]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.c
ARM STM32L4XX erratum test failure
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto NULL
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 /* The Adjusted Place, as defined by AAELF. */
65 #define Pa(X) ((X) & 0xfffffffc)
66
67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
69 asection *sec,
70 bfd_byte *contents);
71
72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
74 in that slot. */
75
76 static reloc_howto_type elf32_arm_howto_table_1[] =
77 {
78 /* No relocation. */
79 HOWTO (R_ARM_NONE, /* type */
80 0, /* rightshift */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
82 0, /* bitsize */
83 FALSE, /* pc_relative */
84 0, /* bitpos */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
89 0, /* src_mask */
90 0, /* dst_mask */
91 FALSE), /* pcrel_offset */
92
93 HOWTO (R_ARM_PC24, /* type */
94 2, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 24, /* bitsize */
97 TRUE, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
106
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 32, /* bitsize */
112 FALSE, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
121
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
124 0, /* rightshift */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
126 32, /* bitsize */
127 TRUE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
136
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* rightshift */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
141 32, /* bitsize */
142 TRUE, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
151
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
154 0, /* rightshift */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
156 16, /* bitsize */
157 FALSE, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
166
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
169 0, /* rightshift */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
171 12, /* bitsize */
172 FALSE, /* pc_relative */
173 0, /* bitpos */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
181
182 HOWTO (R_ARM_THM_ABS5, /* type */
183 6, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 5, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* 8 bit absolute */
197 HOWTO (R_ARM_ABS8, /* type */
198 0, /* rightshift */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
200 8, /* bitsize */
201 FALSE, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210
211 HOWTO (R_ARM_SBREL32, /* type */
212 0, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 32, /* bitsize */
215 FALSE, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
224
225 HOWTO (R_ARM_THM_CALL, /* type */
226 1, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 24, /* bitsize */
229 TRUE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
238
239 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* rightshift */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
242 8, /* bitsize */
243 TRUE, /* pc_relative */
244 0, /* bitpos */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
252
253 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* rightshift */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 HOWTO (R_ARM_TLS_DESC, /* type */
268 0, /* rightshift */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
270 32, /* bitsize */
271 FALSE, /* pc_relative */
272 0, /* bitpos */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
280
281 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* rightshift */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
284 0, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
297 2, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 24, /* bitsize */
300 TRUE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
309
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* rightshift */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
314 24, /* bitsize */
315 TRUE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
324
325 /* Dynamic TLS relocations. */
326
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* Relocs used in ARM Linux */
370
371 HOWTO (R_ARM_COPY, /* type */
372 0, /* rightshift */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
374 32, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 HOWTO (R_ARM_GLOB_DAT, /* type */
386 0, /* rightshift */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
388 32, /* bitsize */
389 FALSE, /* pc_relative */
390 0, /* bitpos */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
398
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 0, /* rightshift */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
402 32, /* bitsize */
403 FALSE, /* pc_relative */
404 0, /* bitpos */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
412
413 HOWTO (R_ARM_RELATIVE, /* type */
414 0, /* rightshift */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
416 32, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 HOWTO (R_ARM_GOTOFF32, /* type */
428 0, /* rightshift */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
430 32, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 HOWTO (R_ARM_GOTPC, /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 HOWTO (R_ARM_GOT32, /* type */
456 0, /* rightshift */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
458 32, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 HOWTO (R_ARM_PLT32, /* type */
470 2, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 24, /* bitsize */
473 TRUE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
482
483 HOWTO (R_ARM_CALL, /* type */
484 2, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 24, /* bitsize */
487 TRUE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
496
497 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 24, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 HOWTO (R_ARM_THM_JUMP24, /* type */
512 1, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 24, /* bitsize */
515 TRUE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
524
525 HOWTO (R_ARM_BASE_ABS, /* type */
526 0, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 32, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 0, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 12, /* bitsize */
543 TRUE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
552
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 0, /* rightshift */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
556 12, /* bitsize */
557 TRUE, /* pc_relative */
558 8, /* bitpos */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
566
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 0, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 12, /* bitsize */
571 TRUE, /* pc_relative */
572 16, /* bitpos */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 12, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 8, /* bitsize */
599 FALSE, /* pc_relative */
600 12, /* bitpos */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
608
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 0, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 8, /* bitsize */
613 FALSE, /* pc_relative */
614 20, /* bitpos */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 HOWTO (R_ARM_TARGET1, /* type */
624 0, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 32, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 HOWTO (R_ARM_ROSEGREL32, /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 32, /* bitsize */
641 FALSE, /* pc_relative */
642 0, /* bitpos */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 HOWTO (R_ARM_V4BX, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 32, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 HOWTO (R_ARM_TARGET2, /* type */
666 0, /* rightshift */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
668 32, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
678
679 HOWTO (R_ARM_PREL31, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 31, /* bitsize */
683 TRUE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
692
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 0, /* rightshift */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 HOWTO (R_ARM_MOVT_ABS, /* type */
708 0, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 HOWTO (R_ARM_MOVT_PREL, /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 0, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 16, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 0, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
804
805 HOWTO (R_ARM_THM_JUMP19, /* type */
806 1, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 19, /* bitsize */
809 TRUE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
818
819 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 6, /* bitsize */
823 TRUE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
832
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 versa. */
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 0, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 13, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
850 HOWTO (R_ARM_THM_PC12, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 13, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 HOWTO (R_ARM_ABS32_NOI, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 FALSE, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
877
878 HOWTO (R_ARM_REL32_NOI, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 32, /* bitsize */
882 TRUE, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
891
892 /* Group relocations. */
893
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 0, /* rightshift */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
897 32, /* bitsize */
898 TRUE, /* pc_relative */
899 0, /* bitpos */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
907
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 0, /* rightshift */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
911 32, /* bitsize */
912 TRUE, /* pc_relative */
913 0, /* bitpos */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
921
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 0, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 32, /* bitsize */
926 TRUE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
935
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 0, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 32, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 32, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 0, /* rightshift */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
967 32, /* bitsize */
968 TRUE, /* pc_relative */
969 0, /* bitpos */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
977
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 32, /* bitsize */
982 TRUE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
991
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 0, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 32, /* bitsize */
996 TRUE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1005
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 32, /* bitsize */
1010 TRUE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1019
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 32, /* bitsize */
1024 TRUE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1033
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 0, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 32, /* bitsize */
1038 TRUE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1047
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 TRUE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1061
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 0, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 32, /* bitsize */
1066 TRUE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1075
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 32, /* bitsize */
1080 TRUE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1089
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 0, /* rightshift */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 32, /* bitsize */
1094 TRUE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1103
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 32, /* bitsize */
1108 TRUE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1117
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 0, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 32, /* bitsize */
1122 TRUE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1131
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 0, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 32, /* bitsize */
1136 TRUE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1145
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 32, /* bitsize */
1150 TRUE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1159
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 0, /* rightshift */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 32, /* bitsize */
1164 TRUE, /* pc_relative */
1165 0, /* bitpos */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1173
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 0, /* rightshift */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 32, /* bitsize */
1178 TRUE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1187
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 0, /* rightshift */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 32, /* bitsize */
1192 TRUE, /* pc_relative */
1193 0, /* bitpos */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1201
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 0, /* rightshift */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 32, /* bitsize */
1206 TRUE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1215
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 0, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 32, /* bitsize */
1220 TRUE, /* pc_relative */
1221 0, /* bitpos */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1229
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 0, /* rightshift */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 32, /* bitsize */
1234 TRUE, /* pc_relative */
1235 0, /* bitpos */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1243
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 32, /* bitsize */
1248 TRUE, /* pc_relative */
1249 0, /* bitpos */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1257
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 0, /* rightshift */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 32, /* bitsize */
1262 TRUE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1271
1272 /* End of group relocations. */
1273
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 0, /* rightshift */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 0, /* rightshift */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 16, /* bitsize */
1320 FALSE, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1329
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 0, /* rightshift */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 24, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 0, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 24, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 32, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 32, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1443 0, /* rightshift */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1445 32, /* bitsize */
1446 TRUE, /* pc_relative */
1447 0, /* bitpos */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1455
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1457 0, /* rightshift */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1459 12, /* bitsize */
1460 FALSE, /* pc_relative */
1461 0, /* bitpos */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1469
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1471 0, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 12, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1485
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1488 0, /* rightshift */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 0, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1497 0, /* src_mask */
1498 0, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 0, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1512 0, /* src_mask */
1513 0, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1517 1, /* rightshift */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1519 11, /* bitsize */
1520 TRUE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1529
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1531 1, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 8, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 32, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 32, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 32, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1602 0, /* rightshift */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1604 32, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1616 0, /* rightshift */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1618 12, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1630 0, /* rightshift */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1632 12, /* bitsize */
1633 FALSE, /* pc_relative */
1634 0, /* bitpos */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1642
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1644 0, /* rightshift */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1646 12, /* bitsize */
1647 FALSE, /* pc_relative */
1648 0, /* bitpos */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1656
1657 /* 112-127 private relocations. */
1658 EMPTY_HOWTO (112),
1659 EMPTY_HOWTO (113),
1660 EMPTY_HOWTO (114),
1661 EMPTY_HOWTO (115),
1662 EMPTY_HOWTO (116),
1663 EMPTY_HOWTO (117),
1664 EMPTY_HOWTO (118),
1665 EMPTY_HOWTO (119),
1666 EMPTY_HOWTO (120),
1667 EMPTY_HOWTO (121),
1668 EMPTY_HOWTO (122),
1669 EMPTY_HOWTO (123),
1670 EMPTY_HOWTO (124),
1671 EMPTY_HOWTO (125),
1672 EMPTY_HOWTO (126),
1673 EMPTY_HOWTO (127),
1674
1675 /* R_ARM_ME_TOO, obsolete. */
1676 EMPTY_HOWTO (128),
1677
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1679 0, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 0, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691 EMPTY_HOWTO (130),
1692 EMPTY_HOWTO (131),
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1696 16, /* bitsize. */
1697 FALSE, /* pc_relative. */
1698 0, /* bitpos. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1709 16, /* bitsize. */
1710 FALSE, /* pc_relative. */
1711 0, /* bitpos. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1722 16, /* bitsize. */
1723 FALSE, /* pc_relative. */
1724 0, /* bitpos. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1735 16, /* bitsize. */
1736 FALSE, /* pc_relative. */
1737 0, /* bitpos. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1749 16, /* bitsize. */
1750 TRUE, /* pc_relative. */
1751 0, /* bitpos. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1762 12, /* bitsize. */
1763 TRUE, /* pc_relative. */
1764 0, /* bitpos. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1775 18, /* bitsize. */
1776 TRUE, /* pc_relative. */
1777 0, /* bitpos. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1785 };
1786
1787 /* 160 onwards: */
1788 static reloc_howto_type elf32_arm_howto_table_2[8] =
1789 {
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 32, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 64, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1856 0, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 32, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 32, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1878 0, /* src_mask */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1882 0, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 32, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1891 0, /* src_mask */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894 };
1895
1896 /* 249-255 extended, currently unused, relocations: */
1897 static reloc_howto_type elf32_arm_howto_table_3[4] =
1898 {
1899 HOWTO (R_ARM_RREL32, /* type */
1900 0, /* rightshift */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1902 0, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1909 0, /* src_mask */
1910 0, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 HOWTO (R_ARM_RABS32, /* type */
1914 0, /* rightshift */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1916 0, /* bitsize */
1917 FALSE, /* pc_relative */
1918 0, /* bitpos */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1923 0, /* src_mask */
1924 0, /* dst_mask */
1925 FALSE), /* pcrel_offset */
1926
1927 HOWTO (R_ARM_RPC24, /* type */
1928 0, /* rightshift */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1930 0, /* bitsize */
1931 FALSE, /* pc_relative */
1932 0, /* bitpos */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1937 0, /* src_mask */
1938 0, /* dst_mask */
1939 FALSE), /* pcrel_offset */
1940
1941 HOWTO (R_ARM_RBASE, /* type */
1942 0, /* rightshift */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1944 0, /* bitsize */
1945 FALSE, /* pc_relative */
1946 0, /* bitpos */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1951 0, /* src_mask */
1952 0, /* dst_mask */
1953 FALSE) /* pcrel_offset */
1954 };
1955
1956 static reloc_howto_type *
1957 elf32_arm_howto_from_type (unsigned int r_type)
1958 {
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1961
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1965
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1969
1970 return NULL;
1971 }
1972
1973 static bfd_boolean
1974 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1976 {
1977 unsigned int r_type;
1978
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1981 {
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1984 abfd, r_type);
1985 bfd_set_error (bfd_error_bad_value);
1986 return FALSE;
1987 }
1988 return TRUE;
1989 }
1990
1991 struct elf32_arm_reloc_map
1992 {
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1995 };
1996
1997 /* All entries in this list must also be present in elf32_arm_howto_table. */
1998 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1999 {
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2100 };
2101
2102 static reloc_howto_type *
2103 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2105 {
2106 unsigned int i;
2107
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2111
2112 return NULL;
2113 }
2114
2115 static reloc_howto_type *
2116 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2117 const char *r_name)
2118 {
2119 unsigned int i;
2120
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2125
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2130
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2135
2136 return NULL;
2137 }
2138
2139 /* Support for core dump NOTE sections. */
2140
2141 static bfd_boolean
2142 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2143 {
2144 int offset;
2145 size_t size;
2146
2147 switch (note->descsz)
2148 {
2149 default:
2150 return FALSE;
2151
2152 case 148: /* Linux/ARM 32-bit. */
2153 /* pr_cursig */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2155
2156 /* pr_pid */
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2158
2159 /* pr_reg */
2160 offset = 72;
2161 size = 72;
2162
2163 break;
2164 }
2165
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2169 }
2170
2171 static bfd_boolean
2172 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2173 {
2174 switch (note->descsz)
2175 {
2176 default:
2177 return FALSE;
2178
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2186 }
2187
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2191 {
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2194
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 static char *
2203 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2204 int note_type, ...)
2205 {
2206 switch (note_type)
2207 {
2208 default:
2209 return NULL;
2210
2211 case NT_PRPSINFO:
2212 {
2213 char data[124] ATTRIBUTE_NONSTRING;
2214 va_list ap;
2215
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2220 DIAGNOSTIC_PUSH;
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2224 */
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2226 #endif
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2229 DIAGNOSTIC_POP;
2230 #endif
2231 va_end (ap);
2232
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2235 }
2236
2237 case NT_PRSTATUS:
2238 {
2239 char data[148];
2240 va_list ap;
2241 long pid;
2242 int cursig;
2243 const void *greg;
2244
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2253 va_end (ap);
2254
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2257 }
2258 }
2259 }
2260
2261 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2262 #define TARGET_LITTLE_NAME "elf32-littlearm"
2263 #define TARGET_BIG_SYM arm_elf32_be_vec
2264 #define TARGET_BIG_NAME "elf32-bigarm"
2265
2266 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2269
2270 typedef unsigned long int insn32;
2271 typedef unsigned short int insn16;
2272
2273 /* In lieu of proper flags, assume all EABIv4 or later objects are
2274 interworkable. */
2275 #define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2279
2280 /* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2286
2287 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2289
2290 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2292
2293 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2295
2296 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2298
2299 #define STUB_ENTRY_NAME "__%s_veneer"
2300
2301 #define CMSE_PREFIX "__acle_se_"
2302
2303 /* The name of the dynamic interpreter. This is put in the .interp
2304 section. */
2305 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2306
2307 /* FDPIC default stack size. */
2308 #define DEFAULT_STACK_SIZE 0x8000
2309
2310 static const unsigned long tls_trampoline [] =
2311 {
2312 0xe08e0000, /* add r0, lr, r0 */
2313 0xe5901004, /* ldr r1, [r0,#4] */
2314 0xe12fff11, /* bx r1 */
2315 };
2316
2317 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2318 {
2319 0xe52d2004, /* push {r2} */
2320 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2321 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2322 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2323 0xe081100f, /* 2: add r1, pc */
2324 0xe12fff12, /* bx r2 */
2325 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2326 + dl_tlsdesc_lazy_resolver(GOT) */
2327 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2328 };
2329
2330 /* ARM FDPIC PLT entry. */
2331 /* The last 5 words contain PLT lazy fragment code and data. */
2332 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2333 {
2334 0xe59fc008, /* ldr r12, .L1 */
2335 0xe08cc009, /* add r12, r12, r9 */
2336 0xe59c9004, /* ldr r9, [r12, #4] */
2337 0xe59cf000, /* ldr pc, [r12] */
2338 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2339 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2340 0xe51fc00c, /* ldr r12, [pc, #-12] */
2341 0xe92d1000, /* push {r12} */
2342 0xe599c004, /* ldr r12, [r9, #4] */
2343 0xe599f000, /* ldr pc, [r9] */
2344 };
2345
2346 /* Thumb FDPIC PLT entry. */
2347 /* The last 5 words contain PLT lazy fragment code and data. */
2348 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2349 {
2350 0xc00cf8df, /* ldr.w r12, .L1 */
2351 0x0c09eb0c, /* add.w r12, r12, r9 */
2352 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2353 0xf000f8dc, /* ldr.w pc, [r12] */
2354 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2355 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2356 0xc008f85f, /* ldr.w r12, .L2 */
2357 0xcd04f84d, /* push {r12} */
2358 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2359 0xf000f8d9, /* ldr.w pc, [r9] */
2360 };
2361
2362 #ifdef FOUR_WORD_PLT
2363
2364 /* The first entry in a procedure linkage table looks like
2365 this. It is set up so that any shared library function that is
2366 called before the relocation has been set up calls the dynamic
2367 linker first. */
2368 static const bfd_vma elf32_arm_plt0_entry [] =
2369 {
2370 0xe52de004, /* str lr, [sp, #-4]! */
2371 0xe59fe010, /* ldr lr, [pc, #16] */
2372 0xe08fe00e, /* add lr, pc, lr */
2373 0xe5bef008, /* ldr pc, [lr, #8]! */
2374 };
2375
2376 /* Subsequent entries in a procedure linkage table look like
2377 this. */
2378 static const bfd_vma elf32_arm_plt_entry [] =
2379 {
2380 0xe28fc600, /* add ip, pc, #NN */
2381 0xe28cca00, /* add ip, ip, #NN */
2382 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2383 0x00000000, /* unused */
2384 };
2385
2386 #else /* not FOUR_WORD_PLT */
2387
2388 /* The first entry in a procedure linkage table looks like
2389 this. It is set up so that any shared library function that is
2390 called before the relocation has been set up calls the dynamic
2391 linker first. */
2392 static const bfd_vma elf32_arm_plt0_entry [] =
2393 {
2394 0xe52de004, /* str lr, [sp, #-4]! */
2395 0xe59fe004, /* ldr lr, [pc, #4] */
2396 0xe08fe00e, /* add lr, pc, lr */
2397 0xe5bef008, /* ldr pc, [lr, #8]! */
2398 0x00000000, /* &GOT[0] - . */
2399 };
2400
2401 /* By default subsequent entries in a procedure linkage table look like
2402 this. Offsets that don't fit into 28 bits will cause link error. */
2403 static const bfd_vma elf32_arm_plt_entry_short [] =
2404 {
2405 0xe28fc600, /* add ip, pc, #0xNN00000 */
2406 0xe28cca00, /* add ip, ip, #0xNN000 */
2407 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2408 };
2409
2410 /* When explicitly asked, we'll use this "long" entry format
2411 which can cope with arbitrary displacements. */
2412 static const bfd_vma elf32_arm_plt_entry_long [] =
2413 {
2414 0xe28fc200, /* add ip, pc, #0xN0000000 */
2415 0xe28cc600, /* add ip, ip, #0xNN00000 */
2416 0xe28cca00, /* add ip, ip, #0xNN000 */
2417 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2418 };
2419
2420 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2421
2422 #endif /* not FOUR_WORD_PLT */
2423
2424 /* The first entry in a procedure linkage table looks like this.
2425 It is set up so that any shared library function that is called before the
2426 relocation has been set up calls the dynamic linker first. */
2427 static const bfd_vma elf32_thumb2_plt0_entry [] =
2428 {
2429 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2430 an instruction maybe encoded to one or two array elements. */
2431 0xf8dfb500, /* push {lr} */
2432 0x44fee008, /* ldr.w lr, [pc, #8] */
2433 /* add lr, pc */
2434 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2435 0x00000000, /* &GOT[0] - . */
2436 };
2437
2438 /* Subsequent entries in a procedure linkage table for thumb only target
2439 look like this. */
2440 static const bfd_vma elf32_thumb2_plt_entry [] =
2441 {
2442 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2443 an instruction maybe encoded to one or two array elements. */
2444 0x0c00f240, /* movw ip, #0xNNNN */
2445 0x0c00f2c0, /* movt ip, #0xNNNN */
2446 0xf8dc44fc, /* add ip, pc */
2447 0xbf00f000 /* ldr.w pc, [ip] */
2448 /* nop */
2449 };
2450
2451 /* The format of the first entry in the procedure linkage table
2452 for a VxWorks executable. */
2453 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2454 {
2455 0xe52dc008, /* str ip,[sp,#-8]! */
2456 0xe59fc000, /* ldr ip,[pc] */
2457 0xe59cf008, /* ldr pc,[ip,#8] */
2458 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2459 };
2460
2461 /* The format of subsequent entries in a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2463 {
2464 0xe59fc000, /* ldr ip,[pc] */
2465 0xe59cf000, /* ldr pc,[ip] */
2466 0x00000000, /* .long @got */
2467 0xe59fc000, /* ldr ip,[pc] */
2468 0xea000000, /* b _PLT */
2469 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2470 };
2471
2472 /* The format of entries in a VxWorks shared library. */
2473 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2474 {
2475 0xe59fc000, /* ldr ip,[pc] */
2476 0xe79cf009, /* ldr pc,[ip,r9] */
2477 0x00000000, /* .long @got */
2478 0xe59fc000, /* ldr ip,[pc] */
2479 0xe599f008, /* ldr pc,[r9,#8] */
2480 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2481 };
2482
2483 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2484 #define PLT_THUMB_STUB_SIZE 4
2485 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2486 {
2487 0x4778, /* bx pc */
2488 0x46c0 /* nop */
2489 };
2490
2491 /* The entries in a PLT when using a DLL-based target with multiple
2492 address spaces. */
2493 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2494 {
2495 0xe51ff004, /* ldr pc, [pc, #-4] */
2496 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2497 };
2498
2499 /* The first entry in a procedure linkage table looks like
2500 this. It is set up so that any shared library function that is
2501 called before the relocation has been set up calls the dynamic
2502 linker first. */
2503 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2504 {
2505 /* First bundle: */
2506 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2507 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2508 0xe08cc00f, /* add ip, ip, pc */
2509 0xe52dc008, /* str ip, [sp, #-8]! */
2510 /* Second bundle: */
2511 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2512 0xe59cc000, /* ldr ip, [ip] */
2513 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2514 0xe12fff1c, /* bx ip */
2515 /* Third bundle: */
2516 0xe320f000, /* nop */
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 /* .Lplt_tail: */
2520 0xe50dc004, /* str ip, [sp, #-4] */
2521 /* Fourth bundle: */
2522 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2523 0xe59cc000, /* ldr ip, [ip] */
2524 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2525 0xe12fff1c, /* bx ip */
2526 };
2527 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2528
2529 /* Subsequent entries in a procedure linkage table look like this. */
2530 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2531 {
2532 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2533 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2534 0xe08cc00f, /* add ip, ip, pc */
2535 0xea000000, /* b .Lplt_tail */
2536 };
2537
2538 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2539 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2540 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2541 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2542 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2543 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2544 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2545 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2546
2547 enum stub_insn_type
2548 {
2549 THUMB16_TYPE = 1,
2550 THUMB32_TYPE,
2551 ARM_TYPE,
2552 DATA_TYPE
2553 };
2554
2555 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2556 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2557 is inserted in arm_build_one_stub(). */
2558 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2559 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2560 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2561 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2562 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2563 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2564 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2565 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2566
2567 typedef struct
2568 {
2569 bfd_vma data;
2570 enum stub_insn_type type;
2571 unsigned int r_type;
2572 int reloc_addend;
2573 } insn_sequence;
2574
2575 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2576 to reach the stub if necessary. */
2577 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2578 {
2579 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2580 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2581 };
2582
2583 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2584 available. */
2585 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2586 {
2587 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2588 ARM_INSN (0xe12fff1c), /* bx ip */
2589 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2590 };
2591
2592 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2593 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2594 {
2595 THUMB16_INSN (0xb401), /* push {r0} */
2596 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2597 THUMB16_INSN (0x4684), /* mov ip, r0 */
2598 THUMB16_INSN (0xbc01), /* pop {r0} */
2599 THUMB16_INSN (0x4760), /* bx ip */
2600 THUMB16_INSN (0xbf00), /* nop */
2601 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2602 };
2603
2604 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2605 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2606 {
2607 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2608 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2609 };
2610
2611 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2612 M-profile architectures. */
2613 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2614 {
2615 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2616 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2617 THUMB16_INSN (0x4760), /* bx ip */
2618 };
2619
2620 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2621 allowed. */
2622 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2623 {
2624 THUMB16_INSN (0x4778), /* bx pc */
2625 THUMB16_INSN (0x46c0), /* nop */
2626 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2627 ARM_INSN (0xe12fff1c), /* bx ip */
2628 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2629 };
2630
2631 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2632 available. */
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2634 {
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0x46c0), /* nop */
2637 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2638 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2639 };
2640
2641 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2642 one, when the destination is close enough. */
2643 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2644 {
2645 THUMB16_INSN (0x4778), /* bx pc */
2646 THUMB16_INSN (0x46c0), /* nop */
2647 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2648 };
2649
2650 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2651 blx to reach the stub if necessary. */
2652 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2653 {
2654 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2655 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2656 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2657 };
2658
2659 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2660 blx to reach the stub if necessary. We can not add into pc;
2661 it is not guaranteed to mode switch (different in ARMv6 and
2662 ARMv7). */
2663 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2664 {
2665 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2666 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2667 ARM_INSN (0xe12fff1c), /* bx ip */
2668 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2669 };
2670
2671 /* V4T ARM -> ARM long branch stub, PIC. */
2672 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2673 {
2674 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2675 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2676 ARM_INSN (0xe12fff1c), /* bx ip */
2677 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2678 };
2679
2680 /* V4T Thumb -> ARM long branch stub, PIC. */
2681 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2682 {
2683 THUMB16_INSN (0x4778), /* bx pc */
2684 THUMB16_INSN (0x46c0), /* nop */
2685 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2686 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2687 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2688 };
2689
2690 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2691 architectures. */
2692 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2693 {
2694 THUMB16_INSN (0xb401), /* push {r0} */
2695 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2696 THUMB16_INSN (0x46fc), /* mov ip, pc */
2697 THUMB16_INSN (0x4484), /* add ip, r0 */
2698 THUMB16_INSN (0xbc01), /* pop {r0} */
2699 THUMB16_INSN (0x4760), /* bx ip */
2700 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2701 };
2702
2703 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2704 allowed. */
2705 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2706 {
2707 THUMB16_INSN (0x4778), /* bx pc */
2708 THUMB16_INSN (0x46c0), /* nop */
2709 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2710 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2711 ARM_INSN (0xe12fff1c), /* bx ip */
2712 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2713 };
2714
2715 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2716 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2717 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2718 {
2719 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2720 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2721 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2722 };
2723
2724 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2725 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2726 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2727 {
2728 THUMB16_INSN (0x4778), /* bx pc */
2729 THUMB16_INSN (0x46c0), /* nop */
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2731 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2733 };
2734
2735 /* NaCl ARM -> ARM long branch stub. */
2736 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2737 {
2738 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2739 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2740 ARM_INSN (0xe12fff1c), /* bx ip */
2741 ARM_INSN (0xe320f000), /* nop */
2742 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2743 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2744 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2745 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2746 };
2747
2748 /* NaCl ARM -> ARM long branch stub, PIC. */
2749 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2750 {
2751 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2752 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2753 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2754 ARM_INSN (0xe12fff1c), /* bx ip */
2755 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2756 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2757 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2758 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2759 };
2760
2761 /* Stub used for transition to secure state (aka SG veneer). */
2762 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2763 {
2764 THUMB32_INSN (0xe97fe97f), /* sg. */
2765 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2766 };
2767
2768
2769 /* Cortex-A8 erratum-workaround stubs. */
2770
2771 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2772 can't use a conditional branch to reach this stub). */
2773
2774 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2775 {
2776 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2777 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2778 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2779 };
2780
2781 /* Stub used for b.w and bl.w instructions. */
2782
2783 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2784 {
2785 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2786 };
2787
2788 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2789 {
2790 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2791 };
2792
2793 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2794 instruction (which switches to ARM mode) to point to this stub. Jump to the
2795 real destination using an ARM-mode branch. */
2796
2797 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2798 {
2799 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2800 };
2801
2802 /* For each section group there can be a specially created linker section
2803 to hold the stubs for that group. The name of the stub section is based
2804 upon the name of another section within that group with the suffix below
2805 applied.
2806
2807 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2808 create what appeared to be a linker stub section when it actually
2809 contained user code/data. For example, consider this fragment:
2810
2811 const char * stubborn_problems[] = { "np" };
2812
2813 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2814 section called:
2815
2816 .data.rel.local.stubborn_problems
2817
2818 This then causes problems in arm32_arm_build_stubs() as it triggers:
2819
2820 // Ignore non-stub sections.
2821 if (!strstr (stub_sec->name, STUB_SUFFIX))
2822 continue;
2823
2824 And so the section would be ignored instead of being processed. Hence
2825 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2826 C identifier. */
2827 #define STUB_SUFFIX ".__stub"
2828
2829 /* One entry per long/short branch stub defined above. */
2830 #define DEF_STUBS \
2831 DEF_STUB(long_branch_any_any) \
2832 DEF_STUB(long_branch_v4t_arm_thumb) \
2833 DEF_STUB(long_branch_thumb_only) \
2834 DEF_STUB(long_branch_v4t_thumb_thumb) \
2835 DEF_STUB(long_branch_v4t_thumb_arm) \
2836 DEF_STUB(short_branch_v4t_thumb_arm) \
2837 DEF_STUB(long_branch_any_arm_pic) \
2838 DEF_STUB(long_branch_any_thumb_pic) \
2839 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2840 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2841 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2842 DEF_STUB(long_branch_thumb_only_pic) \
2843 DEF_STUB(long_branch_any_tls_pic) \
2844 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2845 DEF_STUB(long_branch_arm_nacl) \
2846 DEF_STUB(long_branch_arm_nacl_pic) \
2847 DEF_STUB(cmse_branch_thumb_only) \
2848 DEF_STUB(a8_veneer_b_cond) \
2849 DEF_STUB(a8_veneer_b) \
2850 DEF_STUB(a8_veneer_bl) \
2851 DEF_STUB(a8_veneer_blx) \
2852 DEF_STUB(long_branch_thumb2_only) \
2853 DEF_STUB(long_branch_thumb2_only_pure)
2854
2855 #define DEF_STUB(x) arm_stub_##x,
2856 enum elf32_arm_stub_type
2857 {
2858 arm_stub_none,
2859 DEF_STUBS
2860 max_stub_type
2861 };
2862 #undef DEF_STUB
2863
2864 /* Note the first a8_veneer type. */
2865 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2866
2867 typedef struct
2868 {
2869 const insn_sequence* template_sequence;
2870 int template_size;
2871 } stub_def;
2872
2873 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2874 static const stub_def stub_definitions[] =
2875 {
2876 {NULL, 0},
2877 DEF_STUBS
2878 };
2879
2880 struct elf32_arm_stub_hash_entry
2881 {
2882 /* Base hash table entry structure. */
2883 struct bfd_hash_entry root;
2884
2885 /* The stub section. */
2886 asection *stub_sec;
2887
2888 /* Offset within stub_sec of the beginning of this stub. */
2889 bfd_vma stub_offset;
2890
2891 /* Given the symbol's value and its section we can determine its final
2892 value when building the stubs (so the stub knows where to jump). */
2893 bfd_vma target_value;
2894 asection *target_section;
2895
2896 /* Same as above but for the source of the branch to the stub. Used for
2897 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2898 such, source section does not need to be recorded since Cortex-A8 erratum
2899 workaround stubs are only generated when both source and target are in the
2900 same section. */
2901 bfd_vma source_value;
2902
2903 /* The instruction which caused this stub to be generated (only valid for
2904 Cortex-A8 erratum workaround stubs at present). */
2905 unsigned long orig_insn;
2906
2907 /* The stub type. */
2908 enum elf32_arm_stub_type stub_type;
2909 /* Its encoding size in bytes. */
2910 int stub_size;
2911 /* Its template. */
2912 const insn_sequence *stub_template;
2913 /* The size of the template (number of entries). */
2914 int stub_template_size;
2915
2916 /* The symbol table entry, if any, that this was derived from. */
2917 struct elf32_arm_link_hash_entry *h;
2918
2919 /* Type of branch. */
2920 enum arm_st_branch_type branch_type;
2921
2922 /* Where this stub is being called from, or, in the case of combined
2923 stub sections, the first input section in the group. */
2924 asection *id_sec;
2925
2926 /* The name for the local symbol at the start of this stub. The
2927 stub name in the hash table has to be unique; this does not, so
2928 it can be friendlier. */
2929 char *output_name;
2930 };
2931
2932 /* Used to build a map of a section. This is required for mixed-endian
2933 code/data. */
2934
2935 typedef struct elf32_elf_section_map
2936 {
2937 bfd_vma vma;
2938 char type;
2939 }
2940 elf32_arm_section_map;
2941
2942 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2943
2944 typedef enum
2945 {
2946 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2947 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2948 VFP11_ERRATUM_ARM_VENEER,
2949 VFP11_ERRATUM_THUMB_VENEER
2950 }
2951 elf32_vfp11_erratum_type;
2952
2953 typedef struct elf32_vfp11_erratum_list
2954 {
2955 struct elf32_vfp11_erratum_list *next;
2956 bfd_vma vma;
2957 union
2958 {
2959 struct
2960 {
2961 struct elf32_vfp11_erratum_list *veneer;
2962 unsigned int vfp_insn;
2963 } b;
2964 struct
2965 {
2966 struct elf32_vfp11_erratum_list *branch;
2967 unsigned int id;
2968 } v;
2969 } u;
2970 elf32_vfp11_erratum_type type;
2971 }
2972 elf32_vfp11_erratum_list;
2973
2974 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2975 veneer. */
2976 typedef enum
2977 {
2978 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2979 STM32L4XX_ERRATUM_VENEER
2980 }
2981 elf32_stm32l4xx_erratum_type;
2982
2983 typedef struct elf32_stm32l4xx_erratum_list
2984 {
2985 struct elf32_stm32l4xx_erratum_list *next;
2986 bfd_vma vma;
2987 union
2988 {
2989 struct
2990 {
2991 struct elf32_stm32l4xx_erratum_list *veneer;
2992 unsigned int insn;
2993 } b;
2994 struct
2995 {
2996 struct elf32_stm32l4xx_erratum_list *branch;
2997 unsigned int id;
2998 } v;
2999 } u;
3000 elf32_stm32l4xx_erratum_type type;
3001 }
3002 elf32_stm32l4xx_erratum_list;
3003
3004 typedef enum
3005 {
3006 DELETE_EXIDX_ENTRY,
3007 INSERT_EXIDX_CANTUNWIND_AT_END
3008 }
3009 arm_unwind_edit_type;
3010
3011 /* A (sorted) list of edits to apply to an unwind table. */
3012 typedef struct arm_unwind_table_edit
3013 {
3014 arm_unwind_edit_type type;
3015 /* Note: we sometimes want to insert an unwind entry corresponding to a
3016 section different from the one we're currently writing out, so record the
3017 (text) section this edit relates to here. */
3018 asection *linked_section;
3019 unsigned int index;
3020 struct arm_unwind_table_edit *next;
3021 }
3022 arm_unwind_table_edit;
3023
3024 typedef struct _arm_elf_section_data
3025 {
3026 /* Information about mapping symbols. */
3027 struct bfd_elf_section_data elf;
3028 unsigned int mapcount;
3029 unsigned int mapsize;
3030 elf32_arm_section_map *map;
3031 /* Information about CPU errata. */
3032 unsigned int erratumcount;
3033 elf32_vfp11_erratum_list *erratumlist;
3034 unsigned int stm32l4xx_erratumcount;
3035 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3036 unsigned int additional_reloc_count;
3037 /* Information about unwind tables. */
3038 union
3039 {
3040 /* Unwind info attached to a text section. */
3041 struct
3042 {
3043 asection *arm_exidx_sec;
3044 } text;
3045
3046 /* Unwind info attached to an .ARM.exidx section. */
3047 struct
3048 {
3049 arm_unwind_table_edit *unwind_edit_list;
3050 arm_unwind_table_edit *unwind_edit_tail;
3051 } exidx;
3052 } u;
3053 }
3054 _arm_elf_section_data;
3055
3056 #define elf32_arm_section_data(sec) \
3057 ((_arm_elf_section_data *) elf_section_data (sec))
3058
3059 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3060 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3061 so may be created multiple times: we use an array of these entries whilst
3062 relaxing which we can refresh easily, then create stubs for each potentially
3063 erratum-triggering instruction once we've settled on a solution. */
3064
3065 struct a8_erratum_fix
3066 {
3067 bfd *input_bfd;
3068 asection *section;
3069 bfd_vma offset;
3070 bfd_vma target_offset;
3071 unsigned long orig_insn;
3072 char *stub_name;
3073 enum elf32_arm_stub_type stub_type;
3074 enum arm_st_branch_type branch_type;
3075 };
3076
3077 /* A table of relocs applied to branches which might trigger Cortex-A8
3078 erratum. */
3079
3080 struct a8_erratum_reloc
3081 {
3082 bfd_vma from;
3083 bfd_vma destination;
3084 struct elf32_arm_link_hash_entry *hash;
3085 const char *sym_name;
3086 unsigned int r_type;
3087 enum arm_st_branch_type branch_type;
3088 bfd_boolean non_a8_stub;
3089 };
3090
3091 /* The size of the thread control block. */
3092 #define TCB_SIZE 8
3093
3094 /* ARM-specific information about a PLT entry, over and above the usual
3095 gotplt_union. */
3096 struct arm_plt_info
3097 {
3098 /* We reference count Thumb references to a PLT entry separately,
3099 so that we can emit the Thumb trampoline only if needed. */
3100 bfd_signed_vma thumb_refcount;
3101
3102 /* Some references from Thumb code may be eliminated by BL->BLX
3103 conversion, so record them separately. */
3104 bfd_signed_vma maybe_thumb_refcount;
3105
3106 /* How many of the recorded PLT accesses were from non-call relocations.
3107 This information is useful when deciding whether anything takes the
3108 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3109 non-call references to the function should resolve directly to the
3110 real runtime target. */
3111 unsigned int noncall_refcount;
3112
3113 /* Since PLT entries have variable size if the Thumb prologue is
3114 used, we need to record the index into .got.plt instead of
3115 recomputing it from the PLT offset. */
3116 bfd_signed_vma got_offset;
3117 };
3118
3119 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3120 struct arm_local_iplt_info
3121 {
3122 /* The information that is usually found in the generic ELF part of
3123 the hash table entry. */
3124 union gotplt_union root;
3125
3126 /* The information that is usually found in the ARM-specific part of
3127 the hash table entry. */
3128 struct arm_plt_info arm;
3129
3130 /* A list of all potential dynamic relocations against this symbol. */
3131 struct elf_dyn_relocs *dyn_relocs;
3132 };
3133
3134 /* Structure to handle FDPIC support for local functions. */
3135 struct fdpic_local {
3136 unsigned int funcdesc_cnt;
3137 unsigned int gotofffuncdesc_cnt;
3138 int funcdesc_offset;
3139 };
3140
3141 struct elf_arm_obj_tdata
3142 {
3143 struct elf_obj_tdata root;
3144
3145 /* tls_type for each local got entry. */
3146 char *local_got_tls_type;
3147
3148 /* GOTPLT entries for TLS descriptors. */
3149 bfd_vma *local_tlsdesc_gotent;
3150
3151 /* Information for local symbols that need entries in .iplt. */
3152 struct arm_local_iplt_info **local_iplt;
3153
3154 /* Zero to warn when linking objects with incompatible enum sizes. */
3155 int no_enum_size_warning;
3156
3157 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3158 int no_wchar_size_warning;
3159
3160 /* Maintains FDPIC counters and funcdesc info. */
3161 struct fdpic_local *local_fdpic_cnts;
3162 };
3163
3164 #define elf_arm_tdata(bfd) \
3165 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3166
3167 #define elf32_arm_local_got_tls_type(bfd) \
3168 (elf_arm_tdata (bfd)->local_got_tls_type)
3169
3170 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3171 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3172
3173 #define elf32_arm_local_iplt(bfd) \
3174 (elf_arm_tdata (bfd)->local_iplt)
3175
3176 #define elf32_arm_local_fdpic_cnts(bfd) \
3177 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3178
3179 #define is_arm_elf(bfd) \
3180 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3181 && elf_tdata (bfd) != NULL \
3182 && elf_object_id (bfd) == ARM_ELF_DATA)
3183
3184 static bfd_boolean
3185 elf32_arm_mkobject (bfd *abfd)
3186 {
3187 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3188 ARM_ELF_DATA);
3189 }
3190
3191 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3192
3193 /* Structure to handle FDPIC support for extern functions. */
3194 struct fdpic_global {
3195 unsigned int gotofffuncdesc_cnt;
3196 unsigned int gotfuncdesc_cnt;
3197 unsigned int funcdesc_cnt;
3198 int funcdesc_offset;
3199 int gotfuncdesc_offset;
3200 };
3201
3202 /* Arm ELF linker hash entry. */
3203 struct elf32_arm_link_hash_entry
3204 {
3205 struct elf_link_hash_entry root;
3206
3207 /* Track dynamic relocs copied for this symbol. */
3208 struct elf_dyn_relocs *dyn_relocs;
3209
3210 /* ARM-specific PLT information. */
3211 struct arm_plt_info plt;
3212
3213 #define GOT_UNKNOWN 0
3214 #define GOT_NORMAL 1
3215 #define GOT_TLS_GD 2
3216 #define GOT_TLS_IE 4
3217 #define GOT_TLS_GDESC 8
3218 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3219 unsigned int tls_type : 8;
3220
3221 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3222 unsigned int is_iplt : 1;
3223
3224 unsigned int unused : 23;
3225
3226 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3227 starting at the end of the jump table. */
3228 bfd_vma tlsdesc_got;
3229
3230 /* The symbol marking the real symbol location for exported thumb
3231 symbols with Arm stubs. */
3232 struct elf_link_hash_entry *export_glue;
3233
3234 /* A pointer to the most recently used stub hash entry against this
3235 symbol. */
3236 struct elf32_arm_stub_hash_entry *stub_cache;
3237
3238 /* Counter for FDPIC relocations against this symbol. */
3239 struct fdpic_global fdpic_cnts;
3240 };
3241
3242 /* Traverse an arm ELF linker hash table. */
3243 #define elf32_arm_link_hash_traverse(table, func, info) \
3244 (elf_link_hash_traverse \
3245 (&(table)->root, \
3246 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3247 (info)))
3248
3249 /* Get the ARM elf linker hash table from a link_info structure. */
3250 #define elf32_arm_hash_table(info) \
3251 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3252 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3253
3254 #define arm_stub_hash_lookup(table, string, create, copy) \
3255 ((struct elf32_arm_stub_hash_entry *) \
3256 bfd_hash_lookup ((table), (string), (create), (copy)))
3257
3258 /* Array to keep track of which stub sections have been created, and
3259 information on stub grouping. */
3260 struct map_stub
3261 {
3262 /* This is the section to which stubs in the group will be
3263 attached. */
3264 asection *link_sec;
3265 /* The stub section. */
3266 asection *stub_sec;
3267 };
3268
3269 #define elf32_arm_compute_jump_table_size(htab) \
3270 ((htab)->next_tls_desc_index * 4)
3271
3272 /* ARM ELF linker hash table. */
3273 struct elf32_arm_link_hash_table
3274 {
3275 /* The main hash table. */
3276 struct elf_link_hash_table root;
3277
3278 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3279 bfd_size_type thumb_glue_size;
3280
3281 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3282 bfd_size_type arm_glue_size;
3283
3284 /* The size in bytes of section containing the ARMv4 BX veneers. */
3285 bfd_size_type bx_glue_size;
3286
3287 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3288 veneer has been populated. */
3289 bfd_vma bx_glue_offset[15];
3290
3291 /* The size in bytes of the section containing glue for VFP11 erratum
3292 veneers. */
3293 bfd_size_type vfp11_erratum_glue_size;
3294
3295 /* The size in bytes of the section containing glue for STM32L4XX erratum
3296 veneers. */
3297 bfd_size_type stm32l4xx_erratum_glue_size;
3298
3299 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3300 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3301 elf32_arm_write_section(). */
3302 struct a8_erratum_fix *a8_erratum_fixes;
3303 unsigned int num_a8_erratum_fixes;
3304
3305 /* An arbitrary input BFD chosen to hold the glue sections. */
3306 bfd * bfd_of_glue_owner;
3307
3308 /* Nonzero to output a BE8 image. */
3309 int byteswap_code;
3310
3311 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3312 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3313 int target1_is_rel;
3314
3315 /* The relocation to use for R_ARM_TARGET2 relocations. */
3316 int target2_reloc;
3317
3318 /* 0 = Ignore R_ARM_V4BX.
3319 1 = Convert BX to MOV PC.
3320 2 = Generate v4 interworing stubs. */
3321 int fix_v4bx;
3322
3323 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3324 int fix_cortex_a8;
3325
3326 /* Whether we should fix the ARM1176 BLX immediate issue. */
3327 int fix_arm1176;
3328
3329 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3330 int use_blx;
3331
3332 /* What sort of code sequences we should look for which may trigger the
3333 VFP11 denorm erratum. */
3334 bfd_arm_vfp11_fix vfp11_fix;
3335
3336 /* Global counter for the number of fixes we have emitted. */
3337 int num_vfp11_fixes;
3338
3339 /* What sort of code sequences we should look for which may trigger the
3340 STM32L4XX erratum. */
3341 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3342
3343 /* Global counter for the number of fixes we have emitted. */
3344 int num_stm32l4xx_fixes;
3345
3346 /* Nonzero to force PIC branch veneers. */
3347 int pic_veneer;
3348
3349 /* The number of bytes in the initial entry in the PLT. */
3350 bfd_size_type plt_header_size;
3351
3352 /* The number of bytes in the subsequent PLT etries. */
3353 bfd_size_type plt_entry_size;
3354
3355 /* True if the target system is VxWorks. */
3356 int vxworks_p;
3357
3358 /* True if the target system is Symbian OS. */
3359 int symbian_p;
3360
3361 /* True if the target system is Native Client. */
3362 int nacl_p;
3363
3364 /* True if the target uses REL relocations. */
3365 bfd_boolean use_rel;
3366
3367 /* Nonzero if import library must be a secure gateway import library
3368 as per ARMv8-M Security Extensions. */
3369 int cmse_implib;
3370
3371 /* The import library whose symbols' address must remain stable in
3372 the import library generated. */
3373 bfd *in_implib_bfd;
3374
3375 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3376 bfd_vma next_tls_desc_index;
3377
3378 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3379 bfd_vma num_tls_desc;
3380
3381 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3382 asection *srelplt2;
3383
3384 /* The offset into splt of the PLT entry for the TLS descriptor
3385 resolver. Special values are 0, if not necessary (or not found
3386 to be necessary yet), and -1 if needed but not determined
3387 yet. */
3388 bfd_vma dt_tlsdesc_plt;
3389
3390 /* The offset into sgot of the GOT entry used by the PLT entry
3391 above. */
3392 bfd_vma dt_tlsdesc_got;
3393
3394 /* Offset in .plt section of tls_arm_trampoline. */
3395 bfd_vma tls_trampoline;
3396
3397 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3398 union
3399 {
3400 bfd_signed_vma refcount;
3401 bfd_vma offset;
3402 } tls_ldm_got;
3403
3404 /* Small local sym cache. */
3405 struct sym_cache sym_cache;
3406
3407 /* For convenience in allocate_dynrelocs. */
3408 bfd * obfd;
3409
3410 /* The amount of space used by the reserved portion of the sgotplt
3411 section, plus whatever space is used by the jump slots. */
3412 bfd_vma sgotplt_jump_table_size;
3413
3414 /* The stub hash table. */
3415 struct bfd_hash_table stub_hash_table;
3416
3417 /* Linker stub bfd. */
3418 bfd *stub_bfd;
3419
3420 /* Linker call-backs. */
3421 asection * (*add_stub_section) (const char *, asection *, asection *,
3422 unsigned int);
3423 void (*layout_sections_again) (void);
3424
3425 /* Array to keep track of which stub sections have been created, and
3426 information on stub grouping. */
3427 struct map_stub *stub_group;
3428
3429 /* Input stub section holding secure gateway veneers. */
3430 asection *cmse_stub_sec;
3431
3432 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3433 start to be allocated. */
3434 bfd_vma new_cmse_stub_offset;
3435
3436 /* Number of elements in stub_group. */
3437 unsigned int top_id;
3438
3439 /* Assorted information used by elf32_arm_size_stubs. */
3440 unsigned int bfd_count;
3441 unsigned int top_index;
3442 asection **input_list;
3443
3444 /* True if the target system uses FDPIC. */
3445 int fdpic_p;
3446
3447 /* Fixup section. Used for FDPIC. */
3448 asection *srofixup;
3449 };
3450
3451 /* Add an FDPIC read-only fixup. */
3452 static void
3453 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3454 {
3455 bfd_vma fixup_offset;
3456
3457 fixup_offset = srofixup->reloc_count++ * 4;
3458 BFD_ASSERT (fixup_offset < srofixup->size);
3459 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3460 }
3461
3462 static inline int
3463 ctz (unsigned int mask)
3464 {
3465 #if GCC_VERSION >= 3004
3466 return __builtin_ctz (mask);
3467 #else
3468 unsigned int i;
3469
3470 for (i = 0; i < 8 * sizeof (mask); i++)
3471 {
3472 if (mask & 0x1)
3473 break;
3474 mask = (mask >> 1);
3475 }
3476 return i;
3477 #endif
3478 }
3479
3480 static inline int
3481 elf32_arm_popcount (unsigned int mask)
3482 {
3483 #if GCC_VERSION >= 3004
3484 return __builtin_popcount (mask);
3485 #else
3486 unsigned int i;
3487 int sum = 0;
3488
3489 for (i = 0; i < 8 * sizeof (mask); i++)
3490 {
3491 if (mask & 0x1)
3492 sum++;
3493 mask = (mask >> 1);
3494 }
3495 return sum;
3496 #endif
3497 }
3498
3499 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3500 asection *sreloc, Elf_Internal_Rela *rel);
3501
3502 static void
3503 arm_elf_fill_funcdesc(bfd *output_bfd,
3504 struct bfd_link_info *info,
3505 int *funcdesc_offset,
3506 int dynindx,
3507 int offset,
3508 bfd_vma addr,
3509 bfd_vma dynreloc_value,
3510 bfd_vma seg)
3511 {
3512 if ((*funcdesc_offset & 1) == 0)
3513 {
3514 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3515 asection *sgot = globals->root.sgot;
3516
3517 if (bfd_link_pic(info))
3518 {
3519 asection *srelgot = globals->root.srelgot;
3520 Elf_Internal_Rela outrel;
3521
3522 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3523 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3524 outrel.r_addend = 0;
3525
3526 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3527 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3528 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3529 }
3530 else
3531 {
3532 struct elf_link_hash_entry *hgot = globals->root.hgot;
3533 bfd_vma got_value = hgot->root.u.def.value
3534 + hgot->root.u.def.section->output_section->vma
3535 + hgot->root.u.def.section->output_offset;
3536
3537 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3538 sgot->output_section->vma + sgot->output_offset
3539 + offset);
3540 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3541 sgot->output_section->vma + sgot->output_offset
3542 + offset + 4);
3543 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3544 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3545 }
3546 *funcdesc_offset |= 1;
3547 }
3548 }
3549
3550 /* Create an entry in an ARM ELF linker hash table. */
3551
3552 static struct bfd_hash_entry *
3553 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3554 struct bfd_hash_table * table,
3555 const char * string)
3556 {
3557 struct elf32_arm_link_hash_entry * ret =
3558 (struct elf32_arm_link_hash_entry *) entry;
3559
3560 /* Allocate the structure if it has not already been allocated by a
3561 subclass. */
3562 if (ret == NULL)
3563 ret = (struct elf32_arm_link_hash_entry *)
3564 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3565 if (ret == NULL)
3566 return (struct bfd_hash_entry *) ret;
3567
3568 /* Call the allocation method of the superclass. */
3569 ret = ((struct elf32_arm_link_hash_entry *)
3570 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3571 table, string));
3572 if (ret != NULL)
3573 {
3574 ret->dyn_relocs = NULL;
3575 ret->tls_type = GOT_UNKNOWN;
3576 ret->tlsdesc_got = (bfd_vma) -1;
3577 ret->plt.thumb_refcount = 0;
3578 ret->plt.maybe_thumb_refcount = 0;
3579 ret->plt.noncall_refcount = 0;
3580 ret->plt.got_offset = -1;
3581 ret->is_iplt = FALSE;
3582 ret->export_glue = NULL;
3583
3584 ret->stub_cache = NULL;
3585
3586 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3587 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3588 ret->fdpic_cnts.funcdesc_cnt = 0;
3589 ret->fdpic_cnts.funcdesc_offset = -1;
3590 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3591 }
3592
3593 return (struct bfd_hash_entry *) ret;
3594 }
3595
3596 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3597 symbols. */
3598
3599 static bfd_boolean
3600 elf32_arm_allocate_local_sym_info (bfd *abfd)
3601 {
3602 if (elf_local_got_refcounts (abfd) == NULL)
3603 {
3604 bfd_size_type num_syms;
3605 bfd_size_type size;
3606 char *data;
3607
3608 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3609 size = num_syms * (sizeof (bfd_signed_vma)
3610 + sizeof (struct arm_local_iplt_info *)
3611 + sizeof (bfd_vma)
3612 + sizeof (char)
3613 + sizeof (struct fdpic_local));
3614 data = bfd_zalloc (abfd, size);
3615 if (data == NULL)
3616 return FALSE;
3617
3618 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3619 data += num_syms * sizeof (struct fdpic_local);
3620
3621 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3622 data += num_syms * sizeof (bfd_signed_vma);
3623
3624 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3625 data += num_syms * sizeof (struct arm_local_iplt_info *);
3626
3627 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3628 data += num_syms * sizeof (bfd_vma);
3629
3630 elf32_arm_local_got_tls_type (abfd) = data;
3631 }
3632 return TRUE;
3633 }
3634
3635 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3636 to input bfd ABFD. Create the information if it doesn't already exist.
3637 Return null if an allocation fails. */
3638
3639 static struct arm_local_iplt_info *
3640 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3641 {
3642 struct arm_local_iplt_info **ptr;
3643
3644 if (!elf32_arm_allocate_local_sym_info (abfd))
3645 return NULL;
3646
3647 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3648 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3649 if (*ptr == NULL)
3650 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3651 return *ptr;
3652 }
3653
3654 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3655 in ABFD's symbol table. If the symbol is global, H points to its
3656 hash table entry, otherwise H is null.
3657
3658 Return true if the symbol does have PLT information. When returning
3659 true, point *ROOT_PLT at the target-independent reference count/offset
3660 union and *ARM_PLT at the ARM-specific information. */
3661
3662 static bfd_boolean
3663 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3664 struct elf32_arm_link_hash_entry *h,
3665 unsigned long r_symndx, union gotplt_union **root_plt,
3666 struct arm_plt_info **arm_plt)
3667 {
3668 struct arm_local_iplt_info *local_iplt;
3669
3670 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3671 return FALSE;
3672
3673 if (h != NULL)
3674 {
3675 *root_plt = &h->root.plt;
3676 *arm_plt = &h->plt;
3677 return TRUE;
3678 }
3679
3680 if (elf32_arm_local_iplt (abfd) == NULL)
3681 return FALSE;
3682
3683 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3684 if (local_iplt == NULL)
3685 return FALSE;
3686
3687 *root_plt = &local_iplt->root;
3688 *arm_plt = &local_iplt->arm;
3689 return TRUE;
3690 }
3691
3692 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3693
3694 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3695 before it. */
3696
3697 static bfd_boolean
3698 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3699 struct arm_plt_info *arm_plt)
3700 {
3701 struct elf32_arm_link_hash_table *htab;
3702
3703 htab = elf32_arm_hash_table (info);
3704
3705 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3706 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3707 }
3708
3709 /* Return a pointer to the head of the dynamic reloc list that should
3710 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3711 ABFD's symbol table. Return null if an error occurs. */
3712
3713 static struct elf_dyn_relocs **
3714 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3715 Elf_Internal_Sym *isym)
3716 {
3717 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3718 {
3719 struct arm_local_iplt_info *local_iplt;
3720
3721 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3722 if (local_iplt == NULL)
3723 return NULL;
3724 return &local_iplt->dyn_relocs;
3725 }
3726 else
3727 {
3728 /* Track dynamic relocs needed for local syms too.
3729 We really need local syms available to do this
3730 easily. Oh well. */
3731 asection *s;
3732 void *vpp;
3733
3734 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3735 if (s == NULL)
3736 abort ();
3737
3738 vpp = &elf_section_data (s)->local_dynrel;
3739 return (struct elf_dyn_relocs **) vpp;
3740 }
3741 }
3742
3743 /* Initialize an entry in the stub hash table. */
3744
3745 static struct bfd_hash_entry *
3746 stub_hash_newfunc (struct bfd_hash_entry *entry,
3747 struct bfd_hash_table *table,
3748 const char *string)
3749 {
3750 /* Allocate the structure if it has not already been allocated by a
3751 subclass. */
3752 if (entry == NULL)
3753 {
3754 entry = (struct bfd_hash_entry *)
3755 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3756 if (entry == NULL)
3757 return entry;
3758 }
3759
3760 /* Call the allocation method of the superclass. */
3761 entry = bfd_hash_newfunc (entry, table, string);
3762 if (entry != NULL)
3763 {
3764 struct elf32_arm_stub_hash_entry *eh;
3765
3766 /* Initialize the local fields. */
3767 eh = (struct elf32_arm_stub_hash_entry *) entry;
3768 eh->stub_sec = NULL;
3769 eh->stub_offset = (bfd_vma) -1;
3770 eh->source_value = 0;
3771 eh->target_value = 0;
3772 eh->target_section = NULL;
3773 eh->orig_insn = 0;
3774 eh->stub_type = arm_stub_none;
3775 eh->stub_size = 0;
3776 eh->stub_template = NULL;
3777 eh->stub_template_size = -1;
3778 eh->h = NULL;
3779 eh->id_sec = NULL;
3780 eh->output_name = NULL;
3781 }
3782
3783 return entry;
3784 }
3785
3786 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3787 shortcuts to them in our hash table. */
3788
3789 static bfd_boolean
3790 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3791 {
3792 struct elf32_arm_link_hash_table *htab;
3793
3794 htab = elf32_arm_hash_table (info);
3795 if (htab == NULL)
3796 return FALSE;
3797
3798 /* BPABI objects never have a GOT, or associated sections. */
3799 if (htab->symbian_p)
3800 return TRUE;
3801
3802 if (! _bfd_elf_create_got_section (dynobj, info))
3803 return FALSE;
3804
3805 /* Also create .rofixup. */
3806 if (htab->fdpic_p)
3807 {
3808 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3809 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3810 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3811 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3812 return FALSE;
3813 }
3814
3815 return TRUE;
3816 }
3817
3818 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3819
3820 static bfd_boolean
3821 create_ifunc_sections (struct bfd_link_info *info)
3822 {
3823 struct elf32_arm_link_hash_table *htab;
3824 const struct elf_backend_data *bed;
3825 bfd *dynobj;
3826 asection *s;
3827 flagword flags;
3828
3829 htab = elf32_arm_hash_table (info);
3830 dynobj = htab->root.dynobj;
3831 bed = get_elf_backend_data (dynobj);
3832 flags = bed->dynamic_sec_flags;
3833
3834 if (htab->root.iplt == NULL)
3835 {
3836 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3837 flags | SEC_READONLY | SEC_CODE);
3838 if (s == NULL
3839 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3840 return FALSE;
3841 htab->root.iplt = s;
3842 }
3843
3844 if (htab->root.irelplt == NULL)
3845 {
3846 s = bfd_make_section_anyway_with_flags (dynobj,
3847 RELOC_SECTION (htab, ".iplt"),
3848 flags | SEC_READONLY);
3849 if (s == NULL
3850 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3851 return FALSE;
3852 htab->root.irelplt = s;
3853 }
3854
3855 if (htab->root.igotplt == NULL)
3856 {
3857 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3858 if (s == NULL
3859 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3860 return FALSE;
3861 htab->root.igotplt = s;
3862 }
3863 return TRUE;
3864 }
3865
3866 /* Determine if we're dealing with a Thumb only architecture. */
3867
3868 static bfd_boolean
3869 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3870 {
3871 int arch;
3872 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3873 Tag_CPU_arch_profile);
3874
3875 if (profile)
3876 return profile == 'M';
3877
3878 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3879
3880 /* Force return logic to be reviewed for each new architecture. */
3881 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3882
3883 if (arch == TAG_CPU_ARCH_V6_M
3884 || arch == TAG_CPU_ARCH_V6S_M
3885 || arch == TAG_CPU_ARCH_V7E_M
3886 || arch == TAG_CPU_ARCH_V8M_BASE
3887 || arch == TAG_CPU_ARCH_V8M_MAIN
3888 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3889 return TRUE;
3890
3891 return FALSE;
3892 }
3893
3894 /* Determine if we're dealing with a Thumb-2 object. */
3895
3896 static bfd_boolean
3897 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3898 {
3899 int arch;
3900 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3901 Tag_THUMB_ISA_use);
3902
3903 if (thumb_isa)
3904 return thumb_isa == 2;
3905
3906 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3907
3908 /* Force return logic to be reviewed for each new architecture. */
3909 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3910
3911 return (arch == TAG_CPU_ARCH_V6T2
3912 || arch == TAG_CPU_ARCH_V7
3913 || arch == TAG_CPU_ARCH_V7E_M
3914 || arch == TAG_CPU_ARCH_V8
3915 || arch == TAG_CPU_ARCH_V8R
3916 || arch == TAG_CPU_ARCH_V8M_MAIN
3917 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3918 }
3919
3920 /* Determine whether Thumb-2 BL instruction is available. */
3921
3922 static bfd_boolean
3923 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3924 {
3925 int arch =
3926 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3927
3928 /* Force return logic to be reviewed for each new architecture. */
3929 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3930
3931 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3932 return (arch == TAG_CPU_ARCH_V6T2
3933 || arch >= TAG_CPU_ARCH_V7);
3934 }
3935
3936 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3937 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3938 hash table. */
3939
3940 static bfd_boolean
3941 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3942 {
3943 struct elf32_arm_link_hash_table *htab;
3944
3945 htab = elf32_arm_hash_table (info);
3946 if (htab == NULL)
3947 return FALSE;
3948
3949 if (!htab->root.sgot && !create_got_section (dynobj, info))
3950 return FALSE;
3951
3952 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3953 return FALSE;
3954
3955 if (htab->vxworks_p)
3956 {
3957 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3958 return FALSE;
3959
3960 if (bfd_link_pic (info))
3961 {
3962 htab->plt_header_size = 0;
3963 htab->plt_entry_size
3964 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3965 }
3966 else
3967 {
3968 htab->plt_header_size
3969 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3970 htab->plt_entry_size
3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3972 }
3973
3974 if (elf_elfheader (dynobj))
3975 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3976 }
3977 else
3978 {
3979 /* PR ld/16017
3980 Test for thumb only architectures. Note - we cannot just call
3981 using_thumb_only() as the attributes in the output bfd have not been
3982 initialised at this point, so instead we use the input bfd. */
3983 bfd * saved_obfd = htab->obfd;
3984
3985 htab->obfd = dynobj;
3986 if (using_thumb_only (htab))
3987 {
3988 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3989 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3990 }
3991 htab->obfd = saved_obfd;
3992 }
3993
3994 if (htab->fdpic_p) {
3995 htab->plt_header_size = 0;
3996 if (info->flags & DF_BIND_NOW)
3997 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3998 else
3999 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4000 }
4001
4002 if (!htab->root.splt
4003 || !htab->root.srelplt
4004 || !htab->root.sdynbss
4005 || (!bfd_link_pic (info) && !htab->root.srelbss))
4006 abort ();
4007
4008 return TRUE;
4009 }
4010
4011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4012
4013 static void
4014 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4015 struct elf_link_hash_entry *dir,
4016 struct elf_link_hash_entry *ind)
4017 {
4018 struct elf32_arm_link_hash_entry *edir, *eind;
4019
4020 edir = (struct elf32_arm_link_hash_entry *) dir;
4021 eind = (struct elf32_arm_link_hash_entry *) ind;
4022
4023 if (eind->dyn_relocs != NULL)
4024 {
4025 if (edir->dyn_relocs != NULL)
4026 {
4027 struct elf_dyn_relocs **pp;
4028 struct elf_dyn_relocs *p;
4029
4030 /* Add reloc counts against the indirect sym to the direct sym
4031 list. Merge any entries against the same section. */
4032 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4033 {
4034 struct elf_dyn_relocs *q;
4035
4036 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4037 if (q->sec == p->sec)
4038 {
4039 q->pc_count += p->pc_count;
4040 q->count += p->count;
4041 *pp = p->next;
4042 break;
4043 }
4044 if (q == NULL)
4045 pp = &p->next;
4046 }
4047 *pp = edir->dyn_relocs;
4048 }
4049
4050 edir->dyn_relocs = eind->dyn_relocs;
4051 eind->dyn_relocs = NULL;
4052 }
4053
4054 if (ind->root.type == bfd_link_hash_indirect)
4055 {
4056 /* Copy over PLT info. */
4057 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4058 eind->plt.thumb_refcount = 0;
4059 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4060 eind->plt.maybe_thumb_refcount = 0;
4061 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4062 eind->plt.noncall_refcount = 0;
4063
4064 /* Copy FDPIC counters. */
4065 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4066 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4067 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4068
4069 /* We should only allocate a function to .iplt once the final
4070 symbol information is known. */
4071 BFD_ASSERT (!eind->is_iplt);
4072
4073 if (dir->got.refcount <= 0)
4074 {
4075 edir->tls_type = eind->tls_type;
4076 eind->tls_type = GOT_UNKNOWN;
4077 }
4078 }
4079
4080 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4081 }
4082
4083 /* Destroy an ARM elf linker hash table. */
4084
4085 static void
4086 elf32_arm_link_hash_table_free (bfd *obfd)
4087 {
4088 struct elf32_arm_link_hash_table *ret
4089 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4090
4091 bfd_hash_table_free (&ret->stub_hash_table);
4092 _bfd_elf_link_hash_table_free (obfd);
4093 }
4094
4095 /* Create an ARM elf linker hash table. */
4096
4097 static struct bfd_link_hash_table *
4098 elf32_arm_link_hash_table_create (bfd *abfd)
4099 {
4100 struct elf32_arm_link_hash_table *ret;
4101 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4102
4103 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4104 if (ret == NULL)
4105 return NULL;
4106
4107 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4108 elf32_arm_link_hash_newfunc,
4109 sizeof (struct elf32_arm_link_hash_entry),
4110 ARM_ELF_DATA))
4111 {
4112 free (ret);
4113 return NULL;
4114 }
4115
4116 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4117 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4118 #ifdef FOUR_WORD_PLT
4119 ret->plt_header_size = 16;
4120 ret->plt_entry_size = 16;
4121 #else
4122 ret->plt_header_size = 20;
4123 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4124 #endif
4125 ret->use_rel = TRUE;
4126 ret->obfd = abfd;
4127 ret->fdpic_p = 0;
4128
4129 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4130 sizeof (struct elf32_arm_stub_hash_entry)))
4131 {
4132 _bfd_elf_link_hash_table_free (abfd);
4133 return NULL;
4134 }
4135 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4136
4137 return &ret->root.root;
4138 }
4139
4140 /* Determine what kind of NOPs are available. */
4141
4142 static bfd_boolean
4143 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4144 {
4145 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4146 Tag_CPU_arch);
4147
4148 /* Force return logic to be reviewed for each new architecture. */
4149 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4150
4151 return (arch == TAG_CPU_ARCH_V6T2
4152 || arch == TAG_CPU_ARCH_V6K
4153 || arch == TAG_CPU_ARCH_V7
4154 || arch == TAG_CPU_ARCH_V8
4155 || arch == TAG_CPU_ARCH_V8R);
4156 }
4157
4158 static bfd_boolean
4159 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4160 {
4161 switch (stub_type)
4162 {
4163 case arm_stub_long_branch_thumb_only:
4164 case arm_stub_long_branch_thumb2_only:
4165 case arm_stub_long_branch_thumb2_only_pure:
4166 case arm_stub_long_branch_v4t_thumb_arm:
4167 case arm_stub_short_branch_v4t_thumb_arm:
4168 case arm_stub_long_branch_v4t_thumb_arm_pic:
4169 case arm_stub_long_branch_v4t_thumb_tls_pic:
4170 case arm_stub_long_branch_thumb_only_pic:
4171 case arm_stub_cmse_branch_thumb_only:
4172 return TRUE;
4173 case arm_stub_none:
4174 BFD_FAIL ();
4175 return FALSE;
4176 break;
4177 default:
4178 return FALSE;
4179 }
4180 }
4181
4182 /* Determine the type of stub needed, if any, for a call. */
4183
4184 static enum elf32_arm_stub_type
4185 arm_type_of_stub (struct bfd_link_info *info,
4186 asection *input_sec,
4187 const Elf_Internal_Rela *rel,
4188 unsigned char st_type,
4189 enum arm_st_branch_type *actual_branch_type,
4190 struct elf32_arm_link_hash_entry *hash,
4191 bfd_vma destination,
4192 asection *sym_sec,
4193 bfd *input_bfd,
4194 const char *name)
4195 {
4196 bfd_vma location;
4197 bfd_signed_vma branch_offset;
4198 unsigned int r_type;
4199 struct elf32_arm_link_hash_table * globals;
4200 bfd_boolean thumb2, thumb2_bl, thumb_only;
4201 enum elf32_arm_stub_type stub_type = arm_stub_none;
4202 int use_plt = 0;
4203 enum arm_st_branch_type branch_type = *actual_branch_type;
4204 union gotplt_union *root_plt;
4205 struct arm_plt_info *arm_plt;
4206 int arch;
4207 int thumb2_movw;
4208
4209 if (branch_type == ST_BRANCH_LONG)
4210 return stub_type;
4211
4212 globals = elf32_arm_hash_table (info);
4213 if (globals == NULL)
4214 return stub_type;
4215
4216 thumb_only = using_thumb_only (globals);
4217 thumb2 = using_thumb2 (globals);
4218 thumb2_bl = using_thumb2_bl (globals);
4219
4220 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4221
4222 /* True for architectures that implement the thumb2 movw instruction. */
4223 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4224
4225 /* Determine where the call point is. */
4226 location = (input_sec->output_offset
4227 + input_sec->output_section->vma
4228 + rel->r_offset);
4229
4230 r_type = ELF32_R_TYPE (rel->r_info);
4231
4232 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4233 are considering a function call relocation. */
4234 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4235 || r_type == R_ARM_THM_JUMP19)
4236 && branch_type == ST_BRANCH_TO_ARM)
4237 branch_type = ST_BRANCH_TO_THUMB;
4238
4239 /* For TLS call relocs, it is the caller's responsibility to provide
4240 the address of the appropriate trampoline. */
4241 if (r_type != R_ARM_TLS_CALL
4242 && r_type != R_ARM_THM_TLS_CALL
4243 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4244 ELF32_R_SYM (rel->r_info), &root_plt,
4245 &arm_plt)
4246 && root_plt->offset != (bfd_vma) -1)
4247 {
4248 asection *splt;
4249
4250 if (hash == NULL || hash->is_iplt)
4251 splt = globals->root.iplt;
4252 else
4253 splt = globals->root.splt;
4254 if (splt != NULL)
4255 {
4256 use_plt = 1;
4257
4258 /* Note when dealing with PLT entries: the main PLT stub is in
4259 ARM mode, so if the branch is in Thumb mode, another
4260 Thumb->ARM stub will be inserted later just before the ARM
4261 PLT stub. If a long branch stub is needed, we'll add a
4262 Thumb->Arm one and branch directly to the ARM PLT entry.
4263 Here, we have to check if a pre-PLT Thumb->ARM stub
4264 is needed and if it will be close enough. */
4265
4266 destination = (splt->output_section->vma
4267 + splt->output_offset
4268 + root_plt->offset);
4269 st_type = STT_FUNC;
4270
4271 /* Thumb branch/call to PLT: it can become a branch to ARM
4272 or to Thumb. We must perform the same checks and
4273 corrections as in elf32_arm_final_link_relocate. */
4274 if ((r_type == R_ARM_THM_CALL)
4275 || (r_type == R_ARM_THM_JUMP24))
4276 {
4277 if (globals->use_blx
4278 && r_type == R_ARM_THM_CALL
4279 && !thumb_only)
4280 {
4281 /* If the Thumb BLX instruction is available, convert
4282 the BL to a BLX instruction to call the ARM-mode
4283 PLT entry. */
4284 branch_type = ST_BRANCH_TO_ARM;
4285 }
4286 else
4287 {
4288 if (!thumb_only)
4289 /* Target the Thumb stub before the ARM PLT entry. */
4290 destination -= PLT_THUMB_STUB_SIZE;
4291 branch_type = ST_BRANCH_TO_THUMB;
4292 }
4293 }
4294 else
4295 {
4296 branch_type = ST_BRANCH_TO_ARM;
4297 }
4298 }
4299 }
4300 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4301 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4302
4303 branch_offset = (bfd_signed_vma)(destination - location);
4304
4305 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4306 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4307 {
4308 /* Handle cases where:
4309 - this call goes too far (different Thumb/Thumb2 max
4310 distance)
4311 - it's a Thumb->Arm call and blx is not available, or it's a
4312 Thumb->Arm branch (not bl). A stub is needed in this case,
4313 but only if this call is not through a PLT entry. Indeed,
4314 PLT stubs handle mode switching already. */
4315 if ((!thumb2_bl
4316 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4318 || (thumb2_bl
4319 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4321 || (thumb2
4322 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4323 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4324 && (r_type == R_ARM_THM_JUMP19))
4325 || (branch_type == ST_BRANCH_TO_ARM
4326 && (((r_type == R_ARM_THM_CALL
4327 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4328 || (r_type == R_ARM_THM_JUMP24)
4329 || (r_type == R_ARM_THM_JUMP19))
4330 && !use_plt))
4331 {
4332 /* If we need to insert a Thumb-Thumb long branch stub to a
4333 PLT, use one that branches directly to the ARM PLT
4334 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4335 stub, undo this now. */
4336 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4337 {
4338 branch_type = ST_BRANCH_TO_ARM;
4339 branch_offset += PLT_THUMB_STUB_SIZE;
4340 }
4341
4342 if (branch_type == ST_BRANCH_TO_THUMB)
4343 {
4344 /* Thumb to thumb. */
4345 if (!thumb_only)
4346 {
4347 if (input_sec->flags & SEC_ELF_PURECODE)
4348 _bfd_error_handler
4349 (_("%pB(%pA): warning: long branch veneers used in"
4350 " section with SHF_ARM_PURECODE section"
4351 " attribute is only supported for M-profile"
4352 " targets that implement the movw instruction"),
4353 input_bfd, input_sec);
4354
4355 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4356 /* PIC stubs. */
4357 ? ((globals->use_blx
4358 && (r_type == R_ARM_THM_CALL))
4359 /* V5T and above. Stub starts with ARM code, so
4360 we must be able to switch mode before
4361 reaching it, which is only possible for 'bl'
4362 (ie R_ARM_THM_CALL relocation). */
4363 ? arm_stub_long_branch_any_thumb_pic
4364 /* On V4T, use Thumb code only. */
4365 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4366
4367 /* non-PIC stubs. */
4368 : ((globals->use_blx
4369 && (r_type == R_ARM_THM_CALL))
4370 /* V5T and above. */
4371 ? arm_stub_long_branch_any_any
4372 /* V4T. */
4373 : arm_stub_long_branch_v4t_thumb_thumb);
4374 }
4375 else
4376 {
4377 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4378 stub_type = arm_stub_long_branch_thumb2_only_pure;
4379 else
4380 {
4381 if (input_sec->flags & SEC_ELF_PURECODE)
4382 _bfd_error_handler
4383 (_("%pB(%pA): warning: long branch veneers used in"
4384 " section with SHF_ARM_PURECODE section"
4385 " attribute is only supported for M-profile"
4386 " targets that implement the movw instruction"),
4387 input_bfd, input_sec);
4388
4389 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4390 /* PIC stub. */
4391 ? arm_stub_long_branch_thumb_only_pic
4392 /* non-PIC stub. */
4393 : (thumb2 ? arm_stub_long_branch_thumb2_only
4394 : arm_stub_long_branch_thumb_only);
4395 }
4396 }
4397 }
4398 else
4399 {
4400 if (input_sec->flags & SEC_ELF_PURECODE)
4401 _bfd_error_handler
4402 (_("%pB(%pA): warning: long branch veneers used in"
4403 " section with SHF_ARM_PURECODE section"
4404 " attribute is only supported" " for M-profile"
4405 " targets that implement the movw instruction"),
4406 input_bfd, input_sec);
4407
4408 /* Thumb to arm. */
4409 if (sym_sec != NULL
4410 && sym_sec->owner != NULL
4411 && !INTERWORK_FLAG (sym_sec->owner))
4412 {
4413 _bfd_error_handler
4414 (_("%pB(%s): warning: interworking not enabled;"
4415 " first occurrence: %pB: %s call to %s"),
4416 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4417 }
4418
4419 stub_type =
4420 (bfd_link_pic (info) | globals->pic_veneer)
4421 /* PIC stubs. */
4422 ? (r_type == R_ARM_THM_TLS_CALL
4423 /* TLS PIC stubs. */
4424 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4425 : arm_stub_long_branch_v4t_thumb_tls_pic)
4426 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4427 /* V5T PIC and above. */
4428 ? arm_stub_long_branch_any_arm_pic
4429 /* V4T PIC stub. */
4430 : arm_stub_long_branch_v4t_thumb_arm_pic))
4431
4432 /* non-PIC stubs. */
4433 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4434 /* V5T and above. */
4435 ? arm_stub_long_branch_any_any
4436 /* V4T. */
4437 : arm_stub_long_branch_v4t_thumb_arm);
4438
4439 /* Handle v4t short branches. */
4440 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4441 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4442 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4443 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4444 }
4445 }
4446 }
4447 else if (r_type == R_ARM_CALL
4448 || r_type == R_ARM_JUMP24
4449 || r_type == R_ARM_PLT32
4450 || r_type == R_ARM_TLS_CALL)
4451 {
4452 if (input_sec->flags & SEC_ELF_PURECODE)
4453 _bfd_error_handler
4454 (_("%pB(%pA): warning: long branch veneers used in"
4455 " section with SHF_ARM_PURECODE section"
4456 " attribute is only supported for M-profile"
4457 " targets that implement the movw instruction"),
4458 input_bfd, input_sec);
4459 if (branch_type == ST_BRANCH_TO_THUMB)
4460 {
4461 /* Arm to thumb. */
4462
4463 if (sym_sec != NULL
4464 && sym_sec->owner != NULL
4465 && !INTERWORK_FLAG (sym_sec->owner))
4466 {
4467 _bfd_error_handler
4468 (_("%pB(%s): warning: interworking not enabled;"
4469 " first occurrence: %pB: %s call to %s"),
4470 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4471 }
4472
4473 /* We have an extra 2-bytes reach because of
4474 the mode change (bit 24 (H) of BLX encoding). */
4475 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4476 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4477 || (r_type == R_ARM_CALL && !globals->use_blx)
4478 || (r_type == R_ARM_JUMP24)
4479 || (r_type == R_ARM_PLT32))
4480 {
4481 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4482 /* PIC stubs. */
4483 ? ((globals->use_blx)
4484 /* V5T and above. */
4485 ? arm_stub_long_branch_any_thumb_pic
4486 /* V4T stub. */
4487 : arm_stub_long_branch_v4t_arm_thumb_pic)
4488
4489 /* non-PIC stubs. */
4490 : ((globals->use_blx)
4491 /* V5T and above. */
4492 ? arm_stub_long_branch_any_any
4493 /* V4T. */
4494 : arm_stub_long_branch_v4t_arm_thumb);
4495 }
4496 }
4497 else
4498 {
4499 /* Arm to arm. */
4500 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4502 {
4503 stub_type =
4504 (bfd_link_pic (info) | globals->pic_veneer)
4505 /* PIC stubs. */
4506 ? (r_type == R_ARM_TLS_CALL
4507 /* TLS PIC Stub. */
4508 ? arm_stub_long_branch_any_tls_pic
4509 : (globals->nacl_p
4510 ? arm_stub_long_branch_arm_nacl_pic
4511 : arm_stub_long_branch_any_arm_pic))
4512 /* non-PIC stubs. */
4513 : (globals->nacl_p
4514 ? arm_stub_long_branch_arm_nacl
4515 : arm_stub_long_branch_any_any);
4516 }
4517 }
4518 }
4519
4520 /* If a stub is needed, record the actual destination type. */
4521 if (stub_type != arm_stub_none)
4522 *actual_branch_type = branch_type;
4523
4524 return stub_type;
4525 }
4526
4527 /* Build a name for an entry in the stub hash table. */
4528
4529 static char *
4530 elf32_arm_stub_name (const asection *input_section,
4531 const asection *sym_sec,
4532 const struct elf32_arm_link_hash_entry *hash,
4533 const Elf_Internal_Rela *rel,
4534 enum elf32_arm_stub_type stub_type)
4535 {
4536 char *stub_name;
4537 bfd_size_type len;
4538
4539 if (hash)
4540 {
4541 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4542 stub_name = (char *) bfd_malloc (len);
4543 if (stub_name != NULL)
4544 sprintf (stub_name, "%08x_%s+%x_%d",
4545 input_section->id & 0xffffffff,
4546 hash->root.root.root.string,
4547 (int) rel->r_addend & 0xffffffff,
4548 (int) stub_type);
4549 }
4550 else
4551 {
4552 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4553 stub_name = (char *) bfd_malloc (len);
4554 if (stub_name != NULL)
4555 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4556 input_section->id & 0xffffffff,
4557 sym_sec->id & 0xffffffff,
4558 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4559 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4560 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4561 (int) rel->r_addend & 0xffffffff,
4562 (int) stub_type);
4563 }
4564
4565 return stub_name;
4566 }
4567
4568 /* Look up an entry in the stub hash. Stub entries are cached because
4569 creating the stub name takes a bit of time. */
4570
4571 static struct elf32_arm_stub_hash_entry *
4572 elf32_arm_get_stub_entry (const asection *input_section,
4573 const asection *sym_sec,
4574 struct elf_link_hash_entry *hash,
4575 const Elf_Internal_Rela *rel,
4576 struct elf32_arm_link_hash_table *htab,
4577 enum elf32_arm_stub_type stub_type)
4578 {
4579 struct elf32_arm_stub_hash_entry *stub_entry;
4580 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4581 const asection *id_sec;
4582
4583 if ((input_section->flags & SEC_CODE) == 0)
4584 return NULL;
4585
4586 /* If this input section is part of a group of sections sharing one
4587 stub section, then use the id of the first section in the group.
4588 Stub names need to include a section id, as there may well be
4589 more than one stub used to reach say, printf, and we need to
4590 distinguish between them. */
4591 BFD_ASSERT (input_section->id <= htab->top_id);
4592 id_sec = htab->stub_group[input_section->id].link_sec;
4593
4594 if (h != NULL && h->stub_cache != NULL
4595 && h->stub_cache->h == h
4596 && h->stub_cache->id_sec == id_sec
4597 && h->stub_cache->stub_type == stub_type)
4598 {
4599 stub_entry = h->stub_cache;
4600 }
4601 else
4602 {
4603 char *stub_name;
4604
4605 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4606 if (stub_name == NULL)
4607 return NULL;
4608
4609 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4610 stub_name, FALSE, FALSE);
4611 if (h != NULL)
4612 h->stub_cache = stub_entry;
4613
4614 free (stub_name);
4615 }
4616
4617 return stub_entry;
4618 }
4619
4620 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4621 section. */
4622
4623 static bfd_boolean
4624 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4625 {
4626 if (stub_type >= max_stub_type)
4627 abort (); /* Should be unreachable. */
4628
4629 switch (stub_type)
4630 {
4631 case arm_stub_cmse_branch_thumb_only:
4632 return TRUE;
4633
4634 default:
4635 return FALSE;
4636 }
4637
4638 abort (); /* Should be unreachable. */
4639 }
4640
4641 /* Required alignment (as a power of 2) for the dedicated section holding
4642 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4643 with input sections. */
4644
4645 static int
4646 arm_dedicated_stub_output_section_required_alignment
4647 (enum elf32_arm_stub_type stub_type)
4648 {
4649 if (stub_type >= max_stub_type)
4650 abort (); /* Should be unreachable. */
4651
4652 switch (stub_type)
4653 {
4654 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4655 boundary. */
4656 case arm_stub_cmse_branch_thumb_only:
4657 return 5;
4658
4659 default:
4660 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4661 return 0;
4662 }
4663
4664 abort (); /* Should be unreachable. */
4665 }
4666
4667 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4668 NULL if veneers of this type are interspersed with input sections. */
4669
4670 static const char *
4671 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4672 {
4673 if (stub_type >= max_stub_type)
4674 abort (); /* Should be unreachable. */
4675
4676 switch (stub_type)
4677 {
4678 case arm_stub_cmse_branch_thumb_only:
4679 return ".gnu.sgstubs";
4680
4681 default:
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683 return NULL;
4684 }
4685
4686 abort (); /* Should be unreachable. */
4687 }
4688
4689 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4690 returns the address of the hash table field in HTAB holding a pointer to the
4691 corresponding input section. Otherwise, returns NULL. */
4692
4693 static asection **
4694 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4695 enum elf32_arm_stub_type stub_type)
4696 {
4697 if (stub_type >= max_stub_type)
4698 abort (); /* Should be unreachable. */
4699
4700 switch (stub_type)
4701 {
4702 case arm_stub_cmse_branch_thumb_only:
4703 return &htab->cmse_stub_sec;
4704
4705 default:
4706 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4707 return NULL;
4708 }
4709
4710 abort (); /* Should be unreachable. */
4711 }
4712
4713 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4714 is the section that branch into veneer and can be NULL if stub should go in
4715 a dedicated output section. Returns a pointer to the stub section, and the
4716 section to which the stub section will be attached (in *LINK_SEC_P).
4717 LINK_SEC_P may be NULL. */
4718
4719 static asection *
4720 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4721 struct elf32_arm_link_hash_table *htab,
4722 enum elf32_arm_stub_type stub_type)
4723 {
4724 asection *link_sec, *out_sec, **stub_sec_p;
4725 const char *stub_sec_prefix;
4726 bfd_boolean dedicated_output_section =
4727 arm_dedicated_stub_output_section_required (stub_type);
4728 int align;
4729
4730 if (dedicated_output_section)
4731 {
4732 bfd *output_bfd = htab->obfd;
4733 const char *out_sec_name =
4734 arm_dedicated_stub_output_section_name (stub_type);
4735 link_sec = NULL;
4736 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4737 stub_sec_prefix = out_sec_name;
4738 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4739 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4740 if (out_sec == NULL)
4741 {
4742 _bfd_error_handler (_("no address assigned to the veneers output "
4743 "section %s"), out_sec_name);
4744 return NULL;
4745 }
4746 }
4747 else
4748 {
4749 BFD_ASSERT (section->id <= htab->top_id);
4750 link_sec = htab->stub_group[section->id].link_sec;
4751 BFD_ASSERT (link_sec != NULL);
4752 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4753 if (*stub_sec_p == NULL)
4754 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4755 stub_sec_prefix = link_sec->name;
4756 out_sec = link_sec->output_section;
4757 align = htab->nacl_p ? 4 : 3;
4758 }
4759
4760 if (*stub_sec_p == NULL)
4761 {
4762 size_t namelen;
4763 bfd_size_type len;
4764 char *s_name;
4765
4766 namelen = strlen (stub_sec_prefix);
4767 len = namelen + sizeof (STUB_SUFFIX);
4768 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4769 if (s_name == NULL)
4770 return NULL;
4771
4772 memcpy (s_name, stub_sec_prefix, namelen);
4773 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4774 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4775 align);
4776 if (*stub_sec_p == NULL)
4777 return NULL;
4778
4779 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4780 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4781 | SEC_KEEP;
4782 }
4783
4784 if (!dedicated_output_section)
4785 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4786
4787 if (link_sec_p)
4788 *link_sec_p = link_sec;
4789
4790 return *stub_sec_p;
4791 }
4792
4793 /* Add a new stub entry to the stub hash. Not all fields of the new
4794 stub entry are initialised. */
4795
4796 static struct elf32_arm_stub_hash_entry *
4797 elf32_arm_add_stub (const char *stub_name, asection *section,
4798 struct elf32_arm_link_hash_table *htab,
4799 enum elf32_arm_stub_type stub_type)
4800 {
4801 asection *link_sec;
4802 asection *stub_sec;
4803 struct elf32_arm_stub_hash_entry *stub_entry;
4804
4805 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4806 stub_type);
4807 if (stub_sec == NULL)
4808 return NULL;
4809
4810 /* Enter this entry into the linker stub hash table. */
4811 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4812 TRUE, FALSE);
4813 if (stub_entry == NULL)
4814 {
4815 if (section == NULL)
4816 section = stub_sec;
4817 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4818 section->owner, stub_name);
4819 return NULL;
4820 }
4821
4822 stub_entry->stub_sec = stub_sec;
4823 stub_entry->stub_offset = (bfd_vma) -1;
4824 stub_entry->id_sec = link_sec;
4825
4826 return stub_entry;
4827 }
4828
4829 /* Store an Arm insn into an output section not processed by
4830 elf32_arm_write_section. */
4831
4832 static void
4833 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4834 bfd * output_bfd, bfd_vma val, void * ptr)
4835 {
4836 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4837 bfd_putl32 (val, ptr);
4838 else
4839 bfd_putb32 (val, ptr);
4840 }
4841
4842 /* Store a 16-bit Thumb insn into an output section not processed by
4843 elf32_arm_write_section. */
4844
4845 static void
4846 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4847 bfd * output_bfd, bfd_vma val, void * ptr)
4848 {
4849 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4850 bfd_putl16 (val, ptr);
4851 else
4852 bfd_putb16 (val, ptr);
4853 }
4854
4855 /* Store a Thumb2 insn into an output section not processed by
4856 elf32_arm_write_section. */
4857
4858 static void
4859 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4860 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4861 {
4862 /* T2 instructions are 16-bit streamed. */
4863 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4864 {
4865 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4866 bfd_putl16 ((val & 0xffff), ptr + 2);
4867 }
4868 else
4869 {
4870 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4871 bfd_putb16 ((val & 0xffff), ptr + 2);
4872 }
4873 }
4874
4875 /* If it's possible to change R_TYPE to a more efficient access
4876 model, return the new reloc type. */
4877
4878 static unsigned
4879 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4880 struct elf_link_hash_entry *h)
4881 {
4882 int is_local = (h == NULL);
4883
4884 if (bfd_link_pic (info)
4885 || (h && h->root.type == bfd_link_hash_undefweak))
4886 return r_type;
4887
4888 /* We do not support relaxations for Old TLS models. */
4889 switch (r_type)
4890 {
4891 case R_ARM_TLS_GOTDESC:
4892 case R_ARM_TLS_CALL:
4893 case R_ARM_THM_TLS_CALL:
4894 case R_ARM_TLS_DESCSEQ:
4895 case R_ARM_THM_TLS_DESCSEQ:
4896 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4897 }
4898
4899 return r_type;
4900 }
4901
4902 static bfd_reloc_status_type elf32_arm_final_link_relocate
4903 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4904 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4905 const char *, unsigned char, enum arm_st_branch_type,
4906 struct elf_link_hash_entry *, bfd_boolean *, char **);
4907
4908 static unsigned int
4909 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4910 {
4911 switch (stub_type)
4912 {
4913 case arm_stub_a8_veneer_b_cond:
4914 case arm_stub_a8_veneer_b:
4915 case arm_stub_a8_veneer_bl:
4916 return 2;
4917
4918 case arm_stub_long_branch_any_any:
4919 case arm_stub_long_branch_v4t_arm_thumb:
4920 case arm_stub_long_branch_thumb_only:
4921 case arm_stub_long_branch_thumb2_only:
4922 case arm_stub_long_branch_thumb2_only_pure:
4923 case arm_stub_long_branch_v4t_thumb_thumb:
4924 case arm_stub_long_branch_v4t_thumb_arm:
4925 case arm_stub_short_branch_v4t_thumb_arm:
4926 case arm_stub_long_branch_any_arm_pic:
4927 case arm_stub_long_branch_any_thumb_pic:
4928 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4929 case arm_stub_long_branch_v4t_arm_thumb_pic:
4930 case arm_stub_long_branch_v4t_thumb_arm_pic:
4931 case arm_stub_long_branch_thumb_only_pic:
4932 case arm_stub_long_branch_any_tls_pic:
4933 case arm_stub_long_branch_v4t_thumb_tls_pic:
4934 case arm_stub_cmse_branch_thumb_only:
4935 case arm_stub_a8_veneer_blx:
4936 return 4;
4937
4938 case arm_stub_long_branch_arm_nacl:
4939 case arm_stub_long_branch_arm_nacl_pic:
4940 return 16;
4941
4942 default:
4943 abort (); /* Should be unreachable. */
4944 }
4945 }
4946
4947 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4948 veneering (TRUE) or have their own symbol (FALSE). */
4949
4950 static bfd_boolean
4951 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4952 {
4953 if (stub_type >= max_stub_type)
4954 abort (); /* Should be unreachable. */
4955
4956 switch (stub_type)
4957 {
4958 case arm_stub_cmse_branch_thumb_only:
4959 return TRUE;
4960
4961 default:
4962 return FALSE;
4963 }
4964
4965 abort (); /* Should be unreachable. */
4966 }
4967
4968 /* Returns the padding needed for the dedicated section used stubs of type
4969 STUB_TYPE. */
4970
4971 static int
4972 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4973 {
4974 if (stub_type >= max_stub_type)
4975 abort (); /* Should be unreachable. */
4976
4977 switch (stub_type)
4978 {
4979 case arm_stub_cmse_branch_thumb_only:
4980 return 32;
4981
4982 default:
4983 return 0;
4984 }
4985
4986 abort (); /* Should be unreachable. */
4987 }
4988
4989 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4990 returns the address of the hash table field in HTAB holding the offset at
4991 which new veneers should be layed out in the stub section. */
4992
4993 static bfd_vma*
4994 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4995 enum elf32_arm_stub_type stub_type)
4996 {
4997 switch (stub_type)
4998 {
4999 case arm_stub_cmse_branch_thumb_only:
5000 return &htab->new_cmse_stub_offset;
5001
5002 default:
5003 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5004 return NULL;
5005 }
5006 }
5007
5008 static bfd_boolean
5009 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5010 void * in_arg)
5011 {
5012 #define MAXRELOCS 3
5013 bfd_boolean removed_sg_veneer;
5014 struct elf32_arm_stub_hash_entry *stub_entry;
5015 struct elf32_arm_link_hash_table *globals;
5016 struct bfd_link_info *info;
5017 asection *stub_sec;
5018 bfd *stub_bfd;
5019 bfd_byte *loc;
5020 bfd_vma sym_value;
5021 int template_size;
5022 int size;
5023 const insn_sequence *template_sequence;
5024 int i;
5025 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5026 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5027 int nrelocs = 0;
5028 int just_allocated = 0;
5029
5030 /* Massage our args to the form they really have. */
5031 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5032 info = (struct bfd_link_info *) in_arg;
5033
5034 globals = elf32_arm_hash_table (info);
5035 if (globals == NULL)
5036 return FALSE;
5037
5038 stub_sec = stub_entry->stub_sec;
5039
5040 if ((globals->fix_cortex_a8 < 0)
5041 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5042 /* We have to do less-strictly-aligned fixes last. */
5043 return TRUE;
5044
5045 /* Assign a slot at the end of section if none assigned yet. */
5046 if (stub_entry->stub_offset == (bfd_vma) -1)
5047 {
5048 stub_entry->stub_offset = stub_sec->size;
5049 just_allocated = 1;
5050 }
5051 loc = stub_sec->contents + stub_entry->stub_offset;
5052
5053 stub_bfd = stub_sec->owner;
5054
5055 /* This is the address of the stub destination. */
5056 sym_value = (stub_entry->target_value
5057 + stub_entry->target_section->output_offset
5058 + stub_entry->target_section->output_section->vma);
5059
5060 template_sequence = stub_entry->stub_template;
5061 template_size = stub_entry->stub_template_size;
5062
5063 size = 0;
5064 for (i = 0; i < template_size; i++)
5065 {
5066 switch (template_sequence[i].type)
5067 {
5068 case THUMB16_TYPE:
5069 {
5070 bfd_vma data = (bfd_vma) template_sequence[i].data;
5071 if (template_sequence[i].reloc_addend != 0)
5072 {
5073 /* We've borrowed the reloc_addend field to mean we should
5074 insert a condition code into this (Thumb-1 branch)
5075 instruction. See THUMB16_BCOND_INSN. */
5076 BFD_ASSERT ((data & 0xff00) == 0xd000);
5077 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5078 }
5079 bfd_put_16 (stub_bfd, data, loc + size);
5080 size += 2;
5081 }
5082 break;
5083
5084 case THUMB32_TYPE:
5085 bfd_put_16 (stub_bfd,
5086 (template_sequence[i].data >> 16) & 0xffff,
5087 loc + size);
5088 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5089 loc + size + 2);
5090 if (template_sequence[i].r_type != R_ARM_NONE)
5091 {
5092 stub_reloc_idx[nrelocs] = i;
5093 stub_reloc_offset[nrelocs++] = size;
5094 }
5095 size += 4;
5096 break;
5097
5098 case ARM_TYPE:
5099 bfd_put_32 (stub_bfd, template_sequence[i].data,
5100 loc + size);
5101 /* Handle cases where the target is encoded within the
5102 instruction. */
5103 if (template_sequence[i].r_type == R_ARM_JUMP24)
5104 {
5105 stub_reloc_idx[nrelocs] = i;
5106 stub_reloc_offset[nrelocs++] = size;
5107 }
5108 size += 4;
5109 break;
5110
5111 case DATA_TYPE:
5112 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5113 stub_reloc_idx[nrelocs] = i;
5114 stub_reloc_offset[nrelocs++] = size;
5115 size += 4;
5116 break;
5117
5118 default:
5119 BFD_FAIL ();
5120 return FALSE;
5121 }
5122 }
5123
5124 if (just_allocated)
5125 stub_sec->size += size;
5126
5127 /* Stub size has already been computed in arm_size_one_stub. Check
5128 consistency. */
5129 BFD_ASSERT (size == stub_entry->stub_size);
5130
5131 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5132 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5133 sym_value |= 1;
5134
5135 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5136 to relocate in each stub. */
5137 removed_sg_veneer =
5138 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5139 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5140
5141 for (i = 0; i < nrelocs; i++)
5142 {
5143 Elf_Internal_Rela rel;
5144 bfd_boolean unresolved_reloc;
5145 char *error_message;
5146 bfd_vma points_to =
5147 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5148
5149 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5150 rel.r_info = ELF32_R_INFO (0,
5151 template_sequence[stub_reloc_idx[i]].r_type);
5152 rel.r_addend = 0;
5153
5154 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5155 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5156 template should refer back to the instruction after the original
5157 branch. We use target_section as Cortex-A8 erratum workaround stubs
5158 are only generated when both source and target are in the same
5159 section. */
5160 points_to = stub_entry->target_section->output_section->vma
5161 + stub_entry->target_section->output_offset
5162 + stub_entry->source_value;
5163
5164 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5165 (template_sequence[stub_reloc_idx[i]].r_type),
5166 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5167 points_to, info, stub_entry->target_section, "", STT_FUNC,
5168 stub_entry->branch_type,
5169 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5170 &error_message);
5171 }
5172
5173 return TRUE;
5174 #undef MAXRELOCS
5175 }
5176
5177 /* Calculate the template, template size and instruction size for a stub.
5178 Return value is the instruction size. */
5179
5180 static unsigned int
5181 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5182 const insn_sequence **stub_template,
5183 int *stub_template_size)
5184 {
5185 const insn_sequence *template_sequence = NULL;
5186 int template_size = 0, i;
5187 unsigned int size;
5188
5189 template_sequence = stub_definitions[stub_type].template_sequence;
5190 if (stub_template)
5191 *stub_template = template_sequence;
5192
5193 template_size = stub_definitions[stub_type].template_size;
5194 if (stub_template_size)
5195 *stub_template_size = template_size;
5196
5197 size = 0;
5198 for (i = 0; i < template_size; i++)
5199 {
5200 switch (template_sequence[i].type)
5201 {
5202 case THUMB16_TYPE:
5203 size += 2;
5204 break;
5205
5206 case ARM_TYPE:
5207 case THUMB32_TYPE:
5208 case DATA_TYPE:
5209 size += 4;
5210 break;
5211
5212 default:
5213 BFD_FAIL ();
5214 return 0;
5215 }
5216 }
5217
5218 return size;
5219 }
5220
5221 /* As above, but don't actually build the stub. Just bump offset so
5222 we know stub section sizes. */
5223
5224 static bfd_boolean
5225 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5226 void *in_arg ATTRIBUTE_UNUSED)
5227 {
5228 struct elf32_arm_stub_hash_entry *stub_entry;
5229 const insn_sequence *template_sequence;
5230 int template_size, size;
5231
5232 /* Massage our args to the form they really have. */
5233 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5234
5235 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5236 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5237
5238 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5239 &template_size);
5240
5241 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5242 if (stub_entry->stub_template_size)
5243 {
5244 stub_entry->stub_size = size;
5245 stub_entry->stub_template = template_sequence;
5246 stub_entry->stub_template_size = template_size;
5247 }
5248
5249 /* Already accounted for. */
5250 if (stub_entry->stub_offset != (bfd_vma) -1)
5251 return TRUE;
5252
5253 size = (size + 7) & ~7;
5254 stub_entry->stub_sec->size += size;
5255
5256 return TRUE;
5257 }
5258
5259 /* External entry points for sizing and building linker stubs. */
5260
5261 /* Set up various things so that we can make a list of input sections
5262 for each output section included in the link. Returns -1 on error,
5263 0 when no stubs will be needed, and 1 on success. */
5264
5265 int
5266 elf32_arm_setup_section_lists (bfd *output_bfd,
5267 struct bfd_link_info *info)
5268 {
5269 bfd *input_bfd;
5270 unsigned int bfd_count;
5271 unsigned int top_id, top_index;
5272 asection *section;
5273 asection **input_list, **list;
5274 bfd_size_type amt;
5275 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5276
5277 if (htab == NULL)
5278 return 0;
5279 if (! is_elf_hash_table (htab))
5280 return 0;
5281
5282 /* Count the number of input BFDs and find the top input section id. */
5283 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5284 input_bfd != NULL;
5285 input_bfd = input_bfd->link.next)
5286 {
5287 bfd_count += 1;
5288 for (section = input_bfd->sections;
5289 section != NULL;
5290 section = section->next)
5291 {
5292 if (top_id < section->id)
5293 top_id = section->id;
5294 }
5295 }
5296 htab->bfd_count = bfd_count;
5297
5298 amt = sizeof (struct map_stub) * (top_id + 1);
5299 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5300 if (htab->stub_group == NULL)
5301 return -1;
5302 htab->top_id = top_id;
5303
5304 /* We can't use output_bfd->section_count here to find the top output
5305 section index as some sections may have been removed, and
5306 _bfd_strip_section_from_output doesn't renumber the indices. */
5307 for (section = output_bfd->sections, top_index = 0;
5308 section != NULL;
5309 section = section->next)
5310 {
5311 if (top_index < section->index)
5312 top_index = section->index;
5313 }
5314
5315 htab->top_index = top_index;
5316 amt = sizeof (asection *) * (top_index + 1);
5317 input_list = (asection **) bfd_malloc (amt);
5318 htab->input_list = input_list;
5319 if (input_list == NULL)
5320 return -1;
5321
5322 /* For sections we aren't interested in, mark their entries with a
5323 value we can check later. */
5324 list = input_list + top_index;
5325 do
5326 *list = bfd_abs_section_ptr;
5327 while (list-- != input_list);
5328
5329 for (section = output_bfd->sections;
5330 section != NULL;
5331 section = section->next)
5332 {
5333 if ((section->flags & SEC_CODE) != 0)
5334 input_list[section->index] = NULL;
5335 }
5336
5337 return 1;
5338 }
5339
5340 /* The linker repeatedly calls this function for each input section,
5341 in the order that input sections are linked into output sections.
5342 Build lists of input sections to determine groupings between which
5343 we may insert linker stubs. */
5344
5345 void
5346 elf32_arm_next_input_section (struct bfd_link_info *info,
5347 asection *isec)
5348 {
5349 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5350
5351 if (htab == NULL)
5352 return;
5353
5354 if (isec->output_section->index <= htab->top_index)
5355 {
5356 asection **list = htab->input_list + isec->output_section->index;
5357
5358 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5359 {
5360 /* Steal the link_sec pointer for our list. */
5361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5362 /* This happens to make the list in reverse order,
5363 which we reverse later. */
5364 PREV_SEC (isec) = *list;
5365 *list = isec;
5366 }
5367 }
5368 }
5369
5370 /* See whether we can group stub sections together. Grouping stub
5371 sections may result in fewer stubs. More importantly, we need to
5372 put all .init* and .fini* stubs at the end of the .init or
5373 .fini output sections respectively, because glibc splits the
5374 _init and _fini functions into multiple parts. Putting a stub in
5375 the middle of a function is not a good idea. */
5376
5377 static void
5378 group_sections (struct elf32_arm_link_hash_table *htab,
5379 bfd_size_type stub_group_size,
5380 bfd_boolean stubs_always_after_branch)
5381 {
5382 asection **list = htab->input_list;
5383
5384 do
5385 {
5386 asection *tail = *list;
5387 asection *head;
5388
5389 if (tail == bfd_abs_section_ptr)
5390 continue;
5391
5392 /* Reverse the list: we must avoid placing stubs at the
5393 beginning of the section because the beginning of the text
5394 section may be required for an interrupt vector in bare metal
5395 code. */
5396 #define NEXT_SEC PREV_SEC
5397 head = NULL;
5398 while (tail != NULL)
5399 {
5400 /* Pop from tail. */
5401 asection *item = tail;
5402 tail = PREV_SEC (item);
5403
5404 /* Push on head. */
5405 NEXT_SEC (item) = head;
5406 head = item;
5407 }
5408
5409 while (head != NULL)
5410 {
5411 asection *curr;
5412 asection *next;
5413 bfd_vma stub_group_start = head->output_offset;
5414 bfd_vma end_of_next;
5415
5416 curr = head;
5417 while (NEXT_SEC (curr) != NULL)
5418 {
5419 next = NEXT_SEC (curr);
5420 end_of_next = next->output_offset + next->size;
5421 if (end_of_next - stub_group_start >= stub_group_size)
5422 /* End of NEXT is too far from start, so stop. */
5423 break;
5424 /* Add NEXT to the group. */
5425 curr = next;
5426 }
5427
5428 /* OK, the size from the start to the start of CURR is less
5429 than stub_group_size and thus can be handled by one stub
5430 section. (Or the head section is itself larger than
5431 stub_group_size, in which case we may be toast.)
5432 We should really be keeping track of the total size of
5433 stubs added here, as stubs contribute to the final output
5434 section size. */
5435 do
5436 {
5437 next = NEXT_SEC (head);
5438 /* Set up this stub group. */
5439 htab->stub_group[head->id].link_sec = curr;
5440 }
5441 while (head != curr && (head = next) != NULL);
5442
5443 /* But wait, there's more! Input sections up to stub_group_size
5444 bytes after the stub section can be handled by it too. */
5445 if (!stubs_always_after_branch)
5446 {
5447 stub_group_start = curr->output_offset + curr->size;
5448
5449 while (next != NULL)
5450 {
5451 end_of_next = next->output_offset + next->size;
5452 if (end_of_next - stub_group_start >= stub_group_size)
5453 /* End of NEXT is too far from stubs, so stop. */
5454 break;
5455 /* Add NEXT to the stub group. */
5456 head = next;
5457 next = NEXT_SEC (head);
5458 htab->stub_group[head->id].link_sec = curr;
5459 }
5460 }
5461 head = next;
5462 }
5463 }
5464 while (list++ != htab->input_list + htab->top_index);
5465
5466 free (htab->input_list);
5467 #undef PREV_SEC
5468 #undef NEXT_SEC
5469 }
5470
5471 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5472 erratum fix. */
5473
5474 static int
5475 a8_reloc_compare (const void *a, const void *b)
5476 {
5477 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5478 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5479
5480 if (ra->from < rb->from)
5481 return -1;
5482 else if (ra->from > rb->from)
5483 return 1;
5484 else
5485 return 0;
5486 }
5487
5488 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5489 const char *, char **);
5490
5491 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5492 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5493 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5494 otherwise. */
5495
5496 static bfd_boolean
5497 cortex_a8_erratum_scan (bfd *input_bfd,
5498 struct bfd_link_info *info,
5499 struct a8_erratum_fix **a8_fixes_p,
5500 unsigned int *num_a8_fixes_p,
5501 unsigned int *a8_fix_table_size_p,
5502 struct a8_erratum_reloc *a8_relocs,
5503 unsigned int num_a8_relocs,
5504 unsigned prev_num_a8_fixes,
5505 bfd_boolean *stub_changed_p)
5506 {
5507 asection *section;
5508 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5509 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5510 unsigned int num_a8_fixes = *num_a8_fixes_p;
5511 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5512
5513 if (htab == NULL)
5514 return FALSE;
5515
5516 for (section = input_bfd->sections;
5517 section != NULL;
5518 section = section->next)
5519 {
5520 bfd_byte *contents = NULL;
5521 struct _arm_elf_section_data *sec_data;
5522 unsigned int span;
5523 bfd_vma base_vma;
5524
5525 if (elf_section_type (section) != SHT_PROGBITS
5526 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5527 || (section->flags & SEC_EXCLUDE) != 0
5528 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5529 || (section->output_section == bfd_abs_section_ptr))
5530 continue;
5531
5532 base_vma = section->output_section->vma + section->output_offset;
5533
5534 if (elf_section_data (section)->this_hdr.contents != NULL)
5535 contents = elf_section_data (section)->this_hdr.contents;
5536 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5537 return TRUE;
5538
5539 sec_data = elf32_arm_section_data (section);
5540
5541 for (span = 0; span < sec_data->mapcount; span++)
5542 {
5543 unsigned int span_start = sec_data->map[span].vma;
5544 unsigned int span_end = (span == sec_data->mapcount - 1)
5545 ? section->size : sec_data->map[span + 1].vma;
5546 unsigned int i;
5547 char span_type = sec_data->map[span].type;
5548 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5549
5550 if (span_type != 't')
5551 continue;
5552
5553 /* Span is entirely within a single 4KB region: skip scanning. */
5554 if (((base_vma + span_start) & ~0xfff)
5555 == ((base_vma + span_end) & ~0xfff))
5556 continue;
5557
5558 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5559
5560 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5561 * The branch target is in the same 4KB region as the
5562 first half of the branch.
5563 * The instruction before the branch is a 32-bit
5564 length non-branch instruction. */
5565 for (i = span_start; i < span_end;)
5566 {
5567 unsigned int insn = bfd_getl16 (&contents[i]);
5568 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5569 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5570
5571 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5572 insn_32bit = TRUE;
5573
5574 if (insn_32bit)
5575 {
5576 /* Load the rest of the insn (in manual-friendly order). */
5577 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5578
5579 /* Encoding T4: B<c>.W. */
5580 is_b = (insn & 0xf800d000) == 0xf0009000;
5581 /* Encoding T1: BL<c>.W. */
5582 is_bl = (insn & 0xf800d000) == 0xf000d000;
5583 /* Encoding T2: BLX<c>.W. */
5584 is_blx = (insn & 0xf800d000) == 0xf000c000;
5585 /* Encoding T3: B<c>.W (not permitted in IT block). */
5586 is_bcc = (insn & 0xf800d000) == 0xf0008000
5587 && (insn & 0x07f00000) != 0x03800000;
5588 }
5589
5590 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5591
5592 if (((base_vma + i) & 0xfff) == 0xffe
5593 && insn_32bit
5594 && is_32bit_branch
5595 && last_was_32bit
5596 && ! last_was_branch)
5597 {
5598 bfd_signed_vma offset = 0;
5599 bfd_boolean force_target_arm = FALSE;
5600 bfd_boolean force_target_thumb = FALSE;
5601 bfd_vma target;
5602 enum elf32_arm_stub_type stub_type = arm_stub_none;
5603 struct a8_erratum_reloc key, *found;
5604 bfd_boolean use_plt = FALSE;
5605
5606 key.from = base_vma + i;
5607 found = (struct a8_erratum_reloc *)
5608 bsearch (&key, a8_relocs, num_a8_relocs,
5609 sizeof (struct a8_erratum_reloc),
5610 &a8_reloc_compare);
5611
5612 if (found)
5613 {
5614 char *error_message = NULL;
5615 struct elf_link_hash_entry *entry;
5616
5617 /* We don't care about the error returned from this
5618 function, only if there is glue or not. */
5619 entry = find_thumb_glue (info, found->sym_name,
5620 &error_message);
5621
5622 if (entry)
5623 found->non_a8_stub = TRUE;
5624
5625 /* Keep a simpler condition, for the sake of clarity. */
5626 if (htab->root.splt != NULL && found->hash != NULL
5627 && found->hash->root.plt.offset != (bfd_vma) -1)
5628 use_plt = TRUE;
5629
5630 if (found->r_type == R_ARM_THM_CALL)
5631 {
5632 if (found->branch_type == ST_BRANCH_TO_ARM
5633 || use_plt)
5634 force_target_arm = TRUE;
5635 else
5636 force_target_thumb = TRUE;
5637 }
5638 }
5639
5640 /* Check if we have an offending branch instruction. */
5641
5642 if (found && found->non_a8_stub)
5643 /* We've already made a stub for this instruction, e.g.
5644 it's a long branch or a Thumb->ARM stub. Assume that
5645 stub will suffice to work around the A8 erratum (see
5646 setting of always_after_branch above). */
5647 ;
5648 else if (is_bcc)
5649 {
5650 offset = (insn & 0x7ff) << 1;
5651 offset |= (insn & 0x3f0000) >> 4;
5652 offset |= (insn & 0x2000) ? 0x40000 : 0;
5653 offset |= (insn & 0x800) ? 0x80000 : 0;
5654 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5655 if (offset & 0x100000)
5656 offset |= ~ ((bfd_signed_vma) 0xfffff);
5657 stub_type = arm_stub_a8_veneer_b_cond;
5658 }
5659 else if (is_b || is_bl || is_blx)
5660 {
5661 int s = (insn & 0x4000000) != 0;
5662 int j1 = (insn & 0x2000) != 0;
5663 int j2 = (insn & 0x800) != 0;
5664 int i1 = !(j1 ^ s);
5665 int i2 = !(j2 ^ s);
5666
5667 offset = (insn & 0x7ff) << 1;
5668 offset |= (insn & 0x3ff0000) >> 4;
5669 offset |= i2 << 22;
5670 offset |= i1 << 23;
5671 offset |= s << 24;
5672 if (offset & 0x1000000)
5673 offset |= ~ ((bfd_signed_vma) 0xffffff);
5674
5675 if (is_blx)
5676 offset &= ~ ((bfd_signed_vma) 3);
5677
5678 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5679 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5680 }
5681
5682 if (stub_type != arm_stub_none)
5683 {
5684 bfd_vma pc_for_insn = base_vma + i + 4;
5685
5686 /* The original instruction is a BL, but the target is
5687 an ARM instruction. If we were not making a stub,
5688 the BL would have been converted to a BLX. Use the
5689 BLX stub instead in that case. */
5690 if (htab->use_blx && force_target_arm
5691 && stub_type == arm_stub_a8_veneer_bl)
5692 {
5693 stub_type = arm_stub_a8_veneer_blx;
5694 is_blx = TRUE;
5695 is_bl = FALSE;
5696 }
5697 /* Conversely, if the original instruction was
5698 BLX but the target is Thumb mode, use the BL
5699 stub. */
5700 else if (force_target_thumb
5701 && stub_type == arm_stub_a8_veneer_blx)
5702 {
5703 stub_type = arm_stub_a8_veneer_bl;
5704 is_blx = FALSE;
5705 is_bl = TRUE;
5706 }
5707
5708 if (is_blx)
5709 pc_for_insn &= ~ ((bfd_vma) 3);
5710
5711 /* If we found a relocation, use the proper destination,
5712 not the offset in the (unrelocated) instruction.
5713 Note this is always done if we switched the stub type
5714 above. */
5715 if (found)
5716 offset =
5717 (bfd_signed_vma) (found->destination - pc_for_insn);
5718
5719 /* If the stub will use a Thumb-mode branch to a
5720 PLT target, redirect it to the preceding Thumb
5721 entry point. */
5722 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5723 offset -= PLT_THUMB_STUB_SIZE;
5724
5725 target = pc_for_insn + offset;
5726
5727 /* The BLX stub is ARM-mode code. Adjust the offset to
5728 take the different PC value (+8 instead of +4) into
5729 account. */
5730 if (stub_type == arm_stub_a8_veneer_blx)
5731 offset += 4;
5732
5733 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5734 {
5735 char *stub_name = NULL;
5736
5737 if (num_a8_fixes == a8_fix_table_size)
5738 {
5739 a8_fix_table_size *= 2;
5740 a8_fixes = (struct a8_erratum_fix *)
5741 bfd_realloc (a8_fixes,
5742 sizeof (struct a8_erratum_fix)
5743 * a8_fix_table_size);
5744 }
5745
5746 if (num_a8_fixes < prev_num_a8_fixes)
5747 {
5748 /* If we're doing a subsequent scan,
5749 check if we've found the same fix as
5750 before, and try and reuse the stub
5751 name. */
5752 stub_name = a8_fixes[num_a8_fixes].stub_name;
5753 if ((a8_fixes[num_a8_fixes].section != section)
5754 || (a8_fixes[num_a8_fixes].offset != i))
5755 {
5756 free (stub_name);
5757 stub_name = NULL;
5758 *stub_changed_p = TRUE;
5759 }
5760 }
5761
5762 if (!stub_name)
5763 {
5764 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5765 if (stub_name != NULL)
5766 sprintf (stub_name, "%x:%x", section->id, i);
5767 }
5768
5769 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5770 a8_fixes[num_a8_fixes].section = section;
5771 a8_fixes[num_a8_fixes].offset = i;
5772 a8_fixes[num_a8_fixes].target_offset =
5773 target - base_vma;
5774 a8_fixes[num_a8_fixes].orig_insn = insn;
5775 a8_fixes[num_a8_fixes].stub_name = stub_name;
5776 a8_fixes[num_a8_fixes].stub_type = stub_type;
5777 a8_fixes[num_a8_fixes].branch_type =
5778 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5779
5780 num_a8_fixes++;
5781 }
5782 }
5783 }
5784
5785 i += insn_32bit ? 4 : 2;
5786 last_was_32bit = insn_32bit;
5787 last_was_branch = is_32bit_branch;
5788 }
5789 }
5790
5791 if (elf_section_data (section)->this_hdr.contents == NULL)
5792 free (contents);
5793 }
5794
5795 *a8_fixes_p = a8_fixes;
5796 *num_a8_fixes_p = num_a8_fixes;
5797 *a8_fix_table_size_p = a8_fix_table_size;
5798
5799 return FALSE;
5800 }
5801
5802 /* Create or update a stub entry depending on whether the stub can already be
5803 found in HTAB. The stub is identified by:
5804 - its type STUB_TYPE
5805 - its source branch (note that several can share the same stub) whose
5806 section and relocation (if any) are given by SECTION and IRELA
5807 respectively
5808 - its target symbol whose input section, hash, name, value and branch type
5809 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5810 respectively
5811
5812 If found, the value of the stub's target symbol is updated from SYM_VALUE
5813 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5814 TRUE and the stub entry is initialized.
5815
5816 Returns the stub that was created or updated, or NULL if an error
5817 occurred. */
5818
5819 static struct elf32_arm_stub_hash_entry *
5820 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5821 enum elf32_arm_stub_type stub_type, asection *section,
5822 Elf_Internal_Rela *irela, asection *sym_sec,
5823 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5824 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5825 bfd_boolean *new_stub)
5826 {
5827 const asection *id_sec;
5828 char *stub_name;
5829 struct elf32_arm_stub_hash_entry *stub_entry;
5830 unsigned int r_type;
5831 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5832
5833 BFD_ASSERT (stub_type != arm_stub_none);
5834 *new_stub = FALSE;
5835
5836 if (sym_claimed)
5837 stub_name = sym_name;
5838 else
5839 {
5840 BFD_ASSERT (irela);
5841 BFD_ASSERT (section);
5842 BFD_ASSERT (section->id <= htab->top_id);
5843
5844 /* Support for grouping stub sections. */
5845 id_sec = htab->stub_group[section->id].link_sec;
5846
5847 /* Get the name of this stub. */
5848 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5849 stub_type);
5850 if (!stub_name)
5851 return NULL;
5852 }
5853
5854 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5855 FALSE);
5856 /* The proper stub has already been created, just update its value. */
5857 if (stub_entry != NULL)
5858 {
5859 if (!sym_claimed)
5860 free (stub_name);
5861 stub_entry->target_value = sym_value;
5862 return stub_entry;
5863 }
5864
5865 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5866 if (stub_entry == NULL)
5867 {
5868 if (!sym_claimed)
5869 free (stub_name);
5870 return NULL;
5871 }
5872
5873 stub_entry->target_value = sym_value;
5874 stub_entry->target_section = sym_sec;
5875 stub_entry->stub_type = stub_type;
5876 stub_entry->h = hash;
5877 stub_entry->branch_type = branch_type;
5878
5879 if (sym_claimed)
5880 stub_entry->output_name = sym_name;
5881 else
5882 {
5883 if (sym_name == NULL)
5884 sym_name = "unnamed";
5885 stub_entry->output_name = (char *)
5886 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5887 + strlen (sym_name));
5888 if (stub_entry->output_name == NULL)
5889 {
5890 free (stub_name);
5891 return NULL;
5892 }
5893
5894 /* For historical reasons, use the existing names for ARM-to-Thumb and
5895 Thumb-to-ARM stubs. */
5896 r_type = ELF32_R_TYPE (irela->r_info);
5897 if ((r_type == (unsigned int) R_ARM_THM_CALL
5898 || r_type == (unsigned int) R_ARM_THM_JUMP24
5899 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5900 && branch_type == ST_BRANCH_TO_ARM)
5901 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5902 else if ((r_type == (unsigned int) R_ARM_CALL
5903 || r_type == (unsigned int) R_ARM_JUMP24)
5904 && branch_type == ST_BRANCH_TO_THUMB)
5905 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5906 else
5907 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5908 }
5909
5910 *new_stub = TRUE;
5911 return stub_entry;
5912 }
5913
5914 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5915 gateway veneer to transition from non secure to secure state and create them
5916 accordingly.
5917
5918 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5919 defines the conditions that govern Secure Gateway veneer creation for a
5920 given symbol <SYM> as follows:
5921 - it has function type
5922 - it has non local binding
5923 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5924 same type, binding and value as <SYM> (called normal symbol).
5925 An entry function can handle secure state transition itself in which case
5926 its special symbol would have a different value from the normal symbol.
5927
5928 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5929 entry mapping while HTAB gives the name to hash entry mapping.
5930 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5931 created.
5932
5933 The return value gives whether a stub failed to be allocated. */
5934
5935 static bfd_boolean
5936 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5937 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5938 int *cmse_stub_created)
5939 {
5940 const struct elf_backend_data *bed;
5941 Elf_Internal_Shdr *symtab_hdr;
5942 unsigned i, j, sym_count, ext_start;
5943 Elf_Internal_Sym *cmse_sym, *local_syms;
5944 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5945 enum arm_st_branch_type branch_type;
5946 char *sym_name, *lsym_name;
5947 bfd_vma sym_value;
5948 asection *section;
5949 struct elf32_arm_stub_hash_entry *stub_entry;
5950 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5951
5952 bed = get_elf_backend_data (input_bfd);
5953 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5954 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5955 ext_start = symtab_hdr->sh_info;
5956 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5957 && out_attr[Tag_CPU_arch_profile].i == 'M');
5958
5959 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5960 if (local_syms == NULL)
5961 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5962 symtab_hdr->sh_info, 0, NULL, NULL,
5963 NULL);
5964 if (symtab_hdr->sh_info && local_syms == NULL)
5965 return FALSE;
5966
5967 /* Scan symbols. */
5968 for (i = 0; i < sym_count; i++)
5969 {
5970 cmse_invalid = FALSE;
5971
5972 if (i < ext_start)
5973 {
5974 cmse_sym = &local_syms[i];
5975 /* Not a special symbol. */
5976 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5977 continue;
5978 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5979 symtab_hdr->sh_link,
5980 cmse_sym->st_name);
5981 /* Special symbol with local binding. */
5982 cmse_invalid = TRUE;
5983 }
5984 else
5985 {
5986 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5987 sym_name = (char *) cmse_hash->root.root.root.string;
5988
5989 /* Not a special symbol. */
5990 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5991 continue;
5992
5993 /* Special symbol has incorrect binding or type. */
5994 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5995 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5996 || cmse_hash->root.type != STT_FUNC)
5997 cmse_invalid = TRUE;
5998 }
5999
6000 if (!is_v8m)
6001 {
6002 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6003 "ARMv8-M architecture or later"),
6004 input_bfd, sym_name);
6005 is_v8m = TRUE; /* Avoid multiple warning. */
6006 ret = FALSE;
6007 }
6008
6009 if (cmse_invalid)
6010 {
6011 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6012 " a global or weak function symbol"),
6013 input_bfd, sym_name);
6014 ret = FALSE;
6015 if (i < ext_start)
6016 continue;
6017 }
6018
6019 sym_name += strlen (CMSE_PREFIX);
6020 hash = (struct elf32_arm_link_hash_entry *)
6021 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6022
6023 /* No associated normal symbol or it is neither global nor weak. */
6024 if (!hash
6025 || (hash->root.root.type != bfd_link_hash_defined
6026 && hash->root.root.type != bfd_link_hash_defweak)
6027 || hash->root.type != STT_FUNC)
6028 {
6029 /* Initialize here to avoid warning about use of possibly
6030 uninitialized variable. */
6031 j = 0;
6032
6033 if (!hash)
6034 {
6035 /* Searching for a normal symbol with local binding. */
6036 for (; j < ext_start; j++)
6037 {
6038 lsym_name =
6039 bfd_elf_string_from_elf_section (input_bfd,
6040 symtab_hdr->sh_link,
6041 local_syms[j].st_name);
6042 if (!strcmp (sym_name, lsym_name))
6043 break;
6044 }
6045 }
6046
6047 if (hash || j < ext_start)
6048 {
6049 _bfd_error_handler
6050 (_("%pB: invalid standard symbol `%s'; it must be "
6051 "a global or weak function symbol"),
6052 input_bfd, sym_name);
6053 }
6054 else
6055 _bfd_error_handler
6056 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6057 ret = FALSE;
6058 if (!hash)
6059 continue;
6060 }
6061
6062 sym_value = hash->root.root.u.def.value;
6063 section = hash->root.root.u.def.section;
6064
6065 if (cmse_hash->root.root.u.def.section != section)
6066 {
6067 _bfd_error_handler
6068 (_("%pB: `%s' and its special symbol are in different sections"),
6069 input_bfd, sym_name);
6070 ret = FALSE;
6071 }
6072 if (cmse_hash->root.root.u.def.value != sym_value)
6073 continue; /* Ignore: could be an entry function starting with SG. */
6074
6075 /* If this section is a link-once section that will be discarded, then
6076 don't create any stubs. */
6077 if (section->output_section == NULL)
6078 {
6079 _bfd_error_handler
6080 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6081 continue;
6082 }
6083
6084 if (hash->root.size == 0)
6085 {
6086 _bfd_error_handler
6087 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6088 ret = FALSE;
6089 }
6090
6091 if (!ret)
6092 continue;
6093 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6094 stub_entry
6095 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6096 NULL, NULL, section, hash, sym_name,
6097 sym_value, branch_type, &new_stub);
6098
6099 if (stub_entry == NULL)
6100 ret = FALSE;
6101 else
6102 {
6103 BFD_ASSERT (new_stub);
6104 (*cmse_stub_created)++;
6105 }
6106 }
6107
6108 if (!symtab_hdr->contents)
6109 free (local_syms);
6110 return ret;
6111 }
6112
6113 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6114 code entry function, ie can be called from non secure code without using a
6115 veneer. */
6116
6117 static bfd_boolean
6118 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6119 {
6120 bfd_byte contents[4];
6121 uint32_t first_insn;
6122 asection *section;
6123 file_ptr offset;
6124 bfd *abfd;
6125
6126 /* Defined symbol of function type. */
6127 if (hash->root.root.type != bfd_link_hash_defined
6128 && hash->root.root.type != bfd_link_hash_defweak)
6129 return FALSE;
6130 if (hash->root.type != STT_FUNC)
6131 return FALSE;
6132
6133 /* Read first instruction. */
6134 section = hash->root.root.u.def.section;
6135 abfd = section->owner;
6136 offset = hash->root.root.u.def.value - section->vma;
6137 if (!bfd_get_section_contents (abfd, section, contents, offset,
6138 sizeof (contents)))
6139 return FALSE;
6140
6141 first_insn = bfd_get_32 (abfd, contents);
6142
6143 /* Starts by SG instruction. */
6144 return first_insn == 0xe97fe97f;
6145 }
6146
6147 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6148 secure gateway veneers (ie. the veneers was not in the input import library)
6149 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6150
6151 static bfd_boolean
6152 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6153 {
6154 struct elf32_arm_stub_hash_entry *stub_entry;
6155 struct bfd_link_info *info;
6156
6157 /* Massage our args to the form they really have. */
6158 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6159 info = (struct bfd_link_info *) gen_info;
6160
6161 if (info->out_implib_bfd)
6162 return TRUE;
6163
6164 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6165 return TRUE;
6166
6167 if (stub_entry->stub_offset == (bfd_vma) -1)
6168 _bfd_error_handler (" %s", stub_entry->output_name);
6169
6170 return TRUE;
6171 }
6172
6173 /* Set offset of each secure gateway veneers so that its address remain
6174 identical to the one in the input import library referred by
6175 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6176 (present in input import library but absent from the executable being
6177 linked) or if new veneers appeared and there is no output import library
6178 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6179 number of secure gateway veneers found in the input import library.
6180
6181 The function returns whether an error occurred. If no error occurred,
6182 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6183 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6184 veneer observed set for new veneers to be layed out after. */
6185
6186 static bfd_boolean
6187 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6188 struct elf32_arm_link_hash_table *htab,
6189 int *cmse_stub_created)
6190 {
6191 long symsize;
6192 char *sym_name;
6193 flagword flags;
6194 long i, symcount;
6195 bfd *in_implib_bfd;
6196 asection *stub_out_sec;
6197 bfd_boolean ret = TRUE;
6198 Elf_Internal_Sym *intsym;
6199 const char *out_sec_name;
6200 bfd_size_type cmse_stub_size;
6201 asymbol **sympp = NULL, *sym;
6202 struct elf32_arm_link_hash_entry *hash;
6203 const insn_sequence *cmse_stub_template;
6204 struct elf32_arm_stub_hash_entry *stub_entry;
6205 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6206 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6207 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6208
6209 /* No input secure gateway import library. */
6210 if (!htab->in_implib_bfd)
6211 return TRUE;
6212
6213 in_implib_bfd = htab->in_implib_bfd;
6214 if (!htab->cmse_implib)
6215 {
6216 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6217 "Gateway import libraries"), in_implib_bfd);
6218 return FALSE;
6219 }
6220
6221 /* Get symbol table size. */
6222 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6223 if (symsize < 0)
6224 return FALSE;
6225
6226 /* Read in the input secure gateway import library's symbol table. */
6227 sympp = (asymbol **) xmalloc (symsize);
6228 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6229 if (symcount < 0)
6230 {
6231 ret = FALSE;
6232 goto free_sym_buf;
6233 }
6234
6235 htab->new_cmse_stub_offset = 0;
6236 cmse_stub_size =
6237 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6238 &cmse_stub_template,
6239 &cmse_stub_template_size);
6240 out_sec_name =
6241 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6242 stub_out_sec =
6243 bfd_get_section_by_name (htab->obfd, out_sec_name);
6244 if (stub_out_sec != NULL)
6245 cmse_stub_sec_vma = stub_out_sec->vma;
6246
6247 /* Set addresses of veneers mentionned in input secure gateway import
6248 library's symbol table. */
6249 for (i = 0; i < symcount; i++)
6250 {
6251 sym = sympp[i];
6252 flags = sym->flags;
6253 sym_name = (char *) bfd_asymbol_name (sym);
6254 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6255
6256 if (sym->section != bfd_abs_section_ptr
6257 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6258 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6259 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6260 != ST_BRANCH_TO_THUMB))
6261 {
6262 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6263 "symbol should be absolute, global and "
6264 "refer to Thumb functions"),
6265 in_implib_bfd, sym_name);
6266 ret = FALSE;
6267 continue;
6268 }
6269
6270 veneer_value = bfd_asymbol_value (sym);
6271 stub_offset = veneer_value - cmse_stub_sec_vma;
6272 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6273 FALSE, FALSE);
6274 hash = (struct elf32_arm_link_hash_entry *)
6275 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6276
6277 /* Stub entry should have been created by cmse_scan or the symbol be of
6278 a secure function callable from non secure code. */
6279 if (!stub_entry && !hash)
6280 {
6281 bfd_boolean new_stub;
6282
6283 _bfd_error_handler
6284 (_("entry function `%s' disappeared from secure code"), sym_name);
6285 hash = (struct elf32_arm_link_hash_entry *)
6286 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6287 stub_entry
6288 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6289 NULL, NULL, bfd_abs_section_ptr, hash,
6290 sym_name, veneer_value,
6291 ST_BRANCH_TO_THUMB, &new_stub);
6292 if (stub_entry == NULL)
6293 ret = FALSE;
6294 else
6295 {
6296 BFD_ASSERT (new_stub);
6297 new_cmse_stubs_created++;
6298 (*cmse_stub_created)++;
6299 }
6300 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6301 stub_entry->stub_offset = stub_offset;
6302 }
6303 /* Symbol found is not callable from non secure code. */
6304 else if (!stub_entry)
6305 {
6306 if (!cmse_entry_fct_p (hash))
6307 {
6308 _bfd_error_handler (_("`%s' refers to a non entry function"),
6309 sym_name);
6310 ret = FALSE;
6311 }
6312 continue;
6313 }
6314 else
6315 {
6316 /* Only stubs for SG veneers should have been created. */
6317 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6318
6319 /* Check visibility hasn't changed. */
6320 if (!!(flags & BSF_GLOBAL)
6321 != (hash->root.root.type == bfd_link_hash_defined))
6322 _bfd_error_handler
6323 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6324 sym_name);
6325
6326 stub_entry->stub_offset = stub_offset;
6327 }
6328
6329 /* Size should match that of a SG veneer. */
6330 if (intsym->st_size != cmse_stub_size)
6331 {
6332 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6333 in_implib_bfd, sym_name);
6334 ret = FALSE;
6335 }
6336
6337 /* Previous veneer address is before current SG veneer section. */
6338 if (veneer_value < cmse_stub_sec_vma)
6339 {
6340 /* Avoid offset underflow. */
6341 if (stub_entry)
6342 stub_entry->stub_offset = 0;
6343 stub_offset = 0;
6344 ret = FALSE;
6345 }
6346
6347 /* Complain if stub offset not a multiple of stub size. */
6348 if (stub_offset % cmse_stub_size)
6349 {
6350 _bfd_error_handler
6351 (_("offset of veneer for entry function `%s' not a multiple of "
6352 "its size"), sym_name);
6353 ret = FALSE;
6354 }
6355
6356 if (!ret)
6357 continue;
6358
6359 new_cmse_stubs_created--;
6360 if (veneer_value < cmse_stub_array_start)
6361 cmse_stub_array_start = veneer_value;
6362 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6363 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6364 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6365 }
6366
6367 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6368 {
6369 BFD_ASSERT (new_cmse_stubs_created > 0);
6370 _bfd_error_handler
6371 (_("new entry function(s) introduced but no output import library "
6372 "specified:"));
6373 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6374 }
6375
6376 if (cmse_stub_array_start != cmse_stub_sec_vma)
6377 {
6378 _bfd_error_handler
6379 (_("start address of `%s' is different from previous link"),
6380 out_sec_name);
6381 ret = FALSE;
6382 }
6383
6384 free_sym_buf:
6385 free (sympp);
6386 return ret;
6387 }
6388
6389 /* Determine and set the size of the stub section for a final link.
6390
6391 The basic idea here is to examine all the relocations looking for
6392 PC-relative calls to a target that is unreachable with a "bl"
6393 instruction. */
6394
6395 bfd_boolean
6396 elf32_arm_size_stubs (bfd *output_bfd,
6397 bfd *stub_bfd,
6398 struct bfd_link_info *info,
6399 bfd_signed_vma group_size,
6400 asection * (*add_stub_section) (const char *, asection *,
6401 asection *,
6402 unsigned int),
6403 void (*layout_sections_again) (void))
6404 {
6405 bfd_boolean ret = TRUE;
6406 obj_attribute *out_attr;
6407 int cmse_stub_created = 0;
6408 bfd_size_type stub_group_size;
6409 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6410 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6411 struct a8_erratum_fix *a8_fixes = NULL;
6412 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6413 struct a8_erratum_reloc *a8_relocs = NULL;
6414 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6415
6416 if (htab == NULL)
6417 return FALSE;
6418
6419 if (htab->fix_cortex_a8)
6420 {
6421 a8_fixes = (struct a8_erratum_fix *)
6422 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6423 a8_relocs = (struct a8_erratum_reloc *)
6424 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6425 }
6426
6427 /* Propagate mach to stub bfd, because it may not have been
6428 finalized when we created stub_bfd. */
6429 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6430 bfd_get_mach (output_bfd));
6431
6432 /* Stash our params away. */
6433 htab->stub_bfd = stub_bfd;
6434 htab->add_stub_section = add_stub_section;
6435 htab->layout_sections_again = layout_sections_again;
6436 stubs_always_after_branch = group_size < 0;
6437
6438 out_attr = elf_known_obj_attributes_proc (output_bfd);
6439 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6440
6441 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6442 as the first half of a 32-bit branch straddling two 4K pages. This is a
6443 crude way of enforcing that. */
6444 if (htab->fix_cortex_a8)
6445 stubs_always_after_branch = 1;
6446
6447 if (group_size < 0)
6448 stub_group_size = -group_size;
6449 else
6450 stub_group_size = group_size;
6451
6452 if (stub_group_size == 1)
6453 {
6454 /* Default values. */
6455 /* Thumb branch range is +-4MB has to be used as the default
6456 maximum size (a given section can contain both ARM and Thumb
6457 code, so the worst case has to be taken into account).
6458
6459 This value is 24K less than that, which allows for 2025
6460 12-byte stubs. If we exceed that, then we will fail to link.
6461 The user will have to relink with an explicit group size
6462 option. */
6463 stub_group_size = 4170000;
6464 }
6465
6466 group_sections (htab, stub_group_size, stubs_always_after_branch);
6467
6468 /* If we're applying the cortex A8 fix, we need to determine the
6469 program header size now, because we cannot change it later --
6470 that could alter section placements. Notice the A8 erratum fix
6471 ends up requiring the section addresses to remain unchanged
6472 modulo the page size. That's something we cannot represent
6473 inside BFD, and we don't want to force the section alignment to
6474 be the page size. */
6475 if (htab->fix_cortex_a8)
6476 (*htab->layout_sections_again) ();
6477
6478 while (1)
6479 {
6480 bfd *input_bfd;
6481 unsigned int bfd_indx;
6482 asection *stub_sec;
6483 enum elf32_arm_stub_type stub_type;
6484 bfd_boolean stub_changed = FALSE;
6485 unsigned prev_num_a8_fixes = num_a8_fixes;
6486
6487 num_a8_fixes = 0;
6488 for (input_bfd = info->input_bfds, bfd_indx = 0;
6489 input_bfd != NULL;
6490 input_bfd = input_bfd->link.next, bfd_indx++)
6491 {
6492 Elf_Internal_Shdr *symtab_hdr;
6493 asection *section;
6494 Elf_Internal_Sym *local_syms = NULL;
6495
6496 if (!is_arm_elf (input_bfd)
6497 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6498 continue;
6499
6500 num_a8_relocs = 0;
6501
6502 /* We'll need the symbol table in a second. */
6503 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6504 if (symtab_hdr->sh_info == 0)
6505 continue;
6506
6507 /* Limit scan of symbols to object file whose profile is
6508 Microcontroller to not hinder performance in the general case. */
6509 if (m_profile && first_veneer_scan)
6510 {
6511 struct elf_link_hash_entry **sym_hashes;
6512
6513 sym_hashes = elf_sym_hashes (input_bfd);
6514 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6515 &cmse_stub_created))
6516 goto error_ret_free_local;
6517
6518 if (cmse_stub_created != 0)
6519 stub_changed = TRUE;
6520 }
6521
6522 /* Walk over each section attached to the input bfd. */
6523 for (section = input_bfd->sections;
6524 section != NULL;
6525 section = section->next)
6526 {
6527 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6528
6529 /* If there aren't any relocs, then there's nothing more
6530 to do. */
6531 if ((section->flags & SEC_RELOC) == 0
6532 || section->reloc_count == 0
6533 || (section->flags & SEC_CODE) == 0)
6534 continue;
6535
6536 /* If this section is a link-once section that will be
6537 discarded, then don't create any stubs. */
6538 if (section->output_section == NULL
6539 || section->output_section->owner != output_bfd)
6540 continue;
6541
6542 /* Get the relocs. */
6543 internal_relocs
6544 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6545 NULL, info->keep_memory);
6546 if (internal_relocs == NULL)
6547 goto error_ret_free_local;
6548
6549 /* Now examine each relocation. */
6550 irela = internal_relocs;
6551 irelaend = irela + section->reloc_count;
6552 for (; irela < irelaend; irela++)
6553 {
6554 unsigned int r_type, r_indx;
6555 asection *sym_sec;
6556 bfd_vma sym_value;
6557 bfd_vma destination;
6558 struct elf32_arm_link_hash_entry *hash;
6559 const char *sym_name;
6560 unsigned char st_type;
6561 enum arm_st_branch_type branch_type;
6562 bfd_boolean created_stub = FALSE;
6563
6564 r_type = ELF32_R_TYPE (irela->r_info);
6565 r_indx = ELF32_R_SYM (irela->r_info);
6566
6567 if (r_type >= (unsigned int) R_ARM_max)
6568 {
6569 bfd_set_error (bfd_error_bad_value);
6570 error_ret_free_internal:
6571 if (elf_section_data (section)->relocs == NULL)
6572 free (internal_relocs);
6573 /* Fall through. */
6574 error_ret_free_local:
6575 if (local_syms != NULL
6576 && (symtab_hdr->contents
6577 != (unsigned char *) local_syms))
6578 free (local_syms);
6579 return FALSE;
6580 }
6581
6582 hash = NULL;
6583 if (r_indx >= symtab_hdr->sh_info)
6584 hash = elf32_arm_hash_entry
6585 (elf_sym_hashes (input_bfd)
6586 [r_indx - symtab_hdr->sh_info]);
6587
6588 /* Only look for stubs on branch instructions, or
6589 non-relaxed TLSCALL */
6590 if ((r_type != (unsigned int) R_ARM_CALL)
6591 && (r_type != (unsigned int) R_ARM_THM_CALL)
6592 && (r_type != (unsigned int) R_ARM_JUMP24)
6593 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6594 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6595 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6596 && (r_type != (unsigned int) R_ARM_PLT32)
6597 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6598 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6599 && r_type == elf32_arm_tls_transition
6600 (info, r_type, &hash->root)
6601 && ((hash ? hash->tls_type
6602 : (elf32_arm_local_got_tls_type
6603 (input_bfd)[r_indx]))
6604 & GOT_TLS_GDESC) != 0))
6605 continue;
6606
6607 /* Now determine the call target, its name, value,
6608 section. */
6609 sym_sec = NULL;
6610 sym_value = 0;
6611 destination = 0;
6612 sym_name = NULL;
6613
6614 if (r_type == (unsigned int) R_ARM_TLS_CALL
6615 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6616 {
6617 /* A non-relaxed TLS call. The target is the
6618 plt-resident trampoline and nothing to do
6619 with the symbol. */
6620 BFD_ASSERT (htab->tls_trampoline > 0);
6621 sym_sec = htab->root.splt;
6622 sym_value = htab->tls_trampoline;
6623 hash = 0;
6624 st_type = STT_FUNC;
6625 branch_type = ST_BRANCH_TO_ARM;
6626 }
6627 else if (!hash)
6628 {
6629 /* It's a local symbol. */
6630 Elf_Internal_Sym *sym;
6631
6632 if (local_syms == NULL)
6633 {
6634 local_syms
6635 = (Elf_Internal_Sym *) symtab_hdr->contents;
6636 if (local_syms == NULL)
6637 local_syms
6638 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6639 symtab_hdr->sh_info, 0,
6640 NULL, NULL, NULL);
6641 if (local_syms == NULL)
6642 goto error_ret_free_internal;
6643 }
6644
6645 sym = local_syms + r_indx;
6646 if (sym->st_shndx == SHN_UNDEF)
6647 sym_sec = bfd_und_section_ptr;
6648 else if (sym->st_shndx == SHN_ABS)
6649 sym_sec = bfd_abs_section_ptr;
6650 else if (sym->st_shndx == SHN_COMMON)
6651 sym_sec = bfd_com_section_ptr;
6652 else
6653 sym_sec =
6654 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6655
6656 if (!sym_sec)
6657 /* This is an undefined symbol. It can never
6658 be resolved. */
6659 continue;
6660
6661 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6662 sym_value = sym->st_value;
6663 destination = (sym_value + irela->r_addend
6664 + sym_sec->output_offset
6665 + sym_sec->output_section->vma);
6666 st_type = ELF_ST_TYPE (sym->st_info);
6667 branch_type =
6668 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6669 sym_name
6670 = bfd_elf_string_from_elf_section (input_bfd,
6671 symtab_hdr->sh_link,
6672 sym->st_name);
6673 }
6674 else
6675 {
6676 /* It's an external symbol. */
6677 while (hash->root.root.type == bfd_link_hash_indirect
6678 || hash->root.root.type == bfd_link_hash_warning)
6679 hash = ((struct elf32_arm_link_hash_entry *)
6680 hash->root.root.u.i.link);
6681
6682 if (hash->root.root.type == bfd_link_hash_defined
6683 || hash->root.root.type == bfd_link_hash_defweak)
6684 {
6685 sym_sec = hash->root.root.u.def.section;
6686 sym_value = hash->root.root.u.def.value;
6687
6688 struct elf32_arm_link_hash_table *globals =
6689 elf32_arm_hash_table (info);
6690
6691 /* For a destination in a shared library,
6692 use the PLT stub as target address to
6693 decide whether a branch stub is
6694 needed. */
6695 if (globals != NULL
6696 && globals->root.splt != NULL
6697 && hash != NULL
6698 && hash->root.plt.offset != (bfd_vma) -1)
6699 {
6700 sym_sec = globals->root.splt;
6701 sym_value = hash->root.plt.offset;
6702 if (sym_sec->output_section != NULL)
6703 destination = (sym_value
6704 + sym_sec->output_offset
6705 + sym_sec->output_section->vma);
6706 }
6707 else if (sym_sec->output_section != NULL)
6708 destination = (sym_value + irela->r_addend
6709 + sym_sec->output_offset
6710 + sym_sec->output_section->vma);
6711 }
6712 else if ((hash->root.root.type == bfd_link_hash_undefined)
6713 || (hash->root.root.type == bfd_link_hash_undefweak))
6714 {
6715 /* For a shared library, use the PLT stub as
6716 target address to decide whether a long
6717 branch stub is needed.
6718 For absolute code, they cannot be handled. */
6719 struct elf32_arm_link_hash_table *globals =
6720 elf32_arm_hash_table (info);
6721
6722 if (globals != NULL
6723 && globals->root.splt != NULL
6724 && hash != NULL
6725 && hash->root.plt.offset != (bfd_vma) -1)
6726 {
6727 sym_sec = globals->root.splt;
6728 sym_value = hash->root.plt.offset;
6729 if (sym_sec->output_section != NULL)
6730 destination = (sym_value
6731 + sym_sec->output_offset
6732 + sym_sec->output_section->vma);
6733 }
6734 else
6735 continue;
6736 }
6737 else
6738 {
6739 bfd_set_error (bfd_error_bad_value);
6740 goto error_ret_free_internal;
6741 }
6742 st_type = hash->root.type;
6743 branch_type =
6744 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6745 sym_name = hash->root.root.root.string;
6746 }
6747
6748 do
6749 {
6750 bfd_boolean new_stub;
6751 struct elf32_arm_stub_hash_entry *stub_entry;
6752
6753 /* Determine what (if any) linker stub is needed. */
6754 stub_type = arm_type_of_stub (info, section, irela,
6755 st_type, &branch_type,
6756 hash, destination, sym_sec,
6757 input_bfd, sym_name);
6758 if (stub_type == arm_stub_none)
6759 break;
6760
6761 /* We've either created a stub for this reloc already,
6762 or we are about to. */
6763 stub_entry =
6764 elf32_arm_create_stub (htab, stub_type, section, irela,
6765 sym_sec, hash,
6766 (char *) sym_name, sym_value,
6767 branch_type, &new_stub);
6768
6769 created_stub = stub_entry != NULL;
6770 if (!created_stub)
6771 goto error_ret_free_internal;
6772 else if (!new_stub)
6773 break;
6774 else
6775 stub_changed = TRUE;
6776 }
6777 while (0);
6778
6779 /* Look for relocations which might trigger Cortex-A8
6780 erratum. */
6781 if (htab->fix_cortex_a8
6782 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6783 || r_type == (unsigned int) R_ARM_THM_JUMP19
6784 || r_type == (unsigned int) R_ARM_THM_CALL
6785 || r_type == (unsigned int) R_ARM_THM_XPC22))
6786 {
6787 bfd_vma from = section->output_section->vma
6788 + section->output_offset
6789 + irela->r_offset;
6790
6791 if ((from & 0xfff) == 0xffe)
6792 {
6793 /* Found a candidate. Note we haven't checked the
6794 destination is within 4K here: if we do so (and
6795 don't create an entry in a8_relocs) we can't tell
6796 that a branch should have been relocated when
6797 scanning later. */
6798 if (num_a8_relocs == a8_reloc_table_size)
6799 {
6800 a8_reloc_table_size *= 2;
6801 a8_relocs = (struct a8_erratum_reloc *)
6802 bfd_realloc (a8_relocs,
6803 sizeof (struct a8_erratum_reloc)
6804 * a8_reloc_table_size);
6805 }
6806
6807 a8_relocs[num_a8_relocs].from = from;
6808 a8_relocs[num_a8_relocs].destination = destination;
6809 a8_relocs[num_a8_relocs].r_type = r_type;
6810 a8_relocs[num_a8_relocs].branch_type = branch_type;
6811 a8_relocs[num_a8_relocs].sym_name = sym_name;
6812 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6813 a8_relocs[num_a8_relocs].hash = hash;
6814
6815 num_a8_relocs++;
6816 }
6817 }
6818 }
6819
6820 /* We're done with the internal relocs, free them. */
6821 if (elf_section_data (section)->relocs == NULL)
6822 free (internal_relocs);
6823 }
6824
6825 if (htab->fix_cortex_a8)
6826 {
6827 /* Sort relocs which might apply to Cortex-A8 erratum. */
6828 qsort (a8_relocs, num_a8_relocs,
6829 sizeof (struct a8_erratum_reloc),
6830 &a8_reloc_compare);
6831
6832 /* Scan for branches which might trigger Cortex-A8 erratum. */
6833 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6834 &num_a8_fixes, &a8_fix_table_size,
6835 a8_relocs, num_a8_relocs,
6836 prev_num_a8_fixes, &stub_changed)
6837 != 0)
6838 goto error_ret_free_local;
6839 }
6840
6841 if (local_syms != NULL
6842 && symtab_hdr->contents != (unsigned char *) local_syms)
6843 {
6844 if (!info->keep_memory)
6845 free (local_syms);
6846 else
6847 symtab_hdr->contents = (unsigned char *) local_syms;
6848 }
6849 }
6850
6851 if (first_veneer_scan
6852 && !set_cmse_veneer_addr_from_implib (info, htab,
6853 &cmse_stub_created))
6854 ret = FALSE;
6855
6856 if (prev_num_a8_fixes != num_a8_fixes)
6857 stub_changed = TRUE;
6858
6859 if (!stub_changed)
6860 break;
6861
6862 /* OK, we've added some stubs. Find out the new size of the
6863 stub sections. */
6864 for (stub_sec = htab->stub_bfd->sections;
6865 stub_sec != NULL;
6866 stub_sec = stub_sec->next)
6867 {
6868 /* Ignore non-stub sections. */
6869 if (!strstr (stub_sec->name, STUB_SUFFIX))
6870 continue;
6871
6872 stub_sec->size = 0;
6873 }
6874
6875 /* Add new SG veneers after those already in the input import
6876 library. */
6877 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6878 stub_type++)
6879 {
6880 bfd_vma *start_offset_p;
6881 asection **stub_sec_p;
6882
6883 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6884 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6885 if (start_offset_p == NULL)
6886 continue;
6887
6888 BFD_ASSERT (stub_sec_p != NULL);
6889 if (*stub_sec_p != NULL)
6890 (*stub_sec_p)->size = *start_offset_p;
6891 }
6892
6893 /* Compute stub section size, considering padding. */
6894 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6895 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6896 stub_type++)
6897 {
6898 int size, padding;
6899 asection **stub_sec_p;
6900
6901 padding = arm_dedicated_stub_section_padding (stub_type);
6902 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6903 /* Skip if no stub input section or no stub section padding
6904 required. */
6905 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6906 continue;
6907 /* Stub section padding required but no dedicated section. */
6908 BFD_ASSERT (stub_sec_p);
6909
6910 size = (*stub_sec_p)->size;
6911 size = (size + padding - 1) & ~(padding - 1);
6912 (*stub_sec_p)->size = size;
6913 }
6914
6915 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6916 if (htab->fix_cortex_a8)
6917 for (i = 0; i < num_a8_fixes; i++)
6918 {
6919 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6920 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6921
6922 if (stub_sec == NULL)
6923 return FALSE;
6924
6925 stub_sec->size
6926 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6927 NULL);
6928 }
6929
6930
6931 /* Ask the linker to do its stuff. */
6932 (*htab->layout_sections_again) ();
6933 first_veneer_scan = FALSE;
6934 }
6935
6936 /* Add stubs for Cortex-A8 erratum fixes now. */
6937 if (htab->fix_cortex_a8)
6938 {
6939 for (i = 0; i < num_a8_fixes; i++)
6940 {
6941 struct elf32_arm_stub_hash_entry *stub_entry;
6942 char *stub_name = a8_fixes[i].stub_name;
6943 asection *section = a8_fixes[i].section;
6944 unsigned int section_id = a8_fixes[i].section->id;
6945 asection *link_sec = htab->stub_group[section_id].link_sec;
6946 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6947 const insn_sequence *template_sequence;
6948 int template_size, size = 0;
6949
6950 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6951 TRUE, FALSE);
6952 if (stub_entry == NULL)
6953 {
6954 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6955 section->owner, stub_name);
6956 return FALSE;
6957 }
6958
6959 stub_entry->stub_sec = stub_sec;
6960 stub_entry->stub_offset = (bfd_vma) -1;
6961 stub_entry->id_sec = link_sec;
6962 stub_entry->stub_type = a8_fixes[i].stub_type;
6963 stub_entry->source_value = a8_fixes[i].offset;
6964 stub_entry->target_section = a8_fixes[i].section;
6965 stub_entry->target_value = a8_fixes[i].target_offset;
6966 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6967 stub_entry->branch_type = a8_fixes[i].branch_type;
6968
6969 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6970 &template_sequence,
6971 &template_size);
6972
6973 stub_entry->stub_size = size;
6974 stub_entry->stub_template = template_sequence;
6975 stub_entry->stub_template_size = template_size;
6976 }
6977
6978 /* Stash the Cortex-A8 erratum fix array for use later in
6979 elf32_arm_write_section(). */
6980 htab->a8_erratum_fixes = a8_fixes;
6981 htab->num_a8_erratum_fixes = num_a8_fixes;
6982 }
6983 else
6984 {
6985 htab->a8_erratum_fixes = NULL;
6986 htab->num_a8_erratum_fixes = 0;
6987 }
6988 return ret;
6989 }
6990
6991 /* Build all the stubs associated with the current output file. The
6992 stubs are kept in a hash table attached to the main linker hash
6993 table. We also set up the .plt entries for statically linked PIC
6994 functions here. This function is called via arm_elf_finish in the
6995 linker. */
6996
6997 bfd_boolean
6998 elf32_arm_build_stubs (struct bfd_link_info *info)
6999 {
7000 asection *stub_sec;
7001 struct bfd_hash_table *table;
7002 enum elf32_arm_stub_type stub_type;
7003 struct elf32_arm_link_hash_table *htab;
7004
7005 htab = elf32_arm_hash_table (info);
7006 if (htab == NULL)
7007 return FALSE;
7008
7009 for (stub_sec = htab->stub_bfd->sections;
7010 stub_sec != NULL;
7011 stub_sec = stub_sec->next)
7012 {
7013 bfd_size_type size;
7014
7015 /* Ignore non-stub sections. */
7016 if (!strstr (stub_sec->name, STUB_SUFFIX))
7017 continue;
7018
7019 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7020 must at least be done for stub section requiring padding and for SG
7021 veneers to ensure that a non secure code branching to a removed SG
7022 veneer causes an error. */
7023 size = stub_sec->size;
7024 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7025 if (stub_sec->contents == NULL && size != 0)
7026 return FALSE;
7027
7028 stub_sec->size = 0;
7029 }
7030
7031 /* Add new SG veneers after those already in the input import library. */
7032 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7033 {
7034 bfd_vma *start_offset_p;
7035 asection **stub_sec_p;
7036
7037 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7038 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7039 if (start_offset_p == NULL)
7040 continue;
7041
7042 BFD_ASSERT (stub_sec_p != NULL);
7043 if (*stub_sec_p != NULL)
7044 (*stub_sec_p)->size = *start_offset_p;
7045 }
7046
7047 /* Build the stubs as directed by the stub hash table. */
7048 table = &htab->stub_hash_table;
7049 bfd_hash_traverse (table, arm_build_one_stub, info);
7050 if (htab->fix_cortex_a8)
7051 {
7052 /* Place the cortex a8 stubs last. */
7053 htab->fix_cortex_a8 = -1;
7054 bfd_hash_traverse (table, arm_build_one_stub, info);
7055 }
7056
7057 return TRUE;
7058 }
7059
7060 /* Locate the Thumb encoded calling stub for NAME. */
7061
7062 static struct elf_link_hash_entry *
7063 find_thumb_glue (struct bfd_link_info *link_info,
7064 const char *name,
7065 char **error_message)
7066 {
7067 char *tmp_name;
7068 struct elf_link_hash_entry *hash;
7069 struct elf32_arm_link_hash_table *hash_table;
7070
7071 /* We need a pointer to the armelf specific hash table. */
7072 hash_table = elf32_arm_hash_table (link_info);
7073 if (hash_table == NULL)
7074 return NULL;
7075
7076 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7078
7079 BFD_ASSERT (tmp_name);
7080
7081 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7082
7083 hash = elf_link_hash_lookup
7084 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7085
7086 if (hash == NULL
7087 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7088 "Thumb", tmp_name, name) == -1)
7089 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7090
7091 free (tmp_name);
7092
7093 return hash;
7094 }
7095
7096 /* Locate the ARM encoded calling stub for NAME. */
7097
7098 static struct elf_link_hash_entry *
7099 find_arm_glue (struct bfd_link_info *link_info,
7100 const char *name,
7101 char **error_message)
7102 {
7103 char *tmp_name;
7104 struct elf_link_hash_entry *myh;
7105 struct elf32_arm_link_hash_table *hash_table;
7106
7107 /* We need a pointer to the elfarm specific hash table. */
7108 hash_table = elf32_arm_hash_table (link_info);
7109 if (hash_table == NULL)
7110 return NULL;
7111
7112 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7113 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7114
7115 BFD_ASSERT (tmp_name);
7116
7117 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7118
7119 myh = elf_link_hash_lookup
7120 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7121
7122 if (myh == NULL
7123 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7124 "ARM", tmp_name, name) == -1)
7125 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7126
7127 free (tmp_name);
7128
7129 return myh;
7130 }
7131
7132 /* ARM->Thumb glue (static images):
7133
7134 .arm
7135 __func_from_arm:
7136 ldr r12, __func_addr
7137 bx r12
7138 __func_addr:
7139 .word func @ behave as if you saw a ARM_32 reloc.
7140
7141 (v5t static images)
7142 .arm
7143 __func_from_arm:
7144 ldr pc, __func_addr
7145 __func_addr:
7146 .word func @ behave as if you saw a ARM_32 reloc.
7147
7148 (relocatable images)
7149 .arm
7150 __func_from_arm:
7151 ldr r12, __func_offset
7152 add r12, r12, pc
7153 bx r12
7154 __func_offset:
7155 .word func - . */
7156
7157 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7158 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7159 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7160 static const insn32 a2t3_func_addr_insn = 0x00000001;
7161
7162 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7163 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7164 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7165
7166 #define ARM2THUMB_PIC_GLUE_SIZE 16
7167 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7168 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7169 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7170
7171 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7172
7173 .thumb .thumb
7174 .align 2 .align 2
7175 __func_from_thumb: __func_from_thumb:
7176 bx pc push {r6, lr}
7177 nop ldr r6, __func_addr
7178 .arm mov lr, pc
7179 b func bx r6
7180 .arm
7181 ;; back_to_thumb
7182 ldmia r13! {r6, lr}
7183 bx lr
7184 __func_addr:
7185 .word func */
7186
7187 #define THUMB2ARM_GLUE_SIZE 8
7188 static const insn16 t2a1_bx_pc_insn = 0x4778;
7189 static const insn16 t2a2_noop_insn = 0x46c0;
7190 static const insn32 t2a3_b_insn = 0xea000000;
7191
7192 #define VFP11_ERRATUM_VENEER_SIZE 8
7193 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7194 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7195
7196 #define ARM_BX_VENEER_SIZE 12
7197 static const insn32 armbx1_tst_insn = 0xe3100001;
7198 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7199 static const insn32 armbx3_bx_insn = 0xe12fff10;
7200
7201 #ifndef ELFARM_NABI_C_INCLUDED
7202 static void
7203 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7204 {
7205 asection * s;
7206 bfd_byte * contents;
7207
7208 if (size == 0)
7209 {
7210 /* Do not include empty glue sections in the output. */
7211 if (abfd != NULL)
7212 {
7213 s = bfd_get_linker_section (abfd, name);
7214 if (s != NULL)
7215 s->flags |= SEC_EXCLUDE;
7216 }
7217 return;
7218 }
7219
7220 BFD_ASSERT (abfd != NULL);
7221
7222 s = bfd_get_linker_section (abfd, name);
7223 BFD_ASSERT (s != NULL);
7224
7225 contents = (bfd_byte *) bfd_alloc (abfd, size);
7226
7227 BFD_ASSERT (s->size == size);
7228 s->contents = contents;
7229 }
7230
7231 bfd_boolean
7232 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7233 {
7234 struct elf32_arm_link_hash_table * globals;
7235
7236 globals = elf32_arm_hash_table (info);
7237 BFD_ASSERT (globals != NULL);
7238
7239 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7240 globals->arm_glue_size,
7241 ARM2THUMB_GLUE_SECTION_NAME);
7242
7243 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7244 globals->thumb_glue_size,
7245 THUMB2ARM_GLUE_SECTION_NAME);
7246
7247 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7248 globals->vfp11_erratum_glue_size,
7249 VFP11_ERRATUM_VENEER_SECTION_NAME);
7250
7251 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7252 globals->stm32l4xx_erratum_glue_size,
7253 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7254
7255 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7256 globals->bx_glue_size,
7257 ARM_BX_GLUE_SECTION_NAME);
7258
7259 return TRUE;
7260 }
7261
7262 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7263 returns the symbol identifying the stub. */
7264
7265 static struct elf_link_hash_entry *
7266 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7267 struct elf_link_hash_entry * h)
7268 {
7269 const char * name = h->root.root.string;
7270 asection * s;
7271 char * tmp_name;
7272 struct elf_link_hash_entry * myh;
7273 struct bfd_link_hash_entry * bh;
7274 struct elf32_arm_link_hash_table * globals;
7275 bfd_vma val;
7276 bfd_size_type size;
7277
7278 globals = elf32_arm_hash_table (link_info);
7279 BFD_ASSERT (globals != NULL);
7280 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7281
7282 s = bfd_get_linker_section
7283 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7284
7285 BFD_ASSERT (s != NULL);
7286
7287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7288 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7289
7290 BFD_ASSERT (tmp_name);
7291
7292 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7293
7294 myh = elf_link_hash_lookup
7295 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7296
7297 if (myh != NULL)
7298 {
7299 /* We've already seen this guy. */
7300 free (tmp_name);
7301 return myh;
7302 }
7303
7304 /* The only trick here is using hash_table->arm_glue_size as the value.
7305 Even though the section isn't allocated yet, this is where we will be
7306 putting it. The +1 on the value marks that the stub has not been
7307 output yet - not that it is a Thumb function. */
7308 bh = NULL;
7309 val = globals->arm_glue_size + 1;
7310 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7311 tmp_name, BSF_GLOBAL, s, val,
7312 NULL, TRUE, FALSE, &bh);
7313
7314 myh = (struct elf_link_hash_entry *) bh;
7315 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7316 myh->forced_local = 1;
7317
7318 free (tmp_name);
7319
7320 if (bfd_link_pic (link_info)
7321 || globals->root.is_relocatable_executable
7322 || globals->pic_veneer)
7323 size = ARM2THUMB_PIC_GLUE_SIZE;
7324 else if (globals->use_blx)
7325 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7326 else
7327 size = ARM2THUMB_STATIC_GLUE_SIZE;
7328
7329 s->size += size;
7330 globals->arm_glue_size += size;
7331
7332 return myh;
7333 }
7334
7335 /* Allocate space for ARMv4 BX veneers. */
7336
7337 static void
7338 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7339 {
7340 asection * s;
7341 struct elf32_arm_link_hash_table *globals;
7342 char *tmp_name;
7343 struct elf_link_hash_entry *myh;
7344 struct bfd_link_hash_entry *bh;
7345 bfd_vma val;
7346
7347 /* BX PC does not need a veneer. */
7348 if (reg == 15)
7349 return;
7350
7351 globals = elf32_arm_hash_table (link_info);
7352 BFD_ASSERT (globals != NULL);
7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7354
7355 /* Check if this veneer has already been allocated. */
7356 if (globals->bx_glue_offset[reg])
7357 return;
7358
7359 s = bfd_get_linker_section
7360 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7361
7362 BFD_ASSERT (s != NULL);
7363
7364 /* Add symbol for veneer. */
7365 tmp_name = (char *)
7366 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7367
7368 BFD_ASSERT (tmp_name);
7369
7370 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7371
7372 myh = elf_link_hash_lookup
7373 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7374
7375 BFD_ASSERT (myh == NULL);
7376
7377 bh = NULL;
7378 val = globals->bx_glue_size;
7379 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7380 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7381 NULL, TRUE, FALSE, &bh);
7382
7383 myh = (struct elf_link_hash_entry *) bh;
7384 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7385 myh->forced_local = 1;
7386
7387 s->size += ARM_BX_VENEER_SIZE;
7388 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7389 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7390 }
7391
7392
7393 /* Add an entry to the code/data map for section SEC. */
7394
7395 static void
7396 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7397 {
7398 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7399 unsigned int newidx;
7400
7401 if (sec_data->map == NULL)
7402 {
7403 sec_data->map = (elf32_arm_section_map *)
7404 bfd_malloc (sizeof (elf32_arm_section_map));
7405 sec_data->mapcount = 0;
7406 sec_data->mapsize = 1;
7407 }
7408
7409 newidx = sec_data->mapcount++;
7410
7411 if (sec_data->mapcount > sec_data->mapsize)
7412 {
7413 sec_data->mapsize *= 2;
7414 sec_data->map = (elf32_arm_section_map *)
7415 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7416 * sizeof (elf32_arm_section_map));
7417 }
7418
7419 if (sec_data->map)
7420 {
7421 sec_data->map[newidx].vma = vma;
7422 sec_data->map[newidx].type = type;
7423 }
7424 }
7425
7426
7427 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7428 veneers are handled for now. */
7429
7430 static bfd_vma
7431 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7432 elf32_vfp11_erratum_list *branch,
7433 bfd *branch_bfd,
7434 asection *branch_sec,
7435 unsigned int offset)
7436 {
7437 asection *s;
7438 struct elf32_arm_link_hash_table *hash_table;
7439 char *tmp_name;
7440 struct elf_link_hash_entry *myh;
7441 struct bfd_link_hash_entry *bh;
7442 bfd_vma val;
7443 struct _arm_elf_section_data *sec_data;
7444 elf32_vfp11_erratum_list *newerr;
7445
7446 hash_table = elf32_arm_hash_table (link_info);
7447 BFD_ASSERT (hash_table != NULL);
7448 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7449
7450 s = bfd_get_linker_section
7451 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7452
7453 sec_data = elf32_arm_section_data (s);
7454
7455 BFD_ASSERT (s != NULL);
7456
7457 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7458 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7459
7460 BFD_ASSERT (tmp_name);
7461
7462 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7463 hash_table->num_vfp11_fixes);
7464
7465 myh = elf_link_hash_lookup
7466 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7467
7468 BFD_ASSERT (myh == NULL);
7469
7470 bh = NULL;
7471 val = hash_table->vfp11_erratum_glue_size;
7472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7473 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7474 NULL, TRUE, FALSE, &bh);
7475
7476 myh = (struct elf_link_hash_entry *) bh;
7477 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7478 myh->forced_local = 1;
7479
7480 /* Link veneer back to calling location. */
7481 sec_data->erratumcount += 1;
7482 newerr = (elf32_vfp11_erratum_list *)
7483 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7484
7485 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7486 newerr->vma = -1;
7487 newerr->u.v.branch = branch;
7488 newerr->u.v.id = hash_table->num_vfp11_fixes;
7489 branch->u.b.veneer = newerr;
7490
7491 newerr->next = sec_data->erratumlist;
7492 sec_data->erratumlist = newerr;
7493
7494 /* A symbol for the return from the veneer. */
7495 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7496 hash_table->num_vfp11_fixes);
7497
7498 myh = elf_link_hash_lookup
7499 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7500
7501 if (myh != NULL)
7502 abort ();
7503
7504 bh = NULL;
7505 val = offset + 4;
7506 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7507 branch_sec, val, NULL, TRUE, FALSE, &bh);
7508
7509 myh = (struct elf_link_hash_entry *) bh;
7510 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7511 myh->forced_local = 1;
7512
7513 free (tmp_name);
7514
7515 /* Generate a mapping symbol for the veneer section, and explicitly add an
7516 entry for that symbol to the code/data map for the section. */
7517 if (hash_table->vfp11_erratum_glue_size == 0)
7518 {
7519 bh = NULL;
7520 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7521 ever requires this erratum fix. */
7522 _bfd_generic_link_add_one_symbol (link_info,
7523 hash_table->bfd_of_glue_owner, "$a",
7524 BSF_LOCAL, s, 0, NULL,
7525 TRUE, FALSE, &bh);
7526
7527 myh = (struct elf_link_hash_entry *) bh;
7528 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7529 myh->forced_local = 1;
7530
7531 /* The elf32_arm_init_maps function only cares about symbols from input
7532 BFDs. We must make a note of this generated mapping symbol
7533 ourselves so that code byteswapping works properly in
7534 elf32_arm_write_section. */
7535 elf32_arm_section_map_add (s, 'a', 0);
7536 }
7537
7538 s->size += VFP11_ERRATUM_VENEER_SIZE;
7539 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7540 hash_table->num_vfp11_fixes++;
7541
7542 /* The offset of the veneer. */
7543 return val;
7544 }
7545
7546 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7547 veneers need to be handled because used only in Cortex-M. */
7548
7549 static bfd_vma
7550 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7551 elf32_stm32l4xx_erratum_list *branch,
7552 bfd *branch_bfd,
7553 asection *branch_sec,
7554 unsigned int offset,
7555 bfd_size_type veneer_size)
7556 {
7557 asection *s;
7558 struct elf32_arm_link_hash_table *hash_table;
7559 char *tmp_name;
7560 struct elf_link_hash_entry *myh;
7561 struct bfd_link_hash_entry *bh;
7562 bfd_vma val;
7563 struct _arm_elf_section_data *sec_data;
7564 elf32_stm32l4xx_erratum_list *newerr;
7565
7566 hash_table = elf32_arm_hash_table (link_info);
7567 BFD_ASSERT (hash_table != NULL);
7568 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7569
7570 s = bfd_get_linker_section
7571 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7572
7573 BFD_ASSERT (s != NULL);
7574
7575 sec_data = elf32_arm_section_data (s);
7576
7577 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7578 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7579
7580 BFD_ASSERT (tmp_name);
7581
7582 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7583 hash_table->num_stm32l4xx_fixes);
7584
7585 myh = elf_link_hash_lookup
7586 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7587
7588 BFD_ASSERT (myh == NULL);
7589
7590 bh = NULL;
7591 val = hash_table->stm32l4xx_erratum_glue_size;
7592 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7593 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7594 NULL, TRUE, FALSE, &bh);
7595
7596 myh = (struct elf_link_hash_entry *) bh;
7597 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7598 myh->forced_local = 1;
7599
7600 /* Link veneer back to calling location. */
7601 sec_data->stm32l4xx_erratumcount += 1;
7602 newerr = (elf32_stm32l4xx_erratum_list *)
7603 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7604
7605 newerr->type = STM32L4XX_ERRATUM_VENEER;
7606 newerr->vma = -1;
7607 newerr->u.v.branch = branch;
7608 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7609 branch->u.b.veneer = newerr;
7610
7611 newerr->next = sec_data->stm32l4xx_erratumlist;
7612 sec_data->stm32l4xx_erratumlist = newerr;
7613
7614 /* A symbol for the return from the veneer. */
7615 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7616 hash_table->num_stm32l4xx_fixes);
7617
7618 myh = elf_link_hash_lookup
7619 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7620
7621 if (myh != NULL)
7622 abort ();
7623
7624 bh = NULL;
7625 val = offset + 4;
7626 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7627 branch_sec, val, NULL, TRUE, FALSE, &bh);
7628
7629 myh = (struct elf_link_hash_entry *) bh;
7630 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7631 myh->forced_local = 1;
7632
7633 free (tmp_name);
7634
7635 /* Generate a mapping symbol for the veneer section, and explicitly add an
7636 entry for that symbol to the code/data map for the section. */
7637 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7638 {
7639 bh = NULL;
7640 /* Creates a THUMB symbol since there is no other choice. */
7641 _bfd_generic_link_add_one_symbol (link_info,
7642 hash_table->bfd_of_glue_owner, "$t",
7643 BSF_LOCAL, s, 0, NULL,
7644 TRUE, FALSE, &bh);
7645
7646 myh = (struct elf_link_hash_entry *) bh;
7647 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7648 myh->forced_local = 1;
7649
7650 /* The elf32_arm_init_maps function only cares about symbols from input
7651 BFDs. We must make a note of this generated mapping symbol
7652 ourselves so that code byteswapping works properly in
7653 elf32_arm_write_section. */
7654 elf32_arm_section_map_add (s, 't', 0);
7655 }
7656
7657 s->size += veneer_size;
7658 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7659 hash_table->num_stm32l4xx_fixes++;
7660
7661 /* The offset of the veneer. */
7662 return val;
7663 }
7664
7665 #define ARM_GLUE_SECTION_FLAGS \
7666 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7667 | SEC_READONLY | SEC_LINKER_CREATED)
7668
7669 /* Create a fake section for use by the ARM backend of the linker. */
7670
7671 static bfd_boolean
7672 arm_make_glue_section (bfd * abfd, const char * name)
7673 {
7674 asection * sec;
7675
7676 sec = bfd_get_linker_section (abfd, name);
7677 if (sec != NULL)
7678 /* Already made. */
7679 return TRUE;
7680
7681 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7682
7683 if (sec == NULL
7684 || !bfd_set_section_alignment (abfd, sec, 2))
7685 return FALSE;
7686
7687 /* Set the gc mark to prevent the section from being removed by garbage
7688 collection, despite the fact that no relocs refer to this section. */
7689 sec->gc_mark = 1;
7690
7691 return TRUE;
7692 }
7693
7694 /* Set size of .plt entries. This function is called from the
7695 linker scripts in ld/emultempl/{armelf}.em. */
7696
7697 void
7698 bfd_elf32_arm_use_long_plt (void)
7699 {
7700 elf32_arm_use_long_plt_entry = TRUE;
7701 }
7702
7703 /* Add the glue sections to ABFD. This function is called from the
7704 linker scripts in ld/emultempl/{armelf}.em. */
7705
7706 bfd_boolean
7707 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7708 struct bfd_link_info *info)
7709 {
7710 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7711 bfd_boolean dostm32l4xx = globals
7712 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7713 bfd_boolean addglue;
7714
7715 /* If we are only performing a partial
7716 link do not bother adding the glue. */
7717 if (bfd_link_relocatable (info))
7718 return TRUE;
7719
7720 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7721 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7722 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7723 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7724
7725 if (!dostm32l4xx)
7726 return addglue;
7727
7728 return addglue
7729 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7730 }
7731
7732 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7733 ensures they are not marked for deletion by
7734 strip_excluded_output_sections () when veneers are going to be created
7735 later. Not doing so would trigger assert on empty section size in
7736 lang_size_sections_1 (). */
7737
7738 void
7739 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7740 {
7741 enum elf32_arm_stub_type stub_type;
7742
7743 /* If we are only performing a partial
7744 link do not bother adding the glue. */
7745 if (bfd_link_relocatable (info))
7746 return;
7747
7748 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7749 {
7750 asection *out_sec;
7751 const char *out_sec_name;
7752
7753 if (!arm_dedicated_stub_output_section_required (stub_type))
7754 continue;
7755
7756 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7757 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7758 if (out_sec != NULL)
7759 out_sec->flags |= SEC_KEEP;
7760 }
7761 }
7762
7763 /* Select a BFD to be used to hold the sections used by the glue code.
7764 This function is called from the linker scripts in ld/emultempl/
7765 {armelf/pe}.em. */
7766
7767 bfd_boolean
7768 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7769 {
7770 struct elf32_arm_link_hash_table *globals;
7771
7772 /* If we are only performing a partial link
7773 do not bother getting a bfd to hold the glue. */
7774 if (bfd_link_relocatable (info))
7775 return TRUE;
7776
7777 /* Make sure we don't attach the glue sections to a dynamic object. */
7778 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7779
7780 globals = elf32_arm_hash_table (info);
7781 BFD_ASSERT (globals != NULL);
7782
7783 if (globals->bfd_of_glue_owner != NULL)
7784 return TRUE;
7785
7786 /* Save the bfd for later use. */
7787 globals->bfd_of_glue_owner = abfd;
7788
7789 return TRUE;
7790 }
7791
7792 static void
7793 check_use_blx (struct elf32_arm_link_hash_table *globals)
7794 {
7795 int cpu_arch;
7796
7797 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7798 Tag_CPU_arch);
7799
7800 if (globals->fix_arm1176)
7801 {
7802 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7803 globals->use_blx = 1;
7804 }
7805 else
7806 {
7807 if (cpu_arch > TAG_CPU_ARCH_V4T)
7808 globals->use_blx = 1;
7809 }
7810 }
7811
7812 bfd_boolean
7813 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7814 struct bfd_link_info *link_info)
7815 {
7816 Elf_Internal_Shdr *symtab_hdr;
7817 Elf_Internal_Rela *internal_relocs = NULL;
7818 Elf_Internal_Rela *irel, *irelend;
7819 bfd_byte *contents = NULL;
7820
7821 asection *sec;
7822 struct elf32_arm_link_hash_table *globals;
7823
7824 /* If we are only performing a partial link do not bother
7825 to construct any glue. */
7826 if (bfd_link_relocatable (link_info))
7827 return TRUE;
7828
7829 /* Here we have a bfd that is to be included on the link. We have a
7830 hook to do reloc rummaging, before section sizes are nailed down. */
7831 globals = elf32_arm_hash_table (link_info);
7832 BFD_ASSERT (globals != NULL);
7833
7834 check_use_blx (globals);
7835
7836 if (globals->byteswap_code && !bfd_big_endian (abfd))
7837 {
7838 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7839 abfd);
7840 return FALSE;
7841 }
7842
7843 /* PR 5398: If we have not decided to include any loadable sections in
7844 the output then we will not have a glue owner bfd. This is OK, it
7845 just means that there is nothing else for us to do here. */
7846 if (globals->bfd_of_glue_owner == NULL)
7847 return TRUE;
7848
7849 /* Rummage around all the relocs and map the glue vectors. */
7850 sec = abfd->sections;
7851
7852 if (sec == NULL)
7853 return TRUE;
7854
7855 for (; sec != NULL; sec = sec->next)
7856 {
7857 if (sec->reloc_count == 0)
7858 continue;
7859
7860 if ((sec->flags & SEC_EXCLUDE) != 0)
7861 continue;
7862
7863 symtab_hdr = & elf_symtab_hdr (abfd);
7864
7865 /* Load the relocs. */
7866 internal_relocs
7867 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7868
7869 if (internal_relocs == NULL)
7870 goto error_return;
7871
7872 irelend = internal_relocs + sec->reloc_count;
7873 for (irel = internal_relocs; irel < irelend; irel++)
7874 {
7875 long r_type;
7876 unsigned long r_index;
7877
7878 struct elf_link_hash_entry *h;
7879
7880 r_type = ELF32_R_TYPE (irel->r_info);
7881 r_index = ELF32_R_SYM (irel->r_info);
7882
7883 /* These are the only relocation types we care about. */
7884 if ( r_type != R_ARM_PC24
7885 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7886 continue;
7887
7888 /* Get the section contents if we haven't done so already. */
7889 if (contents == NULL)
7890 {
7891 /* Get cached copy if it exists. */
7892 if (elf_section_data (sec)->this_hdr.contents != NULL)
7893 contents = elf_section_data (sec)->this_hdr.contents;
7894 else
7895 {
7896 /* Go get them off disk. */
7897 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7898 goto error_return;
7899 }
7900 }
7901
7902 if (r_type == R_ARM_V4BX)
7903 {
7904 int reg;
7905
7906 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7907 record_arm_bx_glue (link_info, reg);
7908 continue;
7909 }
7910
7911 /* If the relocation is not against a symbol it cannot concern us. */
7912 h = NULL;
7913
7914 /* We don't care about local symbols. */
7915 if (r_index < symtab_hdr->sh_info)
7916 continue;
7917
7918 /* This is an external symbol. */
7919 r_index -= symtab_hdr->sh_info;
7920 h = (struct elf_link_hash_entry *)
7921 elf_sym_hashes (abfd)[r_index];
7922
7923 /* If the relocation is against a static symbol it must be within
7924 the current section and so cannot be a cross ARM/Thumb relocation. */
7925 if (h == NULL)
7926 continue;
7927
7928 /* If the call will go through a PLT entry then we do not need
7929 glue. */
7930 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7931 continue;
7932
7933 switch (r_type)
7934 {
7935 case R_ARM_PC24:
7936 /* This one is a call from arm code. We need to look up
7937 the target of the call. If it is a thumb target, we
7938 insert glue. */
7939 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7940 == ST_BRANCH_TO_THUMB)
7941 record_arm_to_thumb_glue (link_info, h);
7942 break;
7943
7944 default:
7945 abort ();
7946 }
7947 }
7948
7949 if (contents != NULL
7950 && elf_section_data (sec)->this_hdr.contents != contents)
7951 free (contents);
7952 contents = NULL;
7953
7954 if (internal_relocs != NULL
7955 && elf_section_data (sec)->relocs != internal_relocs)
7956 free (internal_relocs);
7957 internal_relocs = NULL;
7958 }
7959
7960 return TRUE;
7961
7962 error_return:
7963 if (contents != NULL
7964 && elf_section_data (sec)->this_hdr.contents != contents)
7965 free (contents);
7966 if (internal_relocs != NULL
7967 && elf_section_data (sec)->relocs != internal_relocs)
7968 free (internal_relocs);
7969
7970 return FALSE;
7971 }
7972 #endif
7973
7974
7975 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7976
7977 void
7978 bfd_elf32_arm_init_maps (bfd *abfd)
7979 {
7980 Elf_Internal_Sym *isymbuf;
7981 Elf_Internal_Shdr *hdr;
7982 unsigned int i, localsyms;
7983
7984 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7985 if (! is_arm_elf (abfd))
7986 return;
7987
7988 if ((abfd->flags & DYNAMIC) != 0)
7989 return;
7990
7991 hdr = & elf_symtab_hdr (abfd);
7992 localsyms = hdr->sh_info;
7993
7994 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7995 should contain the number of local symbols, which should come before any
7996 global symbols. Mapping symbols are always local. */
7997 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7998 NULL);
7999
8000 /* No internal symbols read? Skip this BFD. */
8001 if (isymbuf == NULL)
8002 return;
8003
8004 for (i = 0; i < localsyms; i++)
8005 {
8006 Elf_Internal_Sym *isym = &isymbuf[i];
8007 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8008 const char *name;
8009
8010 if (sec != NULL
8011 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8012 {
8013 name = bfd_elf_string_from_elf_section (abfd,
8014 hdr->sh_link, isym->st_name);
8015
8016 if (bfd_is_arm_special_symbol_name (name,
8017 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8018 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8019 }
8020 }
8021 }
8022
8023
8024 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8025 say what they wanted. */
8026
8027 void
8028 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8029 {
8030 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8031 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8032
8033 if (globals == NULL)
8034 return;
8035
8036 if (globals->fix_cortex_a8 == -1)
8037 {
8038 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8039 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8040 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8041 || out_attr[Tag_CPU_arch_profile].i == 0))
8042 globals->fix_cortex_a8 = 1;
8043 else
8044 globals->fix_cortex_a8 = 0;
8045 }
8046 }
8047
8048
8049 void
8050 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8051 {
8052 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8053 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8054
8055 if (globals == NULL)
8056 return;
8057 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8058 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8059 {
8060 switch (globals->vfp11_fix)
8061 {
8062 case BFD_ARM_VFP11_FIX_DEFAULT:
8063 case BFD_ARM_VFP11_FIX_NONE:
8064 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8065 break;
8066
8067 default:
8068 /* Give a warning, but do as the user requests anyway. */
8069 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8070 "workaround is not necessary for target architecture"), obfd);
8071 }
8072 }
8073 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8074 /* For earlier architectures, we might need the workaround, but do not
8075 enable it by default. If users is running with broken hardware, they
8076 must enable the erratum fix explicitly. */
8077 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8078 }
8079
8080 void
8081 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8082 {
8083 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8084 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8085
8086 if (globals == NULL)
8087 return;
8088
8089 /* We assume only Cortex-M4 may require the fix. */
8090 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8091 || out_attr[Tag_CPU_arch_profile].i != 'M')
8092 {
8093 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8094 /* Give a warning, but do as the user requests anyway. */
8095 _bfd_error_handler
8096 (_("%pB: warning: selected STM32L4XX erratum "
8097 "workaround is not necessary for target architecture"), obfd);
8098 }
8099 }
8100
8101 enum bfd_arm_vfp11_pipe
8102 {
8103 VFP11_FMAC,
8104 VFP11_LS,
8105 VFP11_DS,
8106 VFP11_BAD
8107 };
8108
8109 /* Return a VFP register number. This is encoded as RX:X for single-precision
8110 registers, or X:RX for double-precision registers, where RX is the group of
8111 four bits in the instruction encoding and X is the single extension bit.
8112 RX and X fields are specified using their lowest (starting) bit. The return
8113 value is:
8114
8115 0...31: single-precision registers s0...s31
8116 32...63: double-precision registers d0...d31.
8117
8118 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8119 encounter VFP3 instructions, so we allow the full range for DP registers. */
8120
8121 static unsigned int
8122 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8123 unsigned int x)
8124 {
8125 if (is_double)
8126 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8127 else
8128 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8129 }
8130
8131 /* Set bits in *WMASK according to a register number REG as encoded by
8132 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8133
8134 static void
8135 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8136 {
8137 if (reg < 32)
8138 *wmask |= 1 << reg;
8139 else if (reg < 48)
8140 *wmask |= 3 << ((reg - 32) * 2);
8141 }
8142
8143 /* Return TRUE if WMASK overwrites anything in REGS. */
8144
8145 static bfd_boolean
8146 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8147 {
8148 int i;
8149
8150 for (i = 0; i < numregs; i++)
8151 {
8152 unsigned int reg = regs[i];
8153
8154 if (reg < 32 && (wmask & (1 << reg)) != 0)
8155 return TRUE;
8156
8157 reg -= 32;
8158
8159 if (reg >= 16)
8160 continue;
8161
8162 if ((wmask & (3 << (reg * 2))) != 0)
8163 return TRUE;
8164 }
8165
8166 return FALSE;
8167 }
8168
8169 /* In this function, we're interested in two things: finding input registers
8170 for VFP data-processing instructions, and finding the set of registers which
8171 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8172 hold the written set, so FLDM etc. are easy to deal with (we're only
8173 interested in 32 SP registers or 16 dp registers, due to the VFP version
8174 implemented by the chip in question). DP registers are marked by setting
8175 both SP registers in the write mask). */
8176
8177 static enum bfd_arm_vfp11_pipe
8178 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8179 int *numregs)
8180 {
8181 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8182 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8183
8184 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8185 {
8186 unsigned int pqrs;
8187 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8188 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8189
8190 pqrs = ((insn & 0x00800000) >> 20)
8191 | ((insn & 0x00300000) >> 19)
8192 | ((insn & 0x00000040) >> 6);
8193
8194 switch (pqrs)
8195 {
8196 case 0: /* fmac[sd]. */
8197 case 1: /* fnmac[sd]. */
8198 case 2: /* fmsc[sd]. */
8199 case 3: /* fnmsc[sd]. */
8200 vpipe = VFP11_FMAC;
8201 bfd_arm_vfp11_write_mask (destmask, fd);
8202 regs[0] = fd;
8203 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8204 regs[2] = fm;
8205 *numregs = 3;
8206 break;
8207
8208 case 4: /* fmul[sd]. */
8209 case 5: /* fnmul[sd]. */
8210 case 6: /* fadd[sd]. */
8211 case 7: /* fsub[sd]. */
8212 vpipe = VFP11_FMAC;
8213 goto vfp_binop;
8214
8215 case 8: /* fdiv[sd]. */
8216 vpipe = VFP11_DS;
8217 vfp_binop:
8218 bfd_arm_vfp11_write_mask (destmask, fd);
8219 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8220 regs[1] = fm;
8221 *numregs = 2;
8222 break;
8223
8224 case 15: /* extended opcode. */
8225 {
8226 unsigned int extn = ((insn >> 15) & 0x1e)
8227 | ((insn >> 7) & 1);
8228
8229 switch (extn)
8230 {
8231 case 0: /* fcpy[sd]. */
8232 case 1: /* fabs[sd]. */
8233 case 2: /* fneg[sd]. */
8234 case 8: /* fcmp[sd]. */
8235 case 9: /* fcmpe[sd]. */
8236 case 10: /* fcmpz[sd]. */
8237 case 11: /* fcmpez[sd]. */
8238 case 16: /* fuito[sd]. */
8239 case 17: /* fsito[sd]. */
8240 case 24: /* ftoui[sd]. */
8241 case 25: /* ftouiz[sd]. */
8242 case 26: /* ftosi[sd]. */
8243 case 27: /* ftosiz[sd]. */
8244 /* These instructions will not bounce due to underflow. */
8245 *numregs = 0;
8246 vpipe = VFP11_FMAC;
8247 break;
8248
8249 case 3: /* fsqrt[sd]. */
8250 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8251 registers to cause the erratum in previous instructions. */
8252 bfd_arm_vfp11_write_mask (destmask, fd);
8253 vpipe = VFP11_DS;
8254 break;
8255
8256 case 15: /* fcvt{ds,sd}. */
8257 {
8258 int rnum = 0;
8259
8260 bfd_arm_vfp11_write_mask (destmask, fd);
8261
8262 /* Only FCVTSD can underflow. */
8263 if ((insn & 0x100) != 0)
8264 regs[rnum++] = fm;
8265
8266 *numregs = rnum;
8267
8268 vpipe = VFP11_FMAC;
8269 }
8270 break;
8271
8272 default:
8273 return VFP11_BAD;
8274 }
8275 }
8276 break;
8277
8278 default:
8279 return VFP11_BAD;
8280 }
8281 }
8282 /* Two-register transfer. */
8283 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8284 {
8285 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8286
8287 if ((insn & 0x100000) == 0)
8288 {
8289 if (is_double)
8290 bfd_arm_vfp11_write_mask (destmask, fm);
8291 else
8292 {
8293 bfd_arm_vfp11_write_mask (destmask, fm);
8294 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8295 }
8296 }
8297
8298 vpipe = VFP11_LS;
8299 }
8300 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8301 {
8302 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8303 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8304
8305 switch (puw)
8306 {
8307 case 0: /* Two-reg transfer. We should catch these above. */
8308 abort ();
8309
8310 case 2: /* fldm[sdx]. */
8311 case 3:
8312 case 5:
8313 {
8314 unsigned int i, offset = insn & 0xff;
8315
8316 if (is_double)
8317 offset >>= 1;
8318
8319 for (i = fd; i < fd + offset; i++)
8320 bfd_arm_vfp11_write_mask (destmask, i);
8321 }
8322 break;
8323
8324 case 4: /* fld[sd]. */
8325 case 6:
8326 bfd_arm_vfp11_write_mask (destmask, fd);
8327 break;
8328
8329 default:
8330 return VFP11_BAD;
8331 }
8332
8333 vpipe = VFP11_LS;
8334 }
8335 /* Single-register transfer. Note L==0. */
8336 else if ((insn & 0x0f100e10) == 0x0e000a10)
8337 {
8338 unsigned int opcode = (insn >> 21) & 7;
8339 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8340
8341 switch (opcode)
8342 {
8343 case 0: /* fmsr/fmdlr. */
8344 case 1: /* fmdhr. */
8345 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8346 destination register. I don't know if this is exactly right,
8347 but it is the conservative choice. */
8348 bfd_arm_vfp11_write_mask (destmask, fn);
8349 break;
8350
8351 case 7: /* fmxr. */
8352 break;
8353 }
8354
8355 vpipe = VFP11_LS;
8356 }
8357
8358 return vpipe;
8359 }
8360
8361
8362 static int elf32_arm_compare_mapping (const void * a, const void * b);
8363
8364
8365 /* Look for potentially-troublesome code sequences which might trigger the
8366 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8367 (available from ARM) for details of the erratum. A short version is
8368 described in ld.texinfo. */
8369
8370 bfd_boolean
8371 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8372 {
8373 asection *sec;
8374 bfd_byte *contents = NULL;
8375 int state = 0;
8376 int regs[3], numregs = 0;
8377 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8378 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8379
8380 if (globals == NULL)
8381 return FALSE;
8382
8383 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8384 The states transition as follows:
8385
8386 0 -> 1 (vector) or 0 -> 2 (scalar)
8387 A VFP FMAC-pipeline instruction has been seen. Fill
8388 regs[0]..regs[numregs-1] with its input operands. Remember this
8389 instruction in 'first_fmac'.
8390
8391 1 -> 2
8392 Any instruction, except for a VFP instruction which overwrites
8393 regs[*].
8394
8395 1 -> 3 [ -> 0 ] or
8396 2 -> 3 [ -> 0 ]
8397 A VFP instruction has been seen which overwrites any of regs[*].
8398 We must make a veneer! Reset state to 0 before examining next
8399 instruction.
8400
8401 2 -> 0
8402 If we fail to match anything in state 2, reset to state 0 and reset
8403 the instruction pointer to the instruction after 'first_fmac'.
8404
8405 If the VFP11 vector mode is in use, there must be at least two unrelated
8406 instructions between anti-dependent VFP11 instructions to properly avoid
8407 triggering the erratum, hence the use of the extra state 1. */
8408
8409 /* If we are only performing a partial link do not bother
8410 to construct any glue. */
8411 if (bfd_link_relocatable (link_info))
8412 return TRUE;
8413
8414 /* Skip if this bfd does not correspond to an ELF image. */
8415 if (! is_arm_elf (abfd))
8416 return TRUE;
8417
8418 /* We should have chosen a fix type by the time we get here. */
8419 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8420
8421 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8422 return TRUE;
8423
8424 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8425 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8426 return TRUE;
8427
8428 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8429 {
8430 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8431 struct _arm_elf_section_data *sec_data;
8432
8433 /* If we don't have executable progbits, we're not interested in this
8434 section. Also skip if section is to be excluded. */
8435 if (elf_section_type (sec) != SHT_PROGBITS
8436 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8437 || (sec->flags & SEC_EXCLUDE) != 0
8438 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8439 || sec->output_section == bfd_abs_section_ptr
8440 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8441 continue;
8442
8443 sec_data = elf32_arm_section_data (sec);
8444
8445 if (sec_data->mapcount == 0)
8446 continue;
8447
8448 if (elf_section_data (sec)->this_hdr.contents != NULL)
8449 contents = elf_section_data (sec)->this_hdr.contents;
8450 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8451 goto error_return;
8452
8453 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8454 elf32_arm_compare_mapping);
8455
8456 for (span = 0; span < sec_data->mapcount; span++)
8457 {
8458 unsigned int span_start = sec_data->map[span].vma;
8459 unsigned int span_end = (span == sec_data->mapcount - 1)
8460 ? sec->size : sec_data->map[span + 1].vma;
8461 char span_type = sec_data->map[span].type;
8462
8463 /* FIXME: Only ARM mode is supported at present. We may need to
8464 support Thumb-2 mode also at some point. */
8465 if (span_type != 'a')
8466 continue;
8467
8468 for (i = span_start; i < span_end;)
8469 {
8470 unsigned int next_i = i + 4;
8471 unsigned int insn = bfd_big_endian (abfd)
8472 ? (contents[i] << 24)
8473 | (contents[i + 1] << 16)
8474 | (contents[i + 2] << 8)
8475 | contents[i + 3]
8476 : (contents[i + 3] << 24)
8477 | (contents[i + 2] << 16)
8478 | (contents[i + 1] << 8)
8479 | contents[i];
8480 unsigned int writemask = 0;
8481 enum bfd_arm_vfp11_pipe vpipe;
8482
8483 switch (state)
8484 {
8485 case 0:
8486 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8487 &numregs);
8488 /* I'm assuming the VFP11 erratum can trigger with denorm
8489 operands on either the FMAC or the DS pipeline. This might
8490 lead to slightly overenthusiastic veneer insertion. */
8491 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8492 {
8493 state = use_vector ? 1 : 2;
8494 first_fmac = i;
8495 veneer_of_insn = insn;
8496 }
8497 break;
8498
8499 case 1:
8500 {
8501 int other_regs[3], other_numregs;
8502 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8503 other_regs,
8504 &other_numregs);
8505 if (vpipe != VFP11_BAD
8506 && bfd_arm_vfp11_antidependency (writemask, regs,
8507 numregs))
8508 state = 3;
8509 else
8510 state = 2;
8511 }
8512 break;
8513
8514 case 2:
8515 {
8516 int other_regs[3], other_numregs;
8517 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8518 other_regs,
8519 &other_numregs);
8520 if (vpipe != VFP11_BAD
8521 && bfd_arm_vfp11_antidependency (writemask, regs,
8522 numregs))
8523 state = 3;
8524 else
8525 {
8526 state = 0;
8527 next_i = first_fmac + 4;
8528 }
8529 }
8530 break;
8531
8532 case 3:
8533 abort (); /* Should be unreachable. */
8534 }
8535
8536 if (state == 3)
8537 {
8538 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8539 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8540
8541 elf32_arm_section_data (sec)->erratumcount += 1;
8542
8543 newerr->u.b.vfp_insn = veneer_of_insn;
8544
8545 switch (span_type)
8546 {
8547 case 'a':
8548 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8549 break;
8550
8551 default:
8552 abort ();
8553 }
8554
8555 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8556 first_fmac);
8557
8558 newerr->vma = -1;
8559
8560 newerr->next = sec_data->erratumlist;
8561 sec_data->erratumlist = newerr;
8562
8563 state = 0;
8564 }
8565
8566 i = next_i;
8567 }
8568 }
8569
8570 if (contents != NULL
8571 && elf_section_data (sec)->this_hdr.contents != contents)
8572 free (contents);
8573 contents = NULL;
8574 }
8575
8576 return TRUE;
8577
8578 error_return:
8579 if (contents != NULL
8580 && elf_section_data (sec)->this_hdr.contents != contents)
8581 free (contents);
8582
8583 return FALSE;
8584 }
8585
8586 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8587 after sections have been laid out, using specially-named symbols. */
8588
8589 void
8590 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8591 struct bfd_link_info *link_info)
8592 {
8593 asection *sec;
8594 struct elf32_arm_link_hash_table *globals;
8595 char *tmp_name;
8596
8597 if (bfd_link_relocatable (link_info))
8598 return;
8599
8600 /* Skip if this bfd does not correspond to an ELF image. */
8601 if (! is_arm_elf (abfd))
8602 return;
8603
8604 globals = elf32_arm_hash_table (link_info);
8605 if (globals == NULL)
8606 return;
8607
8608 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8609 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8610
8611 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8612 {
8613 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8614 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8615
8616 for (; errnode != NULL; errnode = errnode->next)
8617 {
8618 struct elf_link_hash_entry *myh;
8619 bfd_vma vma;
8620
8621 switch (errnode->type)
8622 {
8623 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8624 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8625 /* Find veneer symbol. */
8626 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8627 errnode->u.b.veneer->u.v.id);
8628
8629 myh = elf_link_hash_lookup
8630 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8631
8632 if (myh == NULL)
8633 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8634 abfd, "VFP11", tmp_name);
8635
8636 vma = myh->root.u.def.section->output_section->vma
8637 + myh->root.u.def.section->output_offset
8638 + myh->root.u.def.value;
8639
8640 errnode->u.b.veneer->vma = vma;
8641 break;
8642
8643 case VFP11_ERRATUM_ARM_VENEER:
8644 case VFP11_ERRATUM_THUMB_VENEER:
8645 /* Find return location. */
8646 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8647 errnode->u.v.id);
8648
8649 myh = elf_link_hash_lookup
8650 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8651
8652 if (myh == NULL)
8653 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8654 abfd, "VFP11", tmp_name);
8655
8656 vma = myh->root.u.def.section->output_section->vma
8657 + myh->root.u.def.section->output_offset
8658 + myh->root.u.def.value;
8659
8660 errnode->u.v.branch->vma = vma;
8661 break;
8662
8663 default:
8664 abort ();
8665 }
8666 }
8667 }
8668
8669 free (tmp_name);
8670 }
8671
8672 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8673 return locations after sections have been laid out, using
8674 specially-named symbols. */
8675
8676 void
8677 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8678 struct bfd_link_info *link_info)
8679 {
8680 asection *sec;
8681 struct elf32_arm_link_hash_table *globals;
8682 char *tmp_name;
8683
8684 if (bfd_link_relocatable (link_info))
8685 return;
8686
8687 /* Skip if this bfd does not correspond to an ELF image. */
8688 if (! is_arm_elf (abfd))
8689 return;
8690
8691 globals = elf32_arm_hash_table (link_info);
8692 if (globals == NULL)
8693 return;
8694
8695 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8696 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8697
8698 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8699 {
8700 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8701 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8702
8703 for (; errnode != NULL; errnode = errnode->next)
8704 {
8705 struct elf_link_hash_entry *myh;
8706 bfd_vma vma;
8707
8708 switch (errnode->type)
8709 {
8710 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8711 /* Find veneer symbol. */
8712 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8713 errnode->u.b.veneer->u.v.id);
8714
8715 myh = elf_link_hash_lookup
8716 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8717
8718 if (myh == NULL)
8719 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8720 abfd, "STM32L4XX", tmp_name);
8721
8722 vma = myh->root.u.def.section->output_section->vma
8723 + myh->root.u.def.section->output_offset
8724 + myh->root.u.def.value;
8725
8726 errnode->u.b.veneer->vma = vma;
8727 break;
8728
8729 case STM32L4XX_ERRATUM_VENEER:
8730 /* Find return location. */
8731 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8732 errnode->u.v.id);
8733
8734 myh = elf_link_hash_lookup
8735 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8736
8737 if (myh == NULL)
8738 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8739 abfd, "STM32L4XX", tmp_name);
8740
8741 vma = myh->root.u.def.section->output_section->vma
8742 + myh->root.u.def.section->output_offset
8743 + myh->root.u.def.value;
8744
8745 errnode->u.v.branch->vma = vma;
8746 break;
8747
8748 default:
8749 abort ();
8750 }
8751 }
8752 }
8753
8754 free (tmp_name);
8755 }
8756
8757 static inline bfd_boolean
8758 is_thumb2_ldmia (const insn32 insn)
8759 {
8760 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8761 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8762 return (insn & 0xffd02000) == 0xe8900000;
8763 }
8764
8765 static inline bfd_boolean
8766 is_thumb2_ldmdb (const insn32 insn)
8767 {
8768 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8769 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8770 return (insn & 0xffd02000) == 0xe9100000;
8771 }
8772
8773 static inline bfd_boolean
8774 is_thumb2_vldm (const insn32 insn)
8775 {
8776 /* A6.5 Extension register load or store instruction
8777 A7.7.229
8778 We look for SP 32-bit and DP 64-bit registers.
8779 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8780 <list> is consecutive 64-bit registers
8781 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8782 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8783 <list> is consecutive 32-bit registers
8784 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8785 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8786 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8787 return
8788 (((insn & 0xfe100f00) == 0xec100b00) ||
8789 ((insn & 0xfe100f00) == 0xec100a00))
8790 && /* (IA without !). */
8791 (((((insn << 7) >> 28) & 0xd) == 0x4)
8792 /* (IA with !), includes VPOP (when reg number is SP). */
8793 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8794 /* (DB with !). */
8795 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8796 }
8797
8798 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8799 VLDM opcode and:
8800 - computes the number and the mode of memory accesses
8801 - decides if the replacement should be done:
8802 . replaces only if > 8-word accesses
8803 . or (testing purposes only) replaces all accesses. */
8804
8805 static bfd_boolean
8806 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8807 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8808 {
8809 int nb_words = 0;
8810
8811 /* The field encoding the register list is the same for both LDMIA
8812 and LDMDB encodings. */
8813 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8814 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8815 else if (is_thumb2_vldm (insn))
8816 nb_words = (insn & 0xff);
8817
8818 /* DEFAULT mode accounts for the real bug condition situation,
8819 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8820 return
8821 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8822 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8823 }
8824
8825 /* Look for potentially-troublesome code sequences which might trigger
8826 the STM STM32L4XX erratum. */
8827
8828 bfd_boolean
8829 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8830 struct bfd_link_info *link_info)
8831 {
8832 asection *sec;
8833 bfd_byte *contents = NULL;
8834 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8835
8836 if (globals == NULL)
8837 return FALSE;
8838
8839 /* If we are only performing a partial link do not bother
8840 to construct any glue. */
8841 if (bfd_link_relocatable (link_info))
8842 return TRUE;
8843
8844 /* Skip if this bfd does not correspond to an ELF image. */
8845 if (! is_arm_elf (abfd))
8846 return TRUE;
8847
8848 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8849 return TRUE;
8850
8851 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8852 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8853 return TRUE;
8854
8855 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8856 {
8857 unsigned int i, span;
8858 struct _arm_elf_section_data *sec_data;
8859
8860 /* If we don't have executable progbits, we're not interested in this
8861 section. Also skip if section is to be excluded. */
8862 if (elf_section_type (sec) != SHT_PROGBITS
8863 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8864 || (sec->flags & SEC_EXCLUDE) != 0
8865 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8866 || sec->output_section == bfd_abs_section_ptr
8867 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8868 continue;
8869
8870 sec_data = elf32_arm_section_data (sec);
8871
8872 if (sec_data->mapcount == 0)
8873 continue;
8874
8875 if (elf_section_data (sec)->this_hdr.contents != NULL)
8876 contents = elf_section_data (sec)->this_hdr.contents;
8877 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8878 goto error_return;
8879
8880 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8881 elf32_arm_compare_mapping);
8882
8883 for (span = 0; span < sec_data->mapcount; span++)
8884 {
8885 unsigned int span_start = sec_data->map[span].vma;
8886 unsigned int span_end = (span == sec_data->mapcount - 1)
8887 ? sec->size : sec_data->map[span + 1].vma;
8888 char span_type = sec_data->map[span].type;
8889 int itblock_current_pos = 0;
8890
8891 /* Only Thumb2 mode need be supported with this CM4 specific
8892 code, we should not encounter any arm mode eg span_type
8893 != 'a'. */
8894 if (span_type != 't')
8895 continue;
8896
8897 for (i = span_start; i < span_end;)
8898 {
8899 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8900 bfd_boolean insn_32bit = FALSE;
8901 bfd_boolean is_ldm = FALSE;
8902 bfd_boolean is_vldm = FALSE;
8903 bfd_boolean is_not_last_in_it_block = FALSE;
8904
8905 /* The first 16-bits of all 32-bit thumb2 instructions start
8906 with opcode[15..13]=0b111 and the encoded op1 can be anything
8907 except opcode[12..11]!=0b00.
8908 See 32-bit Thumb instruction encoding. */
8909 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8910 insn_32bit = TRUE;
8911
8912 /* Compute the predicate that tells if the instruction
8913 is concerned by the IT block
8914 - Creates an error if there is a ldm that is not
8915 last in the IT block thus cannot be replaced
8916 - Otherwise we can create a branch at the end of the
8917 IT block, it will be controlled naturally by IT
8918 with the proper pseudo-predicate
8919 - So the only interesting predicate is the one that
8920 tells that we are not on the last item of an IT
8921 block. */
8922 if (itblock_current_pos != 0)
8923 is_not_last_in_it_block = !!--itblock_current_pos;
8924
8925 if (insn_32bit)
8926 {
8927 /* Load the rest of the insn (in manual-friendly order). */
8928 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8929 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8930 is_vldm = is_thumb2_vldm (insn);
8931
8932 /* Veneers are created for (v)ldm depending on
8933 option flags and memory accesses conditions; but
8934 if the instruction is not the last instruction of
8935 an IT block, we cannot create a jump there, so we
8936 bail out. */
8937 if ((is_ldm || is_vldm)
8938 && stm32l4xx_need_create_replacing_stub
8939 (insn, globals->stm32l4xx_fix))
8940 {
8941 if (is_not_last_in_it_block)
8942 {
8943 _bfd_error_handler
8944 /* xgettext:c-format */
8945 (_("%pB(%pA+%#x): error: multiple load detected"
8946 " in non-last IT block instruction:"
8947 " STM32L4XX veneer cannot be generated; "
8948 "use gcc option -mrestrict-it to generate"
8949 " only one instruction per IT block"),
8950 abfd, sec, i);
8951 }
8952 else
8953 {
8954 elf32_stm32l4xx_erratum_list *newerr =
8955 (elf32_stm32l4xx_erratum_list *)
8956 bfd_zmalloc
8957 (sizeof (elf32_stm32l4xx_erratum_list));
8958
8959 elf32_arm_section_data (sec)
8960 ->stm32l4xx_erratumcount += 1;
8961 newerr->u.b.insn = insn;
8962 /* We create only thumb branches. */
8963 newerr->type =
8964 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8965 record_stm32l4xx_erratum_veneer
8966 (link_info, newerr, abfd, sec,
8967 i,
8968 is_ldm ?
8969 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8970 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8971 newerr->vma = -1;
8972 newerr->next = sec_data->stm32l4xx_erratumlist;
8973 sec_data->stm32l4xx_erratumlist = newerr;
8974 }
8975 }
8976 }
8977 else
8978 {
8979 /* A7.7.37 IT p208
8980 IT blocks are only encoded in T1
8981 Encoding T1: IT{x{y{z}}} <firstcond>
8982 1 0 1 1 - 1 1 1 1 - firstcond - mask
8983 if mask = '0000' then see 'related encodings'
8984 We don't deal with UNPREDICTABLE, just ignore these.
8985 There can be no nested IT blocks so an IT block
8986 is naturally a new one for which it is worth
8987 computing its size. */
8988 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8989 && ((insn & 0x000f) != 0x0000);
8990 /* If we have a new IT block we compute its size. */
8991 if (is_newitblock)
8992 {
8993 /* Compute the number of instructions controlled
8994 by the IT block, it will be used to decide
8995 whether we are inside an IT block or not. */
8996 unsigned int mask = insn & 0x000f;
8997 itblock_current_pos = 4 - ctz (mask);
8998 }
8999 }
9000
9001 i += insn_32bit ? 4 : 2;
9002 }
9003 }
9004
9005 if (contents != NULL
9006 && elf_section_data (sec)->this_hdr.contents != contents)
9007 free (contents);
9008 contents = NULL;
9009 }
9010
9011 return TRUE;
9012
9013 error_return:
9014 if (contents != NULL
9015 && elf_section_data (sec)->this_hdr.contents != contents)
9016 free (contents);
9017
9018 return FALSE;
9019 }
9020
9021 /* Set target relocation values needed during linking. */
9022
9023 void
9024 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9025 struct bfd_link_info *link_info,
9026 struct elf32_arm_params *params)
9027 {
9028 struct elf32_arm_link_hash_table *globals;
9029
9030 globals = elf32_arm_hash_table (link_info);
9031 if (globals == NULL)
9032 return;
9033
9034 globals->target1_is_rel = params->target1_is_rel;
9035 if (globals->fdpic_p)
9036 globals->target2_reloc = R_ARM_GOT32;
9037 else if (strcmp (params->target2_type, "rel") == 0)
9038 globals->target2_reloc = R_ARM_REL32;
9039 else if (strcmp (params->target2_type, "abs") == 0)
9040 globals->target2_reloc = R_ARM_ABS32;
9041 else if (strcmp (params->target2_type, "got-rel") == 0)
9042 globals->target2_reloc = R_ARM_GOT_PREL;
9043 else
9044 {
9045 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9046 params->target2_type);
9047 }
9048 globals->fix_v4bx = params->fix_v4bx;
9049 globals->use_blx |= params->use_blx;
9050 globals->vfp11_fix = params->vfp11_denorm_fix;
9051 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9052 if (globals->fdpic_p)
9053 globals->pic_veneer = 1;
9054 else
9055 globals->pic_veneer = params->pic_veneer;
9056 globals->fix_cortex_a8 = params->fix_cortex_a8;
9057 globals->fix_arm1176 = params->fix_arm1176;
9058 globals->cmse_implib = params->cmse_implib;
9059 globals->in_implib_bfd = params->in_implib_bfd;
9060
9061 BFD_ASSERT (is_arm_elf (output_bfd));
9062 elf_arm_tdata (output_bfd)->no_enum_size_warning
9063 = params->no_enum_size_warning;
9064 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9065 = params->no_wchar_size_warning;
9066 }
9067
9068 /* Replace the target offset of a Thumb bl or b.w instruction. */
9069
9070 static void
9071 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9072 {
9073 bfd_vma upper;
9074 bfd_vma lower;
9075 int reloc_sign;
9076
9077 BFD_ASSERT ((offset & 1) == 0);
9078
9079 upper = bfd_get_16 (abfd, insn);
9080 lower = bfd_get_16 (abfd, insn + 2);
9081 reloc_sign = (offset < 0) ? 1 : 0;
9082 upper = (upper & ~(bfd_vma) 0x7ff)
9083 | ((offset >> 12) & 0x3ff)
9084 | (reloc_sign << 10);
9085 lower = (lower & ~(bfd_vma) 0x2fff)
9086 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9087 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9088 | ((offset >> 1) & 0x7ff);
9089 bfd_put_16 (abfd, upper, insn);
9090 bfd_put_16 (abfd, lower, insn + 2);
9091 }
9092
9093 /* Thumb code calling an ARM function. */
9094
9095 static int
9096 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9097 const char * name,
9098 bfd * input_bfd,
9099 bfd * output_bfd,
9100 asection * input_section,
9101 bfd_byte * hit_data,
9102 asection * sym_sec,
9103 bfd_vma offset,
9104 bfd_signed_vma addend,
9105 bfd_vma val,
9106 char **error_message)
9107 {
9108 asection * s = 0;
9109 bfd_vma my_offset;
9110 long int ret_offset;
9111 struct elf_link_hash_entry * myh;
9112 struct elf32_arm_link_hash_table * globals;
9113
9114 myh = find_thumb_glue (info, name, error_message);
9115 if (myh == NULL)
9116 return FALSE;
9117
9118 globals = elf32_arm_hash_table (info);
9119 BFD_ASSERT (globals != NULL);
9120 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9121
9122 my_offset = myh->root.u.def.value;
9123
9124 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9125 THUMB2ARM_GLUE_SECTION_NAME);
9126
9127 BFD_ASSERT (s != NULL);
9128 BFD_ASSERT (s->contents != NULL);
9129 BFD_ASSERT (s->output_section != NULL);
9130
9131 if ((my_offset & 0x01) == 0x01)
9132 {
9133 if (sym_sec != NULL
9134 && sym_sec->owner != NULL
9135 && !INTERWORK_FLAG (sym_sec->owner))
9136 {
9137 _bfd_error_handler
9138 (_("%pB(%s): warning: interworking not enabled;"
9139 " first occurrence: %pB: %s call to %s"),
9140 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9141
9142 return FALSE;
9143 }
9144
9145 --my_offset;
9146 myh->root.u.def.value = my_offset;
9147
9148 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9149 s->contents + my_offset);
9150
9151 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9152 s->contents + my_offset + 2);
9153
9154 ret_offset =
9155 /* Address of destination of the stub. */
9156 ((bfd_signed_vma) val)
9157 - ((bfd_signed_vma)
9158 /* Offset from the start of the current section
9159 to the start of the stubs. */
9160 (s->output_offset
9161 /* Offset of the start of this stub from the start of the stubs. */
9162 + my_offset
9163 /* Address of the start of the current section. */
9164 + s->output_section->vma)
9165 /* The branch instruction is 4 bytes into the stub. */
9166 + 4
9167 /* ARM branches work from the pc of the instruction + 8. */
9168 + 8);
9169
9170 put_arm_insn (globals, output_bfd,
9171 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9172 s->contents + my_offset + 4);
9173 }
9174
9175 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9176
9177 /* Now go back and fix up the original BL insn to point to here. */
9178 ret_offset =
9179 /* Address of where the stub is located. */
9180 (s->output_section->vma + s->output_offset + my_offset)
9181 /* Address of where the BL is located. */
9182 - (input_section->output_section->vma + input_section->output_offset
9183 + offset)
9184 /* Addend in the relocation. */
9185 - addend
9186 /* Biassing for PC-relative addressing. */
9187 - 8;
9188
9189 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9190
9191 return TRUE;
9192 }
9193
9194 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9195
9196 static struct elf_link_hash_entry *
9197 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9198 const char * name,
9199 bfd * input_bfd,
9200 bfd * output_bfd,
9201 asection * sym_sec,
9202 bfd_vma val,
9203 asection * s,
9204 char ** error_message)
9205 {
9206 bfd_vma my_offset;
9207 long int ret_offset;
9208 struct elf_link_hash_entry * myh;
9209 struct elf32_arm_link_hash_table * globals;
9210
9211 myh = find_arm_glue (info, name, error_message);
9212 if (myh == NULL)
9213 return NULL;
9214
9215 globals = elf32_arm_hash_table (info);
9216 BFD_ASSERT (globals != NULL);
9217 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9218
9219 my_offset = myh->root.u.def.value;
9220
9221 if ((my_offset & 0x01) == 0x01)
9222 {
9223 if (sym_sec != NULL
9224 && sym_sec->owner != NULL
9225 && !INTERWORK_FLAG (sym_sec->owner))
9226 {
9227 _bfd_error_handler
9228 (_("%pB(%s): warning: interworking not enabled;"
9229 " first occurrence: %pB: %s call to %s"),
9230 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9231 }
9232
9233 --my_offset;
9234 myh->root.u.def.value = my_offset;
9235
9236 if (bfd_link_pic (info)
9237 || globals->root.is_relocatable_executable
9238 || globals->pic_veneer)
9239 {
9240 /* For relocatable objects we can't use absolute addresses,
9241 so construct the address from a relative offset. */
9242 /* TODO: If the offset is small it's probably worth
9243 constructing the address with adds. */
9244 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9245 s->contents + my_offset);
9246 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9247 s->contents + my_offset + 4);
9248 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9249 s->contents + my_offset + 8);
9250 /* Adjust the offset by 4 for the position of the add,
9251 and 8 for the pipeline offset. */
9252 ret_offset = (val - (s->output_offset
9253 + s->output_section->vma
9254 + my_offset + 12))
9255 | 1;
9256 bfd_put_32 (output_bfd, ret_offset,
9257 s->contents + my_offset + 12);
9258 }
9259 else if (globals->use_blx)
9260 {
9261 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9262 s->contents + my_offset);
9263
9264 /* It's a thumb address. Add the low order bit. */
9265 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9266 s->contents + my_offset + 4);
9267 }
9268 else
9269 {
9270 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9271 s->contents + my_offset);
9272
9273 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9274 s->contents + my_offset + 4);
9275
9276 /* It's a thumb address. Add the low order bit. */
9277 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9278 s->contents + my_offset + 8);
9279
9280 my_offset += 12;
9281 }
9282 }
9283
9284 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9285
9286 return myh;
9287 }
9288
9289 /* Arm code calling a Thumb function. */
9290
9291 static int
9292 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9293 const char * name,
9294 bfd * input_bfd,
9295 bfd * output_bfd,
9296 asection * input_section,
9297 bfd_byte * hit_data,
9298 asection * sym_sec,
9299 bfd_vma offset,
9300 bfd_signed_vma addend,
9301 bfd_vma val,
9302 char **error_message)
9303 {
9304 unsigned long int tmp;
9305 bfd_vma my_offset;
9306 asection * s;
9307 long int ret_offset;
9308 struct elf_link_hash_entry * myh;
9309 struct elf32_arm_link_hash_table * globals;
9310
9311 globals = elf32_arm_hash_table (info);
9312 BFD_ASSERT (globals != NULL);
9313 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9314
9315 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9316 ARM2THUMB_GLUE_SECTION_NAME);
9317 BFD_ASSERT (s != NULL);
9318 BFD_ASSERT (s->contents != NULL);
9319 BFD_ASSERT (s->output_section != NULL);
9320
9321 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9322 sym_sec, val, s, error_message);
9323 if (!myh)
9324 return FALSE;
9325
9326 my_offset = myh->root.u.def.value;
9327 tmp = bfd_get_32 (input_bfd, hit_data);
9328 tmp = tmp & 0xFF000000;
9329
9330 /* Somehow these are both 4 too far, so subtract 8. */
9331 ret_offset = (s->output_offset
9332 + my_offset
9333 + s->output_section->vma
9334 - (input_section->output_offset
9335 + input_section->output_section->vma
9336 + offset + addend)
9337 - 8);
9338
9339 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9340
9341 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9342
9343 return TRUE;
9344 }
9345
9346 /* Populate Arm stub for an exported Thumb function. */
9347
9348 static bfd_boolean
9349 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9350 {
9351 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9352 asection * s;
9353 struct elf_link_hash_entry * myh;
9354 struct elf32_arm_link_hash_entry *eh;
9355 struct elf32_arm_link_hash_table * globals;
9356 asection *sec;
9357 bfd_vma val;
9358 char *error_message;
9359
9360 eh = elf32_arm_hash_entry (h);
9361 /* Allocate stubs for exported Thumb functions on v4t. */
9362 if (eh->export_glue == NULL)
9363 return TRUE;
9364
9365 globals = elf32_arm_hash_table (info);
9366 BFD_ASSERT (globals != NULL);
9367 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9368
9369 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9370 ARM2THUMB_GLUE_SECTION_NAME);
9371 BFD_ASSERT (s != NULL);
9372 BFD_ASSERT (s->contents != NULL);
9373 BFD_ASSERT (s->output_section != NULL);
9374
9375 sec = eh->export_glue->root.u.def.section;
9376
9377 BFD_ASSERT (sec->output_section != NULL);
9378
9379 val = eh->export_glue->root.u.def.value + sec->output_offset
9380 + sec->output_section->vma;
9381
9382 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9383 h->root.u.def.section->owner,
9384 globals->obfd, sec, val, s,
9385 &error_message);
9386 BFD_ASSERT (myh);
9387 return TRUE;
9388 }
9389
9390 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9391
9392 static bfd_vma
9393 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9394 {
9395 bfd_byte *p;
9396 bfd_vma glue_addr;
9397 asection *s;
9398 struct elf32_arm_link_hash_table *globals;
9399
9400 globals = elf32_arm_hash_table (info);
9401 BFD_ASSERT (globals != NULL);
9402 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9403
9404 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9405 ARM_BX_GLUE_SECTION_NAME);
9406 BFD_ASSERT (s != NULL);
9407 BFD_ASSERT (s->contents != NULL);
9408 BFD_ASSERT (s->output_section != NULL);
9409
9410 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9411
9412 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9413
9414 if ((globals->bx_glue_offset[reg] & 1) == 0)
9415 {
9416 p = s->contents + glue_addr;
9417 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9418 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9419 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9420 globals->bx_glue_offset[reg] |= 1;
9421 }
9422
9423 return glue_addr + s->output_section->vma + s->output_offset;
9424 }
9425
9426 /* Generate Arm stubs for exported Thumb symbols. */
9427 static void
9428 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9429 struct bfd_link_info *link_info)
9430 {
9431 struct elf32_arm_link_hash_table * globals;
9432
9433 if (link_info == NULL)
9434 /* Ignore this if we are not called by the ELF backend linker. */
9435 return;
9436
9437 globals = elf32_arm_hash_table (link_info);
9438 if (globals == NULL)
9439 return;
9440
9441 /* If blx is available then exported Thumb symbols are OK and there is
9442 nothing to do. */
9443 if (globals->use_blx)
9444 return;
9445
9446 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9447 link_info);
9448 }
9449
9450 /* Reserve space for COUNT dynamic relocations in relocation selection
9451 SRELOC. */
9452
9453 static void
9454 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9455 bfd_size_type count)
9456 {
9457 struct elf32_arm_link_hash_table *htab;
9458
9459 htab = elf32_arm_hash_table (info);
9460 BFD_ASSERT (htab->root.dynamic_sections_created);
9461 if (sreloc == NULL)
9462 abort ();
9463 sreloc->size += RELOC_SIZE (htab) * count;
9464 }
9465
9466 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9467 dynamic, the relocations should go in SRELOC, otherwise they should
9468 go in the special .rel.iplt section. */
9469
9470 static void
9471 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9472 bfd_size_type count)
9473 {
9474 struct elf32_arm_link_hash_table *htab;
9475
9476 htab = elf32_arm_hash_table (info);
9477 if (!htab->root.dynamic_sections_created)
9478 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9479 else
9480 {
9481 BFD_ASSERT (sreloc != NULL);
9482 sreloc->size += RELOC_SIZE (htab) * count;
9483 }
9484 }
9485
9486 /* Add relocation REL to the end of relocation section SRELOC. */
9487
9488 static void
9489 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9490 asection *sreloc, Elf_Internal_Rela *rel)
9491 {
9492 bfd_byte *loc;
9493 struct elf32_arm_link_hash_table *htab;
9494
9495 htab = elf32_arm_hash_table (info);
9496 if (!htab->root.dynamic_sections_created
9497 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9498 sreloc = htab->root.irelplt;
9499 if (sreloc == NULL)
9500 abort ();
9501 loc = sreloc->contents;
9502 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9503 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9504 abort ();
9505 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9506 }
9507
9508 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9509 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9510 to .plt. */
9511
9512 static void
9513 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9514 bfd_boolean is_iplt_entry,
9515 union gotplt_union *root_plt,
9516 struct arm_plt_info *arm_plt)
9517 {
9518 struct elf32_arm_link_hash_table *htab;
9519 asection *splt;
9520 asection *sgotplt;
9521
9522 htab = elf32_arm_hash_table (info);
9523
9524 if (is_iplt_entry)
9525 {
9526 splt = htab->root.iplt;
9527 sgotplt = htab->root.igotplt;
9528
9529 /* NaCl uses a special first entry in .iplt too. */
9530 if (htab->nacl_p && splt->size == 0)
9531 splt->size += htab->plt_header_size;
9532
9533 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9534 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9535 }
9536 else
9537 {
9538 splt = htab->root.splt;
9539 sgotplt = htab->root.sgotplt;
9540
9541 if (htab->fdpic_p)
9542 {
9543 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9544 /* For lazy binding, relocations will be put into .rel.plt, in
9545 .rel.got otherwise. */
9546 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9547 if (info->flags & DF_BIND_NOW)
9548 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9549 else
9550 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9551 }
9552 else
9553 {
9554 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9555 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9556 }
9557
9558 /* If this is the first .plt entry, make room for the special
9559 first entry. */
9560 if (splt->size == 0)
9561 splt->size += htab->plt_header_size;
9562
9563 htab->next_tls_desc_index++;
9564 }
9565
9566 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9567 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9568 splt->size += PLT_THUMB_STUB_SIZE;
9569 root_plt->offset = splt->size;
9570 splt->size += htab->plt_entry_size;
9571
9572 if (!htab->symbian_p)
9573 {
9574 /* We also need to make an entry in the .got.plt section, which
9575 will be placed in the .got section by the linker script. */
9576 if (is_iplt_entry)
9577 arm_plt->got_offset = sgotplt->size;
9578 else
9579 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9580 if (htab->fdpic_p)
9581 /* Function descriptor takes 64 bits in GOT. */
9582 sgotplt->size += 8;
9583 else
9584 sgotplt->size += 4;
9585 }
9586 }
9587
9588 static bfd_vma
9589 arm_movw_immediate (bfd_vma value)
9590 {
9591 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9592 }
9593
9594 static bfd_vma
9595 arm_movt_immediate (bfd_vma value)
9596 {
9597 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9598 }
9599
9600 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9601 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9602 Otherwise, DYNINDX is the index of the symbol in the dynamic
9603 symbol table and SYM_VALUE is undefined.
9604
9605 ROOT_PLT points to the offset of the PLT entry from the start of its
9606 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9607 bookkeeping information.
9608
9609 Returns FALSE if there was a problem. */
9610
9611 static bfd_boolean
9612 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9613 union gotplt_union *root_plt,
9614 struct arm_plt_info *arm_plt,
9615 int dynindx, bfd_vma sym_value)
9616 {
9617 struct elf32_arm_link_hash_table *htab;
9618 asection *sgot;
9619 asection *splt;
9620 asection *srel;
9621 bfd_byte *loc;
9622 bfd_vma plt_index;
9623 Elf_Internal_Rela rel;
9624 bfd_vma plt_header_size;
9625 bfd_vma got_header_size;
9626
9627 htab = elf32_arm_hash_table (info);
9628
9629 /* Pick the appropriate sections and sizes. */
9630 if (dynindx == -1)
9631 {
9632 splt = htab->root.iplt;
9633 sgot = htab->root.igotplt;
9634 srel = htab->root.irelplt;
9635
9636 /* There are no reserved entries in .igot.plt, and no special
9637 first entry in .iplt. */
9638 got_header_size = 0;
9639 plt_header_size = 0;
9640 }
9641 else
9642 {
9643 splt = htab->root.splt;
9644 sgot = htab->root.sgotplt;
9645 srel = htab->root.srelplt;
9646
9647 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9648 plt_header_size = htab->plt_header_size;
9649 }
9650 BFD_ASSERT (splt != NULL && srel != NULL);
9651
9652 /* Fill in the entry in the procedure linkage table. */
9653 if (htab->symbian_p)
9654 {
9655 BFD_ASSERT (dynindx >= 0);
9656 put_arm_insn (htab, output_bfd,
9657 elf32_arm_symbian_plt_entry[0],
9658 splt->contents + root_plt->offset);
9659 bfd_put_32 (output_bfd,
9660 elf32_arm_symbian_plt_entry[1],
9661 splt->contents + root_plt->offset + 4);
9662
9663 /* Fill in the entry in the .rel.plt section. */
9664 rel.r_offset = (splt->output_section->vma
9665 + splt->output_offset
9666 + root_plt->offset + 4);
9667 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9668
9669 /* Get the index in the procedure linkage table which
9670 corresponds to this symbol. This is the index of this symbol
9671 in all the symbols for which we are making plt entries. The
9672 first entry in the procedure linkage table is reserved. */
9673 plt_index = ((root_plt->offset - plt_header_size)
9674 / htab->plt_entry_size);
9675 }
9676 else
9677 {
9678 bfd_vma got_offset, got_address, plt_address;
9679 bfd_vma got_displacement, initial_got_entry;
9680 bfd_byte * ptr;
9681
9682 BFD_ASSERT (sgot != NULL);
9683
9684 /* Get the offset into the .(i)got.plt table of the entry that
9685 corresponds to this function. */
9686 got_offset = (arm_plt->got_offset & -2);
9687
9688 /* Get the index in the procedure linkage table which
9689 corresponds to this symbol. This is the index of this symbol
9690 in all the symbols for which we are making plt entries.
9691 After the reserved .got.plt entries, all symbols appear in
9692 the same order as in .plt. */
9693 if (htab->fdpic_p)
9694 /* Function descriptor takes 8 bytes. */
9695 plt_index = (got_offset - got_header_size) / 8;
9696 else
9697 plt_index = (got_offset - got_header_size) / 4;
9698
9699 /* Calculate the address of the GOT entry. */
9700 got_address = (sgot->output_section->vma
9701 + sgot->output_offset
9702 + got_offset);
9703
9704 /* ...and the address of the PLT entry. */
9705 plt_address = (splt->output_section->vma
9706 + splt->output_offset
9707 + root_plt->offset);
9708
9709 ptr = splt->contents + root_plt->offset;
9710 if (htab->vxworks_p && bfd_link_pic (info))
9711 {
9712 unsigned int i;
9713 bfd_vma val;
9714
9715 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9716 {
9717 val = elf32_arm_vxworks_shared_plt_entry[i];
9718 if (i == 2)
9719 val |= got_address - sgot->output_section->vma;
9720 if (i == 5)
9721 val |= plt_index * RELOC_SIZE (htab);
9722 if (i == 2 || i == 5)
9723 bfd_put_32 (output_bfd, val, ptr);
9724 else
9725 put_arm_insn (htab, output_bfd, val, ptr);
9726 }
9727 }
9728 else if (htab->vxworks_p)
9729 {
9730 unsigned int i;
9731 bfd_vma val;
9732
9733 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9734 {
9735 val = elf32_arm_vxworks_exec_plt_entry[i];
9736 if (i == 2)
9737 val |= got_address;
9738 if (i == 4)
9739 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9740 if (i == 5)
9741 val |= plt_index * RELOC_SIZE (htab);
9742 if (i == 2 || i == 5)
9743 bfd_put_32 (output_bfd, val, ptr);
9744 else
9745 put_arm_insn (htab, output_bfd, val, ptr);
9746 }
9747
9748 loc = (htab->srelplt2->contents
9749 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9750
9751 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9752 referencing the GOT for this PLT entry. */
9753 rel.r_offset = plt_address + 8;
9754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9755 rel.r_addend = got_offset;
9756 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9757 loc += RELOC_SIZE (htab);
9758
9759 /* Create the R_ARM_ABS32 relocation referencing the
9760 beginning of the PLT for this GOT entry. */
9761 rel.r_offset = got_address;
9762 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9763 rel.r_addend = 0;
9764 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9765 }
9766 else if (htab->nacl_p)
9767 {
9768 /* Calculate the displacement between the PLT slot and the
9769 common tail that's part of the special initial PLT slot. */
9770 int32_t tail_displacement
9771 = ((splt->output_section->vma + splt->output_offset
9772 + ARM_NACL_PLT_TAIL_OFFSET)
9773 - (plt_address + htab->plt_entry_size + 4));
9774 BFD_ASSERT ((tail_displacement & 3) == 0);
9775 tail_displacement >>= 2;
9776
9777 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9778 || (-tail_displacement & 0xff000000) == 0);
9779
9780 /* Calculate the displacement between the PLT slot and the entry
9781 in the GOT. The offset accounts for the value produced by
9782 adding to pc in the penultimate instruction of the PLT stub. */
9783 got_displacement = (got_address
9784 - (plt_address + htab->plt_entry_size));
9785
9786 /* NaCl does not support interworking at all. */
9787 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9788
9789 put_arm_insn (htab, output_bfd,
9790 elf32_arm_nacl_plt_entry[0]
9791 | arm_movw_immediate (got_displacement),
9792 ptr + 0);
9793 put_arm_insn (htab, output_bfd,
9794 elf32_arm_nacl_plt_entry[1]
9795 | arm_movt_immediate (got_displacement),
9796 ptr + 4);
9797 put_arm_insn (htab, output_bfd,
9798 elf32_arm_nacl_plt_entry[2],
9799 ptr + 8);
9800 put_arm_insn (htab, output_bfd,
9801 elf32_arm_nacl_plt_entry[3]
9802 | (tail_displacement & 0x00ffffff),
9803 ptr + 12);
9804 }
9805 else if (htab->fdpic_p)
9806 {
9807 const bfd_vma *plt_entry = using_thumb_only(htab)
9808 ? elf32_arm_fdpic_thumb_plt_entry
9809 : elf32_arm_fdpic_plt_entry;
9810
9811 /* Fill-up Thumb stub if needed. */
9812 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9813 {
9814 put_thumb_insn (htab, output_bfd,
9815 elf32_arm_plt_thumb_stub[0], ptr - 4);
9816 put_thumb_insn (htab, output_bfd,
9817 elf32_arm_plt_thumb_stub[1], ptr - 2);
9818 }
9819 /* As we are using 32 bit instructions even for the Thumb
9820 version, we have to use 'put_arm_insn' instead of
9821 'put_thumb_insn'. */
9822 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9823 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9824 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9825 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9826 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9827
9828 if (!(info->flags & DF_BIND_NOW))
9829 {
9830 /* funcdesc_value_reloc_offset. */
9831 bfd_put_32 (output_bfd,
9832 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9833 ptr + 20);
9834 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9835 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9836 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9837 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9838 }
9839 }
9840 else if (using_thumb_only (htab))
9841 {
9842 /* PR ld/16017: Generate thumb only PLT entries. */
9843 if (!using_thumb2 (htab))
9844 {
9845 /* FIXME: We ought to be able to generate thumb-1 PLT
9846 instructions... */
9847 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9848 output_bfd);
9849 return FALSE;
9850 }
9851
9852 /* Calculate the displacement between the PLT slot and the entry in
9853 the GOT. The 12-byte offset accounts for the value produced by
9854 adding to pc in the 3rd instruction of the PLT stub. */
9855 got_displacement = got_address - (plt_address + 12);
9856
9857 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9858 instead of 'put_thumb_insn'. */
9859 put_arm_insn (htab, output_bfd,
9860 elf32_thumb2_plt_entry[0]
9861 | ((got_displacement & 0x000000ff) << 16)
9862 | ((got_displacement & 0x00000700) << 20)
9863 | ((got_displacement & 0x00000800) >> 1)
9864 | ((got_displacement & 0x0000f000) >> 12),
9865 ptr + 0);
9866 put_arm_insn (htab, output_bfd,
9867 elf32_thumb2_plt_entry[1]
9868 | ((got_displacement & 0x00ff0000) )
9869 | ((got_displacement & 0x07000000) << 4)
9870 | ((got_displacement & 0x08000000) >> 17)
9871 | ((got_displacement & 0xf0000000) >> 28),
9872 ptr + 4);
9873 put_arm_insn (htab, output_bfd,
9874 elf32_thumb2_plt_entry[2],
9875 ptr + 8);
9876 put_arm_insn (htab, output_bfd,
9877 elf32_thumb2_plt_entry[3],
9878 ptr + 12);
9879 }
9880 else
9881 {
9882 /* Calculate the displacement between the PLT slot and the
9883 entry in the GOT. The eight-byte offset accounts for the
9884 value produced by adding to pc in the first instruction
9885 of the PLT stub. */
9886 got_displacement = got_address - (plt_address + 8);
9887
9888 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9889 {
9890 put_thumb_insn (htab, output_bfd,
9891 elf32_arm_plt_thumb_stub[0], ptr - 4);
9892 put_thumb_insn (htab, output_bfd,
9893 elf32_arm_plt_thumb_stub[1], ptr - 2);
9894 }
9895
9896 if (!elf32_arm_use_long_plt_entry)
9897 {
9898 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9899
9900 put_arm_insn (htab, output_bfd,
9901 elf32_arm_plt_entry_short[0]
9902 | ((got_displacement & 0x0ff00000) >> 20),
9903 ptr + 0);
9904 put_arm_insn (htab, output_bfd,
9905 elf32_arm_plt_entry_short[1]
9906 | ((got_displacement & 0x000ff000) >> 12),
9907 ptr+ 4);
9908 put_arm_insn (htab, output_bfd,
9909 elf32_arm_plt_entry_short[2]
9910 | (got_displacement & 0x00000fff),
9911 ptr + 8);
9912 #ifdef FOUR_WORD_PLT
9913 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9914 #endif
9915 }
9916 else
9917 {
9918 put_arm_insn (htab, output_bfd,
9919 elf32_arm_plt_entry_long[0]
9920 | ((got_displacement & 0xf0000000) >> 28),
9921 ptr + 0);
9922 put_arm_insn (htab, output_bfd,
9923 elf32_arm_plt_entry_long[1]
9924 | ((got_displacement & 0x0ff00000) >> 20),
9925 ptr + 4);
9926 put_arm_insn (htab, output_bfd,
9927 elf32_arm_plt_entry_long[2]
9928 | ((got_displacement & 0x000ff000) >> 12),
9929 ptr+ 8);
9930 put_arm_insn (htab, output_bfd,
9931 elf32_arm_plt_entry_long[3]
9932 | (got_displacement & 0x00000fff),
9933 ptr + 12);
9934 }
9935 }
9936
9937 /* Fill in the entry in the .rel(a).(i)plt section. */
9938 rel.r_offset = got_address;
9939 rel.r_addend = 0;
9940 if (dynindx == -1)
9941 {
9942 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9943 The dynamic linker or static executable then calls SYM_VALUE
9944 to determine the correct run-time value of the .igot.plt entry. */
9945 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9946 initial_got_entry = sym_value;
9947 }
9948 else
9949 {
9950 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9951 used by PLT entry. */
9952 if (htab->fdpic_p)
9953 {
9954 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9955 initial_got_entry = 0;
9956 }
9957 else
9958 {
9959 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9960 initial_got_entry = (splt->output_section->vma
9961 + splt->output_offset);
9962 }
9963 }
9964
9965 /* Fill in the entry in the global offset table. */
9966 bfd_put_32 (output_bfd, initial_got_entry,
9967 sgot->contents + got_offset);
9968
9969 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9970 {
9971 /* Setup initial funcdesc value. */
9972 /* FIXME: we don't support lazy binding because there is a
9973 race condition between both words getting written and
9974 some other thread attempting to read them. The ARM
9975 architecture does not have an atomic 64 bit load/store
9976 instruction that could be used to prevent it; it is
9977 recommended that threaded FDPIC applications run with the
9978 LD_BIND_NOW environment variable set. */
9979 bfd_put_32(output_bfd, plt_address + 0x18,
9980 sgot->contents + got_offset);
9981 bfd_put_32(output_bfd, -1 /*TODO*/,
9982 sgot->contents + got_offset + 4);
9983 }
9984 }
9985
9986 if (dynindx == -1)
9987 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9988 else
9989 {
9990 if (htab->fdpic_p)
9991 {
9992 /* For FDPIC we put PLT relocationss into .rel.got when not
9993 lazy binding otherwise we put them in .rel.plt. For now,
9994 we don't support lazy binding so put it in .rel.got. */
9995 if (info->flags & DF_BIND_NOW)
9996 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9997 else
9998 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9999 }
10000 else
10001 {
10002 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10003 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10004 }
10005 }
10006
10007 return TRUE;
10008 }
10009
10010 /* Some relocations map to different relocations depending on the
10011 target. Return the real relocation. */
10012
10013 static int
10014 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10015 int r_type)
10016 {
10017 switch (r_type)
10018 {
10019 case R_ARM_TARGET1:
10020 if (globals->target1_is_rel)
10021 return R_ARM_REL32;
10022 else
10023 return R_ARM_ABS32;
10024
10025 case R_ARM_TARGET2:
10026 return globals->target2_reloc;
10027
10028 default:
10029 return r_type;
10030 }
10031 }
10032
10033 /* Return the base VMA address which should be subtracted from real addresses
10034 when resolving @dtpoff relocation.
10035 This is PT_TLS segment p_vaddr. */
10036
10037 static bfd_vma
10038 dtpoff_base (struct bfd_link_info *info)
10039 {
10040 /* If tls_sec is NULL, we should have signalled an error already. */
10041 if (elf_hash_table (info)->tls_sec == NULL)
10042 return 0;
10043 return elf_hash_table (info)->tls_sec->vma;
10044 }
10045
10046 /* Return the relocation value for @tpoff relocation
10047 if STT_TLS virtual address is ADDRESS. */
10048
10049 static bfd_vma
10050 tpoff (struct bfd_link_info *info, bfd_vma address)
10051 {
10052 struct elf_link_hash_table *htab = elf_hash_table (info);
10053 bfd_vma base;
10054
10055 /* If tls_sec is NULL, we should have signalled an error already. */
10056 if (htab->tls_sec == NULL)
10057 return 0;
10058 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10059 return address - htab->tls_sec->vma + base;
10060 }
10061
10062 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10063 VALUE is the relocation value. */
10064
10065 static bfd_reloc_status_type
10066 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10067 {
10068 if (value > 0xfff)
10069 return bfd_reloc_overflow;
10070
10071 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10072 bfd_put_32 (abfd, value, data);
10073 return bfd_reloc_ok;
10074 }
10075
10076 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10077 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10078 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10079
10080 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10081 is to then call final_link_relocate. Return other values in the
10082 case of error.
10083
10084 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10085 the pre-relaxed code. It would be nice if the relocs were updated
10086 to match the optimization. */
10087
10088 static bfd_reloc_status_type
10089 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10090 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10091 Elf_Internal_Rela *rel, unsigned long is_local)
10092 {
10093 unsigned long insn;
10094
10095 switch (ELF32_R_TYPE (rel->r_info))
10096 {
10097 default:
10098 return bfd_reloc_notsupported;
10099
10100 case R_ARM_TLS_GOTDESC:
10101 if (is_local)
10102 insn = 0;
10103 else
10104 {
10105 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10106 if (insn & 1)
10107 insn -= 5; /* THUMB */
10108 else
10109 insn -= 8; /* ARM */
10110 }
10111 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10112 return bfd_reloc_continue;
10113
10114 case R_ARM_THM_TLS_DESCSEQ:
10115 /* Thumb insn. */
10116 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10117 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10118 {
10119 if (is_local)
10120 /* nop */
10121 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10122 }
10123 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10124 {
10125 if (is_local)
10126 /* nop */
10127 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10128 else
10129 /* ldr rx,[ry] */
10130 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10131 }
10132 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10133 {
10134 if (is_local)
10135 /* nop */
10136 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10137 else
10138 /* mov r0, rx */
10139 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10140 contents + rel->r_offset);
10141 }
10142 else
10143 {
10144 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10145 /* It's a 32 bit instruction, fetch the rest of it for
10146 error generation. */
10147 insn = (insn << 16)
10148 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10149 _bfd_error_handler
10150 /* xgettext:c-format */
10151 (_("%pB(%pA+%#" PRIx64 "): "
10152 "unexpected %s instruction '%#lx' in TLS trampoline"),
10153 input_bfd, input_sec, (uint64_t) rel->r_offset,
10154 "Thumb", insn);
10155 return bfd_reloc_notsupported;
10156 }
10157 break;
10158
10159 case R_ARM_TLS_DESCSEQ:
10160 /* arm insn. */
10161 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10162 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10163 {
10164 if (is_local)
10165 /* mov rx, ry */
10166 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10167 contents + rel->r_offset);
10168 }
10169 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10170 {
10171 if (is_local)
10172 /* nop */
10173 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10174 else
10175 /* ldr rx,[ry] */
10176 bfd_put_32 (input_bfd, insn & 0xfffff000,
10177 contents + rel->r_offset);
10178 }
10179 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10180 {
10181 if (is_local)
10182 /* nop */
10183 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10184 else
10185 /* mov r0, rx */
10186 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10187 contents + rel->r_offset);
10188 }
10189 else
10190 {
10191 _bfd_error_handler
10192 /* xgettext:c-format */
10193 (_("%pB(%pA+%#" PRIx64 "): "
10194 "unexpected %s instruction '%#lx' in TLS trampoline"),
10195 input_bfd, input_sec, (uint64_t) rel->r_offset,
10196 "ARM", insn);
10197 return bfd_reloc_notsupported;
10198 }
10199 break;
10200
10201 case R_ARM_TLS_CALL:
10202 /* GD->IE relaxation, turn the instruction into 'nop' or
10203 'ldr r0, [pc,r0]' */
10204 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10205 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10206 break;
10207
10208 case R_ARM_THM_TLS_CALL:
10209 /* GD->IE relaxation. */
10210 if (!is_local)
10211 /* add r0,pc; ldr r0, [r0] */
10212 insn = 0x44786800;
10213 else if (using_thumb2 (globals))
10214 /* nop.w */
10215 insn = 0xf3af8000;
10216 else
10217 /* nop; nop */
10218 insn = 0xbf00bf00;
10219
10220 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10221 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10222 break;
10223 }
10224 return bfd_reloc_ok;
10225 }
10226
10227 /* For a given value of n, calculate the value of G_n as required to
10228 deal with group relocations. We return it in the form of an
10229 encoded constant-and-rotation, together with the final residual. If n is
10230 specified as less than zero, then final_residual is filled with the
10231 input value and no further action is performed. */
10232
10233 static bfd_vma
10234 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10235 {
10236 int current_n;
10237 bfd_vma g_n;
10238 bfd_vma encoded_g_n = 0;
10239 bfd_vma residual = value; /* Also known as Y_n. */
10240
10241 for (current_n = 0; current_n <= n; current_n++)
10242 {
10243 int shift;
10244
10245 /* Calculate which part of the value to mask. */
10246 if (residual == 0)
10247 shift = 0;
10248 else
10249 {
10250 int msb;
10251
10252 /* Determine the most significant bit in the residual and
10253 align the resulting value to a 2-bit boundary. */
10254 for (msb = 30; msb >= 0; msb -= 2)
10255 if (residual & (3 << msb))
10256 break;
10257
10258 /* The desired shift is now (msb - 6), or zero, whichever
10259 is the greater. */
10260 shift = msb - 6;
10261 if (shift < 0)
10262 shift = 0;
10263 }
10264
10265 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10266 g_n = residual & (0xff << shift);
10267 encoded_g_n = (g_n >> shift)
10268 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10269
10270 /* Calculate the residual for the next time around. */
10271 residual &= ~g_n;
10272 }
10273
10274 *final_residual = residual;
10275
10276 return encoded_g_n;
10277 }
10278
10279 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10280 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10281
10282 static int
10283 identify_add_or_sub (bfd_vma insn)
10284 {
10285 int opcode = insn & 0x1e00000;
10286
10287 if (opcode == 1 << 23) /* ADD */
10288 return 1;
10289
10290 if (opcode == 1 << 22) /* SUB */
10291 return -1;
10292
10293 return 0;
10294 }
10295
10296 /* Helper function to compute the Addend for Armv8.1-M Mainline relocations. */
10297 static bfd_vma
10298 get_value_helper (bfd_vma plt_offset,
10299 asection *splt,
10300 asection *input_section,
10301 asection *sym_sec,
10302 struct elf_link_hash_entry * h,
10303 struct bfd_link_info *info,
10304 bfd *input_bfd,
10305 Elf_Internal_Rela *rel,
10306 const char *sym_name,
10307 unsigned char st_type,
10308 struct elf32_arm_link_hash_table *globals,
10309 bfd_boolean *unresolved_reloc_p)
10310 {
10311 bfd_vma value = 0;
10312 enum arm_st_branch_type branch_type;
10313 enum elf32_arm_stub_type stub_type = arm_stub_none;
10314 struct elf32_arm_stub_hash_entry *stub_entry;
10315 struct elf32_arm_link_hash_entry *hash
10316 = (struct elf32_arm_link_hash_entry *)h;
10317
10318
10319 if (plt_offset != (bfd_vma) -1)
10320 {
10321 value = (splt->output_section->vma
10322 + splt->output_offset
10323 + plt_offset);
10324 value -= PLT_THUMB_STUB_SIZE;
10325 *unresolved_reloc_p = FALSE;
10326 }
10327
10328 stub_type = arm_type_of_stub (info, input_section, rel,
10329 st_type, &branch_type,
10330 hash, value, sym_sec,
10331 input_bfd, sym_name);
10332
10333 if (stub_type != arm_stub_none)
10334 {
10335 stub_entry = elf32_arm_get_stub_entry (input_section,
10336 sym_sec, h,
10337 rel, globals,
10338 stub_type);
10339 if (stub_entry != NULL)
10340 {
10341 value = (stub_entry->stub_offset
10342 + stub_entry->stub_sec->output_offset
10343 + stub_entry->stub_sec->output_section->vma);
10344 }
10345 }
10346 return value;
10347 }
10348
10349 /* Perform a relocation as part of a final link. */
10350
10351 static bfd_reloc_status_type
10352 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10353 bfd * input_bfd,
10354 bfd * output_bfd,
10355 asection * input_section,
10356 bfd_byte * contents,
10357 Elf_Internal_Rela * rel,
10358 bfd_vma value,
10359 struct bfd_link_info * info,
10360 asection * sym_sec,
10361 const char * sym_name,
10362 unsigned char st_type,
10363 enum arm_st_branch_type branch_type,
10364 struct elf_link_hash_entry * h,
10365 bfd_boolean * unresolved_reloc_p,
10366 char ** error_message)
10367 {
10368 unsigned long r_type = howto->type;
10369 unsigned long r_symndx;
10370 bfd_byte * hit_data = contents + rel->r_offset;
10371 bfd_vma * local_got_offsets;
10372 bfd_vma * local_tlsdesc_gotents;
10373 asection * sgot;
10374 asection * splt;
10375 asection * sreloc = NULL;
10376 asection * srelgot;
10377 bfd_vma addend;
10378 bfd_signed_vma signed_addend;
10379 unsigned char dynreloc_st_type;
10380 bfd_vma dynreloc_value;
10381 struct elf32_arm_link_hash_table * globals;
10382 struct elf32_arm_link_hash_entry *eh;
10383 union gotplt_union *root_plt;
10384 struct arm_plt_info *arm_plt;
10385 bfd_vma plt_offset;
10386 bfd_vma gotplt_offset;
10387 bfd_boolean has_iplt_entry;
10388 bfd_boolean resolved_to_zero;
10389
10390 globals = elf32_arm_hash_table (info);
10391 if (globals == NULL)
10392 return bfd_reloc_notsupported;
10393
10394 BFD_ASSERT (is_arm_elf (input_bfd));
10395 BFD_ASSERT (howto != NULL);
10396
10397 /* Some relocation types map to different relocations depending on the
10398 target. We pick the right one here. */
10399 r_type = arm_real_reloc_type (globals, r_type);
10400
10401 /* It is possible to have linker relaxations on some TLS access
10402 models. Update our information here. */
10403 r_type = elf32_arm_tls_transition (info, r_type, h);
10404
10405 if (r_type != howto->type)
10406 howto = elf32_arm_howto_from_type (r_type);
10407
10408 eh = (struct elf32_arm_link_hash_entry *) h;
10409 sgot = globals->root.sgot;
10410 local_got_offsets = elf_local_got_offsets (input_bfd);
10411 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10412
10413 if (globals->root.dynamic_sections_created)
10414 srelgot = globals->root.srelgot;
10415 else
10416 srelgot = NULL;
10417
10418 r_symndx = ELF32_R_SYM (rel->r_info);
10419
10420 if (globals->use_rel)
10421 {
10422 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10423
10424 if (addend & ((howto->src_mask + 1) >> 1))
10425 {
10426 signed_addend = -1;
10427 signed_addend &= ~ howto->src_mask;
10428 signed_addend |= addend;
10429 }
10430 else
10431 signed_addend = addend;
10432 }
10433 else
10434 addend = signed_addend = rel->r_addend;
10435
10436 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10437 are resolving a function call relocation. */
10438 if (using_thumb_only (globals)
10439 && (r_type == R_ARM_THM_CALL
10440 || r_type == R_ARM_THM_JUMP24)
10441 && branch_type == ST_BRANCH_TO_ARM)
10442 branch_type = ST_BRANCH_TO_THUMB;
10443
10444 /* Record the symbol information that should be used in dynamic
10445 relocations. */
10446 dynreloc_st_type = st_type;
10447 dynreloc_value = value;
10448 if (branch_type == ST_BRANCH_TO_THUMB)
10449 dynreloc_value |= 1;
10450
10451 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10452 VALUE appropriately for relocations that we resolve at link time. */
10453 has_iplt_entry = FALSE;
10454 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10455 &arm_plt)
10456 && root_plt->offset != (bfd_vma) -1)
10457 {
10458 plt_offset = root_plt->offset;
10459 gotplt_offset = arm_plt->got_offset;
10460
10461 if (h == NULL || eh->is_iplt)
10462 {
10463 has_iplt_entry = TRUE;
10464 splt = globals->root.iplt;
10465
10466 /* Populate .iplt entries here, because not all of them will
10467 be seen by finish_dynamic_symbol. The lower bit is set if
10468 we have already populated the entry. */
10469 if (plt_offset & 1)
10470 plt_offset--;
10471 else
10472 {
10473 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10474 -1, dynreloc_value))
10475 root_plt->offset |= 1;
10476 else
10477 return bfd_reloc_notsupported;
10478 }
10479
10480 /* Static relocations always resolve to the .iplt entry. */
10481 st_type = STT_FUNC;
10482 value = (splt->output_section->vma
10483 + splt->output_offset
10484 + plt_offset);
10485 branch_type = ST_BRANCH_TO_ARM;
10486
10487 /* If there are non-call relocations that resolve to the .iplt
10488 entry, then all dynamic ones must too. */
10489 if (arm_plt->noncall_refcount != 0)
10490 {
10491 dynreloc_st_type = st_type;
10492 dynreloc_value = value;
10493 }
10494 }
10495 else
10496 /* We populate the .plt entry in finish_dynamic_symbol. */
10497 splt = globals->root.splt;
10498 }
10499 else
10500 {
10501 splt = NULL;
10502 plt_offset = (bfd_vma) -1;
10503 gotplt_offset = (bfd_vma) -1;
10504 }
10505
10506 resolved_to_zero = (h != NULL
10507 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10508
10509 switch (r_type)
10510 {
10511 case R_ARM_NONE:
10512 /* We don't need to find a value for this symbol. It's just a
10513 marker. */
10514 *unresolved_reloc_p = FALSE;
10515 return bfd_reloc_ok;
10516
10517 case R_ARM_ABS12:
10518 if (!globals->vxworks_p)
10519 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10520 /* Fall through. */
10521
10522 case R_ARM_PC24:
10523 case R_ARM_ABS32:
10524 case R_ARM_ABS32_NOI:
10525 case R_ARM_REL32:
10526 case R_ARM_REL32_NOI:
10527 case R_ARM_CALL:
10528 case R_ARM_JUMP24:
10529 case R_ARM_XPC25:
10530 case R_ARM_PREL31:
10531 case R_ARM_PLT32:
10532 /* Handle relocations which should use the PLT entry. ABS32/REL32
10533 will use the symbol's value, which may point to a PLT entry, but we
10534 don't need to handle that here. If we created a PLT entry, all
10535 branches in this object should go to it, except if the PLT is too
10536 far away, in which case a long branch stub should be inserted. */
10537 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10538 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10539 && r_type != R_ARM_CALL
10540 && r_type != R_ARM_JUMP24
10541 && r_type != R_ARM_PLT32)
10542 && plt_offset != (bfd_vma) -1)
10543 {
10544 /* If we've created a .plt section, and assigned a PLT entry
10545 to this function, it must either be a STT_GNU_IFUNC reference
10546 or not be known to bind locally. In other cases, we should
10547 have cleared the PLT entry by now. */
10548 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10549
10550 value = (splt->output_section->vma
10551 + splt->output_offset
10552 + plt_offset);
10553 *unresolved_reloc_p = FALSE;
10554 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10555 contents, rel->r_offset, value,
10556 rel->r_addend);
10557 }
10558
10559 /* When generating a shared object or relocatable executable, these
10560 relocations are copied into the output file to be resolved at
10561 run time. */
10562 if ((bfd_link_pic (info)
10563 || globals->root.is_relocatable_executable
10564 || globals->fdpic_p)
10565 && (input_section->flags & SEC_ALLOC)
10566 && !(globals->vxworks_p
10567 && strcmp (input_section->output_section->name,
10568 ".tls_vars") == 0)
10569 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10570 || !SYMBOL_CALLS_LOCAL (info, h))
10571 && !(input_bfd == globals->stub_bfd
10572 && strstr (input_section->name, STUB_SUFFIX))
10573 && (h == NULL
10574 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10575 && !resolved_to_zero)
10576 || h->root.type != bfd_link_hash_undefweak)
10577 && r_type != R_ARM_PC24
10578 && r_type != R_ARM_CALL
10579 && r_type != R_ARM_JUMP24
10580 && r_type != R_ARM_PREL31
10581 && r_type != R_ARM_PLT32)
10582 {
10583 Elf_Internal_Rela outrel;
10584 bfd_boolean skip, relocate;
10585 int isrofixup = 0;
10586
10587 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10588 && !h->def_regular)
10589 {
10590 char *v = _("shared object");
10591
10592 if (bfd_link_executable (info))
10593 v = _("PIE executable");
10594
10595 _bfd_error_handler
10596 (_("%pB: relocation %s against external or undefined symbol `%s'"
10597 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10598 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10599 return bfd_reloc_notsupported;
10600 }
10601
10602 *unresolved_reloc_p = FALSE;
10603
10604 if (sreloc == NULL && globals->root.dynamic_sections_created)
10605 {
10606 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10607 ! globals->use_rel);
10608
10609 if (sreloc == NULL)
10610 return bfd_reloc_notsupported;
10611 }
10612
10613 skip = FALSE;
10614 relocate = FALSE;
10615
10616 outrel.r_addend = addend;
10617 outrel.r_offset =
10618 _bfd_elf_section_offset (output_bfd, info, input_section,
10619 rel->r_offset);
10620 if (outrel.r_offset == (bfd_vma) -1)
10621 skip = TRUE;
10622 else if (outrel.r_offset == (bfd_vma) -2)
10623 skip = TRUE, relocate = TRUE;
10624 outrel.r_offset += (input_section->output_section->vma
10625 + input_section->output_offset);
10626
10627 if (skip)
10628 memset (&outrel, 0, sizeof outrel);
10629 else if (h != NULL
10630 && h->dynindx != -1
10631 && (!bfd_link_pic (info)
10632 || !(bfd_link_pie (info)
10633 || SYMBOLIC_BIND (info, h))
10634 || !h->def_regular))
10635 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10636 else
10637 {
10638 int symbol;
10639
10640 /* This symbol is local, or marked to become local. */
10641 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10642 || (globals->fdpic_p && !bfd_link_pic(info)));
10643 if (globals->symbian_p)
10644 {
10645 asection *osec;
10646
10647 /* On Symbian OS, the data segment and text segement
10648 can be relocated independently. Therefore, we
10649 must indicate the segment to which this
10650 relocation is relative. The BPABI allows us to
10651 use any symbol in the right segment; we just use
10652 the section symbol as it is convenient. (We
10653 cannot use the symbol given by "h" directly as it
10654 will not appear in the dynamic symbol table.)
10655
10656 Note that the dynamic linker ignores the section
10657 symbol value, so we don't subtract osec->vma
10658 from the emitted reloc addend. */
10659 if (sym_sec)
10660 osec = sym_sec->output_section;
10661 else
10662 osec = input_section->output_section;
10663 symbol = elf_section_data (osec)->dynindx;
10664 if (symbol == 0)
10665 {
10666 struct elf_link_hash_table *htab = elf_hash_table (info);
10667
10668 if ((osec->flags & SEC_READONLY) == 0
10669 && htab->data_index_section != NULL)
10670 osec = htab->data_index_section;
10671 else
10672 osec = htab->text_index_section;
10673 symbol = elf_section_data (osec)->dynindx;
10674 }
10675 BFD_ASSERT (symbol != 0);
10676 }
10677 else
10678 /* On SVR4-ish systems, the dynamic loader cannot
10679 relocate the text and data segments independently,
10680 so the symbol does not matter. */
10681 symbol = 0;
10682 if (dynreloc_st_type == STT_GNU_IFUNC)
10683 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10684 to the .iplt entry. Instead, every non-call reference
10685 must use an R_ARM_IRELATIVE relocation to obtain the
10686 correct run-time address. */
10687 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10688 else if (globals->fdpic_p && !bfd_link_pic(info))
10689 isrofixup = 1;
10690 else
10691 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10692 if (globals->use_rel)
10693 relocate = TRUE;
10694 else
10695 outrel.r_addend += dynreloc_value;
10696 }
10697
10698 if (isrofixup)
10699 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10700 else
10701 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10702
10703 /* If this reloc is against an external symbol, we do not want to
10704 fiddle with the addend. Otherwise, we need to include the symbol
10705 value so that it becomes an addend for the dynamic reloc. */
10706 if (! relocate)
10707 return bfd_reloc_ok;
10708
10709 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10710 contents, rel->r_offset,
10711 dynreloc_value, (bfd_vma) 0);
10712 }
10713 else switch (r_type)
10714 {
10715 case R_ARM_ABS12:
10716 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10717
10718 case R_ARM_XPC25: /* Arm BLX instruction. */
10719 case R_ARM_CALL:
10720 case R_ARM_JUMP24:
10721 case R_ARM_PC24: /* Arm B/BL instruction. */
10722 case R_ARM_PLT32:
10723 {
10724 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10725
10726 if (r_type == R_ARM_XPC25)
10727 {
10728 /* Check for Arm calling Arm function. */
10729 /* FIXME: Should we translate the instruction into a BL
10730 instruction instead ? */
10731 if (branch_type != ST_BRANCH_TO_THUMB)
10732 _bfd_error_handler
10733 (_("\%pB: warning: %s BLX instruction targets"
10734 " %s function '%s'"),
10735 input_bfd, "ARM",
10736 "ARM", h ? h->root.root.string : "(local)");
10737 }
10738 else if (r_type == R_ARM_PC24)
10739 {
10740 /* Check for Arm calling Thumb function. */
10741 if (branch_type == ST_BRANCH_TO_THUMB)
10742 {
10743 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10744 output_bfd, input_section,
10745 hit_data, sym_sec, rel->r_offset,
10746 signed_addend, value,
10747 error_message))
10748 return bfd_reloc_ok;
10749 else
10750 return bfd_reloc_dangerous;
10751 }
10752 }
10753
10754 /* Check if a stub has to be inserted because the
10755 destination is too far or we are changing mode. */
10756 if ( r_type == R_ARM_CALL
10757 || r_type == R_ARM_JUMP24
10758 || r_type == R_ARM_PLT32)
10759 {
10760 enum elf32_arm_stub_type stub_type = arm_stub_none;
10761 struct elf32_arm_link_hash_entry *hash;
10762
10763 hash = (struct elf32_arm_link_hash_entry *) h;
10764 stub_type = arm_type_of_stub (info, input_section, rel,
10765 st_type, &branch_type,
10766 hash, value, sym_sec,
10767 input_bfd, sym_name);
10768
10769 if (stub_type != arm_stub_none)
10770 {
10771 /* The target is out of reach, so redirect the
10772 branch to the local stub for this function. */
10773 stub_entry = elf32_arm_get_stub_entry (input_section,
10774 sym_sec, h,
10775 rel, globals,
10776 stub_type);
10777 {
10778 if (stub_entry != NULL)
10779 value = (stub_entry->stub_offset
10780 + stub_entry->stub_sec->output_offset
10781 + stub_entry->stub_sec->output_section->vma);
10782
10783 if (plt_offset != (bfd_vma) -1)
10784 *unresolved_reloc_p = FALSE;
10785 }
10786 }
10787 else
10788 {
10789 /* If the call goes through a PLT entry, make sure to
10790 check distance to the right destination address. */
10791 if (plt_offset != (bfd_vma) -1)
10792 {
10793 value = (splt->output_section->vma
10794 + splt->output_offset
10795 + plt_offset);
10796 *unresolved_reloc_p = FALSE;
10797 /* The PLT entry is in ARM mode, regardless of the
10798 target function. */
10799 branch_type = ST_BRANCH_TO_ARM;
10800 }
10801 }
10802 }
10803
10804 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10805 where:
10806 S is the address of the symbol in the relocation.
10807 P is address of the instruction being relocated.
10808 A is the addend (extracted from the instruction) in bytes.
10809
10810 S is held in 'value'.
10811 P is the base address of the section containing the
10812 instruction plus the offset of the reloc into that
10813 section, ie:
10814 (input_section->output_section->vma +
10815 input_section->output_offset +
10816 rel->r_offset).
10817 A is the addend, converted into bytes, ie:
10818 (signed_addend * 4)
10819
10820 Note: None of these operations have knowledge of the pipeline
10821 size of the processor, thus it is up to the assembler to
10822 encode this information into the addend. */
10823 value -= (input_section->output_section->vma
10824 + input_section->output_offset);
10825 value -= rel->r_offset;
10826 if (globals->use_rel)
10827 value += (signed_addend << howto->size);
10828 else
10829 /* RELA addends do not have to be adjusted by howto->size. */
10830 value += signed_addend;
10831
10832 signed_addend = value;
10833 signed_addend >>= howto->rightshift;
10834
10835 /* A branch to an undefined weak symbol is turned into a jump to
10836 the next instruction unless a PLT entry will be created.
10837 Do the same for local undefined symbols (but not for STN_UNDEF).
10838 The jump to the next instruction is optimized as a NOP depending
10839 on the architecture. */
10840 if (h ? (h->root.type == bfd_link_hash_undefweak
10841 && plt_offset == (bfd_vma) -1)
10842 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10843 {
10844 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10845
10846 if (arch_has_arm_nop (globals))
10847 value |= 0x0320f000;
10848 else
10849 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10850 }
10851 else
10852 {
10853 /* Perform a signed range check. */
10854 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10855 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10856 return bfd_reloc_overflow;
10857
10858 addend = (value & 2);
10859
10860 value = (signed_addend & howto->dst_mask)
10861 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10862
10863 if (r_type == R_ARM_CALL)
10864 {
10865 /* Set the H bit in the BLX instruction. */
10866 if (branch_type == ST_BRANCH_TO_THUMB)
10867 {
10868 if (addend)
10869 value |= (1 << 24);
10870 else
10871 value &= ~(bfd_vma)(1 << 24);
10872 }
10873
10874 /* Select the correct instruction (BL or BLX). */
10875 /* Only if we are not handling a BL to a stub. In this
10876 case, mode switching is performed by the stub. */
10877 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10878 value |= (1 << 28);
10879 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10880 {
10881 value &= ~(bfd_vma)(1 << 28);
10882 value |= (1 << 24);
10883 }
10884 }
10885 }
10886 }
10887 break;
10888
10889 case R_ARM_ABS32:
10890 value += addend;
10891 if (branch_type == ST_BRANCH_TO_THUMB)
10892 value |= 1;
10893 break;
10894
10895 case R_ARM_ABS32_NOI:
10896 value += addend;
10897 break;
10898
10899 case R_ARM_REL32:
10900 value += addend;
10901 if (branch_type == ST_BRANCH_TO_THUMB)
10902 value |= 1;
10903 value -= (input_section->output_section->vma
10904 + input_section->output_offset + rel->r_offset);
10905 break;
10906
10907 case R_ARM_REL32_NOI:
10908 value += addend;
10909 value -= (input_section->output_section->vma
10910 + input_section->output_offset + rel->r_offset);
10911 break;
10912
10913 case R_ARM_PREL31:
10914 value -= (input_section->output_section->vma
10915 + input_section->output_offset + rel->r_offset);
10916 value += signed_addend;
10917 if (! h || h->root.type != bfd_link_hash_undefweak)
10918 {
10919 /* Check for overflow. */
10920 if ((value ^ (value >> 1)) & (1 << 30))
10921 return bfd_reloc_overflow;
10922 }
10923 value &= 0x7fffffff;
10924 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10925 if (branch_type == ST_BRANCH_TO_THUMB)
10926 value |= 1;
10927 break;
10928 }
10929
10930 bfd_put_32 (input_bfd, value, hit_data);
10931 return bfd_reloc_ok;
10932
10933 case R_ARM_ABS8:
10934 /* PR 16202: Refectch the addend using the correct size. */
10935 if (globals->use_rel)
10936 addend = bfd_get_8 (input_bfd, hit_data);
10937 value += addend;
10938
10939 /* There is no way to tell whether the user intended to use a signed or
10940 unsigned addend. When checking for overflow we accept either,
10941 as specified by the AAELF. */
10942 if ((long) value > 0xff || (long) value < -0x80)
10943 return bfd_reloc_overflow;
10944
10945 bfd_put_8 (input_bfd, value, hit_data);
10946 return bfd_reloc_ok;
10947
10948 case R_ARM_ABS16:
10949 /* PR 16202: Refectch the addend using the correct size. */
10950 if (globals->use_rel)
10951 addend = bfd_get_16 (input_bfd, hit_data);
10952 value += addend;
10953
10954 /* See comment for R_ARM_ABS8. */
10955 if ((long) value > 0xffff || (long) value < -0x8000)
10956 return bfd_reloc_overflow;
10957
10958 bfd_put_16 (input_bfd, value, hit_data);
10959 return bfd_reloc_ok;
10960
10961 case R_ARM_THM_ABS5:
10962 /* Support ldr and str instructions for the thumb. */
10963 if (globals->use_rel)
10964 {
10965 /* Need to refetch addend. */
10966 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10967 /* ??? Need to determine shift amount from operand size. */
10968 addend >>= howto->rightshift;
10969 }
10970 value += addend;
10971
10972 /* ??? Isn't value unsigned? */
10973 if ((long) value > 0x1f || (long) value < -0x10)
10974 return bfd_reloc_overflow;
10975
10976 /* ??? Value needs to be properly shifted into place first. */
10977 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10978 bfd_put_16 (input_bfd, value, hit_data);
10979 return bfd_reloc_ok;
10980
10981 case R_ARM_THM_ALU_PREL_11_0:
10982 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10983 {
10984 bfd_vma insn;
10985 bfd_signed_vma relocation;
10986
10987 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10988 | bfd_get_16 (input_bfd, hit_data + 2);
10989
10990 if (globals->use_rel)
10991 {
10992 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10993 | ((insn & (1 << 26)) >> 15);
10994 if (insn & 0xf00000)
10995 signed_addend = -signed_addend;
10996 }
10997
10998 relocation = value + signed_addend;
10999 relocation -= Pa (input_section->output_section->vma
11000 + input_section->output_offset
11001 + rel->r_offset);
11002
11003 /* PR 21523: Use an absolute value. The user of this reloc will
11004 have already selected an ADD or SUB insn appropriately. */
11005 value = llabs (relocation);
11006
11007 if (value >= 0x1000)
11008 return bfd_reloc_overflow;
11009
11010 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
11011 if (branch_type == ST_BRANCH_TO_THUMB)
11012 value |= 1;
11013
11014 insn = (insn & 0xfb0f8f00) | (value & 0xff)
11015 | ((value & 0x700) << 4)
11016 | ((value & 0x800) << 15);
11017 if (relocation < 0)
11018 insn |= 0xa00000;
11019
11020 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11021 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11022
11023 return bfd_reloc_ok;
11024 }
11025
11026 case R_ARM_THM_PC8:
11027 /* PR 10073: This reloc is not generated by the GNU toolchain,
11028 but it is supported for compatibility with third party libraries
11029 generated by other compilers, specifically the ARM/IAR. */
11030 {
11031 bfd_vma insn;
11032 bfd_signed_vma relocation;
11033
11034 insn = bfd_get_16 (input_bfd, hit_data);
11035
11036 if (globals->use_rel)
11037 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11038
11039 relocation = value + addend;
11040 relocation -= Pa (input_section->output_section->vma
11041 + input_section->output_offset
11042 + rel->r_offset);
11043
11044 value = relocation;
11045
11046 /* We do not check for overflow of this reloc. Although strictly
11047 speaking this is incorrect, it appears to be necessary in order
11048 to work with IAR generated relocs. Since GCC and GAS do not
11049 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11050 a problem for them. */
11051 value &= 0x3fc;
11052
11053 insn = (insn & 0xff00) | (value >> 2);
11054
11055 bfd_put_16 (input_bfd, insn, hit_data);
11056
11057 return bfd_reloc_ok;
11058 }
11059
11060 case R_ARM_THM_PC12:
11061 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11062 {
11063 bfd_vma insn;
11064 bfd_signed_vma relocation;
11065
11066 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11067 | bfd_get_16 (input_bfd, hit_data + 2);
11068
11069 if (globals->use_rel)
11070 {
11071 signed_addend = insn & 0xfff;
11072 if (!(insn & (1 << 23)))
11073 signed_addend = -signed_addend;
11074 }
11075
11076 relocation = value + signed_addend;
11077 relocation -= Pa (input_section->output_section->vma
11078 + input_section->output_offset
11079 + rel->r_offset);
11080
11081 value = relocation;
11082
11083 if (value >= 0x1000)
11084 return bfd_reloc_overflow;
11085
11086 insn = (insn & 0xff7ff000) | value;
11087 if (relocation >= 0)
11088 insn |= (1 << 23);
11089
11090 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11091 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11092
11093 return bfd_reloc_ok;
11094 }
11095
11096 case R_ARM_THM_XPC22:
11097 case R_ARM_THM_CALL:
11098 case R_ARM_THM_JUMP24:
11099 /* Thumb BL (branch long instruction). */
11100 {
11101 bfd_vma relocation;
11102 bfd_vma reloc_sign;
11103 bfd_boolean overflow = FALSE;
11104 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11105 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11106 bfd_signed_vma reloc_signed_max;
11107 bfd_signed_vma reloc_signed_min;
11108 bfd_vma check;
11109 bfd_signed_vma signed_check;
11110 int bitsize;
11111 const int thumb2 = using_thumb2 (globals);
11112 const int thumb2_bl = using_thumb2_bl (globals);
11113
11114 /* A branch to an undefined weak symbol is turned into a jump to
11115 the next instruction unless a PLT entry will be created.
11116 The jump to the next instruction is optimized as a NOP.W for
11117 Thumb-2 enabled architectures. */
11118 if (h && h->root.type == bfd_link_hash_undefweak
11119 && plt_offset == (bfd_vma) -1)
11120 {
11121 if (thumb2)
11122 {
11123 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11124 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11125 }
11126 else
11127 {
11128 bfd_put_16 (input_bfd, 0xe000, hit_data);
11129 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11130 }
11131 return bfd_reloc_ok;
11132 }
11133
11134 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11135 with Thumb-1) involving the J1 and J2 bits. */
11136 if (globals->use_rel)
11137 {
11138 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11139 bfd_vma upper = upper_insn & 0x3ff;
11140 bfd_vma lower = lower_insn & 0x7ff;
11141 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11142 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11143 bfd_vma i1 = j1 ^ s ? 0 : 1;
11144 bfd_vma i2 = j2 ^ s ? 0 : 1;
11145
11146 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11147 /* Sign extend. */
11148 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11149
11150 signed_addend = addend;
11151 }
11152
11153 if (r_type == R_ARM_THM_XPC22)
11154 {
11155 /* Check for Thumb to Thumb call. */
11156 /* FIXME: Should we translate the instruction into a BL
11157 instruction instead ? */
11158 if (branch_type == ST_BRANCH_TO_THUMB)
11159 _bfd_error_handler
11160 (_("%pB: warning: %s BLX instruction targets"
11161 " %s function '%s'"),
11162 input_bfd, "Thumb",
11163 "Thumb", h ? h->root.root.string : "(local)");
11164 }
11165 else
11166 {
11167 /* If it is not a call to Thumb, assume call to Arm.
11168 If it is a call relative to a section name, then it is not a
11169 function call at all, but rather a long jump. Calls through
11170 the PLT do not require stubs. */
11171 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11172 {
11173 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11174 {
11175 /* Convert BL to BLX. */
11176 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11177 }
11178 else if (( r_type != R_ARM_THM_CALL)
11179 && (r_type != R_ARM_THM_JUMP24))
11180 {
11181 if (elf32_thumb_to_arm_stub
11182 (info, sym_name, input_bfd, output_bfd, input_section,
11183 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11184 error_message))
11185 return bfd_reloc_ok;
11186 else
11187 return bfd_reloc_dangerous;
11188 }
11189 }
11190 else if (branch_type == ST_BRANCH_TO_THUMB
11191 && globals->use_blx
11192 && r_type == R_ARM_THM_CALL)
11193 {
11194 /* Make sure this is a BL. */
11195 lower_insn |= 0x1800;
11196 }
11197 }
11198
11199 enum elf32_arm_stub_type stub_type = arm_stub_none;
11200 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11201 {
11202 /* Check if a stub has to be inserted because the destination
11203 is too far. */
11204 struct elf32_arm_stub_hash_entry *stub_entry;
11205 struct elf32_arm_link_hash_entry *hash;
11206
11207 hash = (struct elf32_arm_link_hash_entry *) h;
11208
11209 stub_type = arm_type_of_stub (info, input_section, rel,
11210 st_type, &branch_type,
11211 hash, value, sym_sec,
11212 input_bfd, sym_name);
11213
11214 if (stub_type != arm_stub_none)
11215 {
11216 /* The target is out of reach or we are changing modes, so
11217 redirect the branch to the local stub for this
11218 function. */
11219 stub_entry = elf32_arm_get_stub_entry (input_section,
11220 sym_sec, h,
11221 rel, globals,
11222 stub_type);
11223 if (stub_entry != NULL)
11224 {
11225 value = (stub_entry->stub_offset
11226 + stub_entry->stub_sec->output_offset
11227 + stub_entry->stub_sec->output_section->vma);
11228
11229 if (plt_offset != (bfd_vma) -1)
11230 *unresolved_reloc_p = FALSE;
11231 }
11232
11233 /* If this call becomes a call to Arm, force BLX. */
11234 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11235 {
11236 if ((stub_entry
11237 && !arm_stub_is_thumb (stub_entry->stub_type))
11238 || branch_type != ST_BRANCH_TO_THUMB)
11239 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11240 }
11241 }
11242 }
11243
11244 /* Handle calls via the PLT. */
11245 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11246 {
11247 value = (splt->output_section->vma
11248 + splt->output_offset
11249 + plt_offset);
11250
11251 if (globals->use_blx
11252 && r_type == R_ARM_THM_CALL
11253 && ! using_thumb_only (globals))
11254 {
11255 /* If the Thumb BLX instruction is available, convert
11256 the BL to a BLX instruction to call the ARM-mode
11257 PLT entry. */
11258 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11259 branch_type = ST_BRANCH_TO_ARM;
11260 }
11261 else
11262 {
11263 if (! using_thumb_only (globals))
11264 /* Target the Thumb stub before the ARM PLT entry. */
11265 value -= PLT_THUMB_STUB_SIZE;
11266 branch_type = ST_BRANCH_TO_THUMB;
11267 }
11268 *unresolved_reloc_p = FALSE;
11269 }
11270
11271 relocation = value + signed_addend;
11272
11273 relocation -= (input_section->output_section->vma
11274 + input_section->output_offset
11275 + rel->r_offset);
11276
11277 check = relocation >> howto->rightshift;
11278
11279 /* If this is a signed value, the rightshift just dropped
11280 leading 1 bits (assuming twos complement). */
11281 if ((bfd_signed_vma) relocation >= 0)
11282 signed_check = check;
11283 else
11284 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11285
11286 /* Calculate the permissable maximum and minimum values for
11287 this relocation according to whether we're relocating for
11288 Thumb-2 or not. */
11289 bitsize = howto->bitsize;
11290 if (!thumb2_bl)
11291 bitsize -= 2;
11292 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11293 reloc_signed_min = ~reloc_signed_max;
11294
11295 /* Assumes two's complement. */
11296 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11297 overflow = TRUE;
11298
11299 if ((lower_insn & 0x5000) == 0x4000)
11300 /* For a BLX instruction, make sure that the relocation is rounded up
11301 to a word boundary. This follows the semantics of the instruction
11302 which specifies that bit 1 of the target address will come from bit
11303 1 of the base address. */
11304 relocation = (relocation + 2) & ~ 3;
11305
11306 /* Put RELOCATION back into the insn. Assumes two's complement.
11307 We use the Thumb-2 encoding, which is safe even if dealing with
11308 a Thumb-1 instruction by virtue of our overflow check above. */
11309 reloc_sign = (signed_check < 0) ? 1 : 0;
11310 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11311 | ((relocation >> 12) & 0x3ff)
11312 | (reloc_sign << 10);
11313 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11314 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11315 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11316 | ((relocation >> 1) & 0x7ff);
11317
11318 /* Put the relocated value back in the object file: */
11319 bfd_put_16 (input_bfd, upper_insn, hit_data);
11320 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11321
11322 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11323 }
11324 break;
11325
11326 case R_ARM_THM_JUMP19:
11327 /* Thumb32 conditional branch instruction. */
11328 {
11329 bfd_vma relocation;
11330 bfd_boolean overflow = FALSE;
11331 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11332 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11333 bfd_signed_vma reloc_signed_max = 0xffffe;
11334 bfd_signed_vma reloc_signed_min = -0x100000;
11335 bfd_signed_vma signed_check;
11336 enum elf32_arm_stub_type stub_type = arm_stub_none;
11337 struct elf32_arm_stub_hash_entry *stub_entry;
11338 struct elf32_arm_link_hash_entry *hash;
11339
11340 /* Need to refetch the addend, reconstruct the top three bits,
11341 and squish the two 11 bit pieces together. */
11342 if (globals->use_rel)
11343 {
11344 bfd_vma S = (upper_insn & 0x0400) >> 10;
11345 bfd_vma upper = (upper_insn & 0x003f);
11346 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11347 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11348 bfd_vma lower = (lower_insn & 0x07ff);
11349
11350 upper |= J1 << 6;
11351 upper |= J2 << 7;
11352 upper |= (!S) << 8;
11353 upper -= 0x0100; /* Sign extend. */
11354
11355 addend = (upper << 12) | (lower << 1);
11356 signed_addend = addend;
11357 }
11358
11359 /* Handle calls via the PLT. */
11360 if (plt_offset != (bfd_vma) -1)
11361 {
11362 value = (splt->output_section->vma
11363 + splt->output_offset
11364 + plt_offset);
11365 /* Target the Thumb stub before the ARM PLT entry. */
11366 value -= PLT_THUMB_STUB_SIZE;
11367 *unresolved_reloc_p = FALSE;
11368 }
11369
11370 hash = (struct elf32_arm_link_hash_entry *)h;
11371
11372 stub_type = arm_type_of_stub (info, input_section, rel,
11373 st_type, &branch_type,
11374 hash, value, sym_sec,
11375 input_bfd, sym_name);
11376 if (stub_type != arm_stub_none)
11377 {
11378 stub_entry = elf32_arm_get_stub_entry (input_section,
11379 sym_sec, h,
11380 rel, globals,
11381 stub_type);
11382 if (stub_entry != NULL)
11383 {
11384 value = (stub_entry->stub_offset
11385 + stub_entry->stub_sec->output_offset
11386 + stub_entry->stub_sec->output_section->vma);
11387 }
11388 }
11389
11390 relocation = value + signed_addend;
11391 relocation -= (input_section->output_section->vma
11392 + input_section->output_offset
11393 + rel->r_offset);
11394 signed_check = (bfd_signed_vma) relocation;
11395
11396 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11397 overflow = TRUE;
11398
11399 /* Put RELOCATION back into the insn. */
11400 {
11401 bfd_vma S = (relocation & 0x00100000) >> 20;
11402 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11403 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11404 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11405 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11406
11407 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11408 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11409 }
11410
11411 /* Put the relocated value back in the object file: */
11412 bfd_put_16 (input_bfd, upper_insn, hit_data);
11413 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11414
11415 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11416 }
11417
11418 case R_ARM_THM_JUMP11:
11419 case R_ARM_THM_JUMP8:
11420 case R_ARM_THM_JUMP6:
11421 /* Thumb B (branch) instruction). */
11422 {
11423 bfd_signed_vma relocation;
11424 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11425 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11426 bfd_signed_vma signed_check;
11427
11428 /* CZB cannot jump backward. */
11429 if (r_type == R_ARM_THM_JUMP6)
11430 reloc_signed_min = 0;
11431
11432 if (globals->use_rel)
11433 {
11434 /* Need to refetch addend. */
11435 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11436 if (addend & ((howto->src_mask + 1) >> 1))
11437 {
11438 signed_addend = -1;
11439 signed_addend &= ~ howto->src_mask;
11440 signed_addend |= addend;
11441 }
11442 else
11443 signed_addend = addend;
11444 /* The value in the insn has been right shifted. We need to
11445 undo this, so that we can perform the address calculation
11446 in terms of bytes. */
11447 signed_addend <<= howto->rightshift;
11448 }
11449 relocation = value + signed_addend;
11450
11451 relocation -= (input_section->output_section->vma
11452 + input_section->output_offset
11453 + rel->r_offset);
11454
11455 relocation >>= howto->rightshift;
11456 signed_check = relocation;
11457
11458 if (r_type == R_ARM_THM_JUMP6)
11459 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11460 else
11461 relocation &= howto->dst_mask;
11462 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11463
11464 bfd_put_16 (input_bfd, relocation, hit_data);
11465
11466 /* Assumes two's complement. */
11467 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11468 return bfd_reloc_overflow;
11469
11470 return bfd_reloc_ok;
11471 }
11472
11473 case R_ARM_ALU_PCREL7_0:
11474 case R_ARM_ALU_PCREL15_8:
11475 case R_ARM_ALU_PCREL23_15:
11476 {
11477 bfd_vma insn;
11478 bfd_vma relocation;
11479
11480 insn = bfd_get_32 (input_bfd, hit_data);
11481 if (globals->use_rel)
11482 {
11483 /* Extract the addend. */
11484 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11485 signed_addend = addend;
11486 }
11487 relocation = value + signed_addend;
11488
11489 relocation -= (input_section->output_section->vma
11490 + input_section->output_offset
11491 + rel->r_offset);
11492 insn = (insn & ~0xfff)
11493 | ((howto->bitpos << 7) & 0xf00)
11494 | ((relocation >> howto->bitpos) & 0xff);
11495 bfd_put_32 (input_bfd, value, hit_data);
11496 }
11497 return bfd_reloc_ok;
11498
11499 case R_ARM_GNU_VTINHERIT:
11500 case R_ARM_GNU_VTENTRY:
11501 return bfd_reloc_ok;
11502
11503 case R_ARM_GOTOFF32:
11504 /* Relocation is relative to the start of the
11505 global offset table. */
11506
11507 BFD_ASSERT (sgot != NULL);
11508 if (sgot == NULL)
11509 return bfd_reloc_notsupported;
11510
11511 /* If we are addressing a Thumb function, we need to adjust the
11512 address by one, so that attempts to call the function pointer will
11513 correctly interpret it as Thumb code. */
11514 if (branch_type == ST_BRANCH_TO_THUMB)
11515 value += 1;
11516
11517 /* Note that sgot->output_offset is not involved in this
11518 calculation. We always want the start of .got. If we
11519 define _GLOBAL_OFFSET_TABLE in a different way, as is
11520 permitted by the ABI, we might have to change this
11521 calculation. */
11522 value -= sgot->output_section->vma;
11523 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11524 contents, rel->r_offset, value,
11525 rel->r_addend);
11526
11527 case R_ARM_GOTPC:
11528 /* Use global offset table as symbol value. */
11529 BFD_ASSERT (sgot != NULL);
11530
11531 if (sgot == NULL)
11532 return bfd_reloc_notsupported;
11533
11534 *unresolved_reloc_p = FALSE;
11535 value = sgot->output_section->vma;
11536 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11537 contents, rel->r_offset, value,
11538 rel->r_addend);
11539
11540 case R_ARM_GOT32:
11541 case R_ARM_GOT_PREL:
11542 /* Relocation is to the entry for this symbol in the
11543 global offset table. */
11544 if (sgot == NULL)
11545 return bfd_reloc_notsupported;
11546
11547 if (dynreloc_st_type == STT_GNU_IFUNC
11548 && plt_offset != (bfd_vma) -1
11549 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11550 {
11551 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11552 symbol, and the relocation resolves directly to the runtime
11553 target rather than to the .iplt entry. This means that any
11554 .got entry would be the same value as the .igot.plt entry,
11555 so there's no point creating both. */
11556 sgot = globals->root.igotplt;
11557 value = sgot->output_offset + gotplt_offset;
11558 }
11559 else if (h != NULL)
11560 {
11561 bfd_vma off;
11562
11563 off = h->got.offset;
11564 BFD_ASSERT (off != (bfd_vma) -1);
11565 if ((off & 1) != 0)
11566 {
11567 /* We have already processsed one GOT relocation against
11568 this symbol. */
11569 off &= ~1;
11570 if (globals->root.dynamic_sections_created
11571 && !SYMBOL_REFERENCES_LOCAL (info, h))
11572 *unresolved_reloc_p = FALSE;
11573 }
11574 else
11575 {
11576 Elf_Internal_Rela outrel;
11577 int isrofixup = 0;
11578
11579 if (((h->dynindx != -1) || globals->fdpic_p)
11580 && !SYMBOL_REFERENCES_LOCAL (info, h))
11581 {
11582 /* If the symbol doesn't resolve locally in a static
11583 object, we have an undefined reference. If the
11584 symbol doesn't resolve locally in a dynamic object,
11585 it should be resolved by the dynamic linker. */
11586 if (globals->root.dynamic_sections_created)
11587 {
11588 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11589 *unresolved_reloc_p = FALSE;
11590 }
11591 else
11592 outrel.r_info = 0;
11593 outrel.r_addend = 0;
11594 }
11595 else
11596 {
11597 if (dynreloc_st_type == STT_GNU_IFUNC)
11598 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11599 else if (bfd_link_pic (info)
11600 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11601 || h->root.type != bfd_link_hash_undefweak))
11602 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11603 else
11604 {
11605 outrel.r_info = 0;
11606 if (globals->fdpic_p)
11607 isrofixup = 1;
11608 }
11609 outrel.r_addend = dynreloc_value;
11610 }
11611
11612 /* The GOT entry is initialized to zero by default.
11613 See if we should install a different value. */
11614 if (outrel.r_addend != 0
11615 && (globals->use_rel || outrel.r_info == 0))
11616 {
11617 bfd_put_32 (output_bfd, outrel.r_addend,
11618 sgot->contents + off);
11619 outrel.r_addend = 0;
11620 }
11621
11622 if (isrofixup)
11623 arm_elf_add_rofixup (output_bfd,
11624 elf32_arm_hash_table(info)->srofixup,
11625 sgot->output_section->vma
11626 + sgot->output_offset + off);
11627
11628 else if (outrel.r_info != 0)
11629 {
11630 outrel.r_offset = (sgot->output_section->vma
11631 + sgot->output_offset
11632 + off);
11633 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11634 }
11635
11636 h->got.offset |= 1;
11637 }
11638 value = sgot->output_offset + off;
11639 }
11640 else
11641 {
11642 bfd_vma off;
11643
11644 BFD_ASSERT (local_got_offsets != NULL
11645 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11646
11647 off = local_got_offsets[r_symndx];
11648
11649 /* The offset must always be a multiple of 4. We use the
11650 least significant bit to record whether we have already
11651 generated the necessary reloc. */
11652 if ((off & 1) != 0)
11653 off &= ~1;
11654 else
11655 {
11656 Elf_Internal_Rela outrel;
11657 int isrofixup = 0;
11658
11659 if (dynreloc_st_type == STT_GNU_IFUNC)
11660 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11661 else if (bfd_link_pic (info))
11662 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11663 else
11664 {
11665 outrel.r_info = 0;
11666 if (globals->fdpic_p)
11667 isrofixup = 1;
11668 }
11669
11670 /* The GOT entry is initialized to zero by default.
11671 See if we should install a different value. */
11672 if (globals->use_rel || outrel.r_info == 0)
11673 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11674
11675 if (isrofixup)
11676 arm_elf_add_rofixup (output_bfd,
11677 globals->srofixup,
11678 sgot->output_section->vma
11679 + sgot->output_offset + off);
11680
11681 else if (outrel.r_info != 0)
11682 {
11683 outrel.r_addend = addend + dynreloc_value;
11684 outrel.r_offset = (sgot->output_section->vma
11685 + sgot->output_offset
11686 + off);
11687 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11688 }
11689
11690 local_got_offsets[r_symndx] |= 1;
11691 }
11692
11693 value = sgot->output_offset + off;
11694 }
11695 if (r_type != R_ARM_GOT32)
11696 value += sgot->output_section->vma;
11697
11698 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11699 contents, rel->r_offset, value,
11700 rel->r_addend);
11701
11702 case R_ARM_TLS_LDO32:
11703 value = value - dtpoff_base (info);
11704
11705 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11706 contents, rel->r_offset, value,
11707 rel->r_addend);
11708
11709 case R_ARM_TLS_LDM32:
11710 case R_ARM_TLS_LDM32_FDPIC:
11711 {
11712 bfd_vma off;
11713
11714 if (sgot == NULL)
11715 abort ();
11716
11717 off = globals->tls_ldm_got.offset;
11718
11719 if ((off & 1) != 0)
11720 off &= ~1;
11721 else
11722 {
11723 /* If we don't know the module number, create a relocation
11724 for it. */
11725 if (bfd_link_pic (info))
11726 {
11727 Elf_Internal_Rela outrel;
11728
11729 if (srelgot == NULL)
11730 abort ();
11731
11732 outrel.r_addend = 0;
11733 outrel.r_offset = (sgot->output_section->vma
11734 + sgot->output_offset + off);
11735 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11736
11737 if (globals->use_rel)
11738 bfd_put_32 (output_bfd, outrel.r_addend,
11739 sgot->contents + off);
11740
11741 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11742 }
11743 else
11744 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11745
11746 globals->tls_ldm_got.offset |= 1;
11747 }
11748
11749 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11750 {
11751 bfd_put_32(output_bfd,
11752 globals->root.sgot->output_offset + off,
11753 contents + rel->r_offset);
11754
11755 return bfd_reloc_ok;
11756 }
11757 else
11758 {
11759 value = sgot->output_section->vma + sgot->output_offset + off
11760 - (input_section->output_section->vma
11761 + input_section->output_offset + rel->r_offset);
11762
11763 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11764 contents, rel->r_offset, value,
11765 rel->r_addend);
11766 }
11767 }
11768
11769 case R_ARM_TLS_CALL:
11770 case R_ARM_THM_TLS_CALL:
11771 case R_ARM_TLS_GD32:
11772 case R_ARM_TLS_GD32_FDPIC:
11773 case R_ARM_TLS_IE32:
11774 case R_ARM_TLS_IE32_FDPIC:
11775 case R_ARM_TLS_GOTDESC:
11776 case R_ARM_TLS_DESCSEQ:
11777 case R_ARM_THM_TLS_DESCSEQ:
11778 {
11779 bfd_vma off, offplt;
11780 int indx = 0;
11781 char tls_type;
11782
11783 BFD_ASSERT (sgot != NULL);
11784
11785 if (h != NULL)
11786 {
11787 bfd_boolean dyn;
11788 dyn = globals->root.dynamic_sections_created;
11789 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11790 bfd_link_pic (info),
11791 h)
11792 && (!bfd_link_pic (info)
11793 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11794 {
11795 *unresolved_reloc_p = FALSE;
11796 indx = h->dynindx;
11797 }
11798 off = h->got.offset;
11799 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11800 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11801 }
11802 else
11803 {
11804 BFD_ASSERT (local_got_offsets != NULL);
11805 off = local_got_offsets[r_symndx];
11806 offplt = local_tlsdesc_gotents[r_symndx];
11807 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11808 }
11809
11810 /* Linker relaxations happens from one of the
11811 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11812 if (ELF32_R_TYPE(rel->r_info) != r_type)
11813 tls_type = GOT_TLS_IE;
11814
11815 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11816
11817 if ((off & 1) != 0)
11818 off &= ~1;
11819 else
11820 {
11821 bfd_boolean need_relocs = FALSE;
11822 Elf_Internal_Rela outrel;
11823 int cur_off = off;
11824
11825 /* The GOT entries have not been initialized yet. Do it
11826 now, and emit any relocations. If both an IE GOT and a
11827 GD GOT are necessary, we emit the GD first. */
11828
11829 if ((bfd_link_pic (info) || indx != 0)
11830 && (h == NULL
11831 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11832 && !resolved_to_zero)
11833 || h->root.type != bfd_link_hash_undefweak))
11834 {
11835 need_relocs = TRUE;
11836 BFD_ASSERT (srelgot != NULL);
11837 }
11838
11839 if (tls_type & GOT_TLS_GDESC)
11840 {
11841 bfd_byte *loc;
11842
11843 /* We should have relaxed, unless this is an undefined
11844 weak symbol. */
11845 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11846 || bfd_link_pic (info));
11847 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11848 <= globals->root.sgotplt->size);
11849
11850 outrel.r_addend = 0;
11851 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11852 + globals->root.sgotplt->output_offset
11853 + offplt
11854 + globals->sgotplt_jump_table_size);
11855
11856 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11857 sreloc = globals->root.srelplt;
11858 loc = sreloc->contents;
11859 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11860 BFD_ASSERT (loc + RELOC_SIZE (globals)
11861 <= sreloc->contents + sreloc->size);
11862
11863 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11864
11865 /* For globals, the first word in the relocation gets
11866 the relocation index and the top bit set, or zero,
11867 if we're binding now. For locals, it gets the
11868 symbol's offset in the tls section. */
11869 bfd_put_32 (output_bfd,
11870 !h ? value - elf_hash_table (info)->tls_sec->vma
11871 : info->flags & DF_BIND_NOW ? 0
11872 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11873 globals->root.sgotplt->contents + offplt
11874 + globals->sgotplt_jump_table_size);
11875
11876 /* Second word in the relocation is always zero. */
11877 bfd_put_32 (output_bfd, 0,
11878 globals->root.sgotplt->contents + offplt
11879 + globals->sgotplt_jump_table_size + 4);
11880 }
11881 if (tls_type & GOT_TLS_GD)
11882 {
11883 if (need_relocs)
11884 {
11885 outrel.r_addend = 0;
11886 outrel.r_offset = (sgot->output_section->vma
11887 + sgot->output_offset
11888 + cur_off);
11889 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11890
11891 if (globals->use_rel)
11892 bfd_put_32 (output_bfd, outrel.r_addend,
11893 sgot->contents + cur_off);
11894
11895 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11896
11897 if (indx == 0)
11898 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11899 sgot->contents + cur_off + 4);
11900 else
11901 {
11902 outrel.r_addend = 0;
11903 outrel.r_info = ELF32_R_INFO (indx,
11904 R_ARM_TLS_DTPOFF32);
11905 outrel.r_offset += 4;
11906
11907 if (globals->use_rel)
11908 bfd_put_32 (output_bfd, outrel.r_addend,
11909 sgot->contents + cur_off + 4);
11910
11911 elf32_arm_add_dynreloc (output_bfd, info,
11912 srelgot, &outrel);
11913 }
11914 }
11915 else
11916 {
11917 /* If we are not emitting relocations for a
11918 general dynamic reference, then we must be in a
11919 static link or an executable link with the
11920 symbol binding locally. Mark it as belonging
11921 to module 1, the executable. */
11922 bfd_put_32 (output_bfd, 1,
11923 sgot->contents + cur_off);
11924 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11925 sgot->contents + cur_off + 4);
11926 }
11927
11928 cur_off += 8;
11929 }
11930
11931 if (tls_type & GOT_TLS_IE)
11932 {
11933 if (need_relocs)
11934 {
11935 if (indx == 0)
11936 outrel.r_addend = value - dtpoff_base (info);
11937 else
11938 outrel.r_addend = 0;
11939 outrel.r_offset = (sgot->output_section->vma
11940 + sgot->output_offset
11941 + cur_off);
11942 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11943
11944 if (globals->use_rel)
11945 bfd_put_32 (output_bfd, outrel.r_addend,
11946 sgot->contents + cur_off);
11947
11948 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11949 }
11950 else
11951 bfd_put_32 (output_bfd, tpoff (info, value),
11952 sgot->contents + cur_off);
11953 cur_off += 4;
11954 }
11955
11956 if (h != NULL)
11957 h->got.offset |= 1;
11958 else
11959 local_got_offsets[r_symndx] |= 1;
11960 }
11961
11962 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11963 off += 8;
11964 else if (tls_type & GOT_TLS_GDESC)
11965 off = offplt;
11966
11967 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11968 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11969 {
11970 bfd_signed_vma offset;
11971 /* TLS stubs are arm mode. The original symbol is a
11972 data object, so branch_type is bogus. */
11973 branch_type = ST_BRANCH_TO_ARM;
11974 enum elf32_arm_stub_type stub_type
11975 = arm_type_of_stub (info, input_section, rel,
11976 st_type, &branch_type,
11977 (struct elf32_arm_link_hash_entry *)h,
11978 globals->tls_trampoline, globals->root.splt,
11979 input_bfd, sym_name);
11980
11981 if (stub_type != arm_stub_none)
11982 {
11983 struct elf32_arm_stub_hash_entry *stub_entry
11984 = elf32_arm_get_stub_entry
11985 (input_section, globals->root.splt, 0, rel,
11986 globals, stub_type);
11987 offset = (stub_entry->stub_offset
11988 + stub_entry->stub_sec->output_offset
11989 + stub_entry->stub_sec->output_section->vma);
11990 }
11991 else
11992 offset = (globals->root.splt->output_section->vma
11993 + globals->root.splt->output_offset
11994 + globals->tls_trampoline);
11995
11996 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11997 {
11998 unsigned long inst;
11999
12000 offset -= (input_section->output_section->vma
12001 + input_section->output_offset
12002 + rel->r_offset + 8);
12003
12004 inst = offset >> 2;
12005 inst &= 0x00ffffff;
12006 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
12007 }
12008 else
12009 {
12010 /* Thumb blx encodes the offset in a complicated
12011 fashion. */
12012 unsigned upper_insn, lower_insn;
12013 unsigned neg;
12014
12015 offset -= (input_section->output_section->vma
12016 + input_section->output_offset
12017 + rel->r_offset + 4);
12018
12019 if (stub_type != arm_stub_none
12020 && arm_stub_is_thumb (stub_type))
12021 {
12022 lower_insn = 0xd000;
12023 }
12024 else
12025 {
12026 lower_insn = 0xc000;
12027 /* Round up the offset to a word boundary. */
12028 offset = (offset + 2) & ~2;
12029 }
12030
12031 neg = offset < 0;
12032 upper_insn = (0xf000
12033 | ((offset >> 12) & 0x3ff)
12034 | (neg << 10));
12035 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12036 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12037 | ((offset >> 1) & 0x7ff);
12038 bfd_put_16 (input_bfd, upper_insn, hit_data);
12039 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12040 return bfd_reloc_ok;
12041 }
12042 }
12043 /* These relocations needs special care, as besides the fact
12044 they point somewhere in .gotplt, the addend must be
12045 adjusted accordingly depending on the type of instruction
12046 we refer to. */
12047 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12048 {
12049 unsigned long data, insn;
12050 unsigned thumb;
12051
12052 data = bfd_get_32 (input_bfd, hit_data);
12053 thumb = data & 1;
12054 data &= ~1u;
12055
12056 if (thumb)
12057 {
12058 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12059 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12060 insn = (insn << 16)
12061 | bfd_get_16 (input_bfd,
12062 contents + rel->r_offset - data + 2);
12063 if ((insn & 0xf800c000) == 0xf000c000)
12064 /* bl/blx */
12065 value = -6;
12066 else if ((insn & 0xffffff00) == 0x4400)
12067 /* add */
12068 value = -5;
12069 else
12070 {
12071 _bfd_error_handler
12072 /* xgettext:c-format */
12073 (_("%pB(%pA+%#" PRIx64 "): "
12074 "unexpected %s instruction '%#lx' "
12075 "referenced by TLS_GOTDESC"),
12076 input_bfd, input_section, (uint64_t) rel->r_offset,
12077 "Thumb", insn);
12078 return bfd_reloc_notsupported;
12079 }
12080 }
12081 else
12082 {
12083 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12084
12085 switch (insn >> 24)
12086 {
12087 case 0xeb: /* bl */
12088 case 0xfa: /* blx */
12089 value = -4;
12090 break;
12091
12092 case 0xe0: /* add */
12093 value = -8;
12094 break;
12095
12096 default:
12097 _bfd_error_handler
12098 /* xgettext:c-format */
12099 (_("%pB(%pA+%#" PRIx64 "): "
12100 "unexpected %s instruction '%#lx' "
12101 "referenced by TLS_GOTDESC"),
12102 input_bfd, input_section, (uint64_t) rel->r_offset,
12103 "ARM", insn);
12104 return bfd_reloc_notsupported;
12105 }
12106 }
12107
12108 value += ((globals->root.sgotplt->output_section->vma
12109 + globals->root.sgotplt->output_offset + off)
12110 - (input_section->output_section->vma
12111 + input_section->output_offset
12112 + rel->r_offset)
12113 + globals->sgotplt_jump_table_size);
12114 }
12115 else
12116 value = ((globals->root.sgot->output_section->vma
12117 + globals->root.sgot->output_offset + off)
12118 - (input_section->output_section->vma
12119 + input_section->output_offset + rel->r_offset));
12120
12121 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12122 r_type == R_ARM_TLS_IE32_FDPIC))
12123 {
12124 /* For FDPIC relocations, resolve to the offset of the GOT
12125 entry from the start of GOT. */
12126 bfd_put_32(output_bfd,
12127 globals->root.sgot->output_offset + off,
12128 contents + rel->r_offset);
12129
12130 return bfd_reloc_ok;
12131 }
12132 else
12133 {
12134 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12135 contents, rel->r_offset, value,
12136 rel->r_addend);
12137 }
12138 }
12139
12140 case R_ARM_TLS_LE32:
12141 if (bfd_link_dll (info))
12142 {
12143 _bfd_error_handler
12144 /* xgettext:c-format */
12145 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12146 "in shared object"),
12147 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12148 return bfd_reloc_notsupported;
12149 }
12150 else
12151 value = tpoff (info, value);
12152
12153 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12154 contents, rel->r_offset, value,
12155 rel->r_addend);
12156
12157 case R_ARM_V4BX:
12158 if (globals->fix_v4bx)
12159 {
12160 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12161
12162 /* Ensure that we have a BX instruction. */
12163 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12164
12165 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12166 {
12167 /* Branch to veneer. */
12168 bfd_vma glue_addr;
12169 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12170 glue_addr -= input_section->output_section->vma
12171 + input_section->output_offset
12172 + rel->r_offset + 8;
12173 insn = (insn & 0xf0000000) | 0x0a000000
12174 | ((glue_addr >> 2) & 0x00ffffff);
12175 }
12176 else
12177 {
12178 /* Preserve Rm (lowest four bits) and the condition code
12179 (highest four bits). Other bits encode MOV PC,Rm. */
12180 insn = (insn & 0xf000000f) | 0x01a0f000;
12181 }
12182
12183 bfd_put_32 (input_bfd, insn, hit_data);
12184 }
12185 return bfd_reloc_ok;
12186
12187 case R_ARM_MOVW_ABS_NC:
12188 case R_ARM_MOVT_ABS:
12189 case R_ARM_MOVW_PREL_NC:
12190 case R_ARM_MOVT_PREL:
12191 /* Until we properly support segment-base-relative addressing then
12192 we assume the segment base to be zero, as for the group relocations.
12193 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12194 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12195 case R_ARM_MOVW_BREL_NC:
12196 case R_ARM_MOVW_BREL:
12197 case R_ARM_MOVT_BREL:
12198 {
12199 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12200
12201 if (globals->use_rel)
12202 {
12203 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12204 signed_addend = (addend ^ 0x8000) - 0x8000;
12205 }
12206
12207 value += signed_addend;
12208
12209 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12210 value -= (input_section->output_section->vma
12211 + input_section->output_offset + rel->r_offset);
12212
12213 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12214 return bfd_reloc_overflow;
12215
12216 if (branch_type == ST_BRANCH_TO_THUMB)
12217 value |= 1;
12218
12219 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12220 || r_type == R_ARM_MOVT_BREL)
12221 value >>= 16;
12222
12223 insn &= 0xfff0f000;
12224 insn |= value & 0xfff;
12225 insn |= (value & 0xf000) << 4;
12226 bfd_put_32 (input_bfd, insn, hit_data);
12227 }
12228 return bfd_reloc_ok;
12229
12230 case R_ARM_THM_MOVW_ABS_NC:
12231 case R_ARM_THM_MOVT_ABS:
12232 case R_ARM_THM_MOVW_PREL_NC:
12233 case R_ARM_THM_MOVT_PREL:
12234 /* Until we properly support segment-base-relative addressing then
12235 we assume the segment base to be zero, as for the above relocations.
12236 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12237 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12238 as R_ARM_THM_MOVT_ABS. */
12239 case R_ARM_THM_MOVW_BREL_NC:
12240 case R_ARM_THM_MOVW_BREL:
12241 case R_ARM_THM_MOVT_BREL:
12242 {
12243 bfd_vma insn;
12244
12245 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12246 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12247
12248 if (globals->use_rel)
12249 {
12250 addend = ((insn >> 4) & 0xf000)
12251 | ((insn >> 15) & 0x0800)
12252 | ((insn >> 4) & 0x0700)
12253 | (insn & 0x00ff);
12254 signed_addend = (addend ^ 0x8000) - 0x8000;
12255 }
12256
12257 value += signed_addend;
12258
12259 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12260 value -= (input_section->output_section->vma
12261 + input_section->output_offset + rel->r_offset);
12262
12263 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12264 return bfd_reloc_overflow;
12265
12266 if (branch_type == ST_BRANCH_TO_THUMB)
12267 value |= 1;
12268
12269 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12270 || r_type == R_ARM_THM_MOVT_BREL)
12271 value >>= 16;
12272
12273 insn &= 0xfbf08f00;
12274 insn |= (value & 0xf000) << 4;
12275 insn |= (value & 0x0800) << 15;
12276 insn |= (value & 0x0700) << 4;
12277 insn |= (value & 0x00ff);
12278
12279 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12280 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12281 }
12282 return bfd_reloc_ok;
12283
12284 case R_ARM_ALU_PC_G0_NC:
12285 case R_ARM_ALU_PC_G1_NC:
12286 case R_ARM_ALU_PC_G0:
12287 case R_ARM_ALU_PC_G1:
12288 case R_ARM_ALU_PC_G2:
12289 case R_ARM_ALU_SB_G0_NC:
12290 case R_ARM_ALU_SB_G1_NC:
12291 case R_ARM_ALU_SB_G0:
12292 case R_ARM_ALU_SB_G1:
12293 case R_ARM_ALU_SB_G2:
12294 {
12295 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12296 bfd_vma pc = input_section->output_section->vma
12297 + input_section->output_offset + rel->r_offset;
12298 /* sb is the origin of the *segment* containing the symbol. */
12299 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12300 bfd_vma residual;
12301 bfd_vma g_n;
12302 bfd_signed_vma signed_value;
12303 int group = 0;
12304
12305 /* Determine which group of bits to select. */
12306 switch (r_type)
12307 {
12308 case R_ARM_ALU_PC_G0_NC:
12309 case R_ARM_ALU_PC_G0:
12310 case R_ARM_ALU_SB_G0_NC:
12311 case R_ARM_ALU_SB_G0:
12312 group = 0;
12313 break;
12314
12315 case R_ARM_ALU_PC_G1_NC:
12316 case R_ARM_ALU_PC_G1:
12317 case R_ARM_ALU_SB_G1_NC:
12318 case R_ARM_ALU_SB_G1:
12319 group = 1;
12320 break;
12321
12322 case R_ARM_ALU_PC_G2:
12323 case R_ARM_ALU_SB_G2:
12324 group = 2;
12325 break;
12326
12327 default:
12328 abort ();
12329 }
12330
12331 /* If REL, extract the addend from the insn. If RELA, it will
12332 have already been fetched for us. */
12333 if (globals->use_rel)
12334 {
12335 int negative;
12336 bfd_vma constant = insn & 0xff;
12337 bfd_vma rotation = (insn & 0xf00) >> 8;
12338
12339 if (rotation == 0)
12340 signed_addend = constant;
12341 else
12342 {
12343 /* Compensate for the fact that in the instruction, the
12344 rotation is stored in multiples of 2 bits. */
12345 rotation *= 2;
12346
12347 /* Rotate "constant" right by "rotation" bits. */
12348 signed_addend = (constant >> rotation) |
12349 (constant << (8 * sizeof (bfd_vma) - rotation));
12350 }
12351
12352 /* Determine if the instruction is an ADD or a SUB.
12353 (For REL, this determines the sign of the addend.) */
12354 negative = identify_add_or_sub (insn);
12355 if (negative == 0)
12356 {
12357 _bfd_error_handler
12358 /* xgettext:c-format */
12359 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12360 "are allowed for ALU group relocations"),
12361 input_bfd, input_section, (uint64_t) rel->r_offset);
12362 return bfd_reloc_overflow;
12363 }
12364
12365 signed_addend *= negative;
12366 }
12367
12368 /* Compute the value (X) to go in the place. */
12369 if (r_type == R_ARM_ALU_PC_G0_NC
12370 || r_type == R_ARM_ALU_PC_G1_NC
12371 || r_type == R_ARM_ALU_PC_G0
12372 || r_type == R_ARM_ALU_PC_G1
12373 || r_type == R_ARM_ALU_PC_G2)
12374 /* PC relative. */
12375 signed_value = value - pc + signed_addend;
12376 else
12377 /* Section base relative. */
12378 signed_value = value - sb + signed_addend;
12379
12380 /* If the target symbol is a Thumb function, then set the
12381 Thumb bit in the address. */
12382 if (branch_type == ST_BRANCH_TO_THUMB)
12383 signed_value |= 1;
12384
12385 /* Calculate the value of the relevant G_n, in encoded
12386 constant-with-rotation format. */
12387 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12388 group, &residual);
12389
12390 /* Check for overflow if required. */
12391 if ((r_type == R_ARM_ALU_PC_G0
12392 || r_type == R_ARM_ALU_PC_G1
12393 || r_type == R_ARM_ALU_PC_G2
12394 || r_type == R_ARM_ALU_SB_G0
12395 || r_type == R_ARM_ALU_SB_G1
12396 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12397 {
12398 _bfd_error_handler
12399 /* xgettext:c-format */
12400 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12401 "splitting %#" PRIx64 " for group relocation %s"),
12402 input_bfd, input_section, (uint64_t) rel->r_offset,
12403 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12404 howto->name);
12405 return bfd_reloc_overflow;
12406 }
12407
12408 /* Mask out the value and the ADD/SUB part of the opcode; take care
12409 not to destroy the S bit. */
12410 insn &= 0xff1ff000;
12411
12412 /* Set the opcode according to whether the value to go in the
12413 place is negative. */
12414 if (signed_value < 0)
12415 insn |= 1 << 22;
12416 else
12417 insn |= 1 << 23;
12418
12419 /* Encode the offset. */
12420 insn |= g_n;
12421
12422 bfd_put_32 (input_bfd, insn, hit_data);
12423 }
12424 return bfd_reloc_ok;
12425
12426 case R_ARM_LDR_PC_G0:
12427 case R_ARM_LDR_PC_G1:
12428 case R_ARM_LDR_PC_G2:
12429 case R_ARM_LDR_SB_G0:
12430 case R_ARM_LDR_SB_G1:
12431 case R_ARM_LDR_SB_G2:
12432 {
12433 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12434 bfd_vma pc = input_section->output_section->vma
12435 + input_section->output_offset + rel->r_offset;
12436 /* sb is the origin of the *segment* containing the symbol. */
12437 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12438 bfd_vma residual;
12439 bfd_signed_vma signed_value;
12440 int group = 0;
12441
12442 /* Determine which groups of bits to calculate. */
12443 switch (r_type)
12444 {
12445 case R_ARM_LDR_PC_G0:
12446 case R_ARM_LDR_SB_G0:
12447 group = 0;
12448 break;
12449
12450 case R_ARM_LDR_PC_G1:
12451 case R_ARM_LDR_SB_G1:
12452 group = 1;
12453 break;
12454
12455 case R_ARM_LDR_PC_G2:
12456 case R_ARM_LDR_SB_G2:
12457 group = 2;
12458 break;
12459
12460 default:
12461 abort ();
12462 }
12463
12464 /* If REL, extract the addend from the insn. If RELA, it will
12465 have already been fetched for us. */
12466 if (globals->use_rel)
12467 {
12468 int negative = (insn & (1 << 23)) ? 1 : -1;
12469 signed_addend = negative * (insn & 0xfff);
12470 }
12471
12472 /* Compute the value (X) to go in the place. */
12473 if (r_type == R_ARM_LDR_PC_G0
12474 || r_type == R_ARM_LDR_PC_G1
12475 || r_type == R_ARM_LDR_PC_G2)
12476 /* PC relative. */
12477 signed_value = value - pc + signed_addend;
12478 else
12479 /* Section base relative. */
12480 signed_value = value - sb + signed_addend;
12481
12482 /* Calculate the value of the relevant G_{n-1} to obtain
12483 the residual at that stage. */
12484 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12485 group - 1, &residual);
12486
12487 /* Check for overflow. */
12488 if (residual >= 0x1000)
12489 {
12490 _bfd_error_handler
12491 /* xgettext:c-format */
12492 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12493 "splitting %#" PRIx64 " for group relocation %s"),
12494 input_bfd, input_section, (uint64_t) rel->r_offset,
12495 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12496 howto->name);
12497 return bfd_reloc_overflow;
12498 }
12499
12500 /* Mask out the value and U bit. */
12501 insn &= 0xff7ff000;
12502
12503 /* Set the U bit if the value to go in the place is non-negative. */
12504 if (signed_value >= 0)
12505 insn |= 1 << 23;
12506
12507 /* Encode the offset. */
12508 insn |= residual;
12509
12510 bfd_put_32 (input_bfd, insn, hit_data);
12511 }
12512 return bfd_reloc_ok;
12513
12514 case R_ARM_LDRS_PC_G0:
12515 case R_ARM_LDRS_PC_G1:
12516 case R_ARM_LDRS_PC_G2:
12517 case R_ARM_LDRS_SB_G0:
12518 case R_ARM_LDRS_SB_G1:
12519 case R_ARM_LDRS_SB_G2:
12520 {
12521 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12522 bfd_vma pc = input_section->output_section->vma
12523 + input_section->output_offset + rel->r_offset;
12524 /* sb is the origin of the *segment* containing the symbol. */
12525 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12526 bfd_vma residual;
12527 bfd_signed_vma signed_value;
12528 int group = 0;
12529
12530 /* Determine which groups of bits to calculate. */
12531 switch (r_type)
12532 {
12533 case R_ARM_LDRS_PC_G0:
12534 case R_ARM_LDRS_SB_G0:
12535 group = 0;
12536 break;
12537
12538 case R_ARM_LDRS_PC_G1:
12539 case R_ARM_LDRS_SB_G1:
12540 group = 1;
12541 break;
12542
12543 case R_ARM_LDRS_PC_G2:
12544 case R_ARM_LDRS_SB_G2:
12545 group = 2;
12546 break;
12547
12548 default:
12549 abort ();
12550 }
12551
12552 /* If REL, extract the addend from the insn. If RELA, it will
12553 have already been fetched for us. */
12554 if (globals->use_rel)
12555 {
12556 int negative = (insn & (1 << 23)) ? 1 : -1;
12557 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12558 }
12559
12560 /* Compute the value (X) to go in the place. */
12561 if (r_type == R_ARM_LDRS_PC_G0
12562 || r_type == R_ARM_LDRS_PC_G1
12563 || r_type == R_ARM_LDRS_PC_G2)
12564 /* PC relative. */
12565 signed_value = value - pc + signed_addend;
12566 else
12567 /* Section base relative. */
12568 signed_value = value - sb + signed_addend;
12569
12570 /* Calculate the value of the relevant G_{n-1} to obtain
12571 the residual at that stage. */
12572 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12573 group - 1, &residual);
12574
12575 /* Check for overflow. */
12576 if (residual >= 0x100)
12577 {
12578 _bfd_error_handler
12579 /* xgettext:c-format */
12580 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12581 "splitting %#" PRIx64 " for group relocation %s"),
12582 input_bfd, input_section, (uint64_t) rel->r_offset,
12583 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12584 howto->name);
12585 return bfd_reloc_overflow;
12586 }
12587
12588 /* Mask out the value and U bit. */
12589 insn &= 0xff7ff0f0;
12590
12591 /* Set the U bit if the value to go in the place is non-negative. */
12592 if (signed_value >= 0)
12593 insn |= 1 << 23;
12594
12595 /* Encode the offset. */
12596 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12597
12598 bfd_put_32 (input_bfd, insn, hit_data);
12599 }
12600 return bfd_reloc_ok;
12601
12602 case R_ARM_LDC_PC_G0:
12603 case R_ARM_LDC_PC_G1:
12604 case R_ARM_LDC_PC_G2:
12605 case R_ARM_LDC_SB_G0:
12606 case R_ARM_LDC_SB_G1:
12607 case R_ARM_LDC_SB_G2:
12608 {
12609 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12610 bfd_vma pc = input_section->output_section->vma
12611 + input_section->output_offset + rel->r_offset;
12612 /* sb is the origin of the *segment* containing the symbol. */
12613 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12614 bfd_vma residual;
12615 bfd_signed_vma signed_value;
12616 int group = 0;
12617
12618 /* Determine which groups of bits to calculate. */
12619 switch (r_type)
12620 {
12621 case R_ARM_LDC_PC_G0:
12622 case R_ARM_LDC_SB_G0:
12623 group = 0;
12624 break;
12625
12626 case R_ARM_LDC_PC_G1:
12627 case R_ARM_LDC_SB_G1:
12628 group = 1;
12629 break;
12630
12631 case R_ARM_LDC_PC_G2:
12632 case R_ARM_LDC_SB_G2:
12633 group = 2;
12634 break;
12635
12636 default:
12637 abort ();
12638 }
12639
12640 /* If REL, extract the addend from the insn. If RELA, it will
12641 have already been fetched for us. */
12642 if (globals->use_rel)
12643 {
12644 int negative = (insn & (1 << 23)) ? 1 : -1;
12645 signed_addend = negative * ((insn & 0xff) << 2);
12646 }
12647
12648 /* Compute the value (X) to go in the place. */
12649 if (r_type == R_ARM_LDC_PC_G0
12650 || r_type == R_ARM_LDC_PC_G1
12651 || r_type == R_ARM_LDC_PC_G2)
12652 /* PC relative. */
12653 signed_value = value - pc + signed_addend;
12654 else
12655 /* Section base relative. */
12656 signed_value = value - sb + signed_addend;
12657
12658 /* Calculate the value of the relevant G_{n-1} to obtain
12659 the residual at that stage. */
12660 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12661 group - 1, &residual);
12662
12663 /* Check for overflow. (The absolute value to go in the place must be
12664 divisible by four and, after having been divided by four, must
12665 fit in eight bits.) */
12666 if ((residual & 0x3) != 0 || residual >= 0x400)
12667 {
12668 _bfd_error_handler
12669 /* xgettext:c-format */
12670 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12671 "splitting %#" PRIx64 " for group relocation %s"),
12672 input_bfd, input_section, (uint64_t) rel->r_offset,
12673 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12674 howto->name);
12675 return bfd_reloc_overflow;
12676 }
12677
12678 /* Mask out the value and U bit. */
12679 insn &= 0xff7fff00;
12680
12681 /* Set the U bit if the value to go in the place is non-negative. */
12682 if (signed_value >= 0)
12683 insn |= 1 << 23;
12684
12685 /* Encode the offset. */
12686 insn |= residual >> 2;
12687
12688 bfd_put_32 (input_bfd, insn, hit_data);
12689 }
12690 return bfd_reloc_ok;
12691
12692 case R_ARM_THM_ALU_ABS_G0_NC:
12693 case R_ARM_THM_ALU_ABS_G1_NC:
12694 case R_ARM_THM_ALU_ABS_G2_NC:
12695 case R_ARM_THM_ALU_ABS_G3_NC:
12696 {
12697 const int shift_array[4] = {0, 8, 16, 24};
12698 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12699 bfd_vma addr = value;
12700 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12701
12702 /* Compute address. */
12703 if (globals->use_rel)
12704 signed_addend = insn & 0xff;
12705 addr += signed_addend;
12706 if (branch_type == ST_BRANCH_TO_THUMB)
12707 addr |= 1;
12708 /* Clean imm8 insn. */
12709 insn &= 0xff00;
12710 /* And update with correct part of address. */
12711 insn |= (addr >> shift) & 0xff;
12712 /* Update insn. */
12713 bfd_put_16 (input_bfd, insn, hit_data);
12714 }
12715
12716 *unresolved_reloc_p = FALSE;
12717 return bfd_reloc_ok;
12718
12719 case R_ARM_GOTOFFFUNCDESC:
12720 {
12721 if (h == NULL)
12722 {
12723 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12724 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12725 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12726 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12727 bfd_vma seg = -1;
12728
12729 if (bfd_link_pic(info) && dynindx == 0)
12730 abort();
12731
12732 /* Resolve relocation. */
12733 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12734 , contents + rel->r_offset);
12735 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12736 not done yet. */
12737 arm_elf_fill_funcdesc(output_bfd, info,
12738 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12739 dynindx, offset, addr, dynreloc_value, seg);
12740 }
12741 else
12742 {
12743 int dynindx;
12744 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12745 bfd_vma addr;
12746 bfd_vma seg = -1;
12747
12748 /* For static binaries, sym_sec can be null. */
12749 if (sym_sec)
12750 {
12751 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12752 addr = dynreloc_value - sym_sec->output_section->vma;
12753 }
12754 else
12755 {
12756 dynindx = 0;
12757 addr = 0;
12758 }
12759
12760 if (bfd_link_pic(info) && dynindx == 0)
12761 abort();
12762
12763 /* This case cannot occur since funcdesc is allocated by
12764 the dynamic loader so we cannot resolve the relocation. */
12765 if (h->dynindx != -1)
12766 abort();
12767
12768 /* Resolve relocation. */
12769 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12770 contents + rel->r_offset);
12771 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12772 arm_elf_fill_funcdesc(output_bfd, info,
12773 &eh->fdpic_cnts.funcdesc_offset,
12774 dynindx, offset, addr, dynreloc_value, seg);
12775 }
12776 }
12777 *unresolved_reloc_p = FALSE;
12778 return bfd_reloc_ok;
12779
12780 case R_ARM_GOTFUNCDESC:
12781 {
12782 if (h != NULL)
12783 {
12784 Elf_Internal_Rela outrel;
12785
12786 /* Resolve relocation. */
12787 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12788 + sgot->output_offset),
12789 contents + rel->r_offset);
12790 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12791 if(h->dynindx == -1)
12792 {
12793 int dynindx;
12794 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12795 bfd_vma addr;
12796 bfd_vma seg = -1;
12797
12798 /* For static binaries sym_sec can be null. */
12799 if (sym_sec)
12800 {
12801 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12802 addr = dynreloc_value - sym_sec->output_section->vma;
12803 }
12804 else
12805 {
12806 dynindx = 0;
12807 addr = 0;
12808 }
12809
12810 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12811 arm_elf_fill_funcdesc(output_bfd, info,
12812 &eh->fdpic_cnts.funcdesc_offset,
12813 dynindx, offset, addr, dynreloc_value, seg);
12814 }
12815
12816 /* Add a dynamic relocation on GOT entry if not already done. */
12817 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12818 {
12819 if (h->dynindx == -1)
12820 {
12821 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12822 if (h->root.type == bfd_link_hash_undefweak)
12823 bfd_put_32(output_bfd, 0, sgot->contents
12824 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12825 else
12826 bfd_put_32(output_bfd, sgot->output_section->vma
12827 + sgot->output_offset
12828 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12829 sgot->contents
12830 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12831 }
12832 else
12833 {
12834 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12835 }
12836 outrel.r_offset = sgot->output_section->vma
12837 + sgot->output_offset
12838 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12839 outrel.r_addend = 0;
12840 if (h->dynindx == -1 && !bfd_link_pic(info))
12841 if (h->root.type == bfd_link_hash_undefweak)
12842 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12843 else
12844 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12845 outrel.r_offset);
12846 else
12847 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12848 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12849 }
12850 }
12851 else
12852 {
12853 /* Such relocation on static function should not have been
12854 emitted by the compiler. */
12855 abort();
12856 }
12857 }
12858 *unresolved_reloc_p = FALSE;
12859 return bfd_reloc_ok;
12860
12861 case R_ARM_FUNCDESC:
12862 {
12863 if (h == NULL)
12864 {
12865 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12866 Elf_Internal_Rela outrel;
12867 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12868 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12869 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12870 bfd_vma seg = -1;
12871
12872 if (bfd_link_pic(info) && dynindx == 0)
12873 abort();
12874
12875 /* Replace static FUNCDESC relocation with a
12876 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12877 executable. */
12878 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12879 outrel.r_offset = input_section->output_section->vma
12880 + input_section->output_offset + rel->r_offset;
12881 outrel.r_addend = 0;
12882 if (bfd_link_pic(info))
12883 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12884 else
12885 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12886
12887 bfd_put_32 (input_bfd, sgot->output_section->vma
12888 + sgot->output_offset + offset, hit_data);
12889
12890 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12891 arm_elf_fill_funcdesc(output_bfd, info,
12892 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12893 dynindx, offset, addr, dynreloc_value, seg);
12894 }
12895 else
12896 {
12897 if (h->dynindx == -1)
12898 {
12899 int dynindx;
12900 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12901 bfd_vma addr;
12902 bfd_vma seg = -1;
12903 Elf_Internal_Rela outrel;
12904
12905 /* For static binaries sym_sec can be null. */
12906 if (sym_sec)
12907 {
12908 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12909 addr = dynreloc_value - sym_sec->output_section->vma;
12910 }
12911 else
12912 {
12913 dynindx = 0;
12914 addr = 0;
12915 }
12916
12917 if (bfd_link_pic(info) && dynindx == 0)
12918 abort();
12919
12920 /* Replace static FUNCDESC relocation with a
12921 R_ARM_RELATIVE dynamic relocation. */
12922 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12923 outrel.r_offset = input_section->output_section->vma
12924 + input_section->output_offset + rel->r_offset;
12925 outrel.r_addend = 0;
12926 if (bfd_link_pic(info))
12927 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12928 else
12929 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12930
12931 bfd_put_32 (input_bfd, sgot->output_section->vma
12932 + sgot->output_offset + offset, hit_data);
12933
12934 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12935 arm_elf_fill_funcdesc(output_bfd, info,
12936 &eh->fdpic_cnts.funcdesc_offset,
12937 dynindx, offset, addr, dynreloc_value, seg);
12938 }
12939 else
12940 {
12941 Elf_Internal_Rela outrel;
12942
12943 /* Add a dynamic relocation. */
12944 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12945 outrel.r_offset = input_section->output_section->vma
12946 + input_section->output_offset + rel->r_offset;
12947 outrel.r_addend = 0;
12948 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12949 }
12950 }
12951 }
12952 *unresolved_reloc_p = FALSE;
12953 return bfd_reloc_ok;
12954
12955 case R_ARM_THM_BF16:
12956 {
12957 bfd_vma relocation;
12958 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12959 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12960
12961 if (globals->use_rel)
12962 {
12963 bfd_vma immA = (upper_insn & 0x001f);
12964 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12965 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12966 addend = (immA << 12);
12967 addend |= (immB << 2);
12968 addend |= (immC << 1);
12969 addend |= 1;
12970 /* Sign extend. */
12971 addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12972 }
12973
12974 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
12975 info, input_bfd, rel, sym_name, st_type,
12976 globals, unresolved_reloc_p);
12977
12978 relocation = value + addend;
12979 relocation -= (input_section->output_section->vma
12980 + input_section->output_offset
12981 + rel->r_offset);
12982
12983 /* Put RELOCATION back into the insn. */
12984 {
12985 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12986 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12987 bfd_vma immC = (relocation & 0x00000002) >> 1;
12988
12989 upper_insn = (upper_insn & 0xffe0) | immA;
12990 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12991 }
12992
12993 /* Put the relocated value back in the object file: */
12994 bfd_put_16 (input_bfd, upper_insn, hit_data);
12995 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12996
12997 return bfd_reloc_ok;
12998 }
12999
13000 case R_ARM_THM_BF12:
13001 {
13002 bfd_vma relocation;
13003 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13004 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13005
13006 if (globals->use_rel)
13007 {
13008 bfd_vma immA = (upper_insn & 0x0001);
13009 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13010 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13011 addend = (immA << 12);
13012 addend |= (immB << 2);
13013 addend |= (immC << 1);
13014 addend |= 1;
13015 /* Sign extend. */
13016 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
13017 }
13018
13019 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
13020 info, input_bfd, rel, sym_name, st_type,
13021 globals, unresolved_reloc_p);
13022
13023 relocation = value + addend;
13024 relocation -= (input_section->output_section->vma
13025 + input_section->output_offset
13026 + rel->r_offset);
13027
13028 /* Put RELOCATION back into the insn. */
13029 {
13030 bfd_vma immA = (relocation & 0x00001000) >> 12;
13031 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13032 bfd_vma immC = (relocation & 0x00000002) >> 1;
13033
13034 upper_insn = (upper_insn & 0xfffe) | immA;
13035 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13036 }
13037
13038 /* Put the relocated value back in the object file: */
13039 bfd_put_16 (input_bfd, upper_insn, hit_data);
13040 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13041
13042 return bfd_reloc_ok;
13043 }
13044
13045 case R_ARM_THM_BF18:
13046 {
13047 bfd_vma relocation;
13048 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13049 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13050
13051 if (globals->use_rel)
13052 {
13053 bfd_vma immA = (upper_insn & 0x007f);
13054 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13055 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13056 addend = (immA << 12);
13057 addend |= (immB << 2);
13058 addend |= (immC << 1);
13059 addend |= 1;
13060 /* Sign extend. */
13061 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13062 }
13063
13064 value = get_value_helper (plt_offset, splt, input_section, sym_sec, h,
13065 info, input_bfd, rel, sym_name, st_type,
13066 globals, unresolved_reloc_p);
13067
13068 relocation = value + addend;
13069 relocation -= (input_section->output_section->vma
13070 + input_section->output_offset
13071 + rel->r_offset);
13072
13073 /* Put RELOCATION back into the insn. */
13074 {
13075 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13076 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13077 bfd_vma immC = (relocation & 0x00000002) >> 1;
13078
13079 upper_insn = (upper_insn & 0xff80) | immA;
13080 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13081 }
13082
13083 /* Put the relocated value back in the object file: */
13084 bfd_put_16 (input_bfd, upper_insn, hit_data);
13085 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13086
13087 return bfd_reloc_ok;
13088 }
13089
13090 default:
13091 return bfd_reloc_notsupported;
13092 }
13093 }
13094
13095 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13096 static void
13097 arm_add_to_rel (bfd * abfd,
13098 bfd_byte * address,
13099 reloc_howto_type * howto,
13100 bfd_signed_vma increment)
13101 {
13102 bfd_signed_vma addend;
13103
13104 if (howto->type == R_ARM_THM_CALL
13105 || howto->type == R_ARM_THM_JUMP24)
13106 {
13107 int upper_insn, lower_insn;
13108 int upper, lower;
13109
13110 upper_insn = bfd_get_16 (abfd, address);
13111 lower_insn = bfd_get_16 (abfd, address + 2);
13112 upper = upper_insn & 0x7ff;
13113 lower = lower_insn & 0x7ff;
13114
13115 addend = (upper << 12) | (lower << 1);
13116 addend += increment;
13117 addend >>= 1;
13118
13119 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13120 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13121
13122 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13123 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13124 }
13125 else
13126 {
13127 bfd_vma contents;
13128
13129 contents = bfd_get_32 (abfd, address);
13130
13131 /* Get the (signed) value from the instruction. */
13132 addend = contents & howto->src_mask;
13133 if (addend & ((howto->src_mask + 1) >> 1))
13134 {
13135 bfd_signed_vma mask;
13136
13137 mask = -1;
13138 mask &= ~ howto->src_mask;
13139 addend |= mask;
13140 }
13141
13142 /* Add in the increment, (which is a byte value). */
13143 switch (howto->type)
13144 {
13145 default:
13146 addend += increment;
13147 break;
13148
13149 case R_ARM_PC24:
13150 case R_ARM_PLT32:
13151 case R_ARM_CALL:
13152 case R_ARM_JUMP24:
13153 addend <<= howto->size;
13154 addend += increment;
13155
13156 /* Should we check for overflow here ? */
13157
13158 /* Drop any undesired bits. */
13159 addend >>= howto->rightshift;
13160 break;
13161 }
13162
13163 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13164
13165 bfd_put_32 (abfd, contents, address);
13166 }
13167 }
13168
13169 #define IS_ARM_TLS_RELOC(R_TYPE) \
13170 ((R_TYPE) == R_ARM_TLS_GD32 \
13171 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13172 || (R_TYPE) == R_ARM_TLS_LDO32 \
13173 || (R_TYPE) == R_ARM_TLS_LDM32 \
13174 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13175 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13176 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13177 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13178 || (R_TYPE) == R_ARM_TLS_LE32 \
13179 || (R_TYPE) == R_ARM_TLS_IE32 \
13180 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13181 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13182
13183 /* Specific set of relocations for the gnu tls dialect. */
13184 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13185 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13186 || (R_TYPE) == R_ARM_TLS_CALL \
13187 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13188 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13189 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13190
13191 /* Relocate an ARM ELF section. */
13192
13193 static bfd_boolean
13194 elf32_arm_relocate_section (bfd * output_bfd,
13195 struct bfd_link_info * info,
13196 bfd * input_bfd,
13197 asection * input_section,
13198 bfd_byte * contents,
13199 Elf_Internal_Rela * relocs,
13200 Elf_Internal_Sym * local_syms,
13201 asection ** local_sections)
13202 {
13203 Elf_Internal_Shdr *symtab_hdr;
13204 struct elf_link_hash_entry **sym_hashes;
13205 Elf_Internal_Rela *rel;
13206 Elf_Internal_Rela *relend;
13207 const char *name;
13208 struct elf32_arm_link_hash_table * globals;
13209
13210 globals = elf32_arm_hash_table (info);
13211 if (globals == NULL)
13212 return FALSE;
13213
13214 symtab_hdr = & elf_symtab_hdr (input_bfd);
13215 sym_hashes = elf_sym_hashes (input_bfd);
13216
13217 rel = relocs;
13218 relend = relocs + input_section->reloc_count;
13219 for (; rel < relend; rel++)
13220 {
13221 int r_type;
13222 reloc_howto_type * howto;
13223 unsigned long r_symndx;
13224 Elf_Internal_Sym * sym;
13225 asection * sec;
13226 struct elf_link_hash_entry * h;
13227 bfd_vma relocation;
13228 bfd_reloc_status_type r;
13229 arelent bfd_reloc;
13230 char sym_type;
13231 bfd_boolean unresolved_reloc = FALSE;
13232 char *error_message = NULL;
13233
13234 r_symndx = ELF32_R_SYM (rel->r_info);
13235 r_type = ELF32_R_TYPE (rel->r_info);
13236 r_type = arm_real_reloc_type (globals, r_type);
13237
13238 if ( r_type == R_ARM_GNU_VTENTRY
13239 || r_type == R_ARM_GNU_VTINHERIT)
13240 continue;
13241
13242 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13243
13244 if (howto == NULL)
13245 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13246
13247 h = NULL;
13248 sym = NULL;
13249 sec = NULL;
13250
13251 if (r_symndx < symtab_hdr->sh_info)
13252 {
13253 sym = local_syms + r_symndx;
13254 sym_type = ELF32_ST_TYPE (sym->st_info);
13255 sec = local_sections[r_symndx];
13256
13257 /* An object file might have a reference to a local
13258 undefined symbol. This is a daft object file, but we
13259 should at least do something about it. V4BX & NONE
13260 relocations do not use the symbol and are explicitly
13261 allowed to use the undefined symbol, so allow those.
13262 Likewise for relocations against STN_UNDEF. */
13263 if (r_type != R_ARM_V4BX
13264 && r_type != R_ARM_NONE
13265 && r_symndx != STN_UNDEF
13266 && bfd_is_und_section (sec)
13267 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13268 (*info->callbacks->undefined_symbol)
13269 (info, bfd_elf_string_from_elf_section
13270 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13271 input_bfd, input_section,
13272 rel->r_offset, TRUE);
13273
13274 if (globals->use_rel)
13275 {
13276 relocation = (sec->output_section->vma
13277 + sec->output_offset
13278 + sym->st_value);
13279 if (!bfd_link_relocatable (info)
13280 && (sec->flags & SEC_MERGE)
13281 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13282 {
13283 asection *msec;
13284 bfd_vma addend, value;
13285
13286 switch (r_type)
13287 {
13288 case R_ARM_MOVW_ABS_NC:
13289 case R_ARM_MOVT_ABS:
13290 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13291 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13292 addend = (addend ^ 0x8000) - 0x8000;
13293 break;
13294
13295 case R_ARM_THM_MOVW_ABS_NC:
13296 case R_ARM_THM_MOVT_ABS:
13297 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13298 << 16;
13299 value |= bfd_get_16 (input_bfd,
13300 contents + rel->r_offset + 2);
13301 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13302 | ((value & 0x04000000) >> 15);
13303 addend = (addend ^ 0x8000) - 0x8000;
13304 break;
13305
13306 default:
13307 if (howto->rightshift
13308 || (howto->src_mask & (howto->src_mask + 1)))
13309 {
13310 _bfd_error_handler
13311 /* xgettext:c-format */
13312 (_("%pB(%pA+%#" PRIx64 "): "
13313 "%s relocation against SEC_MERGE section"),
13314 input_bfd, input_section,
13315 (uint64_t) rel->r_offset, howto->name);
13316 return FALSE;
13317 }
13318
13319 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13320
13321 /* Get the (signed) value from the instruction. */
13322 addend = value & howto->src_mask;
13323 if (addend & ((howto->src_mask + 1) >> 1))
13324 {
13325 bfd_signed_vma mask;
13326
13327 mask = -1;
13328 mask &= ~ howto->src_mask;
13329 addend |= mask;
13330 }
13331 break;
13332 }
13333
13334 msec = sec;
13335 addend =
13336 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13337 - relocation;
13338 addend += msec->output_section->vma + msec->output_offset;
13339
13340 /* Cases here must match those in the preceding
13341 switch statement. */
13342 switch (r_type)
13343 {
13344 case R_ARM_MOVW_ABS_NC:
13345 case R_ARM_MOVT_ABS:
13346 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13347 | (addend & 0xfff);
13348 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13349 break;
13350
13351 case R_ARM_THM_MOVW_ABS_NC:
13352 case R_ARM_THM_MOVT_ABS:
13353 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13354 | (addend & 0xff) | ((addend & 0x0800) << 15);
13355 bfd_put_16 (input_bfd, value >> 16,
13356 contents + rel->r_offset);
13357 bfd_put_16 (input_bfd, value,
13358 contents + rel->r_offset + 2);
13359 break;
13360
13361 default:
13362 value = (value & ~ howto->dst_mask)
13363 | (addend & howto->dst_mask);
13364 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13365 break;
13366 }
13367 }
13368 }
13369 else
13370 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13371 }
13372 else
13373 {
13374 bfd_boolean warned, ignored;
13375
13376 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13377 r_symndx, symtab_hdr, sym_hashes,
13378 h, sec, relocation,
13379 unresolved_reloc, warned, ignored);
13380
13381 sym_type = h->type;
13382 }
13383
13384 if (sec != NULL && discarded_section (sec))
13385 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13386 rel, 1, relend, howto, 0, contents);
13387
13388 if (bfd_link_relocatable (info))
13389 {
13390 /* This is a relocatable link. We don't have to change
13391 anything, unless the reloc is against a section symbol,
13392 in which case we have to adjust according to where the
13393 section symbol winds up in the output section. */
13394 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13395 {
13396 if (globals->use_rel)
13397 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13398 howto, (bfd_signed_vma) sec->output_offset);
13399 else
13400 rel->r_addend += sec->output_offset;
13401 }
13402 continue;
13403 }
13404
13405 if (h != NULL)
13406 name = h->root.root.string;
13407 else
13408 {
13409 name = (bfd_elf_string_from_elf_section
13410 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13411 if (name == NULL || *name == '\0')
13412 name = bfd_section_name (input_bfd, sec);
13413 }
13414
13415 if (r_symndx != STN_UNDEF
13416 && r_type != R_ARM_NONE
13417 && (h == NULL
13418 || h->root.type == bfd_link_hash_defined
13419 || h->root.type == bfd_link_hash_defweak)
13420 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13421 {
13422 _bfd_error_handler
13423 ((sym_type == STT_TLS
13424 /* xgettext:c-format */
13425 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13426 /* xgettext:c-format */
13427 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13428 input_bfd,
13429 input_section,
13430 (uint64_t) rel->r_offset,
13431 howto->name,
13432 name);
13433 }
13434
13435 /* We call elf32_arm_final_link_relocate unless we're completely
13436 done, i.e., the relaxation produced the final output we want,
13437 and we won't let anybody mess with it. Also, we have to do
13438 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13439 both in relaxed and non-relaxed cases. */
13440 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13441 || (IS_ARM_TLS_GNU_RELOC (r_type)
13442 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13443 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13444 & GOT_TLS_GDESC)))
13445 {
13446 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13447 contents, rel, h == NULL);
13448 /* This may have been marked unresolved because it came from
13449 a shared library. But we've just dealt with that. */
13450 unresolved_reloc = 0;
13451 }
13452 else
13453 r = bfd_reloc_continue;
13454
13455 if (r == bfd_reloc_continue)
13456 {
13457 unsigned char branch_type =
13458 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13459 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13460
13461 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13462 input_section, contents, rel,
13463 relocation, info, sec, name,
13464 sym_type, branch_type, h,
13465 &unresolved_reloc,
13466 &error_message);
13467 }
13468
13469 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13470 because such sections are not SEC_ALLOC and thus ld.so will
13471 not process them. */
13472 if (unresolved_reloc
13473 && !((input_section->flags & SEC_DEBUGGING) != 0
13474 && h->def_dynamic)
13475 && _bfd_elf_section_offset (output_bfd, info, input_section,
13476 rel->r_offset) != (bfd_vma) -1)
13477 {
13478 _bfd_error_handler
13479 /* xgettext:c-format */
13480 (_("%pB(%pA+%#" PRIx64 "): "
13481 "unresolvable %s relocation against symbol `%s'"),
13482 input_bfd,
13483 input_section,
13484 (uint64_t) rel->r_offset,
13485 howto->name,
13486 h->root.root.string);
13487 return FALSE;
13488 }
13489
13490 if (r != bfd_reloc_ok)
13491 {
13492 switch (r)
13493 {
13494 case bfd_reloc_overflow:
13495 /* If the overflowing reloc was to an undefined symbol,
13496 we have already printed one error message and there
13497 is no point complaining again. */
13498 if (!h || h->root.type != bfd_link_hash_undefined)
13499 (*info->callbacks->reloc_overflow)
13500 (info, (h ? &h->root : NULL), name, howto->name,
13501 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13502 break;
13503
13504 case bfd_reloc_undefined:
13505 (*info->callbacks->undefined_symbol)
13506 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13507 break;
13508
13509 case bfd_reloc_outofrange:
13510 error_message = _("out of range");
13511 goto common_error;
13512
13513 case bfd_reloc_notsupported:
13514 error_message = _("unsupported relocation");
13515 goto common_error;
13516
13517 case bfd_reloc_dangerous:
13518 /* error_message should already be set. */
13519 goto common_error;
13520
13521 default:
13522 error_message = _("unknown error");
13523 /* Fall through. */
13524
13525 common_error:
13526 BFD_ASSERT (error_message != NULL);
13527 (*info->callbacks->reloc_dangerous)
13528 (info, error_message, input_bfd, input_section, rel->r_offset);
13529 break;
13530 }
13531 }
13532 }
13533
13534 return TRUE;
13535 }
13536
13537 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13538 adds the edit to the start of the list. (The list must be built in order of
13539 ascending TINDEX: the function's callers are primarily responsible for
13540 maintaining that condition). */
13541
13542 static void
13543 add_unwind_table_edit (arm_unwind_table_edit **head,
13544 arm_unwind_table_edit **tail,
13545 arm_unwind_edit_type type,
13546 asection *linked_section,
13547 unsigned int tindex)
13548 {
13549 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13550 xmalloc (sizeof (arm_unwind_table_edit));
13551
13552 new_edit->type = type;
13553 new_edit->linked_section = linked_section;
13554 new_edit->index = tindex;
13555
13556 if (tindex > 0)
13557 {
13558 new_edit->next = NULL;
13559
13560 if (*tail)
13561 (*tail)->next = new_edit;
13562
13563 (*tail) = new_edit;
13564
13565 if (!*head)
13566 (*head) = new_edit;
13567 }
13568 else
13569 {
13570 new_edit->next = *head;
13571
13572 if (!*tail)
13573 *tail = new_edit;
13574
13575 *head = new_edit;
13576 }
13577 }
13578
13579 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13580
13581 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13582 static void
13583 adjust_exidx_size(asection *exidx_sec, int adjust)
13584 {
13585 asection *out_sec;
13586
13587 if (!exidx_sec->rawsize)
13588 exidx_sec->rawsize = exidx_sec->size;
13589
13590 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13591 out_sec = exidx_sec->output_section;
13592 /* Adjust size of output section. */
13593 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13594 }
13595
13596 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13597 static void
13598 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13599 {
13600 struct _arm_elf_section_data *exidx_arm_data;
13601
13602 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13603 add_unwind_table_edit (
13604 &exidx_arm_data->u.exidx.unwind_edit_list,
13605 &exidx_arm_data->u.exidx.unwind_edit_tail,
13606 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13607
13608 exidx_arm_data->additional_reloc_count++;
13609
13610 adjust_exidx_size(exidx_sec, 8);
13611 }
13612
13613 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13614 made to those tables, such that:
13615
13616 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13617 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13618 codes which have been inlined into the index).
13619
13620 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13621
13622 The edits are applied when the tables are written
13623 (in elf32_arm_write_section). */
13624
13625 bfd_boolean
13626 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13627 unsigned int num_text_sections,
13628 struct bfd_link_info *info,
13629 bfd_boolean merge_exidx_entries)
13630 {
13631 bfd *inp;
13632 unsigned int last_second_word = 0, i;
13633 asection *last_exidx_sec = NULL;
13634 asection *last_text_sec = NULL;
13635 int last_unwind_type = -1;
13636
13637 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13638 text sections. */
13639 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13640 {
13641 asection *sec;
13642
13643 for (sec = inp->sections; sec != NULL; sec = sec->next)
13644 {
13645 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13646 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13647
13648 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13649 continue;
13650
13651 if (elf_sec->linked_to)
13652 {
13653 Elf_Internal_Shdr *linked_hdr
13654 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13655 struct _arm_elf_section_data *linked_sec_arm_data
13656 = get_arm_elf_section_data (linked_hdr->bfd_section);
13657
13658 if (linked_sec_arm_data == NULL)
13659 continue;
13660
13661 /* Link this .ARM.exidx section back from the text section it
13662 describes. */
13663 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13664 }
13665 }
13666 }
13667
13668 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13669 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13670 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13671
13672 for (i = 0; i < num_text_sections; i++)
13673 {
13674 asection *sec = text_section_order[i];
13675 asection *exidx_sec;
13676 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13677 struct _arm_elf_section_data *exidx_arm_data;
13678 bfd_byte *contents = NULL;
13679 int deleted_exidx_bytes = 0;
13680 bfd_vma j;
13681 arm_unwind_table_edit *unwind_edit_head = NULL;
13682 arm_unwind_table_edit *unwind_edit_tail = NULL;
13683 Elf_Internal_Shdr *hdr;
13684 bfd *ibfd;
13685
13686 if (arm_data == NULL)
13687 continue;
13688
13689 exidx_sec = arm_data->u.text.arm_exidx_sec;
13690 if (exidx_sec == NULL)
13691 {
13692 /* Section has no unwind data. */
13693 if (last_unwind_type == 0 || !last_exidx_sec)
13694 continue;
13695
13696 /* Ignore zero sized sections. */
13697 if (sec->size == 0)
13698 continue;
13699
13700 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13701 last_unwind_type = 0;
13702 continue;
13703 }
13704
13705 /* Skip /DISCARD/ sections. */
13706 if (bfd_is_abs_section (exidx_sec->output_section))
13707 continue;
13708
13709 hdr = &elf_section_data (exidx_sec)->this_hdr;
13710 if (hdr->sh_type != SHT_ARM_EXIDX)
13711 continue;
13712
13713 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13714 if (exidx_arm_data == NULL)
13715 continue;
13716
13717 ibfd = exidx_sec->owner;
13718
13719 if (hdr->contents != NULL)
13720 contents = hdr->contents;
13721 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13722 /* An error? */
13723 continue;
13724
13725 if (last_unwind_type > 0)
13726 {
13727 unsigned int first_word = bfd_get_32 (ibfd, contents);
13728 /* Add cantunwind if first unwind item does not match section
13729 start. */
13730 if (first_word != sec->vma)
13731 {
13732 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13733 last_unwind_type = 0;
13734 }
13735 }
13736
13737 for (j = 0; j < hdr->sh_size; j += 8)
13738 {
13739 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13740 int unwind_type;
13741 int elide = 0;
13742
13743 /* An EXIDX_CANTUNWIND entry. */
13744 if (second_word == 1)
13745 {
13746 if (last_unwind_type == 0)
13747 elide = 1;
13748 unwind_type = 0;
13749 }
13750 /* Inlined unwinding data. Merge if equal to previous. */
13751 else if ((second_word & 0x80000000) != 0)
13752 {
13753 if (merge_exidx_entries
13754 && last_second_word == second_word && last_unwind_type == 1)
13755 elide = 1;
13756 unwind_type = 1;
13757 last_second_word = second_word;
13758 }
13759 /* Normal table entry. In theory we could merge these too,
13760 but duplicate entries are likely to be much less common. */
13761 else
13762 unwind_type = 2;
13763
13764 if (elide && !bfd_link_relocatable (info))
13765 {
13766 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13767 DELETE_EXIDX_ENTRY, NULL, j / 8);
13768
13769 deleted_exidx_bytes += 8;
13770 }
13771
13772 last_unwind_type = unwind_type;
13773 }
13774
13775 /* Free contents if we allocated it ourselves. */
13776 if (contents != hdr->contents)
13777 free (contents);
13778
13779 /* Record edits to be applied later (in elf32_arm_write_section). */
13780 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13781 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13782
13783 if (deleted_exidx_bytes > 0)
13784 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13785
13786 last_exidx_sec = exidx_sec;
13787 last_text_sec = sec;
13788 }
13789
13790 /* Add terminating CANTUNWIND entry. */
13791 if (!bfd_link_relocatable (info) && last_exidx_sec
13792 && last_unwind_type != 0)
13793 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13794
13795 return TRUE;
13796 }
13797
13798 static bfd_boolean
13799 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13800 bfd *ibfd, const char *name)
13801 {
13802 asection *sec, *osec;
13803
13804 sec = bfd_get_linker_section (ibfd, name);
13805 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13806 return TRUE;
13807
13808 osec = sec->output_section;
13809 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13810 return TRUE;
13811
13812 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13813 sec->output_offset, sec->size))
13814 return FALSE;
13815
13816 return TRUE;
13817 }
13818
13819 static bfd_boolean
13820 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13821 {
13822 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13823 asection *sec, *osec;
13824
13825 if (globals == NULL)
13826 return FALSE;
13827
13828 /* Invoke the regular ELF backend linker to do all the work. */
13829 if (!bfd_elf_final_link (abfd, info))
13830 return FALSE;
13831
13832 /* Process stub sections (eg BE8 encoding, ...). */
13833 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13834 unsigned int i;
13835 for (i=0; i<htab->top_id; i++)
13836 {
13837 sec = htab->stub_group[i].stub_sec;
13838 /* Only process it once, in its link_sec slot. */
13839 if (sec && i == htab->stub_group[i].link_sec->id)
13840 {
13841 osec = sec->output_section;
13842 elf32_arm_write_section (abfd, info, sec, sec->contents);
13843 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13844 sec->output_offset, sec->size))
13845 return FALSE;
13846 }
13847 }
13848
13849 /* Write out any glue sections now that we have created all the
13850 stubs. */
13851 if (globals->bfd_of_glue_owner != NULL)
13852 {
13853 if (! elf32_arm_output_glue_section (info, abfd,
13854 globals->bfd_of_glue_owner,
13855 ARM2THUMB_GLUE_SECTION_NAME))
13856 return FALSE;
13857
13858 if (! elf32_arm_output_glue_section (info, abfd,
13859 globals->bfd_of_glue_owner,
13860 THUMB2ARM_GLUE_SECTION_NAME))
13861 return FALSE;
13862
13863 if (! elf32_arm_output_glue_section (info, abfd,
13864 globals->bfd_of_glue_owner,
13865 VFP11_ERRATUM_VENEER_SECTION_NAME))
13866 return FALSE;
13867
13868 if (! elf32_arm_output_glue_section (info, abfd,
13869 globals->bfd_of_glue_owner,
13870 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13871 return FALSE;
13872
13873 if (! elf32_arm_output_glue_section (info, abfd,
13874 globals->bfd_of_glue_owner,
13875 ARM_BX_GLUE_SECTION_NAME))
13876 return FALSE;
13877 }
13878
13879 return TRUE;
13880 }
13881
13882 /* Return a best guess for the machine number based on the attributes. */
13883
13884 static unsigned int
13885 bfd_arm_get_mach_from_attributes (bfd * abfd)
13886 {
13887 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13888
13889 switch (arch)
13890 {
13891 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13892 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13893 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13894 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13895
13896 case TAG_CPU_ARCH_V5TE:
13897 {
13898 char * name;
13899
13900 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13901 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13902
13903 if (name)
13904 {
13905 if (strcmp (name, "IWMMXT2") == 0)
13906 return bfd_mach_arm_iWMMXt2;
13907
13908 if (strcmp (name, "IWMMXT") == 0)
13909 return bfd_mach_arm_iWMMXt;
13910
13911 if (strcmp (name, "XSCALE") == 0)
13912 {
13913 int wmmx;
13914
13915 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13916 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13917 switch (wmmx)
13918 {
13919 case 1: return bfd_mach_arm_iWMMXt;
13920 case 2: return bfd_mach_arm_iWMMXt2;
13921 default: return bfd_mach_arm_XScale;
13922 }
13923 }
13924 }
13925
13926 return bfd_mach_arm_5TE;
13927 }
13928
13929 case TAG_CPU_ARCH_V5TEJ:
13930 return bfd_mach_arm_5TEJ;
13931 case TAG_CPU_ARCH_V6:
13932 return bfd_mach_arm_6;
13933 case TAG_CPU_ARCH_V6KZ:
13934 return bfd_mach_arm_6KZ;
13935 case TAG_CPU_ARCH_V6T2:
13936 return bfd_mach_arm_6T2;
13937 case TAG_CPU_ARCH_V6K:
13938 return bfd_mach_arm_6K;
13939 case TAG_CPU_ARCH_V7:
13940 return bfd_mach_arm_7;
13941 case TAG_CPU_ARCH_V6_M:
13942 return bfd_mach_arm_6M;
13943 case TAG_CPU_ARCH_V6S_M:
13944 return bfd_mach_arm_6SM;
13945 case TAG_CPU_ARCH_V7E_M:
13946 return bfd_mach_arm_7EM;
13947 case TAG_CPU_ARCH_V8:
13948 return bfd_mach_arm_8;
13949 case TAG_CPU_ARCH_V8R:
13950 return bfd_mach_arm_8R;
13951 case TAG_CPU_ARCH_V8M_BASE:
13952 return bfd_mach_arm_8M_BASE;
13953 case TAG_CPU_ARCH_V8M_MAIN:
13954 return bfd_mach_arm_8M_MAIN;
13955 case TAG_CPU_ARCH_V8_1M_MAIN:
13956 return bfd_mach_arm_8_1M_MAIN;
13957
13958 default:
13959 /* Force entry to be added for any new known Tag_CPU_arch value. */
13960 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13961
13962 /* Unknown Tag_CPU_arch value. */
13963 return bfd_mach_arm_unknown;
13964 }
13965 }
13966
13967 /* Set the right machine number. */
13968
13969 static bfd_boolean
13970 elf32_arm_object_p (bfd *abfd)
13971 {
13972 unsigned int mach;
13973
13974 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13975
13976 if (mach == bfd_mach_arm_unknown)
13977 {
13978 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13979 mach = bfd_mach_arm_ep9312;
13980 else
13981 mach = bfd_arm_get_mach_from_attributes (abfd);
13982 }
13983
13984 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13985 return TRUE;
13986 }
13987
13988 /* Function to keep ARM specific flags in the ELF header. */
13989
13990 static bfd_boolean
13991 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13992 {
13993 if (elf_flags_init (abfd)
13994 && elf_elfheader (abfd)->e_flags != flags)
13995 {
13996 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13997 {
13998 if (flags & EF_ARM_INTERWORK)
13999 _bfd_error_handler
14000 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
14001 abfd);
14002 else
14003 _bfd_error_handler
14004 (_("warning: clearing the interworking flag of %pB due to outside request"),
14005 abfd);
14006 }
14007 }
14008 else
14009 {
14010 elf_elfheader (abfd)->e_flags = flags;
14011 elf_flags_init (abfd) = TRUE;
14012 }
14013
14014 return TRUE;
14015 }
14016
14017 /* Copy backend specific data from one object module to another. */
14018
14019 static bfd_boolean
14020 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
14021 {
14022 flagword in_flags;
14023 flagword out_flags;
14024
14025 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14026 return TRUE;
14027
14028 in_flags = elf_elfheader (ibfd)->e_flags;
14029 out_flags = elf_elfheader (obfd)->e_flags;
14030
14031 if (elf_flags_init (obfd)
14032 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
14033 && in_flags != out_flags)
14034 {
14035 /* Cannot mix APCS26 and APCS32 code. */
14036 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14037 return FALSE;
14038
14039 /* Cannot mix float APCS and non-float APCS code. */
14040 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14041 return FALSE;
14042
14043 /* If the src and dest have different interworking flags
14044 then turn off the interworking bit. */
14045 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14046 {
14047 if (out_flags & EF_ARM_INTERWORK)
14048 _bfd_error_handler
14049 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14050 obfd, ibfd);
14051
14052 in_flags &= ~EF_ARM_INTERWORK;
14053 }
14054
14055 /* Likewise for PIC, though don't warn for this case. */
14056 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14057 in_flags &= ~EF_ARM_PIC;
14058 }
14059
14060 elf_elfheader (obfd)->e_flags = in_flags;
14061 elf_flags_init (obfd) = TRUE;
14062
14063 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14064 }
14065
14066 /* Values for Tag_ABI_PCS_R9_use. */
14067 enum
14068 {
14069 AEABI_R9_V6,
14070 AEABI_R9_SB,
14071 AEABI_R9_TLS,
14072 AEABI_R9_unused
14073 };
14074
14075 /* Values for Tag_ABI_PCS_RW_data. */
14076 enum
14077 {
14078 AEABI_PCS_RW_data_absolute,
14079 AEABI_PCS_RW_data_PCrel,
14080 AEABI_PCS_RW_data_SBrel,
14081 AEABI_PCS_RW_data_unused
14082 };
14083
14084 /* Values for Tag_ABI_enum_size. */
14085 enum
14086 {
14087 AEABI_enum_unused,
14088 AEABI_enum_short,
14089 AEABI_enum_wide,
14090 AEABI_enum_forced_wide
14091 };
14092
14093 /* Determine whether an object attribute tag takes an integer, a
14094 string or both. */
14095
14096 static int
14097 elf32_arm_obj_attrs_arg_type (int tag)
14098 {
14099 if (tag == Tag_compatibility)
14100 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14101 else if (tag == Tag_nodefaults)
14102 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14103 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14104 return ATTR_TYPE_FLAG_STR_VAL;
14105 else if (tag < 32)
14106 return ATTR_TYPE_FLAG_INT_VAL;
14107 else
14108 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14109 }
14110
14111 /* The ABI defines that Tag_conformance should be emitted first, and that
14112 Tag_nodefaults should be second (if either is defined). This sets those
14113 two positions, and bumps up the position of all the remaining tags to
14114 compensate. */
14115 static int
14116 elf32_arm_obj_attrs_order (int num)
14117 {
14118 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14119 return Tag_conformance;
14120 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14121 return Tag_nodefaults;
14122 if ((num - 2) < Tag_nodefaults)
14123 return num - 2;
14124 if ((num - 1) < Tag_conformance)
14125 return num - 1;
14126 return num;
14127 }
14128
14129 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14130 static bfd_boolean
14131 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14132 {
14133 if ((tag & 127) < 64)
14134 {
14135 _bfd_error_handler
14136 (_("%pB: unknown mandatory EABI object attribute %d"),
14137 abfd, tag);
14138 bfd_set_error (bfd_error_bad_value);
14139 return FALSE;
14140 }
14141 else
14142 {
14143 _bfd_error_handler
14144 (_("warning: %pB: unknown EABI object attribute %d"),
14145 abfd, tag);
14146 return TRUE;
14147 }
14148 }
14149
14150 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14151 Returns -1 if no architecture could be read. */
14152
14153 static int
14154 get_secondary_compatible_arch (bfd *abfd)
14155 {
14156 obj_attribute *attr =
14157 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14158
14159 /* Note: the tag and its argument below are uleb128 values, though
14160 currently-defined values fit in one byte for each. */
14161 if (attr->s
14162 && attr->s[0] == Tag_CPU_arch
14163 && (attr->s[1] & 128) != 128
14164 && attr->s[2] == 0)
14165 return attr->s[1];
14166
14167 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14168 return -1;
14169 }
14170
14171 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14172 The tag is removed if ARCH is -1. */
14173
14174 static void
14175 set_secondary_compatible_arch (bfd *abfd, int arch)
14176 {
14177 obj_attribute *attr =
14178 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14179
14180 if (arch == -1)
14181 {
14182 attr->s = NULL;
14183 return;
14184 }
14185
14186 /* Note: the tag and its argument below are uleb128 values, though
14187 currently-defined values fit in one byte for each. */
14188 if (!attr->s)
14189 attr->s = (char *) bfd_alloc (abfd, 3);
14190 attr->s[0] = Tag_CPU_arch;
14191 attr->s[1] = arch;
14192 attr->s[2] = '\0';
14193 }
14194
14195 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14196 into account. */
14197
14198 static int
14199 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14200 int newtag, int secondary_compat)
14201 {
14202 #define T(X) TAG_CPU_ARCH_##X
14203 int tagl, tagh, result;
14204 const int v6t2[] =
14205 {
14206 T(V6T2), /* PRE_V4. */
14207 T(V6T2), /* V4. */
14208 T(V6T2), /* V4T. */
14209 T(V6T2), /* V5T. */
14210 T(V6T2), /* V5TE. */
14211 T(V6T2), /* V5TEJ. */
14212 T(V6T2), /* V6. */
14213 T(V7), /* V6KZ. */
14214 T(V6T2) /* V6T2. */
14215 };
14216 const int v6k[] =
14217 {
14218 T(V6K), /* PRE_V4. */
14219 T(V6K), /* V4. */
14220 T(V6K), /* V4T. */
14221 T(V6K), /* V5T. */
14222 T(V6K), /* V5TE. */
14223 T(V6K), /* V5TEJ. */
14224 T(V6K), /* V6. */
14225 T(V6KZ), /* V6KZ. */
14226 T(V7), /* V6T2. */
14227 T(V6K) /* V6K. */
14228 };
14229 const int v7[] =
14230 {
14231 T(V7), /* PRE_V4. */
14232 T(V7), /* V4. */
14233 T(V7), /* V4T. */
14234 T(V7), /* V5T. */
14235 T(V7), /* V5TE. */
14236 T(V7), /* V5TEJ. */
14237 T(V7), /* V6. */
14238 T(V7), /* V6KZ. */
14239 T(V7), /* V6T2. */
14240 T(V7), /* V6K. */
14241 T(V7) /* V7. */
14242 };
14243 const int v6_m[] =
14244 {
14245 -1, /* PRE_V4. */
14246 -1, /* V4. */
14247 T(V6K), /* V4T. */
14248 T(V6K), /* V5T. */
14249 T(V6K), /* V5TE. */
14250 T(V6K), /* V5TEJ. */
14251 T(V6K), /* V6. */
14252 T(V6KZ), /* V6KZ. */
14253 T(V7), /* V6T2. */
14254 T(V6K), /* V6K. */
14255 T(V7), /* V7. */
14256 T(V6_M) /* V6_M. */
14257 };
14258 const int v6s_m[] =
14259 {
14260 -1, /* PRE_V4. */
14261 -1, /* V4. */
14262 T(V6K), /* V4T. */
14263 T(V6K), /* V5T. */
14264 T(V6K), /* V5TE. */
14265 T(V6K), /* V5TEJ. */
14266 T(V6K), /* V6. */
14267 T(V6KZ), /* V6KZ. */
14268 T(V7), /* V6T2. */
14269 T(V6K), /* V6K. */
14270 T(V7), /* V7. */
14271 T(V6S_M), /* V6_M. */
14272 T(V6S_M) /* V6S_M. */
14273 };
14274 const int v7e_m[] =
14275 {
14276 -1, /* PRE_V4. */
14277 -1, /* V4. */
14278 T(V7E_M), /* V4T. */
14279 T(V7E_M), /* V5T. */
14280 T(V7E_M), /* V5TE. */
14281 T(V7E_M), /* V5TEJ. */
14282 T(V7E_M), /* V6. */
14283 T(V7E_M), /* V6KZ. */
14284 T(V7E_M), /* V6T2. */
14285 T(V7E_M), /* V6K. */
14286 T(V7E_M), /* V7. */
14287 T(V7E_M), /* V6_M. */
14288 T(V7E_M), /* V6S_M. */
14289 T(V7E_M) /* V7E_M. */
14290 };
14291 const int v8[] =
14292 {
14293 T(V8), /* PRE_V4. */
14294 T(V8), /* V4. */
14295 T(V8), /* V4T. */
14296 T(V8), /* V5T. */
14297 T(V8), /* V5TE. */
14298 T(V8), /* V5TEJ. */
14299 T(V8), /* V6. */
14300 T(V8), /* V6KZ. */
14301 T(V8), /* V6T2. */
14302 T(V8), /* V6K. */
14303 T(V8), /* V7. */
14304 T(V8), /* V6_M. */
14305 T(V8), /* V6S_M. */
14306 T(V8), /* V7E_M. */
14307 T(V8) /* V8. */
14308 };
14309 const int v8r[] =
14310 {
14311 T(V8R), /* PRE_V4. */
14312 T(V8R), /* V4. */
14313 T(V8R), /* V4T. */
14314 T(V8R), /* V5T. */
14315 T(V8R), /* V5TE. */
14316 T(V8R), /* V5TEJ. */
14317 T(V8R), /* V6. */
14318 T(V8R), /* V6KZ. */
14319 T(V8R), /* V6T2. */
14320 T(V8R), /* V6K. */
14321 T(V8R), /* V7. */
14322 T(V8R), /* V6_M. */
14323 T(V8R), /* V6S_M. */
14324 T(V8R), /* V7E_M. */
14325 T(V8), /* V8. */
14326 T(V8R), /* V8R. */
14327 };
14328 const int v8m_baseline[] =
14329 {
14330 -1, /* PRE_V4. */
14331 -1, /* V4. */
14332 -1, /* V4T. */
14333 -1, /* V5T. */
14334 -1, /* V5TE. */
14335 -1, /* V5TEJ. */
14336 -1, /* V6. */
14337 -1, /* V6KZ. */
14338 -1, /* V6T2. */
14339 -1, /* V6K. */
14340 -1, /* V7. */
14341 T(V8M_BASE), /* V6_M. */
14342 T(V8M_BASE), /* V6S_M. */
14343 -1, /* V7E_M. */
14344 -1, /* V8. */
14345 -1, /* V8R. */
14346 T(V8M_BASE) /* V8-M BASELINE. */
14347 };
14348 const int v8m_mainline[] =
14349 {
14350 -1, /* PRE_V4. */
14351 -1, /* V4. */
14352 -1, /* V4T. */
14353 -1, /* V5T. */
14354 -1, /* V5TE. */
14355 -1, /* V5TEJ. */
14356 -1, /* V6. */
14357 -1, /* V6KZ. */
14358 -1, /* V6T2. */
14359 -1, /* V6K. */
14360 T(V8M_MAIN), /* V7. */
14361 T(V8M_MAIN), /* V6_M. */
14362 T(V8M_MAIN), /* V6S_M. */
14363 T(V8M_MAIN), /* V7E_M. */
14364 -1, /* V8. */
14365 -1, /* V8R. */
14366 T(V8M_MAIN), /* V8-M BASELINE. */
14367 T(V8M_MAIN) /* V8-M MAINLINE. */
14368 };
14369 const int v8_1m_mainline[] =
14370 {
14371 -1, /* PRE_V4. */
14372 -1, /* V4. */
14373 -1, /* V4T. */
14374 -1, /* V5T. */
14375 -1, /* V5TE. */
14376 -1, /* V5TEJ. */
14377 -1, /* V6. */
14378 -1, /* V6KZ. */
14379 -1, /* V6T2. */
14380 -1, /* V6K. */
14381 T(V8_1M_MAIN), /* V7. */
14382 T(V8_1M_MAIN), /* V6_M. */
14383 T(V8_1M_MAIN), /* V6S_M. */
14384 T(V8_1M_MAIN), /* V7E_M. */
14385 -1, /* V8. */
14386 -1, /* V8R. */
14387 T(V8_1M_MAIN), /* V8-M BASELINE. */
14388 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14389 -1, /* Unused (18). */
14390 -1, /* Unused (19). */
14391 -1, /* Unused (20). */
14392 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14393 };
14394 const int v4t_plus_v6_m[] =
14395 {
14396 -1, /* PRE_V4. */
14397 -1, /* V4. */
14398 T(V4T), /* V4T. */
14399 T(V5T), /* V5T. */
14400 T(V5TE), /* V5TE. */
14401 T(V5TEJ), /* V5TEJ. */
14402 T(V6), /* V6. */
14403 T(V6KZ), /* V6KZ. */
14404 T(V6T2), /* V6T2. */
14405 T(V6K), /* V6K. */
14406 T(V7), /* V7. */
14407 T(V6_M), /* V6_M. */
14408 T(V6S_M), /* V6S_M. */
14409 T(V7E_M), /* V7E_M. */
14410 T(V8), /* V8. */
14411 -1, /* V8R. */
14412 T(V8M_BASE), /* V8-M BASELINE. */
14413 T(V8M_MAIN), /* V8-M MAINLINE. */
14414 -1, /* Unused (18). */
14415 -1, /* Unused (19). */
14416 -1, /* Unused (20). */
14417 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14418 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14419 };
14420 const int *comb[] =
14421 {
14422 v6t2,
14423 v6k,
14424 v7,
14425 v6_m,
14426 v6s_m,
14427 v7e_m,
14428 v8,
14429 v8r,
14430 v8m_baseline,
14431 v8m_mainline,
14432 NULL,
14433 NULL,
14434 NULL,
14435 v8_1m_mainline,
14436 /* Pseudo-architecture. */
14437 v4t_plus_v6_m
14438 };
14439
14440 /* Check we've not got a higher architecture than we know about. */
14441
14442 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14443 {
14444 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14445 return -1;
14446 }
14447
14448 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14449
14450 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14451 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14452 oldtag = T(V4T_PLUS_V6_M);
14453
14454 /* And override the new tag if we have a Tag_also_compatible_with on the
14455 input. */
14456
14457 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14458 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14459 newtag = T(V4T_PLUS_V6_M);
14460
14461 tagl = (oldtag < newtag) ? oldtag : newtag;
14462 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14463
14464 /* Architectures before V6KZ add features monotonically. */
14465 if (tagh <= TAG_CPU_ARCH_V6KZ)
14466 return result;
14467
14468 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14469
14470 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14471 as the canonical version. */
14472 if (result == T(V4T_PLUS_V6_M))
14473 {
14474 result = T(V4T);
14475 *secondary_compat_out = T(V6_M);
14476 }
14477 else
14478 *secondary_compat_out = -1;
14479
14480 if (result == -1)
14481 {
14482 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14483 ibfd, oldtag, newtag);
14484 return -1;
14485 }
14486
14487 return result;
14488 #undef T
14489 }
14490
14491 /* Query attributes object to see if integer divide instructions may be
14492 present in an object. */
14493 static bfd_boolean
14494 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14495 {
14496 int arch = attr[Tag_CPU_arch].i;
14497 int profile = attr[Tag_CPU_arch_profile].i;
14498
14499 switch (attr[Tag_DIV_use].i)
14500 {
14501 case 0:
14502 /* Integer divide allowed if instruction contained in archetecture. */
14503 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14504 return TRUE;
14505 else if (arch >= TAG_CPU_ARCH_V7E_M)
14506 return TRUE;
14507 else
14508 return FALSE;
14509
14510 case 1:
14511 /* Integer divide explicitly prohibited. */
14512 return FALSE;
14513
14514 default:
14515 /* Unrecognised case - treat as allowing divide everywhere. */
14516 case 2:
14517 /* Integer divide allowed in ARM state. */
14518 return TRUE;
14519 }
14520 }
14521
14522 /* Query attributes object to see if integer divide instructions are
14523 forbidden to be in the object. This is not the inverse of
14524 elf32_arm_attributes_accept_div. */
14525 static bfd_boolean
14526 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14527 {
14528 return attr[Tag_DIV_use].i == 1;
14529 }
14530
14531 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14532 are conflicting attributes. */
14533
14534 static bfd_boolean
14535 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14536 {
14537 bfd *obfd = info->output_bfd;
14538 obj_attribute *in_attr;
14539 obj_attribute *out_attr;
14540 /* Some tags have 0 = don't care, 1 = strong requirement,
14541 2 = weak requirement. */
14542 static const int order_021[3] = {0, 2, 1};
14543 int i;
14544 bfd_boolean result = TRUE;
14545 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14546
14547 /* Skip the linker stubs file. This preserves previous behavior
14548 of accepting unknown attributes in the first input file - but
14549 is that a bug? */
14550 if (ibfd->flags & BFD_LINKER_CREATED)
14551 return TRUE;
14552
14553 /* Skip any input that hasn't attribute section.
14554 This enables to link object files without attribute section with
14555 any others. */
14556 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14557 return TRUE;
14558
14559 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14560 {
14561 /* This is the first object. Copy the attributes. */
14562 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14563
14564 out_attr = elf_known_obj_attributes_proc (obfd);
14565
14566 /* Use the Tag_null value to indicate the attributes have been
14567 initialized. */
14568 out_attr[0].i = 1;
14569
14570 /* We do not output objects with Tag_MPextension_use_legacy - we move
14571 the attribute's value to Tag_MPextension_use. */
14572 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14573 {
14574 if (out_attr[Tag_MPextension_use].i != 0
14575 && out_attr[Tag_MPextension_use_legacy].i
14576 != out_attr[Tag_MPextension_use].i)
14577 {
14578 _bfd_error_handler
14579 (_("Error: %pB has both the current and legacy "
14580 "Tag_MPextension_use attributes"), ibfd);
14581 result = FALSE;
14582 }
14583
14584 out_attr[Tag_MPextension_use] =
14585 out_attr[Tag_MPextension_use_legacy];
14586 out_attr[Tag_MPextension_use_legacy].type = 0;
14587 out_attr[Tag_MPextension_use_legacy].i = 0;
14588 }
14589
14590 return result;
14591 }
14592
14593 in_attr = elf_known_obj_attributes_proc (ibfd);
14594 out_attr = elf_known_obj_attributes_proc (obfd);
14595 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14596 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14597 {
14598 /* Ignore mismatches if the object doesn't use floating point or is
14599 floating point ABI independent. */
14600 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14601 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14602 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14603 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14604 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14605 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14606 {
14607 _bfd_error_handler
14608 (_("error: %pB uses VFP register arguments, %pB does not"),
14609 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14610 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14611 result = FALSE;
14612 }
14613 }
14614
14615 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14616 {
14617 /* Merge this attribute with existing attributes. */
14618 switch (i)
14619 {
14620 case Tag_CPU_raw_name:
14621 case Tag_CPU_name:
14622 /* These are merged after Tag_CPU_arch. */
14623 break;
14624
14625 case Tag_ABI_optimization_goals:
14626 case Tag_ABI_FP_optimization_goals:
14627 /* Use the first value seen. */
14628 break;
14629
14630 case Tag_CPU_arch:
14631 {
14632 int secondary_compat = -1, secondary_compat_out = -1;
14633 unsigned int saved_out_attr = out_attr[i].i;
14634 int arch_attr;
14635 static const char *name_table[] =
14636 {
14637 /* These aren't real CPU names, but we can't guess
14638 that from the architecture version alone. */
14639 "Pre v4",
14640 "ARM v4",
14641 "ARM v4T",
14642 "ARM v5T",
14643 "ARM v5TE",
14644 "ARM v5TEJ",
14645 "ARM v6",
14646 "ARM v6KZ",
14647 "ARM v6T2",
14648 "ARM v6K",
14649 "ARM v7",
14650 "ARM v6-M",
14651 "ARM v6S-M",
14652 "ARM v8",
14653 "",
14654 "ARM v8-M.baseline",
14655 "ARM v8-M.mainline",
14656 };
14657
14658 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14659 secondary_compat = get_secondary_compatible_arch (ibfd);
14660 secondary_compat_out = get_secondary_compatible_arch (obfd);
14661 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14662 &secondary_compat_out,
14663 in_attr[i].i,
14664 secondary_compat);
14665
14666 /* Return with error if failed to merge. */
14667 if (arch_attr == -1)
14668 return FALSE;
14669
14670 out_attr[i].i = arch_attr;
14671
14672 set_secondary_compatible_arch (obfd, secondary_compat_out);
14673
14674 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14675 if (out_attr[i].i == saved_out_attr)
14676 ; /* Leave the names alone. */
14677 else if (out_attr[i].i == in_attr[i].i)
14678 {
14679 /* The output architecture has been changed to match the
14680 input architecture. Use the input names. */
14681 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14682 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14683 : NULL;
14684 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14685 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14686 : NULL;
14687 }
14688 else
14689 {
14690 out_attr[Tag_CPU_name].s = NULL;
14691 out_attr[Tag_CPU_raw_name].s = NULL;
14692 }
14693
14694 /* If we still don't have a value for Tag_CPU_name,
14695 make one up now. Tag_CPU_raw_name remains blank. */
14696 if (out_attr[Tag_CPU_name].s == NULL
14697 && out_attr[i].i < ARRAY_SIZE (name_table))
14698 out_attr[Tag_CPU_name].s =
14699 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14700 }
14701 break;
14702
14703 case Tag_ARM_ISA_use:
14704 case Tag_THUMB_ISA_use:
14705 case Tag_WMMX_arch:
14706 case Tag_Advanced_SIMD_arch:
14707 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14708 case Tag_ABI_FP_rounding:
14709 case Tag_ABI_FP_exceptions:
14710 case Tag_ABI_FP_user_exceptions:
14711 case Tag_ABI_FP_number_model:
14712 case Tag_FP_HP_extension:
14713 case Tag_CPU_unaligned_access:
14714 case Tag_T2EE_use:
14715 case Tag_MPextension_use:
14716 /* Use the largest value specified. */
14717 if (in_attr[i].i > out_attr[i].i)
14718 out_attr[i].i = in_attr[i].i;
14719 break;
14720
14721 case Tag_ABI_align_preserved:
14722 case Tag_ABI_PCS_RO_data:
14723 /* Use the smallest value specified. */
14724 if (in_attr[i].i < out_attr[i].i)
14725 out_attr[i].i = in_attr[i].i;
14726 break;
14727
14728 case Tag_ABI_align_needed:
14729 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14730 && (in_attr[Tag_ABI_align_preserved].i == 0
14731 || out_attr[Tag_ABI_align_preserved].i == 0))
14732 {
14733 /* This error message should be enabled once all non-conformant
14734 binaries in the toolchain have had the attributes set
14735 properly.
14736 _bfd_error_handler
14737 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14738 obfd, ibfd);
14739 result = FALSE; */
14740 }
14741 /* Fall through. */
14742 case Tag_ABI_FP_denormal:
14743 case Tag_ABI_PCS_GOT_use:
14744 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14745 value if greater than 2 (for future-proofing). */
14746 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14747 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14748 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14749 out_attr[i].i = in_attr[i].i;
14750 break;
14751
14752 case Tag_Virtualization_use:
14753 /* The virtualization tag effectively stores two bits of
14754 information: the intended use of TrustZone (in bit 0), and the
14755 intended use of Virtualization (in bit 1). */
14756 if (out_attr[i].i == 0)
14757 out_attr[i].i = in_attr[i].i;
14758 else if (in_attr[i].i != 0
14759 && in_attr[i].i != out_attr[i].i)
14760 {
14761 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14762 out_attr[i].i = 3;
14763 else
14764 {
14765 _bfd_error_handler
14766 (_("error: %pB: unable to merge virtualization attributes "
14767 "with %pB"),
14768 obfd, ibfd);
14769 result = FALSE;
14770 }
14771 }
14772 break;
14773
14774 case Tag_CPU_arch_profile:
14775 if (out_attr[i].i != in_attr[i].i)
14776 {
14777 /* 0 will merge with anything.
14778 'A' and 'S' merge to 'A'.
14779 'R' and 'S' merge to 'R'.
14780 'M' and 'A|R|S' is an error. */
14781 if (out_attr[i].i == 0
14782 || (out_attr[i].i == 'S'
14783 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14784 out_attr[i].i = in_attr[i].i;
14785 else if (in_attr[i].i == 0
14786 || (in_attr[i].i == 'S'
14787 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14788 ; /* Do nothing. */
14789 else
14790 {
14791 _bfd_error_handler
14792 (_("error: %pB: conflicting architecture profiles %c/%c"),
14793 ibfd,
14794 in_attr[i].i ? in_attr[i].i : '0',
14795 out_attr[i].i ? out_attr[i].i : '0');
14796 result = FALSE;
14797 }
14798 }
14799 break;
14800
14801 case Tag_DSP_extension:
14802 /* No need to change output value if any of:
14803 - pre (<=) ARMv5T input architecture (do not have DSP)
14804 - M input profile not ARMv7E-M and do not have DSP. */
14805 if (in_attr[Tag_CPU_arch].i <= 3
14806 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14807 && in_attr[Tag_CPU_arch].i != 13
14808 && in_attr[i].i == 0))
14809 ; /* Do nothing. */
14810 /* Output value should be 0 if DSP part of architecture, ie.
14811 - post (>=) ARMv5te architecture output
14812 - A, R or S profile output or ARMv7E-M output architecture. */
14813 else if (out_attr[Tag_CPU_arch].i >= 4
14814 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14815 || out_attr[Tag_CPU_arch_profile].i == 'R'
14816 || out_attr[Tag_CPU_arch_profile].i == 'S'
14817 || out_attr[Tag_CPU_arch].i == 13))
14818 out_attr[i].i = 0;
14819 /* Otherwise, DSP instructions are added and not part of output
14820 architecture. */
14821 else
14822 out_attr[i].i = 1;
14823 break;
14824
14825 case Tag_FP_arch:
14826 {
14827 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14828 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14829 when it's 0. It might mean absence of FP hardware if
14830 Tag_FP_arch is zero. */
14831
14832 #define VFP_VERSION_COUNT 9
14833 static const struct
14834 {
14835 int ver;
14836 int regs;
14837 } vfp_versions[VFP_VERSION_COUNT] =
14838 {
14839 {0, 0},
14840 {1, 16},
14841 {2, 16},
14842 {3, 32},
14843 {3, 16},
14844 {4, 32},
14845 {4, 16},
14846 {8, 32},
14847 {8, 16}
14848 };
14849 int ver;
14850 int regs;
14851 int newval;
14852
14853 /* If the output has no requirement about FP hardware,
14854 follow the requirement of the input. */
14855 if (out_attr[i].i == 0)
14856 {
14857 /* This assert is still reasonable, we shouldn't
14858 produce the suspicious build attribute
14859 combination (See below for in_attr). */
14860 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14861 out_attr[i].i = in_attr[i].i;
14862 out_attr[Tag_ABI_HardFP_use].i
14863 = in_attr[Tag_ABI_HardFP_use].i;
14864 break;
14865 }
14866 /* If the input has no requirement about FP hardware, do
14867 nothing. */
14868 else if (in_attr[i].i == 0)
14869 {
14870 /* We used to assert that Tag_ABI_HardFP_use was
14871 zero here, but we should never assert when
14872 consuming an object file that has suspicious
14873 build attributes. The single precision variant
14874 of 'no FP architecture' is still 'no FP
14875 architecture', so we just ignore the tag in this
14876 case. */
14877 break;
14878 }
14879
14880 /* Both the input and the output have nonzero Tag_FP_arch.
14881 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14882
14883 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14884 do nothing. */
14885 if (in_attr[Tag_ABI_HardFP_use].i == 0
14886 && out_attr[Tag_ABI_HardFP_use].i == 0)
14887 ;
14888 /* If the input and the output have different Tag_ABI_HardFP_use,
14889 the combination of them is 0 (implied by Tag_FP_arch). */
14890 else if (in_attr[Tag_ABI_HardFP_use].i
14891 != out_attr[Tag_ABI_HardFP_use].i)
14892 out_attr[Tag_ABI_HardFP_use].i = 0;
14893
14894 /* Now we can handle Tag_FP_arch. */
14895
14896 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14897 pick the biggest. */
14898 if (in_attr[i].i >= VFP_VERSION_COUNT
14899 && in_attr[i].i > out_attr[i].i)
14900 {
14901 out_attr[i] = in_attr[i];
14902 break;
14903 }
14904 /* The output uses the superset of input features
14905 (ISA version) and registers. */
14906 ver = vfp_versions[in_attr[i].i].ver;
14907 if (ver < vfp_versions[out_attr[i].i].ver)
14908 ver = vfp_versions[out_attr[i].i].ver;
14909 regs = vfp_versions[in_attr[i].i].regs;
14910 if (regs < vfp_versions[out_attr[i].i].regs)
14911 regs = vfp_versions[out_attr[i].i].regs;
14912 /* This assumes all possible supersets are also a valid
14913 options. */
14914 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14915 {
14916 if (regs == vfp_versions[newval].regs
14917 && ver == vfp_versions[newval].ver)
14918 break;
14919 }
14920 out_attr[i].i = newval;
14921 }
14922 break;
14923 case Tag_PCS_config:
14924 if (out_attr[i].i == 0)
14925 out_attr[i].i = in_attr[i].i;
14926 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14927 {
14928 /* It's sometimes ok to mix different configs, so this is only
14929 a warning. */
14930 _bfd_error_handler
14931 (_("warning: %pB: conflicting platform configuration"), ibfd);
14932 }
14933 break;
14934 case Tag_ABI_PCS_R9_use:
14935 if (in_attr[i].i != out_attr[i].i
14936 && out_attr[i].i != AEABI_R9_unused
14937 && in_attr[i].i != AEABI_R9_unused)
14938 {
14939 _bfd_error_handler
14940 (_("error: %pB: conflicting use of R9"), ibfd);
14941 result = FALSE;
14942 }
14943 if (out_attr[i].i == AEABI_R9_unused)
14944 out_attr[i].i = in_attr[i].i;
14945 break;
14946 case Tag_ABI_PCS_RW_data:
14947 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14948 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14949 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14950 {
14951 _bfd_error_handler
14952 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14953 ibfd);
14954 result = FALSE;
14955 }
14956 /* Use the smallest value specified. */
14957 if (in_attr[i].i < out_attr[i].i)
14958 out_attr[i].i = in_attr[i].i;
14959 break;
14960 case Tag_ABI_PCS_wchar_t:
14961 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14962 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14963 {
14964 _bfd_error_handler
14965 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14966 ibfd, in_attr[i].i, out_attr[i].i);
14967 }
14968 else if (in_attr[i].i && !out_attr[i].i)
14969 out_attr[i].i = in_attr[i].i;
14970 break;
14971 case Tag_ABI_enum_size:
14972 if (in_attr[i].i != AEABI_enum_unused)
14973 {
14974 if (out_attr[i].i == AEABI_enum_unused
14975 || out_attr[i].i == AEABI_enum_forced_wide)
14976 {
14977 /* The existing object is compatible with anything.
14978 Use whatever requirements the new object has. */
14979 out_attr[i].i = in_attr[i].i;
14980 }
14981 else if (in_attr[i].i != AEABI_enum_forced_wide
14982 && out_attr[i].i != in_attr[i].i
14983 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14984 {
14985 static const char *aeabi_enum_names[] =
14986 { "", "variable-size", "32-bit", "" };
14987 const char *in_name =
14988 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14989 ? aeabi_enum_names[in_attr[i].i]
14990 : "<unknown>";
14991 const char *out_name =
14992 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14993 ? aeabi_enum_names[out_attr[i].i]
14994 : "<unknown>";
14995 _bfd_error_handler
14996 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14997 ibfd, in_name, out_name);
14998 }
14999 }
15000 break;
15001 case Tag_ABI_VFP_args:
15002 /* Aready done. */
15003 break;
15004 case Tag_ABI_WMMX_args:
15005 if (in_attr[i].i != out_attr[i].i)
15006 {
15007 _bfd_error_handler
15008 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
15009 ibfd, obfd);
15010 result = FALSE;
15011 }
15012 break;
15013 case Tag_compatibility:
15014 /* Merged in target-independent code. */
15015 break;
15016 case Tag_ABI_HardFP_use:
15017 /* This is handled along with Tag_FP_arch. */
15018 break;
15019 case Tag_ABI_FP_16bit_format:
15020 if (in_attr[i].i != 0 && out_attr[i].i != 0)
15021 {
15022 if (in_attr[i].i != out_attr[i].i)
15023 {
15024 _bfd_error_handler
15025 (_("error: fp16 format mismatch between %pB and %pB"),
15026 ibfd, obfd);
15027 result = FALSE;
15028 }
15029 }
15030 if (in_attr[i].i != 0)
15031 out_attr[i].i = in_attr[i].i;
15032 break;
15033
15034 case Tag_DIV_use:
15035 /* A value of zero on input means that the divide instruction may
15036 be used if available in the base architecture as specified via
15037 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15038 the user did not want divide instructions. A value of 2
15039 explicitly means that divide instructions were allowed in ARM
15040 and Thumb state. */
15041 if (in_attr[i].i == out_attr[i].i)
15042 /* Do nothing. */ ;
15043 else if (elf32_arm_attributes_forbid_div (in_attr)
15044 && !elf32_arm_attributes_accept_div (out_attr))
15045 out_attr[i].i = 1;
15046 else if (elf32_arm_attributes_forbid_div (out_attr)
15047 && elf32_arm_attributes_accept_div (in_attr))
15048 out_attr[i].i = in_attr[i].i;
15049 else if (in_attr[i].i == 2)
15050 out_attr[i].i = in_attr[i].i;
15051 break;
15052
15053 case Tag_MPextension_use_legacy:
15054 /* We don't output objects with Tag_MPextension_use_legacy - we
15055 move the value to Tag_MPextension_use. */
15056 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15057 {
15058 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15059 {
15060 _bfd_error_handler
15061 (_("%pB has both the current and legacy "
15062 "Tag_MPextension_use attributes"),
15063 ibfd);
15064 result = FALSE;
15065 }
15066 }
15067
15068 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15069 out_attr[Tag_MPextension_use] = in_attr[i];
15070
15071 break;
15072
15073 case Tag_nodefaults:
15074 /* This tag is set if it exists, but the value is unused (and is
15075 typically zero). We don't actually need to do anything here -
15076 the merge happens automatically when the type flags are merged
15077 below. */
15078 break;
15079 case Tag_also_compatible_with:
15080 /* Already done in Tag_CPU_arch. */
15081 break;
15082 case Tag_conformance:
15083 /* Keep the attribute if it matches. Throw it away otherwise.
15084 No attribute means no claim to conform. */
15085 if (!in_attr[i].s || !out_attr[i].s
15086 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15087 out_attr[i].s = NULL;
15088 break;
15089
15090 default:
15091 result
15092 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15093 }
15094
15095 /* If out_attr was copied from in_attr then it won't have a type yet. */
15096 if (in_attr[i].type && !out_attr[i].type)
15097 out_attr[i].type = in_attr[i].type;
15098 }
15099
15100 /* Merge Tag_compatibility attributes and any common GNU ones. */
15101 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15102 return FALSE;
15103
15104 /* Check for any attributes not known on ARM. */
15105 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15106
15107 return result;
15108 }
15109
15110
15111 /* Return TRUE if the two EABI versions are incompatible. */
15112
15113 static bfd_boolean
15114 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15115 {
15116 /* v4 and v5 are the same spec before and after it was released,
15117 so allow mixing them. */
15118 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15119 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15120 return TRUE;
15121
15122 return (iver == over);
15123 }
15124
15125 /* Merge backend specific data from an object file to the output
15126 object file when linking. */
15127
15128 static bfd_boolean
15129 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15130
15131 /* Display the flags field. */
15132
15133 static bfd_boolean
15134 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15135 {
15136 FILE * file = (FILE *) ptr;
15137 unsigned long flags;
15138
15139 BFD_ASSERT (abfd != NULL && ptr != NULL);
15140
15141 /* Print normal ELF private data. */
15142 _bfd_elf_print_private_bfd_data (abfd, ptr);
15143
15144 flags = elf_elfheader (abfd)->e_flags;
15145 /* Ignore init flag - it may not be set, despite the flags field
15146 containing valid data. */
15147
15148 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15149
15150 switch (EF_ARM_EABI_VERSION (flags))
15151 {
15152 case EF_ARM_EABI_UNKNOWN:
15153 /* The following flag bits are GNU extensions and not part of the
15154 official ARM ELF extended ABI. Hence they are only decoded if
15155 the EABI version is not set. */
15156 if (flags & EF_ARM_INTERWORK)
15157 fprintf (file, _(" [interworking enabled]"));
15158
15159 if (flags & EF_ARM_APCS_26)
15160 fprintf (file, " [APCS-26]");
15161 else
15162 fprintf (file, " [APCS-32]");
15163
15164 if (flags & EF_ARM_VFP_FLOAT)
15165 fprintf (file, _(" [VFP float format]"));
15166 else if (flags & EF_ARM_MAVERICK_FLOAT)
15167 fprintf (file, _(" [Maverick float format]"));
15168 else
15169 fprintf (file, _(" [FPA float format]"));
15170
15171 if (flags & EF_ARM_APCS_FLOAT)
15172 fprintf (file, _(" [floats passed in float registers]"));
15173
15174 if (flags & EF_ARM_PIC)
15175 fprintf (file, _(" [position independent]"));
15176
15177 if (flags & EF_ARM_NEW_ABI)
15178 fprintf (file, _(" [new ABI]"));
15179
15180 if (flags & EF_ARM_OLD_ABI)
15181 fprintf (file, _(" [old ABI]"));
15182
15183 if (flags & EF_ARM_SOFT_FLOAT)
15184 fprintf (file, _(" [software FP]"));
15185
15186 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15187 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15188 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15189 | EF_ARM_MAVERICK_FLOAT);
15190 break;
15191
15192 case EF_ARM_EABI_VER1:
15193 fprintf (file, _(" [Version1 EABI]"));
15194
15195 if (flags & EF_ARM_SYMSARESORTED)
15196 fprintf (file, _(" [sorted symbol table]"));
15197 else
15198 fprintf (file, _(" [unsorted symbol table]"));
15199
15200 flags &= ~ EF_ARM_SYMSARESORTED;
15201 break;
15202
15203 case EF_ARM_EABI_VER2:
15204 fprintf (file, _(" [Version2 EABI]"));
15205
15206 if (flags & EF_ARM_SYMSARESORTED)
15207 fprintf (file, _(" [sorted symbol table]"));
15208 else
15209 fprintf (file, _(" [unsorted symbol table]"));
15210
15211 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15212 fprintf (file, _(" [dynamic symbols use segment index]"));
15213
15214 if (flags & EF_ARM_MAPSYMSFIRST)
15215 fprintf (file, _(" [mapping symbols precede others]"));
15216
15217 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15218 | EF_ARM_MAPSYMSFIRST);
15219 break;
15220
15221 case EF_ARM_EABI_VER3:
15222 fprintf (file, _(" [Version3 EABI]"));
15223 break;
15224
15225 case EF_ARM_EABI_VER4:
15226 fprintf (file, _(" [Version4 EABI]"));
15227 goto eabi;
15228
15229 case EF_ARM_EABI_VER5:
15230 fprintf (file, _(" [Version5 EABI]"));
15231
15232 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15233 fprintf (file, _(" [soft-float ABI]"));
15234
15235 if (flags & EF_ARM_ABI_FLOAT_HARD)
15236 fprintf (file, _(" [hard-float ABI]"));
15237
15238 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15239
15240 eabi:
15241 if (flags & EF_ARM_BE8)
15242 fprintf (file, _(" [BE8]"));
15243
15244 if (flags & EF_ARM_LE8)
15245 fprintf (file, _(" [LE8]"));
15246
15247 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15248 break;
15249
15250 default:
15251 fprintf (file, _(" <EABI version unrecognised>"));
15252 break;
15253 }
15254
15255 flags &= ~ EF_ARM_EABIMASK;
15256
15257 if (flags & EF_ARM_RELEXEC)
15258 fprintf (file, _(" [relocatable executable]"));
15259
15260 if (flags & EF_ARM_PIC)
15261 fprintf (file, _(" [position independent]"));
15262
15263 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15264 fprintf (file, _(" [FDPIC ABI supplement]"));
15265
15266 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15267
15268 if (flags)
15269 fprintf (file, _("<Unrecognised flag bits set>"));
15270
15271 fputc ('\n', file);
15272
15273 return TRUE;
15274 }
15275
15276 static int
15277 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15278 {
15279 switch (ELF_ST_TYPE (elf_sym->st_info))
15280 {
15281 case STT_ARM_TFUNC:
15282 return ELF_ST_TYPE (elf_sym->st_info);
15283
15284 case STT_ARM_16BIT:
15285 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15286 This allows us to distinguish between data used by Thumb instructions
15287 and non-data (which is probably code) inside Thumb regions of an
15288 executable. */
15289 if (type != STT_OBJECT && type != STT_TLS)
15290 return ELF_ST_TYPE (elf_sym->st_info);
15291 break;
15292
15293 default:
15294 break;
15295 }
15296
15297 return type;
15298 }
15299
15300 static asection *
15301 elf32_arm_gc_mark_hook (asection *sec,
15302 struct bfd_link_info *info,
15303 Elf_Internal_Rela *rel,
15304 struct elf_link_hash_entry *h,
15305 Elf_Internal_Sym *sym)
15306 {
15307 if (h != NULL)
15308 switch (ELF32_R_TYPE (rel->r_info))
15309 {
15310 case R_ARM_GNU_VTINHERIT:
15311 case R_ARM_GNU_VTENTRY:
15312 return NULL;
15313 }
15314
15315 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15316 }
15317
15318 /* Look through the relocs for a section during the first phase. */
15319
15320 static bfd_boolean
15321 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15322 asection *sec, const Elf_Internal_Rela *relocs)
15323 {
15324 Elf_Internal_Shdr *symtab_hdr;
15325 struct elf_link_hash_entry **sym_hashes;
15326 const Elf_Internal_Rela *rel;
15327 const Elf_Internal_Rela *rel_end;
15328 bfd *dynobj;
15329 asection *sreloc;
15330 struct elf32_arm_link_hash_table *htab;
15331 bfd_boolean call_reloc_p;
15332 bfd_boolean may_become_dynamic_p;
15333 bfd_boolean may_need_local_target_p;
15334 unsigned long nsyms;
15335
15336 if (bfd_link_relocatable (info))
15337 return TRUE;
15338
15339 BFD_ASSERT (is_arm_elf (abfd));
15340
15341 htab = elf32_arm_hash_table (info);
15342 if (htab == NULL)
15343 return FALSE;
15344
15345 sreloc = NULL;
15346
15347 /* Create dynamic sections for relocatable executables so that we can
15348 copy relocations. */
15349 if (htab->root.is_relocatable_executable
15350 && ! htab->root.dynamic_sections_created)
15351 {
15352 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15353 return FALSE;
15354 }
15355
15356 if (htab->root.dynobj == NULL)
15357 htab->root.dynobj = abfd;
15358 if (!create_ifunc_sections (info))
15359 return FALSE;
15360
15361 dynobj = htab->root.dynobj;
15362
15363 symtab_hdr = & elf_symtab_hdr (abfd);
15364 sym_hashes = elf_sym_hashes (abfd);
15365 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15366
15367 rel_end = relocs + sec->reloc_count;
15368 for (rel = relocs; rel < rel_end; rel++)
15369 {
15370 Elf_Internal_Sym *isym;
15371 struct elf_link_hash_entry *h;
15372 struct elf32_arm_link_hash_entry *eh;
15373 unsigned int r_symndx;
15374 int r_type;
15375
15376 r_symndx = ELF32_R_SYM (rel->r_info);
15377 r_type = ELF32_R_TYPE (rel->r_info);
15378 r_type = arm_real_reloc_type (htab, r_type);
15379
15380 if (r_symndx >= nsyms
15381 /* PR 9934: It is possible to have relocations that do not
15382 refer to symbols, thus it is also possible to have an
15383 object file containing relocations but no symbol table. */
15384 && (r_symndx > STN_UNDEF || nsyms > 0))
15385 {
15386 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15387 r_symndx);
15388 return FALSE;
15389 }
15390
15391 h = NULL;
15392 isym = NULL;
15393 if (nsyms > 0)
15394 {
15395 if (r_symndx < symtab_hdr->sh_info)
15396 {
15397 /* A local symbol. */
15398 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15399 abfd, r_symndx);
15400 if (isym == NULL)
15401 return FALSE;
15402 }
15403 else
15404 {
15405 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15406 while (h->root.type == bfd_link_hash_indirect
15407 || h->root.type == bfd_link_hash_warning)
15408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15409 }
15410 }
15411
15412 eh = (struct elf32_arm_link_hash_entry *) h;
15413
15414 call_reloc_p = FALSE;
15415 may_become_dynamic_p = FALSE;
15416 may_need_local_target_p = FALSE;
15417
15418 /* Could be done earlier, if h were already available. */
15419 r_type = elf32_arm_tls_transition (info, r_type, h);
15420 switch (r_type)
15421 {
15422 case R_ARM_GOTOFFFUNCDESC:
15423 {
15424 if (h == NULL)
15425 {
15426 if (!elf32_arm_allocate_local_sym_info (abfd))
15427 return FALSE;
15428 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15429 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15430 }
15431 else
15432 {
15433 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15434 }
15435 }
15436 break;
15437
15438 case R_ARM_GOTFUNCDESC:
15439 {
15440 if (h == NULL)
15441 {
15442 /* Such a relocation is not supposed to be generated
15443 by gcc on a static function. */
15444 /* Anyway if needed it could be handled. */
15445 abort();
15446 }
15447 else
15448 {
15449 eh->fdpic_cnts.gotfuncdesc_cnt++;
15450 }
15451 }
15452 break;
15453
15454 case R_ARM_FUNCDESC:
15455 {
15456 if (h == NULL)
15457 {
15458 if (!elf32_arm_allocate_local_sym_info (abfd))
15459 return FALSE;
15460 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15461 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15462 }
15463 else
15464 {
15465 eh->fdpic_cnts.funcdesc_cnt++;
15466 }
15467 }
15468 break;
15469
15470 case R_ARM_GOT32:
15471 case R_ARM_GOT_PREL:
15472 case R_ARM_TLS_GD32:
15473 case R_ARM_TLS_GD32_FDPIC:
15474 case R_ARM_TLS_IE32:
15475 case R_ARM_TLS_IE32_FDPIC:
15476 case R_ARM_TLS_GOTDESC:
15477 case R_ARM_TLS_DESCSEQ:
15478 case R_ARM_THM_TLS_DESCSEQ:
15479 case R_ARM_TLS_CALL:
15480 case R_ARM_THM_TLS_CALL:
15481 /* This symbol requires a global offset table entry. */
15482 {
15483 int tls_type, old_tls_type;
15484
15485 switch (r_type)
15486 {
15487 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15488 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15489
15490 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15491 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15492
15493 case R_ARM_TLS_GOTDESC:
15494 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15495 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15496 tls_type = GOT_TLS_GDESC; break;
15497
15498 default: tls_type = GOT_NORMAL; break;
15499 }
15500
15501 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15502 info->flags |= DF_STATIC_TLS;
15503
15504 if (h != NULL)
15505 {
15506 h->got.refcount++;
15507 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15508 }
15509 else
15510 {
15511 /* This is a global offset table entry for a local symbol. */
15512 if (!elf32_arm_allocate_local_sym_info (abfd))
15513 return FALSE;
15514 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15515 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15516 }
15517
15518 /* If a variable is accessed with both tls methods, two
15519 slots may be created. */
15520 if (GOT_TLS_GD_ANY_P (old_tls_type)
15521 && GOT_TLS_GD_ANY_P (tls_type))
15522 tls_type |= old_tls_type;
15523
15524 /* We will already have issued an error message if there
15525 is a TLS/non-TLS mismatch, based on the symbol
15526 type. So just combine any TLS types needed. */
15527 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15528 && tls_type != GOT_NORMAL)
15529 tls_type |= old_tls_type;
15530
15531 /* If the symbol is accessed in both IE and GDESC
15532 method, we're able to relax. Turn off the GDESC flag,
15533 without messing up with any other kind of tls types
15534 that may be involved. */
15535 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15536 tls_type &= ~GOT_TLS_GDESC;
15537
15538 if (old_tls_type != tls_type)
15539 {
15540 if (h != NULL)
15541 elf32_arm_hash_entry (h)->tls_type = tls_type;
15542 else
15543 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15544 }
15545 }
15546 /* Fall through. */
15547
15548 case R_ARM_TLS_LDM32:
15549 case R_ARM_TLS_LDM32_FDPIC:
15550 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15551 htab->tls_ldm_got.refcount++;
15552 /* Fall through. */
15553
15554 case R_ARM_GOTOFF32:
15555 case R_ARM_GOTPC:
15556 if (htab->root.sgot == NULL
15557 && !create_got_section (htab->root.dynobj, info))
15558 return FALSE;
15559 break;
15560
15561 case R_ARM_PC24:
15562 case R_ARM_PLT32:
15563 case R_ARM_CALL:
15564 case R_ARM_JUMP24:
15565 case R_ARM_PREL31:
15566 case R_ARM_THM_CALL:
15567 case R_ARM_THM_JUMP24:
15568 case R_ARM_THM_JUMP19:
15569 call_reloc_p = TRUE;
15570 may_need_local_target_p = TRUE;
15571 break;
15572
15573 case R_ARM_ABS12:
15574 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15575 ldr __GOTT_INDEX__ offsets. */
15576 if (!htab->vxworks_p)
15577 {
15578 may_need_local_target_p = TRUE;
15579 break;
15580 }
15581 else goto jump_over;
15582
15583 /* Fall through. */
15584
15585 case R_ARM_MOVW_ABS_NC:
15586 case R_ARM_MOVT_ABS:
15587 case R_ARM_THM_MOVW_ABS_NC:
15588 case R_ARM_THM_MOVT_ABS:
15589 if (bfd_link_pic (info))
15590 {
15591 _bfd_error_handler
15592 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15593 abfd, elf32_arm_howto_table_1[r_type].name,
15594 (h) ? h->root.root.string : "a local symbol");
15595 bfd_set_error (bfd_error_bad_value);
15596 return FALSE;
15597 }
15598
15599 /* Fall through. */
15600 case R_ARM_ABS32:
15601 case R_ARM_ABS32_NOI:
15602 jump_over:
15603 if (h != NULL && bfd_link_executable (info))
15604 {
15605 h->pointer_equality_needed = 1;
15606 }
15607 /* Fall through. */
15608 case R_ARM_REL32:
15609 case R_ARM_REL32_NOI:
15610 case R_ARM_MOVW_PREL_NC:
15611 case R_ARM_MOVT_PREL:
15612 case R_ARM_THM_MOVW_PREL_NC:
15613 case R_ARM_THM_MOVT_PREL:
15614
15615 /* Should the interworking branches be listed here? */
15616 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15617 || htab->fdpic_p)
15618 && (sec->flags & SEC_ALLOC) != 0)
15619 {
15620 if (h == NULL
15621 && elf32_arm_howto_from_type (r_type)->pc_relative)
15622 {
15623 /* In shared libraries and relocatable executables,
15624 we treat local relative references as calls;
15625 see the related SYMBOL_CALLS_LOCAL code in
15626 allocate_dynrelocs. */
15627 call_reloc_p = TRUE;
15628 may_need_local_target_p = TRUE;
15629 }
15630 else
15631 /* We are creating a shared library or relocatable
15632 executable, and this is a reloc against a global symbol,
15633 or a non-PC-relative reloc against a local symbol.
15634 We may need to copy the reloc into the output. */
15635 may_become_dynamic_p = TRUE;
15636 }
15637 else
15638 may_need_local_target_p = TRUE;
15639 break;
15640
15641 /* This relocation describes the C++ object vtable hierarchy.
15642 Reconstruct it for later use during GC. */
15643 case R_ARM_GNU_VTINHERIT:
15644 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15645 return FALSE;
15646 break;
15647
15648 /* This relocation describes which C++ vtable entries are actually
15649 used. Record for later use during GC. */
15650 case R_ARM_GNU_VTENTRY:
15651 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15652 return FALSE;
15653 break;
15654 }
15655
15656 if (h != NULL)
15657 {
15658 if (call_reloc_p)
15659 /* We may need a .plt entry if the function this reloc
15660 refers to is in a different object, regardless of the
15661 symbol's type. We can't tell for sure yet, because
15662 something later might force the symbol local. */
15663 h->needs_plt = 1;
15664 else if (may_need_local_target_p)
15665 /* If this reloc is in a read-only section, we might
15666 need a copy reloc. We can't check reliably at this
15667 stage whether the section is read-only, as input
15668 sections have not yet been mapped to output sections.
15669 Tentatively set the flag for now, and correct in
15670 adjust_dynamic_symbol. */
15671 h->non_got_ref = 1;
15672 }
15673
15674 if (may_need_local_target_p
15675 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15676 {
15677 union gotplt_union *root_plt;
15678 struct arm_plt_info *arm_plt;
15679 struct arm_local_iplt_info *local_iplt;
15680
15681 if (h != NULL)
15682 {
15683 root_plt = &h->plt;
15684 arm_plt = &eh->plt;
15685 }
15686 else
15687 {
15688 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15689 if (local_iplt == NULL)
15690 return FALSE;
15691 root_plt = &local_iplt->root;
15692 arm_plt = &local_iplt->arm;
15693 }
15694
15695 /* If the symbol is a function that doesn't bind locally,
15696 this relocation will need a PLT entry. */
15697 if (root_plt->refcount != -1)
15698 root_plt->refcount += 1;
15699
15700 if (!call_reloc_p)
15701 arm_plt->noncall_refcount++;
15702
15703 /* It's too early to use htab->use_blx here, so we have to
15704 record possible blx references separately from
15705 relocs that definitely need a thumb stub. */
15706
15707 if (r_type == R_ARM_THM_CALL)
15708 arm_plt->maybe_thumb_refcount += 1;
15709
15710 if (r_type == R_ARM_THM_JUMP24
15711 || r_type == R_ARM_THM_JUMP19)
15712 arm_plt->thumb_refcount += 1;
15713 }
15714
15715 if (may_become_dynamic_p)
15716 {
15717 struct elf_dyn_relocs *p, **head;
15718
15719 /* Create a reloc section in dynobj. */
15720 if (sreloc == NULL)
15721 {
15722 sreloc = _bfd_elf_make_dynamic_reloc_section
15723 (sec, dynobj, 2, abfd, ! htab->use_rel);
15724
15725 if (sreloc == NULL)
15726 return FALSE;
15727
15728 /* BPABI objects never have dynamic relocations mapped. */
15729 if (htab->symbian_p)
15730 {
15731 flagword flags;
15732
15733 flags = bfd_get_section_flags (dynobj, sreloc);
15734 flags &= ~(SEC_LOAD | SEC_ALLOC);
15735 bfd_set_section_flags (dynobj, sreloc, flags);
15736 }
15737 }
15738
15739 /* If this is a global symbol, count the number of
15740 relocations we need for this symbol. */
15741 if (h != NULL)
15742 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15743 else
15744 {
15745 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15746 if (head == NULL)
15747 return FALSE;
15748 }
15749
15750 p = *head;
15751 if (p == NULL || p->sec != sec)
15752 {
15753 bfd_size_type amt = sizeof *p;
15754
15755 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15756 if (p == NULL)
15757 return FALSE;
15758 p->next = *head;
15759 *head = p;
15760 p->sec = sec;
15761 p->count = 0;
15762 p->pc_count = 0;
15763 }
15764
15765 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15766 p->pc_count += 1;
15767 p->count += 1;
15768 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15769 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15770 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15771 that will become rofixup. */
15772 /* This is due to the fact that we suppose all will become rofixup. */
15773 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15774 _bfd_error_handler
15775 (_("FDPIC does not yet support %s relocation"
15776 " to become dynamic for executable"),
15777 elf32_arm_howto_table_1[r_type].name);
15778 abort();
15779 }
15780 }
15781 }
15782
15783 return TRUE;
15784 }
15785
15786 static void
15787 elf32_arm_update_relocs (asection *o,
15788 struct bfd_elf_section_reloc_data *reldata)
15789 {
15790 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15791 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15792 const struct elf_backend_data *bed;
15793 _arm_elf_section_data *eado;
15794 struct bfd_link_order *p;
15795 bfd_byte *erela_head, *erela;
15796 Elf_Internal_Rela *irela_head, *irela;
15797 Elf_Internal_Shdr *rel_hdr;
15798 bfd *abfd;
15799 unsigned int count;
15800
15801 eado = get_arm_elf_section_data (o);
15802
15803 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15804 return;
15805
15806 abfd = o->owner;
15807 bed = get_elf_backend_data (abfd);
15808 rel_hdr = reldata->hdr;
15809
15810 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15811 {
15812 swap_in = bed->s->swap_reloc_in;
15813 swap_out = bed->s->swap_reloc_out;
15814 }
15815 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15816 {
15817 swap_in = bed->s->swap_reloca_in;
15818 swap_out = bed->s->swap_reloca_out;
15819 }
15820 else
15821 abort ();
15822
15823 erela_head = rel_hdr->contents;
15824 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15825 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15826
15827 erela = erela_head;
15828 irela = irela_head;
15829 count = 0;
15830
15831 for (p = o->map_head.link_order; p; p = p->next)
15832 {
15833 if (p->type == bfd_section_reloc_link_order
15834 || p->type == bfd_symbol_reloc_link_order)
15835 {
15836 (*swap_in) (abfd, erela, irela);
15837 erela += rel_hdr->sh_entsize;
15838 irela++;
15839 count++;
15840 }
15841 else if (p->type == bfd_indirect_link_order)
15842 {
15843 struct bfd_elf_section_reloc_data *input_reldata;
15844 arm_unwind_table_edit *edit_list, *edit_tail;
15845 _arm_elf_section_data *eadi;
15846 bfd_size_type j;
15847 bfd_vma offset;
15848 asection *i;
15849
15850 i = p->u.indirect.section;
15851
15852 eadi = get_arm_elf_section_data (i);
15853 edit_list = eadi->u.exidx.unwind_edit_list;
15854 edit_tail = eadi->u.exidx.unwind_edit_tail;
15855 offset = o->vma + i->output_offset;
15856
15857 if (eadi->elf.rel.hdr &&
15858 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15859 input_reldata = &eadi->elf.rel;
15860 else if (eadi->elf.rela.hdr &&
15861 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15862 input_reldata = &eadi->elf.rela;
15863 else
15864 abort ();
15865
15866 if (edit_list)
15867 {
15868 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15869 {
15870 arm_unwind_table_edit *edit_node, *edit_next;
15871 bfd_vma bias;
15872 bfd_vma reloc_index;
15873
15874 (*swap_in) (abfd, erela, irela);
15875 reloc_index = (irela->r_offset - offset) / 8;
15876
15877 bias = 0;
15878 edit_node = edit_list;
15879 for (edit_next = edit_list;
15880 edit_next && edit_next->index <= reloc_index;
15881 edit_next = edit_node->next)
15882 {
15883 bias++;
15884 edit_node = edit_next;
15885 }
15886
15887 if (edit_node->type != DELETE_EXIDX_ENTRY
15888 || edit_node->index != reloc_index)
15889 {
15890 irela->r_offset -= bias * 8;
15891 irela++;
15892 count++;
15893 }
15894
15895 erela += rel_hdr->sh_entsize;
15896 }
15897
15898 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15899 {
15900 /* New relocation entity. */
15901 asection *text_sec = edit_tail->linked_section;
15902 asection *text_out = text_sec->output_section;
15903 bfd_vma exidx_offset = offset + i->size - 8;
15904
15905 irela->r_addend = 0;
15906 irela->r_offset = exidx_offset;
15907 irela->r_info = ELF32_R_INFO
15908 (text_out->target_index, R_ARM_PREL31);
15909 irela++;
15910 count++;
15911 }
15912 }
15913 else
15914 {
15915 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15916 {
15917 (*swap_in) (abfd, erela, irela);
15918 erela += rel_hdr->sh_entsize;
15919 irela++;
15920 }
15921
15922 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15923 }
15924 }
15925 }
15926
15927 reldata->count = count;
15928 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15929
15930 erela = erela_head;
15931 irela = irela_head;
15932 while (count > 0)
15933 {
15934 (*swap_out) (abfd, irela, erela);
15935 erela += rel_hdr->sh_entsize;
15936 irela++;
15937 count--;
15938 }
15939
15940 free (irela_head);
15941
15942 /* Hashes are no longer valid. */
15943 free (reldata->hashes);
15944 reldata->hashes = NULL;
15945 }
15946
15947 /* Unwinding tables are not referenced directly. This pass marks them as
15948 required if the corresponding code section is marked. Similarly, ARMv8-M
15949 secure entry functions can only be referenced by SG veneers which are
15950 created after the GC process. They need to be marked in case they reside in
15951 their own section (as would be the case if code was compiled with
15952 -ffunction-sections). */
15953
15954 static bfd_boolean
15955 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15956 elf_gc_mark_hook_fn gc_mark_hook)
15957 {
15958 bfd *sub;
15959 Elf_Internal_Shdr **elf_shdrp;
15960 asection *cmse_sec;
15961 obj_attribute *out_attr;
15962 Elf_Internal_Shdr *symtab_hdr;
15963 unsigned i, sym_count, ext_start;
15964 const struct elf_backend_data *bed;
15965 struct elf_link_hash_entry **sym_hashes;
15966 struct elf32_arm_link_hash_entry *cmse_hash;
15967 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15968
15969 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15970
15971 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15972 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15973 && out_attr[Tag_CPU_arch_profile].i == 'M';
15974
15975 /* Marking EH data may cause additional code sections to be marked,
15976 requiring multiple passes. */
15977 again = TRUE;
15978 while (again)
15979 {
15980 again = FALSE;
15981 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15982 {
15983 asection *o;
15984
15985 if (! is_arm_elf (sub))
15986 continue;
15987
15988 elf_shdrp = elf_elfsections (sub);
15989 for (o = sub->sections; o != NULL; o = o->next)
15990 {
15991 Elf_Internal_Shdr *hdr;
15992
15993 hdr = &elf_section_data (o)->this_hdr;
15994 if (hdr->sh_type == SHT_ARM_EXIDX
15995 && hdr->sh_link
15996 && hdr->sh_link < elf_numsections (sub)
15997 && !o->gc_mark
15998 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15999 {
16000 again = TRUE;
16001 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
16002 return FALSE;
16003 }
16004 }
16005
16006 /* Mark section holding ARMv8-M secure entry functions. We mark all
16007 of them so no need for a second browsing. */
16008 if (is_v8m && first_bfd_browse)
16009 {
16010 sym_hashes = elf_sym_hashes (sub);
16011 bed = get_elf_backend_data (sub);
16012 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
16013 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
16014 ext_start = symtab_hdr->sh_info;
16015
16016 /* Scan symbols. */
16017 for (i = ext_start; i < sym_count; i++)
16018 {
16019 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
16020
16021 /* Assume it is a special symbol. If not, cmse_scan will
16022 warn about it and user can do something about it. */
16023 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
16024 {
16025 cmse_sec = cmse_hash->root.root.u.def.section;
16026 if (!cmse_sec->gc_mark
16027 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
16028 return FALSE;
16029 }
16030 }
16031 }
16032 }
16033 first_bfd_browse = FALSE;
16034 }
16035
16036 return TRUE;
16037 }
16038
16039 /* Treat mapping symbols as special target symbols. */
16040
16041 static bfd_boolean
16042 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16043 {
16044 return bfd_is_arm_special_symbol_name (sym->name,
16045 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16046 }
16047
16048 /* This is a copy of elf_find_function() from elf.c except that
16049 ARM mapping symbols are ignored when looking for function names
16050 and STT_ARM_TFUNC is considered to a function type. */
16051
16052 static bfd_boolean
16053 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
16054 asymbol ** symbols,
16055 asection * section,
16056 bfd_vma offset,
16057 const char ** filename_ptr,
16058 const char ** functionname_ptr)
16059 {
16060 const char * filename = NULL;
16061 asymbol * func = NULL;
16062 bfd_vma low_func = 0;
16063 asymbol ** p;
16064
16065 for (p = symbols; *p != NULL; p++)
16066 {
16067 elf_symbol_type *q;
16068
16069 q = (elf_symbol_type *) *p;
16070
16071 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16072 {
16073 default:
16074 break;
16075 case STT_FILE:
16076 filename = bfd_asymbol_name (&q->symbol);
16077 break;
16078 case STT_FUNC:
16079 case STT_ARM_TFUNC:
16080 case STT_NOTYPE:
16081 /* Skip mapping symbols. */
16082 if ((q->symbol.flags & BSF_LOCAL)
16083 && bfd_is_arm_special_symbol_name (q->symbol.name,
16084 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16085 continue;
16086 /* Fall through. */
16087 if (bfd_get_section (&q->symbol) == section
16088 && q->symbol.value >= low_func
16089 && q->symbol.value <= offset)
16090 {
16091 func = (asymbol *) q;
16092 low_func = q->symbol.value;
16093 }
16094 break;
16095 }
16096 }
16097
16098 if (func == NULL)
16099 return FALSE;
16100
16101 if (filename_ptr)
16102 *filename_ptr = filename;
16103 if (functionname_ptr)
16104 *functionname_ptr = bfd_asymbol_name (func);
16105
16106 return TRUE;
16107 }
16108
16109
16110 /* Find the nearest line to a particular section and offset, for error
16111 reporting. This code is a duplicate of the code in elf.c, except
16112 that it uses arm_elf_find_function. */
16113
16114 static bfd_boolean
16115 elf32_arm_find_nearest_line (bfd * abfd,
16116 asymbol ** symbols,
16117 asection * section,
16118 bfd_vma offset,
16119 const char ** filename_ptr,
16120 const char ** functionname_ptr,
16121 unsigned int * line_ptr,
16122 unsigned int * discriminator_ptr)
16123 {
16124 bfd_boolean found = FALSE;
16125
16126 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16127 filename_ptr, functionname_ptr,
16128 line_ptr, discriminator_ptr,
16129 dwarf_debug_sections, 0,
16130 & elf_tdata (abfd)->dwarf2_find_line_info))
16131 {
16132 if (!*functionname_ptr)
16133 arm_elf_find_function (abfd, symbols, section, offset,
16134 *filename_ptr ? NULL : filename_ptr,
16135 functionname_ptr);
16136
16137 return TRUE;
16138 }
16139
16140 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16141 uses DWARF1. */
16142
16143 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16144 & found, filename_ptr,
16145 functionname_ptr, line_ptr,
16146 & elf_tdata (abfd)->line_info))
16147 return FALSE;
16148
16149 if (found && (*functionname_ptr || *line_ptr))
16150 return TRUE;
16151
16152 if (symbols == NULL)
16153 return FALSE;
16154
16155 if (! arm_elf_find_function (abfd, symbols, section, offset,
16156 filename_ptr, functionname_ptr))
16157 return FALSE;
16158
16159 *line_ptr = 0;
16160 return TRUE;
16161 }
16162
16163 static bfd_boolean
16164 elf32_arm_find_inliner_info (bfd * abfd,
16165 const char ** filename_ptr,
16166 const char ** functionname_ptr,
16167 unsigned int * line_ptr)
16168 {
16169 bfd_boolean found;
16170 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16171 functionname_ptr, line_ptr,
16172 & elf_tdata (abfd)->dwarf2_find_line_info);
16173 return found;
16174 }
16175
16176 /* Find dynamic relocs for H that apply to read-only sections. */
16177
16178 static asection *
16179 readonly_dynrelocs (struct elf_link_hash_entry *h)
16180 {
16181 struct elf_dyn_relocs *p;
16182
16183 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16184 {
16185 asection *s = p->sec->output_section;
16186
16187 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16188 return p->sec;
16189 }
16190 return NULL;
16191 }
16192
16193 /* Adjust a symbol defined by a dynamic object and referenced by a
16194 regular object. The current definition is in some section of the
16195 dynamic object, but we're not including those sections. We have to
16196 change the definition to something the rest of the link can
16197 understand. */
16198
16199 static bfd_boolean
16200 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16201 struct elf_link_hash_entry * h)
16202 {
16203 bfd * dynobj;
16204 asection *s, *srel;
16205 struct elf32_arm_link_hash_entry * eh;
16206 struct elf32_arm_link_hash_table *globals;
16207
16208 globals = elf32_arm_hash_table (info);
16209 if (globals == NULL)
16210 return FALSE;
16211
16212 dynobj = elf_hash_table (info)->dynobj;
16213
16214 /* Make sure we know what is going on here. */
16215 BFD_ASSERT (dynobj != NULL
16216 && (h->needs_plt
16217 || h->type == STT_GNU_IFUNC
16218 || h->is_weakalias
16219 || (h->def_dynamic
16220 && h->ref_regular
16221 && !h->def_regular)));
16222
16223 eh = (struct elf32_arm_link_hash_entry *) h;
16224
16225 /* If this is a function, put it in the procedure linkage table. We
16226 will fill in the contents of the procedure linkage table later,
16227 when we know the address of the .got section. */
16228 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16229 {
16230 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16231 symbol binds locally. */
16232 if (h->plt.refcount <= 0
16233 || (h->type != STT_GNU_IFUNC
16234 && (SYMBOL_CALLS_LOCAL (info, h)
16235 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16236 && h->root.type == bfd_link_hash_undefweak))))
16237 {
16238 /* This case can occur if we saw a PLT32 reloc in an input
16239 file, but the symbol was never referred to by a dynamic
16240 object, or if all references were garbage collected. In
16241 such a case, we don't actually need to build a procedure
16242 linkage table, and we can just do a PC24 reloc instead. */
16243 h->plt.offset = (bfd_vma) -1;
16244 eh->plt.thumb_refcount = 0;
16245 eh->plt.maybe_thumb_refcount = 0;
16246 eh->plt.noncall_refcount = 0;
16247 h->needs_plt = 0;
16248 }
16249
16250 return TRUE;
16251 }
16252 else
16253 {
16254 /* It's possible that we incorrectly decided a .plt reloc was
16255 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16256 in check_relocs. We can't decide accurately between function
16257 and non-function syms in check-relocs; Objects loaded later in
16258 the link may change h->type. So fix it now. */
16259 h->plt.offset = (bfd_vma) -1;
16260 eh->plt.thumb_refcount = 0;
16261 eh->plt.maybe_thumb_refcount = 0;
16262 eh->plt.noncall_refcount = 0;
16263 }
16264
16265 /* If this is a weak symbol, and there is a real definition, the
16266 processor independent code will have arranged for us to see the
16267 real definition first, and we can just use the same value. */
16268 if (h->is_weakalias)
16269 {
16270 struct elf_link_hash_entry *def = weakdef (h);
16271 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16272 h->root.u.def.section = def->root.u.def.section;
16273 h->root.u.def.value = def->root.u.def.value;
16274 return TRUE;
16275 }
16276
16277 /* If there are no non-GOT references, we do not need a copy
16278 relocation. */
16279 if (!h->non_got_ref)
16280 return TRUE;
16281
16282 /* This is a reference to a symbol defined by a dynamic object which
16283 is not a function. */
16284
16285 /* If we are creating a shared library, we must presume that the
16286 only references to the symbol are via the global offset table.
16287 For such cases we need not do anything here; the relocations will
16288 be handled correctly by relocate_section. Relocatable executables
16289 can reference data in shared objects directly, so we don't need to
16290 do anything here. */
16291 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16292 return TRUE;
16293
16294 /* We must allocate the symbol in our .dynbss section, which will
16295 become part of the .bss section of the executable. There will be
16296 an entry for this symbol in the .dynsym section. The dynamic
16297 object will contain position independent code, so all references
16298 from the dynamic object to this symbol will go through the global
16299 offset table. The dynamic linker will use the .dynsym entry to
16300 determine the address it must put in the global offset table, so
16301 both the dynamic object and the regular object will refer to the
16302 same memory location for the variable. */
16303 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16304 linker to copy the initial value out of the dynamic object and into
16305 the runtime process image. We need to remember the offset into the
16306 .rel(a).bss section we are going to use. */
16307 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16308 {
16309 s = globals->root.sdynrelro;
16310 srel = globals->root.sreldynrelro;
16311 }
16312 else
16313 {
16314 s = globals->root.sdynbss;
16315 srel = globals->root.srelbss;
16316 }
16317 if (info->nocopyreloc == 0
16318 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16319 && h->size != 0)
16320 {
16321 elf32_arm_allocate_dynrelocs (info, srel, 1);
16322 h->needs_copy = 1;
16323 }
16324
16325 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16326 }
16327
16328 /* Allocate space in .plt, .got and associated reloc sections for
16329 dynamic relocs. */
16330
16331 static bfd_boolean
16332 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16333 {
16334 struct bfd_link_info *info;
16335 struct elf32_arm_link_hash_table *htab;
16336 struct elf32_arm_link_hash_entry *eh;
16337 struct elf_dyn_relocs *p;
16338
16339 if (h->root.type == bfd_link_hash_indirect)
16340 return TRUE;
16341
16342 eh = (struct elf32_arm_link_hash_entry *) h;
16343
16344 info = (struct bfd_link_info *) inf;
16345 htab = elf32_arm_hash_table (info);
16346 if (htab == NULL)
16347 return FALSE;
16348
16349 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16350 && h->plt.refcount > 0)
16351 {
16352 /* Make sure this symbol is output as a dynamic symbol.
16353 Undefined weak syms won't yet be marked as dynamic. */
16354 if (h->dynindx == -1 && !h->forced_local
16355 && h->root.type == bfd_link_hash_undefweak)
16356 {
16357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16358 return FALSE;
16359 }
16360
16361 /* If the call in the PLT entry binds locally, the associated
16362 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16363 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16364 than the .plt section. */
16365 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16366 {
16367 eh->is_iplt = 1;
16368 if (eh->plt.noncall_refcount == 0
16369 && SYMBOL_REFERENCES_LOCAL (info, h))
16370 /* All non-call references can be resolved directly.
16371 This means that they can (and in some cases, must)
16372 resolve directly to the run-time target, rather than
16373 to the PLT. That in turns means that any .got entry
16374 would be equal to the .igot.plt entry, so there's
16375 no point having both. */
16376 h->got.refcount = 0;
16377 }
16378
16379 if (bfd_link_pic (info)
16380 || eh->is_iplt
16381 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16382 {
16383 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16384
16385 /* If this symbol is not defined in a regular file, and we are
16386 not generating a shared library, then set the symbol to this
16387 location in the .plt. This is required to make function
16388 pointers compare as equal between the normal executable and
16389 the shared library. */
16390 if (! bfd_link_pic (info)
16391 && !h->def_regular)
16392 {
16393 h->root.u.def.section = htab->root.splt;
16394 h->root.u.def.value = h->plt.offset;
16395
16396 /* Make sure the function is not marked as Thumb, in case
16397 it is the target of an ABS32 relocation, which will
16398 point to the PLT entry. */
16399 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16400 }
16401
16402 /* VxWorks executables have a second set of relocations for
16403 each PLT entry. They go in a separate relocation section,
16404 which is processed by the kernel loader. */
16405 if (htab->vxworks_p && !bfd_link_pic (info))
16406 {
16407 /* There is a relocation for the initial PLT entry:
16408 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16409 if (h->plt.offset == htab->plt_header_size)
16410 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16411
16412 /* There are two extra relocations for each subsequent
16413 PLT entry: an R_ARM_32 relocation for the GOT entry,
16414 and an R_ARM_32 relocation for the PLT entry. */
16415 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16416 }
16417 }
16418 else
16419 {
16420 h->plt.offset = (bfd_vma) -1;
16421 h->needs_plt = 0;
16422 }
16423 }
16424 else
16425 {
16426 h->plt.offset = (bfd_vma) -1;
16427 h->needs_plt = 0;
16428 }
16429
16430 eh = (struct elf32_arm_link_hash_entry *) h;
16431 eh->tlsdesc_got = (bfd_vma) -1;
16432
16433 if (h->got.refcount > 0)
16434 {
16435 asection *s;
16436 bfd_boolean dyn;
16437 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16438 int indx;
16439
16440 /* Make sure this symbol is output as a dynamic symbol.
16441 Undefined weak syms won't yet be marked as dynamic. */
16442 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16443 && h->root.type == bfd_link_hash_undefweak)
16444 {
16445 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16446 return FALSE;
16447 }
16448
16449 if (!htab->symbian_p)
16450 {
16451 s = htab->root.sgot;
16452 h->got.offset = s->size;
16453
16454 if (tls_type == GOT_UNKNOWN)
16455 abort ();
16456
16457 if (tls_type == GOT_NORMAL)
16458 /* Non-TLS symbols need one GOT slot. */
16459 s->size += 4;
16460 else
16461 {
16462 if (tls_type & GOT_TLS_GDESC)
16463 {
16464 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16465 eh->tlsdesc_got
16466 = (htab->root.sgotplt->size
16467 - elf32_arm_compute_jump_table_size (htab));
16468 htab->root.sgotplt->size += 8;
16469 h->got.offset = (bfd_vma) -2;
16470 /* plt.got_offset needs to know there's a TLS_DESC
16471 reloc in the middle of .got.plt. */
16472 htab->num_tls_desc++;
16473 }
16474
16475 if (tls_type & GOT_TLS_GD)
16476 {
16477 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16478 consecutive GOT slots. If the symbol is both GD
16479 and GDESC, got.offset may have been
16480 overwritten. */
16481 h->got.offset = s->size;
16482 s->size += 8;
16483 }
16484
16485 if (tls_type & GOT_TLS_IE)
16486 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16487 slot. */
16488 s->size += 4;
16489 }
16490
16491 dyn = htab->root.dynamic_sections_created;
16492
16493 indx = 0;
16494 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16495 bfd_link_pic (info),
16496 h)
16497 && (!bfd_link_pic (info)
16498 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16499 indx = h->dynindx;
16500
16501 if (tls_type != GOT_NORMAL
16502 && (bfd_link_pic (info) || indx != 0)
16503 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16504 || h->root.type != bfd_link_hash_undefweak))
16505 {
16506 if (tls_type & GOT_TLS_IE)
16507 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16508
16509 if (tls_type & GOT_TLS_GD)
16510 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16511
16512 if (tls_type & GOT_TLS_GDESC)
16513 {
16514 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16515 /* GDESC needs a trampoline to jump to. */
16516 htab->tls_trampoline = -1;
16517 }
16518
16519 /* Only GD needs it. GDESC just emits one relocation per
16520 2 entries. */
16521 if ((tls_type & GOT_TLS_GD) && indx != 0)
16522 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16523 }
16524 else if (((indx != -1) || htab->fdpic_p)
16525 && !SYMBOL_REFERENCES_LOCAL (info, h))
16526 {
16527 if (htab->root.dynamic_sections_created)
16528 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16529 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16530 }
16531 else if (h->type == STT_GNU_IFUNC
16532 && eh->plt.noncall_refcount == 0)
16533 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16534 they all resolve dynamically instead. Reserve room for the
16535 GOT entry's R_ARM_IRELATIVE relocation. */
16536 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16537 else if (bfd_link_pic (info)
16538 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16539 || h->root.type != bfd_link_hash_undefweak))
16540 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16541 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16542 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16543 /* Reserve room for rofixup for FDPIC executable. */
16544 /* TLS relocs do not need space since they are completely
16545 resolved. */
16546 htab->srofixup->size += 4;
16547 }
16548 }
16549 else
16550 h->got.offset = (bfd_vma) -1;
16551
16552 /* FDPIC support. */
16553 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16554 {
16555 /* Symbol musn't be exported. */
16556 if (h->dynindx != -1)
16557 abort();
16558
16559 /* We only allocate one function descriptor with its associated relocation. */
16560 if (eh->fdpic_cnts.funcdesc_offset == -1)
16561 {
16562 asection *s = htab->root.sgot;
16563
16564 eh->fdpic_cnts.funcdesc_offset = s->size;
16565 s->size += 8;
16566 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16567 if (bfd_link_pic(info))
16568 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16569 else
16570 htab->srofixup->size += 8;
16571 }
16572 }
16573
16574 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16575 {
16576 asection *s = htab->root.sgot;
16577
16578 if (htab->root.dynamic_sections_created && h->dynindx == -1
16579 && !h->forced_local)
16580 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16581 return FALSE;
16582
16583 if (h->dynindx == -1)
16584 {
16585 /* We only allocate one function descriptor with its associated relocation. q */
16586 if (eh->fdpic_cnts.funcdesc_offset == -1)
16587 {
16588
16589 eh->fdpic_cnts.funcdesc_offset = s->size;
16590 s->size += 8;
16591 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16592 if (bfd_link_pic(info))
16593 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16594 else
16595 htab->srofixup->size += 8;
16596 }
16597 }
16598
16599 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16600 R_ARM_RELATIVE/rofixup relocation on it. */
16601 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16602 s->size += 4;
16603 if (h->dynindx == -1 && !bfd_link_pic(info))
16604 htab->srofixup->size += 4;
16605 else
16606 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16607 }
16608
16609 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16610 {
16611 if (htab->root.dynamic_sections_created && h->dynindx == -1
16612 && !h->forced_local)
16613 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16614 return FALSE;
16615
16616 if (h->dynindx == -1)
16617 {
16618 /* We only allocate one function descriptor with its associated relocation. */
16619 if (eh->fdpic_cnts.funcdesc_offset == -1)
16620 {
16621 asection *s = htab->root.sgot;
16622
16623 eh->fdpic_cnts.funcdesc_offset = s->size;
16624 s->size += 8;
16625 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16626 if (bfd_link_pic(info))
16627 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16628 else
16629 htab->srofixup->size += 8;
16630 }
16631 }
16632 if (h->dynindx == -1 && !bfd_link_pic(info))
16633 {
16634 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16635 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16636 }
16637 else
16638 {
16639 /* Will need one dynamic reloc per reference. will be either
16640 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16641 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16642 eh->fdpic_cnts.funcdesc_cnt);
16643 }
16644 }
16645
16646 /* Allocate stubs for exported Thumb functions on v4t. */
16647 if (!htab->use_blx && h->dynindx != -1
16648 && h->def_regular
16649 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16650 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16651 {
16652 struct elf_link_hash_entry * th;
16653 struct bfd_link_hash_entry * bh;
16654 struct elf_link_hash_entry * myh;
16655 char name[1024];
16656 asection *s;
16657 bh = NULL;
16658 /* Create a new symbol to regist the real location of the function. */
16659 s = h->root.u.def.section;
16660 sprintf (name, "__real_%s", h->root.root.string);
16661 _bfd_generic_link_add_one_symbol (info, s->owner,
16662 name, BSF_GLOBAL, s,
16663 h->root.u.def.value,
16664 NULL, TRUE, FALSE, &bh);
16665
16666 myh = (struct elf_link_hash_entry *) bh;
16667 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16668 myh->forced_local = 1;
16669 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16670 eh->export_glue = myh;
16671 th = record_arm_to_thumb_glue (info, h);
16672 /* Point the symbol at the stub. */
16673 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16674 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16675 h->root.u.def.section = th->root.u.def.section;
16676 h->root.u.def.value = th->root.u.def.value & ~1;
16677 }
16678
16679 if (eh->dyn_relocs == NULL)
16680 return TRUE;
16681
16682 /* In the shared -Bsymbolic case, discard space allocated for
16683 dynamic pc-relative relocs against symbols which turn out to be
16684 defined in regular objects. For the normal shared case, discard
16685 space for pc-relative relocs that have become local due to symbol
16686 visibility changes. */
16687
16688 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16689 {
16690 /* Relocs that use pc_count are PC-relative forms, which will appear
16691 on something like ".long foo - ." or "movw REG, foo - .". We want
16692 calls to protected symbols to resolve directly to the function
16693 rather than going via the plt. If people want function pointer
16694 comparisons to work as expected then they should avoid writing
16695 assembly like ".long foo - .". */
16696 if (SYMBOL_CALLS_LOCAL (info, h))
16697 {
16698 struct elf_dyn_relocs **pp;
16699
16700 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16701 {
16702 p->count -= p->pc_count;
16703 p->pc_count = 0;
16704 if (p->count == 0)
16705 *pp = p->next;
16706 else
16707 pp = &p->next;
16708 }
16709 }
16710
16711 if (htab->vxworks_p)
16712 {
16713 struct elf_dyn_relocs **pp;
16714
16715 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16716 {
16717 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16718 *pp = p->next;
16719 else
16720 pp = &p->next;
16721 }
16722 }
16723
16724 /* Also discard relocs on undefined weak syms with non-default
16725 visibility. */
16726 if (eh->dyn_relocs != NULL
16727 && h->root.type == bfd_link_hash_undefweak)
16728 {
16729 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16730 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16731 eh->dyn_relocs = NULL;
16732
16733 /* Make sure undefined weak symbols are output as a dynamic
16734 symbol in PIEs. */
16735 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16736 && !h->forced_local)
16737 {
16738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16739 return FALSE;
16740 }
16741 }
16742
16743 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16744 && h->root.type == bfd_link_hash_new)
16745 {
16746 /* Output absolute symbols so that we can create relocations
16747 against them. For normal symbols we output a relocation
16748 against the section that contains them. */
16749 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16750 return FALSE;
16751 }
16752
16753 }
16754 else
16755 {
16756 /* For the non-shared case, discard space for relocs against
16757 symbols which turn out to need copy relocs or are not
16758 dynamic. */
16759
16760 if (!h->non_got_ref
16761 && ((h->def_dynamic
16762 && !h->def_regular)
16763 || (htab->root.dynamic_sections_created
16764 && (h->root.type == bfd_link_hash_undefweak
16765 || h->root.type == bfd_link_hash_undefined))))
16766 {
16767 /* Make sure this symbol is output as a dynamic symbol.
16768 Undefined weak syms won't yet be marked as dynamic. */
16769 if (h->dynindx == -1 && !h->forced_local
16770 && h->root.type == bfd_link_hash_undefweak)
16771 {
16772 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16773 return FALSE;
16774 }
16775
16776 /* If that succeeded, we know we'll be keeping all the
16777 relocs. */
16778 if (h->dynindx != -1)
16779 goto keep;
16780 }
16781
16782 eh->dyn_relocs = NULL;
16783
16784 keep: ;
16785 }
16786
16787 /* Finally, allocate space. */
16788 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16789 {
16790 asection *sreloc = elf_section_data (p->sec)->sreloc;
16791
16792 if (h->type == STT_GNU_IFUNC
16793 && eh->plt.noncall_refcount == 0
16794 && SYMBOL_REFERENCES_LOCAL (info, h))
16795 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16796 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16797 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16798 else if (htab->fdpic_p && !bfd_link_pic(info))
16799 htab->srofixup->size += 4 * p->count;
16800 else
16801 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16802 }
16803
16804 return TRUE;
16805 }
16806
16807 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16808 read-only sections. */
16809
16810 static bfd_boolean
16811 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16812 {
16813 asection *sec;
16814
16815 if (h->root.type == bfd_link_hash_indirect)
16816 return TRUE;
16817
16818 sec = readonly_dynrelocs (h);
16819 if (sec != NULL)
16820 {
16821 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16822
16823 info->flags |= DF_TEXTREL;
16824 info->callbacks->minfo
16825 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16826 sec->owner, h->root.root.string, sec);
16827
16828 /* Not an error, just cut short the traversal. */
16829 return FALSE;
16830 }
16831
16832 return TRUE;
16833 }
16834
16835 void
16836 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16837 int byteswap_code)
16838 {
16839 struct elf32_arm_link_hash_table *globals;
16840
16841 globals = elf32_arm_hash_table (info);
16842 if (globals == NULL)
16843 return;
16844
16845 globals->byteswap_code = byteswap_code;
16846 }
16847
16848 /* Set the sizes of the dynamic sections. */
16849
16850 static bfd_boolean
16851 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16852 struct bfd_link_info * info)
16853 {
16854 bfd * dynobj;
16855 asection * s;
16856 bfd_boolean plt;
16857 bfd_boolean relocs;
16858 bfd *ibfd;
16859 struct elf32_arm_link_hash_table *htab;
16860
16861 htab = elf32_arm_hash_table (info);
16862 if (htab == NULL)
16863 return FALSE;
16864
16865 dynobj = elf_hash_table (info)->dynobj;
16866 BFD_ASSERT (dynobj != NULL);
16867 check_use_blx (htab);
16868
16869 if (elf_hash_table (info)->dynamic_sections_created)
16870 {
16871 /* Set the contents of the .interp section to the interpreter. */
16872 if (bfd_link_executable (info) && !info->nointerp)
16873 {
16874 s = bfd_get_linker_section (dynobj, ".interp");
16875 BFD_ASSERT (s != NULL);
16876 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16877 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16878 }
16879 }
16880
16881 /* Set up .got offsets for local syms, and space for local dynamic
16882 relocs. */
16883 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16884 {
16885 bfd_signed_vma *local_got;
16886 bfd_signed_vma *end_local_got;
16887 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16888 char *local_tls_type;
16889 bfd_vma *local_tlsdesc_gotent;
16890 bfd_size_type locsymcount;
16891 Elf_Internal_Shdr *symtab_hdr;
16892 asection *srel;
16893 bfd_boolean is_vxworks = htab->vxworks_p;
16894 unsigned int symndx;
16895 struct fdpic_local *local_fdpic_cnts;
16896
16897 if (! is_arm_elf (ibfd))
16898 continue;
16899
16900 for (s = ibfd->sections; s != NULL; s = s->next)
16901 {
16902 struct elf_dyn_relocs *p;
16903
16904 for (p = (struct elf_dyn_relocs *)
16905 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16906 {
16907 if (!bfd_is_abs_section (p->sec)
16908 && bfd_is_abs_section (p->sec->output_section))
16909 {
16910 /* Input section has been discarded, either because
16911 it is a copy of a linkonce section or due to
16912 linker script /DISCARD/, so we'll be discarding
16913 the relocs too. */
16914 }
16915 else if (is_vxworks
16916 && strcmp (p->sec->output_section->name,
16917 ".tls_vars") == 0)
16918 {
16919 /* Relocations in vxworks .tls_vars sections are
16920 handled specially by the loader. */
16921 }
16922 else if (p->count != 0)
16923 {
16924 srel = elf_section_data (p->sec)->sreloc;
16925 if (htab->fdpic_p && !bfd_link_pic(info))
16926 htab->srofixup->size += 4 * p->count;
16927 else
16928 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16929 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16930 info->flags |= DF_TEXTREL;
16931 }
16932 }
16933 }
16934
16935 local_got = elf_local_got_refcounts (ibfd);
16936 if (!local_got)
16937 continue;
16938
16939 symtab_hdr = & elf_symtab_hdr (ibfd);
16940 locsymcount = symtab_hdr->sh_info;
16941 end_local_got = local_got + locsymcount;
16942 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16943 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16944 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16945 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16946 symndx = 0;
16947 s = htab->root.sgot;
16948 srel = htab->root.srelgot;
16949 for (; local_got < end_local_got;
16950 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16951 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16952 {
16953 *local_tlsdesc_gotent = (bfd_vma) -1;
16954 local_iplt = *local_iplt_ptr;
16955
16956 /* FDPIC support. */
16957 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16958 {
16959 if (local_fdpic_cnts->funcdesc_offset == -1)
16960 {
16961 local_fdpic_cnts->funcdesc_offset = s->size;
16962 s->size += 8;
16963
16964 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16965 if (bfd_link_pic(info))
16966 elf32_arm_allocate_dynrelocs (info, srel, 1);
16967 else
16968 htab->srofixup->size += 8;
16969 }
16970 }
16971
16972 if (local_fdpic_cnts->funcdesc_cnt > 0)
16973 {
16974 if (local_fdpic_cnts->funcdesc_offset == -1)
16975 {
16976 local_fdpic_cnts->funcdesc_offset = s->size;
16977 s->size += 8;
16978
16979 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16980 if (bfd_link_pic(info))
16981 elf32_arm_allocate_dynrelocs (info, srel, 1);
16982 else
16983 htab->srofixup->size += 8;
16984 }
16985
16986 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16987 if (bfd_link_pic(info))
16988 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16989 else
16990 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16991 }
16992
16993 if (local_iplt != NULL)
16994 {
16995 struct elf_dyn_relocs *p;
16996
16997 if (local_iplt->root.refcount > 0)
16998 {
16999 elf32_arm_allocate_plt_entry (info, TRUE,
17000 &local_iplt->root,
17001 &local_iplt->arm);
17002 if (local_iplt->arm.noncall_refcount == 0)
17003 /* All references to the PLT are calls, so all
17004 non-call references can resolve directly to the
17005 run-time target. This means that the .got entry
17006 would be the same as the .igot.plt entry, so there's
17007 no point creating both. */
17008 *local_got = 0;
17009 }
17010 else
17011 {
17012 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
17013 local_iplt->root.offset = (bfd_vma) -1;
17014 }
17015
17016 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
17017 {
17018 asection *psrel;
17019
17020 psrel = elf_section_data (p->sec)->sreloc;
17021 if (local_iplt->arm.noncall_refcount == 0)
17022 elf32_arm_allocate_irelocs (info, psrel, p->count);
17023 else
17024 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
17025 }
17026 }
17027 if (*local_got > 0)
17028 {
17029 Elf_Internal_Sym *isym;
17030
17031 *local_got = s->size;
17032 if (*local_tls_type & GOT_TLS_GD)
17033 /* TLS_GD relocs need an 8-byte structure in the GOT. */
17034 s->size += 8;
17035 if (*local_tls_type & GOT_TLS_GDESC)
17036 {
17037 *local_tlsdesc_gotent = htab->root.sgotplt->size
17038 - elf32_arm_compute_jump_table_size (htab);
17039 htab->root.sgotplt->size += 8;
17040 *local_got = (bfd_vma) -2;
17041 /* plt.got_offset needs to know there's a TLS_DESC
17042 reloc in the middle of .got.plt. */
17043 htab->num_tls_desc++;
17044 }
17045 if (*local_tls_type & GOT_TLS_IE)
17046 s->size += 4;
17047
17048 if (*local_tls_type & GOT_NORMAL)
17049 {
17050 /* If the symbol is both GD and GDESC, *local_got
17051 may have been overwritten. */
17052 *local_got = s->size;
17053 s->size += 4;
17054 }
17055
17056 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17057 if (isym == NULL)
17058 return FALSE;
17059
17060 /* If all references to an STT_GNU_IFUNC PLT are calls,
17061 then all non-call references, including this GOT entry,
17062 resolve directly to the run-time target. */
17063 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17064 && (local_iplt == NULL
17065 || local_iplt->arm.noncall_refcount == 0))
17066 elf32_arm_allocate_irelocs (info, srel, 1);
17067 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17068 {
17069 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17070 elf32_arm_allocate_dynrelocs (info, srel, 1);
17071 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17072 htab->srofixup->size += 4;
17073
17074 if ((bfd_link_pic (info) || htab->fdpic_p)
17075 && *local_tls_type & GOT_TLS_GDESC)
17076 {
17077 elf32_arm_allocate_dynrelocs (info,
17078 htab->root.srelplt, 1);
17079 htab->tls_trampoline = -1;
17080 }
17081 }
17082 }
17083 else
17084 *local_got = (bfd_vma) -1;
17085 }
17086 }
17087
17088 if (htab->tls_ldm_got.refcount > 0)
17089 {
17090 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17091 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17092 htab->tls_ldm_got.offset = htab->root.sgot->size;
17093 htab->root.sgot->size += 8;
17094 if (bfd_link_pic (info))
17095 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17096 }
17097 else
17098 htab->tls_ldm_got.offset = -1;
17099
17100 /* At the very end of the .rofixup section is a pointer to the GOT,
17101 reserve space for it. */
17102 if (htab->fdpic_p && htab->srofixup != NULL)
17103 htab->srofixup->size += 4;
17104
17105 /* Allocate global sym .plt and .got entries, and space for global
17106 sym dynamic relocs. */
17107 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17108
17109 /* Here we rummage through the found bfds to collect glue information. */
17110 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17111 {
17112 if (! is_arm_elf (ibfd))
17113 continue;
17114
17115 /* Initialise mapping tables for code/data. */
17116 bfd_elf32_arm_init_maps (ibfd);
17117
17118 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17119 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17120 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17121 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17122 }
17123
17124 /* Allocate space for the glue sections now that we've sized them. */
17125 bfd_elf32_arm_allocate_interworking_sections (info);
17126
17127 /* For every jump slot reserved in the sgotplt, reloc_count is
17128 incremented. However, when we reserve space for TLS descriptors,
17129 it's not incremented, so in order to compute the space reserved
17130 for them, it suffices to multiply the reloc count by the jump
17131 slot size. */
17132 if (htab->root.srelplt)
17133 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17134
17135 if (htab->tls_trampoline)
17136 {
17137 if (htab->root.splt->size == 0)
17138 htab->root.splt->size += htab->plt_header_size;
17139
17140 htab->tls_trampoline = htab->root.splt->size;
17141 htab->root.splt->size += htab->plt_entry_size;
17142
17143 /* If we're not using lazy TLS relocations, don't generate the
17144 PLT and GOT entries they require. */
17145 if (!(info->flags & DF_BIND_NOW))
17146 {
17147 htab->dt_tlsdesc_got = htab->root.sgot->size;
17148 htab->root.sgot->size += 4;
17149
17150 htab->dt_tlsdesc_plt = htab->root.splt->size;
17151 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17152 }
17153 }
17154
17155 /* The check_relocs and adjust_dynamic_symbol entry points have
17156 determined the sizes of the various dynamic sections. Allocate
17157 memory for them. */
17158 plt = FALSE;
17159 relocs = FALSE;
17160 for (s = dynobj->sections; s != NULL; s = s->next)
17161 {
17162 const char * name;
17163
17164 if ((s->flags & SEC_LINKER_CREATED) == 0)
17165 continue;
17166
17167 /* It's OK to base decisions on the section name, because none
17168 of the dynobj section names depend upon the input files. */
17169 name = bfd_get_section_name (dynobj, s);
17170
17171 if (s == htab->root.splt)
17172 {
17173 /* Remember whether there is a PLT. */
17174 plt = s->size != 0;
17175 }
17176 else if (CONST_STRNEQ (name, ".rel"))
17177 {
17178 if (s->size != 0)
17179 {
17180 /* Remember whether there are any reloc sections other
17181 than .rel(a).plt and .rela.plt.unloaded. */
17182 if (s != htab->root.srelplt && s != htab->srelplt2)
17183 relocs = TRUE;
17184
17185 /* We use the reloc_count field as a counter if we need
17186 to copy relocs into the output file. */
17187 s->reloc_count = 0;
17188 }
17189 }
17190 else if (s != htab->root.sgot
17191 && s != htab->root.sgotplt
17192 && s != htab->root.iplt
17193 && s != htab->root.igotplt
17194 && s != htab->root.sdynbss
17195 && s != htab->root.sdynrelro
17196 && s != htab->srofixup)
17197 {
17198 /* It's not one of our sections, so don't allocate space. */
17199 continue;
17200 }
17201
17202 if (s->size == 0)
17203 {
17204 /* If we don't need this section, strip it from the
17205 output file. This is mostly to handle .rel(a).bss and
17206 .rel(a).plt. We must create both sections in
17207 create_dynamic_sections, because they must be created
17208 before the linker maps input sections to output
17209 sections. The linker does that before
17210 adjust_dynamic_symbol is called, and it is that
17211 function which decides whether anything needs to go
17212 into these sections. */
17213 s->flags |= SEC_EXCLUDE;
17214 continue;
17215 }
17216
17217 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17218 continue;
17219
17220 /* Allocate memory for the section contents. */
17221 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17222 if (s->contents == NULL)
17223 return FALSE;
17224 }
17225
17226 if (elf_hash_table (info)->dynamic_sections_created)
17227 {
17228 /* Add some entries to the .dynamic section. We fill in the
17229 values later, in elf32_arm_finish_dynamic_sections, but we
17230 must add the entries now so that we get the correct size for
17231 the .dynamic section. The DT_DEBUG entry is filled in by the
17232 dynamic linker and used by the debugger. */
17233 #define add_dynamic_entry(TAG, VAL) \
17234 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17235
17236 if (bfd_link_executable (info))
17237 {
17238 if (!add_dynamic_entry (DT_DEBUG, 0))
17239 return FALSE;
17240 }
17241
17242 if (plt)
17243 {
17244 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17245 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17246 || !add_dynamic_entry (DT_PLTREL,
17247 htab->use_rel ? DT_REL : DT_RELA)
17248 || !add_dynamic_entry (DT_JMPREL, 0))
17249 return FALSE;
17250
17251 if (htab->dt_tlsdesc_plt
17252 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17253 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17254 return FALSE;
17255 }
17256
17257 if (relocs)
17258 {
17259 if (htab->use_rel)
17260 {
17261 if (!add_dynamic_entry (DT_REL, 0)
17262 || !add_dynamic_entry (DT_RELSZ, 0)
17263 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17264 return FALSE;
17265 }
17266 else
17267 {
17268 if (!add_dynamic_entry (DT_RELA, 0)
17269 || !add_dynamic_entry (DT_RELASZ, 0)
17270 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17271 return FALSE;
17272 }
17273 }
17274
17275 /* If any dynamic relocs apply to a read-only section,
17276 then we need a DT_TEXTREL entry. */
17277 if ((info->flags & DF_TEXTREL) == 0)
17278 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17279
17280 if ((info->flags & DF_TEXTREL) != 0)
17281 {
17282 if (!add_dynamic_entry (DT_TEXTREL, 0))
17283 return FALSE;
17284 }
17285 if (htab->vxworks_p
17286 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17287 return FALSE;
17288 }
17289 #undef add_dynamic_entry
17290
17291 return TRUE;
17292 }
17293
17294 /* Size sections even though they're not dynamic. We use it to setup
17295 _TLS_MODULE_BASE_, if needed. */
17296
17297 static bfd_boolean
17298 elf32_arm_always_size_sections (bfd *output_bfd,
17299 struct bfd_link_info *info)
17300 {
17301 asection *tls_sec;
17302 struct elf32_arm_link_hash_table *htab;
17303
17304 htab = elf32_arm_hash_table (info);
17305
17306 if (bfd_link_relocatable (info))
17307 return TRUE;
17308
17309 tls_sec = elf_hash_table (info)->tls_sec;
17310
17311 if (tls_sec)
17312 {
17313 struct elf_link_hash_entry *tlsbase;
17314
17315 tlsbase = elf_link_hash_lookup
17316 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17317
17318 if (tlsbase)
17319 {
17320 struct bfd_link_hash_entry *bh = NULL;
17321 const struct elf_backend_data *bed
17322 = get_elf_backend_data (output_bfd);
17323
17324 if (!(_bfd_generic_link_add_one_symbol
17325 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17326 tls_sec, 0, NULL, FALSE,
17327 bed->collect, &bh)))
17328 return FALSE;
17329
17330 tlsbase->type = STT_TLS;
17331 tlsbase = (struct elf_link_hash_entry *)bh;
17332 tlsbase->def_regular = 1;
17333 tlsbase->other = STV_HIDDEN;
17334 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17335 }
17336 }
17337
17338 if (htab->fdpic_p && !bfd_link_relocatable (info)
17339 && !bfd_elf_stack_segment_size (output_bfd, info,
17340 "__stacksize", DEFAULT_STACK_SIZE))
17341 return FALSE;
17342
17343 return TRUE;
17344 }
17345
17346 /* Finish up dynamic symbol handling. We set the contents of various
17347 dynamic sections here. */
17348
17349 static bfd_boolean
17350 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17351 struct bfd_link_info * info,
17352 struct elf_link_hash_entry * h,
17353 Elf_Internal_Sym * sym)
17354 {
17355 struct elf32_arm_link_hash_table *htab;
17356 struct elf32_arm_link_hash_entry *eh;
17357
17358 htab = elf32_arm_hash_table (info);
17359 if (htab == NULL)
17360 return FALSE;
17361
17362 eh = (struct elf32_arm_link_hash_entry *) h;
17363
17364 if (h->plt.offset != (bfd_vma) -1)
17365 {
17366 if (!eh->is_iplt)
17367 {
17368 BFD_ASSERT (h->dynindx != -1);
17369 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17370 h->dynindx, 0))
17371 return FALSE;
17372 }
17373
17374 if (!h->def_regular)
17375 {
17376 /* Mark the symbol as undefined, rather than as defined in
17377 the .plt section. */
17378 sym->st_shndx = SHN_UNDEF;
17379 /* If the symbol is weak we need to clear the value.
17380 Otherwise, the PLT entry would provide a definition for
17381 the symbol even if the symbol wasn't defined anywhere,
17382 and so the symbol would never be NULL. Leave the value if
17383 there were any relocations where pointer equality matters
17384 (this is a clue for the dynamic linker, to make function
17385 pointer comparisons work between an application and shared
17386 library). */
17387 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17388 sym->st_value = 0;
17389 }
17390 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17391 {
17392 /* At least one non-call relocation references this .iplt entry,
17393 so the .iplt entry is the function's canonical address. */
17394 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17395 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17396 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17397 (output_bfd, htab->root.iplt->output_section));
17398 sym->st_value = (h->plt.offset
17399 + htab->root.iplt->output_section->vma
17400 + htab->root.iplt->output_offset);
17401 }
17402 }
17403
17404 if (h->needs_copy)
17405 {
17406 asection * s;
17407 Elf_Internal_Rela rel;
17408
17409 /* This symbol needs a copy reloc. Set it up. */
17410 BFD_ASSERT (h->dynindx != -1
17411 && (h->root.type == bfd_link_hash_defined
17412 || h->root.type == bfd_link_hash_defweak));
17413
17414 rel.r_addend = 0;
17415 rel.r_offset = (h->root.u.def.value
17416 + h->root.u.def.section->output_section->vma
17417 + h->root.u.def.section->output_offset);
17418 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17419 if (h->root.u.def.section == htab->root.sdynrelro)
17420 s = htab->root.sreldynrelro;
17421 else
17422 s = htab->root.srelbss;
17423 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17424 }
17425
17426 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17427 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17428 it is relative to the ".got" section. */
17429 if (h == htab->root.hdynamic
17430 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17431 sym->st_shndx = SHN_ABS;
17432
17433 return TRUE;
17434 }
17435
17436 static void
17437 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17438 void *contents,
17439 const unsigned long *template, unsigned count)
17440 {
17441 unsigned ix;
17442
17443 for (ix = 0; ix != count; ix++)
17444 {
17445 unsigned long insn = template[ix];
17446
17447 /* Emit mov pc,rx if bx is not permitted. */
17448 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17449 insn = (insn & 0xf000000f) | 0x01a0f000;
17450 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17451 }
17452 }
17453
17454 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17455 other variants, NaCl needs this entry in a static executable's
17456 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17457 zero. For .iplt really only the last bundle is useful, and .iplt
17458 could have a shorter first entry, with each individual PLT entry's
17459 relative branch calculated differently so it targets the last
17460 bundle instead of the instruction before it (labelled .Lplt_tail
17461 above). But it's simpler to keep the size and layout of PLT0
17462 consistent with the dynamic case, at the cost of some dead code at
17463 the start of .iplt and the one dead store to the stack at the start
17464 of .Lplt_tail. */
17465 static void
17466 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17467 asection *plt, bfd_vma got_displacement)
17468 {
17469 unsigned int i;
17470
17471 put_arm_insn (htab, output_bfd,
17472 elf32_arm_nacl_plt0_entry[0]
17473 | arm_movw_immediate (got_displacement),
17474 plt->contents + 0);
17475 put_arm_insn (htab, output_bfd,
17476 elf32_arm_nacl_plt0_entry[1]
17477 | arm_movt_immediate (got_displacement),
17478 plt->contents + 4);
17479
17480 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17481 put_arm_insn (htab, output_bfd,
17482 elf32_arm_nacl_plt0_entry[i],
17483 plt->contents + (i * 4));
17484 }
17485
17486 /* Finish up the dynamic sections. */
17487
17488 static bfd_boolean
17489 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17490 {
17491 bfd * dynobj;
17492 asection * sgot;
17493 asection * sdyn;
17494 struct elf32_arm_link_hash_table *htab;
17495
17496 htab = elf32_arm_hash_table (info);
17497 if (htab == NULL)
17498 return FALSE;
17499
17500 dynobj = elf_hash_table (info)->dynobj;
17501
17502 sgot = htab->root.sgotplt;
17503 /* A broken linker script might have discarded the dynamic sections.
17504 Catch this here so that we do not seg-fault later on. */
17505 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17506 return FALSE;
17507 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17508
17509 if (elf_hash_table (info)->dynamic_sections_created)
17510 {
17511 asection *splt;
17512 Elf32_External_Dyn *dyncon, *dynconend;
17513
17514 splt = htab->root.splt;
17515 BFD_ASSERT (splt != NULL && sdyn != NULL);
17516 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17517
17518 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17519 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17520
17521 for (; dyncon < dynconend; dyncon++)
17522 {
17523 Elf_Internal_Dyn dyn;
17524 const char * name;
17525 asection * s;
17526
17527 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17528
17529 switch (dyn.d_tag)
17530 {
17531 unsigned int type;
17532
17533 default:
17534 if (htab->vxworks_p
17535 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17536 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17537 break;
17538
17539 case DT_HASH:
17540 name = ".hash";
17541 goto get_vma_if_bpabi;
17542 case DT_STRTAB:
17543 name = ".dynstr";
17544 goto get_vma_if_bpabi;
17545 case DT_SYMTAB:
17546 name = ".dynsym";
17547 goto get_vma_if_bpabi;
17548 case DT_VERSYM:
17549 name = ".gnu.version";
17550 goto get_vma_if_bpabi;
17551 case DT_VERDEF:
17552 name = ".gnu.version_d";
17553 goto get_vma_if_bpabi;
17554 case DT_VERNEED:
17555 name = ".gnu.version_r";
17556 goto get_vma_if_bpabi;
17557
17558 case DT_PLTGOT:
17559 name = htab->symbian_p ? ".got" : ".got.plt";
17560 goto get_vma;
17561 case DT_JMPREL:
17562 name = RELOC_SECTION (htab, ".plt");
17563 get_vma:
17564 s = bfd_get_linker_section (dynobj, name);
17565 if (s == NULL)
17566 {
17567 _bfd_error_handler
17568 (_("could not find section %s"), name);
17569 bfd_set_error (bfd_error_invalid_operation);
17570 return FALSE;
17571 }
17572 if (!htab->symbian_p)
17573 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17574 else
17575 /* In the BPABI, tags in the PT_DYNAMIC section point
17576 at the file offset, not the memory address, for the
17577 convenience of the post linker. */
17578 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17579 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17580 break;
17581
17582 get_vma_if_bpabi:
17583 if (htab->symbian_p)
17584 goto get_vma;
17585 break;
17586
17587 case DT_PLTRELSZ:
17588 s = htab->root.srelplt;
17589 BFD_ASSERT (s != NULL);
17590 dyn.d_un.d_val = s->size;
17591 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17592 break;
17593
17594 case DT_RELSZ:
17595 case DT_RELASZ:
17596 case DT_REL:
17597 case DT_RELA:
17598 /* In the BPABI, the DT_REL tag must point at the file
17599 offset, not the VMA, of the first relocation
17600 section. So, we use code similar to that in
17601 elflink.c, but do not check for SHF_ALLOC on the
17602 relocation section, since relocation sections are
17603 never allocated under the BPABI. PLT relocs are also
17604 included. */
17605 if (htab->symbian_p)
17606 {
17607 unsigned int i;
17608 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17609 ? SHT_REL : SHT_RELA);
17610 dyn.d_un.d_val = 0;
17611 for (i = 1; i < elf_numsections (output_bfd); i++)
17612 {
17613 Elf_Internal_Shdr *hdr
17614 = elf_elfsections (output_bfd)[i];
17615 if (hdr->sh_type == type)
17616 {
17617 if (dyn.d_tag == DT_RELSZ
17618 || dyn.d_tag == DT_RELASZ)
17619 dyn.d_un.d_val += hdr->sh_size;
17620 else if ((ufile_ptr) hdr->sh_offset
17621 <= dyn.d_un.d_val - 1)
17622 dyn.d_un.d_val = hdr->sh_offset;
17623 }
17624 }
17625 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17626 }
17627 break;
17628
17629 case DT_TLSDESC_PLT:
17630 s = htab->root.splt;
17631 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17632 + htab->dt_tlsdesc_plt);
17633 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17634 break;
17635
17636 case DT_TLSDESC_GOT:
17637 s = htab->root.sgot;
17638 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17639 + htab->dt_tlsdesc_got);
17640 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17641 break;
17642
17643 /* Set the bottom bit of DT_INIT/FINI if the
17644 corresponding function is Thumb. */
17645 case DT_INIT:
17646 name = info->init_function;
17647 goto get_sym;
17648 case DT_FINI:
17649 name = info->fini_function;
17650 get_sym:
17651 /* If it wasn't set by elf_bfd_final_link
17652 then there is nothing to adjust. */
17653 if (dyn.d_un.d_val != 0)
17654 {
17655 struct elf_link_hash_entry * eh;
17656
17657 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17658 FALSE, FALSE, TRUE);
17659 if (eh != NULL
17660 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17661 == ST_BRANCH_TO_THUMB)
17662 {
17663 dyn.d_un.d_val |= 1;
17664 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17665 }
17666 }
17667 break;
17668 }
17669 }
17670
17671 /* Fill in the first entry in the procedure linkage table. */
17672 if (splt->size > 0 && htab->plt_header_size)
17673 {
17674 const bfd_vma *plt0_entry;
17675 bfd_vma got_address, plt_address, got_displacement;
17676
17677 /* Calculate the addresses of the GOT and PLT. */
17678 got_address = sgot->output_section->vma + sgot->output_offset;
17679 plt_address = splt->output_section->vma + splt->output_offset;
17680
17681 if (htab->vxworks_p)
17682 {
17683 /* The VxWorks GOT is relocated by the dynamic linker.
17684 Therefore, we must emit relocations rather than simply
17685 computing the values now. */
17686 Elf_Internal_Rela rel;
17687
17688 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17689 put_arm_insn (htab, output_bfd, plt0_entry[0],
17690 splt->contents + 0);
17691 put_arm_insn (htab, output_bfd, plt0_entry[1],
17692 splt->contents + 4);
17693 put_arm_insn (htab, output_bfd, plt0_entry[2],
17694 splt->contents + 8);
17695 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17696
17697 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17698 rel.r_offset = plt_address + 12;
17699 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17700 rel.r_addend = 0;
17701 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17702 htab->srelplt2->contents);
17703 }
17704 else if (htab->nacl_p)
17705 arm_nacl_put_plt0 (htab, output_bfd, splt,
17706 got_address + 8 - (plt_address + 16));
17707 else if (using_thumb_only (htab))
17708 {
17709 got_displacement = got_address - (plt_address + 12);
17710
17711 plt0_entry = elf32_thumb2_plt0_entry;
17712 put_arm_insn (htab, output_bfd, plt0_entry[0],
17713 splt->contents + 0);
17714 put_arm_insn (htab, output_bfd, plt0_entry[1],
17715 splt->contents + 4);
17716 put_arm_insn (htab, output_bfd, plt0_entry[2],
17717 splt->contents + 8);
17718
17719 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17720 }
17721 else
17722 {
17723 got_displacement = got_address - (plt_address + 16);
17724
17725 plt0_entry = elf32_arm_plt0_entry;
17726 put_arm_insn (htab, output_bfd, plt0_entry[0],
17727 splt->contents + 0);
17728 put_arm_insn (htab, output_bfd, plt0_entry[1],
17729 splt->contents + 4);
17730 put_arm_insn (htab, output_bfd, plt0_entry[2],
17731 splt->contents + 8);
17732 put_arm_insn (htab, output_bfd, plt0_entry[3],
17733 splt->contents + 12);
17734
17735 #ifdef FOUR_WORD_PLT
17736 /* The displacement value goes in the otherwise-unused
17737 last word of the second entry. */
17738 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17739 #else
17740 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17741 #endif
17742 }
17743 }
17744
17745 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17746 really seem like the right value. */
17747 if (splt->output_section->owner == output_bfd)
17748 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17749
17750 if (htab->dt_tlsdesc_plt)
17751 {
17752 bfd_vma got_address
17753 = sgot->output_section->vma + sgot->output_offset;
17754 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17755 + htab->root.sgot->output_offset);
17756 bfd_vma plt_address
17757 = splt->output_section->vma + splt->output_offset;
17758
17759 arm_put_trampoline (htab, output_bfd,
17760 splt->contents + htab->dt_tlsdesc_plt,
17761 dl_tlsdesc_lazy_trampoline, 6);
17762
17763 bfd_put_32 (output_bfd,
17764 gotplt_address + htab->dt_tlsdesc_got
17765 - (plt_address + htab->dt_tlsdesc_plt)
17766 - dl_tlsdesc_lazy_trampoline[6],
17767 splt->contents + htab->dt_tlsdesc_plt + 24);
17768 bfd_put_32 (output_bfd,
17769 got_address - (plt_address + htab->dt_tlsdesc_plt)
17770 - dl_tlsdesc_lazy_trampoline[7],
17771 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17772 }
17773
17774 if (htab->tls_trampoline)
17775 {
17776 arm_put_trampoline (htab, output_bfd,
17777 splt->contents + htab->tls_trampoline,
17778 tls_trampoline, 3);
17779 #ifdef FOUR_WORD_PLT
17780 bfd_put_32 (output_bfd, 0x00000000,
17781 splt->contents + htab->tls_trampoline + 12);
17782 #endif
17783 }
17784
17785 if (htab->vxworks_p
17786 && !bfd_link_pic (info)
17787 && htab->root.splt->size > 0)
17788 {
17789 /* Correct the .rel(a).plt.unloaded relocations. They will have
17790 incorrect symbol indexes. */
17791 int num_plts;
17792 unsigned char *p;
17793
17794 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17795 / htab->plt_entry_size);
17796 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17797
17798 for (; num_plts; num_plts--)
17799 {
17800 Elf_Internal_Rela rel;
17801
17802 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17803 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17804 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17805 p += RELOC_SIZE (htab);
17806
17807 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17808 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17809 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17810 p += RELOC_SIZE (htab);
17811 }
17812 }
17813 }
17814
17815 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17816 /* NaCl uses a special first entry in .iplt too. */
17817 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17818
17819 /* Fill in the first three entries in the global offset table. */
17820 if (sgot)
17821 {
17822 if (sgot->size > 0)
17823 {
17824 if (sdyn == NULL)
17825 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17826 else
17827 bfd_put_32 (output_bfd,
17828 sdyn->output_section->vma + sdyn->output_offset,
17829 sgot->contents);
17830 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17831 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17832 }
17833
17834 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17835 }
17836
17837 /* At the very end of the .rofixup section is a pointer to the GOT. */
17838 if (htab->fdpic_p && htab->srofixup != NULL)
17839 {
17840 struct elf_link_hash_entry *hgot = htab->root.hgot;
17841
17842 bfd_vma got_value = hgot->root.u.def.value
17843 + hgot->root.u.def.section->output_section->vma
17844 + hgot->root.u.def.section->output_offset;
17845
17846 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17847
17848 /* Make sure we allocated and generated the same number of fixups. */
17849 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17850 }
17851
17852 return TRUE;
17853 }
17854
17855 static void
17856 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17857 {
17858 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17859 struct elf32_arm_link_hash_table *globals;
17860 struct elf_segment_map *m;
17861
17862 i_ehdrp = elf_elfheader (abfd);
17863
17864 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17865 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17866 else
17867 _bfd_elf_post_process_headers (abfd, link_info);
17868 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17869
17870 if (link_info)
17871 {
17872 globals = elf32_arm_hash_table (link_info);
17873 if (globals != NULL && globals->byteswap_code)
17874 i_ehdrp->e_flags |= EF_ARM_BE8;
17875
17876 if (globals->fdpic_p)
17877 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17878 }
17879
17880 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17881 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17882 {
17883 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17884 if (abi == AEABI_VFP_args_vfp)
17885 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17886 else
17887 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17888 }
17889
17890 /* Scan segment to set p_flags attribute if it contains only sections with
17891 SHF_ARM_PURECODE flag. */
17892 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17893 {
17894 unsigned int j;
17895
17896 if (m->count == 0)
17897 continue;
17898 for (j = 0; j < m->count; j++)
17899 {
17900 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17901 break;
17902 }
17903 if (j == m->count)
17904 {
17905 m->p_flags = PF_X;
17906 m->p_flags_valid = 1;
17907 }
17908 }
17909 }
17910
17911 static enum elf_reloc_type_class
17912 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17913 const asection *rel_sec ATTRIBUTE_UNUSED,
17914 const Elf_Internal_Rela *rela)
17915 {
17916 switch ((int) ELF32_R_TYPE (rela->r_info))
17917 {
17918 case R_ARM_RELATIVE:
17919 return reloc_class_relative;
17920 case R_ARM_JUMP_SLOT:
17921 return reloc_class_plt;
17922 case R_ARM_COPY:
17923 return reloc_class_copy;
17924 case R_ARM_IRELATIVE:
17925 return reloc_class_ifunc;
17926 default:
17927 return reloc_class_normal;
17928 }
17929 }
17930
17931 static void
17932 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
17933 {
17934 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17935 }
17936
17937 /* Return TRUE if this is an unwinding table entry. */
17938
17939 static bfd_boolean
17940 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17941 {
17942 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17943 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17944 }
17945
17946
17947 /* Set the type and flags for an ARM section. We do this by
17948 the section name, which is a hack, but ought to work. */
17949
17950 static bfd_boolean
17951 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17952 {
17953 const char * name;
17954
17955 name = bfd_get_section_name (abfd, sec);
17956
17957 if (is_arm_elf_unwind_section_name (abfd, name))
17958 {
17959 hdr->sh_type = SHT_ARM_EXIDX;
17960 hdr->sh_flags |= SHF_LINK_ORDER;
17961 }
17962
17963 if (sec->flags & SEC_ELF_PURECODE)
17964 hdr->sh_flags |= SHF_ARM_PURECODE;
17965
17966 return TRUE;
17967 }
17968
17969 /* Handle an ARM specific section when reading an object file. This is
17970 called when bfd_section_from_shdr finds a section with an unknown
17971 type. */
17972
17973 static bfd_boolean
17974 elf32_arm_section_from_shdr (bfd *abfd,
17975 Elf_Internal_Shdr * hdr,
17976 const char *name,
17977 int shindex)
17978 {
17979 /* There ought to be a place to keep ELF backend specific flags, but
17980 at the moment there isn't one. We just keep track of the
17981 sections by their name, instead. Fortunately, the ABI gives
17982 names for all the ARM specific sections, so we will probably get
17983 away with this. */
17984 switch (hdr->sh_type)
17985 {
17986 case SHT_ARM_EXIDX:
17987 case SHT_ARM_PREEMPTMAP:
17988 case SHT_ARM_ATTRIBUTES:
17989 break;
17990
17991 default:
17992 return FALSE;
17993 }
17994
17995 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17996 return FALSE;
17997
17998 return TRUE;
17999 }
18000
18001 static _arm_elf_section_data *
18002 get_arm_elf_section_data (asection * sec)
18003 {
18004 if (sec && sec->owner && is_arm_elf (sec->owner))
18005 return elf32_arm_section_data (sec);
18006 else
18007 return NULL;
18008 }
18009
18010 typedef struct
18011 {
18012 void *flaginfo;
18013 struct bfd_link_info *info;
18014 asection *sec;
18015 int sec_shndx;
18016 int (*func) (void *, const char *, Elf_Internal_Sym *,
18017 asection *, struct elf_link_hash_entry *);
18018 } output_arch_syminfo;
18019
18020 enum map_symbol_type
18021 {
18022 ARM_MAP_ARM,
18023 ARM_MAP_THUMB,
18024 ARM_MAP_DATA
18025 };
18026
18027
18028 /* Output a single mapping symbol. */
18029
18030 static bfd_boolean
18031 elf32_arm_output_map_sym (output_arch_syminfo *osi,
18032 enum map_symbol_type type,
18033 bfd_vma offset)
18034 {
18035 static const char *names[3] = {"$a", "$t", "$d"};
18036 Elf_Internal_Sym sym;
18037
18038 sym.st_value = osi->sec->output_section->vma
18039 + osi->sec->output_offset
18040 + offset;
18041 sym.st_size = 0;
18042 sym.st_other = 0;
18043 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
18044 sym.st_shndx = osi->sec_shndx;
18045 sym.st_target_internal = 0;
18046 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
18047 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
18048 }
18049
18050 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
18051 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
18052
18053 static bfd_boolean
18054 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
18055 bfd_boolean is_iplt_entry_p,
18056 union gotplt_union *root_plt,
18057 struct arm_plt_info *arm_plt)
18058 {
18059 struct elf32_arm_link_hash_table *htab;
18060 bfd_vma addr, plt_header_size;
18061
18062 if (root_plt->offset == (bfd_vma) -1)
18063 return TRUE;
18064
18065 htab = elf32_arm_hash_table (osi->info);
18066 if (htab == NULL)
18067 return FALSE;
18068
18069 if (is_iplt_entry_p)
18070 {
18071 osi->sec = htab->root.iplt;
18072 plt_header_size = 0;
18073 }
18074 else
18075 {
18076 osi->sec = htab->root.splt;
18077 plt_header_size = htab->plt_header_size;
18078 }
18079 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18080 (osi->info->output_bfd, osi->sec->output_section));
18081
18082 addr = root_plt->offset & -2;
18083 if (htab->symbian_p)
18084 {
18085 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18086 return FALSE;
18087 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18088 return FALSE;
18089 }
18090 else if (htab->vxworks_p)
18091 {
18092 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18093 return FALSE;
18094 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18095 return FALSE;
18096 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18097 return FALSE;
18098 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18099 return FALSE;
18100 }
18101 else if (htab->nacl_p)
18102 {
18103 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18104 return FALSE;
18105 }
18106 else if (htab->fdpic_p)
18107 {
18108 enum map_symbol_type type = using_thumb_only(htab)
18109 ? ARM_MAP_THUMB
18110 : ARM_MAP_ARM;
18111
18112 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18113 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18114 return FALSE;
18115 if (!elf32_arm_output_map_sym (osi, type, addr))
18116 return FALSE;
18117 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18118 return FALSE;
18119 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18120 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18121 return FALSE;
18122 }
18123 else if (using_thumb_only (htab))
18124 {
18125 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18126 return FALSE;
18127 }
18128 else
18129 {
18130 bfd_boolean thumb_stub_p;
18131
18132 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18133 if (thumb_stub_p)
18134 {
18135 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18136 return FALSE;
18137 }
18138 #ifdef FOUR_WORD_PLT
18139 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18140 return FALSE;
18141 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18142 return FALSE;
18143 #else
18144 /* A three-word PLT with no Thumb thunk contains only Arm code,
18145 so only need to output a mapping symbol for the first PLT entry and
18146 entries with thumb thunks. */
18147 if (thumb_stub_p || addr == plt_header_size)
18148 {
18149 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18150 return FALSE;
18151 }
18152 #endif
18153 }
18154
18155 return TRUE;
18156 }
18157
18158 /* Output mapping symbols for PLT entries associated with H. */
18159
18160 static bfd_boolean
18161 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18162 {
18163 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18164 struct elf32_arm_link_hash_entry *eh;
18165
18166 if (h->root.type == bfd_link_hash_indirect)
18167 return TRUE;
18168
18169 if (h->root.type == bfd_link_hash_warning)
18170 /* When warning symbols are created, they **replace** the "real"
18171 entry in the hash table, thus we never get to see the real
18172 symbol in a hash traversal. So look at it now. */
18173 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18174
18175 eh = (struct elf32_arm_link_hash_entry *) h;
18176 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18177 &h->plt, &eh->plt);
18178 }
18179
18180 /* Bind a veneered symbol to its veneer identified by its hash entry
18181 STUB_ENTRY. The veneered location thus loose its symbol. */
18182
18183 static void
18184 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18185 {
18186 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18187
18188 BFD_ASSERT (hash);
18189 hash->root.root.u.def.section = stub_entry->stub_sec;
18190 hash->root.root.u.def.value = stub_entry->stub_offset;
18191 hash->root.size = stub_entry->stub_size;
18192 }
18193
18194 /* Output a single local symbol for a generated stub. */
18195
18196 static bfd_boolean
18197 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18198 bfd_vma offset, bfd_vma size)
18199 {
18200 Elf_Internal_Sym sym;
18201
18202 sym.st_value = osi->sec->output_section->vma
18203 + osi->sec->output_offset
18204 + offset;
18205 sym.st_size = size;
18206 sym.st_other = 0;
18207 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18208 sym.st_shndx = osi->sec_shndx;
18209 sym.st_target_internal = 0;
18210 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18211 }
18212
18213 static bfd_boolean
18214 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18215 void * in_arg)
18216 {
18217 struct elf32_arm_stub_hash_entry *stub_entry;
18218 asection *stub_sec;
18219 bfd_vma addr;
18220 char *stub_name;
18221 output_arch_syminfo *osi;
18222 const insn_sequence *template_sequence;
18223 enum stub_insn_type prev_type;
18224 int size;
18225 int i;
18226 enum map_symbol_type sym_type;
18227
18228 /* Massage our args to the form they really have. */
18229 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18230 osi = (output_arch_syminfo *) in_arg;
18231
18232 stub_sec = stub_entry->stub_sec;
18233
18234 /* Ensure this stub is attached to the current section being
18235 processed. */
18236 if (stub_sec != osi->sec)
18237 return TRUE;
18238
18239 addr = (bfd_vma) stub_entry->stub_offset;
18240 template_sequence = stub_entry->stub_template;
18241
18242 if (arm_stub_sym_claimed (stub_entry->stub_type))
18243 arm_stub_claim_sym (stub_entry);
18244 else
18245 {
18246 stub_name = stub_entry->output_name;
18247 switch (template_sequence[0].type)
18248 {
18249 case ARM_TYPE:
18250 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18251 stub_entry->stub_size))
18252 return FALSE;
18253 break;
18254 case THUMB16_TYPE:
18255 case THUMB32_TYPE:
18256 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18257 stub_entry->stub_size))
18258 return FALSE;
18259 break;
18260 default:
18261 BFD_FAIL ();
18262 return 0;
18263 }
18264 }
18265
18266 prev_type = DATA_TYPE;
18267 size = 0;
18268 for (i = 0; i < stub_entry->stub_template_size; i++)
18269 {
18270 switch (template_sequence[i].type)
18271 {
18272 case ARM_TYPE:
18273 sym_type = ARM_MAP_ARM;
18274 break;
18275
18276 case THUMB16_TYPE:
18277 case THUMB32_TYPE:
18278 sym_type = ARM_MAP_THUMB;
18279 break;
18280
18281 case DATA_TYPE:
18282 sym_type = ARM_MAP_DATA;
18283 break;
18284
18285 default:
18286 BFD_FAIL ();
18287 return FALSE;
18288 }
18289
18290 if (template_sequence[i].type != prev_type)
18291 {
18292 prev_type = template_sequence[i].type;
18293 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18294 return FALSE;
18295 }
18296
18297 switch (template_sequence[i].type)
18298 {
18299 case ARM_TYPE:
18300 case THUMB32_TYPE:
18301 size += 4;
18302 break;
18303
18304 case THUMB16_TYPE:
18305 size += 2;
18306 break;
18307
18308 case DATA_TYPE:
18309 size += 4;
18310 break;
18311
18312 default:
18313 BFD_FAIL ();
18314 return FALSE;
18315 }
18316 }
18317
18318 return TRUE;
18319 }
18320
18321 /* Output mapping symbols for linker generated sections,
18322 and for those data-only sections that do not have a
18323 $d. */
18324
18325 static bfd_boolean
18326 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18327 struct bfd_link_info *info,
18328 void *flaginfo,
18329 int (*func) (void *, const char *,
18330 Elf_Internal_Sym *,
18331 asection *,
18332 struct elf_link_hash_entry *))
18333 {
18334 output_arch_syminfo osi;
18335 struct elf32_arm_link_hash_table *htab;
18336 bfd_vma offset;
18337 bfd_size_type size;
18338 bfd *input_bfd;
18339
18340 htab = elf32_arm_hash_table (info);
18341 if (htab == NULL)
18342 return FALSE;
18343
18344 check_use_blx (htab);
18345
18346 osi.flaginfo = flaginfo;
18347 osi.info = info;
18348 osi.func = func;
18349
18350 /* Add a $d mapping symbol to data-only sections that
18351 don't have any mapping symbol. This may result in (harmless) redundant
18352 mapping symbols. */
18353 for (input_bfd = info->input_bfds;
18354 input_bfd != NULL;
18355 input_bfd = input_bfd->link.next)
18356 {
18357 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18358 for (osi.sec = input_bfd->sections;
18359 osi.sec != NULL;
18360 osi.sec = osi.sec->next)
18361 {
18362 if (osi.sec->output_section != NULL
18363 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18364 != 0)
18365 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18366 == SEC_HAS_CONTENTS
18367 && get_arm_elf_section_data (osi.sec) != NULL
18368 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18369 && osi.sec->size > 0
18370 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18371 {
18372 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18373 (output_bfd, osi.sec->output_section);
18374 if (osi.sec_shndx != (int)SHN_BAD)
18375 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18376 }
18377 }
18378 }
18379
18380 /* ARM->Thumb glue. */
18381 if (htab->arm_glue_size > 0)
18382 {
18383 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18384 ARM2THUMB_GLUE_SECTION_NAME);
18385
18386 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18387 (output_bfd, osi.sec->output_section);
18388 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18389 || htab->pic_veneer)
18390 size = ARM2THUMB_PIC_GLUE_SIZE;
18391 else if (htab->use_blx)
18392 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18393 else
18394 size = ARM2THUMB_STATIC_GLUE_SIZE;
18395
18396 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18397 {
18398 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18399 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18400 }
18401 }
18402
18403 /* Thumb->ARM glue. */
18404 if (htab->thumb_glue_size > 0)
18405 {
18406 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18407 THUMB2ARM_GLUE_SECTION_NAME);
18408
18409 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18410 (output_bfd, osi.sec->output_section);
18411 size = THUMB2ARM_GLUE_SIZE;
18412
18413 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18414 {
18415 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18416 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18417 }
18418 }
18419
18420 /* ARMv4 BX veneers. */
18421 if (htab->bx_glue_size > 0)
18422 {
18423 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18424 ARM_BX_GLUE_SECTION_NAME);
18425
18426 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18427 (output_bfd, osi.sec->output_section);
18428
18429 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18430 }
18431
18432 /* Long calls stubs. */
18433 if (htab->stub_bfd && htab->stub_bfd->sections)
18434 {
18435 asection* stub_sec;
18436
18437 for (stub_sec = htab->stub_bfd->sections;
18438 stub_sec != NULL;
18439 stub_sec = stub_sec->next)
18440 {
18441 /* Ignore non-stub sections. */
18442 if (!strstr (stub_sec->name, STUB_SUFFIX))
18443 continue;
18444
18445 osi.sec = stub_sec;
18446
18447 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18448 (output_bfd, osi.sec->output_section);
18449
18450 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18451 }
18452 }
18453
18454 /* Finally, output mapping symbols for the PLT. */
18455 if (htab->root.splt && htab->root.splt->size > 0)
18456 {
18457 osi.sec = htab->root.splt;
18458 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18459 (output_bfd, osi.sec->output_section));
18460
18461 /* Output mapping symbols for the plt header. SymbianOS does not have a
18462 plt header. */
18463 if (htab->vxworks_p)
18464 {
18465 /* VxWorks shared libraries have no PLT header. */
18466 if (!bfd_link_pic (info))
18467 {
18468 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18469 return FALSE;
18470 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18471 return FALSE;
18472 }
18473 }
18474 else if (htab->nacl_p)
18475 {
18476 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18477 return FALSE;
18478 }
18479 else if (using_thumb_only (htab) && !htab->fdpic_p)
18480 {
18481 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18482 return FALSE;
18483 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18484 return FALSE;
18485 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18486 return FALSE;
18487 }
18488 else if (!htab->symbian_p && !htab->fdpic_p)
18489 {
18490 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18491 return FALSE;
18492 #ifndef FOUR_WORD_PLT
18493 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18494 return FALSE;
18495 #endif
18496 }
18497 }
18498 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18499 {
18500 /* NaCl uses a special first entry in .iplt too. */
18501 osi.sec = htab->root.iplt;
18502 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18503 (output_bfd, osi.sec->output_section));
18504 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18505 return FALSE;
18506 }
18507 if ((htab->root.splt && htab->root.splt->size > 0)
18508 || (htab->root.iplt && htab->root.iplt->size > 0))
18509 {
18510 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18511 for (input_bfd = info->input_bfds;
18512 input_bfd != NULL;
18513 input_bfd = input_bfd->link.next)
18514 {
18515 struct arm_local_iplt_info **local_iplt;
18516 unsigned int i, num_syms;
18517
18518 local_iplt = elf32_arm_local_iplt (input_bfd);
18519 if (local_iplt != NULL)
18520 {
18521 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18522 for (i = 0; i < num_syms; i++)
18523 if (local_iplt[i] != NULL
18524 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18525 &local_iplt[i]->root,
18526 &local_iplt[i]->arm))
18527 return FALSE;
18528 }
18529 }
18530 }
18531 if (htab->dt_tlsdesc_plt != 0)
18532 {
18533 /* Mapping symbols for the lazy tls trampoline. */
18534 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18535 return FALSE;
18536
18537 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18538 htab->dt_tlsdesc_plt + 24))
18539 return FALSE;
18540 }
18541 if (htab->tls_trampoline != 0)
18542 {
18543 /* Mapping symbols for the tls trampoline. */
18544 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18545 return FALSE;
18546 #ifdef FOUR_WORD_PLT
18547 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18548 htab->tls_trampoline + 12))
18549 return FALSE;
18550 #endif
18551 }
18552
18553 return TRUE;
18554 }
18555
18556 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18557 the import library. All SYMCOUNT symbols of ABFD can be examined
18558 from their pointers in SYMS. Pointers of symbols to keep should be
18559 stored continuously at the beginning of that array.
18560
18561 Returns the number of symbols to keep. */
18562
18563 static unsigned int
18564 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18565 struct bfd_link_info *info,
18566 asymbol **syms, long symcount)
18567 {
18568 size_t maxnamelen;
18569 char *cmse_name;
18570 long src_count, dst_count = 0;
18571 struct elf32_arm_link_hash_table *htab;
18572
18573 htab = elf32_arm_hash_table (info);
18574 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18575 symcount = 0;
18576
18577 maxnamelen = 128;
18578 cmse_name = (char *) bfd_malloc (maxnamelen);
18579 for (src_count = 0; src_count < symcount; src_count++)
18580 {
18581 struct elf32_arm_link_hash_entry *cmse_hash;
18582 asymbol *sym;
18583 flagword flags;
18584 char *name;
18585 size_t namelen;
18586
18587 sym = syms[src_count];
18588 flags = sym->flags;
18589 name = (char *) bfd_asymbol_name (sym);
18590
18591 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18592 continue;
18593 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18594 continue;
18595
18596 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18597 if (namelen > maxnamelen)
18598 {
18599 cmse_name = (char *)
18600 bfd_realloc (cmse_name, namelen);
18601 maxnamelen = namelen;
18602 }
18603 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18604 cmse_hash = (struct elf32_arm_link_hash_entry *)
18605 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18606
18607 if (!cmse_hash
18608 || (cmse_hash->root.root.type != bfd_link_hash_defined
18609 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18610 || cmse_hash->root.type != STT_FUNC)
18611 continue;
18612
18613 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18614 continue;
18615
18616 syms[dst_count++] = sym;
18617 }
18618 free (cmse_name);
18619
18620 syms[dst_count] = NULL;
18621
18622 return dst_count;
18623 }
18624
18625 /* Filter symbols of ABFD to include in the import library. All
18626 SYMCOUNT symbols of ABFD can be examined from their pointers in
18627 SYMS. Pointers of symbols to keep should be stored continuously at
18628 the beginning of that array.
18629
18630 Returns the number of symbols to keep. */
18631
18632 static unsigned int
18633 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18634 struct bfd_link_info *info,
18635 asymbol **syms, long symcount)
18636 {
18637 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18638
18639 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18640 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18641 library to be a relocatable object file. */
18642 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18643 if (globals->cmse_implib)
18644 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18645 else
18646 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18647 }
18648
18649 /* Allocate target specific section data. */
18650
18651 static bfd_boolean
18652 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18653 {
18654 if (!sec->used_by_bfd)
18655 {
18656 _arm_elf_section_data *sdata;
18657 bfd_size_type amt = sizeof (*sdata);
18658
18659 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18660 if (sdata == NULL)
18661 return FALSE;
18662 sec->used_by_bfd = sdata;
18663 }
18664
18665 return _bfd_elf_new_section_hook (abfd, sec);
18666 }
18667
18668
18669 /* Used to order a list of mapping symbols by address. */
18670
18671 static int
18672 elf32_arm_compare_mapping (const void * a, const void * b)
18673 {
18674 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18675 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18676
18677 if (amap->vma > bmap->vma)
18678 return 1;
18679 else if (amap->vma < bmap->vma)
18680 return -1;
18681 else if (amap->type > bmap->type)
18682 /* Ensure results do not depend on the host qsort for objects with
18683 multiple mapping symbols at the same address by sorting on type
18684 after vma. */
18685 return 1;
18686 else if (amap->type < bmap->type)
18687 return -1;
18688 else
18689 return 0;
18690 }
18691
18692 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18693
18694 static unsigned long
18695 offset_prel31 (unsigned long addr, bfd_vma offset)
18696 {
18697 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18698 }
18699
18700 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18701 relocations. */
18702
18703 static void
18704 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18705 {
18706 unsigned long first_word = bfd_get_32 (output_bfd, from);
18707 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18708
18709 /* High bit of first word is supposed to be zero. */
18710 if ((first_word & 0x80000000ul) == 0)
18711 first_word = offset_prel31 (first_word, offset);
18712
18713 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18714 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18715 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18716 second_word = offset_prel31 (second_word, offset);
18717
18718 bfd_put_32 (output_bfd, first_word, to);
18719 bfd_put_32 (output_bfd, second_word, to + 4);
18720 }
18721
18722 /* Data for make_branch_to_a8_stub(). */
18723
18724 struct a8_branch_to_stub_data
18725 {
18726 asection *writing_section;
18727 bfd_byte *contents;
18728 };
18729
18730
18731 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18732 places for a particular section. */
18733
18734 static bfd_boolean
18735 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18736 void *in_arg)
18737 {
18738 struct elf32_arm_stub_hash_entry *stub_entry;
18739 struct a8_branch_to_stub_data *data;
18740 bfd_byte *contents;
18741 unsigned long branch_insn;
18742 bfd_vma veneered_insn_loc, veneer_entry_loc;
18743 bfd_signed_vma branch_offset;
18744 bfd *abfd;
18745 unsigned int loc;
18746
18747 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18748 data = (struct a8_branch_to_stub_data *) in_arg;
18749
18750 if (stub_entry->target_section != data->writing_section
18751 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18752 return TRUE;
18753
18754 contents = data->contents;
18755
18756 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18757 generated when both source and target are in the same section. */
18758 veneered_insn_loc = stub_entry->target_section->output_section->vma
18759 + stub_entry->target_section->output_offset
18760 + stub_entry->source_value;
18761
18762 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18763 + stub_entry->stub_sec->output_offset
18764 + stub_entry->stub_offset;
18765
18766 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18767 veneered_insn_loc &= ~3u;
18768
18769 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18770
18771 abfd = stub_entry->target_section->owner;
18772 loc = stub_entry->source_value;
18773
18774 /* We attempt to avoid this condition by setting stubs_always_after_branch
18775 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18776 This check is just to be on the safe side... */
18777 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18778 {
18779 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18780 "allocated in unsafe location"), abfd);
18781 return FALSE;
18782 }
18783
18784 switch (stub_entry->stub_type)
18785 {
18786 case arm_stub_a8_veneer_b:
18787 case arm_stub_a8_veneer_b_cond:
18788 branch_insn = 0xf0009000;
18789 goto jump24;
18790
18791 case arm_stub_a8_veneer_blx:
18792 branch_insn = 0xf000e800;
18793 goto jump24;
18794
18795 case arm_stub_a8_veneer_bl:
18796 {
18797 unsigned int i1, j1, i2, j2, s;
18798
18799 branch_insn = 0xf000d000;
18800
18801 jump24:
18802 if (branch_offset < -16777216 || branch_offset > 16777214)
18803 {
18804 /* There's not much we can do apart from complain if this
18805 happens. */
18806 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18807 "of range (input file too large)"), abfd);
18808 return FALSE;
18809 }
18810
18811 /* i1 = not(j1 eor s), so:
18812 not i1 = j1 eor s
18813 j1 = (not i1) eor s. */
18814
18815 branch_insn |= (branch_offset >> 1) & 0x7ff;
18816 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18817 i2 = (branch_offset >> 22) & 1;
18818 i1 = (branch_offset >> 23) & 1;
18819 s = (branch_offset >> 24) & 1;
18820 j1 = (!i1) ^ s;
18821 j2 = (!i2) ^ s;
18822 branch_insn |= j2 << 11;
18823 branch_insn |= j1 << 13;
18824 branch_insn |= s << 26;
18825 }
18826 break;
18827
18828 default:
18829 BFD_FAIL ();
18830 return FALSE;
18831 }
18832
18833 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18834 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18835
18836 return TRUE;
18837 }
18838
18839 /* Beginning of stm32l4xx work-around. */
18840
18841 /* Functions encoding instructions necessary for the emission of the
18842 fix-stm32l4xx-629360.
18843 Encoding is extracted from the
18844 ARM (C) Architecture Reference Manual
18845 ARMv7-A and ARMv7-R edition
18846 ARM DDI 0406C.b (ID072512). */
18847
18848 static inline bfd_vma
18849 create_instruction_branch_absolute (int branch_offset)
18850 {
18851 /* A8.8.18 B (A8-334)
18852 B target_address (Encoding T4). */
18853 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18854 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18855 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18856
18857 int s = ((branch_offset & 0x1000000) >> 24);
18858 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18859 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18860
18861 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18862 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18863
18864 bfd_vma patched_inst = 0xf0009000
18865 | s << 26 /* S. */
18866 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18867 | j1 << 13 /* J1. */
18868 | j2 << 11 /* J2. */
18869 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18870
18871 return patched_inst;
18872 }
18873
18874 static inline bfd_vma
18875 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18876 {
18877 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18878 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18879 bfd_vma patched_inst = 0xe8900000
18880 | (/*W=*/wback << 21)
18881 | (base_reg << 16)
18882 | (reg_mask & 0x0000ffff);
18883
18884 return patched_inst;
18885 }
18886
18887 static inline bfd_vma
18888 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18889 {
18890 /* A8.8.60 LDMDB/LDMEA (A8-402)
18891 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18892 bfd_vma patched_inst = 0xe9100000
18893 | (/*W=*/wback << 21)
18894 | (base_reg << 16)
18895 | (reg_mask & 0x0000ffff);
18896
18897 return patched_inst;
18898 }
18899
18900 static inline bfd_vma
18901 create_instruction_mov (int target_reg, int source_reg)
18902 {
18903 /* A8.8.103 MOV (register) (A8-486)
18904 MOV Rd, Rm (Encoding T1). */
18905 bfd_vma patched_inst = 0x4600
18906 | (target_reg & 0x7)
18907 | ((target_reg & 0x8) >> 3) << 7
18908 | (source_reg << 3);
18909
18910 return patched_inst;
18911 }
18912
18913 static inline bfd_vma
18914 create_instruction_sub (int target_reg, int source_reg, int value)
18915 {
18916 /* A8.8.221 SUB (immediate) (A8-708)
18917 SUB Rd, Rn, #value (Encoding T3). */
18918 bfd_vma patched_inst = 0xf1a00000
18919 | (target_reg << 8)
18920 | (source_reg << 16)
18921 | (/*S=*/0 << 20)
18922 | ((value & 0x800) >> 11) << 26
18923 | ((value & 0x700) >> 8) << 12
18924 | (value & 0x0ff);
18925
18926 return patched_inst;
18927 }
18928
18929 static inline bfd_vma
18930 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18931 int first_reg)
18932 {
18933 /* A8.8.332 VLDM (A8-922)
18934 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18935 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18936 | (/*W=*/wback << 21)
18937 | (base_reg << 16)
18938 | (num_words & 0x000000ff)
18939 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18940 | (first_reg & 0x00000001) << 22;
18941
18942 return patched_inst;
18943 }
18944
18945 static inline bfd_vma
18946 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18947 int first_reg)
18948 {
18949 /* A8.8.332 VLDM (A8-922)
18950 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18951 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18952 | (base_reg << 16)
18953 | (num_words & 0x000000ff)
18954 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18955 | (first_reg & 0x00000001) << 22;
18956
18957 return patched_inst;
18958 }
18959
18960 static inline bfd_vma
18961 create_instruction_udf_w (int value)
18962 {
18963 /* A8.8.247 UDF (A8-758)
18964 Undefined (Encoding T2). */
18965 bfd_vma patched_inst = 0xf7f0a000
18966 | (value & 0x00000fff)
18967 | (value & 0x000f0000) << 16;
18968
18969 return patched_inst;
18970 }
18971
18972 static inline bfd_vma
18973 create_instruction_udf (int value)
18974 {
18975 /* A8.8.247 UDF (A8-758)
18976 Undefined (Encoding T1). */
18977 bfd_vma patched_inst = 0xde00
18978 | (value & 0xff);
18979
18980 return patched_inst;
18981 }
18982
18983 /* Functions writing an instruction in memory, returning the next
18984 memory position to write to. */
18985
18986 static inline bfd_byte *
18987 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18988 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18989 {
18990 put_thumb2_insn (htab, output_bfd, insn, pt);
18991 return pt + 4;
18992 }
18993
18994 static inline bfd_byte *
18995 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18996 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18997 {
18998 put_thumb_insn (htab, output_bfd, insn, pt);
18999 return pt + 2;
19000 }
19001
19002 /* Function filling up a region in memory with T1 and T2 UDFs taking
19003 care of alignment. */
19004
19005 static bfd_byte *
19006 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
19007 bfd * output_bfd,
19008 const bfd_byte * const base_stub_contents,
19009 bfd_byte * const from_stub_contents,
19010 const bfd_byte * const end_stub_contents)
19011 {
19012 bfd_byte *current_stub_contents = from_stub_contents;
19013
19014 /* Fill the remaining of the stub with deterministic contents : UDF
19015 instructions.
19016 Check if realignment is needed on modulo 4 frontier using T1, to
19017 further use T2. */
19018 if ((current_stub_contents < end_stub_contents)
19019 && !((current_stub_contents - base_stub_contents) % 2)
19020 && ((current_stub_contents - base_stub_contents) % 4))
19021 current_stub_contents =
19022 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19023 create_instruction_udf (0));
19024
19025 for (; current_stub_contents < end_stub_contents;)
19026 current_stub_contents =
19027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19028 create_instruction_udf_w (0));
19029
19030 return current_stub_contents;
19031 }
19032
19033 /* Functions writing the stream of instructions equivalent to the
19034 derived sequence for ldmia, ldmdb, vldm respectively. */
19035
19036 static void
19037 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
19038 bfd * output_bfd,
19039 const insn32 initial_insn,
19040 const bfd_byte *const initial_insn_addr,
19041 bfd_byte *const base_stub_contents)
19042 {
19043 int wback = (initial_insn & 0x00200000) >> 21;
19044 int ri, rn = (initial_insn & 0x000F0000) >> 16;
19045 int insn_all_registers = initial_insn & 0x0000ffff;
19046 int insn_low_registers, insn_high_registers;
19047 int usable_register_mask;
19048 int nb_registers = elf32_arm_popcount (insn_all_registers);
19049 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19050 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19051 bfd_byte *current_stub_contents = base_stub_contents;
19052
19053 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
19054
19055 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19056 smaller than 8 registers load sequences that do not cause the
19057 hardware issue. */
19058 if (nb_registers <= 8)
19059 {
19060 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19061 current_stub_contents =
19062 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19063 initial_insn);
19064
19065 /* B initial_insn_addr+4. */
19066 if (!restore_pc)
19067 current_stub_contents =
19068 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19069 create_instruction_branch_absolute
19070 (initial_insn_addr - current_stub_contents));
19071
19072 /* Fill the remaining of the stub with deterministic contents. */
19073 current_stub_contents =
19074 stm32l4xx_fill_stub_udf (htab, output_bfd,
19075 base_stub_contents, current_stub_contents,
19076 base_stub_contents +
19077 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19078
19079 return;
19080 }
19081
19082 /* - reg_list[13] == 0. */
19083 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19084
19085 /* - reg_list[14] & reg_list[15] != 1. */
19086 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19087
19088 /* - if (wback==1) reg_list[rn] == 0. */
19089 BFD_ASSERT (!wback || !restore_rn);
19090
19091 /* - nb_registers > 8. */
19092 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19093
19094 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19095
19096 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19097 - One with the 7 lowest registers (register mask 0x007F)
19098 This LDM will finally contain between 2 and 7 registers
19099 - One with the 7 highest registers (register mask 0xDF80)
19100 This ldm will finally contain between 2 and 7 registers. */
19101 insn_low_registers = insn_all_registers & 0x007F;
19102 insn_high_registers = insn_all_registers & 0xDF80;
19103
19104 /* A spare register may be needed during this veneer to temporarily
19105 handle the base register. This register will be restored with the
19106 last LDM operation.
19107 The usable register may be any general purpose register (that
19108 excludes PC, SP, LR : register mask is 0x1FFF). */
19109 usable_register_mask = 0x1FFF;
19110
19111 /* Generate the stub function. */
19112 if (wback)
19113 {
19114 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19115 current_stub_contents =
19116 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19117 create_instruction_ldmia
19118 (rn, /*wback=*/1, insn_low_registers));
19119
19120 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19121 current_stub_contents =
19122 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19123 create_instruction_ldmia
19124 (rn, /*wback=*/1, insn_high_registers));
19125 if (!restore_pc)
19126 {
19127 /* B initial_insn_addr+4. */
19128 current_stub_contents =
19129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19130 create_instruction_branch_absolute
19131 (initial_insn_addr - current_stub_contents));
19132 }
19133 }
19134 else /* if (!wback). */
19135 {
19136 ri = rn;
19137
19138 /* If Rn is not part of the high-register-list, move it there. */
19139 if (!(insn_high_registers & (1 << rn)))
19140 {
19141 /* Choose a Ri in the high-register-list that will be restored. */
19142 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19143
19144 /* MOV Ri, Rn. */
19145 current_stub_contents =
19146 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19147 create_instruction_mov (ri, rn));
19148 }
19149
19150 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19151 current_stub_contents =
19152 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19153 create_instruction_ldmia
19154 (ri, /*wback=*/1, insn_low_registers));
19155
19156 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19157 current_stub_contents =
19158 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19159 create_instruction_ldmia
19160 (ri, /*wback=*/0, insn_high_registers));
19161
19162 if (!restore_pc)
19163 {
19164 /* B initial_insn_addr+4. */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_branch_absolute
19168 (initial_insn_addr - current_stub_contents));
19169 }
19170 }
19171
19172 /* Fill the remaining of the stub with deterministic contents. */
19173 current_stub_contents =
19174 stm32l4xx_fill_stub_udf (htab, output_bfd,
19175 base_stub_contents, current_stub_contents,
19176 base_stub_contents +
19177 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19178 }
19179
19180 static void
19181 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19182 bfd * output_bfd,
19183 const insn32 initial_insn,
19184 const bfd_byte *const initial_insn_addr,
19185 bfd_byte *const base_stub_contents)
19186 {
19187 int wback = (initial_insn & 0x00200000) >> 21;
19188 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19189 int insn_all_registers = initial_insn & 0x0000ffff;
19190 int insn_low_registers, insn_high_registers;
19191 int usable_register_mask;
19192 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19193 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19194 int nb_registers = elf32_arm_popcount (insn_all_registers);
19195 bfd_byte *current_stub_contents = base_stub_contents;
19196
19197 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19198
19199 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19200 smaller than 8 registers load sequences that do not cause the
19201 hardware issue. */
19202 if (nb_registers <= 8)
19203 {
19204 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19205 current_stub_contents =
19206 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19207 initial_insn);
19208
19209 /* B initial_insn_addr+4. */
19210 current_stub_contents =
19211 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19212 create_instruction_branch_absolute
19213 (initial_insn_addr - current_stub_contents));
19214
19215 /* Fill the remaining of the stub with deterministic contents. */
19216 current_stub_contents =
19217 stm32l4xx_fill_stub_udf (htab, output_bfd,
19218 base_stub_contents, current_stub_contents,
19219 base_stub_contents +
19220 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19221
19222 return;
19223 }
19224
19225 /* - reg_list[13] == 0. */
19226 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19227
19228 /* - reg_list[14] & reg_list[15] != 1. */
19229 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19230
19231 /* - if (wback==1) reg_list[rn] == 0. */
19232 BFD_ASSERT (!wback || !restore_rn);
19233
19234 /* - nb_registers > 8. */
19235 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19236
19237 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19238
19239 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19240 - One with the 7 lowest registers (register mask 0x007F)
19241 This LDM will finally contain between 2 and 7 registers
19242 - One with the 7 highest registers (register mask 0xDF80)
19243 This ldm will finally contain between 2 and 7 registers. */
19244 insn_low_registers = insn_all_registers & 0x007F;
19245 insn_high_registers = insn_all_registers & 0xDF80;
19246
19247 /* A spare register may be needed during this veneer to temporarily
19248 handle the base register. This register will be restored with
19249 the last LDM operation.
19250 The usable register may be any general purpose register (that excludes
19251 PC, SP, LR : register mask is 0x1FFF). */
19252 usable_register_mask = 0x1FFF;
19253
19254 /* Generate the stub function. */
19255 if (!wback && !restore_pc && !restore_rn)
19256 {
19257 /* Choose a Ri in the low-register-list that will be restored. */
19258 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19259
19260 /* MOV Ri, Rn. */
19261 current_stub_contents =
19262 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19263 create_instruction_mov (ri, rn));
19264
19265 /* LDMDB Ri!, {R-high-register-list}. */
19266 current_stub_contents =
19267 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19268 create_instruction_ldmdb
19269 (ri, /*wback=*/1, insn_high_registers));
19270
19271 /* LDMDB Ri, {R-low-register-list}. */
19272 current_stub_contents =
19273 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19274 create_instruction_ldmdb
19275 (ri, /*wback=*/0, insn_low_registers));
19276
19277 /* B initial_insn_addr+4. */
19278 current_stub_contents =
19279 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19280 create_instruction_branch_absolute
19281 (initial_insn_addr - current_stub_contents));
19282 }
19283 else if (wback && !restore_pc && !restore_rn)
19284 {
19285 /* LDMDB Rn!, {R-high-register-list}. */
19286 current_stub_contents =
19287 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19288 create_instruction_ldmdb
19289 (rn, /*wback=*/1, insn_high_registers));
19290
19291 /* LDMDB Rn!, {R-low-register-list}. */
19292 current_stub_contents =
19293 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19294 create_instruction_ldmdb
19295 (rn, /*wback=*/1, insn_low_registers));
19296
19297 /* B initial_insn_addr+4. */
19298 current_stub_contents =
19299 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19300 create_instruction_branch_absolute
19301 (initial_insn_addr - current_stub_contents));
19302 }
19303 else if (!wback && restore_pc && !restore_rn)
19304 {
19305 /* Choose a Ri in the high-register-list that will be restored. */
19306 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19307
19308 /* SUB Ri, Rn, #(4*nb_registers). */
19309 current_stub_contents =
19310 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19311 create_instruction_sub (ri, rn, (4 * nb_registers)));
19312
19313 /* LDMIA Ri!, {R-low-register-list}. */
19314 current_stub_contents =
19315 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19316 create_instruction_ldmia
19317 (ri, /*wback=*/1, insn_low_registers));
19318
19319 /* LDMIA Ri, {R-high-register-list}. */
19320 current_stub_contents =
19321 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19322 create_instruction_ldmia
19323 (ri, /*wback=*/0, insn_high_registers));
19324 }
19325 else if (wback && restore_pc && !restore_rn)
19326 {
19327 /* Choose a Ri in the high-register-list that will be restored. */
19328 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19329
19330 /* SUB Rn, Rn, #(4*nb_registers) */
19331 current_stub_contents =
19332 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19333 create_instruction_sub (rn, rn, (4 * nb_registers)));
19334
19335 /* MOV Ri, Rn. */
19336 current_stub_contents =
19337 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19338 create_instruction_mov (ri, rn));
19339
19340 /* LDMIA Ri!, {R-low-register-list}. */
19341 current_stub_contents =
19342 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19343 create_instruction_ldmia
19344 (ri, /*wback=*/1, insn_low_registers));
19345
19346 /* LDMIA Ri, {R-high-register-list}. */
19347 current_stub_contents =
19348 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19349 create_instruction_ldmia
19350 (ri, /*wback=*/0, insn_high_registers));
19351 }
19352 else if (!wback && !restore_pc && restore_rn)
19353 {
19354 ri = rn;
19355 if (!(insn_low_registers & (1 << rn)))
19356 {
19357 /* Choose a Ri in the low-register-list that will be restored. */
19358 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19359
19360 /* MOV Ri, Rn. */
19361 current_stub_contents =
19362 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19363 create_instruction_mov (ri, rn));
19364 }
19365
19366 /* LDMDB Ri!, {R-high-register-list}. */
19367 current_stub_contents =
19368 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19369 create_instruction_ldmdb
19370 (ri, /*wback=*/1, insn_high_registers));
19371
19372 /* LDMDB Ri, {R-low-register-list}. */
19373 current_stub_contents =
19374 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19375 create_instruction_ldmdb
19376 (ri, /*wback=*/0, insn_low_registers));
19377
19378 /* B initial_insn_addr+4. */
19379 current_stub_contents =
19380 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19381 create_instruction_branch_absolute
19382 (initial_insn_addr - current_stub_contents));
19383 }
19384 else if (!wback && restore_pc && restore_rn)
19385 {
19386 ri = rn;
19387 if (!(insn_high_registers & (1 << rn)))
19388 {
19389 /* Choose a Ri in the high-register-list that will be restored. */
19390 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19391 }
19392
19393 /* SUB Ri, Rn, #(4*nb_registers). */
19394 current_stub_contents =
19395 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19396 create_instruction_sub (ri, rn, (4 * nb_registers)));
19397
19398 /* LDMIA Ri!, {R-low-register-list}. */
19399 current_stub_contents =
19400 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19401 create_instruction_ldmia
19402 (ri, /*wback=*/1, insn_low_registers));
19403
19404 /* LDMIA Ri, {R-high-register-list}. */
19405 current_stub_contents =
19406 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19407 create_instruction_ldmia
19408 (ri, /*wback=*/0, insn_high_registers));
19409 }
19410 else if (wback && restore_rn)
19411 {
19412 /* The assembler should not have accepted to encode this. */
19413 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19414 "undefined behavior.\n");
19415 }
19416
19417 /* Fill the remaining of the stub with deterministic contents. */
19418 current_stub_contents =
19419 stm32l4xx_fill_stub_udf (htab, output_bfd,
19420 base_stub_contents, current_stub_contents,
19421 base_stub_contents +
19422 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19423
19424 }
19425
19426 static void
19427 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19428 bfd * output_bfd,
19429 const insn32 initial_insn,
19430 const bfd_byte *const initial_insn_addr,
19431 bfd_byte *const base_stub_contents)
19432 {
19433 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19434 bfd_byte *current_stub_contents = base_stub_contents;
19435
19436 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19437
19438 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19439 smaller than 8 words load sequences that do not cause the
19440 hardware issue. */
19441 if (num_words <= 8)
19442 {
19443 /* Untouched instruction. */
19444 current_stub_contents =
19445 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19446 initial_insn);
19447
19448 /* B initial_insn_addr+4. */
19449 current_stub_contents =
19450 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19451 create_instruction_branch_absolute
19452 (initial_insn_addr - current_stub_contents));
19453 }
19454 else
19455 {
19456 bfd_boolean is_dp = /* DP encoding. */
19457 (initial_insn & 0xfe100f00) == 0xec100b00;
19458 bfd_boolean is_ia_nobang = /* (IA without !). */
19459 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19460 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19461 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19462 bfd_boolean is_db_bang = /* (DB with !). */
19463 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19464 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19465 /* d = UInt (Vd:D);. */
19466 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19467 | (((unsigned int)initial_insn << 9) >> 31);
19468
19469 /* Compute the number of 8-words chunks needed to split. */
19470 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19471 int chunk;
19472
19473 /* The test coverage has been done assuming the following
19474 hypothesis that exactly one of the previous is_ predicates is
19475 true. */
19476 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19477 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19478
19479 /* We treat the cutting of the words in one pass for all
19480 cases, then we emit the adjustments:
19481
19482 vldm rx, {...}
19483 -> vldm rx!, {8_words_or_less} for each needed 8_word
19484 -> sub rx, rx, #size (list)
19485
19486 vldm rx!, {...}
19487 -> vldm rx!, {8_words_or_less} for each needed 8_word
19488 This also handles vpop instruction (when rx is sp)
19489
19490 vldmd rx!, {...}
19491 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19492 for (chunk = 0; chunk < chunks; ++chunk)
19493 {
19494 bfd_vma new_insn = 0;
19495
19496 if (is_ia_nobang || is_ia_bang)
19497 {
19498 new_insn = create_instruction_vldmia
19499 (base_reg,
19500 is_dp,
19501 /*wback= . */1,
19502 chunks - (chunk + 1) ?
19503 8 : num_words - chunk * 8,
19504 first_reg + chunk * 8);
19505 }
19506 else if (is_db_bang)
19507 {
19508 new_insn = create_instruction_vldmdb
19509 (base_reg,
19510 is_dp,
19511 chunks - (chunk + 1) ?
19512 8 : num_words - chunk * 8,
19513 first_reg + chunk * 8);
19514 }
19515
19516 if (new_insn)
19517 current_stub_contents =
19518 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19519 new_insn);
19520 }
19521
19522 /* Only this case requires the base register compensation
19523 subtract. */
19524 if (is_ia_nobang)
19525 {
19526 current_stub_contents =
19527 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19528 create_instruction_sub
19529 (base_reg, base_reg, 4*num_words));
19530 }
19531
19532 /* B initial_insn_addr+4. */
19533 current_stub_contents =
19534 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19535 create_instruction_branch_absolute
19536 (initial_insn_addr - current_stub_contents));
19537 }
19538
19539 /* Fill the remaining of the stub with deterministic contents. */
19540 current_stub_contents =
19541 stm32l4xx_fill_stub_udf (htab, output_bfd,
19542 base_stub_contents, current_stub_contents,
19543 base_stub_contents +
19544 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19545 }
19546
19547 static void
19548 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19549 bfd * output_bfd,
19550 const insn32 wrong_insn,
19551 const bfd_byte *const wrong_insn_addr,
19552 bfd_byte *const stub_contents)
19553 {
19554 if (is_thumb2_ldmia (wrong_insn))
19555 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19556 wrong_insn, wrong_insn_addr,
19557 stub_contents);
19558 else if (is_thumb2_ldmdb (wrong_insn))
19559 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19560 wrong_insn, wrong_insn_addr,
19561 stub_contents);
19562 else if (is_thumb2_vldm (wrong_insn))
19563 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19564 wrong_insn, wrong_insn_addr,
19565 stub_contents);
19566 }
19567
19568 /* End of stm32l4xx work-around. */
19569
19570
19571 /* Do code byteswapping. Return FALSE afterwards so that the section is
19572 written out as normal. */
19573
19574 static bfd_boolean
19575 elf32_arm_write_section (bfd *output_bfd,
19576 struct bfd_link_info *link_info,
19577 asection *sec,
19578 bfd_byte *contents)
19579 {
19580 unsigned int mapcount, errcount;
19581 _arm_elf_section_data *arm_data;
19582 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19583 elf32_arm_section_map *map;
19584 elf32_vfp11_erratum_list *errnode;
19585 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19586 bfd_vma ptr;
19587 bfd_vma end;
19588 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19589 bfd_byte tmp;
19590 unsigned int i;
19591
19592 if (globals == NULL)
19593 return FALSE;
19594
19595 /* If this section has not been allocated an _arm_elf_section_data
19596 structure then we cannot record anything. */
19597 arm_data = get_arm_elf_section_data (sec);
19598 if (arm_data == NULL)
19599 return FALSE;
19600
19601 mapcount = arm_data->mapcount;
19602 map = arm_data->map;
19603 errcount = arm_data->erratumcount;
19604
19605 if (errcount != 0)
19606 {
19607 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19608
19609 for (errnode = arm_data->erratumlist; errnode != 0;
19610 errnode = errnode->next)
19611 {
19612 bfd_vma target = errnode->vma - offset;
19613
19614 switch (errnode->type)
19615 {
19616 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19617 {
19618 bfd_vma branch_to_veneer;
19619 /* Original condition code of instruction, plus bit mask for
19620 ARM B instruction. */
19621 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19622 | 0x0a000000;
19623
19624 /* The instruction is before the label. */
19625 target -= 4;
19626
19627 /* Above offset included in -4 below. */
19628 branch_to_veneer = errnode->u.b.veneer->vma
19629 - errnode->vma - 4;
19630
19631 if ((signed) branch_to_veneer < -(1 << 25)
19632 || (signed) branch_to_veneer >= (1 << 25))
19633 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19634 "range"), output_bfd);
19635
19636 insn |= (branch_to_veneer >> 2) & 0xffffff;
19637 contents[endianflip ^ target] = insn & 0xff;
19638 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19639 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19640 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19641 }
19642 break;
19643
19644 case VFP11_ERRATUM_ARM_VENEER:
19645 {
19646 bfd_vma branch_from_veneer;
19647 unsigned int insn;
19648
19649 /* Take size of veneer into account. */
19650 branch_from_veneer = errnode->u.v.branch->vma
19651 - errnode->vma - 12;
19652
19653 if ((signed) branch_from_veneer < -(1 << 25)
19654 || (signed) branch_from_veneer >= (1 << 25))
19655 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19656 "range"), output_bfd);
19657
19658 /* Original instruction. */
19659 insn = errnode->u.v.branch->u.b.vfp_insn;
19660 contents[endianflip ^ target] = insn & 0xff;
19661 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19662 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19663 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19664
19665 /* Branch back to insn after original insn. */
19666 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19667 contents[endianflip ^ (target + 4)] = insn & 0xff;
19668 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19669 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19670 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19671 }
19672 break;
19673
19674 default:
19675 abort ();
19676 }
19677 }
19678 }
19679
19680 if (arm_data->stm32l4xx_erratumcount != 0)
19681 {
19682 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19683 stm32l4xx_errnode != 0;
19684 stm32l4xx_errnode = stm32l4xx_errnode->next)
19685 {
19686 bfd_vma target = stm32l4xx_errnode->vma - offset;
19687
19688 switch (stm32l4xx_errnode->type)
19689 {
19690 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19691 {
19692 unsigned int insn;
19693 bfd_vma branch_to_veneer =
19694 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19695
19696 /* The instruction is before the label. */
19697 target -= 4;
19698
19699 if ((signed) branch_to_veneer < -(1 << 24)
19700 || (signed) branch_to_veneer >= (1 << 24))
19701 {
19702 bfd_vma out_of_range =
19703 ((signed) branch_to_veneer < -(1 << 24)) ?
19704 - branch_to_veneer - (1 << 24) :
19705 ((signed) branch_to_veneer >= (1 << 24)) ?
19706 branch_to_veneer - (1 << 24) : 0;
19707
19708 _bfd_error_handler
19709 (_("%pB(%#" PRIx64 "): error: "
19710 "cannot create STM32L4XX veneer; "
19711 "jump out of range by %" PRId64 " bytes; "
19712 "cannot encode branch instruction"),
19713 output_bfd,
19714 (uint64_t) (stm32l4xx_errnode->vma - 4),
19715 (int64_t) out_of_range);
19716
19717 /* Don't leave contents uninitialised. */
19718 bfd_put_16 (output_bfd, 0, contents + target);
19719 continue;
19720 }
19721
19722 insn = create_instruction_branch_absolute
19723 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19724
19725 put_thumb2_insn (globals, output_bfd,
19726 (bfd_vma) insn, contents + target);
19727 }
19728 break;
19729
19730 case STM32L4XX_ERRATUM_VENEER:
19731 {
19732 bfd_byte * veneer;
19733 bfd_byte * veneer_r;
19734 unsigned int insn;
19735
19736 veneer = contents + target;
19737 veneer_r = veneer
19738 + stm32l4xx_errnode->u.b.veneer->vma
19739 - stm32l4xx_errnode->vma - 4;
19740
19741 if ((signed) (veneer_r - veneer -
19742 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19743 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19744 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19745 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19746 || (signed) (veneer_r - veneer) >= (1 << 24))
19747 {
19748 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19749 "veneer"), output_bfd);
19750 continue;
19751 }
19752
19753 /* Original instruction. */
19754 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19755
19756 stm32l4xx_create_replacing_stub
19757 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19758 }
19759 break;
19760
19761 default:
19762 abort ();
19763 }
19764 }
19765 }
19766
19767 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19768 {
19769 arm_unwind_table_edit *edit_node
19770 = arm_data->u.exidx.unwind_edit_list;
19771 /* Now, sec->size is the size of the section we will write. The original
19772 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19773 markers) was sec->rawsize. (This isn't the case if we perform no
19774 edits, then rawsize will be zero and we should use size). */
19775 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19776 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19777 unsigned int in_index, out_index;
19778 bfd_vma add_to_offsets = 0;
19779
19780 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19781 {
19782 if (edit_node)
19783 {
19784 unsigned int edit_index = edit_node->index;
19785
19786 if (in_index < edit_index && in_index * 8 < input_size)
19787 {
19788 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19789 contents + in_index * 8, add_to_offsets);
19790 out_index++;
19791 in_index++;
19792 }
19793 else if (in_index == edit_index
19794 || (in_index * 8 >= input_size
19795 && edit_index == UINT_MAX))
19796 {
19797 switch (edit_node->type)
19798 {
19799 case DELETE_EXIDX_ENTRY:
19800 in_index++;
19801 add_to_offsets += 8;
19802 break;
19803
19804 case INSERT_EXIDX_CANTUNWIND_AT_END:
19805 {
19806 asection *text_sec = edit_node->linked_section;
19807 bfd_vma text_offset = text_sec->output_section->vma
19808 + text_sec->output_offset
19809 + text_sec->size;
19810 bfd_vma exidx_offset = offset + out_index * 8;
19811 unsigned long prel31_offset;
19812
19813 /* Note: this is meant to be equivalent to an
19814 R_ARM_PREL31 relocation. These synthetic
19815 EXIDX_CANTUNWIND markers are not relocated by the
19816 usual BFD method. */
19817 prel31_offset = (text_offset - exidx_offset)
19818 & 0x7ffffffful;
19819 if (bfd_link_relocatable (link_info))
19820 {
19821 /* Here relocation for new EXIDX_CANTUNWIND is
19822 created, so there is no need to
19823 adjust offset by hand. */
19824 prel31_offset = text_sec->output_offset
19825 + text_sec->size;
19826 }
19827
19828 /* First address we can't unwind. */
19829 bfd_put_32 (output_bfd, prel31_offset,
19830 &edited_contents[out_index * 8]);
19831
19832 /* Code for EXIDX_CANTUNWIND. */
19833 bfd_put_32 (output_bfd, 0x1,
19834 &edited_contents[out_index * 8 + 4]);
19835
19836 out_index++;
19837 add_to_offsets -= 8;
19838 }
19839 break;
19840 }
19841
19842 edit_node = edit_node->next;
19843 }
19844 }
19845 else
19846 {
19847 /* No more edits, copy remaining entries verbatim. */
19848 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19849 contents + in_index * 8, add_to_offsets);
19850 out_index++;
19851 in_index++;
19852 }
19853 }
19854
19855 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19856 bfd_set_section_contents (output_bfd, sec->output_section,
19857 edited_contents,
19858 (file_ptr) sec->output_offset, sec->size);
19859
19860 return TRUE;
19861 }
19862
19863 /* Fix code to point to Cortex-A8 erratum stubs. */
19864 if (globals->fix_cortex_a8)
19865 {
19866 struct a8_branch_to_stub_data data;
19867
19868 data.writing_section = sec;
19869 data.contents = contents;
19870
19871 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19872 & data);
19873 }
19874
19875 if (mapcount == 0)
19876 return FALSE;
19877
19878 if (globals->byteswap_code)
19879 {
19880 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19881
19882 ptr = map[0].vma;
19883 for (i = 0; i < mapcount; i++)
19884 {
19885 if (i == mapcount - 1)
19886 end = sec->size;
19887 else
19888 end = map[i + 1].vma;
19889
19890 switch (map[i].type)
19891 {
19892 case 'a':
19893 /* Byte swap code words. */
19894 while (ptr + 3 < end)
19895 {
19896 tmp = contents[ptr];
19897 contents[ptr] = contents[ptr + 3];
19898 contents[ptr + 3] = tmp;
19899 tmp = contents[ptr + 1];
19900 contents[ptr + 1] = contents[ptr + 2];
19901 contents[ptr + 2] = tmp;
19902 ptr += 4;
19903 }
19904 break;
19905
19906 case 't':
19907 /* Byte swap code halfwords. */
19908 while (ptr + 1 < end)
19909 {
19910 tmp = contents[ptr];
19911 contents[ptr] = contents[ptr + 1];
19912 contents[ptr + 1] = tmp;
19913 ptr += 2;
19914 }
19915 break;
19916
19917 case 'd':
19918 /* Leave data alone. */
19919 break;
19920 }
19921 ptr = end;
19922 }
19923 }
19924
19925 free (map);
19926 arm_data->mapcount = -1;
19927 arm_data->mapsize = 0;
19928 arm_data->map = NULL;
19929
19930 return FALSE;
19931 }
19932
19933 /* Mangle thumb function symbols as we read them in. */
19934
19935 static bfd_boolean
19936 elf32_arm_swap_symbol_in (bfd * abfd,
19937 const void *psrc,
19938 const void *pshn,
19939 Elf_Internal_Sym *dst)
19940 {
19941 Elf_Internal_Shdr *symtab_hdr;
19942 const char *name = NULL;
19943
19944 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19945 return FALSE;
19946 dst->st_target_internal = 0;
19947
19948 /* New EABI objects mark thumb function symbols by setting the low bit of
19949 the address. */
19950 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19951 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19952 {
19953 if (dst->st_value & 1)
19954 {
19955 dst->st_value &= ~(bfd_vma) 1;
19956 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19957 ST_BRANCH_TO_THUMB);
19958 }
19959 else
19960 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19961 }
19962 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19963 {
19964 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19965 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19966 }
19967 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19968 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19969 else
19970 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19971
19972 /* Mark CMSE special symbols. */
19973 symtab_hdr = & elf_symtab_hdr (abfd);
19974 if (symtab_hdr->sh_size)
19975 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19976 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19977 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19978
19979 return TRUE;
19980 }
19981
19982
19983 /* Mangle thumb function symbols as we write them out. */
19984
19985 static void
19986 elf32_arm_swap_symbol_out (bfd *abfd,
19987 const Elf_Internal_Sym *src,
19988 void *cdst,
19989 void *shndx)
19990 {
19991 Elf_Internal_Sym newsym;
19992
19993 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19994 of the address set, as per the new EABI. We do this unconditionally
19995 because objcopy does not set the elf header flags until after
19996 it writes out the symbol table. */
19997 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19998 {
19999 newsym = *src;
20000 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
20001 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
20002 if (newsym.st_shndx != SHN_UNDEF)
20003 {
20004 /* Do this only for defined symbols. At link type, the static
20005 linker will simulate the work of dynamic linker of resolving
20006 symbols and will carry over the thumbness of found symbols to
20007 the output symbol table. It's not clear how it happens, but
20008 the thumbness of undefined symbols can well be different at
20009 runtime, and writing '1' for them will be confusing for users
20010 and possibly for dynamic linker itself.
20011 */
20012 newsym.st_value |= 1;
20013 }
20014
20015 src = &newsym;
20016 }
20017 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
20018 }
20019
20020 /* Add the PT_ARM_EXIDX program header. */
20021
20022 static bfd_boolean
20023 elf32_arm_modify_segment_map (bfd *abfd,
20024 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20025 {
20026 struct elf_segment_map *m;
20027 asection *sec;
20028
20029 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20030 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20031 {
20032 /* If there is already a PT_ARM_EXIDX header, then we do not
20033 want to add another one. This situation arises when running
20034 "strip"; the input binary already has the header. */
20035 m = elf_seg_map (abfd);
20036 while (m && m->p_type != PT_ARM_EXIDX)
20037 m = m->next;
20038 if (!m)
20039 {
20040 m = (struct elf_segment_map *)
20041 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
20042 if (m == NULL)
20043 return FALSE;
20044 m->p_type = PT_ARM_EXIDX;
20045 m->count = 1;
20046 m->sections[0] = sec;
20047
20048 m->next = elf_seg_map (abfd);
20049 elf_seg_map (abfd) = m;
20050 }
20051 }
20052
20053 return TRUE;
20054 }
20055
20056 /* We may add a PT_ARM_EXIDX program header. */
20057
20058 static int
20059 elf32_arm_additional_program_headers (bfd *abfd,
20060 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20061 {
20062 asection *sec;
20063
20064 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20065 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20066 return 1;
20067 else
20068 return 0;
20069 }
20070
20071 /* Hook called by the linker routine which adds symbols from an object
20072 file. */
20073
20074 static bfd_boolean
20075 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20076 Elf_Internal_Sym *sym, const char **namep,
20077 flagword *flagsp, asection **secp, bfd_vma *valp)
20078 {
20079 if (elf32_arm_hash_table (info) == NULL)
20080 return FALSE;
20081
20082 if (elf32_arm_hash_table (info)->vxworks_p
20083 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20084 flagsp, secp, valp))
20085 return FALSE;
20086
20087 return TRUE;
20088 }
20089
20090 /* We use this to override swap_symbol_in and swap_symbol_out. */
20091 const struct elf_size_info elf32_arm_size_info =
20092 {
20093 sizeof (Elf32_External_Ehdr),
20094 sizeof (Elf32_External_Phdr),
20095 sizeof (Elf32_External_Shdr),
20096 sizeof (Elf32_External_Rel),
20097 sizeof (Elf32_External_Rela),
20098 sizeof (Elf32_External_Sym),
20099 sizeof (Elf32_External_Dyn),
20100 sizeof (Elf_External_Note),
20101 4,
20102 1,
20103 32, 2,
20104 ELFCLASS32, EV_CURRENT,
20105 bfd_elf32_write_out_phdrs,
20106 bfd_elf32_write_shdrs_and_ehdr,
20107 bfd_elf32_checksum_contents,
20108 bfd_elf32_write_relocs,
20109 elf32_arm_swap_symbol_in,
20110 elf32_arm_swap_symbol_out,
20111 bfd_elf32_slurp_reloc_table,
20112 bfd_elf32_slurp_symbol_table,
20113 bfd_elf32_swap_dyn_in,
20114 bfd_elf32_swap_dyn_out,
20115 bfd_elf32_swap_reloc_in,
20116 bfd_elf32_swap_reloc_out,
20117 bfd_elf32_swap_reloca_in,
20118 bfd_elf32_swap_reloca_out
20119 };
20120
20121 static bfd_vma
20122 read_code32 (const bfd *abfd, const bfd_byte *addr)
20123 {
20124 /* V7 BE8 code is always little endian. */
20125 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20126 return bfd_getl32 (addr);
20127
20128 return bfd_get_32 (abfd, addr);
20129 }
20130
20131 static bfd_vma
20132 read_code16 (const bfd *abfd, const bfd_byte *addr)
20133 {
20134 /* V7 BE8 code is always little endian. */
20135 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20136 return bfd_getl16 (addr);
20137
20138 return bfd_get_16 (abfd, addr);
20139 }
20140
20141 /* Return size of plt0 entry starting at ADDR
20142 or (bfd_vma) -1 if size can not be determined. */
20143
20144 static bfd_vma
20145 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20146 {
20147 bfd_vma first_word;
20148 bfd_vma plt0_size;
20149
20150 first_word = read_code32 (abfd, addr);
20151
20152 if (first_word == elf32_arm_plt0_entry[0])
20153 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20154 else if (first_word == elf32_thumb2_plt0_entry[0])
20155 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20156 else
20157 /* We don't yet handle this PLT format. */
20158 return (bfd_vma) -1;
20159
20160 return plt0_size;
20161 }
20162
20163 /* Return size of plt entry starting at offset OFFSET
20164 of plt section located at address START
20165 or (bfd_vma) -1 if size can not be determined. */
20166
20167 static bfd_vma
20168 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20169 {
20170 bfd_vma first_insn;
20171 bfd_vma plt_size = 0;
20172 const bfd_byte *addr = start + offset;
20173
20174 /* PLT entry size if fixed on Thumb-only platforms. */
20175 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20176 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20177
20178 /* Respect Thumb stub if necessary. */
20179 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20180 {
20181 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20182 }
20183
20184 /* Strip immediate from first add. */
20185 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20186
20187 #ifdef FOUR_WORD_PLT
20188 if (first_insn == elf32_arm_plt_entry[0])
20189 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20190 #else
20191 if (first_insn == elf32_arm_plt_entry_long[0])
20192 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20193 else if (first_insn == elf32_arm_plt_entry_short[0])
20194 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20195 #endif
20196 else
20197 /* We don't yet handle this PLT format. */
20198 return (bfd_vma) -1;
20199
20200 return plt_size;
20201 }
20202
20203 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20204
20205 static long
20206 elf32_arm_get_synthetic_symtab (bfd *abfd,
20207 long symcount ATTRIBUTE_UNUSED,
20208 asymbol **syms ATTRIBUTE_UNUSED,
20209 long dynsymcount,
20210 asymbol **dynsyms,
20211 asymbol **ret)
20212 {
20213 asection *relplt;
20214 asymbol *s;
20215 arelent *p;
20216 long count, i, n;
20217 size_t size;
20218 Elf_Internal_Shdr *hdr;
20219 char *names;
20220 asection *plt;
20221 bfd_vma offset;
20222 bfd_byte *data;
20223
20224 *ret = NULL;
20225
20226 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20227 return 0;
20228
20229 if (dynsymcount <= 0)
20230 return 0;
20231
20232 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20233 if (relplt == NULL)
20234 return 0;
20235
20236 hdr = &elf_section_data (relplt)->this_hdr;
20237 if (hdr->sh_link != elf_dynsymtab (abfd)
20238 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20239 return 0;
20240
20241 plt = bfd_get_section_by_name (abfd, ".plt");
20242 if (plt == NULL)
20243 return 0;
20244
20245 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20246 return -1;
20247
20248 data = plt->contents;
20249 if (data == NULL)
20250 {
20251 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20252 return -1;
20253 bfd_cache_section_contents((asection *) plt, data);
20254 }
20255
20256 count = relplt->size / hdr->sh_entsize;
20257 size = count * sizeof (asymbol);
20258 p = relplt->relocation;
20259 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20260 {
20261 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20262 if (p->addend != 0)
20263 size += sizeof ("+0x") - 1 + 8;
20264 }
20265
20266 s = *ret = (asymbol *) bfd_malloc (size);
20267 if (s == NULL)
20268 return -1;
20269
20270 offset = elf32_arm_plt0_size (abfd, data);
20271 if (offset == (bfd_vma) -1)
20272 return -1;
20273
20274 names = (char *) (s + count);
20275 p = relplt->relocation;
20276 n = 0;
20277 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20278 {
20279 size_t len;
20280
20281 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20282 if (plt_size == (bfd_vma) -1)
20283 break;
20284
20285 *s = **p->sym_ptr_ptr;
20286 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20287 we are defining a symbol, ensure one of them is set. */
20288 if ((s->flags & BSF_LOCAL) == 0)
20289 s->flags |= BSF_GLOBAL;
20290 s->flags |= BSF_SYNTHETIC;
20291 s->section = plt;
20292 s->value = offset;
20293 s->name = names;
20294 s->udata.p = NULL;
20295 len = strlen ((*p->sym_ptr_ptr)->name);
20296 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20297 names += len;
20298 if (p->addend != 0)
20299 {
20300 char buf[30], *a;
20301
20302 memcpy (names, "+0x", sizeof ("+0x") - 1);
20303 names += sizeof ("+0x") - 1;
20304 bfd_sprintf_vma (abfd, buf, p->addend);
20305 for (a = buf; *a == '0'; ++a)
20306 ;
20307 len = strlen (a);
20308 memcpy (names, a, len);
20309 names += len;
20310 }
20311 memcpy (names, "@plt", sizeof ("@plt"));
20312 names += sizeof ("@plt");
20313 ++s, ++n;
20314 offset += plt_size;
20315 }
20316
20317 return n;
20318 }
20319
20320 static bfd_boolean
20321 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20322 {
20323 if (hdr->sh_flags & SHF_ARM_PURECODE)
20324 *flags |= SEC_ELF_PURECODE;
20325 return TRUE;
20326 }
20327
20328 static flagword
20329 elf32_arm_lookup_section_flags (char *flag_name)
20330 {
20331 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20332 return SHF_ARM_PURECODE;
20333
20334 return SEC_NO_FLAGS;
20335 }
20336
20337 static unsigned int
20338 elf32_arm_count_additional_relocs (asection *sec)
20339 {
20340 struct _arm_elf_section_data *arm_data;
20341 arm_data = get_arm_elf_section_data (sec);
20342
20343 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20344 }
20345
20346 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20347 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20348 FALSE otherwise. ISECTION is the best guess matching section from the
20349 input bfd IBFD, but it might be NULL. */
20350
20351 static bfd_boolean
20352 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20353 bfd *obfd ATTRIBUTE_UNUSED,
20354 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20355 Elf_Internal_Shdr *osection)
20356 {
20357 switch (osection->sh_type)
20358 {
20359 case SHT_ARM_EXIDX:
20360 {
20361 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20362 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20363 unsigned i = 0;
20364
20365 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20366 osection->sh_info = 0;
20367
20368 /* The sh_link field must be set to the text section associated with
20369 this index section. Unfortunately the ARM EHABI does not specify
20370 exactly how to determine this association. Our caller does try
20371 to match up OSECTION with its corresponding input section however
20372 so that is a good first guess. */
20373 if (isection != NULL
20374 && osection->bfd_section != NULL
20375 && isection->bfd_section != NULL
20376 && isection->bfd_section->output_section != NULL
20377 && isection->bfd_section->output_section == osection->bfd_section
20378 && iheaders != NULL
20379 && isection->sh_link > 0
20380 && isection->sh_link < elf_numsections (ibfd)
20381 && iheaders[isection->sh_link]->bfd_section != NULL
20382 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20383 )
20384 {
20385 for (i = elf_numsections (obfd); i-- > 0;)
20386 if (oheaders[i]->bfd_section
20387 == iheaders[isection->sh_link]->bfd_section->output_section)
20388 break;
20389 }
20390
20391 if (i == 0)
20392 {
20393 /* Failing that we have to find a matching section ourselves. If
20394 we had the output section name available we could compare that
20395 with input section names. Unfortunately we don't. So instead
20396 we use a simple heuristic and look for the nearest executable
20397 section before this one. */
20398 for (i = elf_numsections (obfd); i-- > 0;)
20399 if (oheaders[i] == osection)
20400 break;
20401 if (i == 0)
20402 break;
20403
20404 while (i-- > 0)
20405 if (oheaders[i]->sh_type == SHT_PROGBITS
20406 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20407 == (SHF_ALLOC | SHF_EXECINSTR))
20408 break;
20409 }
20410
20411 if (i)
20412 {
20413 osection->sh_link = i;
20414 /* If the text section was part of a group
20415 then the index section should be too. */
20416 if (oheaders[i]->sh_flags & SHF_GROUP)
20417 osection->sh_flags |= SHF_GROUP;
20418 return TRUE;
20419 }
20420 }
20421 break;
20422
20423 case SHT_ARM_PREEMPTMAP:
20424 osection->sh_flags = SHF_ALLOC;
20425 break;
20426
20427 case SHT_ARM_ATTRIBUTES:
20428 case SHT_ARM_DEBUGOVERLAY:
20429 case SHT_ARM_OVERLAYSECTION:
20430 default:
20431 break;
20432 }
20433
20434 return FALSE;
20435 }
20436
20437 /* Returns TRUE if NAME is an ARM mapping symbol.
20438 Traditionally the symbols $a, $d and $t have been used.
20439 The ARM ELF standard also defines $x (for A64 code). It also allows a
20440 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20441 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20442 not support them here. $t.x indicates the start of ThumbEE instructions. */
20443
20444 static bfd_boolean
20445 is_arm_mapping_symbol (const char * name)
20446 {
20447 return name != NULL /* Paranoia. */
20448 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20449 the mapping symbols could have acquired a prefix.
20450 We do not support this here, since such symbols no
20451 longer conform to the ARM ELF ABI. */
20452 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20453 && (name[2] == 0 || name[2] == '.');
20454 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20455 any characters that follow the period are legal characters for the body
20456 of a symbol's name. For now we just assume that this is the case. */
20457 }
20458
20459 /* Make sure that mapping symbols in object files are not removed via the
20460 "strip --strip-unneeded" tool. These symbols are needed in order to
20461 correctly generate interworking veneers, and for byte swapping code
20462 regions. Once an object file has been linked, it is safe to remove the
20463 symbols as they will no longer be needed. */
20464
20465 static void
20466 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20467 {
20468 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20469 && sym->section != bfd_abs_section_ptr
20470 && is_arm_mapping_symbol (sym->name))
20471 sym->flags |= BSF_KEEP;
20472 }
20473
20474 #undef elf_backend_copy_special_section_fields
20475 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20476
20477 #define ELF_ARCH bfd_arch_arm
20478 #define ELF_TARGET_ID ARM_ELF_DATA
20479 #define ELF_MACHINE_CODE EM_ARM
20480 #ifdef __QNXTARGET__
20481 #define ELF_MAXPAGESIZE 0x1000
20482 #else
20483 #define ELF_MAXPAGESIZE 0x10000
20484 #endif
20485 #define ELF_MINPAGESIZE 0x1000
20486 #define ELF_COMMONPAGESIZE 0x1000
20487
20488 #define bfd_elf32_mkobject elf32_arm_mkobject
20489
20490 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20491 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20492 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20493 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20494 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20495 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20496 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20497 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20498 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20499 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20500 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20501 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20502 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20503
20504 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20505 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20506 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20507 #define elf_backend_check_relocs elf32_arm_check_relocs
20508 #define elf_backend_update_relocs elf32_arm_update_relocs
20509 #define elf_backend_relocate_section elf32_arm_relocate_section
20510 #define elf_backend_write_section elf32_arm_write_section
20511 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20512 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20513 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20514 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20515 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20516 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20517 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20518 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20519 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20520 #define elf_backend_object_p elf32_arm_object_p
20521 #define elf_backend_fake_sections elf32_arm_fake_sections
20522 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20523 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20524 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20525 #define elf_backend_size_info elf32_arm_size_info
20526 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20527 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20528 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20529 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20530 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20531 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20532 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20533 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20534
20535 #define elf_backend_can_refcount 1
20536 #define elf_backend_can_gc_sections 1
20537 #define elf_backend_plt_readonly 1
20538 #define elf_backend_want_got_plt 1
20539 #define elf_backend_want_plt_sym 0
20540 #define elf_backend_want_dynrelro 1
20541 #define elf_backend_may_use_rel_p 1
20542 #define elf_backend_may_use_rela_p 0
20543 #define elf_backend_default_use_rela_p 0
20544 #define elf_backend_dtrel_excludes_plt 1
20545
20546 #define elf_backend_got_header_size 12
20547 #define elf_backend_extern_protected_data 1
20548
20549 #undef elf_backend_obj_attrs_vendor
20550 #define elf_backend_obj_attrs_vendor "aeabi"
20551 #undef elf_backend_obj_attrs_section
20552 #define elf_backend_obj_attrs_section ".ARM.attributes"
20553 #undef elf_backend_obj_attrs_arg_type
20554 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20555 #undef elf_backend_obj_attrs_section_type
20556 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20557 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20558 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20559
20560 #undef elf_backend_section_flags
20561 #define elf_backend_section_flags elf32_arm_section_flags
20562 #undef elf_backend_lookup_section_flags_hook
20563 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20564
20565 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20566
20567 #include "elf32-target.h"
20568
20569 /* Native Client targets. */
20570
20571 #undef TARGET_LITTLE_SYM
20572 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20573 #undef TARGET_LITTLE_NAME
20574 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20575 #undef TARGET_BIG_SYM
20576 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20577 #undef TARGET_BIG_NAME
20578 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20579
20580 /* Like elf32_arm_link_hash_table_create -- but overrides
20581 appropriately for NaCl. */
20582
20583 static struct bfd_link_hash_table *
20584 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20585 {
20586 struct bfd_link_hash_table *ret;
20587
20588 ret = elf32_arm_link_hash_table_create (abfd);
20589 if (ret)
20590 {
20591 struct elf32_arm_link_hash_table *htab
20592 = (struct elf32_arm_link_hash_table *) ret;
20593
20594 htab->nacl_p = 1;
20595
20596 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20597 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20598 }
20599 return ret;
20600 }
20601
20602 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20603 really need to use elf32_arm_modify_segment_map. But we do it
20604 anyway just to reduce gratuitous differences with the stock ARM backend. */
20605
20606 static bfd_boolean
20607 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20608 {
20609 return (elf32_arm_modify_segment_map (abfd, info)
20610 && nacl_modify_segment_map (abfd, info));
20611 }
20612
20613 static void
20614 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20615 {
20616 elf32_arm_final_write_processing (abfd, linker);
20617 nacl_final_write_processing (abfd, linker);
20618 }
20619
20620 static bfd_vma
20621 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20622 const arelent *rel ATTRIBUTE_UNUSED)
20623 {
20624 return plt->vma
20625 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20626 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20627 }
20628
20629 #undef elf32_bed
20630 #define elf32_bed elf32_arm_nacl_bed
20631 #undef bfd_elf32_bfd_link_hash_table_create
20632 #define bfd_elf32_bfd_link_hash_table_create \
20633 elf32_arm_nacl_link_hash_table_create
20634 #undef elf_backend_plt_alignment
20635 #define elf_backend_plt_alignment 4
20636 #undef elf_backend_modify_segment_map
20637 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20638 #undef elf_backend_modify_program_headers
20639 #define elf_backend_modify_program_headers nacl_modify_program_headers
20640 #undef elf_backend_final_write_processing
20641 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20642 #undef bfd_elf32_get_synthetic_symtab
20643 #undef elf_backend_plt_sym_val
20644 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20645 #undef elf_backend_copy_special_section_fields
20646
20647 #undef ELF_MINPAGESIZE
20648 #undef ELF_COMMONPAGESIZE
20649
20650
20651 #include "elf32-target.h"
20652
20653 /* Reset to defaults. */
20654 #undef elf_backend_plt_alignment
20655 #undef elf_backend_modify_segment_map
20656 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20657 #undef elf_backend_modify_program_headers
20658 #undef elf_backend_final_write_processing
20659 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20660 #undef ELF_MINPAGESIZE
20661 #define ELF_MINPAGESIZE 0x1000
20662 #undef ELF_COMMONPAGESIZE
20663 #define ELF_COMMONPAGESIZE 0x1000
20664
20665
20666 /* FDPIC Targets. */
20667
20668 #undef TARGET_LITTLE_SYM
20669 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20670 #undef TARGET_LITTLE_NAME
20671 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20672 #undef TARGET_BIG_SYM
20673 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20674 #undef TARGET_BIG_NAME
20675 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20676 #undef elf_match_priority
20677 #define elf_match_priority 128
20678 #undef ELF_OSABI
20679 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20680
20681 /* Like elf32_arm_link_hash_table_create -- but overrides
20682 appropriately for FDPIC. */
20683
20684 static struct bfd_link_hash_table *
20685 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20686 {
20687 struct bfd_link_hash_table *ret;
20688
20689 ret = elf32_arm_link_hash_table_create (abfd);
20690 if (ret)
20691 {
20692 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20693
20694 htab->fdpic_p = 1;
20695 }
20696 return ret;
20697 }
20698
20699 /* We need dynamic symbols for every section, since segments can
20700 relocate independently. */
20701 static bfd_boolean
20702 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20703 struct bfd_link_info *info
20704 ATTRIBUTE_UNUSED,
20705 asection *p ATTRIBUTE_UNUSED)
20706 {
20707 switch (elf_section_data (p)->this_hdr.sh_type)
20708 {
20709 case SHT_PROGBITS:
20710 case SHT_NOBITS:
20711 /* If sh_type is yet undecided, assume it could be
20712 SHT_PROGBITS/SHT_NOBITS. */
20713 case SHT_NULL:
20714 return FALSE;
20715
20716 /* There shouldn't be section relative relocations
20717 against any other section. */
20718 default:
20719 return TRUE;
20720 }
20721 }
20722
20723 #undef elf32_bed
20724 #define elf32_bed elf32_arm_fdpic_bed
20725
20726 #undef bfd_elf32_bfd_link_hash_table_create
20727 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20728
20729 #undef elf_backend_omit_section_dynsym
20730 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20731
20732 #include "elf32-target.h"
20733
20734 #undef elf_match_priority
20735 #undef ELF_OSABI
20736 #undef elf_backend_omit_section_dynsym
20737
20738 /* VxWorks Targets. */
20739
20740 #undef TARGET_LITTLE_SYM
20741 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20742 #undef TARGET_LITTLE_NAME
20743 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20744 #undef TARGET_BIG_SYM
20745 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20746 #undef TARGET_BIG_NAME
20747 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20748
20749 /* Like elf32_arm_link_hash_table_create -- but overrides
20750 appropriately for VxWorks. */
20751
20752 static struct bfd_link_hash_table *
20753 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20754 {
20755 struct bfd_link_hash_table *ret;
20756
20757 ret = elf32_arm_link_hash_table_create (abfd);
20758 if (ret)
20759 {
20760 struct elf32_arm_link_hash_table *htab
20761 = (struct elf32_arm_link_hash_table *) ret;
20762 htab->use_rel = 0;
20763 htab->vxworks_p = 1;
20764 }
20765 return ret;
20766 }
20767
20768 static void
20769 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20770 {
20771 elf32_arm_final_write_processing (abfd, linker);
20772 elf_vxworks_final_write_processing (abfd, linker);
20773 }
20774
20775 #undef elf32_bed
20776 #define elf32_bed elf32_arm_vxworks_bed
20777
20778 #undef bfd_elf32_bfd_link_hash_table_create
20779 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20780 #undef elf_backend_final_write_processing
20781 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20782 #undef elf_backend_emit_relocs
20783 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20784
20785 #undef elf_backend_may_use_rel_p
20786 #define elf_backend_may_use_rel_p 0
20787 #undef elf_backend_may_use_rela_p
20788 #define elf_backend_may_use_rela_p 1
20789 #undef elf_backend_default_use_rela_p
20790 #define elf_backend_default_use_rela_p 1
20791 #undef elf_backend_want_plt_sym
20792 #define elf_backend_want_plt_sym 1
20793 #undef ELF_MAXPAGESIZE
20794 #define ELF_MAXPAGESIZE 0x1000
20795
20796 #include "elf32-target.h"
20797
20798
20799 /* Merge backend specific data from an object file to the output
20800 object file when linking. */
20801
20802 static bfd_boolean
20803 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20804 {
20805 bfd *obfd = info->output_bfd;
20806 flagword out_flags;
20807 flagword in_flags;
20808 bfd_boolean flags_compatible = TRUE;
20809 asection *sec;
20810
20811 /* Check if we have the same endianness. */
20812 if (! _bfd_generic_verify_endian_match (ibfd, info))
20813 return FALSE;
20814
20815 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20816 return TRUE;
20817
20818 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20819 return FALSE;
20820
20821 /* The input BFD must have had its flags initialised. */
20822 /* The following seems bogus to me -- The flags are initialized in
20823 the assembler but I don't think an elf_flags_init field is
20824 written into the object. */
20825 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20826
20827 in_flags = elf_elfheader (ibfd)->e_flags;
20828 out_flags = elf_elfheader (obfd)->e_flags;
20829
20830 /* In theory there is no reason why we couldn't handle this. However
20831 in practice it isn't even close to working and there is no real
20832 reason to want it. */
20833 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20834 && !(ibfd->flags & DYNAMIC)
20835 && (in_flags & EF_ARM_BE8))
20836 {
20837 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20838 ibfd);
20839 return FALSE;
20840 }
20841
20842 if (!elf_flags_init (obfd))
20843 {
20844 /* If the input is the default architecture and had the default
20845 flags then do not bother setting the flags for the output
20846 architecture, instead allow future merges to do this. If no
20847 future merges ever set these flags then they will retain their
20848 uninitialised values, which surprise surprise, correspond
20849 to the default values. */
20850 if (bfd_get_arch_info (ibfd)->the_default
20851 && elf_elfheader (ibfd)->e_flags == 0)
20852 return TRUE;
20853
20854 elf_flags_init (obfd) = TRUE;
20855 elf_elfheader (obfd)->e_flags = in_flags;
20856
20857 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20858 && bfd_get_arch_info (obfd)->the_default)
20859 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20860
20861 return TRUE;
20862 }
20863
20864 /* Determine what should happen if the input ARM architecture
20865 does not match the output ARM architecture. */
20866 if (! bfd_arm_merge_machines (ibfd, obfd))
20867 return FALSE;
20868
20869 /* Identical flags must be compatible. */
20870 if (in_flags == out_flags)
20871 return TRUE;
20872
20873 /* Check to see if the input BFD actually contains any sections. If
20874 not, its flags may not have been initialised either, but it
20875 cannot actually cause any incompatiblity. Do not short-circuit
20876 dynamic objects; their section list may be emptied by
20877 elf_link_add_object_symbols.
20878
20879 Also check to see if there are no code sections in the input.
20880 In this case there is no need to check for code specific flags.
20881 XXX - do we need to worry about floating-point format compatability
20882 in data sections ? */
20883 if (!(ibfd->flags & DYNAMIC))
20884 {
20885 bfd_boolean null_input_bfd = TRUE;
20886 bfd_boolean only_data_sections = TRUE;
20887
20888 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20889 {
20890 /* Ignore synthetic glue sections. */
20891 if (strcmp (sec->name, ".glue_7")
20892 && strcmp (sec->name, ".glue_7t"))
20893 {
20894 if ((bfd_get_section_flags (ibfd, sec)
20895 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20896 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20897 only_data_sections = FALSE;
20898
20899 null_input_bfd = FALSE;
20900 break;
20901 }
20902 }
20903
20904 if (null_input_bfd || only_data_sections)
20905 return TRUE;
20906 }
20907
20908 /* Complain about various flag mismatches. */
20909 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20910 EF_ARM_EABI_VERSION (out_flags)))
20911 {
20912 _bfd_error_handler
20913 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20914 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20915 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20916 return FALSE;
20917 }
20918
20919 /* Not sure what needs to be checked for EABI versions >= 1. */
20920 /* VxWorks libraries do not use these flags. */
20921 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20922 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20923 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20924 {
20925 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20926 {
20927 _bfd_error_handler
20928 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20929 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20930 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20931 flags_compatible = FALSE;
20932 }
20933
20934 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20935 {
20936 if (in_flags & EF_ARM_APCS_FLOAT)
20937 _bfd_error_handler
20938 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20939 ibfd, obfd);
20940 else
20941 _bfd_error_handler
20942 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20943 ibfd, obfd);
20944
20945 flags_compatible = FALSE;
20946 }
20947
20948 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20949 {
20950 if (in_flags & EF_ARM_VFP_FLOAT)
20951 _bfd_error_handler
20952 (_("error: %pB uses %s instructions, whereas %pB does not"),
20953 ibfd, "VFP", obfd);
20954 else
20955 _bfd_error_handler
20956 (_("error: %pB uses %s instructions, whereas %pB does not"),
20957 ibfd, "FPA", obfd);
20958
20959 flags_compatible = FALSE;
20960 }
20961
20962 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20963 {
20964 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20965 _bfd_error_handler
20966 (_("error: %pB uses %s instructions, whereas %pB does not"),
20967 ibfd, "Maverick", obfd);
20968 else
20969 _bfd_error_handler
20970 (_("error: %pB does not use %s instructions, whereas %pB does"),
20971 ibfd, "Maverick", obfd);
20972
20973 flags_compatible = FALSE;
20974 }
20975
20976 #ifdef EF_ARM_SOFT_FLOAT
20977 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20978 {
20979 /* We can allow interworking between code that is VFP format
20980 layout, and uses either soft float or integer regs for
20981 passing floating point arguments and results. We already
20982 know that the APCS_FLOAT flags match; similarly for VFP
20983 flags. */
20984 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20985 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20986 {
20987 if (in_flags & EF_ARM_SOFT_FLOAT)
20988 _bfd_error_handler
20989 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20990 ibfd, obfd);
20991 else
20992 _bfd_error_handler
20993 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20994 ibfd, obfd);
20995
20996 flags_compatible = FALSE;
20997 }
20998 }
20999 #endif
21000
21001 /* Interworking mismatch is only a warning. */
21002 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
21003 {
21004 if (in_flags & EF_ARM_INTERWORK)
21005 {
21006 _bfd_error_handler
21007 (_("warning: %pB supports interworking, whereas %pB does not"),
21008 ibfd, obfd);
21009 }
21010 else
21011 {
21012 _bfd_error_handler
21013 (_("warning: %pB does not support interworking, whereas %pB does"),
21014 ibfd, obfd);
21015 }
21016 }
21017 }
21018
21019 return flags_compatible;
21020 }
21021
21022
21023 /* Symbian OS Targets. */
21024
21025 #undef TARGET_LITTLE_SYM
21026 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
21027 #undef TARGET_LITTLE_NAME
21028 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
21029 #undef TARGET_BIG_SYM
21030 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
21031 #undef TARGET_BIG_NAME
21032 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
21033
21034 /* Like elf32_arm_link_hash_table_create -- but overrides
21035 appropriately for Symbian OS. */
21036
21037 static struct bfd_link_hash_table *
21038 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
21039 {
21040 struct bfd_link_hash_table *ret;
21041
21042 ret = elf32_arm_link_hash_table_create (abfd);
21043 if (ret)
21044 {
21045 struct elf32_arm_link_hash_table *htab
21046 = (struct elf32_arm_link_hash_table *)ret;
21047 /* There is no PLT header for Symbian OS. */
21048 htab->plt_header_size = 0;
21049 /* The PLT entries are each one instruction and one word. */
21050 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
21051 htab->symbian_p = 1;
21052 /* Symbian uses armv5t or above, so use_blx is always true. */
21053 htab->use_blx = 1;
21054 htab->root.is_relocatable_executable = 1;
21055 }
21056 return ret;
21057 }
21058
21059 static const struct bfd_elf_special_section
21060 elf32_arm_symbian_special_sections[] =
21061 {
21062 /* In a BPABI executable, the dynamic linking sections do not go in
21063 the loadable read-only segment. The post-linker may wish to
21064 refer to these sections, but they are not part of the final
21065 program image. */
21066 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21067 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21068 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21069 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21070 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21071 /* These sections do not need to be writable as the SymbianOS
21072 postlinker will arrange things so that no dynamic relocation is
21073 required. */
21074 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21075 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21076 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21077 { NULL, 0, 0, 0, 0 }
21078 };
21079
21080 static void
21081 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21082 struct bfd_link_info *link_info)
21083 {
21084 /* BPABI objects are never loaded directly by an OS kernel; they are
21085 processed by a postlinker first, into an OS-specific format. If
21086 the D_PAGED bit is set on the file, BFD will align segments on
21087 page boundaries, so that an OS can directly map the file. With
21088 BPABI objects, that just results in wasted space. In addition,
21089 because we clear the D_PAGED bit, map_sections_to_segments will
21090 recognize that the program headers should not be mapped into any
21091 loadable segment. */
21092 abfd->flags &= ~D_PAGED;
21093 elf32_arm_begin_write_processing (abfd, link_info);
21094 }
21095
21096 static bfd_boolean
21097 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21098 struct bfd_link_info *info)
21099 {
21100 struct elf_segment_map *m;
21101 asection *dynsec;
21102
21103 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21104 segment. However, because the .dynamic section is not marked
21105 with SEC_LOAD, the generic ELF code will not create such a
21106 segment. */
21107 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21108 if (dynsec)
21109 {
21110 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21111 if (m->p_type == PT_DYNAMIC)
21112 break;
21113
21114 if (m == NULL)
21115 {
21116 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21117 m->next = elf_seg_map (abfd);
21118 elf_seg_map (abfd) = m;
21119 }
21120 }
21121
21122 /* Also call the generic arm routine. */
21123 return elf32_arm_modify_segment_map (abfd, info);
21124 }
21125
21126 /* Return address for Ith PLT stub in section PLT, for relocation REL
21127 or (bfd_vma) -1 if it should not be included. */
21128
21129 static bfd_vma
21130 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21131 const arelent *rel ATTRIBUTE_UNUSED)
21132 {
21133 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21134 }
21135
21136 #undef elf32_bed
21137 #define elf32_bed elf32_arm_symbian_bed
21138
21139 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21140 will process them and then discard them. */
21141 #undef ELF_DYNAMIC_SEC_FLAGS
21142 #define ELF_DYNAMIC_SEC_FLAGS \
21143 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21144
21145 #undef elf_backend_emit_relocs
21146
21147 #undef bfd_elf32_bfd_link_hash_table_create
21148 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21149 #undef elf_backend_special_sections
21150 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21151 #undef elf_backend_begin_write_processing
21152 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21153 #undef elf_backend_final_write_processing
21154 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21155
21156 #undef elf_backend_modify_segment_map
21157 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21158
21159 /* There is no .got section for BPABI objects, and hence no header. */
21160 #undef elf_backend_got_header_size
21161 #define elf_backend_got_header_size 0
21162
21163 /* Similarly, there is no .got.plt section. */
21164 #undef elf_backend_want_got_plt
21165 #define elf_backend_want_got_plt 0
21166
21167 #undef elf_backend_plt_sym_val
21168 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21169
21170 #undef elf_backend_may_use_rel_p
21171 #define elf_backend_may_use_rel_p 1
21172 #undef elf_backend_may_use_rela_p
21173 #define elf_backend_may_use_rela_p 0
21174 #undef elf_backend_default_use_rela_p
21175 #define elf_backend_default_use_rela_p 0
21176 #undef elf_backend_want_plt_sym
21177 #define elf_backend_want_plt_sym 0
21178 #undef elf_backend_dtrel_excludes_plt
21179 #define elf_backend_dtrel_excludes_plt 0
21180 #undef ELF_MAXPAGESIZE
21181 #define ELF_MAXPAGESIZE 0x8000
21182
21183 #include "elf32-target.h"