]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
PR23207, hppa ld SIGSEGVs on invalid object files
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
169 shared lib. */
170 #define ELIMINATE_COPY_RELOCS 1
171
172 enum elf32_hppa_stub_type
173 {
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
176 hppa_stub_import,
177 hppa_stub_import_shared,
178 hppa_stub_export,
179 hppa_stub_none
180 };
181
182 struct elf32_hppa_stub_hash_entry
183 {
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
186
187 /* The stub section. */
188 asection *stub_sec;
189
190 /* Offset within stub_sec of the beginning of this stub. */
191 bfd_vma stub_offset;
192
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
197
198 enum elf32_hppa_stub_type stub_type;
199
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
202
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
205 asection *id_sec;
206 };
207
208 enum _tls_type
209 {
210 GOT_UNKNOWN = 0,
211 GOT_NORMAL = 1,
212 GOT_TLS_GD = 2,
213 GOT_TLS_LDM = 4,
214 GOT_TLS_IE = 8
215 };
216
217 struct elf32_hppa_link_hash_entry
218 {
219 struct elf_link_hash_entry eh;
220
221 /* A pointer to the most recently used stub hash entry against this
222 symbol. */
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
224
225 /* Used to count relocations for delayed sizing of relocation
226 sections. */
227 struct elf_dyn_relocs *dyn_relocs;
228
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
230
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
233 };
234
235 struct elf32_hppa_link_hash_table
236 {
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
239
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
242
243 /* Linker stub bfd. */
244 bfd *stub_bfd;
245
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
249
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
252 struct map_stub
253 {
254 /* This is the section to which stubs in the group will be
255 attached. */
256 asection *link_sec;
257 /* The stub section. */
258 asection *stub_sec;
259 } *stub_group;
260
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
266
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
271
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
274
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
280
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
283
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
286
287 /* Data for LDM relocations. */
288 union
289 {
290 bfd_signed_vma refcount;
291 bfd_vma offset;
292 } tls_ldm_got;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
302
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
305
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
309
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
315
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
318
319 /* Assorted hash table functions. */
320
321 /* Initialize an entry in the stub hash table. */
322
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_stub_hash_entry *hsh;
343
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
351 hsh->hh = NULL;
352 hsh->id_sec = NULL;
353 }
354
355 return entry;
356 }
357
358 /* Initialize an entry in the link hash table. */
359
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
363 const char *string)
364 {
365 /* Allocate the structure if it has not already been allocated by a
366 subclass. */
367 if (entry == NULL)
368 {
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
371 if (entry == NULL)
372 return entry;
373 }
374
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377 if (entry != NULL)
378 {
379 struct elf32_hppa_link_hash_entry *hh;
380
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
385 hh->plabel = 0;
386 hh->tls_type = GOT_UNKNOWN;
387 }
388
389 return entry;
390 }
391
392 /* Free the derived linker hash table. */
393
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
402 }
403
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
407
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
413
414 htab = bfd_zmalloc (amt);
415 if (htab == NULL)
416 return NULL;
417
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
420 HPPA32_ELF_DATA))
421 {
422 free (htab);
423 return NULL;
424 }
425
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
429 {
430 _bfd_elf_link_hash_table_free (abfd);
431 return NULL;
432 }
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
438 }
439
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
442
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
450 }
451
452 /* Build a name for an entry in the stub hash table. */
453
454 static char *
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
459 {
460 char *stub_name;
461 bfd_size_type len;
462
463 if (hh)
464 {
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
470 hh_name (hh),
471 (int) rela->r_addend & 0xffffffff);
472 }
473 else
474 {
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
483 }
484 return stub_name;
485 }
486
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
489
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
496 {
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
499
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
506
507 if (hh != NULL && hh->hsh_cache != NULL
508 && hh->hsh_cache->hh == hh
509 && hh->hsh_cache->id_sec == id_sec)
510 {
511 hsh_entry = hh->hsh_cache;
512 }
513 else
514 {
515 char *stub_name;
516
517 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
518 if (stub_name == NULL)
519 return NULL;
520
521 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
522 stub_name, FALSE, FALSE);
523 if (hh != NULL)
524 hh->hsh_cache = hsh_entry;
525
526 free (stub_name);
527 }
528
529 return hsh_entry;
530 }
531
532 /* Add a new stub entry to the stub hash. Not all fields of the new
533 stub entry are initialised. */
534
535 static struct elf32_hppa_stub_hash_entry *
536 hppa_add_stub (const char *stub_name,
537 asection *section,
538 struct elf32_hppa_link_hash_table *htab)
539 {
540 asection *link_sec;
541 asection *stub_sec;
542 struct elf32_hppa_stub_hash_entry *hsh;
543
544 link_sec = htab->stub_group[section->id].link_sec;
545 stub_sec = htab->stub_group[section->id].stub_sec;
546 if (stub_sec == NULL)
547 {
548 stub_sec = htab->stub_group[link_sec->id].stub_sec;
549 if (stub_sec == NULL)
550 {
551 size_t namelen;
552 bfd_size_type len;
553 char *s_name;
554
555 namelen = strlen (link_sec->name);
556 len = namelen + sizeof (STUB_SUFFIX);
557 s_name = bfd_alloc (htab->stub_bfd, len);
558 if (s_name == NULL)
559 return NULL;
560
561 memcpy (s_name, link_sec->name, namelen);
562 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
563 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
564 if (stub_sec == NULL)
565 return NULL;
566 htab->stub_group[link_sec->id].stub_sec = stub_sec;
567 }
568 htab->stub_group[section->id].stub_sec = stub_sec;
569 }
570
571 /* Enter this entry into the linker stub hash table. */
572 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
573 TRUE, FALSE);
574 if (hsh == NULL)
575 {
576 /* xgettext:c-format */
577 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
578 section->owner, stub_name);
579 return NULL;
580 }
581
582 hsh->stub_sec = stub_sec;
583 hsh->stub_offset = 0;
584 hsh->id_sec = link_sec;
585 return hsh;
586 }
587
588 /* Determine the type of stub needed, if any, for a call. */
589
590 static enum elf32_hppa_stub_type
591 hppa_type_of_stub (asection *input_sec,
592 const Elf_Internal_Rela *rela,
593 struct elf32_hppa_link_hash_entry *hh,
594 bfd_vma destination,
595 struct bfd_link_info *info)
596 {
597 bfd_vma location;
598 bfd_vma branch_offset;
599 bfd_vma max_branch_offset;
600 unsigned int r_type;
601
602 if (hh != NULL
603 && hh->eh.plt.offset != (bfd_vma) -1
604 && hh->eh.dynindx != -1
605 && !hh->plabel
606 && (bfd_link_pic (info)
607 || !hh->eh.def_regular
608 || hh->eh.root.type == bfd_link_hash_defweak))
609 {
610 /* We need an import stub. Decide between hppa_stub_import
611 and hppa_stub_import_shared later. */
612 return hppa_stub_import;
613 }
614
615 if (destination == (bfd_vma) -1)
616 return hppa_stub_none;
617
618 /* Determine where the call point is. */
619 location = (input_sec->output_offset
620 + input_sec->output_section->vma
621 + rela->r_offset);
622
623 branch_offset = destination - location - 8;
624 r_type = ELF32_R_TYPE (rela->r_info);
625
626 /* Determine if a long branch stub is needed. parisc branch offsets
627 are relative to the second instruction past the branch, ie. +8
628 bytes on from the branch instruction location. The offset is
629 signed and counts in units of 4 bytes. */
630 if (r_type == (unsigned int) R_PARISC_PCREL17F)
631 max_branch_offset = (1 << (17 - 1)) << 2;
632
633 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
634 max_branch_offset = (1 << (12 - 1)) << 2;
635
636 else /* R_PARISC_PCREL22F. */
637 max_branch_offset = (1 << (22 - 1)) << 2;
638
639 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
640 return hppa_stub_long_branch;
641
642 return hppa_stub_none;
643 }
644
645 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
646 IN_ARG contains the link info pointer. */
647
648 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
649 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
650
651 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
652 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
653 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
654
655 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
656 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
657 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
658 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
659
660 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
661 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
662
663 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
664 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
665 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
666 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
667
668 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
669 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
670 #define NOP 0x08000240 /* nop */
671 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
672 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
673 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
674
675 #ifndef R19_STUBS
676 #define R19_STUBS 1
677 #endif
678
679 #if R19_STUBS
680 #define LDW_R1_DLT LDW_R1_R19
681 #else
682 #define LDW_R1_DLT LDW_R1_DP
683 #endif
684
685 static bfd_boolean
686 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
687 {
688 struct elf32_hppa_stub_hash_entry *hsh;
689 struct bfd_link_info *info;
690 struct elf32_hppa_link_hash_table *htab;
691 asection *stub_sec;
692 bfd *stub_bfd;
693 bfd_byte *loc;
694 bfd_vma sym_value;
695 bfd_vma insn;
696 bfd_vma off;
697 int val;
698 int size;
699
700 /* Massage our args to the form they really have. */
701 hsh = hppa_stub_hash_entry (bh);
702 info = (struct bfd_link_info *)in_arg;
703
704 htab = hppa_link_hash_table (info);
705 if (htab == NULL)
706 return FALSE;
707
708 stub_sec = hsh->stub_sec;
709
710 /* Make a note of the offset within the stubs for this entry. */
711 hsh->stub_offset = stub_sec->size;
712 loc = stub_sec->contents + hsh->stub_offset;
713
714 stub_bfd = stub_sec->owner;
715
716 switch (hsh->stub_type)
717 {
718 case hppa_stub_long_branch:
719 /* Create the long branch. A long branch is formed with "ldil"
720 loading the upper bits of the target address into a register,
721 then branching with "be" which adds in the lower bits.
722 The "be" has its delay slot nullified. */
723 sym_value = (hsh->target_value
724 + hsh->target_section->output_offset
725 + hsh->target_section->output_section->vma);
726
727 val = hppa_field_adjust (sym_value, 0, e_lrsel);
728 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
729 bfd_put_32 (stub_bfd, insn, loc);
730
731 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
732 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
733 bfd_put_32 (stub_bfd, insn, loc + 4);
734
735 size = 8;
736 break;
737
738 case hppa_stub_long_branch_shared:
739 /* Branches are relative. This is where we are going to. */
740 sym_value = (hsh->target_value
741 + hsh->target_section->output_offset
742 + hsh->target_section->output_section->vma);
743
744 /* And this is where we are coming from, more or less. */
745 sym_value -= (hsh->stub_offset
746 + stub_sec->output_offset
747 + stub_sec->output_section->vma);
748
749 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
750 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
751 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 8);
757 size = 12;
758 break;
759
760 case hppa_stub_import:
761 case hppa_stub_import_shared:
762 off = hsh->hh->eh.plt.offset;
763 if (off >= (bfd_vma) -2)
764 abort ();
765
766 off &= ~ (bfd_vma) 1;
767 sym_value = (off
768 + htab->etab.splt->output_offset
769 + htab->etab.splt->output_section->vma
770 - elf_gp (htab->etab.splt->output_section->owner));
771
772 insn = ADDIL_DP;
773 #if R19_STUBS
774 if (hsh->stub_type == hppa_stub_import_shared)
775 insn = ADDIL_R19;
776 #endif
777 val = hppa_field_adjust (sym_value, 0, e_lrsel),
778 insn = hppa_rebuild_insn ((int) insn, val, 21);
779 bfd_put_32 (stub_bfd, insn, loc);
780
781 /* It is critical to use lrsel/rrsel here because we are using
782 two different offsets (+0 and +4) from sym_value. If we use
783 lsel/rsel then with unfortunate sym_values we will round
784 sym_value+4 up to the next 2k block leading to a mis-match
785 between the lsel and rsel value. */
786 val = hppa_field_adjust (sym_value, 0, e_rrsel);
787 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
788 bfd_put_32 (stub_bfd, insn, loc + 4);
789
790 if (htab->multi_subspace)
791 {
792 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
793 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
794 bfd_put_32 (stub_bfd, insn, loc + 8);
795
796 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
797 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
798 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
799 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
800
801 size = 28;
802 }
803 else
804 {
805 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
807 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
808 bfd_put_32 (stub_bfd, insn, loc + 12);
809
810 size = 16;
811 }
812
813 break;
814
815 case hppa_stub_export:
816 /* Branches are relative. This is where we are going to. */
817 sym_value = (hsh->target_value
818 + hsh->target_section->output_offset
819 + hsh->target_section->output_section->vma);
820
821 /* And this is where we are coming from. */
822 sym_value -= (hsh->stub_offset
823 + stub_sec->output_offset
824 + stub_sec->output_section->vma);
825
826 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
827 && (!htab->has_22bit_branch
828 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
829 {
830 _bfd_error_handler
831 /* xgettext:c-format */
832 (_("%pB(%pA+%#" PRIx64 "): "
833 "cannot reach %s, recompile with -ffunction-sections"),
834 hsh->target_section->owner,
835 stub_sec,
836 (uint64_t) hsh->stub_offset,
837 hsh->bh_root.string);
838 bfd_set_error (bfd_error_bad_value);
839 return FALSE;
840 }
841
842 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
843 if (!htab->has_22bit_branch)
844 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
845 else
846 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
847 bfd_put_32 (stub_bfd, insn, loc);
848
849 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
850 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
851 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
852 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
853 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
854
855 /* Point the function symbol at the stub. */
856 hsh->hh->eh.root.u.def.section = stub_sec;
857 hsh->hh->eh.root.u.def.value = stub_sec->size;
858
859 size = 24;
860 break;
861
862 default:
863 BFD_FAIL ();
864 return FALSE;
865 }
866
867 stub_sec->size += size;
868 return TRUE;
869 }
870
871 #undef LDIL_R1
872 #undef BE_SR4_R1
873 #undef BL_R1
874 #undef ADDIL_R1
875 #undef DEPI_R1
876 #undef LDW_R1_R21
877 #undef LDW_R1_DLT
878 #undef LDW_R1_R19
879 #undef ADDIL_R19
880 #undef LDW_R1_DP
881 #undef LDSID_R21_R1
882 #undef MTSP_R1
883 #undef BE_SR0_R21
884 #undef STW_RP
885 #undef BV_R0_R21
886 #undef BL_RP
887 #undef NOP
888 #undef LDW_RP
889 #undef LDSID_RP_R1
890 #undef BE_SR0_RP
891
892 /* As above, but don't actually build the stub. Just bump offset so
893 we know stub section sizes. */
894
895 static bfd_boolean
896 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
897 {
898 struct elf32_hppa_stub_hash_entry *hsh;
899 struct elf32_hppa_link_hash_table *htab;
900 int size;
901
902 /* Massage our args to the form they really have. */
903 hsh = hppa_stub_hash_entry (bh);
904 htab = in_arg;
905
906 if (hsh->stub_type == hppa_stub_long_branch)
907 size = 8;
908 else if (hsh->stub_type == hppa_stub_long_branch_shared)
909 size = 12;
910 else if (hsh->stub_type == hppa_stub_export)
911 size = 24;
912 else /* hppa_stub_import or hppa_stub_import_shared. */
913 {
914 if (htab->multi_subspace)
915 size = 28;
916 else
917 size = 16;
918 }
919
920 hsh->stub_sec->size += size;
921 return TRUE;
922 }
923
924 /* Return nonzero if ABFD represents an HPPA ELF32 file.
925 Additionally we set the default architecture and machine. */
926
927 static bfd_boolean
928 elf32_hppa_object_p (bfd *abfd)
929 {
930 Elf_Internal_Ehdr * i_ehdrp;
931 unsigned int flags;
932
933 i_ehdrp = elf_elfheader (abfd);
934 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
935 {
936 /* GCC on hppa-linux produces binaries with OSABI=GNU,
937 but the kernel produces corefiles with OSABI=SysV. */
938 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
939 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
940 return FALSE;
941 }
942 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
943 {
944 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
945 but the kernel produces corefiles with OSABI=SysV. */
946 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
947 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
948 return FALSE;
949 }
950 else
951 {
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
953 return FALSE;
954 }
955
956 flags = i_ehdrp->e_flags;
957 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
958 {
959 case EFA_PARISC_1_0:
960 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
961 case EFA_PARISC_1_1:
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
963 case EFA_PARISC_2_0:
964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
965 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
967 }
968 return TRUE;
969 }
970
971 /* Create the .plt and .got sections, and set up our hash table
972 short-cuts to various dynamic sections. */
973
974 static bfd_boolean
975 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
976 {
977 struct elf32_hppa_link_hash_table *htab;
978 struct elf_link_hash_entry *eh;
979
980 /* Don't try to create the .plt and .got twice. */
981 htab = hppa_link_hash_table (info);
982 if (htab == NULL)
983 return FALSE;
984 if (htab->etab.splt != NULL)
985 return TRUE;
986
987 /* Call the generic code to do most of the work. */
988 if (! _bfd_elf_create_dynamic_sections (abfd, info))
989 return FALSE;
990
991 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
992 application, because __canonicalize_funcptr_for_compare needs it. */
993 eh = elf_hash_table (info)->hgot;
994 eh->forced_local = 0;
995 eh->other = STV_DEFAULT;
996 return bfd_elf_link_record_dynamic_symbol (info, eh);
997 }
998
999 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1000
1001 static void
1002 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1003 struct elf_link_hash_entry *eh_dir,
1004 struct elf_link_hash_entry *eh_ind)
1005 {
1006 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1007
1008 hh_dir = hppa_elf_hash_entry (eh_dir);
1009 hh_ind = hppa_elf_hash_entry (eh_ind);
1010
1011 if (hh_ind->dyn_relocs != NULL
1012 && eh_ind->root.type == bfd_link_hash_indirect)
1013 {
1014 if (hh_dir->dyn_relocs != NULL)
1015 {
1016 struct elf_dyn_relocs **hdh_pp;
1017 struct elf_dyn_relocs *hdh_p;
1018
1019 /* Add reloc counts against the indirect sym to the direct sym
1020 list. Merge any entries against the same section. */
1021 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1022 {
1023 struct elf_dyn_relocs *hdh_q;
1024
1025 for (hdh_q = hh_dir->dyn_relocs;
1026 hdh_q != NULL;
1027 hdh_q = hdh_q->next)
1028 if (hdh_q->sec == hdh_p->sec)
1029 {
1030 #if RELATIVE_DYNRELOCS
1031 hdh_q->pc_count += hdh_p->pc_count;
1032 #endif
1033 hdh_q->count += hdh_p->count;
1034 *hdh_pp = hdh_p->next;
1035 break;
1036 }
1037 if (hdh_q == NULL)
1038 hdh_pp = &hdh_p->next;
1039 }
1040 *hdh_pp = hh_dir->dyn_relocs;
1041 }
1042
1043 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1044 hh_ind->dyn_relocs = NULL;
1045 }
1046
1047 if (eh_ind->root.type == bfd_link_hash_indirect)
1048 {
1049 hh_dir->plabel |= hh_ind->plabel;
1050 hh_dir->tls_type |= hh_ind->tls_type;
1051 hh_ind->tls_type = GOT_UNKNOWN;
1052 }
1053
1054 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1055 }
1056
1057 static int
1058 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1059 int r_type, int is_local ATTRIBUTE_UNUSED)
1060 {
1061 /* For now we don't support linker optimizations. */
1062 return r_type;
1063 }
1064
1065 /* Return a pointer to the local GOT, PLT and TLS reference counts
1066 for ABFD. Returns NULL if the storage allocation fails. */
1067
1068 static bfd_signed_vma *
1069 hppa32_elf_local_refcounts (bfd *abfd)
1070 {
1071 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1072 bfd_signed_vma *local_refcounts;
1073
1074 local_refcounts = elf_local_got_refcounts (abfd);
1075 if (local_refcounts == NULL)
1076 {
1077 bfd_size_type size;
1078
1079 /* Allocate space for local GOT and PLT reference
1080 counts. Done this way to save polluting elf_obj_tdata
1081 with another target specific pointer. */
1082 size = symtab_hdr->sh_info;
1083 size *= 2 * sizeof (bfd_signed_vma);
1084 /* Add in space to store the local GOT TLS types. */
1085 size += symtab_hdr->sh_info;
1086 local_refcounts = bfd_zalloc (abfd, size);
1087 if (local_refcounts == NULL)
1088 return NULL;
1089 elf_local_got_refcounts (abfd) = local_refcounts;
1090 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1091 symtab_hdr->sh_info);
1092 }
1093 return local_refcounts;
1094 }
1095
1096
1097 /* Look through the relocs for a section during the first phase, and
1098 calculate needed space in the global offset table, procedure linkage
1099 table, and dynamic reloc sections. At this point we haven't
1100 necessarily read all the input files. */
1101
1102 static bfd_boolean
1103 elf32_hppa_check_relocs (bfd *abfd,
1104 struct bfd_link_info *info,
1105 asection *sec,
1106 const Elf_Internal_Rela *relocs)
1107 {
1108 Elf_Internal_Shdr *symtab_hdr;
1109 struct elf_link_hash_entry **eh_syms;
1110 const Elf_Internal_Rela *rela;
1111 const Elf_Internal_Rela *rela_end;
1112 struct elf32_hppa_link_hash_table *htab;
1113 asection *sreloc;
1114
1115 if (bfd_link_relocatable (info))
1116 return TRUE;
1117
1118 htab = hppa_link_hash_table (info);
1119 if (htab == NULL)
1120 return FALSE;
1121 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1122 eh_syms = elf_sym_hashes (abfd);
1123 sreloc = NULL;
1124
1125 rela_end = relocs + sec->reloc_count;
1126 for (rela = relocs; rela < rela_end; rela++)
1127 {
1128 enum {
1129 NEED_GOT = 1,
1130 NEED_PLT = 2,
1131 NEED_DYNREL = 4,
1132 PLT_PLABEL = 8
1133 };
1134
1135 unsigned int r_symndx, r_type;
1136 struct elf32_hppa_link_hash_entry *hh;
1137 int need_entry = 0;
1138
1139 r_symndx = ELF32_R_SYM (rela->r_info);
1140
1141 if (r_symndx < symtab_hdr->sh_info)
1142 hh = NULL;
1143 else
1144 {
1145 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1146 while (hh->eh.root.type == bfd_link_hash_indirect
1147 || hh->eh.root.type == bfd_link_hash_warning)
1148 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1149 }
1150
1151 r_type = ELF32_R_TYPE (rela->r_info);
1152 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1153
1154 switch (r_type)
1155 {
1156 case R_PARISC_DLTIND14F:
1157 case R_PARISC_DLTIND14R:
1158 case R_PARISC_DLTIND21L:
1159 /* This symbol requires a global offset table entry. */
1160 need_entry = NEED_GOT;
1161 break;
1162
1163 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1164 case R_PARISC_PLABEL21L:
1165 case R_PARISC_PLABEL32:
1166 /* If the addend is non-zero, we break badly. */
1167 if (rela->r_addend != 0)
1168 abort ();
1169
1170 /* If we are creating a shared library, then we need to
1171 create a PLT entry for all PLABELs, because PLABELs with
1172 local symbols may be passed via a pointer to another
1173 object. Additionally, output a dynamic relocation
1174 pointing to the PLT entry.
1175
1176 For executables, the original 32-bit ABI allowed two
1177 different styles of PLABELs (function pointers): For
1178 global functions, the PLABEL word points into the .plt
1179 two bytes past a (function address, gp) pair, and for
1180 local functions the PLABEL points directly at the
1181 function. The magic +2 for the first type allows us to
1182 differentiate between the two. As you can imagine, this
1183 is a real pain when it comes to generating code to call
1184 functions indirectly or to compare function pointers.
1185 We avoid the mess by always pointing a PLABEL into the
1186 .plt, even for local functions. */
1187 need_entry = PLT_PLABEL | NEED_PLT;
1188 if (bfd_link_pic (info))
1189 need_entry |= NEED_DYNREL;
1190 break;
1191
1192 case R_PARISC_PCREL12F:
1193 htab->has_12bit_branch = 1;
1194 goto branch_common;
1195
1196 case R_PARISC_PCREL17C:
1197 case R_PARISC_PCREL17F:
1198 htab->has_17bit_branch = 1;
1199 goto branch_common;
1200
1201 case R_PARISC_PCREL22F:
1202 htab->has_22bit_branch = 1;
1203 branch_common:
1204 /* Function calls might need to go through the .plt, and
1205 might require long branch stubs. */
1206 if (hh == NULL)
1207 {
1208 /* We know local syms won't need a .plt entry, and if
1209 they need a long branch stub we can't guarantee that
1210 we can reach the stub. So just flag an error later
1211 if we're doing a shared link and find we need a long
1212 branch stub. */
1213 continue;
1214 }
1215 else
1216 {
1217 /* Global symbols will need a .plt entry if they remain
1218 global, and in most cases won't need a long branch
1219 stub. Unfortunately, we have to cater for the case
1220 where a symbol is forced local by versioning, or due
1221 to symbolic linking, and we lose the .plt entry. */
1222 need_entry = NEED_PLT;
1223 if (hh->eh.type == STT_PARISC_MILLI)
1224 need_entry = 0;
1225 }
1226 break;
1227
1228 case R_PARISC_SEGBASE: /* Used to set segment base. */
1229 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1230 case R_PARISC_PCREL14F: /* PC relative load/store. */
1231 case R_PARISC_PCREL14R:
1232 case R_PARISC_PCREL17R: /* External branches. */
1233 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1234 case R_PARISC_PCREL32:
1235 /* We don't need to propagate the relocation if linking a
1236 shared object since these are section relative. */
1237 continue;
1238
1239 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1240 case R_PARISC_DPREL14R:
1241 case R_PARISC_DPREL21L:
1242 if (bfd_link_pic (info))
1243 {
1244 _bfd_error_handler
1245 /* xgettext:c-format */
1246 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1247 abfd,
1248 elf_hppa_howto_table[r_type].name);
1249 bfd_set_error (bfd_error_bad_value);
1250 return FALSE;
1251 }
1252 /* Fall through. */
1253
1254 case R_PARISC_DIR17F: /* Used for external branches. */
1255 case R_PARISC_DIR17R:
1256 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1257 case R_PARISC_DIR14R:
1258 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1259 case R_PARISC_DIR32: /* .word relocs. */
1260 /* We may want to output a dynamic relocation later. */
1261 need_entry = NEED_DYNREL;
1262 break;
1263
1264 /* This relocation describes the C++ object vtable hierarchy.
1265 Reconstruct it for later use during GC. */
1266 case R_PARISC_GNU_VTINHERIT:
1267 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1268 return FALSE;
1269 continue;
1270
1271 /* This relocation describes which C++ vtable entries are actually
1272 used. Record for later use during GC. */
1273 case R_PARISC_GNU_VTENTRY:
1274 BFD_ASSERT (hh != NULL);
1275 if (hh != NULL
1276 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1277 return FALSE;
1278 continue;
1279
1280 case R_PARISC_TLS_GD21L:
1281 case R_PARISC_TLS_GD14R:
1282 case R_PARISC_TLS_LDM21L:
1283 case R_PARISC_TLS_LDM14R:
1284 need_entry = NEED_GOT;
1285 break;
1286
1287 case R_PARISC_TLS_IE21L:
1288 case R_PARISC_TLS_IE14R:
1289 if (bfd_link_dll (info))
1290 info->flags |= DF_STATIC_TLS;
1291 need_entry = NEED_GOT;
1292 break;
1293
1294 default:
1295 continue;
1296 }
1297
1298 /* Now carry out our orders. */
1299 if (need_entry & NEED_GOT)
1300 {
1301 int tls_type = GOT_NORMAL;
1302
1303 switch (r_type)
1304 {
1305 default:
1306 break;
1307 case R_PARISC_TLS_GD21L:
1308 case R_PARISC_TLS_GD14R:
1309 tls_type = GOT_TLS_GD;
1310 break;
1311 case R_PARISC_TLS_LDM21L:
1312 case R_PARISC_TLS_LDM14R:
1313 tls_type = GOT_TLS_LDM;
1314 break;
1315 case R_PARISC_TLS_IE21L:
1316 case R_PARISC_TLS_IE14R:
1317 tls_type = GOT_TLS_IE;
1318 break;
1319 }
1320
1321 /* Allocate space for a GOT entry, as well as a dynamic
1322 relocation for this entry. */
1323 if (htab->etab.sgot == NULL)
1324 {
1325 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1326 return FALSE;
1327 }
1328
1329 if (hh != NULL)
1330 {
1331 if (tls_type == GOT_TLS_LDM)
1332 htab->tls_ldm_got.refcount += 1;
1333 else
1334 hh->eh.got.refcount += 1;
1335 hh->tls_type |= tls_type;
1336 }
1337 else
1338 {
1339 bfd_signed_vma *local_got_refcounts;
1340
1341 /* This is a global offset table entry for a local symbol. */
1342 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1343 if (local_got_refcounts == NULL)
1344 return FALSE;
1345 if (tls_type == GOT_TLS_LDM)
1346 htab->tls_ldm_got.refcount += 1;
1347 else
1348 local_got_refcounts[r_symndx] += 1;
1349
1350 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1351 }
1352 }
1353
1354 if (need_entry & NEED_PLT)
1355 {
1356 /* If we are creating a shared library, and this is a reloc
1357 against a weak symbol or a global symbol in a dynamic
1358 object, then we will be creating an import stub and a
1359 .plt entry for the symbol. Similarly, on a normal link
1360 to symbols defined in a dynamic object we'll need the
1361 import stub and a .plt entry. We don't know yet whether
1362 the symbol is defined or not, so make an entry anyway and
1363 clean up later in adjust_dynamic_symbol. */
1364 if ((sec->flags & SEC_ALLOC) != 0)
1365 {
1366 if (hh != NULL)
1367 {
1368 hh->eh.needs_plt = 1;
1369 hh->eh.plt.refcount += 1;
1370
1371 /* If this .plt entry is for a plabel, mark it so
1372 that adjust_dynamic_symbol will keep the entry
1373 even if it appears to be local. */
1374 if (need_entry & PLT_PLABEL)
1375 hh->plabel = 1;
1376 }
1377 else if (need_entry & PLT_PLABEL)
1378 {
1379 bfd_signed_vma *local_got_refcounts;
1380 bfd_signed_vma *local_plt_refcounts;
1381
1382 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1383 if (local_got_refcounts == NULL)
1384 return FALSE;
1385 local_plt_refcounts = (local_got_refcounts
1386 + symtab_hdr->sh_info);
1387 local_plt_refcounts[r_symndx] += 1;
1388 }
1389 }
1390 }
1391
1392 if ((need_entry & NEED_DYNREL) != 0
1393 && (sec->flags & SEC_ALLOC) != 0)
1394 {
1395 /* Flag this symbol as having a non-got, non-plt reference
1396 so that we generate copy relocs if it turns out to be
1397 dynamic. */
1398 if (hh != NULL)
1399 hh->eh.non_got_ref = 1;
1400
1401 /* If we are creating a shared library then we need to copy
1402 the reloc into the shared library. However, if we are
1403 linking with -Bsymbolic, we need only copy absolute
1404 relocs or relocs against symbols that are not defined in
1405 an object we are including in the link. PC- or DP- or
1406 DLT-relative relocs against any local sym or global sym
1407 with DEF_REGULAR set, can be discarded. At this point we
1408 have not seen all the input files, so it is possible that
1409 DEF_REGULAR is not set now but will be set later (it is
1410 never cleared). We account for that possibility below by
1411 storing information in the dyn_relocs field of the
1412 hash table entry.
1413
1414 A similar situation to the -Bsymbolic case occurs when
1415 creating shared libraries and symbol visibility changes
1416 render the symbol local.
1417
1418 As it turns out, all the relocs we will be creating here
1419 are absolute, so we cannot remove them on -Bsymbolic
1420 links or visibility changes anyway. A STUB_REL reloc
1421 is absolute too, as in that case it is the reloc in the
1422 stub we will be creating, rather than copying the PCREL
1423 reloc in the branch.
1424
1425 If on the other hand, we are creating an executable, we
1426 may need to keep relocations for symbols satisfied by a
1427 dynamic library if we manage to avoid copy relocs for the
1428 symbol. */
1429 if ((bfd_link_pic (info)
1430 && (IS_ABSOLUTE_RELOC (r_type)
1431 || (hh != NULL
1432 && (!SYMBOLIC_BIND (info, &hh->eh)
1433 || hh->eh.root.type == bfd_link_hash_defweak
1434 || !hh->eh.def_regular))))
1435 || (ELIMINATE_COPY_RELOCS
1436 && !bfd_link_pic (info)
1437 && hh != NULL
1438 && (hh->eh.root.type == bfd_link_hash_defweak
1439 || !hh->eh.def_regular)))
1440 {
1441 struct elf_dyn_relocs *hdh_p;
1442 struct elf_dyn_relocs **hdh_head;
1443
1444 /* Create a reloc section in dynobj and make room for
1445 this reloc. */
1446 if (sreloc == NULL)
1447 {
1448 sreloc = _bfd_elf_make_dynamic_reloc_section
1449 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1450
1451 if (sreloc == NULL)
1452 {
1453 bfd_set_error (bfd_error_bad_value);
1454 return FALSE;
1455 }
1456 }
1457
1458 /* If this is a global symbol, we count the number of
1459 relocations we need for this symbol. */
1460 if (hh != NULL)
1461 {
1462 hdh_head = &hh->dyn_relocs;
1463 }
1464 else
1465 {
1466 /* Track dynamic relocs needed for local syms too.
1467 We really need local syms available to do this
1468 easily. Oh well. */
1469 asection *sr;
1470 void *vpp;
1471 Elf_Internal_Sym *isym;
1472
1473 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1474 abfd, r_symndx);
1475 if (isym == NULL)
1476 return FALSE;
1477
1478 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1479 if (sr == NULL)
1480 sr = sec;
1481
1482 vpp = &elf_section_data (sr)->local_dynrel;
1483 hdh_head = (struct elf_dyn_relocs **) vpp;
1484 }
1485
1486 hdh_p = *hdh_head;
1487 if (hdh_p == NULL || hdh_p->sec != sec)
1488 {
1489 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1490 if (hdh_p == NULL)
1491 return FALSE;
1492 hdh_p->next = *hdh_head;
1493 *hdh_head = hdh_p;
1494 hdh_p->sec = sec;
1495 hdh_p->count = 0;
1496 #if RELATIVE_DYNRELOCS
1497 hdh_p->pc_count = 0;
1498 #endif
1499 }
1500
1501 hdh_p->count += 1;
1502 #if RELATIVE_DYNRELOCS
1503 if (!IS_ABSOLUTE_RELOC (rtype))
1504 hdh_p->pc_count += 1;
1505 #endif
1506 }
1507 }
1508 }
1509
1510 return TRUE;
1511 }
1512
1513 /* Return the section that should be marked against garbage collection
1514 for a given relocation. */
1515
1516 static asection *
1517 elf32_hppa_gc_mark_hook (asection *sec,
1518 struct bfd_link_info *info,
1519 Elf_Internal_Rela *rela,
1520 struct elf_link_hash_entry *hh,
1521 Elf_Internal_Sym *sym)
1522 {
1523 if (hh != NULL)
1524 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1525 {
1526 case R_PARISC_GNU_VTINHERIT:
1527 case R_PARISC_GNU_VTENTRY:
1528 return NULL;
1529 }
1530
1531 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1532 }
1533
1534 /* Support for core dump NOTE sections. */
1535
1536 static bfd_boolean
1537 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1538 {
1539 int offset;
1540 size_t size;
1541
1542 switch (note->descsz)
1543 {
1544 default:
1545 return FALSE;
1546
1547 case 396: /* Linux/hppa */
1548 /* pr_cursig */
1549 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1550
1551 /* pr_pid */
1552 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1553
1554 /* pr_reg */
1555 offset = 72;
1556 size = 320;
1557
1558 break;
1559 }
1560
1561 /* Make a ".reg/999" section. */
1562 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1563 size, note->descpos + offset);
1564 }
1565
1566 static bfd_boolean
1567 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1568 {
1569 switch (note->descsz)
1570 {
1571 default:
1572 return FALSE;
1573
1574 case 124: /* Linux/hppa elf_prpsinfo. */
1575 elf_tdata (abfd)->core->program
1576 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1577 elf_tdata (abfd)->core->command
1578 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1579 }
1580
1581 /* Note that for some reason, a spurious space is tacked
1582 onto the end of the args in some (at least one anyway)
1583 implementations, so strip it off if it exists. */
1584 {
1585 char *command = elf_tdata (abfd)->core->command;
1586 int n = strlen (command);
1587
1588 if (0 < n && command[n - 1] == ' ')
1589 command[n - 1] = '\0';
1590 }
1591
1592 return TRUE;
1593 }
1594
1595 /* Our own version of hide_symbol, so that we can keep plt entries for
1596 plabels. */
1597
1598 static void
1599 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1600 struct elf_link_hash_entry *eh,
1601 bfd_boolean force_local)
1602 {
1603 if (force_local)
1604 {
1605 eh->forced_local = 1;
1606 if (eh->dynindx != -1)
1607 {
1608 eh->dynindx = -1;
1609 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1610 eh->dynstr_index);
1611 }
1612
1613 /* PR 16082: Remove version information from hidden symbol. */
1614 eh->verinfo.verdef = NULL;
1615 eh->verinfo.vertree = NULL;
1616 }
1617
1618 /* STT_GNU_IFUNC symbol must go through PLT. */
1619 if (! hppa_elf_hash_entry (eh)->plabel
1620 && eh->type != STT_GNU_IFUNC)
1621 {
1622 eh->needs_plt = 0;
1623 eh->plt = elf_hash_table (info)->init_plt_offset;
1624 }
1625 }
1626
1627 /* Find any dynamic relocs that apply to read-only sections. */
1628
1629 static asection *
1630 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1631 {
1632 struct elf32_hppa_link_hash_entry *hh;
1633 struct elf_dyn_relocs *hdh_p;
1634
1635 hh = hppa_elf_hash_entry (eh);
1636 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1637 {
1638 asection *sec = hdh_p->sec->output_section;
1639
1640 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1641 return hdh_p->sec;
1642 }
1643 return NULL;
1644 }
1645
1646 /* Return true if we have dynamic relocs against H or any of its weak
1647 aliases, that apply to read-only sections. Cannot be used after
1648 size_dynamic_sections. */
1649
1650 static bfd_boolean
1651 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1652 {
1653 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1654 do
1655 {
1656 if (readonly_dynrelocs (&hh->eh))
1657 return TRUE;
1658 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1659 } while (hh != NULL && &hh->eh != eh);
1660
1661 return FALSE;
1662 }
1663
1664 /* Adjust a symbol defined by a dynamic object and referenced by a
1665 regular object. The current definition is in some section of the
1666 dynamic object, but we're not including those sections. We have to
1667 change the definition to something the rest of the link can
1668 understand. */
1669
1670 static bfd_boolean
1671 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1672 struct elf_link_hash_entry *eh)
1673 {
1674 struct elf32_hppa_link_hash_table *htab;
1675 asection *sec, *srel;
1676
1677 /* If this is a function, put it in the procedure linkage table. We
1678 will fill in the contents of the procedure linkage table later. */
1679 if (eh->type == STT_FUNC
1680 || eh->needs_plt)
1681 {
1682 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1683 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1684 /* Discard dyn_relocs when non-pic if we've decided that a
1685 function symbol is local. */
1686 if (!bfd_link_pic (info) && local)
1687 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1688
1689 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1690 The refcounts are not reliable when it has been hidden since
1691 hide_symbol can be called before the plabel flag is set. */
1692 if (hppa_elf_hash_entry (eh)->plabel)
1693 eh->plt.refcount = 1;
1694
1695 /* Note that unlike some other backends, the refcount is not
1696 incremented for a non-call (and non-plabel) function reference. */
1697 else if (eh->plt.refcount <= 0
1698 || local)
1699 {
1700 /* The .plt entry is not needed when:
1701 a) Garbage collection has removed all references to the
1702 symbol, or
1703 b) We know for certain the symbol is defined in this
1704 object, and it's not a weak definition, nor is the symbol
1705 used by a plabel relocation. Either this object is the
1706 application or we are doing a shared symbolic link. */
1707 eh->plt.offset = (bfd_vma) -1;
1708 eh->needs_plt = 0;
1709 }
1710
1711 /* Unlike other targets, elf32-hppa.c does not define a function
1712 symbol in a non-pic executable on PLT stub code, so we don't
1713 have a local definition in that case. ie. dyn_relocs can't
1714 be discarded. */
1715
1716 /* Function symbols can't have copy relocs. */
1717 return TRUE;
1718 }
1719 else
1720 eh->plt.offset = (bfd_vma) -1;
1721
1722 htab = hppa_link_hash_table (info);
1723 if (htab == NULL)
1724 return FALSE;
1725
1726 /* If this is a weak symbol, and there is a real definition, the
1727 processor independent code will have arranged for us to see the
1728 real definition first, and we can just use the same value. */
1729 if (eh->is_weakalias)
1730 {
1731 struct elf_link_hash_entry *def = weakdef (eh);
1732 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1733 eh->root.u.def.section = def->root.u.def.section;
1734 eh->root.u.def.value = def->root.u.def.value;
1735 if (def->root.u.def.section == htab->etab.sdynbss
1736 || def->root.u.def.section == htab->etab.sdynrelro)
1737 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1738 return TRUE;
1739 }
1740
1741 /* This is a reference to a symbol defined by a dynamic object which
1742 is not a function. */
1743
1744 /* If we are creating a shared library, we must presume that the
1745 only references to the symbol are via the global offset table.
1746 For such cases we need not do anything here; the relocations will
1747 be handled correctly by relocate_section. */
1748 if (bfd_link_pic (info))
1749 return TRUE;
1750
1751 /* If there are no references to this symbol that do not use the
1752 GOT, we don't need to generate a copy reloc. */
1753 if (!eh->non_got_ref)
1754 return TRUE;
1755
1756 /* If -z nocopyreloc was given, we won't generate them either. */
1757 if (info->nocopyreloc)
1758 return TRUE;
1759
1760 /* If we don't find any dynamic relocs in read-only sections, then
1761 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1762 if (ELIMINATE_COPY_RELOCS
1763 && !alias_readonly_dynrelocs (eh))
1764 return TRUE;
1765
1766 /* We must allocate the symbol in our .dynbss section, which will
1767 become part of the .bss section of the executable. There will be
1768 an entry for this symbol in the .dynsym section. The dynamic
1769 object will contain position independent code, so all references
1770 from the dynamic object to this symbol will go through the global
1771 offset table. The dynamic linker will use the .dynsym entry to
1772 determine the address it must put in the global offset table, so
1773 both the dynamic object and the regular object will refer to the
1774 same memory location for the variable. */
1775 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1776 {
1777 sec = htab->etab.sdynrelro;
1778 srel = htab->etab.sreldynrelro;
1779 }
1780 else
1781 {
1782 sec = htab->etab.sdynbss;
1783 srel = htab->etab.srelbss;
1784 }
1785 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1786 {
1787 /* We must generate a COPY reloc to tell the dynamic linker to
1788 copy the initial value out of the dynamic object and into the
1789 runtime process image. */
1790 srel->size += sizeof (Elf32_External_Rela);
1791 eh->needs_copy = 1;
1792 }
1793
1794 /* We no longer want dyn_relocs. */
1795 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1796 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1797 }
1798
1799 /* If EH is undefined, make it dynamic if that makes sense. */
1800
1801 static bfd_boolean
1802 ensure_undef_dynamic (struct bfd_link_info *info,
1803 struct elf_link_hash_entry *eh)
1804 {
1805 struct elf_link_hash_table *htab = elf_hash_table (info);
1806
1807 if (htab->dynamic_sections_created
1808 && (eh->root.type == bfd_link_hash_undefweak
1809 || eh->root.type == bfd_link_hash_undefined)
1810 && eh->dynindx == -1
1811 && !eh->forced_local
1812 && eh->type != STT_PARISC_MILLI
1813 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1814 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1815 return bfd_elf_link_record_dynamic_symbol (info, eh);
1816 return TRUE;
1817 }
1818
1819 /* Allocate space in the .plt for entries that won't have relocations.
1820 ie. plabel entries. */
1821
1822 static bfd_boolean
1823 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1824 {
1825 struct bfd_link_info *info;
1826 struct elf32_hppa_link_hash_table *htab;
1827 struct elf32_hppa_link_hash_entry *hh;
1828 asection *sec;
1829
1830 if (eh->root.type == bfd_link_hash_indirect)
1831 return TRUE;
1832
1833 info = (struct bfd_link_info *) inf;
1834 hh = hppa_elf_hash_entry (eh);
1835 htab = hppa_link_hash_table (info);
1836 if (htab == NULL)
1837 return FALSE;
1838
1839 if (htab->etab.dynamic_sections_created
1840 && eh->plt.refcount > 0)
1841 {
1842 if (!ensure_undef_dynamic (info, eh))
1843 return FALSE;
1844
1845 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1846 {
1847 /* Allocate these later. From this point on, h->plabel
1848 means that the plt entry is only used by a plabel.
1849 We'll be using a normal plt entry for this symbol, so
1850 clear the plabel indicator. */
1851
1852 hh->plabel = 0;
1853 }
1854 else if (hh->plabel)
1855 {
1856 /* Make an entry in the .plt section for plabel references
1857 that won't have a .plt entry for other reasons. */
1858 sec = htab->etab.splt;
1859 eh->plt.offset = sec->size;
1860 sec->size += PLT_ENTRY_SIZE;
1861 if (bfd_link_pic (info))
1862 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1863 }
1864 else
1865 {
1866 /* No .plt entry needed. */
1867 eh->plt.offset = (bfd_vma) -1;
1868 eh->needs_plt = 0;
1869 }
1870 }
1871 else
1872 {
1873 eh->plt.offset = (bfd_vma) -1;
1874 eh->needs_plt = 0;
1875 }
1876
1877 return TRUE;
1878 }
1879
1880 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1881
1882 static inline unsigned int
1883 got_entries_needed (int tls_type)
1884 {
1885 unsigned int need = 0;
1886
1887 if ((tls_type & GOT_NORMAL) != 0)
1888 need += GOT_ENTRY_SIZE;
1889 if ((tls_type & GOT_TLS_GD) != 0)
1890 need += GOT_ENTRY_SIZE * 2;
1891 if ((tls_type & GOT_TLS_IE) != 0)
1892 need += GOT_ENTRY_SIZE;
1893 return need;
1894 }
1895
1896 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1897 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1898 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1899 offset. */
1900
1901 static inline unsigned int
1902 got_relocs_needed (int tls_type, unsigned int need,
1903 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1904 {
1905 /* All the entries we allocated need relocs.
1906 Except for GD and IE with local symbols. */
1907 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1908 need -= GOT_ENTRY_SIZE;
1909 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1910 need -= GOT_ENTRY_SIZE;
1911 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1912 }
1913
1914 /* Allocate space in .plt, .got and associated reloc sections for
1915 global syms. */
1916
1917 static bfd_boolean
1918 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1919 {
1920 struct bfd_link_info *info;
1921 struct elf32_hppa_link_hash_table *htab;
1922 asection *sec;
1923 struct elf32_hppa_link_hash_entry *hh;
1924 struct elf_dyn_relocs *hdh_p;
1925
1926 if (eh->root.type == bfd_link_hash_indirect)
1927 return TRUE;
1928
1929 info = inf;
1930 htab = hppa_link_hash_table (info);
1931 if (htab == NULL)
1932 return FALSE;
1933
1934 hh = hppa_elf_hash_entry (eh);
1935
1936 if (htab->etab.dynamic_sections_created
1937 && eh->plt.offset != (bfd_vma) -1
1938 && !hh->plabel
1939 && eh->plt.refcount > 0)
1940 {
1941 /* Make an entry in the .plt section. */
1942 sec = htab->etab.splt;
1943 eh->plt.offset = sec->size;
1944 sec->size += PLT_ENTRY_SIZE;
1945
1946 /* We also need to make an entry in the .rela.plt section. */
1947 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1948 htab->need_plt_stub = 1;
1949 }
1950
1951 if (eh->got.refcount > 0)
1952 {
1953 unsigned int need;
1954
1955 if (!ensure_undef_dynamic (info, eh))
1956 return FALSE;
1957
1958 sec = htab->etab.sgot;
1959 eh->got.offset = sec->size;
1960 need = got_entries_needed (hh->tls_type);
1961 sec->size += need;
1962 if (htab->etab.dynamic_sections_created
1963 && (bfd_link_dll (info)
1964 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1965 || (eh->dynindx != -1
1966 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1967 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1968 {
1969 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1970 htab->etab.srelgot->size
1971 += got_relocs_needed (hh->tls_type, need, local,
1972 local && bfd_link_executable (info));
1973 }
1974 }
1975 else
1976 eh->got.offset = (bfd_vma) -1;
1977
1978 /* If no dynamic sections we can't have dynamic relocs. */
1979 if (!htab->etab.dynamic_sections_created)
1980 hh->dyn_relocs = NULL;
1981
1982 /* Discard relocs on undefined syms with non-default visibility. */
1983 else if ((eh->root.type == bfd_link_hash_undefined
1984 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1985 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1986 hh->dyn_relocs = NULL;
1987
1988 if (hh->dyn_relocs == NULL)
1989 return TRUE;
1990
1991 /* If this is a -Bsymbolic shared link, then we need to discard all
1992 space allocated for dynamic pc-relative relocs against symbols
1993 defined in a regular object. For the normal shared case, discard
1994 space for relocs that have become local due to symbol visibility
1995 changes. */
1996 if (bfd_link_pic (info))
1997 {
1998 #if RELATIVE_DYNRELOCS
1999 if (SYMBOL_CALLS_LOCAL (info, eh))
2000 {
2001 struct elf_dyn_relocs **hdh_pp;
2002
2003 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2004 {
2005 hdh_p->count -= hdh_p->pc_count;
2006 hdh_p->pc_count = 0;
2007 if (hdh_p->count == 0)
2008 *hdh_pp = hdh_p->next;
2009 else
2010 hdh_pp = &hdh_p->next;
2011 }
2012 }
2013 #endif
2014
2015 if (hh->dyn_relocs != NULL)
2016 {
2017 if (!ensure_undef_dynamic (info, eh))
2018 return FALSE;
2019 }
2020 }
2021 else if (ELIMINATE_COPY_RELOCS)
2022 {
2023 /* For the non-shared case, discard space for relocs against
2024 symbols which turn out to need copy relocs or are not
2025 dynamic. */
2026
2027 if (eh->dynamic_adjusted
2028 && !eh->def_regular
2029 && !ELF_COMMON_DEF_P (eh))
2030 {
2031 if (!ensure_undef_dynamic (info, eh))
2032 return FALSE;
2033
2034 if (eh->dynindx == -1)
2035 hh->dyn_relocs = NULL;
2036 }
2037 else
2038 hh->dyn_relocs = NULL;
2039 }
2040
2041 /* Finally, allocate space. */
2042 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2043 {
2044 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2045 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2046 }
2047
2048 return TRUE;
2049 }
2050
2051 /* This function is called via elf_link_hash_traverse to force
2052 millicode symbols local so they do not end up as globals in the
2053 dynamic symbol table. We ought to be able to do this in
2054 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2055 for all dynamic symbols. Arguably, this is a bug in
2056 elf_adjust_dynamic_symbol. */
2057
2058 static bfd_boolean
2059 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2060 struct bfd_link_info *info)
2061 {
2062 if (eh->type == STT_PARISC_MILLI
2063 && !eh->forced_local)
2064 {
2065 elf32_hppa_hide_symbol (info, eh, TRUE);
2066 }
2067 return TRUE;
2068 }
2069
2070 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2071 read-only sections. */
2072
2073 static bfd_boolean
2074 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2075 {
2076 asection *sec;
2077
2078 if (eh->root.type == bfd_link_hash_indirect)
2079 return TRUE;
2080
2081 sec = readonly_dynrelocs (eh);
2082 if (sec != NULL)
2083 {
2084 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2085
2086 info->flags |= DF_TEXTREL;
2087 info->callbacks->minfo
2088 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2089 sec->owner, eh->root.root.string, sec);
2090
2091 /* Not an error, just cut short the traversal. */
2092 return FALSE;
2093 }
2094 return TRUE;
2095 }
2096
2097 /* Set the sizes of the dynamic sections. */
2098
2099 static bfd_boolean
2100 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2101 struct bfd_link_info *info)
2102 {
2103 struct elf32_hppa_link_hash_table *htab;
2104 bfd *dynobj;
2105 bfd *ibfd;
2106 asection *sec;
2107 bfd_boolean relocs;
2108
2109 htab = hppa_link_hash_table (info);
2110 if (htab == NULL)
2111 return FALSE;
2112
2113 dynobj = htab->etab.dynobj;
2114 if (dynobj == NULL)
2115 abort ();
2116
2117 if (htab->etab.dynamic_sections_created)
2118 {
2119 /* Set the contents of the .interp section to the interpreter. */
2120 if (bfd_link_executable (info) && !info->nointerp)
2121 {
2122 sec = bfd_get_linker_section (dynobj, ".interp");
2123 if (sec == NULL)
2124 abort ();
2125 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2126 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2127 }
2128
2129 /* Force millicode symbols local. */
2130 elf_link_hash_traverse (&htab->etab,
2131 clobber_millicode_symbols,
2132 info);
2133 }
2134
2135 /* Set up .got and .plt offsets for local syms, and space for local
2136 dynamic relocs. */
2137 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2138 {
2139 bfd_signed_vma *local_got;
2140 bfd_signed_vma *end_local_got;
2141 bfd_signed_vma *local_plt;
2142 bfd_signed_vma *end_local_plt;
2143 bfd_size_type locsymcount;
2144 Elf_Internal_Shdr *symtab_hdr;
2145 asection *srel;
2146 char *local_tls_type;
2147
2148 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2149 continue;
2150
2151 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2152 {
2153 struct elf_dyn_relocs *hdh_p;
2154
2155 for (hdh_p = ((struct elf_dyn_relocs *)
2156 elf_section_data (sec)->local_dynrel);
2157 hdh_p != NULL;
2158 hdh_p = hdh_p->next)
2159 {
2160 if (!bfd_is_abs_section (hdh_p->sec)
2161 && bfd_is_abs_section (hdh_p->sec->output_section))
2162 {
2163 /* Input section has been discarded, either because
2164 it is a copy of a linkonce section or due to
2165 linker script /DISCARD/, so we'll be discarding
2166 the relocs too. */
2167 }
2168 else if (hdh_p->count != 0)
2169 {
2170 srel = elf_section_data (hdh_p->sec)->sreloc;
2171 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2172 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2173 info->flags |= DF_TEXTREL;
2174 }
2175 }
2176 }
2177
2178 local_got = elf_local_got_refcounts (ibfd);
2179 if (!local_got)
2180 continue;
2181
2182 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2183 locsymcount = symtab_hdr->sh_info;
2184 end_local_got = local_got + locsymcount;
2185 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2186 sec = htab->etab.sgot;
2187 srel = htab->etab.srelgot;
2188 for (; local_got < end_local_got; ++local_got)
2189 {
2190 if (*local_got > 0)
2191 {
2192 unsigned int need;
2193
2194 *local_got = sec->size;
2195 need = got_entries_needed (*local_tls_type);
2196 sec->size += need;
2197 if (bfd_link_dll (info)
2198 || (bfd_link_pic (info)
2199 && (*local_tls_type & GOT_NORMAL) != 0))
2200 htab->etab.srelgot->size
2201 += got_relocs_needed (*local_tls_type, need, TRUE,
2202 bfd_link_executable (info));
2203 }
2204 else
2205 *local_got = (bfd_vma) -1;
2206
2207 ++local_tls_type;
2208 }
2209
2210 local_plt = end_local_got;
2211 end_local_plt = local_plt + locsymcount;
2212 if (! htab->etab.dynamic_sections_created)
2213 {
2214 /* Won't be used, but be safe. */
2215 for (; local_plt < end_local_plt; ++local_plt)
2216 *local_plt = (bfd_vma) -1;
2217 }
2218 else
2219 {
2220 sec = htab->etab.splt;
2221 srel = htab->etab.srelplt;
2222 for (; local_plt < end_local_plt; ++local_plt)
2223 {
2224 if (*local_plt > 0)
2225 {
2226 *local_plt = sec->size;
2227 sec->size += PLT_ENTRY_SIZE;
2228 if (bfd_link_pic (info))
2229 srel->size += sizeof (Elf32_External_Rela);
2230 }
2231 else
2232 *local_plt = (bfd_vma) -1;
2233 }
2234 }
2235 }
2236
2237 if (htab->tls_ldm_got.refcount > 0)
2238 {
2239 /* Allocate 2 got entries and 1 dynamic reloc for
2240 R_PARISC_TLS_DTPMOD32 relocs. */
2241 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2242 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2243 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2244 }
2245 else
2246 htab->tls_ldm_got.offset = -1;
2247
2248 /* Do all the .plt entries without relocs first. The dynamic linker
2249 uses the last .plt reloc to find the end of the .plt (and hence
2250 the start of the .got) for lazy linking. */
2251 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2252
2253 /* Allocate global sym .plt and .got entries, and space for global
2254 sym dynamic relocs. */
2255 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2256
2257 /* The check_relocs and adjust_dynamic_symbol entry points have
2258 determined the sizes of the various dynamic sections. Allocate
2259 memory for them. */
2260 relocs = FALSE;
2261 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2262 {
2263 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2264 continue;
2265
2266 if (sec == htab->etab.splt)
2267 {
2268 if (htab->need_plt_stub)
2269 {
2270 /* Make space for the plt stub at the end of the .plt
2271 section. We want this stub right at the end, up
2272 against the .got section. */
2273 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2274 int pltalign = bfd_section_alignment (dynobj, sec);
2275 bfd_size_type mask;
2276
2277 if (gotalign > pltalign)
2278 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2279 mask = ((bfd_size_type) 1 << gotalign) - 1;
2280 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2281 }
2282 }
2283 else if (sec == htab->etab.sgot
2284 || sec == htab->etab.sdynbss
2285 || sec == htab->etab.sdynrelro)
2286 ;
2287 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2288 {
2289 if (sec->size != 0)
2290 {
2291 /* Remember whether there are any reloc sections other
2292 than .rela.plt. */
2293 if (sec != htab->etab.srelplt)
2294 relocs = TRUE;
2295
2296 /* We use the reloc_count field as a counter if we need
2297 to copy relocs into the output file. */
2298 sec->reloc_count = 0;
2299 }
2300 }
2301 else
2302 {
2303 /* It's not one of our sections, so don't allocate space. */
2304 continue;
2305 }
2306
2307 if (sec->size == 0)
2308 {
2309 /* If we don't need this section, strip it from the
2310 output file. This is mostly to handle .rela.bss and
2311 .rela.plt. We must create both sections in
2312 create_dynamic_sections, because they must be created
2313 before the linker maps input sections to output
2314 sections. The linker does that before
2315 adjust_dynamic_symbol is called, and it is that
2316 function which decides whether anything needs to go
2317 into these sections. */
2318 sec->flags |= SEC_EXCLUDE;
2319 continue;
2320 }
2321
2322 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2323 continue;
2324
2325 /* Allocate memory for the section contents. Zero it, because
2326 we may not fill in all the reloc sections. */
2327 sec->contents = bfd_zalloc (dynobj, sec->size);
2328 if (sec->contents == NULL)
2329 return FALSE;
2330 }
2331
2332 if (htab->etab.dynamic_sections_created)
2333 {
2334 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2335 actually has nothing to do with the PLT, it is how we
2336 communicate the LTP value of a load module to the dynamic
2337 linker. */
2338 #define add_dynamic_entry(TAG, VAL) \
2339 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2340
2341 if (!add_dynamic_entry (DT_PLTGOT, 0))
2342 return FALSE;
2343
2344 /* Add some entries to the .dynamic section. We fill in the
2345 values later, in elf32_hppa_finish_dynamic_sections, but we
2346 must add the entries now so that we get the correct size for
2347 the .dynamic section. The DT_DEBUG entry is filled in by the
2348 dynamic linker and used by the debugger. */
2349 if (bfd_link_executable (info))
2350 {
2351 if (!add_dynamic_entry (DT_DEBUG, 0))
2352 return FALSE;
2353 }
2354
2355 if (htab->etab.srelplt->size != 0)
2356 {
2357 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2358 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2359 || !add_dynamic_entry (DT_JMPREL, 0))
2360 return FALSE;
2361 }
2362
2363 if (relocs)
2364 {
2365 if (!add_dynamic_entry (DT_RELA, 0)
2366 || !add_dynamic_entry (DT_RELASZ, 0)
2367 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2368 return FALSE;
2369
2370 /* If any dynamic relocs apply to a read-only section,
2371 then we need a DT_TEXTREL entry. */
2372 if ((info->flags & DF_TEXTREL) == 0)
2373 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2374
2375 if ((info->flags & DF_TEXTREL) != 0)
2376 {
2377 if (!add_dynamic_entry (DT_TEXTREL, 0))
2378 return FALSE;
2379 }
2380 }
2381 }
2382 #undef add_dynamic_entry
2383
2384 return TRUE;
2385 }
2386
2387 /* External entry points for sizing and building linker stubs. */
2388
2389 /* Set up various things so that we can make a list of input sections
2390 for each output section included in the link. Returns -1 on error,
2391 0 when no stubs will be needed, and 1 on success. */
2392
2393 int
2394 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2395 {
2396 bfd *input_bfd;
2397 unsigned int bfd_count;
2398 unsigned int top_id, top_index;
2399 asection *section;
2400 asection **input_list, **list;
2401 bfd_size_type amt;
2402 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2403
2404 if (htab == NULL)
2405 return -1;
2406
2407 /* Count the number of input BFDs and find the top input section id. */
2408 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2409 input_bfd != NULL;
2410 input_bfd = input_bfd->link.next)
2411 {
2412 bfd_count += 1;
2413 for (section = input_bfd->sections;
2414 section != NULL;
2415 section = section->next)
2416 {
2417 if (top_id < section->id)
2418 top_id = section->id;
2419 }
2420 }
2421 htab->bfd_count = bfd_count;
2422
2423 amt = sizeof (struct map_stub) * (top_id + 1);
2424 htab->stub_group = bfd_zmalloc (amt);
2425 if (htab->stub_group == NULL)
2426 return -1;
2427
2428 /* We can't use output_bfd->section_count here to find the top output
2429 section index as some sections may have been removed, and
2430 strip_excluded_output_sections doesn't renumber the indices. */
2431 for (section = output_bfd->sections, top_index = 0;
2432 section != NULL;
2433 section = section->next)
2434 {
2435 if (top_index < section->index)
2436 top_index = section->index;
2437 }
2438
2439 htab->top_index = top_index;
2440 amt = sizeof (asection *) * (top_index + 1);
2441 input_list = bfd_malloc (amt);
2442 htab->input_list = input_list;
2443 if (input_list == NULL)
2444 return -1;
2445
2446 /* For sections we aren't interested in, mark their entries with a
2447 value we can check later. */
2448 list = input_list + top_index;
2449 do
2450 *list = bfd_abs_section_ptr;
2451 while (list-- != input_list);
2452
2453 for (section = output_bfd->sections;
2454 section != NULL;
2455 section = section->next)
2456 {
2457 if ((section->flags & SEC_CODE) != 0)
2458 input_list[section->index] = NULL;
2459 }
2460
2461 return 1;
2462 }
2463
2464 /* The linker repeatedly calls this function for each input section,
2465 in the order that input sections are linked into output sections.
2466 Build lists of input sections to determine groupings between which
2467 we may insert linker stubs. */
2468
2469 void
2470 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2471 {
2472 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2473
2474 if (htab == NULL)
2475 return;
2476
2477 if (isec->output_section->index <= htab->top_index)
2478 {
2479 asection **list = htab->input_list + isec->output_section->index;
2480 if (*list != bfd_abs_section_ptr)
2481 {
2482 /* Steal the link_sec pointer for our list. */
2483 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2484 /* This happens to make the list in reverse order,
2485 which is what we want. */
2486 PREV_SEC (isec) = *list;
2487 *list = isec;
2488 }
2489 }
2490 }
2491
2492 /* See whether we can group stub sections together. Grouping stub
2493 sections may result in fewer stubs. More importantly, we need to
2494 put all .init* and .fini* stubs at the beginning of the .init or
2495 .fini output sections respectively, because glibc splits the
2496 _init and _fini functions into multiple parts. Putting a stub in
2497 the middle of a function is not a good idea. */
2498
2499 static void
2500 group_sections (struct elf32_hppa_link_hash_table *htab,
2501 bfd_size_type stub_group_size,
2502 bfd_boolean stubs_always_before_branch)
2503 {
2504 asection **list = htab->input_list + htab->top_index;
2505 do
2506 {
2507 asection *tail = *list;
2508 if (tail == bfd_abs_section_ptr)
2509 continue;
2510 while (tail != NULL)
2511 {
2512 asection *curr;
2513 asection *prev;
2514 bfd_size_type total;
2515 bfd_boolean big_sec;
2516
2517 curr = tail;
2518 total = tail->size;
2519 big_sec = total >= stub_group_size;
2520
2521 while ((prev = PREV_SEC (curr)) != NULL
2522 && ((total += curr->output_offset - prev->output_offset)
2523 < stub_group_size))
2524 curr = prev;
2525
2526 /* OK, the size from the start of CURR to the end is less
2527 than 240000 bytes and thus can be handled by one stub
2528 section. (or the tail section is itself larger than
2529 240000 bytes, in which case we may be toast.)
2530 We should really be keeping track of the total size of
2531 stubs added here, as stubs contribute to the final output
2532 section size. That's a little tricky, and this way will
2533 only break if stubs added total more than 22144 bytes, or
2534 2768 long branch stubs. It seems unlikely for more than
2535 2768 different functions to be called, especially from
2536 code only 240000 bytes long. This limit used to be
2537 250000, but c++ code tends to generate lots of little
2538 functions, and sometimes violated the assumption. */
2539 do
2540 {
2541 prev = PREV_SEC (tail);
2542 /* Set up this stub group. */
2543 htab->stub_group[tail->id].link_sec = curr;
2544 }
2545 while (tail != curr && (tail = prev) != NULL);
2546
2547 /* But wait, there's more! Input sections up to 240000
2548 bytes before the stub section can be handled by it too.
2549 Don't do this if we have a really large section after the
2550 stubs, as adding more stubs increases the chance that
2551 branches may not reach into the stub section. */
2552 if (!stubs_always_before_branch && !big_sec)
2553 {
2554 total = 0;
2555 while (prev != NULL
2556 && ((total += tail->output_offset - prev->output_offset)
2557 < stub_group_size))
2558 {
2559 tail = prev;
2560 prev = PREV_SEC (tail);
2561 htab->stub_group[tail->id].link_sec = curr;
2562 }
2563 }
2564 tail = prev;
2565 }
2566 }
2567 while (list-- != htab->input_list);
2568 free (htab->input_list);
2569 #undef PREV_SEC
2570 }
2571
2572 /* Read in all local syms for all input bfds, and create hash entries
2573 for export stubs if we are building a multi-subspace shared lib.
2574 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2575
2576 static int
2577 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2578 {
2579 unsigned int bfd_indx;
2580 Elf_Internal_Sym *local_syms, **all_local_syms;
2581 int stub_changed = 0;
2582 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2583
2584 if (htab == NULL)
2585 return -1;
2586
2587 /* We want to read in symbol extension records only once. To do this
2588 we need to read in the local symbols in parallel and save them for
2589 later use; so hold pointers to the local symbols in an array. */
2590 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2591 all_local_syms = bfd_zmalloc (amt);
2592 htab->all_local_syms = all_local_syms;
2593 if (all_local_syms == NULL)
2594 return -1;
2595
2596 /* Walk over all the input BFDs, swapping in local symbols.
2597 If we are creating a shared library, create hash entries for the
2598 export stubs. */
2599 for (bfd_indx = 0;
2600 input_bfd != NULL;
2601 input_bfd = input_bfd->link.next, bfd_indx++)
2602 {
2603 Elf_Internal_Shdr *symtab_hdr;
2604
2605 /* We'll need the symbol table in a second. */
2606 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2607 if (symtab_hdr->sh_info == 0)
2608 continue;
2609
2610 /* We need an array of the local symbols attached to the input bfd. */
2611 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2612 if (local_syms == NULL)
2613 {
2614 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2615 symtab_hdr->sh_info, 0,
2616 NULL, NULL, NULL);
2617 /* Cache them for elf_link_input_bfd. */
2618 symtab_hdr->contents = (unsigned char *) local_syms;
2619 }
2620 if (local_syms == NULL)
2621 return -1;
2622
2623 all_local_syms[bfd_indx] = local_syms;
2624
2625 if (bfd_link_pic (info) && htab->multi_subspace)
2626 {
2627 struct elf_link_hash_entry **eh_syms;
2628 struct elf_link_hash_entry **eh_symend;
2629 unsigned int symcount;
2630
2631 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2632 - symtab_hdr->sh_info);
2633 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2634 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2635
2636 /* Look through the global syms for functions; We need to
2637 build export stubs for all globally visible functions. */
2638 for (; eh_syms < eh_symend; eh_syms++)
2639 {
2640 struct elf32_hppa_link_hash_entry *hh;
2641
2642 hh = hppa_elf_hash_entry (*eh_syms);
2643
2644 while (hh->eh.root.type == bfd_link_hash_indirect
2645 || hh->eh.root.type == bfd_link_hash_warning)
2646 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2647
2648 /* At this point in the link, undefined syms have been
2649 resolved, so we need to check that the symbol was
2650 defined in this BFD. */
2651 if ((hh->eh.root.type == bfd_link_hash_defined
2652 || hh->eh.root.type == bfd_link_hash_defweak)
2653 && hh->eh.type == STT_FUNC
2654 && hh->eh.root.u.def.section->output_section != NULL
2655 && (hh->eh.root.u.def.section->output_section->owner
2656 == output_bfd)
2657 && hh->eh.root.u.def.section->owner == input_bfd
2658 && hh->eh.def_regular
2659 && !hh->eh.forced_local
2660 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2661 {
2662 asection *sec;
2663 const char *stub_name;
2664 struct elf32_hppa_stub_hash_entry *hsh;
2665
2666 sec = hh->eh.root.u.def.section;
2667 stub_name = hh_name (hh);
2668 hsh = hppa_stub_hash_lookup (&htab->bstab,
2669 stub_name,
2670 FALSE, FALSE);
2671 if (hsh == NULL)
2672 {
2673 hsh = hppa_add_stub (stub_name, sec, htab);
2674 if (!hsh)
2675 return -1;
2676
2677 hsh->target_value = hh->eh.root.u.def.value;
2678 hsh->target_section = hh->eh.root.u.def.section;
2679 hsh->stub_type = hppa_stub_export;
2680 hsh->hh = hh;
2681 stub_changed = 1;
2682 }
2683 else
2684 {
2685 /* xgettext:c-format */
2686 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2687 input_bfd, stub_name);
2688 }
2689 }
2690 }
2691 }
2692 }
2693
2694 return stub_changed;
2695 }
2696
2697 /* Determine and set the size of the stub section for a final link.
2698
2699 The basic idea here is to examine all the relocations looking for
2700 PC-relative calls to a target that is unreachable with a "bl"
2701 instruction. */
2702
2703 bfd_boolean
2704 elf32_hppa_size_stubs
2705 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2706 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2707 asection * (*add_stub_section) (const char *, asection *),
2708 void (*layout_sections_again) (void))
2709 {
2710 bfd_size_type stub_group_size;
2711 bfd_boolean stubs_always_before_branch;
2712 bfd_boolean stub_changed;
2713 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2714
2715 if (htab == NULL)
2716 return FALSE;
2717
2718 /* Stash our params away. */
2719 htab->stub_bfd = stub_bfd;
2720 htab->multi_subspace = multi_subspace;
2721 htab->add_stub_section = add_stub_section;
2722 htab->layout_sections_again = layout_sections_again;
2723 stubs_always_before_branch = group_size < 0;
2724 if (group_size < 0)
2725 stub_group_size = -group_size;
2726 else
2727 stub_group_size = group_size;
2728 if (stub_group_size == 1)
2729 {
2730 /* Default values. */
2731 if (stubs_always_before_branch)
2732 {
2733 stub_group_size = 7680000;
2734 if (htab->has_17bit_branch || htab->multi_subspace)
2735 stub_group_size = 240000;
2736 if (htab->has_12bit_branch)
2737 stub_group_size = 7500;
2738 }
2739 else
2740 {
2741 stub_group_size = 6971392;
2742 if (htab->has_17bit_branch || htab->multi_subspace)
2743 stub_group_size = 217856;
2744 if (htab->has_12bit_branch)
2745 stub_group_size = 6808;
2746 }
2747 }
2748
2749 group_sections (htab, stub_group_size, stubs_always_before_branch);
2750
2751 switch (get_local_syms (output_bfd, info->input_bfds, info))
2752 {
2753 default:
2754 if (htab->all_local_syms)
2755 goto error_ret_free_local;
2756 return FALSE;
2757
2758 case 0:
2759 stub_changed = FALSE;
2760 break;
2761
2762 case 1:
2763 stub_changed = TRUE;
2764 break;
2765 }
2766
2767 while (1)
2768 {
2769 bfd *input_bfd;
2770 unsigned int bfd_indx;
2771 asection *stub_sec;
2772
2773 for (input_bfd = info->input_bfds, bfd_indx = 0;
2774 input_bfd != NULL;
2775 input_bfd = input_bfd->link.next, bfd_indx++)
2776 {
2777 Elf_Internal_Shdr *symtab_hdr;
2778 asection *section;
2779 Elf_Internal_Sym *local_syms;
2780
2781 /* We'll need the symbol table in a second. */
2782 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2783 if (symtab_hdr->sh_info == 0)
2784 continue;
2785
2786 local_syms = htab->all_local_syms[bfd_indx];
2787
2788 /* Walk over each section attached to the input bfd. */
2789 for (section = input_bfd->sections;
2790 section != NULL;
2791 section = section->next)
2792 {
2793 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2794
2795 /* If there aren't any relocs, then there's nothing more
2796 to do. */
2797 if ((section->flags & SEC_RELOC) == 0
2798 || section->reloc_count == 0)
2799 continue;
2800
2801 /* If this section is a link-once section that will be
2802 discarded, then don't create any stubs. */
2803 if (section->output_section == NULL
2804 || section->output_section->owner != output_bfd)
2805 continue;
2806
2807 /* Get the relocs. */
2808 internal_relocs
2809 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2810 info->keep_memory);
2811 if (internal_relocs == NULL)
2812 goto error_ret_free_local;
2813
2814 /* Now examine each relocation. */
2815 irela = internal_relocs;
2816 irelaend = irela + section->reloc_count;
2817 for (; irela < irelaend; irela++)
2818 {
2819 unsigned int r_type, r_indx;
2820 enum elf32_hppa_stub_type stub_type;
2821 struct elf32_hppa_stub_hash_entry *hsh;
2822 asection *sym_sec;
2823 bfd_vma sym_value;
2824 bfd_vma destination;
2825 struct elf32_hppa_link_hash_entry *hh;
2826 char *stub_name;
2827 const asection *id_sec;
2828
2829 r_type = ELF32_R_TYPE (irela->r_info);
2830 r_indx = ELF32_R_SYM (irela->r_info);
2831
2832 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2833 {
2834 bfd_set_error (bfd_error_bad_value);
2835 error_ret_free_internal:
2836 if (elf_section_data (section)->relocs == NULL)
2837 free (internal_relocs);
2838 goto error_ret_free_local;
2839 }
2840
2841 /* Only look for stubs on call instructions. */
2842 if (r_type != (unsigned int) R_PARISC_PCREL12F
2843 && r_type != (unsigned int) R_PARISC_PCREL17F
2844 && r_type != (unsigned int) R_PARISC_PCREL22F)
2845 continue;
2846
2847 /* Now determine the call target, its name, value,
2848 section. */
2849 sym_sec = NULL;
2850 sym_value = 0;
2851 destination = -1;
2852 hh = NULL;
2853 if (r_indx < symtab_hdr->sh_info)
2854 {
2855 /* It's a local symbol. */
2856 Elf_Internal_Sym *sym;
2857 Elf_Internal_Shdr *hdr;
2858 unsigned int shndx;
2859
2860 sym = local_syms + r_indx;
2861 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2862 sym_value = sym->st_value;
2863 shndx = sym->st_shndx;
2864 if (shndx < elf_numsections (input_bfd))
2865 {
2866 hdr = elf_elfsections (input_bfd)[shndx];
2867 sym_sec = hdr->bfd_section;
2868 destination = (sym_value + irela->r_addend
2869 + sym_sec->output_offset
2870 + sym_sec->output_section->vma);
2871 }
2872 }
2873 else
2874 {
2875 /* It's an external symbol. */
2876 int e_indx;
2877
2878 e_indx = r_indx - symtab_hdr->sh_info;
2879 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2880
2881 while (hh->eh.root.type == bfd_link_hash_indirect
2882 || hh->eh.root.type == bfd_link_hash_warning)
2883 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2884
2885 if (hh->eh.root.type == bfd_link_hash_defined
2886 || hh->eh.root.type == bfd_link_hash_defweak)
2887 {
2888 sym_sec = hh->eh.root.u.def.section;
2889 sym_value = hh->eh.root.u.def.value;
2890 if (sym_sec->output_section != NULL)
2891 destination = (sym_value + irela->r_addend
2892 + sym_sec->output_offset
2893 + sym_sec->output_section->vma);
2894 }
2895 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2896 {
2897 if (! bfd_link_pic (info))
2898 continue;
2899 }
2900 else if (hh->eh.root.type == bfd_link_hash_undefined)
2901 {
2902 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2903 && (ELF_ST_VISIBILITY (hh->eh.other)
2904 == STV_DEFAULT)
2905 && hh->eh.type != STT_PARISC_MILLI))
2906 continue;
2907 }
2908 else
2909 {
2910 bfd_set_error (bfd_error_bad_value);
2911 goto error_ret_free_internal;
2912 }
2913 }
2914
2915 /* Determine what (if any) linker stub is needed. */
2916 stub_type = hppa_type_of_stub (section, irela, hh,
2917 destination, info);
2918 if (stub_type == hppa_stub_none)
2919 continue;
2920
2921 /* Support for grouping stub sections. */
2922 id_sec = htab->stub_group[section->id].link_sec;
2923
2924 /* Get the name of this stub. */
2925 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2926 if (!stub_name)
2927 goto error_ret_free_internal;
2928
2929 hsh = hppa_stub_hash_lookup (&htab->bstab,
2930 stub_name,
2931 FALSE, FALSE);
2932 if (hsh != NULL)
2933 {
2934 /* The proper stub has already been created. */
2935 free (stub_name);
2936 continue;
2937 }
2938
2939 hsh = hppa_add_stub (stub_name, section, htab);
2940 if (hsh == NULL)
2941 {
2942 free (stub_name);
2943 goto error_ret_free_internal;
2944 }
2945
2946 hsh->target_value = sym_value;
2947 hsh->target_section = sym_sec;
2948 hsh->stub_type = stub_type;
2949 if (bfd_link_pic (info))
2950 {
2951 if (stub_type == hppa_stub_import)
2952 hsh->stub_type = hppa_stub_import_shared;
2953 else if (stub_type == hppa_stub_long_branch)
2954 hsh->stub_type = hppa_stub_long_branch_shared;
2955 }
2956 hsh->hh = hh;
2957 stub_changed = TRUE;
2958 }
2959
2960 /* We're done with the internal relocs, free them. */
2961 if (elf_section_data (section)->relocs == NULL)
2962 free (internal_relocs);
2963 }
2964 }
2965
2966 if (!stub_changed)
2967 break;
2968
2969 /* OK, we've added some stubs. Find out the new size of the
2970 stub sections. */
2971 for (stub_sec = htab->stub_bfd->sections;
2972 stub_sec != NULL;
2973 stub_sec = stub_sec->next)
2974 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2975 stub_sec->size = 0;
2976
2977 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2978
2979 /* Ask the linker to do its stuff. */
2980 (*htab->layout_sections_again) ();
2981 stub_changed = FALSE;
2982 }
2983
2984 free (htab->all_local_syms);
2985 return TRUE;
2986
2987 error_ret_free_local:
2988 free (htab->all_local_syms);
2989 return FALSE;
2990 }
2991
2992 /* For a final link, this function is called after we have sized the
2993 stubs to provide a value for __gp. */
2994
2995 bfd_boolean
2996 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2997 {
2998 struct bfd_link_hash_entry *h;
2999 asection *sec = NULL;
3000 bfd_vma gp_val = 0;
3001
3002 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3003
3004 if (h != NULL
3005 && (h->type == bfd_link_hash_defined
3006 || h->type == bfd_link_hash_defweak))
3007 {
3008 gp_val = h->u.def.value;
3009 sec = h->u.def.section;
3010 }
3011 else
3012 {
3013 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3014 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3015
3016 /* Choose to point our LTP at, in this order, one of .plt, .got,
3017 or .data, if these sections exist. In the case of choosing
3018 .plt try to make the LTP ideal for addressing anywhere in the
3019 .plt or .got with a 14 bit signed offset. Typically, the end
3020 of the .plt is the start of the .got, so choose .plt + 0x2000
3021 if either the .plt or .got is larger than 0x2000. If both
3022 the .plt and .got are smaller than 0x2000, choose the end of
3023 the .plt section. */
3024 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3025 ? NULL : splt;
3026 if (sec != NULL)
3027 {
3028 gp_val = sec->size;
3029 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3030 {
3031 gp_val = 0x2000;
3032 }
3033 }
3034 else
3035 {
3036 sec = sgot;
3037 if (sec != NULL)
3038 {
3039 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3040 {
3041 /* We know we don't have a .plt. If .got is large,
3042 offset our LTP. */
3043 if (sec->size > 0x2000)
3044 gp_val = 0x2000;
3045 }
3046 }
3047 else
3048 {
3049 /* No .plt or .got. Who cares what the LTP is? */
3050 sec = bfd_get_section_by_name (abfd, ".data");
3051 }
3052 }
3053
3054 if (h != NULL)
3055 {
3056 h->type = bfd_link_hash_defined;
3057 h->u.def.value = gp_val;
3058 if (sec != NULL)
3059 h->u.def.section = sec;
3060 else
3061 h->u.def.section = bfd_abs_section_ptr;
3062 }
3063 }
3064
3065 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3066 {
3067 if (sec != NULL && sec->output_section != NULL)
3068 gp_val += sec->output_section->vma + sec->output_offset;
3069
3070 elf_gp (abfd) = gp_val;
3071 }
3072 return TRUE;
3073 }
3074
3075 /* Build all the stubs associated with the current output file. The
3076 stubs are kept in a hash table attached to the main linker hash
3077 table. We also set up the .plt entries for statically linked PIC
3078 functions here. This function is called via hppaelf_finish in the
3079 linker. */
3080
3081 bfd_boolean
3082 elf32_hppa_build_stubs (struct bfd_link_info *info)
3083 {
3084 asection *stub_sec;
3085 struct bfd_hash_table *table;
3086 struct elf32_hppa_link_hash_table *htab;
3087
3088 htab = hppa_link_hash_table (info);
3089 if (htab == NULL)
3090 return FALSE;
3091
3092 for (stub_sec = htab->stub_bfd->sections;
3093 stub_sec != NULL;
3094 stub_sec = stub_sec->next)
3095 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3096 && stub_sec->size != 0)
3097 {
3098 /* Allocate memory to hold the linker stubs. */
3099 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3100 if (stub_sec->contents == NULL)
3101 return FALSE;
3102 stub_sec->size = 0;
3103 }
3104
3105 /* Build the stubs as directed by the stub hash table. */
3106 table = &htab->bstab;
3107 bfd_hash_traverse (table, hppa_build_one_stub, info);
3108
3109 return TRUE;
3110 }
3111
3112 /* Return the base vma address which should be subtracted from the real
3113 address when resolving a dtpoff relocation.
3114 This is PT_TLS segment p_vaddr. */
3115
3116 static bfd_vma
3117 dtpoff_base (struct bfd_link_info *info)
3118 {
3119 /* If tls_sec is NULL, we should have signalled an error already. */
3120 if (elf_hash_table (info)->tls_sec == NULL)
3121 return 0;
3122 return elf_hash_table (info)->tls_sec->vma;
3123 }
3124
3125 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3126
3127 static bfd_vma
3128 tpoff (struct bfd_link_info *info, bfd_vma address)
3129 {
3130 struct elf_link_hash_table *htab = elf_hash_table (info);
3131
3132 /* If tls_sec is NULL, we should have signalled an error already. */
3133 if (htab->tls_sec == NULL)
3134 return 0;
3135 /* hppa TLS ABI is variant I and static TLS block start just after
3136 tcbhead structure which has 2 pointer fields. */
3137 return (address - htab->tls_sec->vma
3138 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3139 }
3140
3141 /* Perform a final link. */
3142
3143 static bfd_boolean
3144 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3145 {
3146 struct stat buf;
3147
3148 /* Invoke the regular ELF linker to do all the work. */
3149 if (!bfd_elf_final_link (abfd, info))
3150 return FALSE;
3151
3152 /* If we're producing a final executable, sort the contents of the
3153 unwind section. */
3154 if (bfd_link_relocatable (info))
3155 return TRUE;
3156
3157 /* Do not attempt to sort non-regular files. This is here
3158 especially for configure scripts and kernel builds which run
3159 tests with "ld [...] -o /dev/null". */
3160 if (stat (abfd->filename, &buf) != 0
3161 || !S_ISREG(buf.st_mode))
3162 return TRUE;
3163
3164 return elf_hppa_sort_unwind (abfd);
3165 }
3166
3167 /* Record the lowest address for the data and text segments. */
3168
3169 static void
3170 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3171 {
3172 struct elf32_hppa_link_hash_table *htab;
3173
3174 htab = (struct elf32_hppa_link_hash_table*) data;
3175 if (htab == NULL)
3176 return;
3177
3178 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3179 {
3180 bfd_vma value;
3181 Elf_Internal_Phdr *p;
3182
3183 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3184 BFD_ASSERT (p != NULL);
3185 value = p->p_vaddr;
3186
3187 if ((section->flags & SEC_READONLY) != 0)
3188 {
3189 if (value < htab->text_segment_base)
3190 htab->text_segment_base = value;
3191 }
3192 else
3193 {
3194 if (value < htab->data_segment_base)
3195 htab->data_segment_base = value;
3196 }
3197 }
3198 }
3199
3200 /* Perform a relocation as part of a final link. */
3201
3202 static bfd_reloc_status_type
3203 final_link_relocate (asection *input_section,
3204 bfd_byte *contents,
3205 const Elf_Internal_Rela *rela,
3206 bfd_vma value,
3207 struct elf32_hppa_link_hash_table *htab,
3208 asection *sym_sec,
3209 struct elf32_hppa_link_hash_entry *hh,
3210 struct bfd_link_info *info)
3211 {
3212 int insn;
3213 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3214 unsigned int orig_r_type = r_type;
3215 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3216 int r_format = howto->bitsize;
3217 enum hppa_reloc_field_selector_type_alt r_field;
3218 bfd *input_bfd = input_section->owner;
3219 bfd_vma offset = rela->r_offset;
3220 bfd_vma max_branch_offset = 0;
3221 bfd_byte *hit_data = contents + offset;
3222 bfd_signed_vma addend = rela->r_addend;
3223 bfd_vma location;
3224 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3225 int val;
3226
3227 if (r_type == R_PARISC_NONE)
3228 return bfd_reloc_ok;
3229
3230 insn = bfd_get_32 (input_bfd, hit_data);
3231
3232 /* Find out where we are and where we're going. */
3233 location = (offset +
3234 input_section->output_offset +
3235 input_section->output_section->vma);
3236
3237 /* If we are not building a shared library, convert DLTIND relocs to
3238 DPREL relocs. */
3239 if (!bfd_link_pic (info))
3240 {
3241 switch (r_type)
3242 {
3243 case R_PARISC_DLTIND21L:
3244 case R_PARISC_TLS_GD21L:
3245 case R_PARISC_TLS_LDM21L:
3246 case R_PARISC_TLS_IE21L:
3247 r_type = R_PARISC_DPREL21L;
3248 break;
3249
3250 case R_PARISC_DLTIND14R:
3251 case R_PARISC_TLS_GD14R:
3252 case R_PARISC_TLS_LDM14R:
3253 case R_PARISC_TLS_IE14R:
3254 r_type = R_PARISC_DPREL14R;
3255 break;
3256
3257 case R_PARISC_DLTIND14F:
3258 r_type = R_PARISC_DPREL14F;
3259 break;
3260 }
3261 }
3262
3263 switch (r_type)
3264 {
3265 case R_PARISC_PCREL12F:
3266 case R_PARISC_PCREL17F:
3267 case R_PARISC_PCREL22F:
3268 /* If this call should go via the plt, find the import stub in
3269 the stub hash. */
3270 if ((input_section->flags & SEC_ALLOC) != 0
3271 && (sym_sec == NULL
3272 || sym_sec->output_section == NULL
3273 || (hh != NULL
3274 && hh->eh.plt.offset != (bfd_vma) -1
3275 && hh->eh.dynindx != -1
3276 && !hh->plabel
3277 && (bfd_link_pic (info)
3278 || !hh->eh.def_regular
3279 || hh->eh.root.type == bfd_link_hash_defweak))))
3280 {
3281 hsh = hppa_get_stub_entry (input_section, sym_sec,
3282 hh, rela, htab);
3283 if (hsh != NULL)
3284 {
3285 value = (hsh->stub_offset
3286 + hsh->stub_sec->output_offset
3287 + hsh->stub_sec->output_section->vma);
3288 addend = 0;
3289 }
3290 else if (sym_sec == NULL && hh != NULL
3291 && hh->eh.root.type == bfd_link_hash_undefweak)
3292 {
3293 /* It's OK if undefined weak. Calls to undefined weak
3294 symbols behave as if the "called" function
3295 immediately returns. We can thus call to a weak
3296 function without first checking whether the function
3297 is defined. */
3298 value = location;
3299 addend = 8;
3300 }
3301 else
3302 return bfd_reloc_undefined;
3303 }
3304 /* Fall thru. */
3305
3306 case R_PARISC_PCREL21L:
3307 case R_PARISC_PCREL17C:
3308 case R_PARISC_PCREL17R:
3309 case R_PARISC_PCREL14R:
3310 case R_PARISC_PCREL14F:
3311 case R_PARISC_PCREL32:
3312 /* Make it a pc relative offset. */
3313 value -= location;
3314 addend -= 8;
3315 break;
3316
3317 case R_PARISC_DPREL21L:
3318 case R_PARISC_DPREL14R:
3319 case R_PARISC_DPREL14F:
3320 /* Convert instructions that use the linkage table pointer (r19) to
3321 instructions that use the global data pointer (dp). This is the
3322 most efficient way of using PIC code in an incomplete executable,
3323 but the user must follow the standard runtime conventions for
3324 accessing data for this to work. */
3325 if (orig_r_type != r_type)
3326 {
3327 if (r_type == R_PARISC_DPREL21L)
3328 {
3329 /* GCC sometimes uses a register other than r19 for the
3330 operation, so we must convert any addil instruction
3331 that uses this relocation. */
3332 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3333 insn = ADDIL_DP;
3334 else
3335 /* We must have a ldil instruction. It's too hard to find
3336 and convert the associated add instruction, so issue an
3337 error. */
3338 _bfd_error_handler
3339 /* xgettext:c-format */
3340 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3341 "is not supported in a non-shared link"),
3342 input_bfd,
3343 input_section,
3344 (uint64_t) offset,
3345 howto->name,
3346 insn);
3347 }
3348 else if (r_type == R_PARISC_DPREL14F)
3349 {
3350 /* This must be a format 1 load/store. Change the base
3351 register to dp. */
3352 insn = (insn & 0xfc1ffff) | (27 << 21);
3353 }
3354 }
3355
3356 /* For all the DP relative relocations, we need to examine the symbol's
3357 section. If it has no section or if it's a code section, then
3358 "data pointer relative" makes no sense. In that case we don't
3359 adjust the "value", and for 21 bit addil instructions, we change the
3360 source addend register from %dp to %r0. This situation commonly
3361 arises for undefined weak symbols and when a variable's "constness"
3362 is declared differently from the way the variable is defined. For
3363 instance: "extern int foo" with foo defined as "const int foo". */
3364 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3365 {
3366 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3367 == (((int) OP_ADDIL << 26) | (27 << 21)))
3368 {
3369 insn &= ~ (0x1f << 21);
3370 }
3371 /* Now try to make things easy for the dynamic linker. */
3372
3373 break;
3374 }
3375 /* Fall thru. */
3376
3377 case R_PARISC_DLTIND21L:
3378 case R_PARISC_DLTIND14R:
3379 case R_PARISC_DLTIND14F:
3380 case R_PARISC_TLS_GD21L:
3381 case R_PARISC_TLS_LDM21L:
3382 case R_PARISC_TLS_IE21L:
3383 case R_PARISC_TLS_GD14R:
3384 case R_PARISC_TLS_LDM14R:
3385 case R_PARISC_TLS_IE14R:
3386 value -= elf_gp (input_section->output_section->owner);
3387 break;
3388
3389 case R_PARISC_SEGREL32:
3390 if ((sym_sec->flags & SEC_CODE) != 0)
3391 value -= htab->text_segment_base;
3392 else
3393 value -= htab->data_segment_base;
3394 break;
3395
3396 default:
3397 break;
3398 }
3399
3400 switch (r_type)
3401 {
3402 case R_PARISC_DIR32:
3403 case R_PARISC_DIR14F:
3404 case R_PARISC_DIR17F:
3405 case R_PARISC_PCREL17C:
3406 case R_PARISC_PCREL14F:
3407 case R_PARISC_PCREL32:
3408 case R_PARISC_DPREL14F:
3409 case R_PARISC_PLABEL32:
3410 case R_PARISC_DLTIND14F:
3411 case R_PARISC_SEGBASE:
3412 case R_PARISC_SEGREL32:
3413 case R_PARISC_TLS_DTPMOD32:
3414 case R_PARISC_TLS_DTPOFF32:
3415 case R_PARISC_TLS_TPREL32:
3416 r_field = e_fsel;
3417 break;
3418
3419 case R_PARISC_DLTIND21L:
3420 case R_PARISC_PCREL21L:
3421 case R_PARISC_PLABEL21L:
3422 r_field = e_lsel;
3423 break;
3424
3425 case R_PARISC_DIR21L:
3426 case R_PARISC_DPREL21L:
3427 case R_PARISC_TLS_GD21L:
3428 case R_PARISC_TLS_LDM21L:
3429 case R_PARISC_TLS_LDO21L:
3430 case R_PARISC_TLS_IE21L:
3431 case R_PARISC_TLS_LE21L:
3432 r_field = e_lrsel;
3433 break;
3434
3435 case R_PARISC_PCREL17R:
3436 case R_PARISC_PCREL14R:
3437 case R_PARISC_PLABEL14R:
3438 case R_PARISC_DLTIND14R:
3439 r_field = e_rsel;
3440 break;
3441
3442 case R_PARISC_DIR17R:
3443 case R_PARISC_DIR14R:
3444 case R_PARISC_DPREL14R:
3445 case R_PARISC_TLS_GD14R:
3446 case R_PARISC_TLS_LDM14R:
3447 case R_PARISC_TLS_LDO14R:
3448 case R_PARISC_TLS_IE14R:
3449 case R_PARISC_TLS_LE14R:
3450 r_field = e_rrsel;
3451 break;
3452
3453 case R_PARISC_PCREL12F:
3454 case R_PARISC_PCREL17F:
3455 case R_PARISC_PCREL22F:
3456 r_field = e_fsel;
3457
3458 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3459 {
3460 max_branch_offset = (1 << (17-1)) << 2;
3461 }
3462 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3463 {
3464 max_branch_offset = (1 << (12-1)) << 2;
3465 }
3466 else
3467 {
3468 max_branch_offset = (1 << (22-1)) << 2;
3469 }
3470
3471 /* sym_sec is NULL on undefined weak syms or when shared on
3472 undefined syms. We've already checked for a stub for the
3473 shared undefined case. */
3474 if (sym_sec == NULL)
3475 break;
3476
3477 /* If the branch is out of reach, then redirect the
3478 call to the local stub for this function. */
3479 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3480 {
3481 hsh = hppa_get_stub_entry (input_section, sym_sec,
3482 hh, rela, htab);
3483 if (hsh == NULL)
3484 return bfd_reloc_undefined;
3485
3486 /* Munge up the value and addend so that we call the stub
3487 rather than the procedure directly. */
3488 value = (hsh->stub_offset
3489 + hsh->stub_sec->output_offset
3490 + hsh->stub_sec->output_section->vma
3491 - location);
3492 addend = -8;
3493 }
3494 break;
3495
3496 /* Something we don't know how to handle. */
3497 default:
3498 return bfd_reloc_notsupported;
3499 }
3500
3501 /* Make sure we can reach the stub. */
3502 if (max_branch_offset != 0
3503 && value + addend + max_branch_offset >= 2*max_branch_offset)
3504 {
3505 _bfd_error_handler
3506 /* xgettext:c-format */
3507 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3508 "recompile with -ffunction-sections"),
3509 input_bfd,
3510 input_section,
3511 (uint64_t) offset,
3512 hsh->bh_root.string);
3513 bfd_set_error (bfd_error_bad_value);
3514 return bfd_reloc_notsupported;
3515 }
3516
3517 val = hppa_field_adjust (value, addend, r_field);
3518
3519 switch (r_type)
3520 {
3521 case R_PARISC_PCREL12F:
3522 case R_PARISC_PCREL17C:
3523 case R_PARISC_PCREL17F:
3524 case R_PARISC_PCREL17R:
3525 case R_PARISC_PCREL22F:
3526 case R_PARISC_DIR17F:
3527 case R_PARISC_DIR17R:
3528 /* This is a branch. Divide the offset by four.
3529 Note that we need to decide whether it's a branch or
3530 otherwise by inspecting the reloc. Inspecting insn won't
3531 work as insn might be from a .word directive. */
3532 val >>= 2;
3533 break;
3534
3535 default:
3536 break;
3537 }
3538
3539 insn = hppa_rebuild_insn (insn, val, r_format);
3540
3541 /* Update the instruction word. */
3542 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3543 return bfd_reloc_ok;
3544 }
3545
3546 /* Relocate an HPPA ELF section. */
3547
3548 static bfd_boolean
3549 elf32_hppa_relocate_section (bfd *output_bfd,
3550 struct bfd_link_info *info,
3551 bfd *input_bfd,
3552 asection *input_section,
3553 bfd_byte *contents,
3554 Elf_Internal_Rela *relocs,
3555 Elf_Internal_Sym *local_syms,
3556 asection **local_sections)
3557 {
3558 bfd_vma *local_got_offsets;
3559 struct elf32_hppa_link_hash_table *htab;
3560 Elf_Internal_Shdr *symtab_hdr;
3561 Elf_Internal_Rela *rela;
3562 Elf_Internal_Rela *relend;
3563
3564 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3565
3566 htab = hppa_link_hash_table (info);
3567 if (htab == NULL)
3568 return FALSE;
3569
3570 local_got_offsets = elf_local_got_offsets (input_bfd);
3571
3572 rela = relocs;
3573 relend = relocs + input_section->reloc_count;
3574 for (; rela < relend; rela++)
3575 {
3576 unsigned int r_type;
3577 reloc_howto_type *howto;
3578 unsigned int r_symndx;
3579 struct elf32_hppa_link_hash_entry *hh;
3580 Elf_Internal_Sym *sym;
3581 asection *sym_sec;
3582 bfd_vma relocation;
3583 bfd_reloc_status_type rstatus;
3584 const char *sym_name;
3585 bfd_boolean plabel;
3586 bfd_boolean warned_undef;
3587
3588 r_type = ELF32_R_TYPE (rela->r_info);
3589 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3590 {
3591 bfd_set_error (bfd_error_bad_value);
3592 return FALSE;
3593 }
3594 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3595 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3596 continue;
3597
3598 r_symndx = ELF32_R_SYM (rela->r_info);
3599 hh = NULL;
3600 sym = NULL;
3601 sym_sec = NULL;
3602 warned_undef = FALSE;
3603 if (r_symndx < symtab_hdr->sh_info)
3604 {
3605 /* This is a local symbol, h defaults to NULL. */
3606 sym = local_syms + r_symndx;
3607 sym_sec = local_sections[r_symndx];
3608 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3609 }
3610 else
3611 {
3612 struct elf_link_hash_entry *eh;
3613 bfd_boolean unresolved_reloc, ignored;
3614 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3615
3616 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3617 r_symndx, symtab_hdr, sym_hashes,
3618 eh, sym_sec, relocation,
3619 unresolved_reloc, warned_undef,
3620 ignored);
3621
3622 if (!bfd_link_relocatable (info)
3623 && relocation == 0
3624 && eh->root.type != bfd_link_hash_defined
3625 && eh->root.type != bfd_link_hash_defweak
3626 && eh->root.type != bfd_link_hash_undefweak)
3627 {
3628 if (info->unresolved_syms_in_objects == RM_IGNORE
3629 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3630 && eh->type == STT_PARISC_MILLI)
3631 {
3632 (*info->callbacks->undefined_symbol)
3633 (info, eh_name (eh), input_bfd,
3634 input_section, rela->r_offset, FALSE);
3635 warned_undef = TRUE;
3636 }
3637 }
3638 hh = hppa_elf_hash_entry (eh);
3639 }
3640
3641 if (sym_sec != NULL && discarded_section (sym_sec))
3642 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3643 rela, 1, relend,
3644 elf_hppa_howto_table + r_type, 0,
3645 contents);
3646
3647 if (bfd_link_relocatable (info))
3648 continue;
3649
3650 /* Do any required modifications to the relocation value, and
3651 determine what types of dynamic info we need to output, if
3652 any. */
3653 plabel = 0;
3654 switch (r_type)
3655 {
3656 case R_PARISC_DLTIND14F:
3657 case R_PARISC_DLTIND14R:
3658 case R_PARISC_DLTIND21L:
3659 {
3660 bfd_vma off;
3661 bfd_boolean do_got = FALSE;
3662 bfd_boolean reloc = bfd_link_pic (info);
3663
3664 /* Relocation is to the entry for this symbol in the
3665 global offset table. */
3666 if (hh != NULL)
3667 {
3668 bfd_boolean dyn;
3669
3670 off = hh->eh.got.offset;
3671 dyn = htab->etab.dynamic_sections_created;
3672 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3673 && (reloc
3674 || (hh->eh.dynindx != -1
3675 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3676 if (!reloc
3677 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3678 bfd_link_pic (info),
3679 &hh->eh))
3680 {
3681 /* If we aren't going to call finish_dynamic_symbol,
3682 then we need to handle initialisation of the .got
3683 entry and create needed relocs here. Since the
3684 offset must always be a multiple of 4, we use the
3685 least significant bit to record whether we have
3686 initialised it already. */
3687 if ((off & 1) != 0)
3688 off &= ~1;
3689 else
3690 {
3691 hh->eh.got.offset |= 1;
3692 do_got = TRUE;
3693 }
3694 }
3695 }
3696 else
3697 {
3698 /* Local symbol case. */
3699 if (local_got_offsets == NULL)
3700 abort ();
3701
3702 off = local_got_offsets[r_symndx];
3703
3704 /* The offset must always be a multiple of 4. We use
3705 the least significant bit to record whether we have
3706 already generated the necessary reloc. */
3707 if ((off & 1) != 0)
3708 off &= ~1;
3709 else
3710 {
3711 local_got_offsets[r_symndx] |= 1;
3712 do_got = TRUE;
3713 }
3714 }
3715
3716 if (do_got)
3717 {
3718 if (reloc)
3719 {
3720 /* Output a dynamic relocation for this GOT entry.
3721 In this case it is relative to the base of the
3722 object because the symbol index is zero. */
3723 Elf_Internal_Rela outrel;
3724 bfd_byte *loc;
3725 asection *sec = htab->etab.srelgot;
3726
3727 outrel.r_offset = (off
3728 + htab->etab.sgot->output_offset
3729 + htab->etab.sgot->output_section->vma);
3730 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3731 outrel.r_addend = relocation;
3732 loc = sec->contents;
3733 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3734 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3735 }
3736 else
3737 bfd_put_32 (output_bfd, relocation,
3738 htab->etab.sgot->contents + off);
3739 }
3740
3741 if (off >= (bfd_vma) -2)
3742 abort ();
3743
3744 /* Add the base of the GOT to the relocation value. */
3745 relocation = (off
3746 + htab->etab.sgot->output_offset
3747 + htab->etab.sgot->output_section->vma);
3748 }
3749 break;
3750
3751 case R_PARISC_SEGREL32:
3752 /* If this is the first SEGREL relocation, then initialize
3753 the segment base values. */
3754 if (htab->text_segment_base == (bfd_vma) -1)
3755 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3756 break;
3757
3758 case R_PARISC_PLABEL14R:
3759 case R_PARISC_PLABEL21L:
3760 case R_PARISC_PLABEL32:
3761 if (htab->etab.dynamic_sections_created)
3762 {
3763 bfd_vma off;
3764 bfd_boolean do_plt = 0;
3765 /* If we have a global symbol with a PLT slot, then
3766 redirect this relocation to it. */
3767 if (hh != NULL)
3768 {
3769 off = hh->eh.plt.offset;
3770 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3771 bfd_link_pic (info),
3772 &hh->eh))
3773 {
3774 /* In a non-shared link, adjust_dynamic_symbol
3775 isn't called for symbols forced local. We
3776 need to write out the plt entry here. */
3777 if ((off & 1) != 0)
3778 off &= ~1;
3779 else
3780 {
3781 hh->eh.plt.offset |= 1;
3782 do_plt = 1;
3783 }
3784 }
3785 }
3786 else
3787 {
3788 bfd_vma *local_plt_offsets;
3789
3790 if (local_got_offsets == NULL)
3791 abort ();
3792
3793 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3794 off = local_plt_offsets[r_symndx];
3795
3796 /* As for the local .got entry case, we use the last
3797 bit to record whether we've already initialised
3798 this local .plt entry. */
3799 if ((off & 1) != 0)
3800 off &= ~1;
3801 else
3802 {
3803 local_plt_offsets[r_symndx] |= 1;
3804 do_plt = 1;
3805 }
3806 }
3807
3808 if (do_plt)
3809 {
3810 if (bfd_link_pic (info))
3811 {
3812 /* Output a dynamic IPLT relocation for this
3813 PLT entry. */
3814 Elf_Internal_Rela outrel;
3815 bfd_byte *loc;
3816 asection *s = htab->etab.srelplt;
3817
3818 outrel.r_offset = (off
3819 + htab->etab.splt->output_offset
3820 + htab->etab.splt->output_section->vma);
3821 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3822 outrel.r_addend = relocation;
3823 loc = s->contents;
3824 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3825 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3826 }
3827 else
3828 {
3829 bfd_put_32 (output_bfd,
3830 relocation,
3831 htab->etab.splt->contents + off);
3832 bfd_put_32 (output_bfd,
3833 elf_gp (htab->etab.splt->output_section->owner),
3834 htab->etab.splt->contents + off + 4);
3835 }
3836 }
3837
3838 if (off >= (bfd_vma) -2)
3839 abort ();
3840
3841 /* PLABELs contain function pointers. Relocation is to
3842 the entry for the function in the .plt. The magic +2
3843 offset signals to $$dyncall that the function pointer
3844 is in the .plt and thus has a gp pointer too.
3845 Exception: Undefined PLABELs should have a value of
3846 zero. */
3847 if (hh == NULL
3848 || (hh->eh.root.type != bfd_link_hash_undefweak
3849 && hh->eh.root.type != bfd_link_hash_undefined))
3850 {
3851 relocation = (off
3852 + htab->etab.splt->output_offset
3853 + htab->etab.splt->output_section->vma
3854 + 2);
3855 }
3856 plabel = 1;
3857 }
3858 /* Fall through. */
3859
3860 case R_PARISC_DIR17F:
3861 case R_PARISC_DIR17R:
3862 case R_PARISC_DIR14F:
3863 case R_PARISC_DIR14R:
3864 case R_PARISC_DIR21L:
3865 case R_PARISC_DPREL14F:
3866 case R_PARISC_DPREL14R:
3867 case R_PARISC_DPREL21L:
3868 case R_PARISC_DIR32:
3869 if ((input_section->flags & SEC_ALLOC) == 0)
3870 break;
3871
3872 if (bfd_link_pic (info)
3873 ? ((hh == NULL
3874 || hh->dyn_relocs != NULL)
3875 && ((hh != NULL && pc_dynrelocs (hh))
3876 || IS_ABSOLUTE_RELOC (r_type)))
3877 : (hh != NULL
3878 && hh->dyn_relocs != NULL))
3879 {
3880 Elf_Internal_Rela outrel;
3881 bfd_boolean skip;
3882 asection *sreloc;
3883 bfd_byte *loc;
3884
3885 /* When generating a shared object, these relocations
3886 are copied into the output file to be resolved at run
3887 time. */
3888
3889 outrel.r_addend = rela->r_addend;
3890 outrel.r_offset =
3891 _bfd_elf_section_offset (output_bfd, info, input_section,
3892 rela->r_offset);
3893 skip = (outrel.r_offset == (bfd_vma) -1
3894 || outrel.r_offset == (bfd_vma) -2);
3895 outrel.r_offset += (input_section->output_offset
3896 + input_section->output_section->vma);
3897
3898 if (skip)
3899 {
3900 memset (&outrel, 0, sizeof (outrel));
3901 }
3902 else if (hh != NULL
3903 && hh->eh.dynindx != -1
3904 && (plabel
3905 || !IS_ABSOLUTE_RELOC (r_type)
3906 || !bfd_link_pic (info)
3907 || !SYMBOLIC_BIND (info, &hh->eh)
3908 || !hh->eh.def_regular))
3909 {
3910 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3911 }
3912 else /* It's a local symbol, or one marked to become local. */
3913 {
3914 int indx = 0;
3915
3916 /* Add the absolute offset of the symbol. */
3917 outrel.r_addend += relocation;
3918
3919 /* Global plabels need to be processed by the
3920 dynamic linker so that functions have at most one
3921 fptr. For this reason, we need to differentiate
3922 between global and local plabels, which we do by
3923 providing the function symbol for a global plabel
3924 reloc, and no symbol for local plabels. */
3925 if (! plabel
3926 && sym_sec != NULL
3927 && sym_sec->output_section != NULL
3928 && ! bfd_is_abs_section (sym_sec))
3929 {
3930 asection *osec;
3931
3932 osec = sym_sec->output_section;
3933 indx = elf_section_data (osec)->dynindx;
3934 if (indx == 0)
3935 {
3936 osec = htab->etab.text_index_section;
3937 indx = elf_section_data (osec)->dynindx;
3938 }
3939 BFD_ASSERT (indx != 0);
3940
3941 /* We are turning this relocation into one
3942 against a section symbol, so subtract out the
3943 output section's address but not the offset
3944 of the input section in the output section. */
3945 outrel.r_addend -= osec->vma;
3946 }
3947
3948 outrel.r_info = ELF32_R_INFO (indx, r_type);
3949 }
3950 sreloc = elf_section_data (input_section)->sreloc;
3951 if (sreloc == NULL)
3952 abort ();
3953
3954 loc = sreloc->contents;
3955 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3956 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3957 }
3958 break;
3959
3960 case R_PARISC_TLS_LDM21L:
3961 case R_PARISC_TLS_LDM14R:
3962 {
3963 bfd_vma off;
3964
3965 off = htab->tls_ldm_got.offset;
3966 if (off & 1)
3967 off &= ~1;
3968 else
3969 {
3970 Elf_Internal_Rela outrel;
3971 bfd_byte *loc;
3972
3973 outrel.r_offset = (off
3974 + htab->etab.sgot->output_section->vma
3975 + htab->etab.sgot->output_offset);
3976 outrel.r_addend = 0;
3977 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3978 loc = htab->etab.srelgot->contents;
3979 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3980
3981 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3982 htab->tls_ldm_got.offset |= 1;
3983 }
3984
3985 /* Add the base of the GOT to the relocation value. */
3986 relocation = (off
3987 + htab->etab.sgot->output_offset
3988 + htab->etab.sgot->output_section->vma);
3989
3990 break;
3991 }
3992
3993 case R_PARISC_TLS_LDO21L:
3994 case R_PARISC_TLS_LDO14R:
3995 relocation -= dtpoff_base (info);
3996 break;
3997
3998 case R_PARISC_TLS_GD21L:
3999 case R_PARISC_TLS_GD14R:
4000 case R_PARISC_TLS_IE21L:
4001 case R_PARISC_TLS_IE14R:
4002 {
4003 bfd_vma off;
4004 int indx;
4005 char tls_type;
4006
4007 indx = 0;
4008 if (hh != NULL)
4009 {
4010 if (!htab->etab.dynamic_sections_created
4011 || hh->eh.dynindx == -1
4012 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4013 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4014 /* This is actually a static link, or it is a
4015 -Bsymbolic link and the symbol is defined
4016 locally, or the symbol was forced to be local
4017 because of a version file. */
4018 ;
4019 else
4020 indx = hh->eh.dynindx;
4021 off = hh->eh.got.offset;
4022 tls_type = hh->tls_type;
4023 }
4024 else
4025 {
4026 off = local_got_offsets[r_symndx];
4027 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4028 }
4029
4030 if (tls_type == GOT_UNKNOWN)
4031 abort ();
4032
4033 if ((off & 1) != 0)
4034 off &= ~1;
4035 else
4036 {
4037 bfd_boolean need_relocs = FALSE;
4038 Elf_Internal_Rela outrel;
4039 bfd_byte *loc = NULL;
4040 int cur_off = off;
4041
4042 /* The GOT entries have not been initialized yet. Do it
4043 now, and emit any relocations. If both an IE GOT and a
4044 GD GOT are necessary, we emit the GD first. */
4045
4046 if (indx != 0
4047 || (bfd_link_dll (info)
4048 && (hh == NULL
4049 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4050 {
4051 need_relocs = TRUE;
4052 loc = htab->etab.srelgot->contents;
4053 loc += (htab->etab.srelgot->reloc_count
4054 * sizeof (Elf32_External_Rela));
4055 }
4056
4057 if (tls_type & GOT_TLS_GD)
4058 {
4059 if (need_relocs)
4060 {
4061 outrel.r_offset
4062 = (cur_off
4063 + htab->etab.sgot->output_section->vma
4064 + htab->etab.sgot->output_offset);
4065 outrel.r_info
4066 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4067 outrel.r_addend = 0;
4068 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4069 htab->etab.srelgot->reloc_count++;
4070 loc += sizeof (Elf32_External_Rela);
4071 bfd_put_32 (output_bfd, 0,
4072 htab->etab.sgot->contents + cur_off);
4073 }
4074 else
4075 /* If we are not emitting relocations for a
4076 general dynamic reference, then we must be in a
4077 static link or an executable link with the
4078 symbol binding locally. Mark it as belonging
4079 to module 1, the executable. */
4080 bfd_put_32 (output_bfd, 1,
4081 htab->etab.sgot->contents + cur_off);
4082
4083 if (indx != 0)
4084 {
4085 outrel.r_info
4086 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4087 outrel.r_offset += 4;
4088 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4089 htab->etab.srelgot->reloc_count++;
4090 loc += sizeof (Elf32_External_Rela);
4091 bfd_put_32 (output_bfd, 0,
4092 htab->etab.sgot->contents + cur_off + 4);
4093 }
4094 else
4095 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4096 htab->etab.sgot->contents + cur_off + 4);
4097 cur_off += 8;
4098 }
4099
4100 if (tls_type & GOT_TLS_IE)
4101 {
4102 if (need_relocs
4103 && !(bfd_link_executable (info)
4104 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4105 {
4106 outrel.r_offset
4107 = (cur_off
4108 + htab->etab.sgot->output_section->vma
4109 + htab->etab.sgot->output_offset);
4110 outrel.r_info = ELF32_R_INFO (indx,
4111 R_PARISC_TLS_TPREL32);
4112 if (indx == 0)
4113 outrel.r_addend = relocation - dtpoff_base (info);
4114 else
4115 outrel.r_addend = 0;
4116 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4117 htab->etab.srelgot->reloc_count++;
4118 loc += sizeof (Elf32_External_Rela);
4119 }
4120 else
4121 bfd_put_32 (output_bfd, tpoff (info, relocation),
4122 htab->etab.sgot->contents + cur_off);
4123 cur_off += 4;
4124 }
4125
4126 if (hh != NULL)
4127 hh->eh.got.offset |= 1;
4128 else
4129 local_got_offsets[r_symndx] |= 1;
4130 }
4131
4132 if ((tls_type & GOT_NORMAL) != 0
4133 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4134 {
4135 if (hh != NULL)
4136 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4137 hh_name (hh));
4138 else
4139 {
4140 Elf_Internal_Sym *isym
4141 = bfd_sym_from_r_symndx (&htab->sym_cache,
4142 input_bfd, r_symndx);
4143 if (isym == NULL)
4144 return FALSE;
4145 sym_name
4146 = bfd_elf_string_from_elf_section (input_bfd,
4147 symtab_hdr->sh_link,
4148 isym->st_name);
4149 if (sym_name == NULL)
4150 return FALSE;
4151 if (*sym_name == '\0')
4152 sym_name = bfd_section_name (input_bfd, sym_sec);
4153 _bfd_error_handler
4154 (_("%pB:%s has both normal and TLS relocs"),
4155 input_bfd, sym_name);
4156 }
4157 bfd_set_error (bfd_error_bad_value);
4158 return FALSE;
4159 }
4160
4161 if ((tls_type & GOT_TLS_GD)
4162 && r_type != R_PARISC_TLS_GD21L
4163 && r_type != R_PARISC_TLS_GD14R)
4164 off += 2 * GOT_ENTRY_SIZE;
4165
4166 /* Add the base of the GOT to the relocation value. */
4167 relocation = (off
4168 + htab->etab.sgot->output_offset
4169 + htab->etab.sgot->output_section->vma);
4170
4171 break;
4172 }
4173
4174 case R_PARISC_TLS_LE21L:
4175 case R_PARISC_TLS_LE14R:
4176 {
4177 relocation = tpoff (info, relocation);
4178 break;
4179 }
4180 break;
4181
4182 default:
4183 break;
4184 }
4185
4186 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4187 htab, sym_sec, hh, info);
4188
4189 if (rstatus == bfd_reloc_ok)
4190 continue;
4191
4192 if (hh != NULL)
4193 sym_name = hh_name (hh);
4194 else
4195 {
4196 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4197 symtab_hdr->sh_link,
4198 sym->st_name);
4199 if (sym_name == NULL)
4200 return FALSE;
4201 if (*sym_name == '\0')
4202 sym_name = bfd_section_name (input_bfd, sym_sec);
4203 }
4204
4205 howto = elf_hppa_howto_table + r_type;
4206
4207 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4208 {
4209 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4210 {
4211 _bfd_error_handler
4212 /* xgettext:c-format */
4213 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4214 input_bfd,
4215 input_section,
4216 (uint64_t) rela->r_offset,
4217 howto->name,
4218 sym_name);
4219 bfd_set_error (bfd_error_bad_value);
4220 return FALSE;
4221 }
4222 }
4223 else
4224 (*info->callbacks->reloc_overflow)
4225 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4226 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4227 }
4228
4229 return TRUE;
4230 }
4231
4232 /* Finish up dynamic symbol handling. We set the contents of various
4233 dynamic sections here. */
4234
4235 static bfd_boolean
4236 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4237 struct bfd_link_info *info,
4238 struct elf_link_hash_entry *eh,
4239 Elf_Internal_Sym *sym)
4240 {
4241 struct elf32_hppa_link_hash_table *htab;
4242 Elf_Internal_Rela rela;
4243 bfd_byte *loc;
4244
4245 htab = hppa_link_hash_table (info);
4246 if (htab == NULL)
4247 return FALSE;
4248
4249 if (eh->plt.offset != (bfd_vma) -1)
4250 {
4251 bfd_vma value;
4252
4253 if (eh->plt.offset & 1)
4254 abort ();
4255
4256 /* This symbol has an entry in the procedure linkage table. Set
4257 it up.
4258
4259 The format of a plt entry is
4260 <funcaddr>
4261 <__gp>
4262 */
4263 value = 0;
4264 if (eh->root.type == bfd_link_hash_defined
4265 || eh->root.type == bfd_link_hash_defweak)
4266 {
4267 value = eh->root.u.def.value;
4268 if (eh->root.u.def.section->output_section != NULL)
4269 value += (eh->root.u.def.section->output_offset
4270 + eh->root.u.def.section->output_section->vma);
4271 }
4272
4273 /* Create a dynamic IPLT relocation for this entry. */
4274 rela.r_offset = (eh->plt.offset
4275 + htab->etab.splt->output_offset
4276 + htab->etab.splt->output_section->vma);
4277 if (eh->dynindx != -1)
4278 {
4279 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4280 rela.r_addend = 0;
4281 }
4282 else
4283 {
4284 /* This symbol has been marked to become local, and is
4285 used by a plabel so must be kept in the .plt. */
4286 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4287 rela.r_addend = value;
4288 }
4289
4290 loc = htab->etab.srelplt->contents;
4291 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4292 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4293
4294 if (!eh->def_regular)
4295 {
4296 /* Mark the symbol as undefined, rather than as defined in
4297 the .plt section. Leave the value alone. */
4298 sym->st_shndx = SHN_UNDEF;
4299 }
4300 }
4301
4302 if (eh->got.offset != (bfd_vma) -1
4303 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4304 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4305 {
4306 bfd_boolean is_dyn = (eh->dynindx != -1
4307 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4308
4309 if (is_dyn || bfd_link_pic (info))
4310 {
4311 /* This symbol has an entry in the global offset table. Set
4312 it up. */
4313
4314 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4315 + htab->etab.sgot->output_offset
4316 + htab->etab.sgot->output_section->vma);
4317
4318 /* If this is a -Bsymbolic link and the symbol is defined
4319 locally or was forced to be local because of a version
4320 file, we just want to emit a RELATIVE reloc. The entry
4321 in the global offset table will already have been
4322 initialized in the relocate_section function. */
4323 if (!is_dyn)
4324 {
4325 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4326 rela.r_addend = (eh->root.u.def.value
4327 + eh->root.u.def.section->output_offset
4328 + eh->root.u.def.section->output_section->vma);
4329 }
4330 else
4331 {
4332 if ((eh->got.offset & 1) != 0)
4333 abort ();
4334
4335 bfd_put_32 (output_bfd, 0,
4336 htab->etab.sgot->contents + (eh->got.offset & ~1));
4337 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4338 rela.r_addend = 0;
4339 }
4340
4341 loc = htab->etab.srelgot->contents;
4342 loc += (htab->etab.srelgot->reloc_count++
4343 * sizeof (Elf32_External_Rela));
4344 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4345 }
4346 }
4347
4348 if (eh->needs_copy)
4349 {
4350 asection *sec;
4351
4352 /* This symbol needs a copy reloc. Set it up. */
4353
4354 if (! (eh->dynindx != -1
4355 && (eh->root.type == bfd_link_hash_defined
4356 || eh->root.type == bfd_link_hash_defweak)))
4357 abort ();
4358
4359 rela.r_offset = (eh->root.u.def.value
4360 + eh->root.u.def.section->output_offset
4361 + eh->root.u.def.section->output_section->vma);
4362 rela.r_addend = 0;
4363 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4364 if (eh->root.u.def.section == htab->etab.sdynrelro)
4365 sec = htab->etab.sreldynrelro;
4366 else
4367 sec = htab->etab.srelbss;
4368 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4369 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4370 }
4371
4372 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4373 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4374 {
4375 sym->st_shndx = SHN_ABS;
4376 }
4377
4378 return TRUE;
4379 }
4380
4381 /* Used to decide how to sort relocs in an optimal manner for the
4382 dynamic linker, before writing them out. */
4383
4384 static enum elf_reloc_type_class
4385 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4386 const asection *rel_sec ATTRIBUTE_UNUSED,
4387 const Elf_Internal_Rela *rela)
4388 {
4389 /* Handle TLS relocs first; we don't want them to be marked
4390 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4391 check below. */
4392 switch ((int) ELF32_R_TYPE (rela->r_info))
4393 {
4394 case R_PARISC_TLS_DTPMOD32:
4395 case R_PARISC_TLS_DTPOFF32:
4396 case R_PARISC_TLS_TPREL32:
4397 return reloc_class_normal;
4398 }
4399
4400 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4401 return reloc_class_relative;
4402
4403 switch ((int) ELF32_R_TYPE (rela->r_info))
4404 {
4405 case R_PARISC_IPLT:
4406 return reloc_class_plt;
4407 case R_PARISC_COPY:
4408 return reloc_class_copy;
4409 default:
4410 return reloc_class_normal;
4411 }
4412 }
4413
4414 /* Finish up the dynamic sections. */
4415
4416 static bfd_boolean
4417 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4418 struct bfd_link_info *info)
4419 {
4420 bfd *dynobj;
4421 struct elf32_hppa_link_hash_table *htab;
4422 asection *sdyn;
4423 asection * sgot;
4424
4425 htab = hppa_link_hash_table (info);
4426 if (htab == NULL)
4427 return FALSE;
4428
4429 dynobj = htab->etab.dynobj;
4430
4431 sgot = htab->etab.sgot;
4432 /* A broken linker script might have discarded the dynamic sections.
4433 Catch this here so that we do not seg-fault later on. */
4434 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4435 return FALSE;
4436
4437 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4438
4439 if (htab->etab.dynamic_sections_created)
4440 {
4441 Elf32_External_Dyn *dyncon, *dynconend;
4442
4443 if (sdyn == NULL)
4444 abort ();
4445
4446 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4447 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4448 for (; dyncon < dynconend; dyncon++)
4449 {
4450 Elf_Internal_Dyn dyn;
4451 asection *s;
4452
4453 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4454
4455 switch (dyn.d_tag)
4456 {
4457 default:
4458 continue;
4459
4460 case DT_PLTGOT:
4461 /* Use PLTGOT to set the GOT register. */
4462 dyn.d_un.d_ptr = elf_gp (output_bfd);
4463 break;
4464
4465 case DT_JMPREL:
4466 s = htab->etab.srelplt;
4467 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4468 break;
4469
4470 case DT_PLTRELSZ:
4471 s = htab->etab.srelplt;
4472 dyn.d_un.d_val = s->size;
4473 break;
4474 }
4475
4476 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4477 }
4478 }
4479
4480 if (sgot != NULL && sgot->size != 0)
4481 {
4482 /* Fill in the first entry in the global offset table.
4483 We use it to point to our dynamic section, if we have one. */
4484 bfd_put_32 (output_bfd,
4485 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4486 sgot->contents);
4487
4488 /* The second entry is reserved for use by the dynamic linker. */
4489 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4490
4491 /* Set .got entry size. */
4492 elf_section_data (sgot->output_section)
4493 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4494 }
4495
4496 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4497 {
4498 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4499 plt stubs and as such the section does not hold a table of fixed-size
4500 entries. */
4501 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4502
4503 if (htab->need_plt_stub)
4504 {
4505 /* Set up the .plt stub. */
4506 memcpy (htab->etab.splt->contents
4507 + htab->etab.splt->size - sizeof (plt_stub),
4508 plt_stub, sizeof (plt_stub));
4509
4510 if ((htab->etab.splt->output_offset
4511 + htab->etab.splt->output_section->vma
4512 + htab->etab.splt->size)
4513 != (sgot->output_offset
4514 + sgot->output_section->vma))
4515 {
4516 _bfd_error_handler
4517 (_(".got section not immediately after .plt section"));
4518 return FALSE;
4519 }
4520 }
4521 }
4522
4523 return TRUE;
4524 }
4525
4526 /* Called when writing out an object file to decide the type of a
4527 symbol. */
4528 static int
4529 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4530 {
4531 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4532 return STT_PARISC_MILLI;
4533 else
4534 return type;
4535 }
4536
4537 /* Misc BFD support code. */
4538 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4539 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4540 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4541 #define elf_info_to_howto elf_hppa_info_to_howto
4542 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4543
4544 /* Stuff for the BFD linker. */
4545 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4546 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4547 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4548 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4549 #define elf_backend_check_relocs elf32_hppa_check_relocs
4550 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4551 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4552 #define elf_backend_fake_sections elf_hppa_fake_sections
4553 #define elf_backend_relocate_section elf32_hppa_relocate_section
4554 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4555 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4556 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4557 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4558 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4559 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4560 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4561 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4562 #define elf_backend_object_p elf32_hppa_object_p
4563 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4564 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4565 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4566 #define elf_backend_action_discarded elf_hppa_action_discarded
4567
4568 #define elf_backend_can_gc_sections 1
4569 #define elf_backend_can_refcount 1
4570 #define elf_backend_plt_alignment 2
4571 #define elf_backend_want_got_plt 0
4572 #define elf_backend_plt_readonly 0
4573 #define elf_backend_want_plt_sym 0
4574 #define elf_backend_got_header_size 8
4575 #define elf_backend_want_dynrelro 1
4576 #define elf_backend_rela_normal 1
4577 #define elf_backend_dtrel_excludes_plt 1
4578 #define elf_backend_no_page_alias 1
4579
4580 #define TARGET_BIG_SYM hppa_elf32_vec
4581 #define TARGET_BIG_NAME "elf32-hppa"
4582 #define ELF_ARCH bfd_arch_hppa
4583 #define ELF_TARGET_ID HPPA32_ELF_DATA
4584 #define ELF_MACHINE_CODE EM_PARISC
4585 #define ELF_MAXPAGESIZE 0x1000
4586 #define ELF_OSABI ELFOSABI_HPUX
4587 #define elf32_bed elf32_hppa_hpux_bed
4588
4589 #include "elf32-target.h"
4590
4591 #undef TARGET_BIG_SYM
4592 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4593 #undef TARGET_BIG_NAME
4594 #define TARGET_BIG_NAME "elf32-hppa-linux"
4595 #undef ELF_OSABI
4596 #define ELF_OSABI ELFOSABI_GNU
4597 #undef elf32_bed
4598 #define elf32_bed elf32_hppa_linux_bed
4599
4600 #include "elf32-target.h"
4601
4602 #undef TARGET_BIG_SYM
4603 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4604 #undef TARGET_BIG_NAME
4605 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4606 #undef ELF_OSABI
4607 #define ELF_OSABI ELFOSABI_NETBSD
4608 #undef elf32_bed
4609 #define elf32_bed elf32_hppa_netbsd_bed
4610
4611 #include "elf32-target.h"