]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-i386.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
49 struct elf_link_hash_entry *));
50 static int elf_i386_tls_transition
51 PARAMS ((struct bfd_link_info *, int, int));
52
53 static boolean elf_i386_mkobject
54 PARAMS((bfd *));
55 static boolean elf_i386_object_p
56 PARAMS((bfd *));
57 static boolean elf_i386_check_relocs
58 PARAMS ((bfd *, struct bfd_link_info *, asection *,
59 const Elf_Internal_Rela *));
60 static asection *elf_i386_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf_i386_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf_i386_adjust_dynamic_symbol
67 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
68 static boolean allocate_dynrelocs
69 PARAMS ((struct elf_link_hash_entry *, PTR));
70 static boolean readonly_dynrelocs
71 PARAMS ((struct elf_link_hash_entry *, PTR));
72 static boolean elf_i386_fake_sections
73 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
74 static boolean elf_i386_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_vma dtpoff_base
77 PARAMS ((struct bfd_link_info *));
78 static bfd_vma tpoff
79 PARAMS ((struct bfd_link_info *, bfd_vma));
80 static boolean elf_i386_relocate_section
81 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
82 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
83 static boolean elf_i386_finish_dynamic_symbol
84 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
85 Elf_Internal_Sym *));
86 static enum elf_reloc_type_class elf_i386_reloc_type_class
87 PARAMS ((const Elf_Internal_Rela *));
88 static boolean elf_i386_finish_dynamic_sections
89 PARAMS ((bfd *, struct bfd_link_info *));
90
91 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
92
93 #include "elf/i386.h"
94
95 static reloc_howto_type elf_howto_table[]=
96 {
97 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_NONE",
99 true, 0x00000000, 0x00000000, false),
100 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_32",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_PC32",
105 true, 0xffffffff, 0xffffffff, true),
106 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_GOT32",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_PLT32",
111 true, 0xffffffff, 0xffffffff, true),
112 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_COPY",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
117 true, 0xffffffff, 0xffffffff, false),
118 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
119 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
120 true, 0xffffffff, 0xffffffff, false),
121 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
122 bfd_elf_generic_reloc, "R_386_RELATIVE",
123 true, 0xffffffff, 0xffffffff, false),
124 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
125 bfd_elf_generic_reloc, "R_386_GOTOFF",
126 true, 0xffffffff, 0xffffffff, false),
127 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_GOTPC",
129 true, 0xffffffff, 0xffffffff, true),
130
131 /* We have a gap in the reloc numbers here.
132 R_386_standard counts the number up to this point, and
133 R_386_ext_offset is the value to subtract from a reloc type of
134 R_386_16 thru R_386_PC8 to form an index into this table. */
135 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
136 #define R_386_ext_offset ((unsigned int) R_386_TLS_TPOFF - R_386_standard)
137
138 /* These relocs are a GNU extension. */
139 HOWTO(R_386_TLS_TPOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
140 bfd_elf_generic_reloc, "R_386_TLS_TPOFF",
141 true, 0xffffffff, 0xffffffff, false),
142 HOWTO(R_386_TLS_IE, 0, 2, 32, false, 0, complain_overflow_bitfield,
143 bfd_elf_generic_reloc, "R_386_TLS_IE",
144 true, 0xffffffff, 0xffffffff, false),
145 HOWTO(R_386_TLS_GOTIE, 0, 2, 32, false, 0, complain_overflow_bitfield,
146 bfd_elf_generic_reloc, "R_386_TLS_GOTIE",
147 true, 0xffffffff, 0xffffffff, false),
148 HOWTO(R_386_TLS_LE, 0, 2, 32, false, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_386_TLS_LE",
150 true, 0xffffffff, 0xffffffff, false),
151 HOWTO(R_386_TLS_GD, 0, 2, 32, false, 0, complain_overflow_bitfield,
152 bfd_elf_generic_reloc, "R_386_TLS_GD",
153 true, 0xffffffff, 0xffffffff, false),
154 HOWTO(R_386_TLS_LDM, 0, 2, 32, false, 0, complain_overflow_bitfield,
155 bfd_elf_generic_reloc, "R_386_TLS_LDM",
156 true, 0xffffffff, 0xffffffff, false),
157 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
158 bfd_elf_generic_reloc, "R_386_16",
159 true, 0xffff, 0xffff, false),
160 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
161 bfd_elf_generic_reloc, "R_386_PC16",
162 true, 0xffff, 0xffff, true),
163 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
164 bfd_elf_generic_reloc, "R_386_8",
165 true, 0xff, 0xff, false),
166 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
167 bfd_elf_generic_reloc, "R_386_PC8",
168 true, 0xff, 0xff, true),
169
170 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
171 #define R_386_tls_offset ((unsigned int) R_386_TLS_LDO_32 - R_386_ext)
172 /* These are common with Solaris TLS implementation. */
173 HOWTO(R_386_TLS_LDO_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
174 bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
175 true, 0xffffffff, 0xffffffff, false),
176 HOWTO(R_386_TLS_IE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
177 bfd_elf_generic_reloc, "R_386_TLS_IE_32",
178 true, 0xffffffff, 0xffffffff, false),
179 HOWTO(R_386_TLS_LE_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_386_TLS_LE_32",
181 true, 0xffffffff, 0xffffffff, false),
182 HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, false, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
184 true, 0xffffffff, 0xffffffff, false),
185 HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
187 true, 0xffffffff, 0xffffffff, false),
188 HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, false, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
190 true, 0xffffffff, 0xffffffff, false),
191
192 /* Another gap. */
193 #define R_386_tls ((unsigned int) R_386_TLS_TPOFF32 + 1 - R_386_tls_offset)
194 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_tls)
195
196 /* GNU extension to record C++ vtable hierarchy. */
197 HOWTO (R_386_GNU_VTINHERIT, /* type */
198 0, /* rightshift */
199 2, /* size (0 = byte, 1 = short, 2 = long) */
200 0, /* bitsize */
201 false, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_dont, /* complain_on_overflow */
204 NULL, /* special_function */
205 "R_386_GNU_VTINHERIT", /* name */
206 false, /* partial_inplace */
207 0, /* src_mask */
208 0, /* dst_mask */
209 false), /* pcrel_offset */
210
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_386_GNU_VTENTRY, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 0, /* bitsize */
216 false, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont, /* complain_on_overflow */
219 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
220 "R_386_GNU_VTENTRY", /* name */
221 false, /* partial_inplace */
222 0, /* src_mask */
223 0, /* dst_mask */
224 false) /* pcrel_offset */
225
226 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
227
228 };
229
230 #ifdef DEBUG_GEN_RELOC
231 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
232 #else
233 #define TRACE(str)
234 #endif
235
236 static reloc_howto_type *
237 elf_i386_reloc_type_lookup (abfd, code)
238 bfd *abfd ATTRIBUTE_UNUSED;
239 bfd_reloc_code_real_type code;
240 {
241 switch (code)
242 {
243 case BFD_RELOC_NONE:
244 TRACE ("BFD_RELOC_NONE");
245 return &elf_howto_table[(unsigned int) R_386_NONE ];
246
247 case BFD_RELOC_32:
248 TRACE ("BFD_RELOC_32");
249 return &elf_howto_table[(unsigned int) R_386_32 ];
250
251 case BFD_RELOC_CTOR:
252 TRACE ("BFD_RELOC_CTOR");
253 return &elf_howto_table[(unsigned int) R_386_32 ];
254
255 case BFD_RELOC_32_PCREL:
256 TRACE ("BFD_RELOC_PC32");
257 return &elf_howto_table[(unsigned int) R_386_PC32 ];
258
259 case BFD_RELOC_386_GOT32:
260 TRACE ("BFD_RELOC_386_GOT32");
261 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
262
263 case BFD_RELOC_386_PLT32:
264 TRACE ("BFD_RELOC_386_PLT32");
265 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
266
267 case BFD_RELOC_386_COPY:
268 TRACE ("BFD_RELOC_386_COPY");
269 return &elf_howto_table[(unsigned int) R_386_COPY ];
270
271 case BFD_RELOC_386_GLOB_DAT:
272 TRACE ("BFD_RELOC_386_GLOB_DAT");
273 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
274
275 case BFD_RELOC_386_JUMP_SLOT:
276 TRACE ("BFD_RELOC_386_JUMP_SLOT");
277 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
278
279 case BFD_RELOC_386_RELATIVE:
280 TRACE ("BFD_RELOC_386_RELATIVE");
281 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
282
283 case BFD_RELOC_386_GOTOFF:
284 TRACE ("BFD_RELOC_386_GOTOFF");
285 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
286
287 case BFD_RELOC_386_GOTPC:
288 TRACE ("BFD_RELOC_386_GOTPC");
289 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
290
291 /* These relocs are a GNU extension. */
292 case BFD_RELOC_386_TLS_TPOFF:
293 TRACE ("BFD_RELOC_386_TLS_TPOFF");
294 return &elf_howto_table[(unsigned int) R_386_TLS_TPOFF - R_386_ext_offset];
295
296 case BFD_RELOC_386_TLS_IE:
297 TRACE ("BFD_RELOC_386_TLS_IE");
298 return &elf_howto_table[(unsigned int) R_386_TLS_IE - R_386_ext_offset];
299
300 case BFD_RELOC_386_TLS_GOTIE:
301 TRACE ("BFD_RELOC_386_TLS_GOTIE");
302 return &elf_howto_table[(unsigned int) R_386_TLS_GOTIE - R_386_ext_offset];
303
304 case BFD_RELOC_386_TLS_LE:
305 TRACE ("BFD_RELOC_386_TLS_LE");
306 return &elf_howto_table[(unsigned int) R_386_TLS_LE - R_386_ext_offset];
307
308 case BFD_RELOC_386_TLS_GD:
309 TRACE ("BFD_RELOC_386_TLS_GD");
310 return &elf_howto_table[(unsigned int) R_386_TLS_GD - R_386_ext_offset];
311
312 case BFD_RELOC_386_TLS_LDM:
313 TRACE ("BFD_RELOC_386_TLS_LDM");
314 return &elf_howto_table[(unsigned int) R_386_TLS_LDM - R_386_ext_offset];
315
316 case BFD_RELOC_16:
317 TRACE ("BFD_RELOC_16");
318 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
319
320 case BFD_RELOC_16_PCREL:
321 TRACE ("BFD_RELOC_16_PCREL");
322 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
323
324 case BFD_RELOC_8:
325 TRACE ("BFD_RELOC_8");
326 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
327
328 case BFD_RELOC_8_PCREL:
329 TRACE ("BFD_RELOC_8_PCREL");
330 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
331
332 /* Common with Sun TLS implementation. */
333 case BFD_RELOC_386_TLS_LDO_32:
334 TRACE ("BFD_RELOC_386_TLS_LDO_32");
335 return &elf_howto_table[(unsigned int) R_386_TLS_LDO_32 - R_386_tls_offset];
336
337 case BFD_RELOC_386_TLS_IE_32:
338 TRACE ("BFD_RELOC_386_TLS_IE_32");
339 return &elf_howto_table[(unsigned int) R_386_TLS_IE_32 - R_386_tls_offset];
340
341 case BFD_RELOC_386_TLS_LE_32:
342 TRACE ("BFD_RELOC_386_TLS_LE_32");
343 return &elf_howto_table[(unsigned int) R_386_TLS_LE_32 - R_386_tls_offset];
344
345 case BFD_RELOC_386_TLS_DTPMOD32:
346 TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
347 return &elf_howto_table[(unsigned int) R_386_TLS_DTPMOD32 - R_386_tls_offset];
348
349 case BFD_RELOC_386_TLS_DTPOFF32:
350 TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
351 return &elf_howto_table[(unsigned int) R_386_TLS_DTPOFF32 - R_386_tls_offset];
352
353 case BFD_RELOC_386_TLS_TPOFF32:
354 TRACE ("BFD_RELOC_386_TLS_TPOFF32");
355 return &elf_howto_table[(unsigned int) R_386_TLS_TPOFF32 - R_386_tls_offset];
356
357 case BFD_RELOC_VTABLE_INHERIT:
358 TRACE ("BFD_RELOC_VTABLE_INHERIT");
359 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
360 - R_386_vt_offset];
361
362 case BFD_RELOC_VTABLE_ENTRY:
363 TRACE ("BFD_RELOC_VTABLE_ENTRY");
364 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
365 - R_386_vt_offset];
366
367 default:
368 break;
369 }
370
371 TRACE ("Unknown");
372 return 0;
373 }
374
375 static void
376 elf_i386_info_to_howto (abfd, cache_ptr, dst)
377 bfd *abfd ATTRIBUTE_UNUSED;
378 arelent *cache_ptr ATTRIBUTE_UNUSED;
379 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
380 {
381 abort ();
382 }
383
384 static void
385 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
386 bfd *abfd ATTRIBUTE_UNUSED;
387 arelent *cache_ptr;
388 Elf32_Internal_Rel *dst;
389 {
390 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
391 unsigned int indx;
392
393 if ((indx = r_type) >= R_386_standard
394 && ((indx = r_type - R_386_ext_offset) - R_386_standard
395 >= R_386_ext - R_386_standard)
396 && ((indx = r_type - R_386_tls_offset) - R_386_ext
397 >= R_386_tls - R_386_ext)
398 && ((indx = r_type - R_386_vt_offset) - R_386_tls
399 >= R_386_vt - R_386_tls))
400 {
401 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
402 bfd_archive_filename (abfd), (int) r_type);
403 indx = (unsigned int) R_386_NONE;
404 }
405 cache_ptr->howto = &elf_howto_table[indx];
406 }
407
408 /* Return whether a symbol name implies a local label. The UnixWare
409 2.1 cc generates temporary symbols that start with .X, so we
410 recognize them here. FIXME: do other SVR4 compilers also use .X?.
411 If so, we should move the .X recognition into
412 _bfd_elf_is_local_label_name. */
413
414 static boolean
415 elf_i386_is_local_label_name (abfd, name)
416 bfd *abfd;
417 const char *name;
418 {
419 if (name[0] == '.' && name[1] == 'X')
420 return true;
421
422 return _bfd_elf_is_local_label_name (abfd, name);
423 }
424 \f
425 /* Support for core dump NOTE sections. */
426 static boolean
427 elf_i386_grok_prstatus (abfd, note)
428 bfd *abfd;
429 Elf_Internal_Note *note;
430 {
431 int offset;
432 size_t raw_size;
433
434 switch (note->descsz)
435 {
436 default:
437 return false;
438
439 case 144: /* Linux/i386 */
440 /* pr_cursig */
441 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
442
443 /* pr_pid */
444 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
445
446 /* pr_reg */
447 offset = 72;
448 raw_size = 68;
449
450 break;
451 }
452
453 /* Make a ".reg/999" section. */
454 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
455 raw_size, note->descpos + offset);
456 }
457
458 static boolean
459 elf_i386_grok_psinfo (abfd, note)
460 bfd *abfd;
461 Elf_Internal_Note *note;
462 {
463 switch (note->descsz)
464 {
465 default:
466 return false;
467
468 case 124: /* Linux/i386 elf_prpsinfo */
469 elf_tdata (abfd)->core_program
470 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
471 elf_tdata (abfd)->core_command
472 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
473 }
474
475 /* Note that for some reason, a spurious space is tacked
476 onto the end of the args in some (at least one anyway)
477 implementations, so strip it off if it exists. */
478
479 {
480 char *command = elf_tdata (abfd)->core_command;
481 int n = strlen (command);
482
483 if (0 < n && command[n - 1] == ' ')
484 command[n - 1] = '\0';
485 }
486
487 return true;
488 }
489 \f
490 /* Functions for the i386 ELF linker.
491
492 In order to gain some understanding of code in this file without
493 knowing all the intricate details of the linker, note the
494 following:
495
496 Functions named elf_i386_* are called by external routines, other
497 functions are only called locally. elf_i386_* functions appear
498 in this file more or less in the order in which they are called
499 from external routines. eg. elf_i386_check_relocs is called
500 early in the link process, elf_i386_finish_dynamic_sections is
501 one of the last functions. */
502
503
504 /* The name of the dynamic interpreter. This is put in the .interp
505 section. */
506
507 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
508
509 /* The size in bytes of an entry in the procedure linkage table. */
510
511 #define PLT_ENTRY_SIZE 16
512
513 /* The first entry in an absolute procedure linkage table looks like
514 this. See the SVR4 ABI i386 supplement to see how this works. */
515
516 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
517 {
518 0xff, 0x35, /* pushl contents of address */
519 0, 0, 0, 0, /* replaced with address of .got + 4. */
520 0xff, 0x25, /* jmp indirect */
521 0, 0, 0, 0, /* replaced with address of .got + 8. */
522 0, 0, 0, 0 /* pad out to 16 bytes. */
523 };
524
525 /* Subsequent entries in an absolute procedure linkage table look like
526 this. */
527
528 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
529 {
530 0xff, 0x25, /* jmp indirect */
531 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
532 0x68, /* pushl immediate */
533 0, 0, 0, 0, /* replaced with offset into relocation table. */
534 0xe9, /* jmp relative */
535 0, 0, 0, 0 /* replaced with offset to start of .plt. */
536 };
537
538 /* The first entry in a PIC procedure linkage table look like this. */
539
540 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
543 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
544 0, 0, 0, 0 /* pad out to 16 bytes. */
545 };
546
547 /* Subsequent entries in a PIC procedure linkage table look like this. */
548
549 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
550 {
551 0xff, 0xa3, /* jmp *offset(%ebx) */
552 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
553 0x68, /* pushl immediate */
554 0, 0, 0, 0, /* replaced with offset into relocation table. */
555 0xe9, /* jmp relative */
556 0, 0, 0, 0 /* replaced with offset to start of .plt. */
557 };
558
559 /* The i386 linker needs to keep track of the number of relocs that it
560 decides to copy as dynamic relocs in check_relocs for each symbol.
561 This is so that it can later discard them if they are found to be
562 unnecessary. We store the information in a field extending the
563 regular ELF linker hash table. */
564
565 struct elf_i386_dyn_relocs
566 {
567 struct elf_i386_dyn_relocs *next;
568
569 /* The input section of the reloc. */
570 asection *sec;
571
572 /* Total number of relocs copied for the input section. */
573 bfd_size_type count;
574
575 /* Number of pc-relative relocs copied for the input section. */
576 bfd_size_type pc_count;
577 };
578
579 /* i386 ELF linker hash entry. */
580
581 struct elf_i386_link_hash_entry
582 {
583 struct elf_link_hash_entry elf;
584
585 /* Track dynamic relocs copied for this symbol. */
586 struct elf_i386_dyn_relocs *dyn_relocs;
587
588 #define GOT_UNKNOWN 0
589 #define GOT_NORMAL 1
590 #define GOT_TLS_GD 2
591 #define GOT_TLS_IE 4
592 #define GOT_TLS_IE_POS 5
593 #define GOT_TLS_IE_NEG 6
594 #define GOT_TLS_IE_BOTH 7
595 unsigned char tls_type;
596 };
597
598 #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
599
600 struct elf_i386_obj_tdata
601 {
602 struct elf_obj_tdata root;
603
604 /* tls_type for each local got entry. */
605 char *local_got_tls_type;
606 };
607
608 #define elf_i386_tdata(abfd) \
609 ((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
610
611 #define elf_i386_local_got_tls_type(abfd) \
612 (elf_i386_tdata (abfd)->local_got_tls_type)
613
614 static boolean
615 elf_i386_mkobject (abfd)
616 bfd *abfd;
617 {
618 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
619 abfd->tdata.any = bfd_zalloc (abfd, amt);
620 if (abfd->tdata.any == NULL)
621 return false;
622 return true;
623 }
624
625 static boolean
626 elf_i386_object_p (abfd)
627 bfd *abfd;
628 {
629 /* Allocate our special target data. */
630 struct elf_i386_obj_tdata *new_tdata;
631 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
632 new_tdata = bfd_zalloc (abfd, amt);
633 if (new_tdata == NULL)
634 return false;
635 new_tdata->root = *abfd->tdata.elf_obj_data;
636 abfd->tdata.any = new_tdata;
637 return true;
638 }
639
640 /* i386 ELF linker hash table. */
641
642 struct elf_i386_link_hash_table
643 {
644 struct elf_link_hash_table elf;
645
646 /* Short-cuts to get to dynamic linker sections. */
647 asection *sgot;
648 asection *sgotplt;
649 asection *srelgot;
650 asection *splt;
651 asection *srelplt;
652 asection *sdynbss;
653 asection *srelbss;
654
655 union {
656 bfd_signed_vma refcount;
657 bfd_vma offset;
658 } tls_ldm_got;
659
660 /* Small local sym to section mapping cache. */
661 struct sym_sec_cache sym_sec;
662 };
663
664 /* Get the i386 ELF linker hash table from a link_info structure. */
665
666 #define elf_i386_hash_table(p) \
667 ((struct elf_i386_link_hash_table *) ((p)->hash))
668
669 /* Create an entry in an i386 ELF linker hash table. */
670
671 static struct bfd_hash_entry *
672 link_hash_newfunc (entry, table, string)
673 struct bfd_hash_entry *entry;
674 struct bfd_hash_table *table;
675 const char *string;
676 {
677 /* Allocate the structure if it has not already been allocated by a
678 subclass. */
679 if (entry == NULL)
680 {
681 entry = bfd_hash_allocate (table,
682 sizeof (struct elf_i386_link_hash_entry));
683 if (entry == NULL)
684 return entry;
685 }
686
687 /* Call the allocation method of the superclass. */
688 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
689 if (entry != NULL)
690 {
691 struct elf_i386_link_hash_entry *eh;
692
693 eh = (struct elf_i386_link_hash_entry *) entry;
694 eh->dyn_relocs = NULL;
695 eh->tls_type = GOT_UNKNOWN;
696 }
697
698 return entry;
699 }
700
701 /* Create an i386 ELF linker hash table. */
702
703 static struct bfd_link_hash_table *
704 elf_i386_link_hash_table_create (abfd)
705 bfd *abfd;
706 {
707 struct elf_i386_link_hash_table *ret;
708 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
709
710 ret = (struct elf_i386_link_hash_table *) bfd_malloc (amt);
711 if (ret == NULL)
712 return NULL;
713
714 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
715 {
716 free (ret);
717 return NULL;
718 }
719
720 ret->sgot = NULL;
721 ret->sgotplt = NULL;
722 ret->srelgot = NULL;
723 ret->splt = NULL;
724 ret->srelplt = NULL;
725 ret->sdynbss = NULL;
726 ret->srelbss = NULL;
727 ret->tls_ldm_got.refcount = 0;
728 ret->sym_sec.abfd = NULL;
729
730 return &ret->elf.root;
731 }
732
733 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
734 shortcuts to them in our hash table. */
735
736 static boolean
737 create_got_section (dynobj, info)
738 bfd *dynobj;
739 struct bfd_link_info *info;
740 {
741 struct elf_i386_link_hash_table *htab;
742
743 if (! _bfd_elf_create_got_section (dynobj, info))
744 return false;
745
746 htab = elf_i386_hash_table (info);
747 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
748 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
749 if (!htab->sgot || !htab->sgotplt)
750 abort ();
751
752 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
753 if (htab->srelgot == NULL
754 || ! bfd_set_section_flags (dynobj, htab->srelgot,
755 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
756 | SEC_IN_MEMORY | SEC_LINKER_CREATED
757 | SEC_READONLY))
758 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
759 return false;
760 return true;
761 }
762
763 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
764 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
765 hash table. */
766
767 static boolean
768 elf_i386_create_dynamic_sections (dynobj, info)
769 bfd *dynobj;
770 struct bfd_link_info *info;
771 {
772 struct elf_i386_link_hash_table *htab;
773
774 htab = elf_i386_hash_table (info);
775 if (!htab->sgot && !create_got_section (dynobj, info))
776 return false;
777
778 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
779 return false;
780
781 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
782 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
783 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
784 if (!info->shared)
785 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
786
787 if (!htab->splt || !htab->srelplt || !htab->sdynbss
788 || (!info->shared && !htab->srelbss))
789 abort ();
790
791 return true;
792 }
793
794 /* Copy the extra info we tack onto an elf_link_hash_entry. */
795
796 static void
797 elf_i386_copy_indirect_symbol (bed, dir, ind)
798 struct elf_backend_data *bed;
799 struct elf_link_hash_entry *dir, *ind;
800 {
801 struct elf_i386_link_hash_entry *edir, *eind;
802
803 edir = (struct elf_i386_link_hash_entry *) dir;
804 eind = (struct elf_i386_link_hash_entry *) ind;
805
806 if (eind->dyn_relocs != NULL)
807 {
808 if (edir->dyn_relocs != NULL)
809 {
810 struct elf_i386_dyn_relocs **pp;
811 struct elf_i386_dyn_relocs *p;
812
813 if (ind->root.type == bfd_link_hash_indirect)
814 abort ();
815
816 /* Add reloc counts against the weak sym to the strong sym
817 list. Merge any entries against the same section. */
818 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
819 {
820 struct elf_i386_dyn_relocs *q;
821
822 for (q = edir->dyn_relocs; q != NULL; q = q->next)
823 if (q->sec == p->sec)
824 {
825 q->pc_count += p->pc_count;
826 q->count += p->count;
827 *pp = p->next;
828 break;
829 }
830 if (q == NULL)
831 pp = &p->next;
832 }
833 *pp = edir->dyn_relocs;
834 }
835
836 edir->dyn_relocs = eind->dyn_relocs;
837 eind->dyn_relocs = NULL;
838 }
839
840 if (ind->root.type == bfd_link_hash_indirect
841 && dir->got.refcount <= 0)
842 {
843 edir->tls_type = eind->tls_type;
844 eind->tls_type = GOT_UNKNOWN;
845 }
846 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
847 }
848
849 static int
850 elf_i386_tls_transition (info, r_type, is_local)
851 struct bfd_link_info *info;
852 int r_type;
853 int is_local;
854 {
855 if (info->shared)
856 return r_type;
857
858 switch (r_type)
859 {
860 case R_386_TLS_GD:
861 case R_386_TLS_IE_32:
862 if (is_local)
863 return R_386_TLS_LE_32;
864 return R_386_TLS_IE_32;
865 case R_386_TLS_IE:
866 case R_386_TLS_GOTIE:
867 if (is_local)
868 return R_386_TLS_LE_32;
869 return r_type;
870 case R_386_TLS_LDM:
871 return R_386_TLS_LE_32;
872 }
873
874 return r_type;
875 }
876
877 /* Look through the relocs for a section during the first phase, and
878 calculate needed space in the global offset table, procedure linkage
879 table, and dynamic reloc sections. */
880
881 static boolean
882 elf_i386_check_relocs (abfd, info, sec, relocs)
883 bfd *abfd;
884 struct bfd_link_info *info;
885 asection *sec;
886 const Elf_Internal_Rela *relocs;
887 {
888 struct elf_i386_link_hash_table *htab;
889 Elf_Internal_Shdr *symtab_hdr;
890 struct elf_link_hash_entry **sym_hashes;
891 const Elf_Internal_Rela *rel;
892 const Elf_Internal_Rela *rel_end;
893 asection *sreloc;
894
895 if (info->relocateable)
896 return true;
897
898 htab = elf_i386_hash_table (info);
899 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
900 sym_hashes = elf_sym_hashes (abfd);
901
902 sreloc = NULL;
903
904 rel_end = relocs + sec->reloc_count;
905 for (rel = relocs; rel < rel_end; rel++)
906 {
907 unsigned int r_type;
908 unsigned long r_symndx;
909 struct elf_link_hash_entry *h;
910
911 r_symndx = ELF32_R_SYM (rel->r_info);
912 r_type = ELF32_R_TYPE (rel->r_info);
913
914 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
915 {
916 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
917 bfd_archive_filename (abfd),
918 r_symndx);
919 return false;
920 }
921
922 if (r_symndx < symtab_hdr->sh_info)
923 h = NULL;
924 else
925 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
926
927 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
928
929 switch (r_type)
930 {
931 case R_386_TLS_LDM:
932 htab->tls_ldm_got.refcount += 1;
933 goto create_got;
934
935 case R_386_PLT32:
936 /* This symbol requires a procedure linkage table entry. We
937 actually build the entry in adjust_dynamic_symbol,
938 because this might be a case of linking PIC code which is
939 never referenced by a dynamic object, in which case we
940 don't need to generate a procedure linkage table entry
941 after all. */
942
943 /* If this is a local symbol, we resolve it directly without
944 creating a procedure linkage table entry. */
945 if (h == NULL)
946 continue;
947
948 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
949 h->plt.refcount += 1;
950 break;
951
952 case R_386_TLS_IE_32:
953 case R_386_TLS_IE:
954 case R_386_TLS_GOTIE:
955 if (info->shared)
956 info->flags |= DF_STATIC_TLS;
957 /* Fall through */
958
959 case R_386_GOT32:
960 case R_386_TLS_GD:
961 /* This symbol requires a global offset table entry. */
962 {
963 int tls_type, old_tls_type;
964
965 switch (r_type)
966 {
967 default:
968 case R_386_GOT32: tls_type = GOT_NORMAL; break;
969 case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
970 case R_386_TLS_IE_32:
971 if (ELF32_R_TYPE (rel->r_info) == r_type)
972 tls_type = GOT_TLS_IE_NEG;
973 else
974 /* If this is a GD->IE transition, we may use either of
975 R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */
976 tls_type = GOT_TLS_IE;
977 break;
978 case R_386_TLS_IE:
979 case R_386_TLS_GOTIE:
980 tls_type = GOT_TLS_IE_POS; break;
981 }
982
983 if (h != NULL)
984 {
985 h->got.refcount += 1;
986 old_tls_type = elf_i386_hash_entry(h)->tls_type;
987 }
988 else
989 {
990 bfd_signed_vma *local_got_refcounts;
991
992 /* This is a global offset table entry for a local symbol. */
993 local_got_refcounts = elf_local_got_refcounts (abfd);
994 if (local_got_refcounts == NULL)
995 {
996 bfd_size_type size;
997
998 size = symtab_hdr->sh_info;
999 size *= (sizeof (bfd_signed_vma) + sizeof(char));
1000 local_got_refcounts = ((bfd_signed_vma *)
1001 bfd_zalloc (abfd, size));
1002 if (local_got_refcounts == NULL)
1003 return false;
1004 elf_local_got_refcounts (abfd) = local_got_refcounts;
1005 elf_i386_local_got_tls_type (abfd)
1006 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
1007 }
1008 local_got_refcounts[r_symndx] += 1;
1009 old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
1010 }
1011
1012 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1013 tls_type |= old_tls_type;
1014 /* If a TLS symbol is accessed using IE at least once,
1015 there is no point to use dynamic model for it. */
1016 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1017 && (old_tls_type != GOT_TLS_GD
1018 || (tls_type & GOT_TLS_IE) == 0))
1019 {
1020 if ((old_tls_type & GOT_TLS_IE) && tls_type == GOT_TLS_GD)
1021 tls_type = old_tls_type;
1022 else
1023 {
1024 (*_bfd_error_handler)
1025 (_("%s: `%s' accessed both as normal and thread local symbol"),
1026 bfd_archive_filename (abfd),
1027 h ? h->root.root.string : "<local>");
1028 return false;
1029 }
1030 }
1031
1032 if (old_tls_type != tls_type)
1033 {
1034 if (h != NULL)
1035 elf_i386_hash_entry (h)->tls_type = tls_type;
1036 else
1037 elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
1038 }
1039 }
1040 /* Fall through */
1041
1042 case R_386_GOTOFF:
1043 case R_386_GOTPC:
1044 create_got:
1045 if (htab->sgot == NULL)
1046 {
1047 if (htab->elf.dynobj == NULL)
1048 htab->elf.dynobj = abfd;
1049 if (!create_got_section (htab->elf.dynobj, info))
1050 return false;
1051 }
1052 if (r_type != R_386_TLS_IE)
1053 break;
1054 /* Fall through */
1055
1056 case R_386_TLS_LE_32:
1057 case R_386_TLS_LE:
1058 if (!info->shared)
1059 break;
1060 info->flags |= DF_STATIC_TLS;
1061 /* Fall through */
1062
1063 case R_386_32:
1064 case R_386_PC32:
1065 if (h != NULL && !info->shared)
1066 {
1067 /* If this reloc is in a read-only section, we might
1068 need a copy reloc. We can't check reliably at this
1069 stage whether the section is read-only, as input
1070 sections have not yet been mapped to output sections.
1071 Tentatively set the flag for now, and correct in
1072 adjust_dynamic_symbol. */
1073 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1074
1075 /* We may need a .plt entry if the function this reloc
1076 refers to is in a shared lib. */
1077 h->plt.refcount += 1;
1078 }
1079
1080 /* If we are creating a shared library, and this is a reloc
1081 against a global symbol, or a non PC relative reloc
1082 against a local symbol, then we need to copy the reloc
1083 into the shared library. However, if we are linking with
1084 -Bsymbolic, we do not need to copy a reloc against a
1085 global symbol which is defined in an object we are
1086 including in the link (i.e., DEF_REGULAR is set). At
1087 this point we have not seen all the input files, so it is
1088 possible that DEF_REGULAR is not set now but will be set
1089 later (it is never cleared). In case of a weak definition,
1090 DEF_REGULAR may be cleared later by a strong definition in
1091 a shared library. We account for that possibility below by
1092 storing information in the relocs_copied field of the hash
1093 table entry. A similar situation occurs when creating
1094 shared libraries and symbol visibility changes render the
1095 symbol local.
1096
1097 If on the other hand, we are creating an executable, we
1098 may need to keep relocations for symbols satisfied by a
1099 dynamic library if we manage to avoid copy relocs for the
1100 symbol. */
1101 if ((info->shared
1102 && (sec->flags & SEC_ALLOC) != 0
1103 && (r_type != R_386_PC32
1104 || (h != NULL
1105 && (! info->symbolic
1106 || h->root.type == bfd_link_hash_defweak
1107 || (h->elf_link_hash_flags
1108 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1109 || (!info->shared
1110 && (sec->flags & SEC_ALLOC) != 0
1111 && h != NULL
1112 && (h->root.type == bfd_link_hash_defweak
1113 || (h->elf_link_hash_flags
1114 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1115 {
1116 struct elf_i386_dyn_relocs *p;
1117 struct elf_i386_dyn_relocs **head;
1118
1119 /* We must copy these reloc types into the output file.
1120 Create a reloc section in dynobj and make room for
1121 this reloc. */
1122 if (sreloc == NULL)
1123 {
1124 const char *name;
1125 bfd *dynobj;
1126 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
1127 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
1128
1129 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
1130 if (name == NULL)
1131 return false;
1132
1133 if (strncmp (name, ".rel", 4) != 0
1134 || strcmp (bfd_get_section_name (abfd, sec),
1135 name + 4) != 0)
1136 {
1137 (*_bfd_error_handler)
1138 (_("%s: bad relocation section name `%s\'"),
1139 bfd_archive_filename (abfd), name);
1140 }
1141
1142 if (htab->elf.dynobj == NULL)
1143 htab->elf.dynobj = abfd;
1144
1145 dynobj = htab->elf.dynobj;
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 if (sreloc == NULL)
1148 {
1149 flagword flags;
1150
1151 sreloc = bfd_make_section (dynobj, name);
1152 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1153 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1154 if ((sec->flags & SEC_ALLOC) != 0)
1155 flags |= SEC_ALLOC | SEC_LOAD;
1156 if (sreloc == NULL
1157 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1158 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
1159 return false;
1160 }
1161 elf_section_data (sec)->sreloc = sreloc;
1162 }
1163
1164 /* If this is a global symbol, we count the number of
1165 relocations we need for this symbol. */
1166 if (h != NULL)
1167 {
1168 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
1169 }
1170 else
1171 {
1172 /* Track dynamic relocs needed for local syms too.
1173 We really need local syms available to do this
1174 easily. Oh well. */
1175
1176 asection *s;
1177 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1178 sec, r_symndx);
1179 if (s == NULL)
1180 return false;
1181
1182 head = ((struct elf_i386_dyn_relocs **)
1183 &elf_section_data (s)->local_dynrel);
1184 }
1185
1186 p = *head;
1187 if (p == NULL || p->sec != sec)
1188 {
1189 bfd_size_type amt = sizeof *p;
1190 p = ((struct elf_i386_dyn_relocs *)
1191 bfd_alloc (htab->elf.dynobj, amt));
1192 if (p == NULL)
1193 return false;
1194 p->next = *head;
1195 *head = p;
1196 p->sec = sec;
1197 p->count = 0;
1198 p->pc_count = 0;
1199 }
1200
1201 p->count += 1;
1202 if (r_type == R_386_PC32)
1203 p->pc_count += 1;
1204 }
1205 break;
1206
1207 /* This relocation describes the C++ object vtable hierarchy.
1208 Reconstruct it for later use during GC. */
1209 case R_386_GNU_VTINHERIT:
1210 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1211 return false;
1212 break;
1213
1214 /* This relocation describes which C++ vtable entries are actually
1215 used. Record for later use during GC. */
1216 case R_386_GNU_VTENTRY:
1217 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
1218 return false;
1219 break;
1220
1221 default:
1222 break;
1223 }
1224 }
1225
1226 return true;
1227 }
1228
1229 /* Return the section that should be marked against GC for a given
1230 relocation. */
1231
1232 static asection *
1233 elf_i386_gc_mark_hook (sec, info, rel, h, sym)
1234 asection *sec;
1235 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1236 Elf_Internal_Rela *rel;
1237 struct elf_link_hash_entry *h;
1238 Elf_Internal_Sym *sym;
1239 {
1240 if (h != NULL)
1241 {
1242 switch (ELF32_R_TYPE (rel->r_info))
1243 {
1244 case R_386_GNU_VTINHERIT:
1245 case R_386_GNU_VTENTRY:
1246 break;
1247
1248 default:
1249 switch (h->root.type)
1250 {
1251 case bfd_link_hash_defined:
1252 case bfd_link_hash_defweak:
1253 return h->root.u.def.section;
1254
1255 case bfd_link_hash_common:
1256 return h->root.u.c.p->section;
1257
1258 default:
1259 break;
1260 }
1261 }
1262 }
1263 else
1264 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1265
1266 return NULL;
1267 }
1268
1269 /* Update the got entry reference counts for the section being removed. */
1270
1271 static boolean
1272 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
1273 bfd *abfd;
1274 struct bfd_link_info *info;
1275 asection *sec;
1276 const Elf_Internal_Rela *relocs;
1277 {
1278 Elf_Internal_Shdr *symtab_hdr;
1279 struct elf_link_hash_entry **sym_hashes;
1280 bfd_signed_vma *local_got_refcounts;
1281 const Elf_Internal_Rela *rel, *relend;
1282 unsigned long r_symndx;
1283 int r_type;
1284 struct elf_link_hash_entry *h;
1285
1286 elf_section_data (sec)->local_dynrel = NULL;
1287
1288 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1289 sym_hashes = elf_sym_hashes (abfd);
1290 local_got_refcounts = elf_local_got_refcounts (abfd);
1291
1292 relend = relocs + sec->reloc_count;
1293 for (rel = relocs; rel < relend; rel++)
1294 switch ((r_type = elf_i386_tls_transition (info,
1295 ELF32_R_TYPE (rel->r_info),
1296 ELF32_R_SYM (rel->r_info)
1297 >= symtab_hdr->sh_info)))
1298 {
1299 case R_386_TLS_LDM:
1300 if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
1301 elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
1302 break;
1303
1304 case R_386_TLS_GD:
1305 case R_386_TLS_IE_32:
1306 case R_386_TLS_IE:
1307 case R_386_TLS_GOTIE:
1308 case R_386_GOT32:
1309 r_symndx = ELF32_R_SYM (rel->r_info);
1310 if (r_symndx >= symtab_hdr->sh_info)
1311 {
1312 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1313 if (h->got.refcount > 0)
1314 h->got.refcount -= 1;
1315 }
1316 else if (local_got_refcounts != NULL)
1317 {
1318 if (local_got_refcounts[r_symndx] > 0)
1319 local_got_refcounts[r_symndx] -= 1;
1320 }
1321 if (r_type != R_386_TLS_IE)
1322 break;
1323 /* Fall through */
1324
1325 case R_386_TLS_LE_32:
1326 case R_386_TLS_LE:
1327 if (!info->shared)
1328 break;
1329 /* Fall through */
1330
1331 case R_386_32:
1332 case R_386_PC32:
1333 r_symndx = ELF32_R_SYM (rel->r_info);
1334 if (r_symndx >= symtab_hdr->sh_info)
1335 {
1336 struct elf_i386_link_hash_entry *eh;
1337 struct elf_i386_dyn_relocs **pp;
1338 struct elf_i386_dyn_relocs *p;
1339
1340 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1341
1342 if (!info->shared && h->plt.refcount > 0)
1343 h->plt.refcount -= 1;
1344
1345 eh = (struct elf_i386_link_hash_entry *) h;
1346
1347 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1348 if (p->sec == sec)
1349 {
1350 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1351 p->pc_count -= 1;
1352 p->count -= 1;
1353 if (p->count == 0)
1354 *pp = p->next;
1355 break;
1356 }
1357 }
1358 break;
1359
1360 case R_386_PLT32:
1361 r_symndx = ELF32_R_SYM (rel->r_info);
1362 if (r_symndx >= symtab_hdr->sh_info)
1363 {
1364 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1365 if (h->plt.refcount > 0)
1366 h->plt.refcount -= 1;
1367 }
1368 break;
1369
1370 default:
1371 break;
1372 }
1373
1374 return true;
1375 }
1376
1377 /* Adjust a symbol defined by a dynamic object and referenced by a
1378 regular object. The current definition is in some section of the
1379 dynamic object, but we're not including those sections. We have to
1380 change the definition to something the rest of the link can
1381 understand. */
1382
1383 static boolean
1384 elf_i386_adjust_dynamic_symbol (info, h)
1385 struct bfd_link_info *info;
1386 struct elf_link_hash_entry *h;
1387 {
1388 struct elf_i386_link_hash_table *htab;
1389 struct elf_i386_link_hash_entry * eh;
1390 struct elf_i386_dyn_relocs *p;
1391 asection *s;
1392 unsigned int power_of_two;
1393
1394 /* If this is a function, put it in the procedure linkage table. We
1395 will fill in the contents of the procedure linkage table later,
1396 when we know the address of the .got section. */
1397 if (h->type == STT_FUNC
1398 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1399 {
1400 if (h->plt.refcount <= 0
1401 || (! info->shared
1402 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1403 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1404 && h->root.type != bfd_link_hash_undefweak
1405 && h->root.type != bfd_link_hash_undefined))
1406 {
1407 /* This case can occur if we saw a PLT32 reloc in an input
1408 file, but the symbol was never referred to by a dynamic
1409 object, or if all references were garbage collected. In
1410 such a case, we don't actually need to build a procedure
1411 linkage table, and we can just do a PC32 reloc instead. */
1412 h->plt.offset = (bfd_vma) -1;
1413 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1414 }
1415
1416 return true;
1417 }
1418 else
1419 /* It's possible that we incorrectly decided a .plt reloc was
1420 needed for an R_386_PC32 reloc to a non-function sym in
1421 check_relocs. We can't decide accurately between function and
1422 non-function syms in check-relocs; Objects loaded later in
1423 the link may change h->type. So fix it now. */
1424 h->plt.offset = (bfd_vma) -1;
1425
1426 /* If this is a weak symbol, and there is a real definition, the
1427 processor independent code will have arranged for us to see the
1428 real definition first, and we can just use the same value. */
1429 if (h->weakdef != NULL)
1430 {
1431 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1432 || h->weakdef->root.type == bfd_link_hash_defweak);
1433 h->root.u.def.section = h->weakdef->root.u.def.section;
1434 h->root.u.def.value = h->weakdef->root.u.def.value;
1435 return true;
1436 }
1437
1438 /* This is a reference to a symbol defined by a dynamic object which
1439 is not a function. */
1440
1441 /* If we are creating a shared library, we must presume that the
1442 only references to the symbol are via the global offset table.
1443 For such cases we need not do anything here; the relocations will
1444 be handled correctly by relocate_section. */
1445 if (info->shared)
1446 return true;
1447
1448 /* If there are no references to this symbol that do not use the
1449 GOT, we don't need to generate a copy reloc. */
1450 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1451 return true;
1452
1453 /* If -z nocopyreloc was given, we won't generate them either. */
1454 if (info->nocopyreloc)
1455 {
1456 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1457 return true;
1458 }
1459
1460 eh = (struct elf_i386_link_hash_entry *) h;
1461 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1462 {
1463 s = p->sec->output_section;
1464 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1465 break;
1466 }
1467
1468 /* If we didn't find any dynamic relocs in read-only sections, then
1469 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1470 if (p == NULL)
1471 {
1472 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1473 return true;
1474 }
1475
1476 /* We must allocate the symbol in our .dynbss section, which will
1477 become part of the .bss section of the executable. There will be
1478 an entry for this symbol in the .dynsym section. The dynamic
1479 object will contain position independent code, so all references
1480 from the dynamic object to this symbol will go through the global
1481 offset table. The dynamic linker will use the .dynsym entry to
1482 determine the address it must put in the global offset table, so
1483 both the dynamic object and the regular object will refer to the
1484 same memory location for the variable. */
1485
1486 htab = elf_i386_hash_table (info);
1487
1488 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1489 copy the initial value out of the dynamic object and into the
1490 runtime process image. */
1491 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1492 {
1493 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1494 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1495 }
1496
1497 /* We need to figure out the alignment required for this symbol. I
1498 have no idea how ELF linkers handle this. */
1499 power_of_two = bfd_log2 (h->size);
1500 if (power_of_two > 3)
1501 power_of_two = 3;
1502
1503 /* Apply the required alignment. */
1504 s = htab->sdynbss;
1505 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1506 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1507 {
1508 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1509 return false;
1510 }
1511
1512 /* Define the symbol as being at this point in the section. */
1513 h->root.u.def.section = s;
1514 h->root.u.def.value = s->_raw_size;
1515
1516 /* Increment the section size to make room for the symbol. */
1517 s->_raw_size += h->size;
1518
1519 return true;
1520 }
1521
1522 /* This is the condition under which elf_i386_finish_dynamic_symbol
1523 will be called from elflink.h. If elflink.h doesn't call our
1524 finish_dynamic_symbol routine, we'll need to do something about
1525 initializing any .plt and .got entries in elf_i386_relocate_section. */
1526 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1527 ((DYN) \
1528 && ((INFO)->shared \
1529 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1530 && ((H)->dynindx != -1 \
1531 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1532
1533 /* Allocate space in .plt, .got and associated reloc sections for
1534 dynamic relocs. */
1535
1536 static boolean
1537 allocate_dynrelocs (h, inf)
1538 struct elf_link_hash_entry *h;
1539 PTR inf;
1540 {
1541 struct bfd_link_info *info;
1542 struct elf_i386_link_hash_table *htab;
1543 struct elf_i386_link_hash_entry *eh;
1544 struct elf_i386_dyn_relocs *p;
1545
1546 if (h->root.type == bfd_link_hash_indirect)
1547 return true;
1548
1549 if (h->root.type == bfd_link_hash_warning)
1550 /* When warning symbols are created, they **replace** the "real"
1551 entry in the hash table, thus we never get to see the real
1552 symbol in a hash traversal. So look at it now. */
1553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1554
1555 info = (struct bfd_link_info *) inf;
1556 htab = elf_i386_hash_table (info);
1557
1558 if (htab->elf.dynamic_sections_created
1559 && h->plt.refcount > 0)
1560 {
1561 /* Make sure this symbol is output as a dynamic symbol.
1562 Undefined weak syms won't yet be marked as dynamic. */
1563 if (h->dynindx == -1
1564 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1565 {
1566 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1567 return false;
1568 }
1569
1570 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1571 {
1572 asection *s = htab->splt;
1573
1574 /* If this is the first .plt entry, make room for the special
1575 first entry. */
1576 if (s->_raw_size == 0)
1577 s->_raw_size += PLT_ENTRY_SIZE;
1578
1579 h->plt.offset = s->_raw_size;
1580
1581 /* If this symbol is not defined in a regular file, and we are
1582 not generating a shared library, then set the symbol to this
1583 location in the .plt. This is required to make function
1584 pointers compare as equal between the normal executable and
1585 the shared library. */
1586 if (! info->shared
1587 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1588 {
1589 h->root.u.def.section = s;
1590 h->root.u.def.value = h->plt.offset;
1591 }
1592
1593 /* Make room for this entry. */
1594 s->_raw_size += PLT_ENTRY_SIZE;
1595
1596 /* We also need to make an entry in the .got.plt section, which
1597 will be placed in the .got section by the linker script. */
1598 htab->sgotplt->_raw_size += 4;
1599
1600 /* We also need to make an entry in the .rel.plt section. */
1601 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1602 }
1603 else
1604 {
1605 h->plt.offset = (bfd_vma) -1;
1606 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1607 }
1608 }
1609 else
1610 {
1611 h->plt.offset = (bfd_vma) -1;
1612 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1613 }
1614
1615 /* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary,
1616 make it a R_386_TLS_LE_32 requiring no TLS entry. */
1617 if (h->got.refcount > 0
1618 && !info->shared
1619 && h->dynindx == -1
1620 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE))
1621 h->got.offset = (bfd_vma) -1;
1622 else if (h->got.refcount > 0)
1623 {
1624 asection *s;
1625 boolean dyn;
1626 int tls_type = elf_i386_hash_entry(h)->tls_type;
1627
1628 /* Make sure this symbol is output as a dynamic symbol.
1629 Undefined weak syms won't yet be marked as dynamic. */
1630 if (h->dynindx == -1
1631 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1632 {
1633 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1634 return false;
1635 }
1636
1637 s = htab->sgot;
1638 h->got.offset = s->_raw_size;
1639 s->_raw_size += 4;
1640 /* R_386_TLS_GD needs 2 consecutive GOT slots. */
1641 if (tls_type == GOT_TLS_GD || tls_type == GOT_TLS_IE_BOTH)
1642 s->_raw_size += 4;
1643 dyn = htab->elf.dynamic_sections_created;
1644 /* R_386_TLS_IE_32 needs one dynamic relocation,
1645 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
1646 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
1647 need two), R_386_TLS_GD needs one if local symbol and two if
1648 global. */
1649 if (tls_type == GOT_TLS_IE_BOTH)
1650 htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
1651 else if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1652 || (tls_type & GOT_TLS_IE))
1653 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1654 else if (tls_type == GOT_TLS_GD)
1655 htab->srelgot->_raw_size += 2 * sizeof (Elf32_External_Rel);
1656 else if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1657 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1658 }
1659 else
1660 h->got.offset = (bfd_vma) -1;
1661
1662 eh = (struct elf_i386_link_hash_entry *) h;
1663 if (eh->dyn_relocs == NULL)
1664 return true;
1665
1666 /* In the shared -Bsymbolic case, discard space allocated for
1667 dynamic pc-relative relocs against symbols which turn out to be
1668 defined in regular objects. For the normal shared case, discard
1669 space for pc-relative relocs that have become local due to symbol
1670 visibility changes. */
1671
1672 if (info->shared)
1673 {
1674 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1675 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1676 || info->symbolic))
1677 {
1678 struct elf_i386_dyn_relocs **pp;
1679
1680 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1681 {
1682 p->count -= p->pc_count;
1683 p->pc_count = 0;
1684 if (p->count == 0)
1685 *pp = p->next;
1686 else
1687 pp = &p->next;
1688 }
1689 }
1690 }
1691 else
1692 {
1693 /* For the non-shared case, discard space for relocs against
1694 symbols which turn out to need copy relocs or are not
1695 dynamic. */
1696
1697 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1698 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1699 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1700 || (htab->elf.dynamic_sections_created
1701 && (h->root.type == bfd_link_hash_undefweak
1702 || h->root.type == bfd_link_hash_undefined))))
1703 {
1704 /* Make sure this symbol is output as a dynamic symbol.
1705 Undefined weak syms won't yet be marked as dynamic. */
1706 if (h->dynindx == -1
1707 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1708 {
1709 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1710 return false;
1711 }
1712
1713 /* If that succeeded, we know we'll be keeping all the
1714 relocs. */
1715 if (h->dynindx != -1)
1716 goto keep;
1717 }
1718
1719 eh->dyn_relocs = NULL;
1720
1721 keep: ;
1722 }
1723
1724 /* Finally, allocate space. */
1725 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1726 {
1727 asection *sreloc = elf_section_data (p->sec)->sreloc;
1728 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1729 }
1730
1731 return true;
1732 }
1733
1734 /* Find any dynamic relocs that apply to read-only sections. */
1735
1736 static boolean
1737 readonly_dynrelocs (h, inf)
1738 struct elf_link_hash_entry *h;
1739 PTR inf;
1740 {
1741 struct elf_i386_link_hash_entry *eh;
1742 struct elf_i386_dyn_relocs *p;
1743
1744 if (h->root.type == bfd_link_hash_warning)
1745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1746
1747 eh = (struct elf_i386_link_hash_entry *) h;
1748 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1749 {
1750 asection *s = p->sec->output_section;
1751
1752 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1753 {
1754 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1755
1756 info->flags |= DF_TEXTREL;
1757
1758 /* Not an error, just cut short the traversal. */
1759 return false;
1760 }
1761 }
1762 return true;
1763 }
1764
1765 /* Set the sizes of the dynamic sections. */
1766
1767 static boolean
1768 elf_i386_size_dynamic_sections (output_bfd, info)
1769 bfd *output_bfd ATTRIBUTE_UNUSED;
1770 struct bfd_link_info *info;
1771 {
1772 struct elf_i386_link_hash_table *htab;
1773 bfd *dynobj;
1774 asection *s;
1775 boolean relocs;
1776 bfd *ibfd;
1777
1778 htab = elf_i386_hash_table (info);
1779 dynobj = htab->elf.dynobj;
1780 if (dynobj == NULL)
1781 abort ();
1782
1783 if (htab->elf.dynamic_sections_created)
1784 {
1785 /* Set the contents of the .interp section to the interpreter. */
1786 if (! info->shared)
1787 {
1788 s = bfd_get_section_by_name (dynobj, ".interp");
1789 if (s == NULL)
1790 abort ();
1791 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1792 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1793 }
1794 }
1795
1796 /* Set up .got offsets for local syms, and space for local dynamic
1797 relocs. */
1798 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1799 {
1800 bfd_signed_vma *local_got;
1801 bfd_signed_vma *end_local_got;
1802 char *local_tls_type;
1803 bfd_size_type locsymcount;
1804 Elf_Internal_Shdr *symtab_hdr;
1805 asection *srel;
1806
1807 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1808 continue;
1809
1810 for (s = ibfd->sections; s != NULL; s = s->next)
1811 {
1812 struct elf_i386_dyn_relocs *p;
1813
1814 for (p = *((struct elf_i386_dyn_relocs **)
1815 &elf_section_data (s)->local_dynrel);
1816 p != NULL;
1817 p = p->next)
1818 {
1819 if (!bfd_is_abs_section (p->sec)
1820 && bfd_is_abs_section (p->sec->output_section))
1821 {
1822 /* Input section has been discarded, either because
1823 it is a copy of a linkonce section or due to
1824 linker script /DISCARD/, so we'll be discarding
1825 the relocs too. */
1826 }
1827 else if (p->count != 0)
1828 {
1829 srel = elf_section_data (p->sec)->sreloc;
1830 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
1831 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1832 info->flags |= DF_TEXTREL;
1833 }
1834 }
1835 }
1836
1837 local_got = elf_local_got_refcounts (ibfd);
1838 if (!local_got)
1839 continue;
1840
1841 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1842 locsymcount = symtab_hdr->sh_info;
1843 end_local_got = local_got + locsymcount;
1844 local_tls_type = elf_i386_local_got_tls_type (ibfd);
1845 s = htab->sgot;
1846 srel = htab->srelgot;
1847 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1848 {
1849 if (*local_got > 0)
1850 {
1851 *local_got = s->_raw_size;
1852 s->_raw_size += 4;
1853 if (*local_tls_type == GOT_TLS_GD
1854 || *local_tls_type == GOT_TLS_IE_BOTH)
1855 s->_raw_size += 4;
1856 if (info->shared
1857 || *local_tls_type == GOT_TLS_GD
1858 || (*local_tls_type & GOT_TLS_IE))
1859 {
1860 if (*local_tls_type == GOT_TLS_IE_BOTH)
1861 srel->_raw_size += 2 * sizeof (Elf32_External_Rel);
1862 else
1863 srel->_raw_size += sizeof (Elf32_External_Rel);
1864 }
1865 }
1866 else
1867 *local_got = (bfd_vma) -1;
1868 }
1869 }
1870
1871 if (htab->tls_ldm_got.refcount > 0)
1872 {
1873 /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
1874 relocs. */
1875 htab->tls_ldm_got.offset = htab->sgot->_raw_size;
1876 htab->sgot->_raw_size += 8;
1877 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1878 }
1879 else
1880 htab->tls_ldm_got.offset = -1;
1881
1882 /* Allocate global sym .plt and .got entries, and space for global
1883 sym dynamic relocs. */
1884 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1885
1886 /* We now have determined the sizes of the various dynamic sections.
1887 Allocate memory for them. */
1888 relocs = false;
1889 for (s = dynobj->sections; s != NULL; s = s->next)
1890 {
1891 if ((s->flags & SEC_LINKER_CREATED) == 0)
1892 continue;
1893
1894 if (s == htab->splt
1895 || s == htab->sgot
1896 || s == htab->sgotplt)
1897 {
1898 /* Strip this section if we don't need it; see the
1899 comment below. */
1900 }
1901 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1902 {
1903 if (s->_raw_size != 0 && s != htab->srelplt)
1904 relocs = true;
1905
1906 /* We use the reloc_count field as a counter if we need
1907 to copy relocs into the output file. */
1908 s->reloc_count = 0;
1909 }
1910 else
1911 {
1912 /* It's not one of our sections, so don't allocate space. */
1913 continue;
1914 }
1915
1916 if (s->_raw_size == 0)
1917 {
1918 /* If we don't need this section, strip it from the
1919 output file. This is mostly to handle .rel.bss and
1920 .rel.plt. We must create both sections in
1921 create_dynamic_sections, because they must be created
1922 before the linker maps input sections to output
1923 sections. The linker does that before
1924 adjust_dynamic_symbol is called, and it is that
1925 function which decides whether anything needs to go
1926 into these sections. */
1927
1928 _bfd_strip_section_from_output (info, s);
1929 continue;
1930 }
1931
1932 /* Allocate memory for the section contents. We use bfd_zalloc
1933 here in case unused entries are not reclaimed before the
1934 section's contents are written out. This should not happen,
1935 but this way if it does, we get a R_386_NONE reloc instead
1936 of garbage. */
1937 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1938 if (s->contents == NULL)
1939 return false;
1940 }
1941
1942 if (htab->elf.dynamic_sections_created)
1943 {
1944 /* Add some entries to the .dynamic section. We fill in the
1945 values later, in elf_i386_finish_dynamic_sections, but we
1946 must add the entries now so that we get the correct size for
1947 the .dynamic section. The DT_DEBUG entry is filled in by the
1948 dynamic linker and used by the debugger. */
1949 #define add_dynamic_entry(TAG, VAL) \
1950 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1951
1952 if (! info->shared)
1953 {
1954 if (!add_dynamic_entry (DT_DEBUG, 0))
1955 return false;
1956 }
1957
1958 if (htab->splt->_raw_size != 0)
1959 {
1960 if (!add_dynamic_entry (DT_PLTGOT, 0)
1961 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1962 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1963 || !add_dynamic_entry (DT_JMPREL, 0))
1964 return false;
1965 }
1966
1967 if (relocs)
1968 {
1969 if (!add_dynamic_entry (DT_REL, 0)
1970 || !add_dynamic_entry (DT_RELSZ, 0)
1971 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1972 return false;
1973
1974 /* If any dynamic relocs apply to a read-only section,
1975 then we need a DT_TEXTREL entry. */
1976 if ((info->flags & DF_TEXTREL) == 0)
1977 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1978 (PTR) info);
1979
1980 if ((info->flags & DF_TEXTREL) != 0)
1981 {
1982 if (!add_dynamic_entry (DT_TEXTREL, 0))
1983 return false;
1984 }
1985 }
1986 }
1987 #undef add_dynamic_entry
1988
1989 return true;
1990 }
1991
1992 /* Set the correct type for an x86 ELF section. We do this by the
1993 section name, which is a hack, but ought to work. */
1994
1995 static boolean
1996 elf_i386_fake_sections (abfd, hdr, sec)
1997 bfd *abfd ATTRIBUTE_UNUSED;
1998 Elf32_Internal_Shdr *hdr;
1999 asection *sec;
2000 {
2001 register const char *name;
2002
2003 name = bfd_get_section_name (abfd, sec);
2004
2005 /* This is an ugly, but unfortunately necessary hack that is
2006 needed when producing EFI binaries on x86. It tells
2007 elf.c:elf_fake_sections() not to consider ".reloc" as a section
2008 containing ELF relocation info. We need this hack in order to
2009 be able to generate ELF binaries that can be translated into
2010 EFI applications (which are essentially COFF objects). Those
2011 files contain a COFF ".reloc" section inside an ELFNN object,
2012 which would normally cause BFD to segfault because it would
2013 attempt to interpret this section as containing relocation
2014 entries for section "oc". With this hack enabled, ".reloc"
2015 will be treated as a normal data section, which will avoid the
2016 segfault. However, you won't be able to create an ELFNN binary
2017 with a section named "oc" that needs relocations, but that's
2018 the kind of ugly side-effects you get when detecting section
2019 types based on their names... In practice, this limitation is
2020 unlikely to bite. */
2021 if (strcmp (name, ".reloc") == 0)
2022 hdr->sh_type = SHT_PROGBITS;
2023
2024 return true;
2025 }
2026
2027 /* Return the base VMA address which should be subtracted from real addresses
2028 when resolving @dtpoff relocation.
2029 This is PT_TLS segment p_vaddr. */
2030
2031 static bfd_vma
2032 dtpoff_base (info)
2033 struct bfd_link_info *info;
2034 {
2035 /* If tls_segment is NULL, we should have signalled an error already. */
2036 if (elf_hash_table (info)->tls_segment == NULL)
2037 return 0;
2038 return elf_hash_table (info)->tls_segment->start;
2039 }
2040
2041 /* Return the relocation value for @tpoff relocation
2042 if STT_TLS virtual address is ADDRESS. */
2043
2044 static bfd_vma
2045 tpoff (info, address)
2046 struct bfd_link_info *info;
2047 bfd_vma address;
2048 {
2049 struct elf_link_tls_segment *tls_segment
2050 = elf_hash_table (info)->tls_segment;
2051
2052 /* If tls_segment is NULL, we should have signalled an error already. */
2053 if (tls_segment == NULL)
2054 return 0;
2055 return (align_power (tls_segment->size, tls_segment->align)
2056 + tls_segment->start - address);
2057 }
2058
2059 /* Relocate an i386 ELF section. */
2060
2061 static boolean
2062 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
2063 contents, relocs, local_syms, local_sections)
2064 bfd *output_bfd;
2065 struct bfd_link_info *info;
2066 bfd *input_bfd;
2067 asection *input_section;
2068 bfd_byte *contents;
2069 Elf_Internal_Rela *relocs;
2070 Elf_Internal_Sym *local_syms;
2071 asection **local_sections;
2072 {
2073 struct elf_i386_link_hash_table *htab;
2074 Elf_Internal_Shdr *symtab_hdr;
2075 struct elf_link_hash_entry **sym_hashes;
2076 bfd_vma *local_got_offsets;
2077 Elf_Internal_Rela *rel;
2078 Elf_Internal_Rela *relend;
2079
2080 htab = elf_i386_hash_table (info);
2081 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2082 sym_hashes = elf_sym_hashes (input_bfd);
2083 local_got_offsets = elf_local_got_offsets (input_bfd);
2084
2085 rel = relocs;
2086 relend = relocs + input_section->reloc_count;
2087 for (; rel < relend; rel++)
2088 {
2089 unsigned int r_type;
2090 reloc_howto_type *howto;
2091 unsigned long r_symndx;
2092 struct elf_link_hash_entry *h;
2093 Elf_Internal_Sym *sym;
2094 asection *sec;
2095 bfd_vma off;
2096 bfd_vma relocation;
2097 boolean unresolved_reloc;
2098 bfd_reloc_status_type r;
2099 unsigned int indx;
2100 int tls_type;
2101
2102 r_type = ELF32_R_TYPE (rel->r_info);
2103 if (r_type == (int) R_386_GNU_VTINHERIT
2104 || r_type == (int) R_386_GNU_VTENTRY)
2105 continue;
2106
2107 if ((indx = (unsigned) r_type) >= R_386_standard
2108 && ((indx = r_type - R_386_ext_offset) - R_386_standard
2109 >= R_386_ext - R_386_standard)
2110 && ((indx = r_type - R_386_tls_offset) - R_386_ext
2111 >= R_386_tls - R_386_ext))
2112 {
2113 bfd_set_error (bfd_error_bad_value);
2114 return false;
2115 }
2116 howto = elf_howto_table + indx;
2117
2118 r_symndx = ELF32_R_SYM (rel->r_info);
2119
2120 if (info->relocateable)
2121 {
2122 bfd_vma val;
2123 bfd_byte *where;
2124
2125 /* This is a relocatable link. We don't have to change
2126 anything, unless the reloc is against a section symbol,
2127 in which case we have to adjust according to where the
2128 section symbol winds up in the output section. */
2129 if (r_symndx >= symtab_hdr->sh_info)
2130 continue;
2131
2132 sym = local_syms + r_symndx;
2133 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2134 continue;
2135
2136 sec = local_sections[r_symndx];
2137 val = sec->output_offset;
2138 if (val == 0)
2139 continue;
2140
2141 where = contents + rel->r_offset;
2142 switch (howto->size)
2143 {
2144 /* FIXME: overflow checks. */
2145 case 0:
2146 val += bfd_get_8 (input_bfd, where);
2147 bfd_put_8 (input_bfd, val, where);
2148 break;
2149 case 1:
2150 val += bfd_get_16 (input_bfd, where);
2151 bfd_put_16 (input_bfd, val, where);
2152 break;
2153 case 2:
2154 val += bfd_get_32 (input_bfd, where);
2155 bfd_put_32 (input_bfd, val, where);
2156 break;
2157 default:
2158 abort ();
2159 }
2160 continue;
2161 }
2162
2163 /* This is a final link. */
2164 h = NULL;
2165 sym = NULL;
2166 sec = NULL;
2167 unresolved_reloc = false;
2168 if (r_symndx < symtab_hdr->sh_info)
2169 {
2170 sym = local_syms + r_symndx;
2171 sec = local_sections[r_symndx];
2172 relocation = (sec->output_section->vma
2173 + sec->output_offset
2174 + sym->st_value);
2175 if ((sec->flags & SEC_MERGE)
2176 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2177 {
2178 asection *msec;
2179 bfd_vma addend;
2180 bfd_byte *where = contents + rel->r_offset;
2181
2182 switch (howto->size)
2183 {
2184 case 0:
2185 addend = bfd_get_8 (input_bfd, where);
2186 if (howto->pc_relative)
2187 {
2188 addend = (addend ^ 0x80) - 0x80;
2189 addend += 1;
2190 }
2191 break;
2192 case 1:
2193 addend = bfd_get_16 (input_bfd, where);
2194 if (howto->pc_relative)
2195 {
2196 addend = (addend ^ 0x8000) - 0x8000;
2197 addend += 2;
2198 }
2199 break;
2200 case 2:
2201 addend = bfd_get_32 (input_bfd, where);
2202 if (howto->pc_relative)
2203 {
2204 addend = (addend ^ 0x80000000) - 0x80000000;
2205 addend += 4;
2206 }
2207 break;
2208 default:
2209 abort ();
2210 }
2211
2212 msec = sec;
2213 addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
2214 addend -= relocation;
2215 addend += msec->output_section->vma + msec->output_offset;
2216
2217 switch (howto->size)
2218 {
2219 case 0:
2220 /* FIXME: overflow checks. */
2221 if (howto->pc_relative)
2222 addend -= 1;
2223 bfd_put_8 (input_bfd, addend, where);
2224 break;
2225 case 1:
2226 if (howto->pc_relative)
2227 addend -= 2;
2228 bfd_put_16 (input_bfd, addend, where);
2229 break;
2230 case 2:
2231 if (howto->pc_relative)
2232 addend -= 4;
2233 bfd_put_32 (input_bfd, addend, where);
2234 break;
2235 }
2236 }
2237 }
2238 else
2239 {
2240 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2241 while (h->root.type == bfd_link_hash_indirect
2242 || h->root.type == bfd_link_hash_warning)
2243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2244
2245 relocation = 0;
2246 if (h->root.type == bfd_link_hash_defined
2247 || h->root.type == bfd_link_hash_defweak)
2248 {
2249 sec = h->root.u.def.section;
2250 if (sec->output_section == NULL)
2251 /* Set a flag that will be cleared later if we find a
2252 relocation value for this symbol. output_section
2253 is typically NULL for symbols satisfied by a shared
2254 library. */
2255 unresolved_reloc = true;
2256 else
2257 relocation = (h->root.u.def.value
2258 + sec->output_section->vma
2259 + sec->output_offset);
2260 }
2261 else if (h->root.type == bfd_link_hash_undefweak)
2262 ;
2263 else if (info->shared
2264 && (!info->symbolic || info->allow_shlib_undefined)
2265 && !info->no_undefined
2266 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2267 ;
2268 else
2269 {
2270 if (! ((*info->callbacks->undefined_symbol)
2271 (info, h->root.root.string, input_bfd,
2272 input_section, rel->r_offset,
2273 (!info->shared || info->no_undefined
2274 || ELF_ST_VISIBILITY (h->other)))))
2275 return false;
2276 }
2277 }
2278
2279 switch (r_type)
2280 {
2281 case R_386_GOT32:
2282 /* Relocation is to the entry for this symbol in the global
2283 offset table. */
2284 if (htab->sgot == NULL)
2285 abort ();
2286
2287 if (h != NULL)
2288 {
2289 boolean dyn;
2290
2291 off = h->got.offset;
2292 dyn = htab->elf.dynamic_sections_created;
2293 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2294 || (info->shared
2295 && (info->symbolic
2296 || h->dynindx == -1
2297 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2298 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2299 {
2300 /* This is actually a static link, or it is a
2301 -Bsymbolic link and the symbol is defined
2302 locally, or the symbol was forced to be local
2303 because of a version file. We must initialize
2304 this entry in the global offset table. Since the
2305 offset must always be a multiple of 4, we use the
2306 least significant bit to record whether we have
2307 initialized it already.
2308
2309 When doing a dynamic link, we create a .rel.got
2310 relocation entry to initialize the value. This
2311 is done in the finish_dynamic_symbol routine. */
2312 if ((off & 1) != 0)
2313 off &= ~1;
2314 else
2315 {
2316 bfd_put_32 (output_bfd, relocation,
2317 htab->sgot->contents + off);
2318 h->got.offset |= 1;
2319 }
2320 }
2321 else
2322 unresolved_reloc = false;
2323 }
2324 else
2325 {
2326 if (local_got_offsets == NULL)
2327 abort ();
2328
2329 off = local_got_offsets[r_symndx];
2330
2331 /* The offset must always be a multiple of 4. We use
2332 the least significant bit to record whether we have
2333 already generated the necessary reloc. */
2334 if ((off & 1) != 0)
2335 off &= ~1;
2336 else
2337 {
2338 bfd_put_32 (output_bfd, relocation,
2339 htab->sgot->contents + off);
2340
2341 if (info->shared)
2342 {
2343 asection *srelgot;
2344 Elf_Internal_Rel outrel;
2345 Elf32_External_Rel *loc;
2346
2347 srelgot = htab->srelgot;
2348 if (srelgot == NULL)
2349 abort ();
2350
2351 outrel.r_offset = (htab->sgot->output_section->vma
2352 + htab->sgot->output_offset
2353 + off);
2354 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2355 loc = (Elf32_External_Rel *) srelgot->contents;
2356 loc += srelgot->reloc_count++;
2357 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2358 }
2359
2360 local_got_offsets[r_symndx] |= 1;
2361 }
2362 }
2363
2364 if (off >= (bfd_vma) -2)
2365 abort ();
2366
2367 relocation = htab->sgot->output_offset + off;
2368 break;
2369
2370 case R_386_GOTOFF:
2371 /* Relocation is relative to the start of the global offset
2372 table. */
2373
2374 /* Note that sgot->output_offset is not involved in this
2375 calculation. We always want the start of .got. If we
2376 defined _GLOBAL_OFFSET_TABLE in a different way, as is
2377 permitted by the ABI, we might have to change this
2378 calculation. */
2379 relocation -= htab->sgot->output_section->vma;
2380 break;
2381
2382 case R_386_GOTPC:
2383 /* Use global offset table as symbol value. */
2384 relocation = htab->sgot->output_section->vma;
2385 unresolved_reloc = false;
2386 break;
2387
2388 case R_386_PLT32:
2389 /* Relocation is to the entry for this symbol in the
2390 procedure linkage table. */
2391
2392 /* Resolve a PLT32 reloc against a local symbol directly,
2393 without using the procedure linkage table. */
2394 if (h == NULL)
2395 break;
2396
2397 if (h->plt.offset == (bfd_vma) -1
2398 || htab->splt == NULL)
2399 {
2400 /* We didn't make a PLT entry for this symbol. This
2401 happens when statically linking PIC code, or when
2402 using -Bsymbolic. */
2403 break;
2404 }
2405
2406 relocation = (htab->splt->output_section->vma
2407 + htab->splt->output_offset
2408 + h->plt.offset);
2409 unresolved_reloc = false;
2410 break;
2411
2412 case R_386_32:
2413 case R_386_PC32:
2414 /* r_symndx will be zero only for relocs against symbols
2415 from removed linkonce sections, or sections discarded by
2416 a linker script. */
2417 if (r_symndx == 0
2418 || (input_section->flags & SEC_ALLOC) == 0)
2419 break;
2420
2421 if ((info->shared
2422 && (r_type != R_386_PC32
2423 || (h != NULL
2424 && h->dynindx != -1
2425 && (! info->symbolic
2426 || (h->elf_link_hash_flags
2427 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2428 || (!info->shared
2429 && h != NULL
2430 && h->dynindx != -1
2431 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2432 && (((h->elf_link_hash_flags
2433 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2434 && (h->elf_link_hash_flags
2435 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2436 || h->root.type == bfd_link_hash_undefweak
2437 || h->root.type == bfd_link_hash_undefined)))
2438 {
2439 Elf_Internal_Rel outrel;
2440 boolean skip, relocate;
2441 asection *sreloc;
2442 Elf32_External_Rel *loc;
2443
2444 /* When generating a shared object, these relocations
2445 are copied into the output file to be resolved at run
2446 time. */
2447
2448 skip = false;
2449 relocate = false;
2450
2451 outrel.r_offset =
2452 _bfd_elf_section_offset (output_bfd, info, input_section,
2453 rel->r_offset);
2454 if (outrel.r_offset == (bfd_vma) -1)
2455 skip = true;
2456 else if (outrel.r_offset == (bfd_vma) -2)
2457 skip = true, relocate = true;
2458 outrel.r_offset += (input_section->output_section->vma
2459 + input_section->output_offset);
2460
2461 if (skip)
2462 memset (&outrel, 0, sizeof outrel);
2463 else if (h != NULL
2464 && h->dynindx != -1
2465 && (r_type == R_386_PC32
2466 || !info->shared
2467 || !info->symbolic
2468 || (h->elf_link_hash_flags
2469 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2470 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2471 else
2472 {
2473 /* This symbol is local, or marked to become local. */
2474 relocate = true;
2475 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2476 }
2477
2478 sreloc = elf_section_data (input_section)->sreloc;
2479 if (sreloc == NULL)
2480 abort ();
2481
2482 loc = (Elf32_External_Rel *) sreloc->contents;
2483 loc += sreloc->reloc_count++;
2484 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2485
2486 /* If this reloc is against an external symbol, we do
2487 not want to fiddle with the addend. Otherwise, we
2488 need to include the symbol value so that it becomes
2489 an addend for the dynamic reloc. */
2490 if (! relocate)
2491 continue;
2492 }
2493 break;
2494
2495 case R_386_TLS_IE:
2496 if (info->shared)
2497 {
2498 Elf_Internal_Rel outrel;
2499 asection *sreloc;
2500 Elf32_External_Rel *loc;
2501
2502 outrel.r_offset = rel->r_offset
2503 + input_section->output_section->vma
2504 + input_section->output_offset;
2505 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2506 sreloc = elf_section_data (input_section)->sreloc;
2507 if (sreloc == NULL)
2508 abort ();
2509 loc = (Elf32_External_Rel *) sreloc->contents;
2510 loc += sreloc->reloc_count++;
2511 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2512 }
2513 /* Fall through */
2514
2515 case R_386_TLS_GD:
2516 case R_386_TLS_IE_32:
2517 case R_386_TLS_GOTIE:
2518 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
2519 tls_type = GOT_UNKNOWN;
2520 if (h == NULL && local_got_offsets)
2521 tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
2522 else if (h != NULL)
2523 {
2524 tls_type = elf_i386_hash_entry(h)->tls_type;
2525 if (!info->shared && h->dynindx == -1 && (tls_type & GOT_TLS_IE))
2526 r_type = R_386_TLS_LE_32;
2527 }
2528 if (tls_type == GOT_TLS_IE)
2529 tls_type = GOT_TLS_IE_NEG;
2530 if (r_type == R_386_TLS_GD)
2531 {
2532 if (tls_type == GOT_TLS_IE_POS)
2533 r_type = R_386_TLS_GOTIE;
2534 else if (tls_type & GOT_TLS_IE)
2535 r_type = R_386_TLS_IE_32;
2536 }
2537
2538 if (r_type == R_386_TLS_LE_32)
2539 {
2540 BFD_ASSERT (! unresolved_reloc);
2541 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
2542 {
2543 unsigned int val, type;
2544 bfd_vma roff;
2545
2546 /* GD->LE transition. */
2547 BFD_ASSERT (rel->r_offset >= 2);
2548 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2549 BFD_ASSERT (type == 0x8d || type == 0x04);
2550 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2551 BFD_ASSERT (bfd_get_8 (input_bfd,
2552 contents + rel->r_offset + 4)
2553 == 0xe8);
2554 BFD_ASSERT (rel + 1 < relend);
2555 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2556 roff = rel->r_offset + 5;
2557 val = bfd_get_8 (input_bfd,
2558 contents + rel->r_offset - 1);
2559 if (type == 0x04)
2560 {
2561 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2562 Change it into:
2563 movl %gs:0, %eax; subl $foo@tpoff, %eax
2564 (6 byte form of subl). */
2565 BFD_ASSERT (rel->r_offset >= 3);
2566 BFD_ASSERT (bfd_get_8 (input_bfd,
2567 contents + rel->r_offset - 3)
2568 == 0x8d);
2569 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2570 memcpy (contents + rel->r_offset - 3,
2571 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2572 }
2573 else
2574 {
2575 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2576 if (rel->r_offset + 10 <= input_section->_raw_size
2577 && bfd_get_8 (input_bfd,
2578 contents + rel->r_offset + 9) == 0x90)
2579 {
2580 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2581 Change it into:
2582 movl %gs:0, %eax; subl $foo@tpoff, %eax
2583 (6 byte form of subl). */
2584 memcpy (contents + rel->r_offset - 2,
2585 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2586 roff = rel->r_offset + 6;
2587 }
2588 else
2589 {
2590 /* leal foo(%reg), %eax; call ___tls_get_addr
2591 Change it into:
2592 movl %gs:0, %eax; subl $foo@tpoff, %eax
2593 (5 byte form of subl). */
2594 memcpy (contents + rel->r_offset - 2,
2595 "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2596 }
2597 }
2598 bfd_put_32 (output_bfd, tpoff (info, relocation),
2599 contents + roff);
2600 /* Skip R_386_PLT32. */
2601 rel++;
2602 continue;
2603 }
2604 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE)
2605 {
2606 unsigned int val, type;
2607
2608 /* IE->LE transition:
2609 Originally it can be one of:
2610 movl foo, %eax
2611 movl foo, %reg
2612 addl foo, %reg
2613 We change it into:
2614 movl $foo, %eax
2615 movl $foo, %reg
2616 addl $foo, %reg. */
2617 BFD_ASSERT (rel->r_offset >= 1);
2618 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2619 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2620 if (val != 0xa1)
2621 {
2622 BFD_ASSERT (rel->r_offset >= 2);
2623 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2624 }
2625 if (val == 0xa1)
2626 {
2627 /* movl foo, %eax. */
2628 bfd_put_8 (output_bfd, 0xb8, contents + rel->r_offset - 1);
2629 }
2630 else if (type == 0x8b)
2631 {
2632 /* movl */
2633 BFD_ASSERT ((val & 0xc7) == 0x05);
2634 bfd_put_8 (output_bfd, 0xc7,
2635 contents + rel->r_offset - 2);
2636 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2637 contents + rel->r_offset - 1);
2638 }
2639 else if (type == 0x03)
2640 {
2641 /* addl */
2642 BFD_ASSERT ((val & 0xc7) == 0x05);
2643 bfd_put_8 (output_bfd, 0x81,
2644 contents + rel->r_offset - 2);
2645 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2646 contents + rel->r_offset - 1);
2647 }
2648 else
2649 BFD_FAIL ();
2650 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2651 contents + rel->r_offset);
2652 continue;
2653 }
2654 else
2655 {
2656 unsigned int val, type;
2657
2658 /* {IE_32,GOTIE}->LE transition:
2659 Originally it can be one of:
2660 subl foo(%reg1), %reg2
2661 movl foo(%reg1), %reg2
2662 addl foo(%reg1), %reg2
2663 We change it into:
2664 subl $foo, %reg2
2665 movl $foo, %reg2 (6 byte form)
2666 addl $foo, %reg2. */
2667 BFD_ASSERT (rel->r_offset >= 2);
2668 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2669 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2670 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2671 BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
2672 if (type == 0x8b)
2673 {
2674 /* movl */
2675 bfd_put_8 (output_bfd, 0xc7,
2676 contents + rel->r_offset - 2);
2677 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2678 contents + rel->r_offset - 1);
2679 }
2680 else if (type == 0x2b)
2681 {
2682 /* subl */
2683 bfd_put_8 (output_bfd, 0x81,
2684 contents + rel->r_offset - 2);
2685 bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
2686 contents + rel->r_offset - 1);
2687 }
2688 else if (type == 0x03)
2689 {
2690 /* addl */
2691 bfd_put_8 (output_bfd, 0x81,
2692 contents + rel->r_offset - 2);
2693 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2694 contents + rel->r_offset - 1);
2695 }
2696 else
2697 BFD_FAIL ();
2698 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE)
2699 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2700 contents + rel->r_offset);
2701 else
2702 bfd_put_32 (output_bfd, tpoff (info, relocation),
2703 contents + rel->r_offset);
2704 continue;
2705 }
2706 }
2707
2708 if (htab->sgot == NULL)
2709 abort ();
2710
2711 if (h != NULL)
2712 off = h->got.offset;
2713 else
2714 {
2715 if (local_got_offsets == NULL)
2716 abort ();
2717
2718 off = local_got_offsets[r_symndx];
2719 }
2720
2721 if ((off & 1) != 0)
2722 off &= ~1;
2723 else
2724 {
2725 Elf_Internal_Rel outrel;
2726 Elf32_External_Rel *loc;
2727 int dr_type, indx;
2728
2729 if (htab->srelgot == NULL)
2730 abort ();
2731
2732 outrel.r_offset = (htab->sgot->output_section->vma
2733 + htab->sgot->output_offset + off);
2734
2735 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2736 if (r_type == R_386_TLS_GD)
2737 dr_type = R_386_TLS_DTPMOD32;
2738 else if (tls_type == GOT_TLS_IE_POS)
2739 dr_type = R_386_TLS_TPOFF;
2740 else
2741 dr_type = R_386_TLS_TPOFF32;
2742 if (dr_type == R_386_TLS_TPOFF && indx == 0)
2743 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
2744 htab->sgot->contents + off);
2745 else if (dr_type == R_386_TLS_TPOFF32 && indx == 0)
2746 bfd_put_32 (output_bfd, dtpoff_base (info) - relocation,
2747 htab->sgot->contents + off);
2748 else
2749 bfd_put_32 (output_bfd, 0,
2750 htab->sgot->contents + off);
2751 outrel.r_info = ELF32_R_INFO (indx, dr_type);
2752 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2753 loc += htab->srelgot->reloc_count++;
2754 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2755
2756 if (r_type == R_386_TLS_GD)
2757 {
2758 if (indx == 0)
2759 {
2760 BFD_ASSERT (! unresolved_reloc);
2761 bfd_put_32 (output_bfd,
2762 relocation - dtpoff_base (info),
2763 htab->sgot->contents + off + 4);
2764 }
2765 else
2766 {
2767 bfd_put_32 (output_bfd, 0,
2768 htab->sgot->contents + off + 4);
2769 outrel.r_info = ELF32_R_INFO (indx,
2770 R_386_TLS_DTPOFF32);
2771 outrel.r_offset += 4;
2772 htab->srelgot->reloc_count++;
2773 loc++;
2774 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
2775 loc);
2776 }
2777 }
2778 else if (tls_type == GOT_TLS_IE_BOTH)
2779 {
2780 bfd_put_32 (output_bfd,
2781 indx == 0 ? relocation - dtpoff_base (info) : 0,
2782 htab->sgot->contents + off + 4);
2783 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2784 outrel.r_offset += 4;
2785 htab->srelgot->reloc_count++;
2786 loc++;
2787 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2788 }
2789
2790 if (h != NULL)
2791 h->got.offset |= 1;
2792 else
2793 local_got_offsets[r_symndx] |= 1;
2794 }
2795
2796 if (off >= (bfd_vma) -2)
2797 abort ();
2798 if (r_type == ELF32_R_TYPE (rel->r_info))
2799 {
2800 relocation = htab->sgot->output_offset + off;
2801 if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE)
2802 && tls_type == GOT_TLS_IE_BOTH)
2803 relocation += 4;
2804 if (r_type == R_386_TLS_IE)
2805 relocation += htab->sgot->output_section->vma;
2806 unresolved_reloc = false;
2807 }
2808 else
2809 {
2810 unsigned int val, type;
2811 bfd_vma roff;
2812
2813 /* GD->IE transition. */
2814 BFD_ASSERT (rel->r_offset >= 2);
2815 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2816 BFD_ASSERT (type == 0x8d || type == 0x04);
2817 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2818 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2819 == 0xe8);
2820 BFD_ASSERT (rel + 1 < relend);
2821 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2822 roff = rel->r_offset - 3;
2823 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2824 if (type == 0x04)
2825 {
2826 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2827 Change it into:
2828 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2829 BFD_ASSERT (rel->r_offset >= 3);
2830 BFD_ASSERT (bfd_get_8 (input_bfd,
2831 contents + rel->r_offset - 3)
2832 == 0x8d);
2833 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2834 val >>= 3;
2835 }
2836 else
2837 {
2838 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2839 Change it into:
2840 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2841 BFD_ASSERT (rel->r_offset + 10 <= input_section->_raw_size);
2842 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2843 BFD_ASSERT (bfd_get_8 (input_bfd,
2844 contents + rel->r_offset + 9)
2845 == 0x90);
2846 roff = rel->r_offset - 2;
2847 }
2848 memcpy (contents + roff,
2849 "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
2850 contents[roff + 7] = 0x80 | (val & 7);
2851 /* If foo is used only with foo@gotntpoff(%reg) and
2852 foo@indntpoff, but not with foo@gottpoff(%reg), change
2853 subl $foo@gottpoff(%reg), %eax
2854 into:
2855 addl $foo@gotntpoff(%reg), %eax. */
2856 if (r_type == R_386_TLS_GOTIE)
2857 {
2858 contents[roff + 6] = 0x03;
2859 if (tls_type == GOT_TLS_IE_BOTH)
2860 off += 4;
2861 }
2862 bfd_put_32 (output_bfd, htab->sgot->output_offset + off,
2863 contents + roff + 8);
2864 /* Skip R_386_PLT32. */
2865 rel++;
2866 continue;
2867 }
2868 break;
2869
2870 case R_386_TLS_LDM:
2871 if (! info->shared)
2872 {
2873 unsigned int val;
2874
2875 /* LD->LE transition:
2876 Ensure it is:
2877 leal foo(%reg), %eax; call ___tls_get_addr.
2878 We change it into:
2879 movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
2880 BFD_ASSERT (rel->r_offset >= 2);
2881 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2882 == 0x8d);
2883 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2884 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2885 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2886 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2887 == 0xe8);
2888 BFD_ASSERT (rel + 1 < relend);
2889 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2890 memcpy (contents + rel->r_offset - 2,
2891 "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
2892 /* Skip R_386_PLT32. */
2893 rel++;
2894 continue;
2895 }
2896
2897 if (htab->sgot == NULL)
2898 abort ();
2899
2900 off = htab->tls_ldm_got.offset;
2901 if (off & 1)
2902 off &= ~1;
2903 else
2904 {
2905 Elf_Internal_Rel outrel;
2906 Elf32_External_Rel *loc;
2907
2908 if (htab->srelgot == NULL)
2909 abort ();
2910
2911 outrel.r_offset = (htab->sgot->output_section->vma
2912 + htab->sgot->output_offset + off);
2913
2914 bfd_put_32 (output_bfd, 0,
2915 htab->sgot->contents + off);
2916 bfd_put_32 (output_bfd, 0,
2917 htab->sgot->contents + off + 4);
2918 outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
2919 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2920 loc += htab->srelgot->reloc_count++;
2921 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2922 htab->tls_ldm_got.offset |= 1;
2923 }
2924 relocation = htab->sgot->output_offset + off;
2925 unresolved_reloc = false;
2926 break;
2927
2928 case R_386_TLS_LDO_32:
2929 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2930 relocation -= dtpoff_base (info);
2931 else
2932 /* When converting LDO to LE, we must negate. */
2933 relocation = -tpoff (info, relocation);
2934 break;
2935
2936 case R_386_TLS_LE_32:
2937 case R_386_TLS_LE:
2938 if (info->shared)
2939 {
2940 Elf_Internal_Rel outrel;
2941 asection *sreloc;
2942 Elf32_External_Rel *loc;
2943 int indx;
2944
2945 outrel.r_offset = rel->r_offset
2946 + input_section->output_section->vma
2947 + input_section->output_offset;
2948 if (h != NULL && h->dynindx != -1)
2949 indx = h->dynindx;
2950 else
2951 indx = 0;
2952 if (r_type == R_386_TLS_LE_32)
2953 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32);
2954 else
2955 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2956 sreloc = elf_section_data (input_section)->sreloc;
2957 if (sreloc == NULL)
2958 abort ();
2959 loc = (Elf32_External_Rel *) sreloc->contents;
2960 loc += sreloc->reloc_count++;
2961 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2962 if (indx)
2963 continue;
2964 else if (r_type == R_386_TLS_LE_32)
2965 relocation = dtpoff_base (info) - relocation;
2966 else
2967 relocation -= dtpoff_base (info);
2968 }
2969 else if (r_type == R_386_TLS_LE_32)
2970 relocation = tpoff (info, relocation);
2971 else
2972 relocation = -tpoff (info, relocation);
2973 break;
2974
2975 default:
2976 break;
2977 }
2978
2979 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2980 because such sections are not SEC_ALLOC and thus ld.so will
2981 not process them. */
2982 if (unresolved_reloc
2983 && !((input_section->flags & SEC_DEBUGGING) != 0
2984 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2985 {
2986 (*_bfd_error_handler)
2987 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2988 bfd_archive_filename (input_bfd),
2989 bfd_get_section_name (input_bfd, input_section),
2990 (long) rel->r_offset,
2991 h->root.root.string);
2992 return false;
2993 }
2994
2995 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2996 contents, rel->r_offset,
2997 relocation, (bfd_vma) 0);
2998
2999 if (r != bfd_reloc_ok)
3000 {
3001 const char *name;
3002
3003 if (h != NULL)
3004 name = h->root.root.string;
3005 else
3006 {
3007 name = bfd_elf_string_from_elf_section (input_bfd,
3008 symtab_hdr->sh_link,
3009 sym->st_name);
3010 if (name == NULL)
3011 return false;
3012 if (*name == '\0')
3013 name = bfd_section_name (input_bfd, sec);
3014 }
3015
3016 if (r == bfd_reloc_overflow)
3017 {
3018 if (! ((*info->callbacks->reloc_overflow)
3019 (info, name, howto->name, (bfd_vma) 0,
3020 input_bfd, input_section, rel->r_offset)))
3021 return false;
3022 }
3023 else
3024 {
3025 (*_bfd_error_handler)
3026 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
3027 bfd_archive_filename (input_bfd),
3028 bfd_get_section_name (input_bfd, input_section),
3029 (long) rel->r_offset, name, (int) r);
3030 return false;
3031 }
3032 }
3033 }
3034
3035 return true;
3036 }
3037
3038 /* Finish up dynamic symbol handling. We set the contents of various
3039 dynamic sections here. */
3040
3041 static boolean
3042 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
3043 bfd *output_bfd;
3044 struct bfd_link_info *info;
3045 struct elf_link_hash_entry *h;
3046 Elf_Internal_Sym *sym;
3047 {
3048 struct elf_i386_link_hash_table *htab;
3049
3050 htab = elf_i386_hash_table (info);
3051
3052 if (h->plt.offset != (bfd_vma) -1)
3053 {
3054 bfd_vma plt_index;
3055 bfd_vma got_offset;
3056 Elf_Internal_Rel rel;
3057 Elf32_External_Rel *loc;
3058
3059 /* This symbol has an entry in the procedure linkage table. Set
3060 it up. */
3061
3062 if (h->dynindx == -1
3063 || htab->splt == NULL
3064 || htab->sgotplt == NULL
3065 || htab->srelplt == NULL)
3066 abort ();
3067
3068 /* Get the index in the procedure linkage table which
3069 corresponds to this symbol. This is the index of this symbol
3070 in all the symbols for which we are making plt entries. The
3071 first entry in the procedure linkage table is reserved. */
3072 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3073
3074 /* Get the offset into the .got table of the entry that
3075 corresponds to this function. Each .got entry is 4 bytes.
3076 The first three are reserved. */
3077 got_offset = (plt_index + 3) * 4;
3078
3079 /* Fill in the entry in the procedure linkage table. */
3080 if (! info->shared)
3081 {
3082 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
3083 PLT_ENTRY_SIZE);
3084 bfd_put_32 (output_bfd,
3085 (htab->sgotplt->output_section->vma
3086 + htab->sgotplt->output_offset
3087 + got_offset),
3088 htab->splt->contents + h->plt.offset + 2);
3089 }
3090 else
3091 {
3092 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
3093 PLT_ENTRY_SIZE);
3094 bfd_put_32 (output_bfd, got_offset,
3095 htab->splt->contents + h->plt.offset + 2);
3096 }
3097
3098 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
3099 htab->splt->contents + h->plt.offset + 7);
3100 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3101 htab->splt->contents + h->plt.offset + 12);
3102
3103 /* Fill in the entry in the global offset table. */
3104 bfd_put_32 (output_bfd,
3105 (htab->splt->output_section->vma
3106 + htab->splt->output_offset
3107 + h->plt.offset
3108 + 6),
3109 htab->sgotplt->contents + got_offset);
3110
3111 /* Fill in the entry in the .rel.plt section. */
3112 rel.r_offset = (htab->sgotplt->output_section->vma
3113 + htab->sgotplt->output_offset
3114 + got_offset);
3115 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
3116 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
3117 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3118
3119 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3120 {
3121 /* Mark the symbol as undefined, rather than as defined in
3122 the .plt section. Leave the value alone. This is a clue
3123 for the dynamic linker, to make function pointer
3124 comparisons work between an application and shared
3125 library. */
3126 sym->st_shndx = SHN_UNDEF;
3127 }
3128 }
3129
3130 if (h->got.offset != (bfd_vma) -1
3131 && elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD
3132 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0)
3133 {
3134 Elf_Internal_Rel rel;
3135 Elf32_External_Rel *loc;
3136
3137 /* This symbol has an entry in the global offset table. Set it
3138 up. */
3139
3140 if (htab->sgot == NULL || htab->srelgot == NULL)
3141 abort ();
3142
3143 rel.r_offset = (htab->sgot->output_section->vma
3144 + htab->sgot->output_offset
3145 + (h->got.offset & ~(bfd_vma) 1));
3146
3147 /* If this is a static link, or it is a -Bsymbolic link and the
3148 symbol is defined locally or was forced to be local because
3149 of a version file, we just want to emit a RELATIVE reloc.
3150 The entry in the global offset table will already have been
3151 initialized in the relocate_section function. */
3152 if (info->shared
3153 && (info->symbolic
3154 || h->dynindx == -1
3155 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
3156 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3157 {
3158 BFD_ASSERT((h->got.offset & 1) != 0);
3159 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
3160 }
3161 else
3162 {
3163 BFD_ASSERT((h->got.offset & 1) == 0);
3164 bfd_put_32 (output_bfd, (bfd_vma) 0,
3165 htab->sgot->contents + h->got.offset);
3166 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
3167 }
3168
3169 loc = (Elf32_External_Rel *) htab->srelgot->contents;
3170 loc += htab->srelgot->reloc_count++;
3171 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3172 }
3173
3174 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3175 {
3176 Elf_Internal_Rel rel;
3177 Elf32_External_Rel *loc;
3178
3179 /* This symbol needs a copy reloc. Set it up. */
3180
3181 if (h->dynindx == -1
3182 || (h->root.type != bfd_link_hash_defined
3183 && h->root.type != bfd_link_hash_defweak)
3184 || htab->srelbss == NULL)
3185 abort ();
3186
3187 rel.r_offset = (h->root.u.def.value
3188 + h->root.u.def.section->output_section->vma
3189 + h->root.u.def.section->output_offset);
3190 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
3191 loc = (Elf32_External_Rel *) htab->srelbss->contents;
3192 loc += htab->srelbss->reloc_count++;
3193 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3194 }
3195
3196 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3197 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3198 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3199 sym->st_shndx = SHN_ABS;
3200
3201 return true;
3202 }
3203
3204 /* Used to decide how to sort relocs in an optimal manner for the
3205 dynamic linker, before writing them out. */
3206
3207 static enum elf_reloc_type_class
3208 elf_i386_reloc_type_class (rela)
3209 const Elf_Internal_Rela *rela;
3210 {
3211 switch ((int) ELF32_R_TYPE (rela->r_info))
3212 {
3213 case R_386_RELATIVE:
3214 return reloc_class_relative;
3215 case R_386_JUMP_SLOT:
3216 return reloc_class_plt;
3217 case R_386_COPY:
3218 return reloc_class_copy;
3219 default:
3220 return reloc_class_normal;
3221 }
3222 }
3223
3224 /* Finish up the dynamic sections. */
3225
3226 static boolean
3227 elf_i386_finish_dynamic_sections (output_bfd, info)
3228 bfd *output_bfd;
3229 struct bfd_link_info *info;
3230 {
3231 struct elf_i386_link_hash_table *htab;
3232 bfd *dynobj;
3233 asection *sdyn;
3234
3235 htab = elf_i386_hash_table (info);
3236 dynobj = htab->elf.dynobj;
3237 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3238
3239 if (htab->elf.dynamic_sections_created)
3240 {
3241 Elf32_External_Dyn *dyncon, *dynconend;
3242
3243 if (sdyn == NULL || htab->sgot == NULL)
3244 abort ();
3245
3246 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3247 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3248 for (; dyncon < dynconend; dyncon++)
3249 {
3250 Elf_Internal_Dyn dyn;
3251 asection *s;
3252
3253 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3254
3255 switch (dyn.d_tag)
3256 {
3257 default:
3258 continue;
3259
3260 case DT_PLTGOT:
3261 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3262 break;
3263
3264 case DT_JMPREL:
3265 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3266 break;
3267
3268 case DT_PLTRELSZ:
3269 s = htab->srelplt->output_section;
3270 if (s->_cooked_size != 0)
3271 dyn.d_un.d_val = s->_cooked_size;
3272 else
3273 dyn.d_un.d_val = s->_raw_size;
3274 break;
3275
3276 case DT_RELSZ:
3277 /* My reading of the SVR4 ABI indicates that the
3278 procedure linkage table relocs (DT_JMPREL) should be
3279 included in the overall relocs (DT_REL). This is
3280 what Solaris does. However, UnixWare can not handle
3281 that case. Therefore, we override the DT_RELSZ entry
3282 here to make it not include the JMPREL relocs. Since
3283 the linker script arranges for .rel.plt to follow all
3284 other relocation sections, we don't have to worry
3285 about changing the DT_REL entry. */
3286 if (htab->srelplt != NULL)
3287 {
3288 s = htab->srelplt->output_section;
3289 if (s->_cooked_size != 0)
3290 dyn.d_un.d_val -= s->_cooked_size;
3291 else
3292 dyn.d_un.d_val -= s->_raw_size;
3293 }
3294 break;
3295 }
3296
3297 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3298 }
3299
3300 /* Fill in the first entry in the procedure linkage table. */
3301 if (htab->splt && htab->splt->_raw_size > 0)
3302 {
3303 if (info->shared)
3304 memcpy (htab->splt->contents,
3305 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
3306 else
3307 {
3308 memcpy (htab->splt->contents,
3309 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
3310 bfd_put_32 (output_bfd,
3311 (htab->sgotplt->output_section->vma
3312 + htab->sgotplt->output_offset
3313 + 4),
3314 htab->splt->contents + 2);
3315 bfd_put_32 (output_bfd,
3316 (htab->sgotplt->output_section->vma
3317 + htab->sgotplt->output_offset
3318 + 8),
3319 htab->splt->contents + 8);
3320 }
3321
3322 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3323 really seem like the right value. */
3324 elf_section_data (htab->splt->output_section)
3325 ->this_hdr.sh_entsize = 4;
3326 }
3327 }
3328
3329 if (htab->sgotplt)
3330 {
3331 /* Fill in the first three entries in the global offset table. */
3332 if (htab->sgotplt->_raw_size > 0)
3333 {
3334 bfd_put_32 (output_bfd,
3335 (sdyn == NULL ? (bfd_vma) 0
3336 : sdyn->output_section->vma + sdyn->output_offset),
3337 htab->sgotplt->contents);
3338 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
3339 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
3340 }
3341
3342 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
3343 }
3344 return true;
3345 }
3346
3347 #ifndef ELF_ARCH
3348 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
3349 #define TARGET_LITTLE_NAME "elf32-i386"
3350 #define ELF_ARCH bfd_arch_i386
3351 #define ELF_MACHINE_CODE EM_386
3352 #define ELF_MAXPAGESIZE 0x1000
3353 #endif /* ELF_ARCH */
3354
3355 #define elf_backend_can_gc_sections 1
3356 #define elf_backend_can_refcount 1
3357 #define elf_backend_want_got_plt 1
3358 #define elf_backend_plt_readonly 1
3359 #define elf_backend_want_plt_sym 0
3360 #define elf_backend_got_header_size 12
3361 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3362
3363 #define elf_info_to_howto elf_i386_info_to_howto
3364 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
3365
3366 #define bfd_elf32_mkobject elf_i386_mkobject
3367 #define elf_backend_object_p elf_i386_object_p
3368
3369 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
3370 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
3371 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
3372
3373 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
3374 #define elf_backend_check_relocs elf_i386_check_relocs
3375 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
3376 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
3377 #define elf_backend_fake_sections elf_i386_fake_sections
3378 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
3379 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
3380 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
3381 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
3382 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
3383 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
3384 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
3385 #define elf_backend_relocate_section elf_i386_relocate_section
3386 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
3387
3388 #ifndef ELF32_I386_C_INCLUDED
3389 #include "elf32-target.h"
3390 #endif