]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.h
* elf-bfd.h (struct elf_backend_data): Add rela_normal.
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 free (ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && r_symndx != 0
1120 && (r_type != R_ARM_PC24
1121 || (h != NULL
1122 && h->dynindx != -1
1123 && (! info->symbolic
1124 || (h->elf_link_hash_flags
1125 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1126 {
1127 Elf_Internal_Rel outrel;
1128 boolean skip, relocate;
1129
1130 if (sreloc == NULL)
1131 {
1132 const char * name;
1133
1134 name = (bfd_elf_string_from_elf_section
1135 (input_bfd,
1136 elf_elfheader (input_bfd)->e_shstrndx,
1137 elf_section_data (input_section)->rel_hdr.sh_name));
1138 if (name == NULL)
1139 return bfd_reloc_notsupported;
1140
1141 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1142 && strcmp (bfd_get_section_name (input_bfd,
1143 input_section),
1144 name + 4) == 0);
1145
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 BFD_ASSERT (sreloc != NULL);
1148 }
1149
1150 skip = false;
1151 relocate = false;
1152
1153 outrel.r_offset =
1154 _bfd_elf_section_offset (output_bfd, info, input_section,
1155 rel->r_offset);
1156 if (outrel.r_offset == (bfd_vma) -1)
1157 skip = true;
1158 else if (outrel.r_offset == (bfd_vma) -2)
1159 skip = true, relocate = true;
1160 outrel.r_offset += (input_section->output_section->vma
1161 + input_section->output_offset);
1162
1163 if (skip)
1164 memset (&outrel, 0, sizeof outrel);
1165 else if (r_type == R_ARM_PC24)
1166 {
1167 BFD_ASSERT (h != NULL && h->dynindx != -1);
1168 if ((input_section->flags & SEC_ALLOC) == 0)
1169 relocate = true;
1170 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1171 }
1172 else
1173 {
1174 if (h == NULL
1175 || ((info->symbolic || h->dynindx == -1)
1176 && (h->elf_link_hash_flags
1177 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1178 {
1179 relocate = true;
1180 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1181 }
1182 else
1183 {
1184 BFD_ASSERT (h->dynindx != -1);
1185 if ((input_section->flags & SEC_ALLOC) == 0)
1186 relocate = true;
1187 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1188 }
1189 }
1190
1191 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1192 (((Elf32_External_Rel *)
1193 sreloc->contents)
1194 + sreloc->reloc_count));
1195 ++sreloc->reloc_count;
1196
1197 /* If this reloc is against an external symbol, we do not want to
1198 fiddle with the addend. Otherwise, we need to include the symbol
1199 value so that it becomes an addend for the dynamic reloc. */
1200 if (! relocate)
1201 return bfd_reloc_ok;
1202
1203 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1204 contents, rel->r_offset, value,
1205 (bfd_vma) 0);
1206 }
1207 else switch (r_type)
1208 {
1209 #ifndef OLD_ARM_ABI
1210 case R_ARM_XPC25: /* Arm BLX instruction. */
1211 #endif
1212 case R_ARM_PC24: /* Arm B/BL instruction */
1213 #ifndef OLD_ARM_ABI
1214 if (r_type == R_ARM_XPC25)
1215 {
1216 /* Check for Arm calling Arm function. */
1217 /* FIXME: Should we translate the instruction into a BL
1218 instruction instead ? */
1219 if (sym_flags != STT_ARM_TFUNC)
1220 (*_bfd_error_handler) (_("\
1221 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1222 bfd_archive_filename (input_bfd),
1223 h ? h->root.root.string : "(local)");
1224 }
1225 else
1226 #endif
1227 {
1228 /* Check for Arm calling Thumb function. */
1229 if (sym_flags == STT_ARM_TFUNC)
1230 {
1231 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1232 input_section, hit_data, sym_sec, rel->r_offset,
1233 signed_addend, value);
1234 return bfd_reloc_ok;
1235 }
1236 }
1237
1238 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1239 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1240 {
1241 /* The old way of doing things. Trearing the addend as a
1242 byte sized field and adding in the pipeline offset. */
1243 value -= (input_section->output_section->vma
1244 + input_section->output_offset);
1245 value -= rel->r_offset;
1246 value += addend;
1247
1248 if (! globals->no_pipeline_knowledge)
1249 value -= 8;
1250 }
1251 else
1252 {
1253 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1254 where:
1255 S is the address of the symbol in the relocation.
1256 P is address of the instruction being relocated.
1257 A is the addend (extracted from the instruction) in bytes.
1258
1259 S is held in 'value'.
1260 P is the base address of the section containing the instruction
1261 plus the offset of the reloc into that section, ie:
1262 (input_section->output_section->vma +
1263 input_section->output_offset +
1264 rel->r_offset).
1265 A is the addend, converted into bytes, ie:
1266 (signed_addend * 4)
1267
1268 Note: None of these operations have knowledge of the pipeline
1269 size of the processor, thus it is up to the assembler to encode
1270 this information into the addend. */
1271 value -= (input_section->output_section->vma
1272 + input_section->output_offset);
1273 value -= rel->r_offset;
1274 value += (signed_addend << howto->size);
1275
1276 /* Previous versions of this code also used to add in the pipeline
1277 offset here. This is wrong because the linker is not supposed
1278 to know about such things, and one day it might change. In order
1279 to support old binaries that need the old behaviour however, so
1280 we attempt to detect which ABI was used to create the reloc. */
1281 if (! globals->no_pipeline_knowledge)
1282 {
1283 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1284
1285 i_ehdrp = elf_elfheader (input_bfd);
1286
1287 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1288 value -= 8;
1289 }
1290 }
1291
1292 signed_addend = value;
1293 signed_addend >>= howto->rightshift;
1294
1295 /* It is not an error for an undefined weak reference to be
1296 out of range. Any program that branches to such a symbol
1297 is going to crash anyway, so there is no point worrying
1298 about getting the destination exactly right. */
1299 if (! h || h->root.type != bfd_link_hash_undefweak)
1300 {
1301 /* Perform a signed range check. */
1302 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1303 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1304 return bfd_reloc_overflow;
1305 }
1306
1307 #ifndef OLD_ARM_ABI
1308 /* If necessary set the H bit in the BLX instruction. */
1309 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1310 value = (signed_addend & howto->dst_mask)
1311 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1312 | (1 << 24);
1313 else
1314 #endif
1315 value = (signed_addend & howto->dst_mask)
1316 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1317 break;
1318
1319 case R_ARM_ABS32:
1320 value += addend;
1321 if (sym_flags == STT_ARM_TFUNC)
1322 value |= 1;
1323 break;
1324
1325 case R_ARM_REL32:
1326 value -= (input_section->output_section->vma
1327 + input_section->output_offset + rel->r_offset);
1328 value += addend;
1329 break;
1330 }
1331
1332 bfd_put_32 (input_bfd, value, hit_data);
1333 return bfd_reloc_ok;
1334
1335 case R_ARM_ABS8:
1336 value += addend;
1337 if ((long) value > 0x7f || (long) value < -0x80)
1338 return bfd_reloc_overflow;
1339
1340 bfd_put_8 (input_bfd, value, hit_data);
1341 return bfd_reloc_ok;
1342
1343 case R_ARM_ABS16:
1344 value += addend;
1345
1346 if ((long) value > 0x7fff || (long) value < -0x8000)
1347 return bfd_reloc_overflow;
1348
1349 bfd_put_16 (input_bfd, value, hit_data);
1350 return bfd_reloc_ok;
1351
1352 case R_ARM_ABS12:
1353 /* Support ldr and str instruction for the arm */
1354 /* Also thumb b (unconditional branch). ??? Really? */
1355 value += addend;
1356
1357 if ((long) value > 0x7ff || (long) value < -0x800)
1358 return bfd_reloc_overflow;
1359
1360 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1361 bfd_put_32 (input_bfd, value, hit_data);
1362 return bfd_reloc_ok;
1363
1364 case R_ARM_THM_ABS5:
1365 /* Support ldr and str instructions for the thumb. */
1366 #ifdef USE_REL
1367 /* Need to refetch addend. */
1368 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1369 /* ??? Need to determine shift amount from operand size. */
1370 addend >>= howto->rightshift;
1371 #endif
1372 value += addend;
1373
1374 /* ??? Isn't value unsigned? */
1375 if ((long) value > 0x1f || (long) value < -0x10)
1376 return bfd_reloc_overflow;
1377
1378 /* ??? Value needs to be properly shifted into place first. */
1379 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1380 bfd_put_16 (input_bfd, value, hit_data);
1381 return bfd_reloc_ok;
1382
1383 #ifndef OLD_ARM_ABI
1384 case R_ARM_THM_XPC22:
1385 #endif
1386 case R_ARM_THM_PC22:
1387 /* Thumb BL (branch long instruction). */
1388 {
1389 bfd_vma relocation;
1390 boolean overflow = false;
1391 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1392 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1393 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1394 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1395 bfd_vma check;
1396 bfd_signed_vma signed_check;
1397
1398 #ifdef USE_REL
1399 /* Need to refetch the addend and squish the two 11 bit pieces
1400 together. */
1401 {
1402 bfd_vma upper = upper_insn & 0x7ff;
1403 bfd_vma lower = lower_insn & 0x7ff;
1404 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1405 addend = (upper << 12) | (lower << 1);
1406 signed_addend = addend;
1407 }
1408 #endif
1409 #ifndef OLD_ARM_ABI
1410 if (r_type == R_ARM_THM_XPC22)
1411 {
1412 /* Check for Thumb to Thumb call. */
1413 /* FIXME: Should we translate the instruction into a BL
1414 instruction instead ? */
1415 if (sym_flags == STT_ARM_TFUNC)
1416 (*_bfd_error_handler) (_("\
1417 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1418 bfd_archive_filename (input_bfd),
1419 h ? h->root.root.string : "(local)");
1420 }
1421 else
1422 #endif
1423 {
1424 /* If it is not a call to Thumb, assume call to Arm.
1425 If it is a call relative to a section name, then it is not a
1426 function call at all, but rather a long jump. */
1427 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1428 {
1429 if (elf32_thumb_to_arm_stub
1430 (info, sym_name, input_bfd, output_bfd, input_section,
1431 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1432 return bfd_reloc_ok;
1433 else
1434 return bfd_reloc_dangerous;
1435 }
1436 }
1437
1438 relocation = value + signed_addend;
1439
1440 relocation -= (input_section->output_section->vma
1441 + input_section->output_offset
1442 + rel->r_offset);
1443
1444 if (! globals->no_pipeline_knowledge)
1445 {
1446 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1447
1448 i_ehdrp = elf_elfheader (input_bfd);
1449
1450 /* Previous versions of this code also used to add in the pipline
1451 offset here. This is wrong because the linker is not supposed
1452 to know about such things, and one day it might change. In order
1453 to support old binaries that need the old behaviour however, so
1454 we attempt to detect which ABI was used to create the reloc. */
1455 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1456 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1457 || i_ehdrp->e_ident[EI_OSABI] == 0)
1458 relocation += 4;
1459 }
1460
1461 check = relocation >> howto->rightshift;
1462
1463 /* If this is a signed value, the rightshift just dropped
1464 leading 1 bits (assuming twos complement). */
1465 if ((bfd_signed_vma) relocation >= 0)
1466 signed_check = check;
1467 else
1468 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1469
1470 /* Assumes two's complement. */
1471 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1472 overflow = true;
1473
1474 /* Put RELOCATION back into the insn. */
1475 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1476 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1477
1478 #ifndef OLD_ARM_ABI
1479 if (r_type == R_ARM_THM_XPC22
1480 && ((lower_insn & 0x1800) == 0x0800))
1481 /* Remove bit zero of the adjusted offset. Bit zero can only be
1482 set if the upper insn is at a half-word boundary, since the
1483 destination address, an ARM instruction, must always be on a
1484 word boundary. The semantics of the BLX (1) instruction, however,
1485 are that bit zero in the offset must always be zero, and the
1486 corresponding bit one in the target address will be set from bit
1487 one of the source address. */
1488 lower_insn &= ~1;
1489 #endif
1490 /* Put the relocated value back in the object file: */
1491 bfd_put_16 (input_bfd, upper_insn, hit_data);
1492 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1493
1494 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1495 }
1496 break;
1497
1498 case R_ARM_THM_PC11:
1499 /* Thumb B (branch) instruction). */
1500 {
1501 bfd_vma relocation;
1502 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1503 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1504 bfd_vma check;
1505 bfd_signed_vma signed_check;
1506
1507 #ifdef USE_REL
1508 /* Need to refetch addend. */
1509 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1510 /* ??? Need to determine shift amount from operand size. */
1511 addend >>= howto->rightshift;
1512 #endif
1513 relocation = value + addend;
1514
1515 relocation -= (input_section->output_section->vma
1516 + input_section->output_offset
1517 + rel->r_offset);
1518
1519 check = relocation >> howto->rightshift;
1520
1521 /* If this is a signed value, the rightshift just
1522 dropped leading 1 bits (assuming twos complement). */
1523 if ((bfd_signed_vma) relocation >= 0)
1524 signed_check = check;
1525 else
1526 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1527
1528 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1529
1530 bfd_put_16 (input_bfd, relocation, hit_data);
1531
1532 /* Assumes two's complement. */
1533 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1534 return bfd_reloc_overflow;
1535
1536 return bfd_reloc_ok;
1537 }
1538
1539 case R_ARM_GNU_VTINHERIT:
1540 case R_ARM_GNU_VTENTRY:
1541 return bfd_reloc_ok;
1542
1543 case R_ARM_COPY:
1544 return bfd_reloc_notsupported;
1545
1546 case R_ARM_GLOB_DAT:
1547 return bfd_reloc_notsupported;
1548
1549 case R_ARM_JUMP_SLOT:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_RELATIVE:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_GOTOFF:
1556 /* Relocation is relative to the start of the
1557 global offset table. */
1558
1559 BFD_ASSERT (sgot != NULL);
1560 if (sgot == NULL)
1561 return bfd_reloc_notsupported;
1562
1563 /* If we are addressing a Thumb function, we need to adjust the
1564 address by one, so that attempts to call the function pointer will
1565 correctly interpret it as Thumb code. */
1566 if (sym_flags == STT_ARM_TFUNC)
1567 value += 1;
1568
1569 /* Note that sgot->output_offset is not involved in this
1570 calculation. We always want the start of .got. If we
1571 define _GLOBAL_OFFSET_TABLE in a different way, as is
1572 permitted by the ABI, we might have to change this
1573 calculation. */
1574 value -= sgot->output_section->vma;
1575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1576 contents, rel->r_offset, value,
1577 (bfd_vma) 0);
1578
1579 case R_ARM_GOTPC:
1580 /* Use global offset table as symbol value. */
1581 BFD_ASSERT (sgot != NULL);
1582
1583 if (sgot == NULL)
1584 return bfd_reloc_notsupported;
1585
1586 value = sgot->output_section->vma;
1587 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1588 contents, rel->r_offset, value,
1589 (bfd_vma) 0);
1590
1591 case R_ARM_GOT32:
1592 /* Relocation is to the entry for this symbol in the
1593 global offset table. */
1594 if (sgot == NULL)
1595 return bfd_reloc_notsupported;
1596
1597 if (h != NULL)
1598 {
1599 bfd_vma off;
1600
1601 off = h->got.offset;
1602 BFD_ASSERT (off != (bfd_vma) -1);
1603
1604 if (!elf_hash_table (info)->dynamic_sections_created ||
1605 (info->shared && (info->symbolic || h->dynindx == -1)
1606 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1607 {
1608 /* This is actually a static link, or it is a -Bsymbolic link
1609 and the symbol is defined locally. We must initialize this
1610 entry in the global offset table. Since the offset must
1611 always be a multiple of 4, we use the least significant bit
1612 to record whether we have initialized it already.
1613
1614 When doing a dynamic link, we create a .rel.got relocation
1615 entry to initialize the value. This is done in the
1616 finish_dynamic_symbol routine. */
1617 if ((off & 1) != 0)
1618 off &= ~1;
1619 else
1620 {
1621 /* If we are addressing a Thumb function, we need to
1622 adjust the address by one, so that attempts to
1623 call the function pointer will correctly
1624 interpret it as Thumb code. */
1625 if (sym_flags == STT_ARM_TFUNC)
1626 value |= 1;
1627
1628 bfd_put_32 (output_bfd, value, sgot->contents + off);
1629 h->got.offset |= 1;
1630 }
1631 }
1632
1633 value = sgot->output_offset + off;
1634 }
1635 else
1636 {
1637 bfd_vma off;
1638
1639 BFD_ASSERT (local_got_offsets != NULL &&
1640 local_got_offsets[r_symndx] != (bfd_vma) -1);
1641
1642 off = local_got_offsets[r_symndx];
1643
1644 /* The offset must always be a multiple of 4. We use the
1645 least significant bit to record whether we have already
1646 generated the necessary reloc. */
1647 if ((off & 1) != 0)
1648 off &= ~1;
1649 else
1650 {
1651 bfd_put_32 (output_bfd, value, sgot->contents + off);
1652
1653 if (info->shared)
1654 {
1655 asection * srelgot;
1656 Elf_Internal_Rel outrel;
1657
1658 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1659 BFD_ASSERT (srelgot != NULL);
1660
1661 outrel.r_offset = (sgot->output_section->vma
1662 + sgot->output_offset
1663 + off);
1664 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1665 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1666 (((Elf32_External_Rel *)
1667 srelgot->contents)
1668 + srelgot->reloc_count));
1669 ++srelgot->reloc_count;
1670 }
1671
1672 local_got_offsets[r_symndx] |= 1;
1673 }
1674
1675 value = sgot->output_offset + off;
1676 }
1677
1678 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1679 contents, rel->r_offset, value,
1680 (bfd_vma) 0);
1681
1682 case R_ARM_PLT32:
1683 /* Relocation is to the entry for this symbol in the
1684 procedure linkage table. */
1685
1686 /* Resolve a PLT32 reloc against a local symbol directly,
1687 without using the procedure linkage table. */
1688 if (h == NULL)
1689 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1690 contents, rel->r_offset, value,
1691 (bfd_vma) 0);
1692
1693 if (h->plt.offset == (bfd_vma) -1)
1694 /* We didn't make a PLT entry for this symbol. This
1695 happens when statically linking PIC code, or when
1696 using -Bsymbolic. */
1697 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1698 contents, rel->r_offset, value,
1699 (bfd_vma) 0);
1700
1701 BFD_ASSERT(splt != NULL);
1702 if (splt == NULL)
1703 return bfd_reloc_notsupported;
1704
1705 value = (splt->output_section->vma
1706 + splt->output_offset
1707 + h->plt.offset);
1708 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1709 contents, rel->r_offset, value,
1710 (bfd_vma) 0);
1711
1712 case R_ARM_SBREL32:
1713 return bfd_reloc_notsupported;
1714
1715 case R_ARM_AMP_VCALL9:
1716 return bfd_reloc_notsupported;
1717
1718 case R_ARM_RSBREL32:
1719 return bfd_reloc_notsupported;
1720
1721 case R_ARM_THM_RPC22:
1722 return bfd_reloc_notsupported;
1723
1724 case R_ARM_RREL32:
1725 return bfd_reloc_notsupported;
1726
1727 case R_ARM_RABS32:
1728 return bfd_reloc_notsupported;
1729
1730 case R_ARM_RPC24:
1731 return bfd_reloc_notsupported;
1732
1733 case R_ARM_RBASE:
1734 return bfd_reloc_notsupported;
1735
1736 default:
1737 return bfd_reloc_notsupported;
1738 }
1739 }
1740
1741 #ifdef USE_REL
1742 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1743 static void
1744 arm_add_to_rel (abfd, address, howto, increment)
1745 bfd * abfd;
1746 bfd_byte * address;
1747 reloc_howto_type * howto;
1748 bfd_signed_vma increment;
1749 {
1750 bfd_signed_vma addend;
1751
1752 if (howto->type == R_ARM_THM_PC22)
1753 {
1754 int upper_insn, lower_insn;
1755 int upper, lower;
1756
1757 upper_insn = bfd_get_16 (abfd, address);
1758 lower_insn = bfd_get_16 (abfd, address + 2);
1759 upper = upper_insn & 0x7ff;
1760 lower = lower_insn & 0x7ff;
1761
1762 addend = (upper << 12) | (lower << 1);
1763 addend += increment;
1764 addend >>= 1;
1765
1766 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1767 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1768
1769 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1770 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1771 }
1772 else
1773 {
1774 bfd_vma contents;
1775
1776 contents = bfd_get_32 (abfd, address);
1777
1778 /* Get the (signed) value from the instruction. */
1779 addend = contents & howto->src_mask;
1780 if (addend & ((howto->src_mask + 1) >> 1))
1781 {
1782 bfd_signed_vma mask;
1783
1784 mask = -1;
1785 mask &= ~ howto->src_mask;
1786 addend |= mask;
1787 }
1788
1789 /* Add in the increment, (which is a byte value). */
1790 switch (howto->type)
1791 {
1792 default:
1793 addend += increment;
1794 break;
1795
1796 case R_ARM_PC24:
1797 addend <<= howto->size;
1798 addend += increment;
1799
1800 /* Should we check for overflow here ? */
1801
1802 /* Drop any undesired bits. */
1803 addend >>= howto->rightshift;
1804 break;
1805 }
1806
1807 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1808
1809 bfd_put_32 (abfd, contents, address);
1810 }
1811 }
1812 #endif /* USE_REL */
1813
1814 /* Relocate an ARM ELF section. */
1815 static boolean
1816 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1817 contents, relocs, local_syms, local_sections)
1818 bfd * output_bfd;
1819 struct bfd_link_info * info;
1820 bfd * input_bfd;
1821 asection * input_section;
1822 bfd_byte * contents;
1823 Elf_Internal_Rela * relocs;
1824 Elf_Internal_Sym * local_syms;
1825 asection ** local_sections;
1826 {
1827 Elf_Internal_Shdr * symtab_hdr;
1828 struct elf_link_hash_entry ** sym_hashes;
1829 Elf_Internal_Rela * rel;
1830 Elf_Internal_Rela * relend;
1831 const char * name;
1832
1833 #ifndef USE_REL
1834 if (info->relocateable)
1835 return true;
1836 #endif
1837
1838 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1839 sym_hashes = elf_sym_hashes (input_bfd);
1840
1841 rel = relocs;
1842 relend = relocs + input_section->reloc_count;
1843 for (; rel < relend; rel++)
1844 {
1845 int r_type;
1846 reloc_howto_type * howto;
1847 unsigned long r_symndx;
1848 Elf_Internal_Sym * sym;
1849 asection * sec;
1850 struct elf_link_hash_entry * h;
1851 bfd_vma relocation;
1852 bfd_reloc_status_type r;
1853 arelent bfd_reloc;
1854
1855 r_symndx = ELF32_R_SYM (rel->r_info);
1856 r_type = ELF32_R_TYPE (rel->r_info);
1857
1858 if ( r_type == R_ARM_GNU_VTENTRY
1859 || r_type == R_ARM_GNU_VTINHERIT)
1860 continue;
1861
1862 #ifdef USE_REL
1863 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1864 (Elf_Internal_Rel *) rel);
1865 #else
1866 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1867 #endif
1868 howto = bfd_reloc.howto;
1869
1870 #ifdef USE_REL
1871 if (info->relocateable)
1872 {
1873 /* This is a relocateable link. We don't have to change
1874 anything, unless the reloc is against a section symbol,
1875 in which case we have to adjust according to where the
1876 section symbol winds up in the output section. */
1877 if (r_symndx < symtab_hdr->sh_info)
1878 {
1879 sym = local_syms + r_symndx;
1880 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1881 {
1882 sec = local_sections[r_symndx];
1883 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1884 howto,
1885 (bfd_signed_vma) (sec->output_offset
1886 + sym->st_value));
1887 }
1888 }
1889
1890 continue;
1891 }
1892 #endif
1893
1894 /* This is a final link. */
1895 h = NULL;
1896 sym = NULL;
1897 sec = NULL;
1898
1899 if (r_symndx < symtab_hdr->sh_info)
1900 {
1901 sym = local_syms + r_symndx;
1902 sec = local_sections[r_symndx];
1903 #ifdef USE_REL
1904 relocation = (sec->output_section->vma
1905 + sec->output_offset
1906 + sym->st_value);
1907 if ((sec->flags & SEC_MERGE)
1908 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1909 {
1910 asection *msec;
1911 bfd_vma addend, value;
1912
1913 if (howto->rightshift)
1914 {
1915 (*_bfd_error_handler)
1916 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1917 bfd_archive_filename (input_bfd),
1918 bfd_get_section_name (input_bfd, input_section),
1919 (long) rel->r_offset, howto->name);
1920 return false;
1921 }
1922
1923 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1924
1925 /* Get the (signed) value from the instruction. */
1926 addend = value & howto->src_mask;
1927 if (addend & ((howto->src_mask + 1) >> 1))
1928 {
1929 bfd_signed_vma mask;
1930
1931 mask = -1;
1932 mask &= ~ howto->src_mask;
1933 addend |= mask;
1934 }
1935 msec = sec;
1936 addend =
1937 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1938 - relocation;
1939 addend += msec->output_section->vma + msec->output_offset;
1940 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1941 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1942 }
1943 #else
1944 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1945 #endif
1946 }
1947 else
1948 {
1949 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1950
1951 while ( h->root.type == bfd_link_hash_indirect
1952 || h->root.type == bfd_link_hash_warning)
1953 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1954
1955 if ( h->root.type == bfd_link_hash_defined
1956 || h->root.type == bfd_link_hash_defweak)
1957 {
1958 int relocation_needed = 1;
1959
1960 sec = h->root.u.def.section;
1961
1962 /* In these cases, we don't need the relocation value.
1963 We check specially because in some obscure cases
1964 sec->output_section will be NULL. */
1965 switch (r_type)
1966 {
1967 case R_ARM_PC24:
1968 case R_ARM_ABS32:
1969 case R_ARM_THM_PC22:
1970 if (info->shared
1971 && (
1972 (!info->symbolic && h->dynindx != -1)
1973 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1974 )
1975 && ((input_section->flags & SEC_ALLOC) != 0
1976 /* DWARF will emit R_ARM_ABS32 relocations in its
1977 sections against symbols defined externally
1978 in shared libraries. We can't do anything
1979 with them here. */
1980 || ((input_section->flags & SEC_DEBUGGING) != 0
1981 && (h->elf_link_hash_flags
1982 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1983 )
1984 relocation_needed = 0;
1985 break;
1986
1987 case R_ARM_GOTPC:
1988 relocation_needed = 0;
1989 break;
1990
1991 case R_ARM_GOT32:
1992 if (elf_hash_table(info)->dynamic_sections_created
1993 && (!info->shared
1994 || (!info->symbolic && h->dynindx != -1)
1995 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1996 )
1997 )
1998 relocation_needed = 0;
1999 break;
2000
2001 case R_ARM_PLT32:
2002 if (h->plt.offset != (bfd_vma)-1)
2003 relocation_needed = 0;
2004 break;
2005
2006 default:
2007 if (sec->output_section == NULL)
2008 {
2009 (*_bfd_error_handler)
2010 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2011 bfd_archive_filename (input_bfd),
2012 r_type,
2013 h->root.root.string,
2014 bfd_get_section_name (input_bfd, input_section));
2015 relocation_needed = 0;
2016 }
2017 }
2018
2019 if (relocation_needed)
2020 relocation = h->root.u.def.value
2021 + sec->output_section->vma
2022 + sec->output_offset;
2023 else
2024 relocation = 0;
2025 }
2026 else if (h->root.type == bfd_link_hash_undefweak)
2027 relocation = 0;
2028 else if (info->shared && !info->symbolic
2029 && !info->no_undefined
2030 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2031 relocation = 0;
2032 else
2033 {
2034 if (!((*info->callbacks->undefined_symbol)
2035 (info, h->root.root.string, input_bfd,
2036 input_section, rel->r_offset,
2037 (!info->shared || info->no_undefined
2038 || ELF_ST_VISIBILITY (h->other)))))
2039 return false;
2040 relocation = 0;
2041 }
2042 }
2043
2044 if (h != NULL)
2045 name = h->root.root.string;
2046 else
2047 {
2048 name = (bfd_elf_string_from_elf_section
2049 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2050 if (name == NULL || *name == '\0')
2051 name = bfd_section_name (input_bfd, sec);
2052 }
2053
2054 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2055 input_section, contents, rel,
2056 relocation, info, sec, name,
2057 (h ? ELF_ST_TYPE (h->type) :
2058 ELF_ST_TYPE (sym->st_info)), h);
2059
2060 if (r != bfd_reloc_ok)
2061 {
2062 const char * msg = (const char *) 0;
2063
2064 switch (r)
2065 {
2066 case bfd_reloc_overflow:
2067 /* If the overflowing reloc was to an undefined symbol,
2068 we have already printed one error message and there
2069 is no point complaining again. */
2070 if ((! h ||
2071 h->root.type != bfd_link_hash_undefined)
2072 && (!((*info->callbacks->reloc_overflow)
2073 (info, name, howto->name, (bfd_vma) 0,
2074 input_bfd, input_section, rel->r_offset))))
2075 return false;
2076 break;
2077
2078 case bfd_reloc_undefined:
2079 if (!((*info->callbacks->undefined_symbol)
2080 (info, name, input_bfd, input_section,
2081 rel->r_offset, true)))
2082 return false;
2083 break;
2084
2085 case bfd_reloc_outofrange:
2086 msg = _("internal error: out of range error");
2087 goto common_error;
2088
2089 case bfd_reloc_notsupported:
2090 msg = _("internal error: unsupported relocation error");
2091 goto common_error;
2092
2093 case bfd_reloc_dangerous:
2094 msg = _("internal error: dangerous error");
2095 goto common_error;
2096
2097 default:
2098 msg = _("internal error: unknown error");
2099 /* fall through */
2100
2101 common_error:
2102 if (!((*info->callbacks->warning)
2103 (info, msg, name, input_bfd, input_section,
2104 rel->r_offset)))
2105 return false;
2106 break;
2107 }
2108 }
2109 }
2110
2111 return true;
2112 }
2113
2114 /* Function to keep ARM specific flags in the ELF header. */
2115 static boolean
2116 elf32_arm_set_private_flags (abfd, flags)
2117 bfd *abfd;
2118 flagword flags;
2119 {
2120 if (elf_flags_init (abfd)
2121 && elf_elfheader (abfd)->e_flags != flags)
2122 {
2123 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2124 {
2125 if (flags & EF_ARM_INTERWORK)
2126 (*_bfd_error_handler) (_("\
2127 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2128 bfd_archive_filename (abfd));
2129 else
2130 _bfd_error_handler (_("\
2131 Warning: Clearing the interworking flag of %s due to outside request"),
2132 bfd_archive_filename (abfd));
2133 }
2134 }
2135 else
2136 {
2137 elf_elfheader (abfd)->e_flags = flags;
2138 elf_flags_init (abfd) = true;
2139 }
2140
2141 return true;
2142 }
2143
2144 /* Copy backend specific data from one object module to another. */
2145
2146 static boolean
2147 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2148 bfd *ibfd;
2149 bfd *obfd;
2150 {
2151 flagword in_flags;
2152 flagword out_flags;
2153
2154 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2155 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2156 return true;
2157
2158 in_flags = elf_elfheader (ibfd)->e_flags;
2159 out_flags = elf_elfheader (obfd)->e_flags;
2160
2161 if (elf_flags_init (obfd)
2162 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2163 && in_flags != out_flags)
2164 {
2165 /* Cannot mix APCS26 and APCS32 code. */
2166 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2167 return false;
2168
2169 /* Cannot mix float APCS and non-float APCS code. */
2170 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2171 return false;
2172
2173 /* If the src and dest have different interworking flags
2174 then turn off the interworking bit. */
2175 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2176 {
2177 if (out_flags & EF_ARM_INTERWORK)
2178 _bfd_error_handler (_("\
2179 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2180 bfd_get_filename (obfd),
2181 bfd_archive_filename (ibfd));
2182
2183 in_flags &= ~EF_ARM_INTERWORK;
2184 }
2185
2186 /* Likewise for PIC, though don't warn for this case. */
2187 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2188 in_flags &= ~EF_ARM_PIC;
2189 }
2190
2191 elf_elfheader (obfd)->e_flags = in_flags;
2192 elf_flags_init (obfd) = true;
2193
2194 return true;
2195 }
2196
2197 /* Merge backend specific data from an object file to the output
2198 object file when linking. */
2199
2200 static boolean
2201 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2202 bfd * ibfd;
2203 bfd * obfd;
2204 {
2205 flagword out_flags;
2206 flagword in_flags;
2207 boolean flags_compatible = true;
2208 boolean null_input_bfd = true;
2209 asection *sec;
2210
2211 /* Check if we have the same endianess. */
2212 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2213 return false;
2214
2215 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2216 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2217 return true;
2218
2219 /* The input BFD must have had its flags initialised. */
2220 /* The following seems bogus to me -- The flags are initialized in
2221 the assembler but I don't think an elf_flags_init field is
2222 written into the object. */
2223 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2224
2225 in_flags = elf_elfheader (ibfd)->e_flags;
2226 out_flags = elf_elfheader (obfd)->e_flags;
2227
2228 if (!elf_flags_init (obfd))
2229 {
2230 /* If the input is the default architecture and had the default
2231 flags then do not bother setting the flags for the output
2232 architecture, instead allow future merges to do this. If no
2233 future merges ever set these flags then they will retain their
2234 uninitialised values, which surprise surprise, correspond
2235 to the default values. */
2236 if (bfd_get_arch_info (ibfd)->the_default
2237 && elf_elfheader (ibfd)->e_flags == 0)
2238 return true;
2239
2240 elf_flags_init (obfd) = true;
2241 elf_elfheader (obfd)->e_flags = in_flags;
2242
2243 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2244 && bfd_get_arch_info (obfd)->the_default)
2245 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2246
2247 return true;
2248 }
2249
2250 /* Identical flags must be compatible. */
2251 if (in_flags == out_flags)
2252 return true;
2253
2254 /* Check to see if the input BFD actually contains any sections.
2255 If not, its flags may not have been initialised either, but it cannot
2256 actually cause any incompatibility. */
2257 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2258 {
2259 /* Ignore synthetic glue sections. */
2260 if (strcmp (sec->name, ".glue_7")
2261 && strcmp (sec->name, ".glue_7t"))
2262 {
2263 null_input_bfd = false;
2264 break;
2265 }
2266 }
2267 if (null_input_bfd)
2268 return true;
2269
2270 /* Complain about various flag mismatches. */
2271 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2272 {
2273 _bfd_error_handler (_("\
2274 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2275 bfd_archive_filename (ibfd),
2276 (in_flags & EF_ARM_EABIMASK) >> 24,
2277 bfd_get_filename (obfd),
2278 (out_flags & EF_ARM_EABIMASK) >> 24);
2279 return false;
2280 }
2281
2282 /* Not sure what needs to be checked for EABI versions >= 1. */
2283 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2284 {
2285 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2286 {
2287 _bfd_error_handler (_("\
2288 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2289 bfd_archive_filename (ibfd),
2290 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2291 bfd_get_filename (obfd),
2292 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2293 flags_compatible = false;
2294 }
2295
2296 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2297 {
2298 if (in_flags & EF_ARM_APCS_FLOAT)
2299 _bfd_error_handler (_("\
2300 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2301 bfd_archive_filename (ibfd),
2302 bfd_get_filename (obfd));
2303 else
2304 _bfd_error_handler (_("\
2305 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2306 bfd_archive_filename (ibfd),
2307 bfd_get_filename (obfd));
2308
2309 flags_compatible = false;
2310 }
2311
2312 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2313 {
2314 if (in_flags & EF_ARM_VFP_FLOAT)
2315 _bfd_error_handler (_("\
2316 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2317 bfd_archive_filename (ibfd),
2318 bfd_get_filename (obfd));
2319 else
2320 _bfd_error_handler (_("\
2321 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2322 bfd_archive_filename (ibfd),
2323 bfd_get_filename (obfd));
2324
2325 flags_compatible = false;
2326 }
2327
2328 #ifdef EF_ARM_SOFT_FLOAT
2329 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2330 {
2331 /* We can allow interworking between code that is VFP format
2332 layout, and uses either soft float or integer regs for
2333 passing floating point arguments and results. We already
2334 know that the APCS_FLOAT flags match; similarly for VFP
2335 flags. */
2336 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2337 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2338 {
2339 if (in_flags & EF_ARM_SOFT_FLOAT)
2340 _bfd_error_handler (_("\
2341 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2342 bfd_archive_filename (ibfd),
2343 bfd_get_filename (obfd));
2344 else
2345 _bfd_error_handler (_("\
2346 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2347 bfd_archive_filename (ibfd),
2348 bfd_get_filename (obfd));
2349
2350 flags_compatible = false;
2351 }
2352 }
2353 #endif
2354
2355 /* Interworking mismatch is only a warning. */
2356 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2357 {
2358 if (in_flags & EF_ARM_INTERWORK)
2359 {
2360 _bfd_error_handler (_("\
2361 Warning: %s supports interworking, whereas %s does not"),
2362 bfd_archive_filename (ibfd),
2363 bfd_get_filename (obfd));
2364 }
2365 else
2366 {
2367 _bfd_error_handler (_("\
2368 Warning: %s does not support interworking, whereas %s does"),
2369 bfd_archive_filename (ibfd),
2370 bfd_get_filename (obfd));
2371 }
2372 }
2373 }
2374
2375 return flags_compatible;
2376 }
2377
2378 /* Display the flags field. */
2379
2380 static boolean
2381 elf32_arm_print_private_bfd_data (abfd, ptr)
2382 bfd *abfd;
2383 PTR ptr;
2384 {
2385 FILE * file = (FILE *) ptr;
2386 unsigned long flags;
2387
2388 BFD_ASSERT (abfd != NULL && ptr != NULL);
2389
2390 /* Print normal ELF private data. */
2391 _bfd_elf_print_private_bfd_data (abfd, ptr);
2392
2393 flags = elf_elfheader (abfd)->e_flags;
2394 /* Ignore init flag - it may not be set, despite the flags field
2395 containing valid data. */
2396
2397 /* xgettext:c-format */
2398 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2399
2400 switch (EF_ARM_EABI_VERSION (flags))
2401 {
2402 case EF_ARM_EABI_UNKNOWN:
2403 /* The following flag bits are GNU extenstions and not part of the
2404 official ARM ELF extended ABI. Hence they are only decoded if
2405 the EABI version is not set. */
2406 if (flags & EF_ARM_INTERWORK)
2407 fprintf (file, _(" [interworking enabled]"));
2408
2409 if (flags & EF_ARM_APCS_26)
2410 fprintf (file, " [APCS-26]");
2411 else
2412 fprintf (file, " [APCS-32]");
2413
2414 if (flags & EF_ARM_VFP_FLOAT)
2415 fprintf (file, _(" [VFP float format]"));
2416 else
2417 fprintf (file, _(" [FPA float format]"));
2418
2419 if (flags & EF_ARM_APCS_FLOAT)
2420 fprintf (file, _(" [floats passed in float registers]"));
2421
2422 if (flags & EF_ARM_PIC)
2423 fprintf (file, _(" [position independent]"));
2424
2425 if (flags & EF_ARM_NEW_ABI)
2426 fprintf (file, _(" [new ABI]"));
2427
2428 if (flags & EF_ARM_OLD_ABI)
2429 fprintf (file, _(" [old ABI]"));
2430
2431 if (flags & EF_ARM_SOFT_FLOAT)
2432 fprintf (file, _(" [software FP]"));
2433
2434 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2435 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2436 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2437 break;
2438
2439 case EF_ARM_EABI_VER1:
2440 fprintf (file, _(" [Version1 EABI]"));
2441
2442 if (flags & EF_ARM_SYMSARESORTED)
2443 fprintf (file, _(" [sorted symbol table]"));
2444 else
2445 fprintf (file, _(" [unsorted symbol table]"));
2446
2447 flags &= ~ EF_ARM_SYMSARESORTED;
2448 break;
2449
2450 case EF_ARM_EABI_VER2:
2451 fprintf (file, _(" [Version2 EABI]"));
2452
2453 if (flags & EF_ARM_SYMSARESORTED)
2454 fprintf (file, _(" [sorted symbol table]"));
2455 else
2456 fprintf (file, _(" [unsorted symbol table]"));
2457
2458 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2459 fprintf (file, _(" [dynamic symbols use segment index]"));
2460
2461 if (flags & EF_ARM_MAPSYMSFIRST)
2462 fprintf (file, _(" [mapping symbols precede others]"));
2463
2464 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2465 | EF_ARM_MAPSYMSFIRST);
2466 break;
2467
2468 default:
2469 fprintf (file, _(" <EABI version unrecognised>"));
2470 break;
2471 }
2472
2473 flags &= ~ EF_ARM_EABIMASK;
2474
2475 if (flags & EF_ARM_RELEXEC)
2476 fprintf (file, _(" [relocatable executable]"));
2477
2478 if (flags & EF_ARM_HASENTRY)
2479 fprintf (file, _(" [has entry point]"));
2480
2481 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2482
2483 if (flags)
2484 fprintf (file, _("<Unrecognised flag bits set>"));
2485
2486 fputc ('\n', file);
2487
2488 return true;
2489 }
2490
2491 static int
2492 elf32_arm_get_symbol_type (elf_sym, type)
2493 Elf_Internal_Sym * elf_sym;
2494 int type;
2495 {
2496 switch (ELF_ST_TYPE (elf_sym->st_info))
2497 {
2498 case STT_ARM_TFUNC:
2499 return ELF_ST_TYPE (elf_sym->st_info);
2500
2501 case STT_ARM_16BIT:
2502 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2503 This allows us to distinguish between data used by Thumb instructions
2504 and non-data (which is probably code) inside Thumb regions of an
2505 executable. */
2506 if (type != STT_OBJECT)
2507 return ELF_ST_TYPE (elf_sym->st_info);
2508 break;
2509
2510 default:
2511 break;
2512 }
2513
2514 return type;
2515 }
2516
2517 static asection *
2518 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2519 bfd *abfd;
2520 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2521 Elf_Internal_Rela *rel;
2522 struct elf_link_hash_entry *h;
2523 Elf_Internal_Sym *sym;
2524 {
2525 if (h != NULL)
2526 {
2527 switch (ELF32_R_TYPE (rel->r_info))
2528 {
2529 case R_ARM_GNU_VTINHERIT:
2530 case R_ARM_GNU_VTENTRY:
2531 break;
2532
2533 default:
2534 switch (h->root.type)
2535 {
2536 case bfd_link_hash_defined:
2537 case bfd_link_hash_defweak:
2538 return h->root.u.def.section;
2539
2540 case bfd_link_hash_common:
2541 return h->root.u.c.p->section;
2542
2543 default:
2544 break;
2545 }
2546 }
2547 }
2548 else
2549 {
2550 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2551 }
2552
2553 return NULL;
2554 }
2555
2556 /* Update the got entry reference counts for the section being removed. */
2557
2558 static boolean
2559 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2560 bfd *abfd ATTRIBUTE_UNUSED;
2561 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2562 asection *sec ATTRIBUTE_UNUSED;
2563 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2564 {
2565 /* We don't support garbage collection of GOT and PLT relocs yet. */
2566 return true;
2567 }
2568
2569 /* Look through the relocs for a section during the first phase. */
2570
2571 static boolean
2572 elf32_arm_check_relocs (abfd, info, sec, relocs)
2573 bfd * abfd;
2574 struct bfd_link_info * info;
2575 asection * sec;
2576 const Elf_Internal_Rela * relocs;
2577 {
2578 Elf_Internal_Shdr * symtab_hdr;
2579 struct elf_link_hash_entry ** sym_hashes;
2580 struct elf_link_hash_entry ** sym_hashes_end;
2581 const Elf_Internal_Rela * rel;
2582 const Elf_Internal_Rela * rel_end;
2583 bfd * dynobj;
2584 asection * sgot, *srelgot, *sreloc;
2585 bfd_vma * local_got_offsets;
2586
2587 if (info->relocateable)
2588 return true;
2589
2590 sgot = srelgot = sreloc = NULL;
2591
2592 dynobj = elf_hash_table (info)->dynobj;
2593 local_got_offsets = elf_local_got_offsets (abfd);
2594
2595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2596 sym_hashes = elf_sym_hashes (abfd);
2597 sym_hashes_end = sym_hashes
2598 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2599
2600 if (!elf_bad_symtab (abfd))
2601 sym_hashes_end -= symtab_hdr->sh_info;
2602
2603 rel_end = relocs + sec->reloc_count;
2604 for (rel = relocs; rel < rel_end; rel++)
2605 {
2606 struct elf_link_hash_entry *h;
2607 unsigned long r_symndx;
2608
2609 r_symndx = ELF32_R_SYM (rel->r_info);
2610 if (r_symndx < symtab_hdr->sh_info)
2611 h = NULL;
2612 else
2613 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2614
2615 /* Some relocs require a global offset table. */
2616 if (dynobj == NULL)
2617 {
2618 switch (ELF32_R_TYPE (rel->r_info))
2619 {
2620 case R_ARM_GOT32:
2621 case R_ARM_GOTOFF:
2622 case R_ARM_GOTPC:
2623 elf_hash_table (info)->dynobj = dynobj = abfd;
2624 if (! _bfd_elf_create_got_section (dynobj, info))
2625 return false;
2626 break;
2627
2628 default:
2629 break;
2630 }
2631 }
2632
2633 switch (ELF32_R_TYPE (rel->r_info))
2634 {
2635 case R_ARM_GOT32:
2636 /* This symbol requires a global offset table entry. */
2637 if (sgot == NULL)
2638 {
2639 sgot = bfd_get_section_by_name (dynobj, ".got");
2640 BFD_ASSERT (sgot != NULL);
2641 }
2642
2643 /* Get the got relocation section if necessary. */
2644 if (srelgot == NULL
2645 && (h != NULL || info->shared))
2646 {
2647 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2648
2649 /* If no got relocation section, make one and initialize. */
2650 if (srelgot == NULL)
2651 {
2652 srelgot = bfd_make_section (dynobj, ".rel.got");
2653 if (srelgot == NULL
2654 || ! bfd_set_section_flags (dynobj, srelgot,
2655 (SEC_ALLOC
2656 | SEC_LOAD
2657 | SEC_HAS_CONTENTS
2658 | SEC_IN_MEMORY
2659 | SEC_LINKER_CREATED
2660 | SEC_READONLY))
2661 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2662 return false;
2663 }
2664 }
2665
2666 if (h != NULL)
2667 {
2668 if (h->got.offset != (bfd_vma) -1)
2669 /* We have already allocated space in the .got. */
2670 break;
2671
2672 h->got.offset = sgot->_raw_size;
2673
2674 /* Make sure this symbol is output as a dynamic symbol. */
2675 if (h->dynindx == -1)
2676 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2677 return false;
2678
2679 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2680 }
2681 else
2682 {
2683 /* This is a global offset table entry for a local
2684 symbol. */
2685 if (local_got_offsets == NULL)
2686 {
2687 bfd_size_type size;
2688 unsigned int i;
2689
2690 size = symtab_hdr->sh_info;
2691 size *= sizeof (bfd_vma);
2692 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2693 if (local_got_offsets == NULL)
2694 return false;
2695 elf_local_got_offsets (abfd) = local_got_offsets;
2696 for (i = 0; i < symtab_hdr->sh_info; i++)
2697 local_got_offsets[i] = (bfd_vma) -1;
2698 }
2699
2700 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2701 /* We have already allocated space in the .got. */
2702 break;
2703
2704 local_got_offsets[r_symndx] = sgot->_raw_size;
2705
2706 if (info->shared)
2707 /* If we are generating a shared object, we need to
2708 output a R_ARM_RELATIVE reloc so that the dynamic
2709 linker can adjust this GOT entry. */
2710 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2711 }
2712
2713 sgot->_raw_size += 4;
2714 break;
2715
2716 case R_ARM_PLT32:
2717 /* This symbol requires a procedure linkage table entry. We
2718 actually build the entry in adjust_dynamic_symbol,
2719 because this might be a case of linking PIC code which is
2720 never referenced by a dynamic object, in which case we
2721 don't need to generate a procedure linkage table entry
2722 after all. */
2723
2724 /* If this is a local symbol, we resolve it directly without
2725 creating a procedure linkage table entry. */
2726 if (h == NULL)
2727 continue;
2728
2729 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2730 break;
2731
2732 case R_ARM_ABS32:
2733 case R_ARM_REL32:
2734 case R_ARM_PC24:
2735 /* If we are creating a shared library, and this is a reloc
2736 against a global symbol, or a non PC relative reloc
2737 against a local symbol, then we need to copy the reloc
2738 into the shared library. However, if we are linking with
2739 -Bsymbolic, we do not need to copy a reloc against a
2740 global symbol which is defined in an object we are
2741 including in the link (i.e., DEF_REGULAR is set). At
2742 this point we have not seen all the input files, so it is
2743 possible that DEF_REGULAR is not set now but will be set
2744 later (it is never cleared). We account for that
2745 possibility below by storing information in the
2746 pcrel_relocs_copied field of the hash table entry. */
2747 if (info->shared
2748 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2749 || (h != NULL
2750 && (! info->symbolic
2751 || (h->elf_link_hash_flags
2752 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2753 {
2754 /* When creating a shared object, we must copy these
2755 reloc types into the output file. We create a reloc
2756 section in dynobj and make room for this reloc. */
2757 if (sreloc == NULL)
2758 {
2759 const char * name;
2760
2761 name = (bfd_elf_string_from_elf_section
2762 (abfd,
2763 elf_elfheader (abfd)->e_shstrndx,
2764 elf_section_data (sec)->rel_hdr.sh_name));
2765 if (name == NULL)
2766 return false;
2767
2768 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2769 && strcmp (bfd_get_section_name (abfd, sec),
2770 name + 4) == 0);
2771
2772 sreloc = bfd_get_section_by_name (dynobj, name);
2773 if (sreloc == NULL)
2774 {
2775 flagword flags;
2776
2777 sreloc = bfd_make_section (dynobj, name);
2778 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2779 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2780 if ((sec->flags & SEC_ALLOC) != 0)
2781 flags |= SEC_ALLOC | SEC_LOAD;
2782 if (sreloc == NULL
2783 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2784 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2785 return false;
2786 }
2787 if (sec->flags & SEC_READONLY)
2788 info->flags |= DF_TEXTREL;
2789 }
2790
2791 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2792 /* If we are linking with -Bsymbolic, and this is a
2793 global symbol, we count the number of PC relative
2794 relocations we have entered for this symbol, so that
2795 we can discard them again if the symbol is later
2796 defined by a regular object. Note that this function
2797 is only called if we are using an elf_i386 linker
2798 hash table, which means that h is really a pointer to
2799 an elf_i386_link_hash_entry. */
2800 if (h != NULL && info->symbolic
2801 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2802 {
2803 struct elf32_arm_link_hash_entry * eh;
2804 struct elf32_arm_pcrel_relocs_copied * p;
2805
2806 eh = (struct elf32_arm_link_hash_entry *) h;
2807
2808 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2809 if (p->section == sreloc)
2810 break;
2811
2812 if (p == NULL)
2813 {
2814 p = ((struct elf32_arm_pcrel_relocs_copied *)
2815 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2816 if (p == NULL)
2817 return false;
2818 p->next = eh->pcrel_relocs_copied;
2819 eh->pcrel_relocs_copied = p;
2820 p->section = sreloc;
2821 p->count = 0;
2822 }
2823
2824 ++p->count;
2825 }
2826 }
2827 break;
2828
2829 /* This relocation describes the C++ object vtable hierarchy.
2830 Reconstruct it for later use during GC. */
2831 case R_ARM_GNU_VTINHERIT:
2832 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2833 return false;
2834 break;
2835
2836 /* This relocation describes which C++ vtable entries are actually
2837 used. Record for later use during GC. */
2838 case R_ARM_GNU_VTENTRY:
2839 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2840 return false;
2841 break;
2842 }
2843 }
2844
2845 return true;
2846 }
2847
2848 /* Find the nearest line to a particular section and offset, for error
2849 reporting. This code is a duplicate of the code in elf.c, except
2850 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2851
2852 static boolean
2853 elf32_arm_find_nearest_line
2854 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2855 bfd * abfd;
2856 asection * section;
2857 asymbol ** symbols;
2858 bfd_vma offset;
2859 const char ** filename_ptr;
2860 const char ** functionname_ptr;
2861 unsigned int * line_ptr;
2862 {
2863 boolean found;
2864 const char * filename;
2865 asymbol * func;
2866 bfd_vma low_func;
2867 asymbol ** p;
2868
2869 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2870 filename_ptr, functionname_ptr,
2871 line_ptr, 0,
2872 &elf_tdata (abfd)->dwarf2_find_line_info))
2873 return true;
2874
2875 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2876 &found, filename_ptr,
2877 functionname_ptr, line_ptr,
2878 &elf_tdata (abfd)->line_info))
2879 return false;
2880
2881 if (found)
2882 return true;
2883
2884 if (symbols == NULL)
2885 return false;
2886
2887 filename = NULL;
2888 func = NULL;
2889 low_func = 0;
2890
2891 for (p = symbols; *p != NULL; p++)
2892 {
2893 elf_symbol_type *q;
2894
2895 q = (elf_symbol_type *) *p;
2896
2897 if (bfd_get_section (&q->symbol) != section)
2898 continue;
2899
2900 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2901 {
2902 default:
2903 break;
2904 case STT_FILE:
2905 filename = bfd_asymbol_name (&q->symbol);
2906 break;
2907 case STT_NOTYPE:
2908 case STT_FUNC:
2909 case STT_ARM_TFUNC:
2910 if (q->symbol.section == section
2911 && q->symbol.value >= low_func
2912 && q->symbol.value <= offset)
2913 {
2914 func = (asymbol *) q;
2915 low_func = q->symbol.value;
2916 }
2917 break;
2918 }
2919 }
2920
2921 if (func == NULL)
2922 return false;
2923
2924 *filename_ptr = filename;
2925 *functionname_ptr = bfd_asymbol_name (func);
2926 *line_ptr = 0;
2927
2928 return true;
2929 }
2930
2931 /* Adjust a symbol defined by a dynamic object and referenced by a
2932 regular object. The current definition is in some section of the
2933 dynamic object, but we're not including those sections. We have to
2934 change the definition to something the rest of the link can
2935 understand. */
2936
2937 static boolean
2938 elf32_arm_adjust_dynamic_symbol (info, h)
2939 struct bfd_link_info * info;
2940 struct elf_link_hash_entry * h;
2941 {
2942 bfd * dynobj;
2943 asection * s;
2944 unsigned int power_of_two;
2945
2946 dynobj = elf_hash_table (info)->dynobj;
2947
2948 /* Make sure we know what is going on here. */
2949 BFD_ASSERT (dynobj != NULL
2950 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2951 || h->weakdef != NULL
2952 || ((h->elf_link_hash_flags
2953 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2954 && (h->elf_link_hash_flags
2955 & ELF_LINK_HASH_REF_REGULAR) != 0
2956 && (h->elf_link_hash_flags
2957 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2958
2959 /* If this is a function, put it in the procedure linkage table. We
2960 will fill in the contents of the procedure linkage table later,
2961 when we know the address of the .got section. */
2962 if (h->type == STT_FUNC
2963 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2964 {
2965 if (! info->shared
2966 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2967 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2968 {
2969 /* This case can occur if we saw a PLT32 reloc in an input
2970 file, but the symbol was never referred to by a dynamic
2971 object. In such a case, we don't actually need to build
2972 a procedure linkage table, and we can just do a PC32
2973 reloc instead. */
2974 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2975 return true;
2976 }
2977
2978 /* Make sure this symbol is output as a dynamic symbol. */
2979 if (h->dynindx == -1)
2980 {
2981 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2982 return false;
2983 }
2984
2985 s = bfd_get_section_by_name (dynobj, ".plt");
2986 BFD_ASSERT (s != NULL);
2987
2988 /* If this is the first .plt entry, make room for the special
2989 first entry. */
2990 if (s->_raw_size == 0)
2991 s->_raw_size += PLT_ENTRY_SIZE;
2992
2993 /* If this symbol is not defined in a regular file, and we are
2994 not generating a shared library, then set the symbol to this
2995 location in the .plt. This is required to make function
2996 pointers compare as equal between the normal executable and
2997 the shared library. */
2998 if (! info->shared
2999 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3000 {
3001 h->root.u.def.section = s;
3002 h->root.u.def.value = s->_raw_size;
3003 }
3004
3005 h->plt.offset = s->_raw_size;
3006
3007 /* Make room for this entry. */
3008 s->_raw_size += PLT_ENTRY_SIZE;
3009
3010 /* We also need to make an entry in the .got.plt section, which
3011 will be placed in the .got section by the linker script. */
3012 s = bfd_get_section_by_name (dynobj, ".got.plt");
3013 BFD_ASSERT (s != NULL);
3014 s->_raw_size += 4;
3015
3016 /* We also need to make an entry in the .rel.plt section. */
3017
3018 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3019 BFD_ASSERT (s != NULL);
3020 s->_raw_size += sizeof (Elf32_External_Rel);
3021
3022 return true;
3023 }
3024
3025 /* If this is a weak symbol, and there is a real definition, the
3026 processor independent code will have arranged for us to see the
3027 real definition first, and we can just use the same value. */
3028 if (h->weakdef != NULL)
3029 {
3030 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3031 || h->weakdef->root.type == bfd_link_hash_defweak);
3032 h->root.u.def.section = h->weakdef->root.u.def.section;
3033 h->root.u.def.value = h->weakdef->root.u.def.value;
3034 return true;
3035 }
3036
3037 /* This is a reference to a symbol defined by a dynamic object which
3038 is not a function. */
3039
3040 /* If we are creating a shared library, we must presume that the
3041 only references to the symbol are via the global offset table.
3042 For such cases we need not do anything here; the relocations will
3043 be handled correctly by relocate_section. */
3044 if (info->shared)
3045 return true;
3046
3047 /* We must allocate the symbol in our .dynbss section, which will
3048 become part of the .bss section of the executable. There will be
3049 an entry for this symbol in the .dynsym section. The dynamic
3050 object will contain position independent code, so all references
3051 from the dynamic object to this symbol will go through the global
3052 offset table. The dynamic linker will use the .dynsym entry to
3053 determine the address it must put in the global offset table, so
3054 both the dynamic object and the regular object will refer to the
3055 same memory location for the variable. */
3056 s = bfd_get_section_by_name (dynobj, ".dynbss");
3057 BFD_ASSERT (s != NULL);
3058
3059 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3060 copy the initial value out of the dynamic object and into the
3061 runtime process image. We need to remember the offset into the
3062 .rel.bss section we are going to use. */
3063 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3064 {
3065 asection *srel;
3066
3067 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3068 BFD_ASSERT (srel != NULL);
3069 srel->_raw_size += sizeof (Elf32_External_Rel);
3070 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3071 }
3072
3073 /* We need to figure out the alignment required for this symbol. I
3074 have no idea how ELF linkers handle this. */
3075 power_of_two = bfd_log2 (h->size);
3076 if (power_of_two > 3)
3077 power_of_two = 3;
3078
3079 /* Apply the required alignment. */
3080 s->_raw_size = BFD_ALIGN (s->_raw_size,
3081 (bfd_size_type) (1 << power_of_two));
3082 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3083 {
3084 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3085 return false;
3086 }
3087
3088 /* Define the symbol as being at this point in the section. */
3089 h->root.u.def.section = s;
3090 h->root.u.def.value = s->_raw_size;
3091
3092 /* Increment the section size to make room for the symbol. */
3093 s->_raw_size += h->size;
3094
3095 return true;
3096 }
3097
3098 /* Set the sizes of the dynamic sections. */
3099
3100 static boolean
3101 elf32_arm_size_dynamic_sections (output_bfd, info)
3102 bfd * output_bfd ATTRIBUTE_UNUSED;
3103 struct bfd_link_info * info;
3104 {
3105 bfd * dynobj;
3106 asection * s;
3107 boolean plt;
3108 boolean relocs;
3109
3110 dynobj = elf_hash_table (info)->dynobj;
3111 BFD_ASSERT (dynobj != NULL);
3112
3113 if (elf_hash_table (info)->dynamic_sections_created)
3114 {
3115 /* Set the contents of the .interp section to the interpreter. */
3116 if (! info->shared)
3117 {
3118 s = bfd_get_section_by_name (dynobj, ".interp");
3119 BFD_ASSERT (s != NULL);
3120 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3121 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3122 }
3123 }
3124 else
3125 {
3126 /* We may have created entries in the .rel.got section.
3127 However, if we are not creating the dynamic sections, we will
3128 not actually use these entries. Reset the size of .rel.got,
3129 which will cause it to get stripped from the output file
3130 below. */
3131 s = bfd_get_section_by_name (dynobj, ".rel.got");
3132 if (s != NULL)
3133 s->_raw_size = 0;
3134 }
3135
3136 /* If this is a -Bsymbolic shared link, then we need to discard all
3137 PC relative relocs against symbols defined in a regular object.
3138 We allocated space for them in the check_relocs routine, but we
3139 will not fill them in in the relocate_section routine. */
3140 if (info->shared && info->symbolic)
3141 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3142 elf32_arm_discard_copies,
3143 (PTR) NULL);
3144
3145 /* The check_relocs and adjust_dynamic_symbol entry points have
3146 determined the sizes of the various dynamic sections. Allocate
3147 memory for them. */
3148 plt = false;
3149 relocs = false;
3150 for (s = dynobj->sections; s != NULL; s = s->next)
3151 {
3152 const char * name;
3153 boolean strip;
3154
3155 if ((s->flags & SEC_LINKER_CREATED) == 0)
3156 continue;
3157
3158 /* It's OK to base decisions on the section name, because none
3159 of the dynobj section names depend upon the input files. */
3160 name = bfd_get_section_name (dynobj, s);
3161
3162 strip = false;
3163
3164 if (strcmp (name, ".plt") == 0)
3165 {
3166 if (s->_raw_size == 0)
3167 {
3168 /* Strip this section if we don't need it; see the
3169 comment below. */
3170 strip = true;
3171 }
3172 else
3173 {
3174 /* Remember whether there is a PLT. */
3175 plt = true;
3176 }
3177 }
3178 else if (strncmp (name, ".rel", 4) == 0)
3179 {
3180 if (s->_raw_size == 0)
3181 {
3182 /* If we don't need this section, strip it from the
3183 output file. This is mostly to handle .rel.bss and
3184 .rel.plt. We must create both sections in
3185 create_dynamic_sections, because they must be created
3186 before the linker maps input sections to output
3187 sections. The linker does that before
3188 adjust_dynamic_symbol is called, and it is that
3189 function which decides whether anything needs to go
3190 into these sections. */
3191 strip = true;
3192 }
3193 else
3194 {
3195 /* Remember whether there are any reloc sections other
3196 than .rel.plt. */
3197 if (strcmp (name, ".rel.plt") != 0)
3198 relocs = true;
3199
3200 /* We use the reloc_count field as a counter if we need
3201 to copy relocs into the output file. */
3202 s->reloc_count = 0;
3203 }
3204 }
3205 else if (strncmp (name, ".got", 4) != 0)
3206 {
3207 /* It's not one of our sections, so don't allocate space. */
3208 continue;
3209 }
3210
3211 if (strip)
3212 {
3213 asection ** spp;
3214
3215 for (spp = &s->output_section->owner->sections;
3216 *spp != NULL;
3217 spp = &(*spp)->next)
3218 {
3219 if (*spp == s->output_section)
3220 {
3221 bfd_section_list_remove (s->output_section->owner, spp);
3222 --s->output_section->owner->section_count;
3223 break;
3224 }
3225 }
3226 continue;
3227 }
3228
3229 /* Allocate memory for the section contents. */
3230 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3231 if (s->contents == NULL && s->_raw_size != 0)
3232 return false;
3233 }
3234
3235 if (elf_hash_table (info)->dynamic_sections_created)
3236 {
3237 /* Add some entries to the .dynamic section. We fill in the
3238 values later, in elf32_arm_finish_dynamic_sections, but we
3239 must add the entries now so that we get the correct size for
3240 the .dynamic section. The DT_DEBUG entry is filled in by the
3241 dynamic linker and used by the debugger. */
3242 #define add_dynamic_entry(TAG, VAL) \
3243 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3244
3245 if (!info->shared)
3246 {
3247 if (!add_dynamic_entry (DT_DEBUG, 0))
3248 return false;
3249 }
3250
3251 if (plt)
3252 {
3253 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3254 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3255 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3256 || !add_dynamic_entry (DT_JMPREL, 0))
3257 return false;
3258 }
3259
3260 if (relocs)
3261 {
3262 if ( !add_dynamic_entry (DT_REL, 0)
3263 || !add_dynamic_entry (DT_RELSZ, 0)
3264 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3265 return false;
3266 }
3267
3268 if ((info->flags & DF_TEXTREL) != 0)
3269 {
3270 if (!add_dynamic_entry (DT_TEXTREL, 0))
3271 return false;
3272 info->flags |= DF_TEXTREL;
3273 }
3274 }
3275 #undef add_synamic_entry
3276
3277 return true;
3278 }
3279
3280 /* This function is called via elf32_arm_link_hash_traverse if we are
3281 creating a shared object with -Bsymbolic. It discards the space
3282 allocated to copy PC relative relocs against symbols which are
3283 defined in regular objects. We allocated space for them in the
3284 check_relocs routine, but we won't fill them in in the
3285 relocate_section routine. */
3286
3287 static boolean
3288 elf32_arm_discard_copies (h, ignore)
3289 struct elf32_arm_link_hash_entry * h;
3290 PTR ignore ATTRIBUTE_UNUSED;
3291 {
3292 struct elf32_arm_pcrel_relocs_copied * s;
3293
3294 if (h->root.root.type == bfd_link_hash_warning)
3295 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3296
3297 /* We only discard relocs for symbols defined in a regular object. */
3298 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3299 return true;
3300
3301 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3302 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3303
3304 return true;
3305 }
3306
3307 /* Finish up dynamic symbol handling. We set the contents of various
3308 dynamic sections here. */
3309
3310 static boolean
3311 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3312 bfd * output_bfd;
3313 struct bfd_link_info * info;
3314 struct elf_link_hash_entry * h;
3315 Elf_Internal_Sym * sym;
3316 {
3317 bfd * dynobj;
3318
3319 dynobj = elf_hash_table (info)->dynobj;
3320
3321 if (h->plt.offset != (bfd_vma) -1)
3322 {
3323 asection * splt;
3324 asection * sgot;
3325 asection * srel;
3326 bfd_vma plt_index;
3327 bfd_vma got_offset;
3328 Elf_Internal_Rel rel;
3329
3330 /* This symbol has an entry in the procedure linkage table. Set
3331 it up. */
3332
3333 BFD_ASSERT (h->dynindx != -1);
3334
3335 splt = bfd_get_section_by_name (dynobj, ".plt");
3336 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3337 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3338 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3339
3340 /* Get the index in the procedure linkage table which
3341 corresponds to this symbol. This is the index of this symbol
3342 in all the symbols for which we are making plt entries. The
3343 first entry in the procedure linkage table is reserved. */
3344 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3345
3346 /* Get the offset into the .got table of the entry that
3347 corresponds to this function. Each .got entry is 4 bytes.
3348 The first three are reserved. */
3349 got_offset = (plt_index + 3) * 4;
3350
3351 /* Fill in the entry in the procedure linkage table. */
3352 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3353 splt->contents + h->plt.offset + 0);
3354 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3355 splt->contents + h->plt.offset + 4);
3356 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3357 splt->contents + h->plt.offset + 8);
3358 bfd_put_32 (output_bfd,
3359 (sgot->output_section->vma
3360 + sgot->output_offset
3361 + got_offset
3362 - splt->output_section->vma
3363 - splt->output_offset
3364 - h->plt.offset - 12),
3365 splt->contents + h->plt.offset + 12);
3366
3367 /* Fill in the entry in the global offset table. */
3368 bfd_put_32 (output_bfd,
3369 (splt->output_section->vma
3370 + splt->output_offset),
3371 sgot->contents + got_offset);
3372
3373 /* Fill in the entry in the .rel.plt section. */
3374 rel.r_offset = (sgot->output_section->vma
3375 + sgot->output_offset
3376 + got_offset);
3377 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3378 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3379 ((Elf32_External_Rel *) srel->contents
3380 + plt_index));
3381
3382 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3383 {
3384 /* Mark the symbol as undefined, rather than as defined in
3385 the .plt section. Leave the value alone. */
3386 sym->st_shndx = SHN_UNDEF;
3387 /* If the symbol is weak, we do need to clear the value.
3388 Otherwise, the PLT entry would provide a definition for
3389 the symbol even if the symbol wasn't defined anywhere,
3390 and so the symbol would never be NULL. */
3391 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3392 == 0)
3393 sym->st_value = 0;
3394 }
3395 }
3396
3397 if (h->got.offset != (bfd_vma) -1)
3398 {
3399 asection * sgot;
3400 asection * srel;
3401 Elf_Internal_Rel rel;
3402
3403 /* This symbol has an entry in the global offset table. Set it
3404 up. */
3405 sgot = bfd_get_section_by_name (dynobj, ".got");
3406 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3407 BFD_ASSERT (sgot != NULL && srel != NULL);
3408
3409 rel.r_offset = (sgot->output_section->vma
3410 + sgot->output_offset
3411 + (h->got.offset &~ (bfd_vma) 1));
3412
3413 /* If this is a -Bsymbolic link, and the symbol is defined
3414 locally, we just want to emit a RELATIVE reloc. The entry in
3415 the global offset table will already have been initialized in
3416 the relocate_section function. */
3417 if (info->shared
3418 && (info->symbolic || h->dynindx == -1)
3419 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3420 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3421 else
3422 {
3423 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3424 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3425 }
3426
3427 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3428 ((Elf32_External_Rel *) srel->contents
3429 + srel->reloc_count));
3430 ++srel->reloc_count;
3431 }
3432
3433 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3434 {
3435 asection * s;
3436 Elf_Internal_Rel rel;
3437
3438 /* This symbol needs a copy reloc. Set it up. */
3439 BFD_ASSERT (h->dynindx != -1
3440 && (h->root.type == bfd_link_hash_defined
3441 || h->root.type == bfd_link_hash_defweak));
3442
3443 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3444 ".rel.bss");
3445 BFD_ASSERT (s != NULL);
3446
3447 rel.r_offset = (h->root.u.def.value
3448 + h->root.u.def.section->output_section->vma
3449 + h->root.u.def.section->output_offset);
3450 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3451 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3452 ((Elf32_External_Rel *) s->contents
3453 + s->reloc_count));
3454 ++s->reloc_count;
3455 }
3456
3457 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3458 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3459 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3460 sym->st_shndx = SHN_ABS;
3461
3462 return true;
3463 }
3464
3465 /* Finish up the dynamic sections. */
3466
3467 static boolean
3468 elf32_arm_finish_dynamic_sections (output_bfd, info)
3469 bfd * output_bfd;
3470 struct bfd_link_info * info;
3471 {
3472 bfd * dynobj;
3473 asection * sgot;
3474 asection * sdyn;
3475
3476 dynobj = elf_hash_table (info)->dynobj;
3477
3478 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3479 BFD_ASSERT (sgot != NULL);
3480 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3481
3482 if (elf_hash_table (info)->dynamic_sections_created)
3483 {
3484 asection *splt;
3485 Elf32_External_Dyn *dyncon, *dynconend;
3486
3487 splt = bfd_get_section_by_name (dynobj, ".plt");
3488 BFD_ASSERT (splt != NULL && sdyn != NULL);
3489
3490 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3491 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3492
3493 for (; dyncon < dynconend; dyncon++)
3494 {
3495 Elf_Internal_Dyn dyn;
3496 const char * name;
3497 asection * s;
3498
3499 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3500
3501 switch (dyn.d_tag)
3502 {
3503 default:
3504 break;
3505
3506 case DT_PLTGOT:
3507 name = ".got";
3508 goto get_vma;
3509 case DT_JMPREL:
3510 name = ".rel.plt";
3511 get_vma:
3512 s = bfd_get_section_by_name (output_bfd, name);
3513 BFD_ASSERT (s != NULL);
3514 dyn.d_un.d_ptr = s->vma;
3515 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3516 break;
3517
3518 case DT_PLTRELSZ:
3519 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3520 BFD_ASSERT (s != NULL);
3521 if (s->_cooked_size != 0)
3522 dyn.d_un.d_val = s->_cooked_size;
3523 else
3524 dyn.d_un.d_val = s->_raw_size;
3525 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3526 break;
3527
3528 case DT_RELSZ:
3529 /* My reading of the SVR4 ABI indicates that the
3530 procedure linkage table relocs (DT_JMPREL) should be
3531 included in the overall relocs (DT_REL). This is
3532 what Solaris does. However, UnixWare can not handle
3533 that case. Therefore, we override the DT_RELSZ entry
3534 here to make it not include the JMPREL relocs. Since
3535 the linker script arranges for .rel.plt to follow all
3536 other relocation sections, we don't have to worry
3537 about changing the DT_REL entry. */
3538 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3539 if (s != NULL)
3540 {
3541 if (s->_cooked_size != 0)
3542 dyn.d_un.d_val -= s->_cooked_size;
3543 else
3544 dyn.d_un.d_val -= s->_raw_size;
3545 }
3546 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3547 break;
3548 }
3549 }
3550
3551 /* Fill in the first entry in the procedure linkage table. */
3552 if (splt->_raw_size > 0)
3553 {
3554 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3555 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3556 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3557 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3558 }
3559
3560 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3561 really seem like the right value. */
3562 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3563 }
3564
3565 /* Fill in the first three entries in the global offset table. */
3566 if (sgot->_raw_size > 0)
3567 {
3568 if (sdyn == NULL)
3569 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3570 else
3571 bfd_put_32 (output_bfd,
3572 sdyn->output_section->vma + sdyn->output_offset,
3573 sgot->contents);
3574 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3575 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3576 }
3577
3578 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3579
3580 return true;
3581 }
3582
3583 static void
3584 elf32_arm_post_process_headers (abfd, link_info)
3585 bfd * abfd;
3586 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3587 {
3588 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3589
3590 i_ehdrp = elf_elfheader (abfd);
3591
3592 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3593 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3594 }
3595
3596 static enum elf_reloc_type_class
3597 elf32_arm_reloc_type_class (rela)
3598 const Elf_Internal_Rela *rela;
3599 {
3600 switch ((int) ELF32_R_TYPE (rela->r_info))
3601 {
3602 case R_ARM_RELATIVE:
3603 return reloc_class_relative;
3604 case R_ARM_JUMP_SLOT:
3605 return reloc_class_plt;
3606 case R_ARM_COPY:
3607 return reloc_class_copy;
3608 default:
3609 return reloc_class_normal;
3610 }
3611 }
3612
3613
3614 #define ELF_ARCH bfd_arch_arm
3615 #define ELF_MACHINE_CODE EM_ARM
3616 #define ELF_MAXPAGESIZE 0x8000
3617
3618 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3619 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3620 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3621 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3622 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3623 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3624 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3625
3626 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3627 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3628 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3629 #define elf_backend_check_relocs elf32_arm_check_relocs
3630 #define elf_backend_relocate_section elf32_arm_relocate_section
3631 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3632 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3633 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3634 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3635 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3636 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3637 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3638
3639 #define elf_backend_can_gc_sections 1
3640 #define elf_backend_plt_readonly 1
3641 #define elf_backend_want_got_plt 1
3642 #define elf_backend_want_plt_sym 0
3643 #ifndef USE_REL
3644 #define elf_backend_rela_normal 1
3645 #endif
3646
3647 #define elf_backend_got_header_size 12
3648 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3649
3650 #include "elf32-target.h"