]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
PR ld/13049
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
322
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
325
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
329
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
335
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
338
339 /* Assorted hash table functions. */
340
341 /* Initialize an entry in the stub hash table. */
342
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 struct bfd_hash_table *table,
346 const char *string)
347 {
348 /* Allocate the structure if it has not already been allocated by a
349 subclass. */
350 if (entry == NULL)
351 {
352 entry = bfd_hash_allocate (table,
353 sizeof (struct elf32_hppa_stub_hash_entry));
354 if (entry == NULL)
355 return entry;
356 }
357
358 /* Call the allocation method of the superclass. */
359 entry = bfd_hash_newfunc (entry, table, string);
360 if (entry != NULL)
361 {
362 struct elf32_hppa_stub_hash_entry *hsh;
363
364 /* Initialize the local fields. */
365 hsh = hppa_stub_hash_entry (entry);
366 hsh->stub_sec = NULL;
367 hsh->stub_offset = 0;
368 hsh->target_value = 0;
369 hsh->target_section = NULL;
370 hsh->stub_type = hppa_stub_long_branch;
371 hsh->hh = NULL;
372 hsh->id_sec = NULL;
373 }
374
375 return entry;
376 }
377
378 /* Initialize an entry in the link hash table. */
379
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 struct bfd_hash_table *table,
383 const char *string)
384 {
385 /* Allocate the structure if it has not already been allocated by a
386 subclass. */
387 if (entry == NULL)
388 {
389 entry = bfd_hash_allocate (table,
390 sizeof (struct elf32_hppa_link_hash_entry));
391 if (entry == NULL)
392 return entry;
393 }
394
395 /* Call the allocation method of the superclass. */
396 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 if (entry != NULL)
398 {
399 struct elf32_hppa_link_hash_entry *hh;
400
401 /* Initialize the local fields. */
402 hh = hppa_elf_hash_entry (entry);
403 hh->hsh_cache = NULL;
404 hh->dyn_relocs = NULL;
405 hh->plabel = 0;
406 hh->tls_type = GOT_UNKNOWN;
407 }
408
409 return entry;
410 }
411
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
415
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419 struct elf32_hppa_link_hash_table *htab;
420 bfd_size_type amt = sizeof (*htab);
421
422 htab = bfd_malloc (amt);
423 if (htab == NULL)
424 return NULL;
425
426 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 sizeof (struct elf32_hppa_link_hash_entry),
428 HPPA32_ELF_DATA))
429 {
430 free (htab);
431 return NULL;
432 }
433
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 sizeof (struct elf32_hppa_stub_hash_entry)))
437 return NULL;
438
439 htab->stub_bfd = NULL;
440 htab->add_stub_section = NULL;
441 htab->layout_sections_again = NULL;
442 htab->stub_group = NULL;
443 htab->sgot = NULL;
444 htab->srelgot = NULL;
445 htab->splt = NULL;
446 htab->srelplt = NULL;
447 htab->sdynbss = NULL;
448 htab->srelbss = NULL;
449 htab->text_segment_base = (bfd_vma) -1;
450 htab->data_segment_base = (bfd_vma) -1;
451 htab->multi_subspace = 0;
452 htab->has_12bit_branch = 0;
453 htab->has_17bit_branch = 0;
454 htab->has_22bit_branch = 0;
455 htab->need_plt_stub = 0;
456 htab->sym_cache.abfd = NULL;
457 htab->tls_ldm_got.refcount = 0;
458
459 return &htab->etab.root;
460 }
461
462 /* Free the derived linker hash table. */
463
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467 struct elf32_hppa_link_hash_table *htab
468 = (struct elf32_hppa_link_hash_table *) btab;
469
470 bfd_hash_table_free (&htab->bstab);
471 _bfd_generic_link_hash_table_free (btab);
472 }
473
474 /* Build a name for an entry in the stub hash table. */
475
476 static char *
477 hppa_stub_name (const asection *input_section,
478 const asection *sym_sec,
479 const struct elf32_hppa_link_hash_entry *hh,
480 const Elf_Internal_Rela *rela)
481 {
482 char *stub_name;
483 bfd_size_type len;
484
485 if (hh)
486 {
487 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488 stub_name = bfd_malloc (len);
489 if (stub_name != NULL)
490 sprintf (stub_name, "%08x_%s+%x",
491 input_section->id & 0xffffffff,
492 hh_name (hh),
493 (int) rela->r_addend & 0xffffffff);
494 }
495 else
496 {
497 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name = bfd_malloc (len);
499 if (stub_name != NULL)
500 sprintf (stub_name, "%08x_%x:%x+%x",
501 input_section->id & 0xffffffff,
502 sym_sec->id & 0xffffffff,
503 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 (int) rela->r_addend & 0xffffffff);
505 }
506 return stub_name;
507 }
508
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
511
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 const asection *sym_sec,
515 struct elf32_hppa_link_hash_entry *hh,
516 const Elf_Internal_Rela *rela,
517 struct elf32_hppa_link_hash_table *htab)
518 {
519 struct elf32_hppa_stub_hash_entry *hsh_entry;
520 const asection *id_sec;
521
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec = htab->stub_group[input_section->id].link_sec;
528
529 if (hh != NULL && hh->hsh_cache != NULL
530 && hh->hsh_cache->hh == hh
531 && hh->hsh_cache->id_sec == id_sec)
532 {
533 hsh_entry = hh->hsh_cache;
534 }
535 else
536 {
537 char *stub_name;
538
539 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540 if (stub_name == NULL)
541 return NULL;
542
543 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 stub_name, FALSE, FALSE);
545 if (hh != NULL)
546 hh->hsh_cache = hsh_entry;
547
548 free (stub_name);
549 }
550
551 return hsh_entry;
552 }
553
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
556
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 asection *section,
560 struct elf32_hppa_link_hash_table *htab)
561 {
562 asection *link_sec;
563 asection *stub_sec;
564 struct elf32_hppa_stub_hash_entry *hsh;
565
566 link_sec = htab->stub_group[section->id].link_sec;
567 stub_sec = htab->stub_group[section->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 stub_sec = htab->stub_group[link_sec->id].stub_sec;
571 if (stub_sec == NULL)
572 {
573 size_t namelen;
574 bfd_size_type len;
575 char *s_name;
576
577 namelen = strlen (link_sec->name);
578 len = namelen + sizeof (STUB_SUFFIX);
579 s_name = bfd_alloc (htab->stub_bfd, len);
580 if (s_name == NULL)
581 return NULL;
582
583 memcpy (s_name, link_sec->name, namelen);
584 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 if (stub_sec == NULL)
587 return NULL;
588 htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 }
590 htab->stub_group[section->id].stub_sec = stub_sec;
591 }
592
593 /* Enter this entry into the linker stub hash table. */
594 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 TRUE, FALSE);
596 if (hsh == NULL)
597 {
598 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 section->owner,
600 stub_name);
601 return NULL;
602 }
603
604 hsh->stub_sec = stub_sec;
605 hsh->stub_offset = 0;
606 hsh->id_sec = link_sec;
607 return hsh;
608 }
609
610 /* Determine the type of stub needed, if any, for a call. */
611
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 const Elf_Internal_Rela *rela,
615 struct elf32_hppa_link_hash_entry *hh,
616 bfd_vma destination,
617 struct bfd_link_info *info)
618 {
619 bfd_vma location;
620 bfd_vma branch_offset;
621 bfd_vma max_branch_offset;
622 unsigned int r_type;
623
624 if (hh != NULL
625 && hh->eh.plt.offset != (bfd_vma) -1
626 && hh->eh.dynindx != -1
627 && !hh->plabel
628 && (info->shared
629 || !hh->eh.def_regular
630 || hh->eh.root.type == bfd_link_hash_defweak))
631 {
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import;
635 }
636
637 /* Determine where the call point is. */
638 location = (input_sec->output_offset
639 + input_sec->output_section->vma
640 + rela->r_offset);
641
642 branch_offset = destination - location - 8;
643 r_type = ELF32_R_TYPE (rela->r_info);
644
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type == (unsigned int) R_PARISC_PCREL17F)
650 max_branch_offset = (1 << (17 - 1)) << 2;
651
652 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653 max_branch_offset = (1 << (12 - 1)) << 2;
654
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset = (1 << (22 - 1)) << 2;
657
658 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659 return hppa_stub_long_branch;
660
661 return hppa_stub_none;
662 }
663
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
666
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
669
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
673
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
678
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
681
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
686
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
693
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697
698 #if R19_STUBS
699 #define LDW_R1_DLT LDW_R1_R19
700 #else
701 #define LDW_R1_DLT LDW_R1_DP
702 #endif
703
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707 struct elf32_hppa_stub_hash_entry *hsh;
708 struct bfd_link_info *info;
709 struct elf32_hppa_link_hash_table *htab;
710 asection *stub_sec;
711 bfd *stub_bfd;
712 bfd_byte *loc;
713 bfd_vma sym_value;
714 bfd_vma insn;
715 bfd_vma off;
716 int val;
717 int size;
718
719 /* Massage our args to the form they really have. */
720 hsh = hppa_stub_hash_entry (bh);
721 info = (struct bfd_link_info *)in_arg;
722
723 htab = hppa_link_hash_table (info);
724 if (htab == NULL)
725 return FALSE;
726
727 stub_sec = hsh->stub_sec;
728
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh->stub_offset = stub_sec->size;
731 loc = stub_sec->contents + hsh->stub_offset;
732
733 stub_bfd = stub_sec->owner;
734
735 switch (hsh->stub_type)
736 {
737 case hppa_stub_long_branch:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = 8;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Branches are relative. This is where we are going to. */
759 sym_value = (hsh->target_value
760 + hsh->target_section->output_offset
761 + hsh->target_section->output_section->vma);
762
763 /* And this is where we are coming from, more or less. */
764 sym_value -= (hsh->stub_offset
765 + stub_sec->output_offset
766 + stub_sec->output_section->vma);
767
768 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771 bfd_put_32 (stub_bfd, insn, loc + 4);
772
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775 bfd_put_32 (stub_bfd, insn, loc + 8);
776 size = 12;
777 break;
778
779 case hppa_stub_import:
780 case hppa_stub_import_shared:
781 off = hsh->hh->eh.plt.offset;
782 if (off >= (bfd_vma) -2)
783 abort ();
784
785 off &= ~ (bfd_vma) 1;
786 sym_value = (off
787 + htab->splt->output_offset
788 + htab->splt->output_section->vma
789 - elf_gp (htab->splt->output_section->owner));
790
791 insn = ADDIL_DP;
792 #if R19_STUBS
793 if (hsh->stub_type == hppa_stub_import_shared)
794 insn = ADDIL_R19;
795 #endif
796 val = hppa_field_adjust (sym_value, 0, e_lrsel),
797 insn = hppa_rebuild_insn ((int) insn, val, 21);
798 bfd_put_32 (stub_bfd, insn, loc);
799
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val = hppa_field_adjust (sym_value, 0, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 4);
808
809 if (htab->multi_subspace)
810 {
811 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 bfd_put_32 (stub_bfd, insn, loc + 8);
814
815 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
817 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
818 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
819
820 size = 28;
821 }
822 else
823 {
824 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 bfd_put_32 (stub_bfd, insn, loc + 12);
828
829 size = 16;
830 }
831
832 break;
833
834 case hppa_stub_export:
835 /* Branches are relative. This is where we are going to. */
836 sym_value = (hsh->target_value
837 + hsh->target_section->output_offset
838 + hsh->target_section->output_section->vma);
839
840 /* And this is where we are coming from. */
841 sym_value -= (hsh->stub_offset
842 + stub_sec->output_offset
843 + stub_sec->output_section->vma);
844
845 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab->has_22bit_branch
847 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 {
849 (*_bfd_error_handler)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh->target_section->owner,
852 stub_sec,
853 (long) hsh->stub_offset,
854 hsh->bh_root.string);
855 bfd_set_error (bfd_error_bad_value);
856 return FALSE;
857 }
858
859 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860 if (!htab->has_22bit_branch)
861 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862 else
863 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864 bfd_put_32 (stub_bfd, insn, loc);
865
866 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
867 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
868 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
870 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
871
872 /* Point the function symbol at the stub. */
873 hsh->hh->eh.root.u.def.section = stub_sec;
874 hsh->hh->eh.root.u.def.value = stub_sec->size;
875
876 size = 24;
877 break;
878
879 default:
880 BFD_FAIL ();
881 return FALSE;
882 }
883
884 stub_sec->size += size;
885 return TRUE;
886 }
887
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
911
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915 struct elf32_hppa_stub_hash_entry *hsh;
916 struct elf32_hppa_link_hash_table *htab;
917 int size;
918
919 /* Massage our args to the form they really have. */
920 hsh = hppa_stub_hash_entry (bh);
921 htab = in_arg;
922
923 if (hsh->stub_type == hppa_stub_long_branch)
924 size = 8;
925 else if (hsh->stub_type == hppa_stub_long_branch_shared)
926 size = 12;
927 else if (hsh->stub_type == hppa_stub_export)
928 size = 24;
929 else /* hppa_stub_import or hppa_stub_import_shared. */
930 {
931 if (htab->multi_subspace)
932 size = 28;
933 else
934 size = 16;
935 }
936
937 hsh->stub_sec->size += size;
938 return TRUE;
939 }
940
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
943
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947 Elf_Internal_Ehdr * i_ehdrp;
948 unsigned int flags;
949
950 i_ehdrp = elf_elfheader (abfd);
951 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952 {
953 /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
956 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 return FALSE;
958 }
959 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960 {
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 return FALSE;
966 }
967 else
968 {
969 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 return FALSE;
971 }
972
973 flags = i_ehdrp->e_flags;
974 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975 {
976 case EFA_PARISC_1_0:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978 case EFA_PARISC_1_1:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980 case EFA_PARISC_2_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984 }
985 return TRUE;
986 }
987
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
990
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994 struct elf32_hppa_link_hash_table *htab;
995 struct elf_link_hash_entry *eh;
996
997 /* Don't try to create the .plt and .got twice. */
998 htab = hppa_link_hash_table (info);
999 if (htab == NULL)
1000 return FALSE;
1001 if (htab->splt != NULL)
1002 return TRUE;
1003
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006 return FALSE;
1007
1008 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1009 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1010
1011 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1012 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1107
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 bfd_signed_vma *local_refcounts;
1113
1114 local_refcounts = elf_local_got_refcounts (abfd);
1115 if (local_refcounts == NULL)
1116 {
1117 bfd_size_type size;
1118
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size = symtab_hdr->sh_info;
1123 size *= 2 * sizeof (bfd_signed_vma);
1124 /* Add in space to store the local GOT TLS types. */
1125 size += symtab_hdr->sh_info;
1126 local_refcounts = bfd_zalloc (abfd, size);
1127 if (local_refcounts == NULL)
1128 return NULL;
1129 elf_local_got_refcounts (abfd) = local_refcounts;
1130 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 symtab_hdr->sh_info);
1132 }
1133 return local_refcounts;
1134 }
1135
1136
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1141
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 struct bfd_link_info *info,
1145 asection *sec,
1146 const Elf_Internal_Rela *relocs)
1147 {
1148 Elf_Internal_Shdr *symtab_hdr;
1149 struct elf_link_hash_entry **eh_syms;
1150 const Elf_Internal_Rela *rela;
1151 const Elf_Internal_Rela *rela_end;
1152 struct elf32_hppa_link_hash_table *htab;
1153 asection *sreloc;
1154 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155
1156 if (info->relocatable)
1157 return TRUE;
1158
1159 htab = hppa_link_hash_table (info);
1160 if (htab == NULL)
1161 return FALSE;
1162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163 eh_syms = elf_sym_hashes (abfd);
1164 sreloc = NULL;
1165
1166 rela_end = relocs + sec->reloc_count;
1167 for (rela = relocs; rela < rela_end; rela++)
1168 {
1169 enum {
1170 NEED_GOT = 1,
1171 NEED_PLT = 2,
1172 NEED_DYNREL = 4,
1173 PLT_PLABEL = 8
1174 };
1175
1176 unsigned int r_symndx, r_type;
1177 struct elf32_hppa_link_hash_entry *hh;
1178 int need_entry = 0;
1179
1180 r_symndx = ELF32_R_SYM (rela->r_info);
1181
1182 if (r_symndx < symtab_hdr->sh_info)
1183 hh = NULL;
1184 else
1185 {
1186 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 while (hh->eh.root.type == bfd_link_hash_indirect
1188 || hh->eh.root.type == bfd_link_hash_warning)
1189 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 break;
1230
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1233 goto branch_common;
1234
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1238 goto branch_common;
1239
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1242 branch_common:
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1245 if (hh == NULL)
1246 {
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1251 branch stub. */
1252 continue;
1253 }
1254 else
1255 {
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1263 need_entry = 0;
1264 }
1265 break;
1266
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1276 continue;
1277
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (info->shared)
1282 {
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 abfd,
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1288 return FALSE;
1289 }
1290 /* Fall through. */
1291
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1300 break;
1301
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 return FALSE;
1307 continue;
1308
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1313 if (hh != NULL
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 return FALSE;
1316 continue;
1317
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (info->shared)
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1330 break;
1331
1332 default:
1333 continue;
1334 }
1335
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1338 {
1339 switch (r_type)
1340 {
1341 default:
1342 tls_type = GOT_NORMAL;
1343 break;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1347 break;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1351 break;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1355 break;
1356 }
1357
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1361 {
1362 if (htab->etab.dynobj == NULL)
1363 htab->etab.dynobj = abfd;
1364 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 return FALSE;
1366 }
1367
1368 if (r_type == R_PARISC_TLS_LDM21L
1369 || r_type == R_PARISC_TLS_LDM14R)
1370 htab->tls_ldm_got.refcount += 1;
1371 else
1372 {
1373 if (hh != NULL)
1374 {
1375 hh->eh.got.refcount += 1;
1376 old_tls_type = hh->tls_type;
1377 }
1378 else
1379 {
1380 bfd_signed_vma *local_got_refcounts;
1381
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 if (local_got_refcounts == NULL)
1385 return FALSE;
1386 local_got_refcounts[r_symndx] += 1;
1387
1388 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 }
1390
1391 tls_type |= old_tls_type;
1392
1393 if (old_tls_type != tls_type)
1394 {
1395 if (hh != NULL)
1396 hh->tls_type = tls_type;
1397 else
1398 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 }
1400
1401 }
1402 }
1403
1404 if (need_entry & NEED_PLT)
1405 {
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec->flags & SEC_ALLOC) != 0)
1415 {
1416 if (hh != NULL)
1417 {
1418 hh->eh.needs_plt = 1;
1419 hh->eh.plt.refcount += 1;
1420
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry & PLT_PLABEL)
1425 hh->plabel = 1;
1426 }
1427 else if (need_entry & PLT_PLABEL)
1428 {
1429 bfd_signed_vma *local_got_refcounts;
1430 bfd_signed_vma *local_plt_refcounts;
1431
1432 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 if (local_got_refcounts == NULL)
1434 return FALSE;
1435 local_plt_refcounts = (local_got_refcounts
1436 + symtab_hdr->sh_info);
1437 local_plt_refcounts[r_symndx] += 1;
1438 }
1439 }
1440 }
1441
1442 if (need_entry & NEED_DYNREL)
1443 {
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1446 dynamic. */
1447 if (hh != NULL && !info->shared)
1448 hh->eh.non_got_ref = 1;
1449
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1461 hash table entry.
1462
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1466
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1473
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1477 symbol. */
1478 if ((info->shared
1479 && (sec->flags & SEC_ALLOC) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type)
1481 || (hh != NULL
1482 && (!info->symbolic
1483 || hh->eh.root.type == bfd_link_hash_defweak
1484 || !hh->eh.def_regular))))
1485 || (ELIMINATE_COPY_RELOCS
1486 && !info->shared
1487 && (sec->flags & SEC_ALLOC) != 0
1488 && hh != NULL
1489 && (hh->eh.root.type == bfd_link_hash_defweak
1490 || !hh->eh.def_regular)))
1491 {
1492 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494
1495 /* Create a reloc section in dynobj and make room for
1496 this reloc. */
1497 if (sreloc == NULL)
1498 {
1499 if (htab->etab.dynobj == NULL)
1500 htab->etab.dynobj = abfd;
1501
1502 sreloc = _bfd_elf_make_dynamic_reloc_section
1503 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504
1505 if (sreloc == NULL)
1506 {
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510 }
1511
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1514 if (hh != NULL)
1515 {
1516 hdh_head = &hh->dyn_relocs;
1517 }
1518 else
1519 {
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1522 easily. Oh well. */
1523 asection *sr;
1524 void *vpp;
1525 Elf_Internal_Sym *isym;
1526
1527 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 abfd, r_symndx);
1529 if (isym == NULL)
1530 return FALSE;
1531
1532 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 if (sr == NULL)
1534 sr = sec;
1535
1536 vpp = &elf_section_data (sr)->local_dynrel;
1537 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 }
1539
1540 hdh_p = *hdh_head;
1541 if (hdh_p == NULL || hdh_p->sec != sec)
1542 {
1543 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 if (hdh_p == NULL)
1545 return FALSE;
1546 hdh_p->hdh_next = *hdh_head;
1547 *hdh_head = hdh_p;
1548 hdh_p->sec = sec;
1549 hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p->relative_count = 0;
1552 #endif
1553 }
1554
1555 hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype))
1558 hdh_p->relative_count += 1;
1559 #endif
1560 }
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1569
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 struct bfd_link_info *info,
1573 Elf_Internal_Rela *rela,
1574 struct elf_link_hash_entry *hh,
1575 Elf_Internal_Sym *sym)
1576 {
1577 if (hh != NULL)
1578 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579 {
1580 case R_PARISC_GNU_VTINHERIT:
1581 case R_PARISC_GNU_VTENTRY:
1582 return NULL;
1583 }
1584
1585 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587
1588 /* Update the got and plt entry reference counts for the section being
1589 removed. */
1590
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **eh_syms;
1599 bfd_signed_vma *local_got_refcounts;
1600 bfd_signed_vma *local_plt_refcounts;
1601 const Elf_Internal_Rela *rela, *relend;
1602 struct elf32_hppa_link_hash_table *htab;
1603
1604 if (info->relocatable)
1605 return TRUE;
1606
1607 htab = hppa_link_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 elf_section_data (sec)->local_dynrel = NULL;
1612
1613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614 eh_syms = elf_sym_hashes (abfd);
1615 local_got_refcounts = elf_local_got_refcounts (abfd);
1616 local_plt_refcounts = local_got_refcounts;
1617 if (local_plt_refcounts != NULL)
1618 local_plt_refcounts += symtab_hdr->sh_info;
1619
1620 relend = relocs + sec->reloc_count;
1621 for (rela = relocs; rela < relend; rela++)
1622 {
1623 unsigned long r_symndx;
1624 unsigned int r_type;
1625 struct elf_link_hash_entry *eh = NULL;
1626
1627 r_symndx = ELF32_R_SYM (rela->r_info);
1628 if (r_symndx >= symtab_hdr->sh_info)
1629 {
1630 struct elf32_hppa_link_hash_entry *hh;
1631 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633
1634 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 while (eh->root.type == bfd_link_hash_indirect
1636 || eh->root.type == bfd_link_hash_warning)
1637 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 hh = hppa_elf_hash_entry (eh);
1639
1640 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 if (hdh_p->sec == sec)
1642 {
1643 /* Everything must go for SEC. */
1644 *hdh_pp = hdh_p->hdh_next;
1645 break;
1646 }
1647 }
1648
1649 r_type = ELF32_R_TYPE (rela->r_info);
1650 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651
1652 switch (r_type)
1653 {
1654 case R_PARISC_DLTIND14F:
1655 case R_PARISC_DLTIND14R:
1656 case R_PARISC_DLTIND21L:
1657 case R_PARISC_TLS_GD21L:
1658 case R_PARISC_TLS_GD14R:
1659 case R_PARISC_TLS_IE21L:
1660 case R_PARISC_TLS_IE14R:
1661 if (eh != NULL)
1662 {
1663 if (eh->got.refcount > 0)
1664 eh->got.refcount -= 1;
1665 }
1666 else if (local_got_refcounts != NULL)
1667 {
1668 if (local_got_refcounts[r_symndx] > 0)
1669 local_got_refcounts[r_symndx] -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_TLS_LDM21L:
1674 case R_PARISC_TLS_LDM14R:
1675 htab->tls_ldm_got.refcount -= 1;
1676 break;
1677
1678 case R_PARISC_PCREL12F:
1679 case R_PARISC_PCREL17C:
1680 case R_PARISC_PCREL17F:
1681 case R_PARISC_PCREL22F:
1682 if (eh != NULL)
1683 {
1684 if (eh->plt.refcount > 0)
1685 eh->plt.refcount -= 1;
1686 }
1687 break;
1688
1689 case R_PARISC_PLABEL14R:
1690 case R_PARISC_PLABEL21L:
1691 case R_PARISC_PLABEL32:
1692 if (eh != NULL)
1693 {
1694 if (eh->plt.refcount > 0)
1695 eh->plt.refcount -= 1;
1696 }
1697 else if (local_plt_refcounts != NULL)
1698 {
1699 if (local_plt_refcounts[r_symndx] > 0)
1700 local_plt_refcounts[r_symndx] -= 1;
1701 }
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 return TRUE;
1710 }
1711
1712 /* Support for core dump NOTE sections. */
1713
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717 int offset;
1718 size_t size;
1719
1720 switch (note->descsz)
1721 {
1722 default:
1723 return FALSE;
1724
1725 case 396: /* Linux/hppa */
1726 /* pr_cursig */
1727 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728
1729 /* pr_pid */
1730 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731
1732 /* pr_reg */
1733 offset = 72;
1734 size = 320;
1735
1736 break;
1737 }
1738
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 size, note->descpos + offset);
1742 }
1743
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747 switch (note->descsz)
1748 {
1749 default:
1750 return FALSE;
1751
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd)->core_program
1754 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 elf_tdata (abfd)->core_command
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757 }
1758
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1762 {
1763 char *command = elf_tdata (abfd)->core_command;
1764 int n = strlen (command);
1765
1766 if (0 < n && command[n - 1] == ' ')
1767 command[n - 1] = '\0';
1768 }
1769
1770 return TRUE;
1771 }
1772
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774 plabels. */
1775
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh,
1779 bfd_boolean force_local)
1780 {
1781 if (force_local)
1782 {
1783 eh->forced_local = 1;
1784 if (eh->dynindx != -1)
1785 {
1786 eh->dynindx = -1;
1787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 eh->dynstr_index);
1789 }
1790 }
1791
1792 if (! hppa_elf_hash_entry (eh)->plabel)
1793 {
1794 eh->needs_plt = 0;
1795 eh->plt = elf_hash_table (info)->init_plt_refcount;
1796 }
1797 }
1798
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1803 understand. */
1804
1805 static bfd_boolean
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh)
1808 {
1809 struct elf32_hppa_link_hash_table *htab;
1810 asection *sec;
1811
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh->type == STT_FUNC
1815 || eh->needs_plt)
1816 {
1817 if (eh->plt.refcount <= 0
1818 || (eh->def_regular
1819 && eh->root.type != bfd_link_hash_defweak
1820 && ! hppa_elf_hash_entry (eh)->plabel
1821 && (!info->shared || info->symbolic)))
1822 {
1823 /* The .plt entry is not needed when:
1824 a) Garbage collection has removed all references to the
1825 symbol, or
1826 b) We know for certain the symbol is defined in this
1827 object, and it's not a weak definition, nor is the symbol
1828 used by a plabel relocation. Either this object is the
1829 application or we are doing a shared symbolic link. */
1830
1831 eh->plt.offset = (bfd_vma) -1;
1832 eh->needs_plt = 0;
1833 }
1834
1835 return TRUE;
1836 }
1837 else
1838 eh->plt.offset = (bfd_vma) -1;
1839
1840 /* If this is a weak symbol, and there is a real definition, the
1841 processor independent code will have arranged for us to see the
1842 real definition first, and we can just use the same value. */
1843 if (eh->u.weakdef != NULL)
1844 {
1845 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1846 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1847 abort ();
1848 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1849 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1850 if (ELIMINATE_COPY_RELOCS)
1851 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1852 return TRUE;
1853 }
1854
1855 /* This is a reference to a symbol defined by a dynamic object which
1856 is not a function. */
1857
1858 /* If we are creating a shared library, we must presume that the
1859 only references to the symbol are via the global offset table.
1860 For such cases we need not do anything here; the relocations will
1861 be handled correctly by relocate_section. */
1862 if (info->shared)
1863 return TRUE;
1864
1865 /* If there are no references to this symbol that do not use the
1866 GOT, we don't need to generate a copy reloc. */
1867 if (!eh->non_got_ref)
1868 return TRUE;
1869
1870 if (ELIMINATE_COPY_RELOCS)
1871 {
1872 struct elf32_hppa_link_hash_entry *hh;
1873 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1874
1875 hh = hppa_elf_hash_entry (eh);
1876 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1877 {
1878 sec = hdh_p->sec->output_section;
1879 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1880 break;
1881 }
1882
1883 /* If we didn't find any dynamic relocs in read-only sections, then
1884 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1885 if (hdh_p == NULL)
1886 {
1887 eh->non_got_ref = 0;
1888 return TRUE;
1889 }
1890 }
1891
1892 if (eh->size == 0)
1893 {
1894 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1895 eh->root.root.string);
1896 return TRUE;
1897 }
1898
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1908
1909 htab = hppa_link_hash_table (info);
1910 if (htab == NULL)
1911 return FALSE;
1912
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1917 {
1918 htab->srelbss->size += sizeof (Elf32_External_Rela);
1919 eh->needs_copy = 1;
1920 }
1921
1922 sec = htab->sdynbss;
1923
1924 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1925 }
1926
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1929
1930 static bfd_boolean
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1932 {
1933 struct bfd_link_info *info;
1934 struct elf32_hppa_link_hash_table *htab;
1935 struct elf32_hppa_link_hash_entry *hh;
1936 asection *sec;
1937
1938 if (eh->root.type == bfd_link_hash_indirect)
1939 return TRUE;
1940
1941 info = (struct bfd_link_info *) inf;
1942 hh = hppa_elf_hash_entry (eh);
1943 htab = hppa_link_hash_table (info);
1944 if (htab == NULL)
1945 return FALSE;
1946
1947 if (htab->etab.dynamic_sections_created
1948 && eh->plt.refcount > 0)
1949 {
1950 /* Make sure this symbol is output as a dynamic symbol.
1951 Undefined weak syms won't yet be marked as dynamic. */
1952 if (eh->dynindx == -1
1953 && !eh->forced_local
1954 && eh->type != STT_PARISC_MILLI)
1955 {
1956 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1957 return FALSE;
1958 }
1959
1960 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1961 {
1962 /* Allocate these later. From this point on, h->plabel
1963 means that the plt entry is only used by a plabel.
1964 We'll be using a normal plt entry for this symbol, so
1965 clear the plabel indicator. */
1966
1967 hh->plabel = 0;
1968 }
1969 else if (hh->plabel)
1970 {
1971 /* Make an entry in the .plt section for plabel references
1972 that won't have a .plt entry for other reasons. */
1973 sec = htab->splt;
1974 eh->plt.offset = sec->size;
1975 sec->size += PLT_ENTRY_SIZE;
1976 }
1977 else
1978 {
1979 /* No .plt entry needed. */
1980 eh->plt.offset = (bfd_vma) -1;
1981 eh->needs_plt = 0;
1982 }
1983 }
1984 else
1985 {
1986 eh->plt.offset = (bfd_vma) -1;
1987 eh->needs_plt = 0;
1988 }
1989
1990 return TRUE;
1991 }
1992
1993 /* Allocate space in .plt, .got and associated reloc sections for
1994 global syms. */
1995
1996 static bfd_boolean
1997 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1998 {
1999 struct bfd_link_info *info;
2000 struct elf32_hppa_link_hash_table *htab;
2001 asection *sec;
2002 struct elf32_hppa_link_hash_entry *hh;
2003 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2004
2005 if (eh->root.type == bfd_link_hash_indirect)
2006 return TRUE;
2007
2008 info = inf;
2009 htab = hppa_link_hash_table (info);
2010 if (htab == NULL)
2011 return FALSE;
2012
2013 hh = hppa_elf_hash_entry (eh);
2014
2015 if (htab->etab.dynamic_sections_created
2016 && eh->plt.offset != (bfd_vma) -1
2017 && !hh->plabel
2018 && eh->plt.refcount > 0)
2019 {
2020 /* Make an entry in the .plt section. */
2021 sec = htab->splt;
2022 eh->plt.offset = sec->size;
2023 sec->size += PLT_ENTRY_SIZE;
2024
2025 /* We also need to make an entry in the .rela.plt section. */
2026 htab->srelplt->size += sizeof (Elf32_External_Rela);
2027 htab->need_plt_stub = 1;
2028 }
2029
2030 if (eh->got.refcount > 0)
2031 {
2032 /* Make sure this symbol is output as a dynamic symbol.
2033 Undefined weak syms won't yet be marked as dynamic. */
2034 if (eh->dynindx == -1
2035 && !eh->forced_local
2036 && eh->type != STT_PARISC_MILLI)
2037 {
2038 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2039 return FALSE;
2040 }
2041
2042 sec = htab->sgot;
2043 eh->got.offset = sec->size;
2044 sec->size += GOT_ENTRY_SIZE;
2045 /* R_PARISC_TLS_GD* needs two GOT entries */
2046 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2047 sec->size += GOT_ENTRY_SIZE * 2;
2048 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2049 sec->size += GOT_ENTRY_SIZE;
2050 if (htab->etab.dynamic_sections_created
2051 && (info->shared
2052 || (eh->dynindx != -1
2053 && !eh->forced_local)))
2054 {
2055 htab->srelgot->size += sizeof (Elf32_External_Rela);
2056 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2057 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2058 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2059 htab->srelgot->size += sizeof (Elf32_External_Rela);
2060 }
2061 }
2062 else
2063 eh->got.offset = (bfd_vma) -1;
2064
2065 if (hh->dyn_relocs == NULL)
2066 return TRUE;
2067
2068 /* If this is a -Bsymbolic shared link, then we need to discard all
2069 space allocated for dynamic pc-relative relocs against symbols
2070 defined in a regular object. For the normal shared case, discard
2071 space for relocs that have become local due to symbol visibility
2072 changes. */
2073 if (info->shared)
2074 {
2075 #if RELATIVE_DYNRELOCS
2076 if (SYMBOL_CALLS_LOCAL (info, eh))
2077 {
2078 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2079
2080 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2081 {
2082 hdh_p->count -= hdh_p->relative_count;
2083 hdh_p->relative_count = 0;
2084 if (hdh_p->count == 0)
2085 *hdh_pp = hdh_p->hdh_next;
2086 else
2087 hdh_pp = &hdh_p->hdh_next;
2088 }
2089 }
2090 #endif
2091
2092 /* Also discard relocs on undefined weak syms with non-default
2093 visibility. */
2094 if (hh->dyn_relocs != NULL
2095 && eh->root.type == bfd_link_hash_undefweak)
2096 {
2097 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2098 hh->dyn_relocs = NULL;
2099
2100 /* Make sure undefined weak symbols are output as a dynamic
2101 symbol in PIEs. */
2102 else if (eh->dynindx == -1
2103 && !eh->forced_local)
2104 {
2105 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2106 return FALSE;
2107 }
2108 }
2109 }
2110 else
2111 {
2112 /* For the non-shared case, discard space for relocs against
2113 symbols which turn out to need copy relocs or are not
2114 dynamic. */
2115
2116 if (!eh->non_got_ref
2117 && ((ELIMINATE_COPY_RELOCS
2118 && eh->def_dynamic
2119 && !eh->def_regular)
2120 || (htab->etab.dynamic_sections_created
2121 && (eh->root.type == bfd_link_hash_undefweak
2122 || eh->root.type == bfd_link_hash_undefined))))
2123 {
2124 /* Make sure this symbol is output as a dynamic symbol.
2125 Undefined weak syms won't yet be marked as dynamic. */
2126 if (eh->dynindx == -1
2127 && !eh->forced_local
2128 && eh->type != STT_PARISC_MILLI)
2129 {
2130 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2131 return FALSE;
2132 }
2133
2134 /* If that succeeded, we know we'll be keeping all the
2135 relocs. */
2136 if (eh->dynindx != -1)
2137 goto keep;
2138 }
2139
2140 hh->dyn_relocs = NULL;
2141 return TRUE;
2142
2143 keep: ;
2144 }
2145
2146 /* Finally, allocate space. */
2147 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2148 {
2149 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2150 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2151 }
2152
2153 return TRUE;
2154 }
2155
2156 /* This function is called via elf_link_hash_traverse to force
2157 millicode symbols local so they do not end up as globals in the
2158 dynamic symbol table. We ought to be able to do this in
2159 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2160 for all dynamic symbols. Arguably, this is a bug in
2161 elf_adjust_dynamic_symbol. */
2162
2163 static bfd_boolean
2164 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2165 struct bfd_link_info *info)
2166 {
2167 if (eh->type == STT_PARISC_MILLI
2168 && !eh->forced_local)
2169 {
2170 elf32_hppa_hide_symbol (info, eh, TRUE);
2171 }
2172 return TRUE;
2173 }
2174
2175 /* Find any dynamic relocs that apply to read-only sections. */
2176
2177 static bfd_boolean
2178 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2179 {
2180 struct elf32_hppa_link_hash_entry *hh;
2181 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2182
2183 hh = hppa_elf_hash_entry (eh);
2184 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2185 {
2186 asection *sec = hdh_p->sec->output_section;
2187
2188 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2189 {
2190 struct bfd_link_info *info = inf;
2191
2192 info->flags |= DF_TEXTREL;
2193
2194 /* Not an error, just cut short the traversal. */
2195 return FALSE;
2196 }
2197 }
2198 return TRUE;
2199 }
2200
2201 /* Set the sizes of the dynamic sections. */
2202
2203 static bfd_boolean
2204 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2205 struct bfd_link_info *info)
2206 {
2207 struct elf32_hppa_link_hash_table *htab;
2208 bfd *dynobj;
2209 bfd *ibfd;
2210 asection *sec;
2211 bfd_boolean relocs;
2212
2213 htab = hppa_link_hash_table (info);
2214 if (htab == NULL)
2215 return FALSE;
2216
2217 dynobj = htab->etab.dynobj;
2218 if (dynobj == NULL)
2219 abort ();
2220
2221 if (htab->etab.dynamic_sections_created)
2222 {
2223 /* Set the contents of the .interp section to the interpreter. */
2224 if (info->executable)
2225 {
2226 sec = bfd_get_section_by_name (dynobj, ".interp");
2227 if (sec == NULL)
2228 abort ();
2229 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2230 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2231 }
2232
2233 /* Force millicode symbols local. */
2234 elf_link_hash_traverse (&htab->etab,
2235 clobber_millicode_symbols,
2236 info);
2237 }
2238
2239 /* Set up .got and .plt offsets for local syms, and space for local
2240 dynamic relocs. */
2241 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2242 {
2243 bfd_signed_vma *local_got;
2244 bfd_signed_vma *end_local_got;
2245 bfd_signed_vma *local_plt;
2246 bfd_signed_vma *end_local_plt;
2247 bfd_size_type locsymcount;
2248 Elf_Internal_Shdr *symtab_hdr;
2249 asection *srel;
2250 char *local_tls_type;
2251
2252 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2253 continue;
2254
2255 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2256 {
2257 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2258
2259 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2260 elf_section_data (sec)->local_dynrel);
2261 hdh_p != NULL;
2262 hdh_p = hdh_p->hdh_next)
2263 {
2264 if (!bfd_is_abs_section (hdh_p->sec)
2265 && bfd_is_abs_section (hdh_p->sec->output_section))
2266 {
2267 /* Input section has been discarded, either because
2268 it is a copy of a linkonce section or due to
2269 linker script /DISCARD/, so we'll be discarding
2270 the relocs too. */
2271 }
2272 else if (hdh_p->count != 0)
2273 {
2274 srel = elf_section_data (hdh_p->sec)->sreloc;
2275 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2276 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2277 info->flags |= DF_TEXTREL;
2278 }
2279 }
2280 }
2281
2282 local_got = elf_local_got_refcounts (ibfd);
2283 if (!local_got)
2284 continue;
2285
2286 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2287 locsymcount = symtab_hdr->sh_info;
2288 end_local_got = local_got + locsymcount;
2289 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2290 sec = htab->sgot;
2291 srel = htab->srelgot;
2292 for (; local_got < end_local_got; ++local_got)
2293 {
2294 if (*local_got > 0)
2295 {
2296 *local_got = sec->size;
2297 sec->size += GOT_ENTRY_SIZE;
2298 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2299 sec->size += 2 * GOT_ENTRY_SIZE;
2300 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2301 sec->size += GOT_ENTRY_SIZE;
2302 if (info->shared)
2303 {
2304 srel->size += sizeof (Elf32_External_Rela);
2305 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2306 srel->size += 2 * sizeof (Elf32_External_Rela);
2307 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2308 srel->size += sizeof (Elf32_External_Rela);
2309 }
2310 }
2311 else
2312 *local_got = (bfd_vma) -1;
2313
2314 ++local_tls_type;
2315 }
2316
2317 local_plt = end_local_got;
2318 end_local_plt = local_plt + locsymcount;
2319 if (! htab->etab.dynamic_sections_created)
2320 {
2321 /* Won't be used, but be safe. */
2322 for (; local_plt < end_local_plt; ++local_plt)
2323 *local_plt = (bfd_vma) -1;
2324 }
2325 else
2326 {
2327 sec = htab->splt;
2328 srel = htab->srelplt;
2329 for (; local_plt < end_local_plt; ++local_plt)
2330 {
2331 if (*local_plt > 0)
2332 {
2333 *local_plt = sec->size;
2334 sec->size += PLT_ENTRY_SIZE;
2335 if (info->shared)
2336 srel->size += sizeof (Elf32_External_Rela);
2337 }
2338 else
2339 *local_plt = (bfd_vma) -1;
2340 }
2341 }
2342 }
2343
2344 if (htab->tls_ldm_got.refcount > 0)
2345 {
2346 /* Allocate 2 got entries and 1 dynamic reloc for
2347 R_PARISC_TLS_DTPMOD32 relocs. */
2348 htab->tls_ldm_got.offset = htab->sgot->size;
2349 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2350 htab->srelgot->size += sizeof (Elf32_External_Rela);
2351 }
2352 else
2353 htab->tls_ldm_got.offset = -1;
2354
2355 /* Do all the .plt entries without relocs first. The dynamic linker
2356 uses the last .plt reloc to find the end of the .plt (and hence
2357 the start of the .got) for lazy linking. */
2358 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2359
2360 /* Allocate global sym .plt and .got entries, and space for global
2361 sym dynamic relocs. */
2362 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2363
2364 /* The check_relocs and adjust_dynamic_symbol entry points have
2365 determined the sizes of the various dynamic sections. Allocate
2366 memory for them. */
2367 relocs = FALSE;
2368 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2369 {
2370 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2371 continue;
2372
2373 if (sec == htab->splt)
2374 {
2375 if (htab->need_plt_stub)
2376 {
2377 /* Make space for the plt stub at the end of the .plt
2378 section. We want this stub right at the end, up
2379 against the .got section. */
2380 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2381 int pltalign = bfd_section_alignment (dynobj, sec);
2382 bfd_size_type mask;
2383
2384 if (gotalign > pltalign)
2385 bfd_set_section_alignment (dynobj, sec, gotalign);
2386 mask = ((bfd_size_type) 1 << gotalign) - 1;
2387 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2388 }
2389 }
2390 else if (sec == htab->sgot
2391 || sec == htab->sdynbss)
2392 ;
2393 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2394 {
2395 if (sec->size != 0)
2396 {
2397 /* Remember whether there are any reloc sections other
2398 than .rela.plt. */
2399 if (sec != htab->srelplt)
2400 relocs = TRUE;
2401
2402 /* We use the reloc_count field as a counter if we need
2403 to copy relocs into the output file. */
2404 sec->reloc_count = 0;
2405 }
2406 }
2407 else
2408 {
2409 /* It's not one of our sections, so don't allocate space. */
2410 continue;
2411 }
2412
2413 if (sec->size == 0)
2414 {
2415 /* If we don't need this section, strip it from the
2416 output file. This is mostly to handle .rela.bss and
2417 .rela.plt. We must create both sections in
2418 create_dynamic_sections, because they must be created
2419 before the linker maps input sections to output
2420 sections. The linker does that before
2421 adjust_dynamic_symbol is called, and it is that
2422 function which decides whether anything needs to go
2423 into these sections. */
2424 sec->flags |= SEC_EXCLUDE;
2425 continue;
2426 }
2427
2428 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2429 continue;
2430
2431 /* Allocate memory for the section contents. Zero it, because
2432 we may not fill in all the reloc sections. */
2433 sec->contents = bfd_zalloc (dynobj, sec->size);
2434 if (sec->contents == NULL)
2435 return FALSE;
2436 }
2437
2438 if (htab->etab.dynamic_sections_created)
2439 {
2440 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2441 actually has nothing to do with the PLT, it is how we
2442 communicate the LTP value of a load module to the dynamic
2443 linker. */
2444 #define add_dynamic_entry(TAG, VAL) \
2445 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2446
2447 if (!add_dynamic_entry (DT_PLTGOT, 0))
2448 return FALSE;
2449
2450 /* Add some entries to the .dynamic section. We fill in the
2451 values later, in elf32_hppa_finish_dynamic_sections, but we
2452 must add the entries now so that we get the correct size for
2453 the .dynamic section. The DT_DEBUG entry is filled in by the
2454 dynamic linker and used by the debugger. */
2455 if (info->executable)
2456 {
2457 if (!add_dynamic_entry (DT_DEBUG, 0))
2458 return FALSE;
2459 }
2460
2461 if (htab->srelplt->size != 0)
2462 {
2463 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2464 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2465 || !add_dynamic_entry (DT_JMPREL, 0))
2466 return FALSE;
2467 }
2468
2469 if (relocs)
2470 {
2471 if (!add_dynamic_entry (DT_RELA, 0)
2472 || !add_dynamic_entry (DT_RELASZ, 0)
2473 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2474 return FALSE;
2475
2476 /* If any dynamic relocs apply to a read-only section,
2477 then we need a DT_TEXTREL entry. */
2478 if ((info->flags & DF_TEXTREL) == 0)
2479 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2480
2481 if ((info->flags & DF_TEXTREL) != 0)
2482 {
2483 if (!add_dynamic_entry (DT_TEXTREL, 0))
2484 return FALSE;
2485 }
2486 }
2487 }
2488 #undef add_dynamic_entry
2489
2490 return TRUE;
2491 }
2492
2493 /* External entry points for sizing and building linker stubs. */
2494
2495 /* Set up various things so that we can make a list of input sections
2496 for each output section included in the link. Returns -1 on error,
2497 0 when no stubs will be needed, and 1 on success. */
2498
2499 int
2500 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2501 {
2502 bfd *input_bfd;
2503 unsigned int bfd_count;
2504 int top_id, top_index;
2505 asection *section;
2506 asection **input_list, **list;
2507 bfd_size_type amt;
2508 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2509
2510 if (htab == NULL)
2511 return -1;
2512
2513 /* Count the number of input BFDs and find the top input section id. */
2514 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2515 input_bfd != NULL;
2516 input_bfd = input_bfd->link_next)
2517 {
2518 bfd_count += 1;
2519 for (section = input_bfd->sections;
2520 section != NULL;
2521 section = section->next)
2522 {
2523 if (top_id < section->id)
2524 top_id = section->id;
2525 }
2526 }
2527 htab->bfd_count = bfd_count;
2528
2529 amt = sizeof (struct map_stub) * (top_id + 1);
2530 htab->stub_group = bfd_zmalloc (amt);
2531 if (htab->stub_group == NULL)
2532 return -1;
2533
2534 /* We can't use output_bfd->section_count here to find the top output
2535 section index as some sections may have been removed, and
2536 strip_excluded_output_sections doesn't renumber the indices. */
2537 for (section = output_bfd->sections, top_index = 0;
2538 section != NULL;
2539 section = section->next)
2540 {
2541 if (top_index < section->index)
2542 top_index = section->index;
2543 }
2544
2545 htab->top_index = top_index;
2546 amt = sizeof (asection *) * (top_index + 1);
2547 input_list = bfd_malloc (amt);
2548 htab->input_list = input_list;
2549 if (input_list == NULL)
2550 return -1;
2551
2552 /* For sections we aren't interested in, mark their entries with a
2553 value we can check later. */
2554 list = input_list + top_index;
2555 do
2556 *list = bfd_abs_section_ptr;
2557 while (list-- != input_list);
2558
2559 for (section = output_bfd->sections;
2560 section != NULL;
2561 section = section->next)
2562 {
2563 if ((section->flags & SEC_CODE) != 0)
2564 input_list[section->index] = NULL;
2565 }
2566
2567 return 1;
2568 }
2569
2570 /* The linker repeatedly calls this function for each input section,
2571 in the order that input sections are linked into output sections.
2572 Build lists of input sections to determine groupings between which
2573 we may insert linker stubs. */
2574
2575 void
2576 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2577 {
2578 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2579
2580 if (htab == NULL)
2581 return;
2582
2583 if (isec->output_section->index <= htab->top_index)
2584 {
2585 asection **list = htab->input_list + isec->output_section->index;
2586 if (*list != bfd_abs_section_ptr)
2587 {
2588 /* Steal the link_sec pointer for our list. */
2589 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2590 /* This happens to make the list in reverse order,
2591 which is what we want. */
2592 PREV_SEC (isec) = *list;
2593 *list = isec;
2594 }
2595 }
2596 }
2597
2598 /* See whether we can group stub sections together. Grouping stub
2599 sections may result in fewer stubs. More importantly, we need to
2600 put all .init* and .fini* stubs at the beginning of the .init or
2601 .fini output sections respectively, because glibc splits the
2602 _init and _fini functions into multiple parts. Putting a stub in
2603 the middle of a function is not a good idea. */
2604
2605 static void
2606 group_sections (struct elf32_hppa_link_hash_table *htab,
2607 bfd_size_type stub_group_size,
2608 bfd_boolean stubs_always_before_branch)
2609 {
2610 asection **list = htab->input_list + htab->top_index;
2611 do
2612 {
2613 asection *tail = *list;
2614 if (tail == bfd_abs_section_ptr)
2615 continue;
2616 while (tail != NULL)
2617 {
2618 asection *curr;
2619 asection *prev;
2620 bfd_size_type total;
2621 bfd_boolean big_sec;
2622
2623 curr = tail;
2624 total = tail->size;
2625 big_sec = total >= stub_group_size;
2626
2627 while ((prev = PREV_SEC (curr)) != NULL
2628 && ((total += curr->output_offset - prev->output_offset)
2629 < stub_group_size))
2630 curr = prev;
2631
2632 /* OK, the size from the start of CURR to the end is less
2633 than 240000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 240000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 22144 bytes, or
2640 2768 long branch stubs. It seems unlikely for more than
2641 2768 different functions to be called, especially from
2642 code only 240000 bytes long. This limit used to be
2643 250000, but c++ code tends to generate lots of little
2644 functions, and sometimes violated the assumption. */
2645 do
2646 {
2647 prev = PREV_SEC (tail);
2648 /* Set up this stub group. */
2649 htab->stub_group[tail->id].link_sec = curr;
2650 }
2651 while (tail != curr && (tail = prev) != NULL);
2652
2653 /* But wait, there's more! Input sections up to 240000
2654 bytes before the stub section can be handled by it too.
2655 Don't do this if we have a really large section after the
2656 stubs, as adding more stubs increases the chance that
2657 branches may not reach into the stub section. */
2658 if (!stubs_always_before_branch && !big_sec)
2659 {
2660 total = 0;
2661 while (prev != NULL
2662 && ((total += tail->output_offset - prev->output_offset)
2663 < stub_group_size))
2664 {
2665 tail = prev;
2666 prev = PREV_SEC (tail);
2667 htab->stub_group[tail->id].link_sec = curr;
2668 }
2669 }
2670 tail = prev;
2671 }
2672 }
2673 while (list-- != htab->input_list);
2674 free (htab->input_list);
2675 #undef PREV_SEC
2676 }
2677
2678 /* Read in all local syms for all input bfds, and create hash entries
2679 for export stubs if we are building a multi-subspace shared lib.
2680 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2681
2682 static int
2683 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2684 {
2685 unsigned int bfd_indx;
2686 Elf_Internal_Sym *local_syms, **all_local_syms;
2687 int stub_changed = 0;
2688 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2689
2690 if (htab == NULL)
2691 return -1;
2692
2693 /* We want to read in symbol extension records only once. To do this
2694 we need to read in the local symbols in parallel and save them for
2695 later use; so hold pointers to the local symbols in an array. */
2696 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2697 all_local_syms = bfd_zmalloc (amt);
2698 htab->all_local_syms = all_local_syms;
2699 if (all_local_syms == NULL)
2700 return -1;
2701
2702 /* Walk over all the input BFDs, swapping in local symbols.
2703 If we are creating a shared library, create hash entries for the
2704 export stubs. */
2705 for (bfd_indx = 0;
2706 input_bfd != NULL;
2707 input_bfd = input_bfd->link_next, bfd_indx++)
2708 {
2709 Elf_Internal_Shdr *symtab_hdr;
2710
2711 /* We'll need the symbol table in a second. */
2712 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2713 if (symtab_hdr->sh_info == 0)
2714 continue;
2715
2716 /* We need an array of the local symbols attached to the input bfd. */
2717 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2718 if (local_syms == NULL)
2719 {
2720 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2721 symtab_hdr->sh_info, 0,
2722 NULL, NULL, NULL);
2723 /* Cache them for elf_link_input_bfd. */
2724 symtab_hdr->contents = (unsigned char *) local_syms;
2725 }
2726 if (local_syms == NULL)
2727 return -1;
2728
2729 all_local_syms[bfd_indx] = local_syms;
2730
2731 if (info->shared && htab->multi_subspace)
2732 {
2733 struct elf_link_hash_entry **eh_syms;
2734 struct elf_link_hash_entry **eh_symend;
2735 unsigned int symcount;
2736
2737 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2738 - symtab_hdr->sh_info);
2739 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2740 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2741
2742 /* Look through the global syms for functions; We need to
2743 build export stubs for all globally visible functions. */
2744 for (; eh_syms < eh_symend; eh_syms++)
2745 {
2746 struct elf32_hppa_link_hash_entry *hh;
2747
2748 hh = hppa_elf_hash_entry (*eh_syms);
2749
2750 while (hh->eh.root.type == bfd_link_hash_indirect
2751 || hh->eh.root.type == bfd_link_hash_warning)
2752 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2753
2754 /* At this point in the link, undefined syms have been
2755 resolved, so we need to check that the symbol was
2756 defined in this BFD. */
2757 if ((hh->eh.root.type == bfd_link_hash_defined
2758 || hh->eh.root.type == bfd_link_hash_defweak)
2759 && hh->eh.type == STT_FUNC
2760 && hh->eh.root.u.def.section->output_section != NULL
2761 && (hh->eh.root.u.def.section->output_section->owner
2762 == output_bfd)
2763 && hh->eh.root.u.def.section->owner == input_bfd
2764 && hh->eh.def_regular
2765 && !hh->eh.forced_local
2766 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2767 {
2768 asection *sec;
2769 const char *stub_name;
2770 struct elf32_hppa_stub_hash_entry *hsh;
2771
2772 sec = hh->eh.root.u.def.section;
2773 stub_name = hh_name (hh);
2774 hsh = hppa_stub_hash_lookup (&htab->bstab,
2775 stub_name,
2776 FALSE, FALSE);
2777 if (hsh == NULL)
2778 {
2779 hsh = hppa_add_stub (stub_name, sec, htab);
2780 if (!hsh)
2781 return -1;
2782
2783 hsh->target_value = hh->eh.root.u.def.value;
2784 hsh->target_section = hh->eh.root.u.def.section;
2785 hsh->stub_type = hppa_stub_export;
2786 hsh->hh = hh;
2787 stub_changed = 1;
2788 }
2789 else
2790 {
2791 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2792 input_bfd,
2793 stub_name);
2794 }
2795 }
2796 }
2797 }
2798 }
2799
2800 return stub_changed;
2801 }
2802
2803 /* Determine and set the size of the stub section for a final link.
2804
2805 The basic idea here is to examine all the relocations looking for
2806 PC-relative calls to a target that is unreachable with a "bl"
2807 instruction. */
2808
2809 bfd_boolean
2810 elf32_hppa_size_stubs
2811 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2812 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2813 asection * (*add_stub_section) (const char *, asection *),
2814 void (*layout_sections_again) (void))
2815 {
2816 bfd_size_type stub_group_size;
2817 bfd_boolean stubs_always_before_branch;
2818 bfd_boolean stub_changed;
2819 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2820
2821 if (htab == NULL)
2822 return FALSE;
2823
2824 /* Stash our params away. */
2825 htab->stub_bfd = stub_bfd;
2826 htab->multi_subspace = multi_subspace;
2827 htab->add_stub_section = add_stub_section;
2828 htab->layout_sections_again = layout_sections_again;
2829 stubs_always_before_branch = group_size < 0;
2830 if (group_size < 0)
2831 stub_group_size = -group_size;
2832 else
2833 stub_group_size = group_size;
2834 if (stub_group_size == 1)
2835 {
2836 /* Default values. */
2837 if (stubs_always_before_branch)
2838 {
2839 stub_group_size = 7680000;
2840 if (htab->has_17bit_branch || htab->multi_subspace)
2841 stub_group_size = 240000;
2842 if (htab->has_12bit_branch)
2843 stub_group_size = 7500;
2844 }
2845 else
2846 {
2847 stub_group_size = 6971392;
2848 if (htab->has_17bit_branch || htab->multi_subspace)
2849 stub_group_size = 217856;
2850 if (htab->has_12bit_branch)
2851 stub_group_size = 6808;
2852 }
2853 }
2854
2855 group_sections (htab, stub_group_size, stubs_always_before_branch);
2856
2857 switch (get_local_syms (output_bfd, info->input_bfds, info))
2858 {
2859 default:
2860 if (htab->all_local_syms)
2861 goto error_ret_free_local;
2862 return FALSE;
2863
2864 case 0:
2865 stub_changed = FALSE;
2866 break;
2867
2868 case 1:
2869 stub_changed = TRUE;
2870 break;
2871 }
2872
2873 while (1)
2874 {
2875 bfd *input_bfd;
2876 unsigned int bfd_indx;
2877 asection *stub_sec;
2878
2879 for (input_bfd = info->input_bfds, bfd_indx = 0;
2880 input_bfd != NULL;
2881 input_bfd = input_bfd->link_next, bfd_indx++)
2882 {
2883 Elf_Internal_Shdr *symtab_hdr;
2884 asection *section;
2885 Elf_Internal_Sym *local_syms;
2886
2887 /* We'll need the symbol table in a second. */
2888 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2889 if (symtab_hdr->sh_info == 0)
2890 continue;
2891
2892 local_syms = htab->all_local_syms[bfd_indx];
2893
2894 /* Walk over each section attached to the input bfd. */
2895 for (section = input_bfd->sections;
2896 section != NULL;
2897 section = section->next)
2898 {
2899 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2900
2901 /* If there aren't any relocs, then there's nothing more
2902 to do. */
2903 if ((section->flags & SEC_RELOC) == 0
2904 || section->reloc_count == 0)
2905 continue;
2906
2907 /* If this section is a link-once section that will be
2908 discarded, then don't create any stubs. */
2909 if (section->output_section == NULL
2910 || section->output_section->owner != output_bfd)
2911 continue;
2912
2913 /* Get the relocs. */
2914 internal_relocs
2915 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2916 info->keep_memory);
2917 if (internal_relocs == NULL)
2918 goto error_ret_free_local;
2919
2920 /* Now examine each relocation. */
2921 irela = internal_relocs;
2922 irelaend = irela + section->reloc_count;
2923 for (; irela < irelaend; irela++)
2924 {
2925 unsigned int r_type, r_indx;
2926 enum elf32_hppa_stub_type stub_type;
2927 struct elf32_hppa_stub_hash_entry *hsh;
2928 asection *sym_sec;
2929 bfd_vma sym_value;
2930 bfd_vma destination;
2931 struct elf32_hppa_link_hash_entry *hh;
2932 char *stub_name;
2933 const asection *id_sec;
2934
2935 r_type = ELF32_R_TYPE (irela->r_info);
2936 r_indx = ELF32_R_SYM (irela->r_info);
2937
2938 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2939 {
2940 bfd_set_error (bfd_error_bad_value);
2941 error_ret_free_internal:
2942 if (elf_section_data (section)->relocs == NULL)
2943 free (internal_relocs);
2944 goto error_ret_free_local;
2945 }
2946
2947 /* Only look for stubs on call instructions. */
2948 if (r_type != (unsigned int) R_PARISC_PCREL12F
2949 && r_type != (unsigned int) R_PARISC_PCREL17F
2950 && r_type != (unsigned int) R_PARISC_PCREL22F)
2951 continue;
2952
2953 /* Now determine the call target, its name, value,
2954 section. */
2955 sym_sec = NULL;
2956 sym_value = 0;
2957 destination = 0;
2958 hh = NULL;
2959 if (r_indx < symtab_hdr->sh_info)
2960 {
2961 /* It's a local symbol. */
2962 Elf_Internal_Sym *sym;
2963 Elf_Internal_Shdr *hdr;
2964 unsigned int shndx;
2965
2966 sym = local_syms + r_indx;
2967 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2968 sym_value = sym->st_value;
2969 shndx = sym->st_shndx;
2970 if (shndx < elf_numsections (input_bfd))
2971 {
2972 hdr = elf_elfsections (input_bfd)[shndx];
2973 sym_sec = hdr->bfd_section;
2974 destination = (sym_value + irela->r_addend
2975 + sym_sec->output_offset
2976 + sym_sec->output_section->vma);
2977 }
2978 }
2979 else
2980 {
2981 /* It's an external symbol. */
2982 int e_indx;
2983
2984 e_indx = r_indx - symtab_hdr->sh_info;
2985 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2986
2987 while (hh->eh.root.type == bfd_link_hash_indirect
2988 || hh->eh.root.type == bfd_link_hash_warning)
2989 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2990
2991 if (hh->eh.root.type == bfd_link_hash_defined
2992 || hh->eh.root.type == bfd_link_hash_defweak)
2993 {
2994 sym_sec = hh->eh.root.u.def.section;
2995 sym_value = hh->eh.root.u.def.value;
2996 if (sym_sec->output_section != NULL)
2997 destination = (sym_value + irela->r_addend
2998 + sym_sec->output_offset
2999 + sym_sec->output_section->vma);
3000 }
3001 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3002 {
3003 if (! info->shared)
3004 continue;
3005 }
3006 else if (hh->eh.root.type == bfd_link_hash_undefined)
3007 {
3008 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3009 && (ELF_ST_VISIBILITY (hh->eh.other)
3010 == STV_DEFAULT)
3011 && hh->eh.type != STT_PARISC_MILLI))
3012 continue;
3013 }
3014 else
3015 {
3016 bfd_set_error (bfd_error_bad_value);
3017 goto error_ret_free_internal;
3018 }
3019 }
3020
3021 /* Determine what (if any) linker stub is needed. */
3022 stub_type = hppa_type_of_stub (section, irela, hh,
3023 destination, info);
3024 if (stub_type == hppa_stub_none)
3025 continue;
3026
3027 /* Support for grouping stub sections. */
3028 id_sec = htab->stub_group[section->id].link_sec;
3029
3030 /* Get the name of this stub. */
3031 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3032 if (!stub_name)
3033 goto error_ret_free_internal;
3034
3035 hsh = hppa_stub_hash_lookup (&htab->bstab,
3036 stub_name,
3037 FALSE, FALSE);
3038 if (hsh != NULL)
3039 {
3040 /* The proper stub has already been created. */
3041 free (stub_name);
3042 continue;
3043 }
3044
3045 hsh = hppa_add_stub (stub_name, section, htab);
3046 if (hsh == NULL)
3047 {
3048 free (stub_name);
3049 goto error_ret_free_internal;
3050 }
3051
3052 hsh->target_value = sym_value;
3053 hsh->target_section = sym_sec;
3054 hsh->stub_type = stub_type;
3055 if (info->shared)
3056 {
3057 if (stub_type == hppa_stub_import)
3058 hsh->stub_type = hppa_stub_import_shared;
3059 else if (stub_type == hppa_stub_long_branch)
3060 hsh->stub_type = hppa_stub_long_branch_shared;
3061 }
3062 hsh->hh = hh;
3063 stub_changed = TRUE;
3064 }
3065
3066 /* We're done with the internal relocs, free them. */
3067 if (elf_section_data (section)->relocs == NULL)
3068 free (internal_relocs);
3069 }
3070 }
3071
3072 if (!stub_changed)
3073 break;
3074
3075 /* OK, we've added some stubs. Find out the new size of the
3076 stub sections. */
3077 for (stub_sec = htab->stub_bfd->sections;
3078 stub_sec != NULL;
3079 stub_sec = stub_sec->next)
3080 stub_sec->size = 0;
3081
3082 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3083
3084 /* Ask the linker to do its stuff. */
3085 (*htab->layout_sections_again) ();
3086 stub_changed = FALSE;
3087 }
3088
3089 free (htab->all_local_syms);
3090 return TRUE;
3091
3092 error_ret_free_local:
3093 free (htab->all_local_syms);
3094 return FALSE;
3095 }
3096
3097 /* For a final link, this function is called after we have sized the
3098 stubs to provide a value for __gp. */
3099
3100 bfd_boolean
3101 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3102 {
3103 struct bfd_link_hash_entry *h;
3104 asection *sec = NULL;
3105 bfd_vma gp_val = 0;
3106 struct elf32_hppa_link_hash_table *htab;
3107
3108 htab = hppa_link_hash_table (info);
3109 if (htab == NULL)
3110 return FALSE;
3111
3112 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3113
3114 if (h != NULL
3115 && (h->type == bfd_link_hash_defined
3116 || h->type == bfd_link_hash_defweak))
3117 {
3118 gp_val = h->u.def.value;
3119 sec = h->u.def.section;
3120 }
3121 else
3122 {
3123 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3124 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3125
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3135 ? NULL : splt;
3136 if (sec != NULL)
3137 {
3138 gp_val = sec->size;
3139 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3140 {
3141 gp_val = 0x2000;
3142 }
3143 }
3144 else
3145 {
3146 sec = sgot;
3147 if (sec != NULL)
3148 {
3149 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3150 {
3151 /* We know we don't have a .plt. If .got is large,
3152 offset our LTP. */
3153 if (sec->size > 0x2000)
3154 gp_val = 0x2000;
3155 }
3156 }
3157 else
3158 {
3159 /* No .plt or .got. Who cares what the LTP is? */
3160 sec = bfd_get_section_by_name (abfd, ".data");
3161 }
3162 }
3163
3164 if (h != NULL)
3165 {
3166 h->type = bfd_link_hash_defined;
3167 h->u.def.value = gp_val;
3168 if (sec != NULL)
3169 h->u.def.section = sec;
3170 else
3171 h->u.def.section = bfd_abs_section_ptr;
3172 }
3173 }
3174
3175 if (sec != NULL && sec->output_section != NULL)
3176 gp_val += sec->output_section->vma + sec->output_offset;
3177
3178 elf_gp (abfd) = gp_val;
3179 return TRUE;
3180 }
3181
3182 /* Build all the stubs associated with the current output file. The
3183 stubs are kept in a hash table attached to the main linker hash
3184 table. We also set up the .plt entries for statically linked PIC
3185 functions here. This function is called via hppaelf_finish in the
3186 linker. */
3187
3188 bfd_boolean
3189 elf32_hppa_build_stubs (struct bfd_link_info *info)
3190 {
3191 asection *stub_sec;
3192 struct bfd_hash_table *table;
3193 struct elf32_hppa_link_hash_table *htab;
3194
3195 htab = hppa_link_hash_table (info);
3196 if (htab == NULL)
3197 return FALSE;
3198
3199 for (stub_sec = htab->stub_bfd->sections;
3200 stub_sec != NULL;
3201 stub_sec = stub_sec->next)
3202 {
3203 bfd_size_type size;
3204
3205 /* Allocate memory to hold the linker stubs. */
3206 size = stub_sec->size;
3207 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3208 if (stub_sec->contents == NULL && size != 0)
3209 return FALSE;
3210 stub_sec->size = 0;
3211 }
3212
3213 /* Build the stubs as directed by the stub hash table. */
3214 table = &htab->bstab;
3215 bfd_hash_traverse (table, hppa_build_one_stub, info);
3216
3217 return TRUE;
3218 }
3219
3220 /* Return the base vma address which should be subtracted from the real
3221 address when resolving a dtpoff relocation.
3222 This is PT_TLS segment p_vaddr. */
3223
3224 static bfd_vma
3225 dtpoff_base (struct bfd_link_info *info)
3226 {
3227 /* If tls_sec is NULL, we should have signalled an error already. */
3228 if (elf_hash_table (info)->tls_sec == NULL)
3229 return 0;
3230 return elf_hash_table (info)->tls_sec->vma;
3231 }
3232
3233 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3234
3235 static bfd_vma
3236 tpoff (struct bfd_link_info *info, bfd_vma address)
3237 {
3238 struct elf_link_hash_table *htab = elf_hash_table (info);
3239
3240 /* If tls_sec is NULL, we should have signalled an error already. */
3241 if (htab->tls_sec == NULL)
3242 return 0;
3243 /* hppa TLS ABI is variant I and static TLS block start just after
3244 tcbhead structure which has 2 pointer fields. */
3245 return (address - htab->tls_sec->vma
3246 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3247 }
3248
3249 /* Perform a final link. */
3250
3251 static bfd_boolean
3252 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3253 {
3254 /* Invoke the regular ELF linker to do all the work. */
3255 if (!bfd_elf_final_link (abfd, info))
3256 return FALSE;
3257
3258 /* If we're producing a final executable, sort the contents of the
3259 unwind section. */
3260 if (info->relocatable)
3261 return TRUE;
3262
3263 return elf_hppa_sort_unwind (abfd);
3264 }
3265
3266 /* Record the lowest address for the data and text segments. */
3267
3268 static void
3269 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3270 {
3271 struct elf32_hppa_link_hash_table *htab;
3272
3273 htab = (struct elf32_hppa_link_hash_table*) data;
3274 if (htab == NULL)
3275 return;
3276
3277 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3278 {
3279 bfd_vma value;
3280 Elf_Internal_Phdr *p;
3281
3282 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3283 BFD_ASSERT (p != NULL);
3284 value = p->p_vaddr;
3285
3286 if ((section->flags & SEC_READONLY) != 0)
3287 {
3288 if (value < htab->text_segment_base)
3289 htab->text_segment_base = value;
3290 }
3291 else
3292 {
3293 if (value < htab->data_segment_base)
3294 htab->data_segment_base = value;
3295 }
3296 }
3297 }
3298
3299 /* Perform a relocation as part of a final link. */
3300
3301 static bfd_reloc_status_type
3302 final_link_relocate (asection *input_section,
3303 bfd_byte *contents,
3304 const Elf_Internal_Rela *rela,
3305 bfd_vma value,
3306 struct elf32_hppa_link_hash_table *htab,
3307 asection *sym_sec,
3308 struct elf32_hppa_link_hash_entry *hh,
3309 struct bfd_link_info *info)
3310 {
3311 int insn;
3312 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3313 unsigned int orig_r_type = r_type;
3314 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3315 int r_format = howto->bitsize;
3316 enum hppa_reloc_field_selector_type_alt r_field;
3317 bfd *input_bfd = input_section->owner;
3318 bfd_vma offset = rela->r_offset;
3319 bfd_vma max_branch_offset = 0;
3320 bfd_byte *hit_data = contents + offset;
3321 bfd_signed_vma addend = rela->r_addend;
3322 bfd_vma location;
3323 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3324 int val;
3325
3326 if (r_type == R_PARISC_NONE)
3327 return bfd_reloc_ok;
3328
3329 insn = bfd_get_32 (input_bfd, hit_data);
3330
3331 /* Find out where we are and where we're going. */
3332 location = (offset +
3333 input_section->output_offset +
3334 input_section->output_section->vma);
3335
3336 /* If we are not building a shared library, convert DLTIND relocs to
3337 DPREL relocs. */
3338 if (!info->shared)
3339 {
3340 switch (r_type)
3341 {
3342 case R_PARISC_DLTIND21L:
3343 r_type = R_PARISC_DPREL21L;
3344 break;
3345
3346 case R_PARISC_DLTIND14R:
3347 r_type = R_PARISC_DPREL14R;
3348 break;
3349
3350 case R_PARISC_DLTIND14F:
3351 r_type = R_PARISC_DPREL14F;
3352 break;
3353 }
3354 }
3355
3356 switch (r_type)
3357 {
3358 case R_PARISC_PCREL12F:
3359 case R_PARISC_PCREL17F:
3360 case R_PARISC_PCREL22F:
3361 /* If this call should go via the plt, find the import stub in
3362 the stub hash. */
3363 if (sym_sec == NULL
3364 || sym_sec->output_section == NULL
3365 || (hh != NULL
3366 && hh->eh.plt.offset != (bfd_vma) -1
3367 && hh->eh.dynindx != -1
3368 && !hh->plabel
3369 && (info->shared
3370 || !hh->eh.def_regular
3371 || hh->eh.root.type == bfd_link_hash_defweak)))
3372 {
3373 hsh = hppa_get_stub_entry (input_section, sym_sec,
3374 hh, rela, htab);
3375 if (hsh != NULL)
3376 {
3377 value = (hsh->stub_offset
3378 + hsh->stub_sec->output_offset
3379 + hsh->stub_sec->output_section->vma);
3380 addend = 0;
3381 }
3382 else if (sym_sec == NULL && hh != NULL
3383 && hh->eh.root.type == bfd_link_hash_undefweak)
3384 {
3385 /* It's OK if undefined weak. Calls to undefined weak
3386 symbols behave as if the "called" function
3387 immediately returns. We can thus call to a weak
3388 function without first checking whether the function
3389 is defined. */
3390 value = location;
3391 addend = 8;
3392 }
3393 else
3394 return bfd_reloc_undefined;
3395 }
3396 /* Fall thru. */
3397
3398 case R_PARISC_PCREL21L:
3399 case R_PARISC_PCREL17C:
3400 case R_PARISC_PCREL17R:
3401 case R_PARISC_PCREL14R:
3402 case R_PARISC_PCREL14F:
3403 case R_PARISC_PCREL32:
3404 /* Make it a pc relative offset. */
3405 value -= location;
3406 addend -= 8;
3407 break;
3408
3409 case R_PARISC_DPREL21L:
3410 case R_PARISC_DPREL14R:
3411 case R_PARISC_DPREL14F:
3412 case R_PARISC_TLS_GD21L:
3413 case R_PARISC_TLS_LDM21L:
3414 case R_PARISC_TLS_IE21L:
3415 /* Convert instructions that use the linkage table pointer (r19) to
3416 instructions that use the global data pointer (dp). This is the
3417 most efficient way of using PIC code in an incomplete executable,
3418 but the user must follow the standard runtime conventions for
3419 accessing data for this to work. */
3420 if (orig_r_type == R_PARISC_DLTIND21L
3421 || (!info->shared
3422 && (r_type == R_PARISC_TLS_GD21L
3423 || r_type == R_PARISC_TLS_LDM21L
3424 || r_type == R_PARISC_TLS_IE21L)))
3425 {
3426 /* Convert addil instructions if the original reloc was a
3427 DLTIND21L. GCC sometimes uses a register other than r19 for
3428 the operation, so we must convert any addil instruction
3429 that uses this relocation. */
3430 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3431 insn = ADDIL_DP;
3432 else
3433 /* We must have a ldil instruction. It's too hard to find
3434 and convert the associated add instruction, so issue an
3435 error. */
3436 (*_bfd_error_handler)
3437 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3438 input_bfd,
3439 input_section,
3440 (long) offset,
3441 howto->name,
3442 insn);
3443 }
3444 else if (orig_r_type == R_PARISC_DLTIND14F)
3445 {
3446 /* This must be a format 1 load/store. Change the base
3447 register to dp. */
3448 insn = (insn & 0xfc1ffff) | (27 << 21);
3449 }
3450
3451 /* For all the DP relative relocations, we need to examine the symbol's
3452 section. If it has no section or if it's a code section, then
3453 "data pointer relative" makes no sense. In that case we don't
3454 adjust the "value", and for 21 bit addil instructions, we change the
3455 source addend register from %dp to %r0. This situation commonly
3456 arises for undefined weak symbols and when a variable's "constness"
3457 is declared differently from the way the variable is defined. For
3458 instance: "extern int foo" with foo defined as "const int foo". */
3459 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3460 {
3461 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3462 == (((int) OP_ADDIL << 26) | (27 << 21)))
3463 {
3464 insn &= ~ (0x1f << 21);
3465 }
3466 /* Now try to make things easy for the dynamic linker. */
3467
3468 break;
3469 }
3470 /* Fall thru. */
3471
3472 case R_PARISC_DLTIND21L:
3473 case R_PARISC_DLTIND14R:
3474 case R_PARISC_DLTIND14F:
3475 case R_PARISC_TLS_GD14R:
3476 case R_PARISC_TLS_LDM14R:
3477 case R_PARISC_TLS_IE14R:
3478 value -= elf_gp (input_section->output_section->owner);
3479 break;
3480
3481 case R_PARISC_SEGREL32:
3482 if ((sym_sec->flags & SEC_CODE) != 0)
3483 value -= htab->text_segment_base;
3484 else
3485 value -= htab->data_segment_base;
3486 break;
3487
3488 default:
3489 break;
3490 }
3491
3492 switch (r_type)
3493 {
3494 case R_PARISC_DIR32:
3495 case R_PARISC_DIR14F:
3496 case R_PARISC_DIR17F:
3497 case R_PARISC_PCREL17C:
3498 case R_PARISC_PCREL14F:
3499 case R_PARISC_PCREL32:
3500 case R_PARISC_DPREL14F:
3501 case R_PARISC_PLABEL32:
3502 case R_PARISC_DLTIND14F:
3503 case R_PARISC_SEGBASE:
3504 case R_PARISC_SEGREL32:
3505 case R_PARISC_TLS_DTPMOD32:
3506 case R_PARISC_TLS_DTPOFF32:
3507 case R_PARISC_TLS_TPREL32:
3508 r_field = e_fsel;
3509 break;
3510
3511 case R_PARISC_DLTIND21L:
3512 case R_PARISC_PCREL21L:
3513 case R_PARISC_PLABEL21L:
3514 r_field = e_lsel;
3515 break;
3516
3517 case R_PARISC_DIR21L:
3518 case R_PARISC_DPREL21L:
3519 case R_PARISC_TLS_GD21L:
3520 case R_PARISC_TLS_LDM21L:
3521 case R_PARISC_TLS_LDO21L:
3522 case R_PARISC_TLS_IE21L:
3523 case R_PARISC_TLS_LE21L:
3524 r_field = e_lrsel;
3525 break;
3526
3527 case R_PARISC_PCREL17R:
3528 case R_PARISC_PCREL14R:
3529 case R_PARISC_PLABEL14R:
3530 case R_PARISC_DLTIND14R:
3531 r_field = e_rsel;
3532 break;
3533
3534 case R_PARISC_DIR17R:
3535 case R_PARISC_DIR14R:
3536 case R_PARISC_DPREL14R:
3537 case R_PARISC_TLS_GD14R:
3538 case R_PARISC_TLS_LDM14R:
3539 case R_PARISC_TLS_LDO14R:
3540 case R_PARISC_TLS_IE14R:
3541 case R_PARISC_TLS_LE14R:
3542 r_field = e_rrsel;
3543 break;
3544
3545 case R_PARISC_PCREL12F:
3546 case R_PARISC_PCREL17F:
3547 case R_PARISC_PCREL22F:
3548 r_field = e_fsel;
3549
3550 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3551 {
3552 max_branch_offset = (1 << (17-1)) << 2;
3553 }
3554 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3555 {
3556 max_branch_offset = (1 << (12-1)) << 2;
3557 }
3558 else
3559 {
3560 max_branch_offset = (1 << (22-1)) << 2;
3561 }
3562
3563 /* sym_sec is NULL on undefined weak syms or when shared on
3564 undefined syms. We've already checked for a stub for the
3565 shared undefined case. */
3566 if (sym_sec == NULL)
3567 break;
3568
3569 /* If the branch is out of reach, then redirect the
3570 call to the local stub for this function. */
3571 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3572 {
3573 hsh = hppa_get_stub_entry (input_section, sym_sec,
3574 hh, rela, htab);
3575 if (hsh == NULL)
3576 return bfd_reloc_undefined;
3577
3578 /* Munge up the value and addend so that we call the stub
3579 rather than the procedure directly. */
3580 value = (hsh->stub_offset
3581 + hsh->stub_sec->output_offset
3582 + hsh->stub_sec->output_section->vma
3583 - location);
3584 addend = -8;
3585 }
3586 break;
3587
3588 /* Something we don't know how to handle. */
3589 default:
3590 return bfd_reloc_notsupported;
3591 }
3592
3593 /* Make sure we can reach the stub. */
3594 if (max_branch_offset != 0
3595 && value + addend + max_branch_offset >= 2*max_branch_offset)
3596 {
3597 (*_bfd_error_handler)
3598 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3599 input_bfd,
3600 input_section,
3601 (long) offset,
3602 hsh->bh_root.string);
3603 bfd_set_error (bfd_error_bad_value);
3604 return bfd_reloc_notsupported;
3605 }
3606
3607 val = hppa_field_adjust (value, addend, r_field);
3608
3609 switch (r_type)
3610 {
3611 case R_PARISC_PCREL12F:
3612 case R_PARISC_PCREL17C:
3613 case R_PARISC_PCREL17F:
3614 case R_PARISC_PCREL17R:
3615 case R_PARISC_PCREL22F:
3616 case R_PARISC_DIR17F:
3617 case R_PARISC_DIR17R:
3618 /* This is a branch. Divide the offset by four.
3619 Note that we need to decide whether it's a branch or
3620 otherwise by inspecting the reloc. Inspecting insn won't
3621 work as insn might be from a .word directive. */
3622 val >>= 2;
3623 break;
3624
3625 default:
3626 break;
3627 }
3628
3629 insn = hppa_rebuild_insn (insn, val, r_format);
3630
3631 /* Update the instruction word. */
3632 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3633 return bfd_reloc_ok;
3634 }
3635
3636 /* Relocate an HPPA ELF section. */
3637
3638 static bfd_boolean
3639 elf32_hppa_relocate_section (bfd *output_bfd,
3640 struct bfd_link_info *info,
3641 bfd *input_bfd,
3642 asection *input_section,
3643 bfd_byte *contents,
3644 Elf_Internal_Rela *relocs,
3645 Elf_Internal_Sym *local_syms,
3646 asection **local_sections)
3647 {
3648 bfd_vma *local_got_offsets;
3649 struct elf32_hppa_link_hash_table *htab;
3650 Elf_Internal_Shdr *symtab_hdr;
3651 Elf_Internal_Rela *rela;
3652 Elf_Internal_Rela *relend;
3653
3654 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3655
3656 htab = hppa_link_hash_table (info);
3657 if (htab == NULL)
3658 return FALSE;
3659
3660 local_got_offsets = elf_local_got_offsets (input_bfd);
3661
3662 rela = relocs;
3663 relend = relocs + input_section->reloc_count;
3664 for (; rela < relend; rela++)
3665 {
3666 unsigned int r_type;
3667 reloc_howto_type *howto;
3668 unsigned int r_symndx;
3669 struct elf32_hppa_link_hash_entry *hh;
3670 Elf_Internal_Sym *sym;
3671 asection *sym_sec;
3672 bfd_vma relocation;
3673 bfd_reloc_status_type rstatus;
3674 const char *sym_name;
3675 bfd_boolean plabel;
3676 bfd_boolean warned_undef;
3677
3678 r_type = ELF32_R_TYPE (rela->r_info);
3679 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3680 {
3681 bfd_set_error (bfd_error_bad_value);
3682 return FALSE;
3683 }
3684 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3685 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3686 continue;
3687
3688 r_symndx = ELF32_R_SYM (rela->r_info);
3689 hh = NULL;
3690 sym = NULL;
3691 sym_sec = NULL;
3692 warned_undef = FALSE;
3693 if (r_symndx < symtab_hdr->sh_info)
3694 {
3695 /* This is a local symbol, h defaults to NULL. */
3696 sym = local_syms + r_symndx;
3697 sym_sec = local_sections[r_symndx];
3698 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3699 }
3700 else
3701 {
3702 struct elf_link_hash_entry *eh;
3703 bfd_boolean unresolved_reloc;
3704 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3705
3706 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3707 r_symndx, symtab_hdr, sym_hashes,
3708 eh, sym_sec, relocation,
3709 unresolved_reloc, warned_undef);
3710
3711 if (!info->relocatable
3712 && relocation == 0
3713 && eh->root.type != bfd_link_hash_defined
3714 && eh->root.type != bfd_link_hash_defweak
3715 && eh->root.type != bfd_link_hash_undefweak)
3716 {
3717 if (info->unresolved_syms_in_objects == RM_IGNORE
3718 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3719 && eh->type == STT_PARISC_MILLI)
3720 {
3721 if (! info->callbacks->undefined_symbol
3722 (info, eh_name (eh), input_bfd,
3723 input_section, rela->r_offset, FALSE))
3724 return FALSE;
3725 warned_undef = TRUE;
3726 }
3727 }
3728 hh = hppa_elf_hash_entry (eh);
3729 }
3730
3731 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3732 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3733 rela, relend,
3734 elf_hppa_howto_table + r_type,
3735 contents);
3736
3737 if (info->relocatable)
3738 continue;
3739
3740 /* Do any required modifications to the relocation value, and
3741 determine what types of dynamic info we need to output, if
3742 any. */
3743 plabel = 0;
3744 switch (r_type)
3745 {
3746 case R_PARISC_DLTIND14F:
3747 case R_PARISC_DLTIND14R:
3748 case R_PARISC_DLTIND21L:
3749 {
3750 bfd_vma off;
3751 bfd_boolean do_got = 0;
3752
3753 /* Relocation is to the entry for this symbol in the
3754 global offset table. */
3755 if (hh != NULL)
3756 {
3757 bfd_boolean dyn;
3758
3759 off = hh->eh.got.offset;
3760 dyn = htab->etab.dynamic_sections_created;
3761 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3762 &hh->eh))
3763 {
3764 /* If we aren't going to call finish_dynamic_symbol,
3765 then we need to handle initialisation of the .got
3766 entry and create needed relocs here. Since the
3767 offset must always be a multiple of 4, we use the
3768 least significant bit to record whether we have
3769 initialised it already. */
3770 if ((off & 1) != 0)
3771 off &= ~1;
3772 else
3773 {
3774 hh->eh.got.offset |= 1;
3775 do_got = 1;
3776 }
3777 }
3778 }
3779 else
3780 {
3781 /* Local symbol case. */
3782 if (local_got_offsets == NULL)
3783 abort ();
3784
3785 off = local_got_offsets[r_symndx];
3786
3787 /* The offset must always be a multiple of 4. We use
3788 the least significant bit to record whether we have
3789 already generated the necessary reloc. */
3790 if ((off & 1) != 0)
3791 off &= ~1;
3792 else
3793 {
3794 local_got_offsets[r_symndx] |= 1;
3795 do_got = 1;
3796 }
3797 }
3798
3799 if (do_got)
3800 {
3801 if (info->shared)
3802 {
3803 /* Output a dynamic relocation for this GOT entry.
3804 In this case it is relative to the base of the
3805 object because the symbol index is zero. */
3806 Elf_Internal_Rela outrel;
3807 bfd_byte *loc;
3808 asection *sec = htab->srelgot;
3809
3810 outrel.r_offset = (off
3811 + htab->sgot->output_offset
3812 + htab->sgot->output_section->vma);
3813 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3814 outrel.r_addend = relocation;
3815 loc = sec->contents;
3816 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3817 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818 }
3819 else
3820 bfd_put_32 (output_bfd, relocation,
3821 htab->sgot->contents + off);
3822 }
3823
3824 if (off >= (bfd_vma) -2)
3825 abort ();
3826
3827 /* Add the base of the GOT to the relocation value. */
3828 relocation = (off
3829 + htab->sgot->output_offset
3830 + htab->sgot->output_section->vma);
3831 }
3832 break;
3833
3834 case R_PARISC_SEGREL32:
3835 /* If this is the first SEGREL relocation, then initialize
3836 the segment base values. */
3837 if (htab->text_segment_base == (bfd_vma) -1)
3838 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3839 break;
3840
3841 case R_PARISC_PLABEL14R:
3842 case R_PARISC_PLABEL21L:
3843 case R_PARISC_PLABEL32:
3844 if (htab->etab.dynamic_sections_created)
3845 {
3846 bfd_vma off;
3847 bfd_boolean do_plt = 0;
3848 /* If we have a global symbol with a PLT slot, then
3849 redirect this relocation to it. */
3850 if (hh != NULL)
3851 {
3852 off = hh->eh.plt.offset;
3853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3854 &hh->eh))
3855 {
3856 /* In a non-shared link, adjust_dynamic_symbols
3857 isn't called for symbols forced local. We
3858 need to write out the plt entry here. */
3859 if ((off & 1) != 0)
3860 off &= ~1;
3861 else
3862 {
3863 hh->eh.plt.offset |= 1;
3864 do_plt = 1;
3865 }
3866 }
3867 }
3868 else
3869 {
3870 bfd_vma *local_plt_offsets;
3871
3872 if (local_got_offsets == NULL)
3873 abort ();
3874
3875 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3876 off = local_plt_offsets[r_symndx];
3877
3878 /* As for the local .got entry case, we use the last
3879 bit to record whether we've already initialised
3880 this local .plt entry. */
3881 if ((off & 1) != 0)
3882 off &= ~1;
3883 else
3884 {
3885 local_plt_offsets[r_symndx] |= 1;
3886 do_plt = 1;
3887 }
3888 }
3889
3890 if (do_plt)
3891 {
3892 if (info->shared)
3893 {
3894 /* Output a dynamic IPLT relocation for this
3895 PLT entry. */
3896 Elf_Internal_Rela outrel;
3897 bfd_byte *loc;
3898 asection *s = htab->srelplt;
3899
3900 outrel.r_offset = (off
3901 + htab->splt->output_offset
3902 + htab->splt->output_section->vma);
3903 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3904 outrel.r_addend = relocation;
3905 loc = s->contents;
3906 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3907 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3908 }
3909 else
3910 {
3911 bfd_put_32 (output_bfd,
3912 relocation,
3913 htab->splt->contents + off);
3914 bfd_put_32 (output_bfd,
3915 elf_gp (htab->splt->output_section->owner),
3916 htab->splt->contents + off + 4);
3917 }
3918 }
3919
3920 if (off >= (bfd_vma) -2)
3921 abort ();
3922
3923 /* PLABELs contain function pointers. Relocation is to
3924 the entry for the function in the .plt. The magic +2
3925 offset signals to $$dyncall that the function pointer
3926 is in the .plt and thus has a gp pointer too.
3927 Exception: Undefined PLABELs should have a value of
3928 zero. */
3929 if (hh == NULL
3930 || (hh->eh.root.type != bfd_link_hash_undefweak
3931 && hh->eh.root.type != bfd_link_hash_undefined))
3932 {
3933 relocation = (off
3934 + htab->splt->output_offset
3935 + htab->splt->output_section->vma
3936 + 2);
3937 }
3938 plabel = 1;
3939 }
3940 /* Fall through and possibly emit a dynamic relocation. */
3941
3942 case R_PARISC_DIR17F:
3943 case R_PARISC_DIR17R:
3944 case R_PARISC_DIR14F:
3945 case R_PARISC_DIR14R:
3946 case R_PARISC_DIR21L:
3947 case R_PARISC_DPREL14F:
3948 case R_PARISC_DPREL14R:
3949 case R_PARISC_DPREL21L:
3950 case R_PARISC_DIR32:
3951 if ((input_section->flags & SEC_ALLOC) == 0)
3952 break;
3953
3954 /* The reloc types handled here and this conditional
3955 expression must match the code in ..check_relocs and
3956 allocate_dynrelocs. ie. We need exactly the same condition
3957 as in ..check_relocs, with some extra conditions (dynindx
3958 test in this case) to cater for relocs removed by
3959 allocate_dynrelocs. If you squint, the non-shared test
3960 here does indeed match the one in ..check_relocs, the
3961 difference being that here we test DEF_DYNAMIC as well as
3962 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3963 which is why we can't use just that test here.
3964 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3965 there all files have not been loaded. */
3966 if ((info->shared
3967 && (hh == NULL
3968 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3969 || hh->eh.root.type != bfd_link_hash_undefweak)
3970 && (IS_ABSOLUTE_RELOC (r_type)
3971 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3972 || (!info->shared
3973 && hh != NULL
3974 && hh->eh.dynindx != -1
3975 && !hh->eh.non_got_ref
3976 && ((ELIMINATE_COPY_RELOCS
3977 && hh->eh.def_dynamic
3978 && !hh->eh.def_regular)
3979 || hh->eh.root.type == bfd_link_hash_undefweak
3980 || hh->eh.root.type == bfd_link_hash_undefined)))
3981 {
3982 Elf_Internal_Rela outrel;
3983 bfd_boolean skip;
3984 asection *sreloc;
3985 bfd_byte *loc;
3986
3987 /* When generating a shared object, these relocations
3988 are copied into the output file to be resolved at run
3989 time. */
3990
3991 outrel.r_addend = rela->r_addend;
3992 outrel.r_offset =
3993 _bfd_elf_section_offset (output_bfd, info, input_section,
3994 rela->r_offset);
3995 skip = (outrel.r_offset == (bfd_vma) -1
3996 || outrel.r_offset == (bfd_vma) -2);
3997 outrel.r_offset += (input_section->output_offset
3998 + input_section->output_section->vma);
3999
4000 if (skip)
4001 {
4002 memset (&outrel, 0, sizeof (outrel));
4003 }
4004 else if (hh != NULL
4005 && hh->eh.dynindx != -1
4006 && (plabel
4007 || !IS_ABSOLUTE_RELOC (r_type)
4008 || !info->shared
4009 || !info->symbolic
4010 || !hh->eh.def_regular))
4011 {
4012 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4013 }
4014 else /* It's a local symbol, or one marked to become local. */
4015 {
4016 int indx = 0;
4017
4018 /* Add the absolute offset of the symbol. */
4019 outrel.r_addend += relocation;
4020
4021 /* Global plabels need to be processed by the
4022 dynamic linker so that functions have at most one
4023 fptr. For this reason, we need to differentiate
4024 between global and local plabels, which we do by
4025 providing the function symbol for a global plabel
4026 reloc, and no symbol for local plabels. */
4027 if (! plabel
4028 && sym_sec != NULL
4029 && sym_sec->output_section != NULL
4030 && ! bfd_is_abs_section (sym_sec))
4031 {
4032 asection *osec;
4033
4034 osec = sym_sec->output_section;
4035 indx = elf_section_data (osec)->dynindx;
4036 if (indx == 0)
4037 {
4038 osec = htab->etab.text_index_section;
4039 indx = elf_section_data (osec)->dynindx;
4040 }
4041 BFD_ASSERT (indx != 0);
4042
4043 /* We are turning this relocation into one
4044 against a section symbol, so subtract out the
4045 output section's address but not the offset
4046 of the input section in the output section. */
4047 outrel.r_addend -= osec->vma;
4048 }
4049
4050 outrel.r_info = ELF32_R_INFO (indx, r_type);
4051 }
4052 sreloc = elf_section_data (input_section)->sreloc;
4053 if (sreloc == NULL)
4054 abort ();
4055
4056 loc = sreloc->contents;
4057 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4058 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4059 }
4060 break;
4061
4062 case R_PARISC_TLS_LDM21L:
4063 case R_PARISC_TLS_LDM14R:
4064 {
4065 bfd_vma off;
4066
4067 off = htab->tls_ldm_got.offset;
4068 if (off & 1)
4069 off &= ~1;
4070 else
4071 {
4072 Elf_Internal_Rela outrel;
4073 bfd_byte *loc;
4074
4075 outrel.r_offset = (off
4076 + htab->sgot->output_section->vma
4077 + htab->sgot->output_offset);
4078 outrel.r_addend = 0;
4079 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4080 loc = htab->srelgot->contents;
4081 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4082
4083 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4084 htab->tls_ldm_got.offset |= 1;
4085 }
4086
4087 /* Add the base of the GOT to the relocation value. */
4088 relocation = (off
4089 + htab->sgot->output_offset
4090 + htab->sgot->output_section->vma);
4091
4092 break;
4093 }
4094
4095 case R_PARISC_TLS_LDO21L:
4096 case R_PARISC_TLS_LDO14R:
4097 relocation -= dtpoff_base (info);
4098 break;
4099
4100 case R_PARISC_TLS_GD21L:
4101 case R_PARISC_TLS_GD14R:
4102 case R_PARISC_TLS_IE21L:
4103 case R_PARISC_TLS_IE14R:
4104 {
4105 bfd_vma off;
4106 int indx;
4107 char tls_type;
4108
4109 indx = 0;
4110 if (hh != NULL)
4111 {
4112 bfd_boolean dyn;
4113 dyn = htab->etab.dynamic_sections_created;
4114
4115 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4116 && (!info->shared
4117 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4118 {
4119 indx = hh->eh.dynindx;
4120 }
4121 off = hh->eh.got.offset;
4122 tls_type = hh->tls_type;
4123 }
4124 else
4125 {
4126 off = local_got_offsets[r_symndx];
4127 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4128 }
4129
4130 if (tls_type == GOT_UNKNOWN)
4131 abort ();
4132
4133 if ((off & 1) != 0)
4134 off &= ~1;
4135 else
4136 {
4137 bfd_boolean need_relocs = FALSE;
4138 Elf_Internal_Rela outrel;
4139 bfd_byte *loc = NULL;
4140 int cur_off = off;
4141
4142 /* The GOT entries have not been initialized yet. Do it
4143 now, and emit any relocations. If both an IE GOT and a
4144 GD GOT are necessary, we emit the GD first. */
4145
4146 if ((info->shared || indx != 0)
4147 && (hh == NULL
4148 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4149 || hh->eh.root.type != bfd_link_hash_undefweak))
4150 {
4151 need_relocs = TRUE;
4152 loc = htab->srelgot->contents;
4153 /* FIXME (CAO): Should this be reloc_count++ ? */
4154 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4155 }
4156
4157 if (tls_type & GOT_TLS_GD)
4158 {
4159 if (need_relocs)
4160 {
4161 outrel.r_offset = (cur_off
4162 + htab->sgot->output_section->vma
4163 + htab->sgot->output_offset);
4164 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4165 outrel.r_addend = 0;
4166 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4167 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4168 htab->srelgot->reloc_count++;
4169 loc += sizeof (Elf32_External_Rela);
4170
4171 if (indx == 0)
4172 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4173 htab->sgot->contents + cur_off + 4);
4174 else
4175 {
4176 bfd_put_32 (output_bfd, 0,
4177 htab->sgot->contents + cur_off + 4);
4178 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4179 outrel.r_offset += 4;
4180 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4181 htab->srelgot->reloc_count++;
4182 loc += sizeof (Elf32_External_Rela);
4183 }
4184 }
4185 else
4186 {
4187 /* If we are not emitting relocations for a
4188 general dynamic reference, then we must be in a
4189 static link or an executable link with the
4190 symbol binding locally. Mark it as belonging
4191 to module 1, the executable. */
4192 bfd_put_32 (output_bfd, 1,
4193 htab->sgot->contents + cur_off);
4194 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4195 htab->sgot->contents + cur_off + 4);
4196 }
4197
4198
4199 cur_off += 8;
4200 }
4201
4202 if (tls_type & GOT_TLS_IE)
4203 {
4204 if (need_relocs)
4205 {
4206 outrel.r_offset = (cur_off
4207 + htab->sgot->output_section->vma
4208 + htab->sgot->output_offset);
4209 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4210
4211 if (indx == 0)
4212 outrel.r_addend = relocation - dtpoff_base (info);
4213 else
4214 outrel.r_addend = 0;
4215
4216 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4217 htab->srelgot->reloc_count++;
4218 loc += sizeof (Elf32_External_Rela);
4219 }
4220 else
4221 bfd_put_32 (output_bfd, tpoff (info, relocation),
4222 htab->sgot->contents + cur_off);
4223
4224 cur_off += 4;
4225 }
4226
4227 if (hh != NULL)
4228 hh->eh.got.offset |= 1;
4229 else
4230 local_got_offsets[r_symndx] |= 1;
4231 }
4232
4233 if ((tls_type & GOT_TLS_GD)
4234 && r_type != R_PARISC_TLS_GD21L
4235 && r_type != R_PARISC_TLS_GD14R)
4236 off += 2 * GOT_ENTRY_SIZE;
4237
4238 /* Add the base of the GOT to the relocation value. */
4239 relocation = (off
4240 + htab->sgot->output_offset
4241 + htab->sgot->output_section->vma);
4242
4243 break;
4244 }
4245
4246 case R_PARISC_TLS_LE21L:
4247 case R_PARISC_TLS_LE14R:
4248 {
4249 relocation = tpoff (info, relocation);
4250 break;
4251 }
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
4258 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4259 htab, sym_sec, hh, info);
4260
4261 if (rstatus == bfd_reloc_ok)
4262 continue;
4263
4264 if (hh != NULL)
4265 sym_name = hh_name (hh);
4266 else
4267 {
4268 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4269 symtab_hdr->sh_link,
4270 sym->st_name);
4271 if (sym_name == NULL)
4272 return FALSE;
4273 if (*sym_name == '\0')
4274 sym_name = bfd_section_name (input_bfd, sym_sec);
4275 }
4276
4277 howto = elf_hppa_howto_table + r_type;
4278
4279 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4280 {
4281 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4282 {
4283 (*_bfd_error_handler)
4284 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4285 input_bfd,
4286 input_section,
4287 (long) rela->r_offset,
4288 howto->name,
4289 sym_name);
4290 bfd_set_error (bfd_error_bad_value);
4291 return FALSE;
4292 }
4293 }
4294 else
4295 {
4296 if (!((*info->callbacks->reloc_overflow)
4297 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4298 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4299 return FALSE;
4300 }
4301 }
4302
4303 return TRUE;
4304 }
4305
4306 /* Finish up dynamic symbol handling. We set the contents of various
4307 dynamic sections here. */
4308
4309 static bfd_boolean
4310 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4311 struct bfd_link_info *info,
4312 struct elf_link_hash_entry *eh,
4313 Elf_Internal_Sym *sym)
4314 {
4315 struct elf32_hppa_link_hash_table *htab;
4316 Elf_Internal_Rela rela;
4317 bfd_byte *loc;
4318
4319 htab = hppa_link_hash_table (info);
4320 if (htab == NULL)
4321 return FALSE;
4322
4323 if (eh->plt.offset != (bfd_vma) -1)
4324 {
4325 bfd_vma value;
4326
4327 if (eh->plt.offset & 1)
4328 abort ();
4329
4330 /* This symbol has an entry in the procedure linkage table. Set
4331 it up.
4332
4333 The format of a plt entry is
4334 <funcaddr>
4335 <__gp>
4336 */
4337 value = 0;
4338 if (eh->root.type == bfd_link_hash_defined
4339 || eh->root.type == bfd_link_hash_defweak)
4340 {
4341 value = eh->root.u.def.value;
4342 if (eh->root.u.def.section->output_section != NULL)
4343 value += (eh->root.u.def.section->output_offset
4344 + eh->root.u.def.section->output_section->vma);
4345 }
4346
4347 /* Create a dynamic IPLT relocation for this entry. */
4348 rela.r_offset = (eh->plt.offset
4349 + htab->splt->output_offset
4350 + htab->splt->output_section->vma);
4351 if (eh->dynindx != -1)
4352 {
4353 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4354 rela.r_addend = 0;
4355 }
4356 else
4357 {
4358 /* This symbol has been marked to become local, and is
4359 used by a plabel so must be kept in the .plt. */
4360 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4361 rela.r_addend = value;
4362 }
4363
4364 loc = htab->srelplt->contents;
4365 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4366 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4367
4368 if (!eh->def_regular)
4369 {
4370 /* Mark the symbol as undefined, rather than as defined in
4371 the .plt section. Leave the value alone. */
4372 sym->st_shndx = SHN_UNDEF;
4373 }
4374 }
4375
4376 if (eh->got.offset != (bfd_vma) -1
4377 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4378 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4379 {
4380 /* This symbol has an entry in the global offset table. Set it
4381 up. */
4382
4383 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4384 + htab->sgot->output_offset
4385 + htab->sgot->output_section->vma);
4386
4387 /* If this is a -Bsymbolic link and the symbol is defined
4388 locally or was forced to be local because of a version file,
4389 we just want to emit a RELATIVE reloc. The entry in the
4390 global offset table will already have been initialized in the
4391 relocate_section function. */
4392 if (info->shared
4393 && (info->symbolic || eh->dynindx == -1)
4394 && eh->def_regular)
4395 {
4396 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4397 rela.r_addend = (eh->root.u.def.value
4398 + eh->root.u.def.section->output_offset
4399 + eh->root.u.def.section->output_section->vma);
4400 }
4401 else
4402 {
4403 if ((eh->got.offset & 1) != 0)
4404 abort ();
4405
4406 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4407 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4408 rela.r_addend = 0;
4409 }
4410
4411 loc = htab->srelgot->contents;
4412 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4413 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4414 }
4415
4416 if (eh->needs_copy)
4417 {
4418 asection *sec;
4419
4420 /* This symbol needs a copy reloc. Set it up. */
4421
4422 if (! (eh->dynindx != -1
4423 && (eh->root.type == bfd_link_hash_defined
4424 || eh->root.type == bfd_link_hash_defweak)))
4425 abort ();
4426
4427 sec = htab->srelbss;
4428
4429 rela.r_offset = (eh->root.u.def.value
4430 + eh->root.u.def.section->output_offset
4431 + eh->root.u.def.section->output_section->vma);
4432 rela.r_addend = 0;
4433 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4434 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4435 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4436 }
4437
4438 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4439 if (eh_name (eh)[0] == '_'
4440 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4441 || eh == htab->etab.hgot))
4442 {
4443 sym->st_shndx = SHN_ABS;
4444 }
4445
4446 return TRUE;
4447 }
4448
4449 /* Used to decide how to sort relocs in an optimal manner for the
4450 dynamic linker, before writing them out. */
4451
4452 static enum elf_reloc_type_class
4453 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4454 {
4455 /* Handle TLS relocs first; we don't want them to be marked
4456 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4457 check below. */
4458 switch ((int) ELF32_R_TYPE (rela->r_info))
4459 {
4460 case R_PARISC_TLS_DTPMOD32:
4461 case R_PARISC_TLS_DTPOFF32:
4462 case R_PARISC_TLS_TPREL32:
4463 return reloc_class_normal;
4464 }
4465
4466 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4467 return reloc_class_relative;
4468
4469 switch ((int) ELF32_R_TYPE (rela->r_info))
4470 {
4471 case R_PARISC_IPLT:
4472 return reloc_class_plt;
4473 case R_PARISC_COPY:
4474 return reloc_class_copy;
4475 default:
4476 return reloc_class_normal;
4477 }
4478 }
4479
4480 /* Finish up the dynamic sections. */
4481
4482 static bfd_boolean
4483 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4484 struct bfd_link_info *info)
4485 {
4486 bfd *dynobj;
4487 struct elf32_hppa_link_hash_table *htab;
4488 asection *sdyn;
4489 asection * sgot;
4490
4491 htab = hppa_link_hash_table (info);
4492 if (htab == NULL)
4493 return FALSE;
4494
4495 dynobj = htab->etab.dynobj;
4496
4497 sgot = htab->sgot;
4498 /* A broken linker script might have discarded the dynamic sections.
4499 Catch this here so that we do not seg-fault later on. */
4500 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4501 return FALSE;
4502
4503 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4504
4505 if (htab->etab.dynamic_sections_created)
4506 {
4507 Elf32_External_Dyn *dyncon, *dynconend;
4508
4509 if (sdyn == NULL)
4510 abort ();
4511
4512 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4513 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4514 for (; dyncon < dynconend; dyncon++)
4515 {
4516 Elf_Internal_Dyn dyn;
4517 asection *s;
4518
4519 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4520
4521 switch (dyn.d_tag)
4522 {
4523 default:
4524 continue;
4525
4526 case DT_PLTGOT:
4527 /* Use PLTGOT to set the GOT register. */
4528 dyn.d_un.d_ptr = elf_gp (output_bfd);
4529 break;
4530
4531 case DT_JMPREL:
4532 s = htab->srelplt;
4533 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4534 break;
4535
4536 case DT_PLTRELSZ:
4537 s = htab->srelplt;
4538 dyn.d_un.d_val = s->size;
4539 break;
4540
4541 case DT_RELASZ:
4542 /* Don't count procedure linkage table relocs in the
4543 overall reloc count. */
4544 s = htab->srelplt;
4545 if (s == NULL)
4546 continue;
4547 dyn.d_un.d_val -= s->size;
4548 break;
4549
4550 case DT_RELA:
4551 /* We may not be using the standard ELF linker script.
4552 If .rela.plt is the first .rela section, we adjust
4553 DT_RELA to not include it. */
4554 s = htab->srelplt;
4555 if (s == NULL)
4556 continue;
4557 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4558 continue;
4559 dyn.d_un.d_ptr += s->size;
4560 break;
4561 }
4562
4563 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4564 }
4565 }
4566
4567 if (sgot != NULL && sgot->size != 0)
4568 {
4569 /* Fill in the first entry in the global offset table.
4570 We use it to point to our dynamic section, if we have one. */
4571 bfd_put_32 (output_bfd,
4572 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4573 sgot->contents);
4574
4575 /* The second entry is reserved for use by the dynamic linker. */
4576 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4577
4578 /* Set .got entry size. */
4579 elf_section_data (sgot->output_section)
4580 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4581 }
4582
4583 if (htab->splt != NULL && htab->splt->size != 0)
4584 {
4585 /* Set plt entry size. */
4586 elf_section_data (htab->splt->output_section)
4587 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4588
4589 if (htab->need_plt_stub)
4590 {
4591 /* Set up the .plt stub. */
4592 memcpy (htab->splt->contents
4593 + htab->splt->size - sizeof (plt_stub),
4594 plt_stub, sizeof (plt_stub));
4595
4596 if ((htab->splt->output_offset
4597 + htab->splt->output_section->vma
4598 + htab->splt->size)
4599 != (sgot->output_offset
4600 + sgot->output_section->vma))
4601 {
4602 (*_bfd_error_handler)
4603 (_(".got section not immediately after .plt section"));
4604 return FALSE;
4605 }
4606 }
4607 }
4608
4609 return TRUE;
4610 }
4611
4612 /* Called when writing out an object file to decide the type of a
4613 symbol. */
4614 static int
4615 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4616 {
4617 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4618 return STT_PARISC_MILLI;
4619 else
4620 return type;
4621 }
4622
4623 /* Misc BFD support code. */
4624 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4625 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4626 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4627 #define elf_info_to_howto elf_hppa_info_to_howto
4628 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4629
4630 /* Stuff for the BFD linker. */
4631 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4632 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4633 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4634 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4635 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4636 #define elf_backend_check_relocs elf32_hppa_check_relocs
4637 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4638 #define elf_backend_fake_sections elf_hppa_fake_sections
4639 #define elf_backend_relocate_section elf32_hppa_relocate_section
4640 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4641 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4642 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4643 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4644 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4645 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4646 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4647 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4648 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4649 #define elf_backend_object_p elf32_hppa_object_p
4650 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4651 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4652 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4653 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4654 #define elf_backend_action_discarded elf_hppa_action_discarded
4655
4656 #define elf_backend_can_gc_sections 1
4657 #define elf_backend_can_refcount 1
4658 #define elf_backend_plt_alignment 2
4659 #define elf_backend_want_got_plt 0
4660 #define elf_backend_plt_readonly 0
4661 #define elf_backend_want_plt_sym 0
4662 #define elf_backend_got_header_size 8
4663 #define elf_backend_rela_normal 1
4664
4665 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4666 #define TARGET_BIG_NAME "elf32-hppa"
4667 #define ELF_ARCH bfd_arch_hppa
4668 #define ELF_TARGET_ID HPPA32_ELF_DATA
4669 #define ELF_MACHINE_CODE EM_PARISC
4670 #define ELF_MAXPAGESIZE 0x1000
4671 #define ELF_OSABI ELFOSABI_HPUX
4672 #define elf32_bed elf32_hppa_hpux_bed
4673
4674 #include "elf32-target.h"
4675
4676 #undef TARGET_BIG_SYM
4677 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4678 #undef TARGET_BIG_NAME
4679 #define TARGET_BIG_NAME "elf32-hppa-linux"
4680 #undef ELF_OSABI
4681 #define ELF_OSABI ELFOSABI_GNU
4682 #undef elf32_bed
4683 #define elf32_bed elf32_hppa_linux_bed
4684
4685 #include "elf32-target.h"
4686
4687 #undef TARGET_BIG_SYM
4688 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4689 #undef TARGET_BIG_NAME
4690 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4691 #undef ELF_OSABI
4692 #define ELF_OSABI ELFOSABI_NETBSD
4693 #undef elf32_bed
4694 #define elf32_bed elf32_hppa_netbsd_bed
4695
4696 #include "elf32-target.h"