5830 }
5831
5832 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
5833 but this might be wrong if we deleted the group section. */
5834 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
5835 if (elf_section_type (isec) == SHT_GROUP
5836 && isec->output_section == NULL)
5837 {
5838 asection *first = elf_next_in_group (isec);
5839 asection *s = first;
5840 while (s != NULL)
5841 {
5842 if (s->output_section != NULL)
5843 {
5844 elf_section_flags (s->output_section) &= ~SHF_GROUP;
5845 elf_group_name (s->output_section) = NULL;
5846 }
5847 s = elf_next_in_group (s);
5848 if (s == first)
5849 break;
5850 }
5851 }
5852
5853 return TRUE;
5854 }
5855
5856 /* Copy private symbol information. If this symbol is in a section
5857 which we did not map into a BFD section, try to map the section
5858 index correctly. We use special macro definitions for the mapped
5859 section indices; these definitions are interpreted by the
5860 swap_out_syms function. */
5861
5862 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5863 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5864 #define MAP_STRTAB (SHN_HIOS + 3)
5865 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5866 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5867
5868 bfd_boolean
5869 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5870 asymbol *isymarg,
5871 bfd *obfd,
5872 asymbol *osymarg)
5873 {
5874 elf_symbol_type *isym, *osym;
5875
5876 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5877 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5878 return TRUE;
5879
5880 isym = elf_symbol_from (ibfd, isymarg);
5881 osym = elf_symbol_from (obfd, osymarg);
5882
5883 if (isym != NULL
5884 && osym != NULL
5885 && bfd_is_abs_section (isym->symbol.section))
5886 {
5887 unsigned int shndx;
5888
5889 shndx = isym->internal_elf_sym.st_shndx;
5890 if (shndx == elf_onesymtab (ibfd))
5891 shndx = MAP_ONESYMTAB;
5892 else if (shndx == elf_dynsymtab (ibfd))
5893 shndx = MAP_DYNSYMTAB;
5894 else if (shndx == elf_tdata (ibfd)->strtab_section)
5895 shndx = MAP_STRTAB;
5896 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5897 shndx = MAP_SHSTRTAB;
5898 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5899 shndx = MAP_SYM_SHNDX;
5900 osym->internal_elf_sym.st_shndx = shndx;
5901 }
5902
5903 return TRUE;
5904 }
5905
5906 /* Swap out the symbols. */
5907
5908 static bfd_boolean
5909 swap_out_syms (bfd *abfd,
5910 struct bfd_strtab_hash **sttp,
5911 int relocatable_p)
5912 {
5913 const struct elf_backend_data *bed;
5914 int symcount;
5915 asymbol **syms;
5916 struct bfd_strtab_hash *stt;
5917 Elf_Internal_Shdr *symtab_hdr;
5918 Elf_Internal_Shdr *symtab_shndx_hdr;
5919 Elf_Internal_Shdr *symstrtab_hdr;
5920 bfd_byte *outbound_syms;
5921 bfd_byte *outbound_shndx;
5922 int idx;
5923 bfd_size_type amt;
5924 bfd_boolean name_local_sections;
5925
5926 if (!elf_map_symbols (abfd))
5927 return FALSE;
5928
5929 /* Dump out the symtabs. */
5930 stt = _bfd_elf_stringtab_init ();
5931 if (stt == NULL)
5932 return FALSE;
5933
5934 bed = get_elf_backend_data (abfd);
5935 symcount = bfd_get_symcount (abfd);
5936 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5937 symtab_hdr->sh_type = SHT_SYMTAB;
5938 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5939 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5940 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5941 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5942
5943 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5944 symstrtab_hdr->sh_type = SHT_STRTAB;
5945
5946 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5947 if (outbound_syms == NULL)
5948 {
5949 _bfd_stringtab_free (stt);
5950 return FALSE;
5951 }
5952 symtab_hdr->contents = outbound_syms;
5953
5954 outbound_shndx = NULL;
5955 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5956 if (symtab_shndx_hdr->sh_name != 0)
5957 {
5958 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5959 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
5960 sizeof (Elf_External_Sym_Shndx));
5961 if (outbound_shndx == NULL)
5962 {
5963 _bfd_stringtab_free (stt);
5964 return FALSE;
5965 }
5966
5967 symtab_shndx_hdr->contents = outbound_shndx;
5968 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5969 symtab_shndx_hdr->sh_size = amt;
5970 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5971 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5972 }
5973
5974 /* Now generate the data (for "contents"). */
5975 {
5976 /* Fill in zeroth symbol and swap it out. */
5977 Elf_Internal_Sym sym;
5978 sym.st_name = 0;
5979 sym.st_value = 0;
5980 sym.st_size = 0;
5981 sym.st_info = 0;
5982 sym.st_other = 0;
5983 sym.st_shndx = SHN_UNDEF;
5984 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5985 outbound_syms += bed->s->sizeof_sym;
5986 if (outbound_shndx != NULL)
5987 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5988 }
5989
5990 name_local_sections
5991 = (bed->elf_backend_name_local_section_symbols
5992 && bed->elf_backend_name_local_section_symbols (abfd));
5993
5994 syms = bfd_get_outsymbols (abfd);
5995 for (idx = 0; idx < symcount; idx++)
5996 {
5997 Elf_Internal_Sym sym;
5998 bfd_vma value = syms[idx]->value;
5999 elf_symbol_type *type_ptr;
6000 flagword flags = syms[idx]->flags;
6001 int type;
6002
6003 if (!name_local_sections
6004 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6005 {
6006 /* Local section symbols have no name. */
6007 sym.st_name = 0;
6008 }
6009 else
6010 {
6011 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6012 syms[idx]->name,
6013 TRUE, FALSE);
6014 if (sym.st_name == (unsigned long) -1)
6015 {
6016 _bfd_stringtab_free (stt);
6017 return FALSE;
6018 }
6019 }
6020
6021 type_ptr = elf_symbol_from (abfd, syms[idx]);
6022
6023 if ((flags & BSF_SECTION_SYM) == 0
6024 && bfd_is_com_section (syms[idx]->section))
6025 {
6026 /* ELF common symbols put the alignment into the `value' field,
6027 and the size into the `size' field. This is backwards from
6028 how BFD handles it, so reverse it here. */
6029 sym.st_size = value;
6030 if (type_ptr == NULL
6031 || type_ptr->internal_elf_sym.st_value == 0)
6032 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6033 else
6034 sym.st_value = type_ptr->internal_elf_sym.st_value;
6035 sym.st_shndx = _bfd_elf_section_from_bfd_section
6036 (abfd, syms[idx]->section);
6037 }
6038 else
6039 {
6040 asection *sec = syms[idx]->section;
6041 int shndx;
6042
6043 if (sec->output_section)
6044 {
6045 value += sec->output_offset;
6046 sec = sec->output_section;
6047 }
6048
6049 /* Don't add in the section vma for relocatable output. */
6050 if (! relocatable_p)
6051 value += sec->vma;
6052 sym.st_value = value;
6053 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6054
6055 if (bfd_is_abs_section (sec)
6056 && type_ptr != NULL
6057 && type_ptr->internal_elf_sym.st_shndx != 0)
6058 {
6059 /* This symbol is in a real ELF section which we did
6060 not create as a BFD section. Undo the mapping done
6061 by copy_private_symbol_data. */
6062 shndx = type_ptr->internal_elf_sym.st_shndx;
6063 switch (shndx)
6064 {
6065 case MAP_ONESYMTAB:
6066 shndx = elf_onesymtab (abfd);
6067 break;
6068 case MAP_DYNSYMTAB:
6069 shndx = elf_dynsymtab (abfd);
6070 break;
6071 case MAP_STRTAB:
6072 shndx = elf_tdata (abfd)->strtab_section;
6073 break;
6074 case MAP_SHSTRTAB:
6075 shndx = elf_tdata (abfd)->shstrtab_section;
6076 break;
6077 case MAP_SYM_SHNDX:
6078 shndx = elf_tdata (abfd)->symtab_shndx_section;
6079 break;
6080 default:
6081 break;
6082 }
6083 }
6084 else
6085 {
6086 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6087
6088 if (shndx == -1)
6089 {
6090 asection *sec2;
6091
6092 /* Writing this would be a hell of a lot easier if
6093 we had some decent documentation on bfd, and
6094 knew what to expect of the library, and what to
6095 demand of applications. For example, it
6096 appears that `objcopy' might not set the
6097 section of a symbol to be a section that is
6098 actually in the output file. */
6099 sec2 = bfd_get_section_by_name (abfd, sec->name);
6100 if (sec2 == NULL)
6101 {
6102 _bfd_error_handler (_("\
6103 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6104 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6105 sec->name);
6106 bfd_set_error (bfd_error_invalid_operation);
6107 _bfd_stringtab_free (stt);
6108 return FALSE;
6109 }
6110
6111 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6112 BFD_ASSERT (shndx != -1);
6113 }
6114 }
6115
6116 sym.st_shndx = shndx;
6117 }
6118
6119 if ((flags & BSF_THREAD_LOCAL) != 0)
6120 type = STT_TLS;
6121 else if ((flags & BSF_FUNCTION) != 0)
6122 type = STT_FUNC;
6123 else if ((flags & BSF_OBJECT) != 0)
6124 type = STT_OBJECT;
6125 else if ((flags & BSF_RELC) != 0)
6126 type = STT_RELC;
6127 else if ((flags & BSF_SRELC) != 0)
6128 type = STT_SRELC;
6129 else
6130 type = STT_NOTYPE;
6131
6132 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6133 type = STT_TLS;
6134
6135 /* Processor-specific types. */
6136 if (type_ptr != NULL
6137 && bed->elf_backend_get_symbol_type)
6138 type = ((*bed->elf_backend_get_symbol_type)
6139 (&type_ptr->internal_elf_sym, type));
6140
6141 if (flags & BSF_SECTION_SYM)
6142 {
6143 if (flags & BSF_GLOBAL)
6144 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6145 else
6146 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6147 }
6148 else if (bfd_is_com_section (syms[idx]->section))
6149 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6150 else if (bfd_is_und_section (syms[idx]->section))
6151 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6152 ? STB_WEAK
6153 : STB_GLOBAL),
6154 type);
6155 else if (flags & BSF_FILE)
6156 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6157 else
6158 {
6159 int bind = STB_LOCAL;
6160
6161 if (flags & BSF_LOCAL)
6162 bind = STB_LOCAL;
6163 else if (flags & BSF_WEAK)
6164 bind = STB_WEAK;
6165 else if (flags & BSF_GLOBAL)
6166 bind = STB_GLOBAL;
6167
6168 sym.st_info = ELF_ST_INFO (bind, type);
6169 }
6170
6171 if (type_ptr != NULL)
6172 sym.st_other = type_ptr->internal_elf_sym.st_other;
6173 else
6174 sym.st_other = 0;
6175
6176 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6177 outbound_syms += bed->s->sizeof_sym;
6178 if (outbound_shndx != NULL)
6179 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6180 }
6181
6182 *sttp = stt;
6183 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6184 symstrtab_hdr->sh_type = SHT_STRTAB;
6185
6186 symstrtab_hdr->sh_flags = 0;
6187 symstrtab_hdr->sh_addr = 0;
6188 symstrtab_hdr->sh_entsize = 0;
6189 symstrtab_hdr->sh_link = 0;
6190 symstrtab_hdr->sh_info = 0;
6191 symstrtab_hdr->sh_addralign = 1;
6192
6193 return TRUE;
6194 }
6195
6196 /* Return the number of bytes required to hold the symtab vector.
6197
6198 Note that we base it on the count plus 1, since we will null terminate
6199 the vector allocated based on this size. However, the ELF symbol table
6200 always has a dummy entry as symbol #0, so it ends up even. */
6201
6202 long
6203 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6204 {
6205 long symcount;
6206 long symtab_size;
6207 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6208
6209 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6210 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6211 if (symcount > 0)
6212 symtab_size -= sizeof (asymbol *);
6213
6214 return symtab_size;
6215 }
6216
6217 long
6218 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6219 {
6220 long symcount;
6221 long symtab_size;
6222 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6223
6224 if (elf_dynsymtab (abfd) == 0)
6225 {
6226 bfd_set_error (bfd_error_invalid_operation);
6227 return -1;
6228 }
6229
6230 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6231 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6232 if (symcount > 0)
6233 symtab_size -= sizeof (asymbol *);
6234
6235 return symtab_size;
6236 }
6237
6238 long
6239 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6240 sec_ptr asect)
6241 {
6242 return (asect->reloc_count + 1) * sizeof (arelent *);
6243 }
6244
6245 /* Canonicalize the relocs. */
6246
6247 long
6248 _bfd_elf_canonicalize_reloc (bfd *abfd,
6249 sec_ptr section,
6250 arelent **relptr,
6251 asymbol **symbols)
6252 {
6253 arelent *tblptr;
6254 unsigned int i;
6255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6256
6257 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6258 return -1;
6259
6260 tblptr = section->relocation;
6261 for (i = 0; i < section->reloc_count; i++)
6262 *relptr++ = tblptr++;
6263
6264 *relptr = NULL;
6265
6266 return section->reloc_count;
6267 }
6268
6269 long
6270 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6271 {
6272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6273 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6274
6275 if (symcount >= 0)
6276 bfd_get_symcount (abfd) = symcount;
6277 return symcount;
6278 }
6279
6280 long
6281 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6282 asymbol **allocation)
6283 {
6284 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6285 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6286
6287 if (symcount >= 0)
6288 bfd_get_dynamic_symcount (abfd) = symcount;
6289 return symcount;
6290 }
6291
6292 /* Return the size required for the dynamic reloc entries. Any loadable
6293 section that was actually installed in the BFD, and has type SHT_REL
6294 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6295 dynamic reloc section. */
6296
6297 long
6298 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6299 {
6300 long ret;
6301 asection *s;
6302
6303 if (elf_dynsymtab (abfd) == 0)
6304 {
6305 bfd_set_error (bfd_error_invalid_operation);
6306 return -1;
6307 }
6308
6309 ret = sizeof (arelent *);
6310 for (s = abfd->sections; s != NULL; s = s->next)
6311 if ((s->flags & SEC_LOAD) != 0
6312 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6313 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6314 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6315 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6316 * sizeof (arelent *));
6317
6318 return ret;
6319 }
6320
6321 /* Canonicalize the dynamic relocation entries. Note that we return the
6322 dynamic relocations as a single block, although they are actually
6323 associated with particular sections; the interface, which was
6324 designed for SunOS style shared libraries, expects that there is only
6325 one set of dynamic relocs. Any loadable section that was actually
6326 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6327 dynamic symbol table, is considered to be a dynamic reloc section. */
6328
6329 long
6330 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6331 arelent **storage,
6332 asymbol **syms)
6333 {
6334 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6335 asection *s;
6336 long ret;
6337
6338 if (elf_dynsymtab (abfd) == 0)
6339 {
6340 bfd_set_error (bfd_error_invalid_operation);
6341 return -1;
6342 }
6343
6344 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6345 ret = 0;
6346 for (s = abfd->sections; s != NULL; s = s->next)
6347 {
6348 if ((s->flags & SEC_LOAD) != 0
6349 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6350 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6351 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6352 {
6353 arelent *p;
6354 long count, i;
6355
6356 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6357 return -1;
6358 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6359 p = s->relocation;
6360 for (i = 0; i < count; i++)
6361 *storage++ = p++;
6362 ret += count;
6363 }
6364 }
6365
6366 *storage = NULL;
6367
6368 return ret;
6369 }
6370 \f
6371 /* Read in the version information. */
6372
6373 bfd_boolean
6374 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6375 {
6376 bfd_byte *contents = NULL;
6377 unsigned int freeidx = 0;
6378
6379 if (elf_dynverref (abfd) != 0)
6380 {
6381 Elf_Internal_Shdr *hdr;
6382 Elf_External_Verneed *everneed;
6383 Elf_Internal_Verneed *iverneed;
6384 unsigned int i;
6385 bfd_byte *contents_end;
6386
6387 hdr = &elf_tdata (abfd)->dynverref_hdr;
6388
6389 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6390 sizeof (Elf_Internal_Verneed));
6391 if (elf_tdata (abfd)->verref == NULL)
6392 goto error_return;
6393
6394 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6395
6396 contents = bfd_malloc (hdr->sh_size);
6397 if (contents == NULL)
6398 {
6399 error_return_verref:
6400 elf_tdata (abfd)->verref = NULL;
6401 elf_tdata (abfd)->cverrefs = 0;
6402 goto error_return;
6403 }
6404 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6405 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6406 goto error_return_verref;
6407
6408 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6409 goto error_return_verref;
6410
6411 BFD_ASSERT (sizeof (Elf_External_Verneed)
6412 == sizeof (Elf_External_Vernaux));
6413 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6414 everneed = (Elf_External_Verneed *) contents;
6415 iverneed = elf_tdata (abfd)->verref;
6416 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6417 {
6418 Elf_External_Vernaux *evernaux;
6419 Elf_Internal_Vernaux *ivernaux;
6420 unsigned int j;
6421
6422 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6423
6424 iverneed->vn_bfd = abfd;
6425
6426 iverneed->vn_filename =
6427 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6428 iverneed->vn_file);
6429 if (iverneed->vn_filename == NULL)
6430 goto error_return_verref;
6431
6432 if (iverneed->vn_cnt == 0)
6433 iverneed->vn_auxptr = NULL;
6434 else
6435 {
6436 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6437 sizeof (Elf_Internal_Vernaux));
6438 if (iverneed->vn_auxptr == NULL)
6439 goto error_return_verref;
6440 }
6441
6442 if (iverneed->vn_aux
6443 > (size_t) (contents_end - (bfd_byte *) everneed))
6444 goto error_return_verref;
6445
6446 evernaux = ((Elf_External_Vernaux *)
6447 ((bfd_byte *) everneed + iverneed->vn_aux));
6448 ivernaux = iverneed->vn_auxptr;
6449 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6450 {
6451 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6452
6453 ivernaux->vna_nodename =
6454 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6455 ivernaux->vna_name);
6456 if (ivernaux->vna_nodename == NULL)
6457 goto error_return_verref;
6458
6459 if (j + 1 < iverneed->vn_cnt)
6460 ivernaux->vna_nextptr = ivernaux + 1;
6461 else
6462 ivernaux->vna_nextptr = NULL;
6463
6464 if (ivernaux->vna_next
6465 > (size_t) (contents_end - (bfd_byte *) evernaux))
6466 goto error_return_verref;
6467
6468 evernaux = ((Elf_External_Vernaux *)
6469 ((bfd_byte *) evernaux + ivernaux->vna_next));
6470
6471 if (ivernaux->vna_other > freeidx)
6472 freeidx = ivernaux->vna_other;
6473 }
6474
6475 if (i + 1 < hdr->sh_info)
6476 iverneed->vn_nextref = iverneed + 1;
6477 else
6478 iverneed->vn_nextref = NULL;
6479
6480 if (iverneed->vn_next
6481 > (size_t) (contents_end - (bfd_byte *) everneed))
6482 goto error_return_verref;
6483
6484 everneed = ((Elf_External_Verneed *)
6485 ((bfd_byte *) everneed + iverneed->vn_next));
6486 }
6487
6488 free (contents);
6489 contents = NULL;
6490 }
6491
6492 if (elf_dynverdef (abfd) != 0)
6493 {
6494 Elf_Internal_Shdr *hdr;
6495 Elf_External_Verdef *everdef;
6496 Elf_Internal_Verdef *iverdef;
6497 Elf_Internal_Verdef *iverdefarr;
6498 Elf_Internal_Verdef iverdefmem;
6499 unsigned int i;
6500 unsigned int maxidx;
6501 bfd_byte *contents_end_def, *contents_end_aux;
6502
6503 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6504
6505 contents = bfd_malloc (hdr->sh_size);
6506 if (contents == NULL)
6507 goto error_return;
6508 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6509 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6510 goto error_return;
6511
6512 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6513 goto error_return;
6514
6515 BFD_ASSERT (sizeof (Elf_External_Verdef)
6516 >= sizeof (Elf_External_Verdaux));
6517 contents_end_def = contents + hdr->sh_size
6518 - sizeof (Elf_External_Verdef);
6519 contents_end_aux = contents + hdr->sh_size
6520 - sizeof (Elf_External_Verdaux);
6521
6522 /* We know the number of entries in the section but not the maximum
6523 index. Therefore we have to run through all entries and find
6524 the maximum. */
6525 everdef = (Elf_External_Verdef *) contents;
6526 maxidx = 0;
6527 for (i = 0; i < hdr->sh_info; ++i)
6528 {
6529 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6530
6531 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6532 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6533
6534 if (iverdefmem.vd_next
6535 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6536 goto error_return;
6537
6538 everdef = ((Elf_External_Verdef *)
6539 ((bfd_byte *) everdef + iverdefmem.vd_next));
6540 }
6541
6542 if (default_imported_symver)
6543 {
6544 if (freeidx > maxidx)
6545 maxidx = ++freeidx;
6546 else
6547 freeidx = ++maxidx;
6548 }
6549 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6550 sizeof (Elf_Internal_Verdef));
6551 if (elf_tdata (abfd)->verdef == NULL)
6552 goto error_return;
6553
6554 elf_tdata (abfd)->cverdefs = maxidx;
6555
6556 everdef = (Elf_External_Verdef *) contents;
6557 iverdefarr = elf_tdata (abfd)->verdef;
6558 for (i = 0; i < hdr->sh_info; i++)
6559 {
6560 Elf_External_Verdaux *everdaux;
6561 Elf_Internal_Verdaux *iverdaux;
6562 unsigned int j;
6563
6564 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6565
6566 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6567 {
6568 error_return_verdef:
6569 elf_tdata (abfd)->verdef = NULL;
6570 elf_tdata (abfd)->cverdefs = 0;
6571 goto error_return;
6572 }
6573
6574 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6575 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6576
6577 iverdef->vd_bfd = abfd;
6578
6579 if (iverdef->vd_cnt == 0)
6580 iverdef->vd_auxptr = NULL;
6581 else
6582 {
6583 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6584 sizeof (Elf_Internal_Verdaux));
6585 if (iverdef->vd_auxptr == NULL)
6586 goto error_return_verdef;
6587 }
6588
6589 if (iverdef->vd_aux
6590 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6591 goto error_return_verdef;
6592
6593 everdaux = ((Elf_External_Verdaux *)
6594 ((bfd_byte *) everdef + iverdef->vd_aux));
6595 iverdaux = iverdef->vd_auxptr;
6596 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6597 {
6598 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6599
6600 iverdaux->vda_nodename =
6601 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6602 iverdaux->vda_name);
6603 if (iverdaux->vda_nodename == NULL)
6604 goto error_return_verdef;
6605
6606 if (j + 1 < iverdef->vd_cnt)
6607 iverdaux->vda_nextptr = iverdaux + 1;
6608 else
6609 iverdaux->vda_nextptr = NULL;
6610
6611 if (iverdaux->vda_next
6612 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6613 goto error_return_verdef;
6614
6615 everdaux = ((Elf_External_Verdaux *)
6616 ((bfd_byte *) everdaux + iverdaux->vda_next));
6617 }
6618
6619 if (iverdef->vd_cnt)
6620 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6621
6622 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6623 iverdef->vd_nextdef = iverdef + 1;
6624 else
6625 iverdef->vd_nextdef = NULL;
6626
6627 everdef = ((Elf_External_Verdef *)
6628 ((bfd_byte *) everdef + iverdef->vd_next));
6629 }
6630
6631 free (contents);
6632 contents = NULL;
6633 }
6634 else if (default_imported_symver)
6635 {
6636 if (freeidx < 3)
6637 freeidx = 3;
6638 else
6639 freeidx++;
6640
6641 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6642 sizeof (Elf_Internal_Verdef));
6643 if (elf_tdata (abfd)->verdef == NULL)
6644 goto error_return;
6645
6646 elf_tdata (abfd)->cverdefs = freeidx;
6647 }
6648
6649 /* Create a default version based on the soname. */
6650 if (default_imported_symver)
6651 {
6652 Elf_Internal_Verdef *iverdef;
6653 Elf_Internal_Verdaux *iverdaux;
6654
6655 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6656
6657 iverdef->vd_version = VER_DEF_CURRENT;
6658 iverdef->vd_flags = 0;
6659 iverdef->vd_ndx = freeidx;
6660 iverdef->vd_cnt = 1;
6661
6662 iverdef->vd_bfd = abfd;
6663
6664 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6665 if (iverdef->vd_nodename == NULL)
6666 goto error_return_verdef;
6667 iverdef->vd_nextdef = NULL;
6668 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6669 if (iverdef->vd_auxptr == NULL)
6670 goto error_return_verdef;
6671
6672 iverdaux = iverdef->vd_auxptr;
6673 iverdaux->vda_nodename = iverdef->vd_nodename;
6674 iverdaux->vda_nextptr = NULL;
6675 }
6676
6677 return TRUE;
6678
6679 error_return:
6680 if (contents != NULL)
6681 free (contents);
6682 return FALSE;
6683 }
6684 \f
6685 asymbol *
6686 _bfd_elf_make_empty_symbol (bfd *abfd)
6687 {
6688 elf_symbol_type *newsym;
6689 bfd_size_type amt = sizeof (elf_symbol_type);
6690
6691 newsym = bfd_zalloc (abfd, amt);
6692 if (!newsym)
6693 return NULL;
6694 else
6695 {
6696 newsym->symbol.the_bfd = abfd;
6697 return &newsym->symbol;
6698 }
6699 }
6700
6701 void
6702 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6703 asymbol *symbol,
6704 symbol_info *ret)
6705 {
6706 bfd_symbol_info (symbol, ret);
6707 }
6708
6709 /* Return whether a symbol name implies a local symbol. Most targets
6710 use this function for the is_local_label_name entry point, but some
6711 override it. */
6712
6713 bfd_boolean
6714 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6715 const char *name)
6716 {
6717 /* Normal local symbols start with ``.L''. */
6718 if (name[0] == '.' && name[1] == 'L')
6719 return TRUE;
6720
6721 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6722 DWARF debugging symbols starting with ``..''. */
6723 if (name[0] == '.' && name[1] == '.')
6724 return TRUE;
6725
6726 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6727 emitting DWARF debugging output. I suspect this is actually a
6728 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6729 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6730 underscore to be emitted on some ELF targets). For ease of use,
6731 we treat such symbols as local. */
6732 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6733 return TRUE;
6734
6735 return FALSE;
6736 }
6737
6738 alent *
6739 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6740 asymbol *symbol ATTRIBUTE_UNUSED)
6741 {
6742 abort ();
6743 return NULL;
6744 }
6745
6746 bfd_boolean
6747 _bfd_elf_set_arch_mach (bfd *abfd,
6748 enum bfd_architecture arch,
6749 unsigned long machine)
6750 {
6751 /* If this isn't the right architecture for this backend, and this
6752 isn't the generic backend, fail. */
6753 if (arch != get_elf_backend_data (abfd)->arch
6754 && arch != bfd_arch_unknown
6755 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6756 return FALSE;
6757
6758 return bfd_default_set_arch_mach (abfd, arch, machine);
6759 }
6760
6761 /* Find the function to a particular section and offset,
6762 for error reporting. */
6763
6764 static bfd_boolean
6765 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6766 asection *section,
6767 asymbol **symbols,
6768 bfd_vma offset,
6769 const char **filename_ptr,
6770 const char **functionname_ptr)
6771 {
6772 const char *filename;
6773 asymbol *func, *file;
6774 bfd_vma low_func;
6775 asymbol **p;
6776 /* ??? Given multiple file symbols, it is impossible to reliably
6777 choose the right file name for global symbols. File symbols are
6778 local symbols, and thus all file symbols must sort before any
6779 global symbols. The ELF spec may be interpreted to say that a
6780 file symbol must sort before other local symbols, but currently
6781 ld -r doesn't do this. So, for ld -r output, it is possible to
6782 make a better choice of file name for local symbols by ignoring
6783 file symbols appearing after a given local symbol. */
6784 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6785
6786 filename = NULL;
6787 func = NULL;
6788 file = NULL;
6789 low_func = 0;
6790 state = nothing_seen;
6791
6792 for (p = symbols; *p != NULL; p++)
6793 {
6794 elf_symbol_type *q;
6795
6796 q = (elf_symbol_type *) *p;
6797
6798 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6799 {
6800 default:
6801 break;
6802 case STT_FILE:
6803 file = &q->symbol;
6804 if (state == symbol_seen)
6805 state = file_after_symbol_seen;
6806 continue;
6807 case STT_NOTYPE:
6808 case STT_FUNC:
6809 if (bfd_get_section (&q->symbol) == section
6810 && q->symbol.value >= low_func
6811 && q->symbol.value <= offset)
6812 {
6813 func = (asymbol *) q;
6814 low_func = q->symbol.value;
6815 filename = NULL;
6816 if (file != NULL
6817 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6818 || state != file_after_symbol_seen))
6819 filename = bfd_asymbol_name (file);
6820 }
6821 break;
6822 }
6823 if (state == nothing_seen)
6824 state = symbol_seen;
6825 }
6826
6827 if (func == NULL)
6828 return FALSE;
6829
6830 if (filename_ptr)
6831 *filename_ptr = filename;
6832 if (functionname_ptr)
6833 *functionname_ptr = bfd_asymbol_name (func);
6834
6835 return TRUE;
6836 }
6837
6838 /* Find the nearest line to a particular section and offset,
6839 for error reporting. */
6840
6841 bfd_boolean
6842 _bfd_elf_find_nearest_line (bfd *abfd,
6843 asection *section,
6844 asymbol **symbols,
6845 bfd_vma offset,
6846 const char **filename_ptr,
6847 const char **functionname_ptr,
6848 unsigned int *line_ptr)
6849 {
6850 bfd_boolean found;
6851
6852 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6853 filename_ptr, functionname_ptr,
6854 line_ptr))
6855 {
6856 if (!*functionname_ptr)
6857 elf_find_function (abfd, section, symbols, offset,
6858 *filename_ptr ? NULL : filename_ptr,
6859 functionname_ptr);
6860
6861 return TRUE;
6862 }
6863
6864 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6865 filename_ptr, functionname_ptr,
6866 line_ptr, 0,
6867 &elf_tdata (abfd)->dwarf2_find_line_info))
6868 {
6869 if (!*functionname_ptr)
6870 elf_find_function (abfd, section, symbols, offset,
6871 *filename_ptr ? NULL : filename_ptr,
6872 functionname_ptr);
6873
6874 return TRUE;
6875 }
6876
6877 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6878 &found, filename_ptr,
6879 functionname_ptr, line_ptr,
6880 &elf_tdata (abfd)->line_info))
6881 return FALSE;
6882 if (found && (*functionname_ptr || *line_ptr))
6883 return TRUE;
6884
6885 if (symbols == NULL)
6886 return FALSE;
6887
6888 if (! elf_find_function (abfd, section, symbols, offset,
6889 filename_ptr, functionname_ptr))
6890 return FALSE;
6891
6892 *line_ptr = 0;
6893 return TRUE;
6894 }
6895
6896 /* Find the line for a symbol. */
6897
6898 bfd_boolean
6899 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6900 const char **filename_ptr, unsigned int *line_ptr)
6901 {
6902 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6903 filename_ptr, line_ptr, 0,
6904 &elf_tdata (abfd)->dwarf2_find_line_info);
6905 }
6906
6907 /* After a call to bfd_find_nearest_line, successive calls to
6908 bfd_find_inliner_info can be used to get source information about
6909 each level of function inlining that terminated at the address
6910 passed to bfd_find_nearest_line. Currently this is only supported
6911 for DWARF2 with appropriate DWARF3 extensions. */
6912
6913 bfd_boolean
6914 _bfd_elf_find_inliner_info (bfd *abfd,
6915 const char **filename_ptr,
6916 const char **functionname_ptr,
6917 unsigned int *line_ptr)
6918 {
6919 bfd_boolean found;
6920 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6921 functionname_ptr, line_ptr,
6922 & elf_tdata (abfd)->dwarf2_find_line_info);
6923 return found;
6924 }
6925
6926 int
6927 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
6928 {
6929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6930 int ret = bed->s->sizeof_ehdr;
6931
6932 if (!info->relocatable)
6933 {
6934 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
6935
6936 if (phdr_size == (bfd_size_type) -1)
6937 {
6938 struct elf_segment_map *m;
6939
6940 phdr_size = 0;
6941 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6942 phdr_size += bed->s->sizeof_phdr;
6943
6944 if (phdr_size == 0)
6945 phdr_size = get_program_header_size (abfd, info);
6946 }
6947
6948 elf_tdata (abfd)->program_header_size = phdr_size;
6949 ret += phdr_size;
6950 }
6951
6952 return ret;
6953 }
6954
6955 bfd_boolean
6956 _bfd_elf_set_section_contents (bfd *abfd,
6957 sec_ptr section,
6958 const void *location,
6959 file_ptr offset,
6960 bfd_size_type count)
6961 {
6962 Elf_Internal_Shdr *hdr;
6963 bfd_signed_vma pos;
6964
6965 if (! abfd->output_has_begun
6966 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6967 return FALSE;
6968
6969 hdr = &elf_section_data (section)->this_hdr;
6970 pos = hdr->sh_offset + offset;
6971 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6972 || bfd_bwrite (location, count, abfd) != count)
6973 return FALSE;
6974
6975 return TRUE;
6976 }
6977
6978 void
6979 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6980 arelent *cache_ptr ATTRIBUTE_UNUSED,
6981 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6982 {
6983 abort ();
6984 }
6985
6986 /* Try to convert a non-ELF reloc into an ELF one. */
6987
6988 bfd_boolean
6989 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6990 {
6991 /* Check whether we really have an ELF howto. */
6992
6993 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6994 {
6995 bfd_reloc_code_real_type code;
6996 reloc_howto_type *howto;
6997
6998 /* Alien reloc: Try to determine its type to replace it with an
6999 equivalent ELF reloc. */
7000
7001 if (areloc->howto->pc_relative)
7002 {
7003 switch (areloc->howto->bitsize)
7004 {
7005 case 8:
7006 code = BFD_RELOC_8_PCREL;
7007 break;
7008 case 12:
7009 code = BFD_RELOC_12_PCREL;
7010 break;
7011 case 16:
7012 code = BFD_RELOC_16_PCREL;
7013 break;
7014 case 24:
7015 code = BFD_RELOC_24_PCREL;
7016 break;
7017 case 32:
7018 code = BFD_RELOC_32_PCREL;
7019 break;
7020 case 64:
7021 code = BFD_RELOC_64_PCREL;
7022 break;
7023 default:
7024 goto fail;
7025 }
7026
7027 howto = bfd_reloc_type_lookup (abfd, code);
7028
7029 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7030 {
7031 if (howto->pcrel_offset)
7032 areloc->addend += areloc->address;
7033 else
7034 areloc->addend -= areloc->address; /* addend is unsigned!! */
7035 }
7036 }
7037 else
7038 {
7039 switch (areloc->howto->bitsize)
7040 {
7041 case 8:
7042 code = BFD_RELOC_8;
7043 break;
7044 case 14:
7045 code = BFD_RELOC_14;
7046 break;
7047 case 16:
7048 code = BFD_RELOC_16;
7049 break;
7050 case 26:
7051 code = BFD_RELOC_26;
7052 break;
7053 case 32:
7054 code = BFD_RELOC_32;
7055 break;
7056 case 64:
7057 code = BFD_RELOC_64;
7058 break;
7059 default:
7060 goto fail;
7061 }
7062
7063 howto = bfd_reloc_type_lookup (abfd, code);
7064 }
7065
7066 if (howto)
7067 areloc->howto = howto;
7068 else
7069 goto fail;
7070 }
7071
7072 return TRUE;
7073
7074 fail:
7075 (*_bfd_error_handler)
7076 (_("%B: unsupported relocation type %s"),
7077 abfd, areloc->howto->name);
7078 bfd_set_error (bfd_error_bad_value);
7079 return FALSE;
7080 }
7081
7082 bfd_boolean
7083 _bfd_elf_close_and_cleanup (bfd *abfd)
7084 {
7085 if (bfd_get_format (abfd) == bfd_object)
7086 {
7087 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7088 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7089 _bfd_dwarf2_cleanup_debug_info (abfd);
7090 }
7091
7092 return _bfd_generic_close_and_cleanup (abfd);
7093 }
7094
7095 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7096 in the relocation's offset. Thus we cannot allow any sort of sanity
7097 range-checking to interfere. There is nothing else to do in processing
7098 this reloc. */
7099
7100 bfd_reloc_status_type
7101 _bfd_elf_rel_vtable_reloc_fn
7102 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7103 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7104 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7105 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7106 {
7107 return bfd_reloc_ok;
7108 }
7109 \f
7110 /* Elf core file support. Much of this only works on native
7111 toolchains, since we rely on knowing the
7112 machine-dependent procfs structure in order to pick
7113 out details about the corefile. */
7114
7115 #ifdef HAVE_SYS_PROCFS_H
7116 # include <sys/procfs.h>
7117 #endif
7118
7119 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7120
7121 static int
7122 elfcore_make_pid (bfd *abfd)
7123 {
7124 return ((elf_tdata (abfd)->core_lwpid << 16)
7125 + (elf_tdata (abfd)->core_pid));
7126 }
7127
7128 /* If there isn't a section called NAME, make one, using
7129 data from SECT. Note, this function will generate a
7130 reference to NAME, so you shouldn't deallocate or
7131 overwrite it. */
7132
7133 static bfd_boolean
7134 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7135 {
7136 asection *sect2;
7137
7138 if (bfd_get_section_by_name (abfd, name) != NULL)
7139 return TRUE;
7140
7141 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7142 if (sect2 == NULL)
7143 return FALSE;
7144
7145 sect2->size = sect->size;
7146 sect2->filepos = sect->filepos;
7147 sect2->alignment_power = sect->alignment_power;
7148 return TRUE;
7149 }
7150
7151 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7152 actually creates up to two pseudosections:
7153 - For the single-threaded case, a section named NAME, unless
7154 such a section already exists.
7155 - For the multi-threaded case, a section named "NAME/PID", where
7156 PID is elfcore_make_pid (abfd).
7157 Both pseudosections have identical contents. */
7158 bfd_boolean
7159 _bfd_elfcore_make_pseudosection (bfd *abfd,
7160 char *name,
7161 size_t size,
7162 ufile_ptr filepos)
7163 {
7164 char buf[100];
7165 char *threaded_name;
7166 size_t len;
7167 asection *sect;
7168
7169 /* Build the section name. */
7170
7171 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7172 len = strlen (buf) + 1;
7173 threaded_name = bfd_alloc (abfd, len);
7174 if (threaded_name == NULL)
7175 return FALSE;
7176 memcpy (threaded_name, buf, len);
7177
7178 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7179 SEC_HAS_CONTENTS);
7180 if (sect == NULL)
7181 return FALSE;
7182 sect->size = size;
7183 sect->filepos = filepos;
7184 sect->alignment_power = 2;
7185
7186 return elfcore_maybe_make_sect (abfd, name, sect);
7187 }
7188
7189 /* prstatus_t exists on:
7190 solaris 2.5+
7191 linux 2.[01] + glibc
7192 unixware 4.2
7193 */
7194
7195 #if defined (HAVE_PRSTATUS_T)
7196
7197 static bfd_boolean
7198 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7199 {
7200 size_t size;
7201 int offset;
7202
7203 if (note->descsz == sizeof (prstatus_t))
7204 {
7205 prstatus_t prstat;
7206
7207 size = sizeof (prstat.pr_reg);
7208 offset = offsetof (prstatus_t, pr_reg);
7209 memcpy (&prstat, note->descdata, sizeof (prstat));
7210
7211 /* Do not overwrite the core signal if it
7212 has already been set by another thread. */
7213 if (elf_tdata (abfd)->core_signal == 0)
7214 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7215 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7216
7217 /* pr_who exists on:
7218 solaris 2.5+
7219 unixware 4.2
7220 pr_who doesn't exist on:
7221 linux 2.[01]
7222 */
7223 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7224 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7225 #endif
7226 }
7227 #if defined (HAVE_PRSTATUS32_T)
7228 else if (note->descsz == sizeof (prstatus32_t))
7229 {
7230 /* 64-bit host, 32-bit corefile */
7231 prstatus32_t prstat;
7232
7233 size = sizeof (prstat.pr_reg);
7234 offset = offsetof (prstatus32_t, pr_reg);
7235 memcpy (&prstat, note->descdata, sizeof (prstat));
7236
7237 /* Do not overwrite the core signal if it
7238 has already been set by another thread. */
7239 if (elf_tdata (abfd)->core_signal == 0)
7240 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7241 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7242
7243 /* pr_who exists on:
7244 solaris 2.5+
7245 unixware 4.2
7246 pr_who doesn't exist on:
7247 linux 2.[01]
7248 */
7249 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7250 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7251 #endif
7252 }
7253 #endif /* HAVE_PRSTATUS32_T */
7254 else
7255 {
7256 /* Fail - we don't know how to handle any other
7257 note size (ie. data object type). */
7258 return TRUE;
7259 }
7260
7261 /* Make a ".reg/999" section and a ".reg" section. */
7262 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7263 size, note->descpos + offset);
7264 }
7265 #endif /* defined (HAVE_PRSTATUS_T) */
7266
7267 /* Create a pseudosection containing the exact contents of NOTE. */
7268 static bfd_boolean
7269 elfcore_make_note_pseudosection (bfd *abfd,
7270 char *name,
7271 Elf_Internal_Note *note)
7272 {
7273 return _bfd_elfcore_make_pseudosection (abfd, name,
7274 note->descsz, note->descpos);
7275 }
7276
7277 /* There isn't a consistent prfpregset_t across platforms,
7278 but it doesn't matter, because we don't have to pick this
7279 data structure apart. */
7280
7281 static bfd_boolean
7282 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7283 {
7284 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7285 }
7286
7287 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7288 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7289 literally. */
7290
7291 static bfd_boolean
7292 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7293 {
7294 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7295 }
7296
7297 #if defined (HAVE_PRPSINFO_T)
7298 typedef prpsinfo_t elfcore_psinfo_t;
7299 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7300 typedef prpsinfo32_t elfcore_psinfo32_t;
7301 #endif
7302 #endif
7303
7304 #if defined (HAVE_PSINFO_T)
7305 typedef psinfo_t elfcore_psinfo_t;
7306 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7307 typedef psinfo32_t elfcore_psinfo32_t;
7308 #endif
7309 #endif
7310
7311 /* return a malloc'ed copy of a string at START which is at
7312 most MAX bytes long, possibly without a terminating '\0'.
7313 the copy will always have a terminating '\0'. */
7314
7315 char *
7316 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7317 {
7318 char *dups;
7319 char *end = memchr (start, '\0', max);
7320 size_t len;
7321
7322 if (end == NULL)
7323 len = max;
7324 else
7325 len = end - start;
7326
7327 dups = bfd_alloc (abfd, len + 1);
7328 if (dups == NULL)
7329 return NULL;
7330
7331 memcpy (dups, start, len);
7332 dups[len] = '\0';
7333
7334 return dups;
7335 }
7336
7337 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7338 static bfd_boolean
7339 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7340 {
7341 if (note->descsz == sizeof (elfcore_psinfo_t))
7342 {
7343 elfcore_psinfo_t psinfo;
7344
7345 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7346
7347 elf_tdata (abfd)->core_program
7348 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7349 sizeof (psinfo.pr_fname));
7350
7351 elf_tdata (abfd)->core_command
7352 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7353 sizeof (psinfo.pr_psargs));
7354 }
7355 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7356 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7357 {
7358 /* 64-bit host, 32-bit corefile */
7359 elfcore_psinfo32_t psinfo;
7360
7361 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7362
7363 elf_tdata (abfd)->core_program
7364 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7365 sizeof (psinfo.pr_fname));
7366
7367 elf_tdata (abfd)->core_command
7368 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7369 sizeof (psinfo.pr_psargs));
7370 }
7371 #endif
7372
7373 else
7374 {
7375 /* Fail - we don't know how to handle any other
7376 note size (ie. data object type). */
7377 return TRUE;
7378 }
7379
7380 /* Note that for some reason, a spurious space is tacked
7381 onto the end of the args in some (at least one anyway)
7382 implementations, so strip it off if it exists. */
7383
7384 {
7385 char *command = elf_tdata (abfd)->core_command;
7386 int n = strlen (command);
7387
7388 if (0 < n && command[n - 1] == ' ')
7389 command[n - 1] = '\0';
7390 }
7391
7392 return TRUE;
7393 }
7394 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7395
7396 #if defined (HAVE_PSTATUS_T)
7397 static bfd_boolean
7398 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7399 {
7400 if (note->descsz == sizeof (pstatus_t)
7401 #if defined (HAVE_PXSTATUS_T)
7402 || note->descsz == sizeof (pxstatus_t)
7403 #endif
7404 )
7405 {
7406 pstatus_t pstat;
7407
7408 memcpy (&pstat, note->descdata, sizeof (pstat));
7409
7410 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7411 }
7412 #if defined (HAVE_PSTATUS32_T)
7413 else if (note->descsz == sizeof (pstatus32_t))
7414 {
7415 /* 64-bit host, 32-bit corefile */
7416 pstatus32_t pstat;
7417
7418 memcpy (&pstat, note->descdata, sizeof (pstat));
7419
7420 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7421 }
7422 #endif
7423 /* Could grab some more details from the "representative"
7424 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7425 NT_LWPSTATUS note, presumably. */
7426
7427 return TRUE;
7428 }
7429 #endif /* defined (HAVE_PSTATUS_T) */
7430
7431 #if defined (HAVE_LWPSTATUS_T)
7432 static bfd_boolean
7433 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7434 {
7435 lwpstatus_t lwpstat;
7436 char buf[100];
7437 char *name;
7438 size_t len;
7439 asection *sect;
7440
7441 if (note->descsz != sizeof (lwpstat)
7442 #if defined (HAVE_LWPXSTATUS_T)
7443 && note->descsz != sizeof (lwpxstatus_t)
7444 #endif
7445 )
7446 return TRUE;
7447
7448 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7449
7450 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7451 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7452
7453 /* Make a ".reg/999" section. */
7454
7455 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7456 len = strlen (buf) + 1;
7457 name = bfd_alloc (abfd, len);
7458 if (name == NULL)
7459 return FALSE;
7460 memcpy (name, buf, len);
7461
7462 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7463 if (sect == NULL)
7464 return FALSE;
7465
7466 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7467 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7468 sect->filepos = note->descpos
7469 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7470 #endif
7471
7472 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7473 sect->size = sizeof (lwpstat.pr_reg);
7474 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7475 #endif
7476
7477 sect->alignment_power = 2;
7478
7479 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7480 return FALSE;
7481
7482 /* Make a ".reg2/999" section */
7483
7484 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7485 len = strlen (buf) + 1;
7486 name = bfd_alloc (abfd, len);
7487 if (name == NULL)
7488 return FALSE;
7489 memcpy (name, buf, len);
7490
7491 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7492 if (sect == NULL)
7493 return FALSE;
7494
7495 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7496 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7497 sect->filepos = note->descpos
7498 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7499 #endif
7500
7501 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7502 sect->size = sizeof (lwpstat.pr_fpreg);
7503 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7504 #endif
7505
7506 sect->alignment_power = 2;
7507
7508 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7509 }
7510 #endif /* defined (HAVE_LWPSTATUS_T) */
7511
7512 #if defined (HAVE_WIN32_PSTATUS_T)
7513 static bfd_boolean
7514 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7515 {
7516 char buf[30];
7517 char *name;
7518 size_t len;
7519 asection *sect;
7520 win32_pstatus_t pstatus;
7521
7522 if (note->descsz < sizeof (pstatus))
7523 return TRUE;
7524
7525 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7526
7527 switch (pstatus.data_type)
7528 {
7529 case NOTE_INFO_PROCESS:
7530 /* FIXME: need to add ->core_command. */
7531 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7532 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7533 break;
7534
7535 case NOTE_INFO_THREAD:
7536 /* Make a ".reg/999" section. */
7537 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7538
7539 len = strlen (buf) + 1;
7540 name = bfd_alloc (abfd, len);
7541 if (name == NULL)
7542 return FALSE;
7543
7544 memcpy (name, buf, len);
7545
7546 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7547 if (sect == NULL)
7548 return FALSE;
7549
7550 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7551 sect->filepos = (note->descpos
7552 + offsetof (struct win32_pstatus,
7553 data.thread_info.thread_context));
7554 sect->alignment_power = 2;
7555
7556 if (pstatus.data.thread_info.is_active_thread)
7557 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7558 return FALSE;
7559 break;
7560
7561 case NOTE_INFO_MODULE:
7562 /* Make a ".module/xxxxxxxx" section. */
7563 sprintf (buf, ".module/%08lx",
7564 (long) pstatus.data.module_info.base_address);
7565
7566 len = strlen (buf) + 1;
7567 name = bfd_alloc (abfd, len);
7568 if (name == NULL)
7569 return FALSE;
7570
7571 memcpy (name, buf, len);
7572
7573 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7574
7575 if (sect == NULL)
7576 return FALSE;
7577
7578 sect->size = note->descsz;
7579 sect->filepos = note->descpos;
7580 sect->alignment_power = 2;
7581 break;
7582
7583 default:
7584 return TRUE;
7585 }
7586
7587 return TRUE;
7588 }
7589 #endif /* HAVE_WIN32_PSTATUS_T */
7590
7591 static bfd_boolean
7592 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7593 {
7594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7595
7596 switch (note->type)
7597 {
7598 default:
7599 return TRUE;
7600
7601 case NT_PRSTATUS:
7602 if (bed->elf_backend_grok_prstatus)
7603 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7604 return TRUE;
7605 #if defined (HAVE_PRSTATUS_T)
7606 return elfcore_grok_prstatus (abfd, note);
7607 #else
7608 return TRUE;
7609 #endif
7610
7611 #if defined (HAVE_PSTATUS_T)
7612 case NT_PSTATUS:
7613 return elfcore_grok_pstatus (abfd, note);
7614 #endif
7615
7616 #if defined (HAVE_LWPSTATUS_T)
7617 case NT_LWPSTATUS:
7618 return elfcore_grok_lwpstatus (abfd, note);
7619 #endif
7620
7621 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7622 return elfcore_grok_prfpreg (abfd, note);
7623
7624 #if defined (HAVE_WIN32_PSTATUS_T)
7625 case NT_WIN32PSTATUS:
7626 return elfcore_grok_win32pstatus (abfd, note);
7627 #endif
7628
7629 case NT_PRXFPREG: /* Linux SSE extension */
7630 if (note->namesz == 6
7631 && strcmp (note->namedata, "LINUX") == 0)
7632 return elfcore_grok_prxfpreg (abfd, note);
7633 else
7634 return TRUE;
7635
7636 case NT_PRPSINFO:
7637 case NT_PSINFO:
7638 if (bed->elf_backend_grok_psinfo)
7639 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7640 return TRUE;
7641 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7642 return elfcore_grok_psinfo (abfd, note);
7643 #else
7644 return TRUE;
7645 #endif
7646
7647 case NT_AUXV:
7648 {
7649 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7650 SEC_HAS_CONTENTS);
7651
7652 if (sect == NULL)
7653 return FALSE;
7654 sect->size = note->descsz;
7655 sect->filepos = note->descpos;
7656 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7657
7658 return TRUE;
7659 }
7660 }
7661 }
7662
7663 static bfd_boolean
7664 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7665 {
7666 char *cp;
7667
7668 cp = strchr (note->namedata, '@');
7669 if (cp != NULL)
7670 {
7671 *lwpidp = atoi(cp + 1);
7672 return TRUE;
7673 }
7674 return FALSE;
7675 }
7676
7677 static bfd_boolean
7678 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7679 {
7680 /* Signal number at offset 0x08. */
7681 elf_tdata (abfd)->core_signal
7682 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7683
7684 /* Process ID at offset 0x50. */
7685 elf_tdata (abfd)->core_pid
7686 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7687
7688 /* Command name at 0x7c (max 32 bytes, including nul). */
7689 elf_tdata (abfd)->core_command
7690 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7691
7692 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7693 note);
7694 }
7695
7696 static bfd_boolean
7697 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7698 {
7699 int lwp;
7700
7701 if (elfcore_netbsd_get_lwpid (note, &lwp))
7702 elf_tdata (abfd)->core_lwpid = lwp;
7703
7704 if (note->type == NT_NETBSDCORE_PROCINFO)
7705 {
7706 /* NetBSD-specific core "procinfo". Note that we expect to
7707 find this note before any of the others, which is fine,
7708 since the kernel writes this note out first when it
7709 creates a core file. */
7710
7711 return elfcore_grok_netbsd_procinfo (abfd, note);
7712 }
7713
7714 /* As of Jan 2002 there are no other machine-independent notes
7715 defined for NetBSD core files. If the note type is less
7716 than the start of the machine-dependent note types, we don't
7717 understand it. */
7718
7719 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7720 return TRUE;
7721
7722
7723 switch (bfd_get_arch (abfd))
7724 {
7725 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7726 PT_GETFPREGS == mach+2. */
7727
7728 case bfd_arch_alpha:
7729 case bfd_arch_sparc:
7730 switch (note->type)
7731 {
7732 case NT_NETBSDCORE_FIRSTMACH+0:
7733 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7734
7735 case NT_NETBSDCORE_FIRSTMACH+2:
7736 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7737
7738 default:
7739 return TRUE;
7740 }
7741
7742 /* On all other arch's, PT_GETREGS == mach+1 and
7743 PT_GETFPREGS == mach+3. */
7744
7745 default:
7746 switch (note->type)
7747 {
7748 case NT_NETBSDCORE_FIRSTMACH+1:
7749 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7750
7751 case NT_NETBSDCORE_FIRSTMACH+3:
7752 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7753
7754 default:
7755 return TRUE;
7756 }
7757 }
7758 /* NOTREACHED */
7759 }
7760
7761 static bfd_boolean
7762 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7763 {
7764 void *ddata = note->descdata;
7765 char buf[100];
7766 char *name;
7767 asection *sect;
7768 short sig;
7769 unsigned flags;
7770
7771 /* nto_procfs_status 'pid' field is at offset 0. */
7772 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7773
7774 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7775 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7776
7777 /* nto_procfs_status 'flags' field is at offset 8. */
7778 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7779
7780 /* nto_procfs_status 'what' field is at offset 14. */
7781 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7782 {
7783 elf_tdata (abfd)->core_signal = sig;
7784 elf_tdata (abfd)->core_lwpid = *tid;
7785 }
7786
7787 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7788 do not come from signals so we make sure we set the current
7789 thread just in case. */
7790 if (flags & 0x00000080)
7791 elf_tdata (abfd)->core_lwpid = *tid;
7792
7793 /* Make a ".qnx_core_status/%d" section. */
7794 sprintf (buf, ".qnx_core_status/%ld", *tid);
7795
7796 name = bfd_alloc (abfd, strlen (buf) + 1);
7797 if (name == NULL)
7798 return FALSE;
7799 strcpy (name, buf);
7800
7801 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7802 if (sect == NULL)
7803 return FALSE;
7804
7805 sect->size = note->descsz;
7806 sect->filepos = note->descpos;
7807 sect->alignment_power = 2;
7808
7809 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7810 }
7811
7812 static bfd_boolean
7813 elfcore_grok_nto_regs (bfd *abfd,
7814 Elf_Internal_Note *note,
7815 long tid,
7816 char *base)
7817 {
7818 char buf[100];
7819 char *name;
7820 asection *sect;
7821
7822 /* Make a "(base)/%d" section. */
7823 sprintf (buf, "%s/%ld", base, tid);
7824
7825 name = bfd_alloc (abfd, strlen (buf) + 1);
7826 if (name == NULL)
7827 return FALSE;
7828 strcpy (name, buf);
7829
7830 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7831 if (sect == NULL)
7832 return FALSE;
7833
7834 sect->size = note->descsz;
7835 sect->filepos = note->descpos;
7836 sect->alignment_power = 2;
7837
7838 /* This is the current thread. */
7839 if (elf_tdata (abfd)->core_lwpid == tid)
7840 return elfcore_maybe_make_sect (abfd, base, sect);
7841
7842 return TRUE;
7843 }
7844
7845 #define BFD_QNT_CORE_INFO 7
7846 #define BFD_QNT_CORE_STATUS 8
7847 #define BFD_QNT_CORE_GREG 9
7848 #define BFD_QNT_CORE_FPREG 10
7849
7850 static bfd_boolean
7851 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7852 {
7853 /* Every GREG section has a STATUS section before it. Store the
7854 tid from the previous call to pass down to the next gregs
7855 function. */
7856 static long tid = 1;
7857
7858 switch (note->type)
7859 {
7860 case BFD_QNT_CORE_INFO:
7861 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7862 case BFD_QNT_CORE_STATUS:
7863 return elfcore_grok_nto_status (abfd, note, &tid);
7864 case BFD_QNT_CORE_GREG:
7865 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7866 case BFD_QNT_CORE_FPREG:
7867 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7868 default:
7869 return TRUE;
7870 }
7871 }
7872
7873 /* Function: elfcore_write_note
7874
7875 Inputs:
7876 buffer to hold note, and current size of buffer
7877 name of note
7878 type of note
7879 data for note
7880 size of data for note
7881
7882 Writes note to end of buffer. ELF64 notes are written exactly as
7883 for ELF32, despite the current (as of 2006) ELF gabi specifying
7884 that they ought to have 8-byte namesz and descsz field, and have
7885 8-byte alignment. Other writers, eg. Linux kernel, do the same.
7886
7887 Return:
7888 Pointer to realloc'd buffer, *BUFSIZ updated. */
7889
7890 char *
7891 elfcore_write_note (bfd *abfd,
7892 char *buf,
7893 int *bufsiz,
7894 const char *name,
7895 int type,
7896 const void *input,
7897 int size)
7898 {
7899 Elf_External_Note *xnp;
7900 size_t namesz;
7901 size_t newspace;
7902 char *dest;
7903
7904 namesz = 0;
7905 if (name != NULL)
7906 namesz = strlen (name) + 1;
7907
7908 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
7909
7910 buf = realloc (buf, *bufsiz + newspace);
7911 dest = buf + *bufsiz;
7912 *bufsiz += newspace;
7913 xnp = (Elf_External_Note *) dest;
7914 H_PUT_32 (abfd, namesz, xnp->namesz);
7915 H_PUT_32 (abfd, size, xnp->descsz);
7916 H_PUT_32 (abfd, type, xnp->type);
7917 dest = xnp->name;
7918 if (name != NULL)
7919 {
7920 memcpy (dest, name, namesz);
7921 dest += namesz;
7922 while (namesz & 3)
7923 {
7924 *dest++ = '\0';
7925 ++namesz;
7926 }
7927 }
7928 memcpy (dest, input, size);
7929 dest += size;
7930 while (size & 3)
7931 {
7932 *dest++ = '\0';
7933 ++size;
7934 }
7935 return buf;
7936 }
7937
7938 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7939 char *
7940 elfcore_write_prpsinfo (bfd *abfd,
7941 char *buf,
7942 int *bufsiz,
7943 const char *fname,
7944 const char *psargs)
7945 {
7946 const char *note_name = "CORE";
7947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7948
7949 if (bed->elf_backend_write_core_note != NULL)
7950 {
7951 char *ret;
7952 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
7953 NT_PRPSINFO, fname, psargs);
7954 if (ret != NULL)
7955 return ret;
7956 }
7957
7958 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7959 if (bed->s->elfclass == ELFCLASS32)
7960 {
7961 #if defined (HAVE_PSINFO32_T)
7962 psinfo32_t data;
7963 int note_type = NT_PSINFO;
7964 #else
7965 prpsinfo32_t data;
7966 int note_type = NT_PRPSINFO;
7967 #endif
7968
7969 memset (&data, 0, sizeof (data));
7970 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7971 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7972 return elfcore_write_note (abfd, buf, bufsiz,
7973 note_name, note_type, &data, sizeof (data));
7974 }
7975 else
7976 #endif
7977 {
7978 #if defined (HAVE_PSINFO_T)
7979 psinfo_t data;
7980 int note_type = NT_PSINFO;
7981 #else
7982 prpsinfo_t data;
7983 int note_type = NT_PRPSINFO;
7984 #endif
7985
7986 memset (&data, 0, sizeof (data));
7987 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7988 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7989 return elfcore_write_note (abfd, buf, bufsiz,
7990 note_name, note_type, &data, sizeof (data));
7991 }
7992 }
7993 #endif /* PSINFO_T or PRPSINFO_T */
7994
7995 #if defined (HAVE_PRSTATUS_T)
7996 char *
7997 elfcore_write_prstatus (bfd *abfd,
7998 char *buf,
7999 int *bufsiz,
8000 long pid,
8001 int cursig,
8002 const void *gregs)
8003 {
8004 const char *note_name = "CORE";
8005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8006
8007 if (bed->elf_backend_write_core_note != NULL)
8008 {
8009 char *ret;
8010 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8011 NT_PRSTATUS,
8012 pid, cursig, gregs);
8013 if (ret != NULL)
8014 return ret;
8015 }
8016
8017 #if defined (HAVE_PRSTATUS32_T)
8018 if (bed->s->elfclass == ELFCLASS32)
8019 {
8020 prstatus32_t prstat;
8021
8022 memset (&prstat, 0, sizeof (prstat));
8023 prstat.pr_pid = pid;
8024 prstat.pr_cursig = cursig;
8025 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8026 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8027 NT_PRSTATUS, &prstat, sizeof (prstat));
8028 }
8029 else
8030 #endif
8031 {
8032 prstatus_t prstat;
8033
8034 memset (&prstat, 0, sizeof (prstat));
8035 prstat.pr_pid = pid;
8036 prstat.pr_cursig = cursig;
8037 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8038 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8039 NT_PRSTATUS, &prstat, sizeof (prstat));
8040 }
8041 }
8042 #endif /* HAVE_PRSTATUS_T */
8043
8044 #if defined (HAVE_LWPSTATUS_T)
8045 char *
8046 elfcore_write_lwpstatus (bfd *abfd,
8047 char *buf,
8048 int *bufsiz,
8049 long pid,
8050 int cursig,
8051 const void *gregs)
8052 {
8053 lwpstatus_t lwpstat;
8054 const char *note_name = "CORE";
8055
8056 memset (&lwpstat, 0, sizeof (lwpstat));
8057 lwpstat.pr_lwpid = pid >> 16;
8058 lwpstat.pr_cursig = cursig;
8059 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8060 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8061 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8062 #if !defined(gregs)
8063 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8064 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8065 #else
8066 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8067 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8068 #endif
8069 #endif
8070 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8071 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8072 }
8073 #endif /* HAVE_LWPSTATUS_T */
8074
8075 #if defined (HAVE_PSTATUS_T)
8076 char *
8077 elfcore_write_pstatus (bfd *abfd,
8078 char *buf,
8079 int *bufsiz,
8080 long pid,
8081 int cursig ATTRIBUTE_UNUSED,
8082 const void *gregs ATTRIBUTE_UNUSED)
8083 {
8084 const char *note_name = "CORE";
8085 #if defined (HAVE_PSTATUS32_T)
8086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8087
8088 if (bed->s->elfclass == ELFCLASS32)
8089 {
8090 pstatus32_t pstat;
8091
8092 memset (&pstat, 0, sizeof (pstat));
8093 pstat.pr_pid = pid & 0xffff;
8094 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8095 NT_PSTATUS, &pstat, sizeof (pstat));
8096 return buf;
8097 }
8098 else
8099 #endif
8100 {
8101 pstatus_t pstat;
8102
8103 memset (&pstat, 0, sizeof (pstat));
8104 pstat.pr_pid = pid & 0xffff;
8105 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8106 NT_PSTATUS, &pstat, sizeof (pstat));
8107 return buf;
8108 }
8109 }
8110 #endif /* HAVE_PSTATUS_T */
8111
8112 char *
8113 elfcore_write_prfpreg (bfd *abfd,
8114 char *buf,
8115 int *bufsiz,
8116 const void *fpregs,
8117 int size)
8118 {
8119 const char *note_name = "CORE";
8120 return elfcore_write_note (abfd, buf, bufsiz,
8121 note_name, NT_FPREGSET, fpregs, size);
8122 }
8123
8124 char *
8125 elfcore_write_prxfpreg (bfd *abfd,
8126 char *buf,
8127 int *bufsiz,
8128 const void *xfpregs,
8129 int size)
8130 {
8131 char *note_name = "LINUX";
8132 return elfcore_write_note (abfd, buf, bufsiz,
8133 note_name, NT_PRXFPREG, xfpregs, size);
8134 }
8135
8136 static bfd_boolean
8137 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8138 {
8139 char *buf;
8140 char *p;
8141
8142 if (size <= 0)
8143 return TRUE;
8144
8145 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8146 return FALSE;
8147
8148 buf = bfd_malloc (size);
8149 if (buf == NULL)
8150 return FALSE;
8151
8152 if (bfd_bread (buf, size, abfd) != size)
8153 {
8154 error:
8155 free (buf);
8156 return FALSE;
8157 }
8158
8159 p = buf;
8160 while (p < buf + size)
8161 {
8162 /* FIXME: bad alignment assumption. */
8163 Elf_External_Note *xnp = (Elf_External_Note *) p;
8164 Elf_Internal_Note in;
8165
8166 in.type = H_GET_32 (abfd, xnp->type);
8167
8168 in.namesz = H_GET_32 (abfd, xnp->namesz);
8169 in.namedata = xnp->name;
8170
8171 in.descsz = H_GET_32 (abfd, xnp->descsz);
8172 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8173 in.descpos = offset + (in.descdata - buf);
8174
8175 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8176 {
8177 if (! elfcore_grok_netbsd_note (abfd, &in))
8178 goto error;
8179 }
8180 else if (CONST_STRNEQ (in.namedata, "QNX"))
8181 {
8182 if (! elfcore_grok_nto_note (abfd, &in))
8183 goto error;
8184 }
8185 else
8186 {
8187 if (! elfcore_grok_note (abfd, &in))
8188 goto error;
8189 }
8190
8191 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8192 }
8193
8194 free (buf);
8195 return TRUE;
8196 }
8197 \f
8198 /* Providing external access to the ELF program header table. */
8199
8200 /* Return an upper bound on the number of bytes required to store a
8201 copy of ABFD's program header table entries. Return -1 if an error
8202 occurs; bfd_get_error will return an appropriate code. */
8203
8204 long
8205 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8206 {
8207 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8208 {
8209 bfd_set_error (bfd_error_wrong_format);
8210 return -1;
8211 }
8212
8213 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8214 }
8215
8216 /* Copy ABFD's program header table entries to *PHDRS. The entries
8217 will be stored as an array of Elf_Internal_Phdr structures, as
8218 defined in include/elf/internal.h. To find out how large the
8219 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8220
8221 Return the number of program header table entries read, or -1 if an
8222 error occurs; bfd_get_error will return an appropriate code. */
8223
8224 int
8225 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8226 {
8227 int num_phdrs;
8228
8229 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8230 {
8231 bfd_set_error (bfd_error_wrong_format);
8232 return -1;
8233 }
8234
8235 num_phdrs = elf_elfheader (abfd)->e_phnum;
8236 memcpy (phdrs, elf_tdata (abfd)->phdr,
8237 num_phdrs * sizeof (Elf_Internal_Phdr));
8238
8239 return num_phdrs;
8240 }
8241
8242 void
8243 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8244 {
8245 #ifdef BFD64
8246 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8247
8248 i_ehdrp = elf_elfheader (abfd);
8249 if (i_ehdrp == NULL)
8250 sprintf_vma (buf, value);
8251 else
8252 {
8253 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8254 {
8255 #if BFD_HOST_64BIT_LONG
8256 sprintf (buf, "%016lx", value);
8257 #else
8258 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8259 _bfd_int64_low (value));
8260 #endif
8261 }
8262 else
8263 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8264 }
8265 #else
8266 sprintf_vma (buf, value);
8267 #endif
8268 }
8269
8270 void
8271 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8272 {
8273 #ifdef BFD64
8274 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8275
8276 i_ehdrp = elf_elfheader (abfd);
8277 if (i_ehdrp == NULL)
8278 fprintf_vma ((FILE *) stream, value);
8279 else
8280 {
8281 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8282 {
8283 #if BFD_HOST_64BIT_LONG
8284 fprintf ((FILE *) stream, "%016lx", value);
8285 #else
8286 fprintf ((FILE *) stream, "%08lx%08lx",
8287 _bfd_int64_high (value), _bfd_int64_low (value));
8288 #endif
8289 }
8290 else
8291 fprintf ((FILE *) stream, "%08lx",
8292 (unsigned long) (value & 0xffffffff));
8293 }
8294 #else
8295 fprintf_vma ((FILE *) stream, value);
8296 #endif
8297 }
8298
8299 enum elf_reloc_type_class
8300 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8301 {
8302 return reloc_class_normal;
8303 }
8304
8305 /* For RELA architectures, return the relocation value for a
8306 relocation against a local symbol. */
8307
8308 bfd_vma
8309 _bfd_elf_rela_local_sym (bfd *abfd,
8310 Elf_Internal_Sym *sym,
8311 asection **psec,
8312 Elf_Internal_Rela *rel)
8313 {
8314 asection *sec = *psec;
8315 bfd_vma relocation;
8316
8317 relocation = (sec->output_section->vma
8318 + sec->output_offset
8319 + sym->st_value);
8320 if ((sec->flags & SEC_MERGE)
8321 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8322 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8323 {
8324 rel->r_addend =
8325 _bfd_merged_section_offset (abfd, psec,
8326 elf_section_data (sec)->sec_info,
8327 sym->st_value + rel->r_addend);
8328 if (sec != *psec)
8329 {
8330 /* If we have changed the section, and our original section is
8331 marked with SEC_EXCLUDE, it means that the original
8332 SEC_MERGE section has been completely subsumed in some
8333 other SEC_MERGE section. In this case, we need to leave
8334 some info around for --emit-relocs. */
8335 if ((sec->flags & SEC_EXCLUDE) != 0)
8336 sec->kept_section = *psec;
8337 sec = *psec;
8338 }
8339 rel->r_addend -= relocation;
8340 rel->r_addend += sec->output_section->vma + sec->output_offset;
8341 }
8342 return relocation;
8343 }
8344
8345 bfd_vma
8346 _bfd_elf_rel_local_sym (bfd *abfd,
8347 Elf_Internal_Sym *sym,
8348 asection **psec,
8349 bfd_vma addend)
8350 {
8351 asection *sec = *psec;
8352
8353 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8354 return sym->st_value + addend;
8355
8356 return _bfd_merged_section_offset (abfd, psec,
8357 elf_section_data (sec)->sec_info,
8358 sym->st_value + addend);
8359 }
8360
8361 bfd_vma
8362 _bfd_elf_section_offset (bfd *abfd,
8363 struct bfd_link_info *info,
8364 asection *sec,
8365 bfd_vma offset)
8366 {
8367 switch (sec->sec_info_type)
8368 {
8369 case ELF_INFO_TYPE_STABS:
8370 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8371 offset);
8372 case ELF_INFO_TYPE_EH_FRAME:
8373 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8374 default:
8375 return offset;
8376 }
8377 }
8378 \f
8379 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8380 reconstruct an ELF file by reading the segments out of remote memory
8381 based on the ELF file header at EHDR_VMA and the ELF program headers it
8382 points to. If not null, *LOADBASEP is filled in with the difference
8383 between the VMAs from which the segments were read, and the VMAs the
8384 file headers (and hence BFD's idea of each section's VMA) put them at.
8385
8386 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8387 remote memory at target address VMA into the local buffer at MYADDR; it
8388 should return zero on success or an `errno' code on failure. TEMPL must
8389 be a BFD for an ELF target with the word size and byte order found in
8390 the remote memory. */
8391
8392 bfd *
8393 bfd_elf_bfd_from_remote_memory
8394 (bfd *templ,
8395 bfd_vma ehdr_vma,
8396 bfd_vma *loadbasep,
8397 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8398 {
8399 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8400 (templ, ehdr_vma, loadbasep, target_read_memory);
8401 }
8402 \f
8403 long
8404 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8405 long symcount ATTRIBUTE_UNUSED,
8406 asymbol **syms ATTRIBUTE_UNUSED,
8407 long dynsymcount,
8408 asymbol **dynsyms,
8409 asymbol **ret)
8410 {
8411 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8412 asection *relplt;
8413 asymbol *s;
8414 const char *relplt_name;
8415 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8416 arelent *p;
8417 long count, i, n;
8418 size_t size;
8419 Elf_Internal_Shdr *hdr;
8420 char *names;
8421 asection *plt;
8422
8423 *ret = NULL;
8424
8425 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8426 return 0;
8427
8428 if (dynsymcount <= 0)
8429 return 0;
8430
8431 if (!bed->plt_sym_val)
8432 return 0;
8433
8434 relplt_name = bed->relplt_name;
8435 if (relplt_name == NULL)
8436 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8437 relplt = bfd_get_section_by_name (abfd, relplt_name);
8438 if (relplt == NULL)
8439 return 0;
8440
8441 hdr = &elf_section_data (relplt)->this_hdr;
8442 if (hdr->sh_link != elf_dynsymtab (abfd)
8443 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8444 return 0;
8445
8446 plt = bfd_get_section_by_name (abfd, ".plt");
8447 if (plt == NULL)
8448 return 0;
8449
8450 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8451 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8452 return -1;
8453
8454 count = relplt->size / hdr->sh_entsize;
8455 size = count * sizeof (asymbol);
8456 p = relplt->relocation;
8457 for (i = 0; i < count; i++, p++)
8458 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8459
8460 s = *ret = bfd_malloc (size);
8461 if (s == NULL)
8462 return -1;
8463
8464 names = (char *) (s + count);
8465 p = relplt->relocation;
8466 n = 0;
8467 for (i = 0; i < count; i++, s++, p++)
8468 {
8469 size_t len;
8470 bfd_vma addr;
8471
8472 addr = bed->plt_sym_val (i, plt, p);
8473 if (addr == (bfd_vma) -1)
8474 continue;
8475
8476 *s = **p->sym_ptr_ptr;
8477 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8478 we are defining a symbol, ensure one of them is set. */
8479 if ((s->flags & BSF_LOCAL) == 0)
8480 s->flags |= BSF_GLOBAL;
8481 s->section = plt;
8482 s->value = addr - plt->vma;
8483 s->name = names;
8484 len = strlen ((*p->sym_ptr_ptr)->name);
8485 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8486 names += len;
8487 memcpy (names, "@plt", sizeof ("@plt"));
8488 names += sizeof ("@plt");
8489 ++n;
8490 }
8491
8492 return n;
8493 }
8494
8495 /* It is only used by x86-64 so far. */
8496 asection _bfd_elf_large_com_section
8497 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8498 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8499
8500 void
8501 _bfd_elf_set_osabi (bfd * abfd,
8502 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8503 {
8504 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8505
8506 i_ehdrp = elf_elfheader (abfd);
8507
8508 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8509 }
8510
8511
8512 /* Return TRUE for ELF symbol types that represent functions.
8513 This is the default version of this function, which is sufficient for
8514 most targets. It returns true if TYPE is STT_FUNC. */
8515
8516 bfd_boolean
8517 _bfd_elf_is_function_type (unsigned int type)
8518 {
8519 return (type == STT_FUNC);
8520 }