]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68hc1x.c
Remove use of alloca.
[thirdparty/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "alloca-conf.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf32-m68hc1x.h"
29 #include "elf/m68hc11.h"
30 #include "opcode/m68hc11.h"
31 #include "libiberty.h"
32
33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
34 ((struct elf32_m68hc11_stub_hash_entry *) \
35 bfd_hash_lookup ((table), (string), (create), (copy)))
36
37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
38 (const char *stub_name,
39 asection *section,
40 struct m68hc11_elf_link_hash_table *htab);
41
42 static struct bfd_hash_entry *stub_hash_newfunc
43 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44
45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
46 const char* name, bfd_vma value,
47 asection* sec);
48
49 static bfd_boolean m68hc11_elf_export_one_stub
50 (struct bfd_hash_entry *gen_entry, void *in_arg);
51
52 static void scan_sections_for_abi (bfd*, asection*, void *);
53
54 struct m68hc11_scan_param
55 {
56 struct m68hc11_page_info* pinfo;
57 bfd_boolean use_memory_banks;
58 };
59
60
61 /* Destroy a 68HC11/68HC12 ELF linker hash table. */
62
63 static void
64 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
65 {
66 struct m68hc11_elf_link_hash_table *ret
67 = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
68
69 bfd_hash_table_free (ret->stub_hash_table);
70 free (ret->stub_hash_table);
71 _bfd_elf_link_hash_table_free (obfd);
72 }
73
74 /* Create a 68HC11/68HC12 ELF linker hash table. */
75
76 struct m68hc11_elf_link_hash_table*
77 m68hc11_elf_hash_table_create (bfd *abfd)
78 {
79 struct m68hc11_elf_link_hash_table *ret;
80 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
81
82 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
83 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
84 return NULL;
85
86 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
87 _bfd_elf_link_hash_newfunc,
88 sizeof (struct elf_link_hash_entry),
89 M68HC11_ELF_DATA))
90 {
91 free (ret);
92 return NULL;
93 }
94
95 /* Init the stub hash table too. */
96 amt = sizeof (struct bfd_hash_table);
97 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
98 if (ret->stub_hash_table == NULL)
99 {
100 _bfd_elf_link_hash_table_free (abfd);
101 return NULL;
102 }
103 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
104 sizeof (struct elf32_m68hc11_stub_hash_entry)))
105 {
106 free (ret->stub_hash_table);
107 _bfd_elf_link_hash_table_free (abfd);
108 return NULL;
109 }
110 ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
111
112 return ret;
113 }
114
115 /* Assorted hash table functions. */
116
117 /* Initialize an entry in the stub hash table. */
118
119 static struct bfd_hash_entry *
120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
121 const char *string)
122 {
123 /* Allocate the structure if it has not already been allocated by a
124 subclass. */
125 if (entry == NULL)
126 {
127 entry = bfd_hash_allocate (table,
128 sizeof (struct elf32_m68hc11_stub_hash_entry));
129 if (entry == NULL)
130 return entry;
131 }
132
133 /* Call the allocation method of the superclass. */
134 entry = bfd_hash_newfunc (entry, table, string);
135 if (entry != NULL)
136 {
137 struct elf32_m68hc11_stub_hash_entry *eh;
138
139 /* Initialize the local fields. */
140 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
141 eh->stub_sec = NULL;
142 eh->stub_offset = 0;
143 eh->target_value = 0;
144 eh->target_section = NULL;
145 }
146
147 return entry;
148 }
149
150 /* Add a new stub entry to the stub hash. Not all fields of the new
151 stub entry are initialised. */
152
153 static struct elf32_m68hc11_stub_hash_entry *
154 m68hc12_add_stub (const char *stub_name, asection *section,
155 struct m68hc11_elf_link_hash_table *htab)
156 {
157 struct elf32_m68hc11_stub_hash_entry *stub_entry;
158
159 /* Enter this entry into the linker stub hash table. */
160 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
161 TRUE, FALSE);
162 if (stub_entry == NULL)
163 {
164 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
165 section->owner, stub_name);
166 return NULL;
167 }
168
169 if (htab->stub_section == 0)
170 {
171 htab->stub_section = (*htab->add_stub_section) (".tramp",
172 htab->tramp_section);
173 }
174
175 stub_entry->stub_sec = htab->stub_section;
176 stub_entry->stub_offset = 0;
177 return stub_entry;
178 }
179
180 /* Hook called by the linker routine which adds symbols from an object
181 file. We use it for identify far symbols and force a loading of
182 the trampoline handler. */
183
184 bfd_boolean
185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
186 Elf_Internal_Sym *sym,
187 const char **namep ATTRIBUTE_UNUSED,
188 flagword *flagsp ATTRIBUTE_UNUSED,
189 asection **secp ATTRIBUTE_UNUSED,
190 bfd_vma *valp ATTRIBUTE_UNUSED)
191 {
192 if (sym->st_other & STO_M68HC12_FAR)
193 {
194 struct elf_link_hash_entry *h;
195
196 h = (struct elf_link_hash_entry *)
197 bfd_link_hash_lookup (info->hash, "__far_trampoline",
198 FALSE, FALSE, FALSE);
199 if (h == NULL)
200 {
201 struct bfd_link_hash_entry* entry = NULL;
202
203 _bfd_generic_link_add_one_symbol (info, abfd,
204 "__far_trampoline",
205 BSF_GLOBAL,
206 bfd_und_section_ptr,
207 (bfd_vma) 0, (const char*) NULL,
208 FALSE, FALSE, &entry);
209 }
210
211 }
212 return TRUE;
213 }
214
215 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
216 STO_M68HC12_INTERRUPT. */
217
218 void
219 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
220 const Elf_Internal_Sym *isym,
221 bfd_boolean definition,
222 bfd_boolean dynamic ATTRIBUTE_UNUSED)
223 {
224 if (definition)
225 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
226 | ELF_ST_VISIBILITY (h->other));
227 }
228
229 /* External entry points for sizing and building linker stubs. */
230
231 /* Set up various things so that we can make a list of input sections
232 for each output section included in the link. Returns -1 on error,
233 0 when no stubs will be needed, and 1 on success. */
234
235 int
236 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
237 {
238 bfd *input_bfd;
239 unsigned int bfd_count;
240 unsigned int top_id, top_index;
241 asection *section;
242 asection **input_list, **list;
243 bfd_size_type amt;
244 asection *text_section;
245 struct m68hc11_elf_link_hash_table *htab;
246
247 htab = m68hc11_elf_hash_table (info);
248 if (htab == NULL)
249 return -1;
250
251 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
252 return 0;
253
254 /* Count the number of input BFDs and find the top input section id.
255 Also search for an existing ".tramp" section so that we know
256 where generated trampolines must go. Default to ".text" if we
257 can't find it. */
258 htab->tramp_section = 0;
259 text_section = 0;
260 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
261 input_bfd != NULL;
262 input_bfd = input_bfd->link.next)
263 {
264 bfd_count += 1;
265 for (section = input_bfd->sections;
266 section != NULL;
267 section = section->next)
268 {
269 const char* name = bfd_get_section_name (input_bfd, section);
270
271 if (!strcmp (name, ".tramp"))
272 htab->tramp_section = section;
273
274 if (!strcmp (name, ".text"))
275 text_section = section;
276
277 if (top_id < section->id)
278 top_id = section->id;
279 }
280 }
281 htab->bfd_count = bfd_count;
282 if (htab->tramp_section == 0)
283 htab->tramp_section = text_section;
284
285 /* We can't use output_bfd->section_count here to find the top output
286 section index as some sections may have been removed, and
287 strip_excluded_output_sections doesn't renumber the indices. */
288 for (section = output_bfd->sections, top_index = 0;
289 section != NULL;
290 section = section->next)
291 {
292 if (top_index < section->index)
293 top_index = section->index;
294 }
295
296 htab->top_index = top_index;
297 amt = sizeof (asection *) * (top_index + 1);
298 input_list = (asection **) bfd_malloc (amt);
299 htab->input_list = input_list;
300 if (input_list == NULL)
301 return -1;
302
303 /* For sections we aren't interested in, mark their entries with a
304 value we can check later. */
305 list = input_list + top_index;
306 do
307 *list = bfd_abs_section_ptr;
308 while (list-- != input_list);
309
310 for (section = output_bfd->sections;
311 section != NULL;
312 section = section->next)
313 {
314 if ((section->flags & SEC_CODE) != 0)
315 input_list[section->index] = NULL;
316 }
317
318 return 1;
319 }
320
321 /* Determine and set the size of the stub section for a final link.
322
323 The basic idea here is to examine all the relocations looking for
324 PC-relative calls to a target that is unreachable with a "bl"
325 instruction. */
326
327 bfd_boolean
328 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
329 struct bfd_link_info *info,
330 asection * (*add_stub_section) (const char*, asection*))
331 {
332 bfd *input_bfd;
333 asection *section;
334 Elf_Internal_Sym *local_syms, **all_local_syms;
335 unsigned int bfd_indx, bfd_count;
336 bfd_size_type amt;
337 asection *stub_sec;
338 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
339
340 if (htab == NULL)
341 return FALSE;
342
343 /* Stash our params away. */
344 htab->stub_bfd = stub_bfd;
345 htab->add_stub_section = add_stub_section;
346
347 /* Count the number of input BFDs and find the top input section id. */
348 for (input_bfd = info->input_bfds, bfd_count = 0;
349 input_bfd != NULL;
350 input_bfd = input_bfd->link.next)
351 bfd_count += 1;
352
353 /* We want to read in symbol extension records only once. To do this
354 we need to read in the local symbols in parallel and save them for
355 later use; so hold pointers to the local symbols in an array. */
356 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
357 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
358 if (all_local_syms == NULL)
359 return FALSE;
360
361 /* Walk over all the input BFDs, swapping in local symbols. */
362 for (input_bfd = info->input_bfds, bfd_indx = 0;
363 input_bfd != NULL;
364 input_bfd = input_bfd->link.next, bfd_indx++)
365 {
366 Elf_Internal_Shdr *symtab_hdr;
367
368 /* We'll need the symbol table in a second. */
369 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
370 if (symtab_hdr->sh_info == 0)
371 continue;
372
373 /* We need an array of the local symbols attached to the input bfd. */
374 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
375 if (local_syms == NULL)
376 {
377 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
378 symtab_hdr->sh_info, 0,
379 NULL, NULL, NULL);
380 /* Cache them for elf_link_input_bfd. */
381 symtab_hdr->contents = (unsigned char *) local_syms;
382 }
383 if (local_syms == NULL)
384 {
385 free (all_local_syms);
386 return FALSE;
387 }
388
389 all_local_syms[bfd_indx] = local_syms;
390 }
391
392 for (input_bfd = info->input_bfds, bfd_indx = 0;
393 input_bfd != NULL;
394 input_bfd = input_bfd->link.next, bfd_indx++)
395 {
396 Elf_Internal_Shdr *symtab_hdr;
397 struct elf_link_hash_entry ** sym_hashes;
398
399 sym_hashes = elf_sym_hashes (input_bfd);
400
401 /* We'll need the symbol table in a second. */
402 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
403 if (symtab_hdr->sh_info == 0)
404 continue;
405
406 local_syms = all_local_syms[bfd_indx];
407
408 /* Walk over each section attached to the input bfd. */
409 for (section = input_bfd->sections;
410 section != NULL;
411 section = section->next)
412 {
413 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
414
415 /* If there aren't any relocs, then there's nothing more
416 to do. */
417 if ((section->flags & SEC_RELOC) == 0
418 || section->reloc_count == 0)
419 continue;
420
421 /* If this section is a link-once section that will be
422 discarded, then don't create any stubs. */
423 if (section->output_section == NULL
424 || section->output_section->owner != output_bfd)
425 continue;
426
427 /* Get the relocs. */
428 internal_relocs
429 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
430 (Elf_Internal_Rela *) NULL,
431 info->keep_memory);
432 if (internal_relocs == NULL)
433 goto error_ret_free_local;
434
435 /* Now examine each relocation. */
436 irela = internal_relocs;
437 irelaend = irela + section->reloc_count;
438 for (; irela < irelaend; irela++)
439 {
440 unsigned int r_type, r_indx;
441 struct elf32_m68hc11_stub_hash_entry *stub_entry;
442 asection *sym_sec;
443 bfd_vma sym_value;
444 struct elf_link_hash_entry *hash;
445 const char *stub_name;
446 Elf_Internal_Sym *sym;
447
448 r_type = ELF32_R_TYPE (irela->r_info);
449
450 /* Only look at 16-bit relocs. */
451 if (r_type != (unsigned int) R_M68HC11_16)
452 continue;
453
454 /* Now determine the call target, its name, value,
455 section. */
456 r_indx = ELF32_R_SYM (irela->r_info);
457 if (r_indx < symtab_hdr->sh_info)
458 {
459 /* It's a local symbol. */
460 Elf_Internal_Shdr *hdr;
461 bfd_boolean is_far;
462
463 sym = local_syms + r_indx;
464 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
465 if (!is_far)
466 continue;
467
468 if (sym->st_shndx >= elf_numsections (input_bfd))
469 sym_sec = NULL;
470 else
471 {
472 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
473 sym_sec = hdr->bfd_section;
474 }
475 stub_name = (bfd_elf_string_from_elf_section
476 (input_bfd, symtab_hdr->sh_link,
477 sym->st_name));
478 sym_value = sym->st_value;
479 hash = NULL;
480 }
481 else
482 {
483 /* It's an external symbol. */
484 int e_indx;
485
486 e_indx = r_indx - symtab_hdr->sh_info;
487 hash = (struct elf_link_hash_entry *)
488 (sym_hashes[e_indx]);
489
490 while (hash->root.type == bfd_link_hash_indirect
491 || hash->root.type == bfd_link_hash_warning)
492 hash = ((struct elf_link_hash_entry *)
493 hash->root.u.i.link);
494
495 if (hash->root.type == bfd_link_hash_defined
496 || hash->root.type == bfd_link_hash_defweak
497 || hash->root.type == bfd_link_hash_new)
498 {
499 if (!(hash->other & STO_M68HC12_FAR))
500 continue;
501 }
502 else if (hash->root.type == bfd_link_hash_undefweak)
503 {
504 continue;
505 }
506 else if (hash->root.type == bfd_link_hash_undefined)
507 {
508 continue;
509 }
510 else
511 {
512 bfd_set_error (bfd_error_bad_value);
513 goto error_ret_free_internal;
514 }
515 sym_sec = hash->root.u.def.section;
516 sym_value = hash->root.u.def.value;
517 stub_name = hash->root.root.string;
518 }
519
520 if (!stub_name)
521 goto error_ret_free_internal;
522
523 stub_entry = m68hc12_stub_hash_lookup
524 (htab->stub_hash_table,
525 stub_name,
526 FALSE, FALSE);
527 if (stub_entry == NULL)
528 {
529 if (add_stub_section == 0)
530 continue;
531
532 stub_entry = m68hc12_add_stub (stub_name, section, htab);
533 if (stub_entry == NULL)
534 {
535 error_ret_free_internal:
536 if (elf_section_data (section)->relocs == NULL)
537 free (internal_relocs);
538 goto error_ret_free_local;
539 }
540 }
541
542 stub_entry->target_value = sym_value;
543 stub_entry->target_section = sym_sec;
544 }
545
546 /* We're done with the internal relocs, free them. */
547 if (elf_section_data (section)->relocs == NULL)
548 free (internal_relocs);
549 }
550 }
551
552 if (add_stub_section)
553 {
554 /* OK, we've added some stubs. Find out the new size of the
555 stub sections. */
556 for (stub_sec = htab->stub_bfd->sections;
557 stub_sec != NULL;
558 stub_sec = stub_sec->next)
559 {
560 stub_sec->size = 0;
561 }
562
563 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
564 }
565 free (all_local_syms);
566 return TRUE;
567
568 error_ret_free_local:
569 free (all_local_syms);
570 return FALSE;
571 }
572
573 /* Export the trampoline addresses in the symbol table. */
574 static bfd_boolean
575 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
576 {
577 struct bfd_link_info *info;
578 struct m68hc11_elf_link_hash_table *htab;
579 struct elf32_m68hc11_stub_hash_entry *stub_entry;
580 char* name;
581 bfd_boolean result;
582
583 info = (struct bfd_link_info *) in_arg;
584 htab = m68hc11_elf_hash_table (info);
585 if (htab == NULL)
586 return FALSE;
587
588 /* Massage our args to the form they really have. */
589 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
590
591 /* Generate the trampoline according to HC11 or HC12. */
592 result = (* htab->build_one_stub) (gen_entry, in_arg);
593
594 /* Make a printable name that does not conflict with the real function. */
595 name = concat ("tramp.", stub_entry->root.string, NULL);
596
597 /* Export the symbol for debugging/disassembling. */
598 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
599 stub_entry->stub_offset,
600 stub_entry->stub_sec);
601 free (name);
602 return result;
603 }
604
605 /* Export a symbol or set its value and section. */
606 static void
607 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
608 const char *name, bfd_vma value, asection *sec)
609 {
610 struct elf_link_hash_entry *h;
611
612 h = (struct elf_link_hash_entry *)
613 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
614 if (h == NULL)
615 {
616 _bfd_generic_link_add_one_symbol (info, abfd,
617 name,
618 BSF_GLOBAL,
619 sec,
620 value,
621 (const char*) NULL,
622 TRUE, FALSE, NULL);
623 }
624 else
625 {
626 h->root.type = bfd_link_hash_defined;
627 h->root.u.def.value = value;
628 h->root.u.def.section = sec;
629 }
630 }
631
632
633 /* Build all the stubs associated with the current output file. The
634 stubs are kept in a hash table attached to the main linker hash
635 table. This function is called via m68hc12elf_finish in the
636 linker. */
637
638 bfd_boolean
639 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
640 {
641 asection *stub_sec;
642 struct bfd_hash_table *table;
643 struct m68hc11_elf_link_hash_table *htab;
644 struct m68hc11_scan_param param;
645
646 m68hc11_elf_get_bank_parameters (info);
647 htab = m68hc11_elf_hash_table (info);
648 if (htab == NULL)
649 return FALSE;
650
651 for (stub_sec = htab->stub_bfd->sections;
652 stub_sec != NULL;
653 stub_sec = stub_sec->next)
654 {
655 bfd_size_type size;
656
657 /* Allocate memory to hold the linker stubs. */
658 size = stub_sec->size;
659 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
660 if (stub_sec->contents == NULL && size != 0)
661 return FALSE;
662 stub_sec->size = 0;
663 }
664
665 /* Build the stubs as directed by the stub hash table. */
666 table = htab->stub_hash_table;
667 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
668
669 /* Scan the output sections to see if we use the memory banks.
670 If so, export the symbols that define how the memory banks
671 are mapped. This is used by gdb and the simulator to obtain
672 the information. It can be used by programs to burn the eprom
673 at the good addresses. */
674 param.use_memory_banks = FALSE;
675 param.pinfo = &htab->pinfo;
676 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
677 if (param.use_memory_banks)
678 {
679 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
680 htab->pinfo.bank_physical,
681 bfd_abs_section_ptr);
682 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
683 htab->pinfo.bank_virtual,
684 bfd_abs_section_ptr);
685 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
686 htab->pinfo.bank_size,
687 bfd_abs_section_ptr);
688 }
689
690 return TRUE;
691 }
692
693 void
694 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
695 {
696 unsigned i;
697 struct m68hc11_page_info *pinfo;
698 struct bfd_link_hash_entry *h;
699 struct m68hc11_elf_link_hash_table *htab;
700
701 htab = m68hc11_elf_hash_table (info);
702 if (htab == NULL)
703 return;
704
705 pinfo = & htab->pinfo;
706 if (pinfo->bank_param_initialized)
707 return;
708
709 pinfo->bank_virtual = M68HC12_BANK_VIRT;
710 pinfo->bank_mask = M68HC12_BANK_MASK;
711 pinfo->bank_physical = M68HC12_BANK_BASE;
712 pinfo->bank_shift = M68HC12_BANK_SHIFT;
713 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
714
715 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
716 FALSE, FALSE, TRUE);
717 if (h != (struct bfd_link_hash_entry*) NULL
718 && h->type == bfd_link_hash_defined)
719 pinfo->bank_physical = (h->u.def.value
720 + h->u.def.section->output_section->vma
721 + h->u.def.section->output_offset);
722
723 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
724 FALSE, FALSE, TRUE);
725 if (h != (struct bfd_link_hash_entry*) NULL
726 && h->type == bfd_link_hash_defined)
727 pinfo->bank_virtual = (h->u.def.value
728 + h->u.def.section->output_section->vma
729 + h->u.def.section->output_offset);
730
731 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
732 FALSE, FALSE, TRUE);
733 if (h != (struct bfd_link_hash_entry*) NULL
734 && h->type == bfd_link_hash_defined)
735 pinfo->bank_size = (h->u.def.value
736 + h->u.def.section->output_section->vma
737 + h->u.def.section->output_offset);
738
739 pinfo->bank_shift = 0;
740 for (i = pinfo->bank_size; i != 0; i >>= 1)
741 pinfo->bank_shift++;
742 pinfo->bank_shift--;
743 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
744 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
745 pinfo->bank_param_initialized = 1;
746
747 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
748 FALSE, TRUE);
749 if (h != (struct bfd_link_hash_entry*) NULL
750 && h->type == bfd_link_hash_defined)
751 pinfo->trampoline_addr = (h->u.def.value
752 + h->u.def.section->output_section->vma
753 + h->u.def.section->output_offset);
754 }
755
756 /* Return 1 if the address is in banked memory.
757 This can be applied to a virtual address and to a physical address. */
758 int
759 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
760 {
761 if (addr >= pinfo->bank_virtual)
762 return 1;
763
764 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
765 return 1;
766
767 return 0;
768 }
769
770 /* Return the physical address seen by the processor, taking
771 into account banked memory. */
772 bfd_vma
773 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
774 {
775 if (addr < pinfo->bank_virtual)
776 return addr;
777
778 /* Map the address to the memory bank. */
779 addr -= pinfo->bank_virtual;
780 addr &= pinfo->bank_mask;
781 addr += pinfo->bank_physical;
782 return addr;
783 }
784
785 /* Return the page number corresponding to an address in banked memory. */
786 bfd_vma
787 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
788 {
789 if (addr < pinfo->bank_virtual)
790 return 0;
791
792 /* Map the address to the memory bank. */
793 addr -= pinfo->bank_virtual;
794 addr >>= pinfo->bank_shift;
795 addr &= 0x0ff;
796 return addr;
797 }
798
799 /* This function is used for relocs which are only used for relaxing,
800 which the linker should otherwise ignore. */
801
802 bfd_reloc_status_type
803 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
804 arelent *reloc_entry,
805 asymbol *symbol ATTRIBUTE_UNUSED,
806 void *data ATTRIBUTE_UNUSED,
807 asection *input_section,
808 bfd *output_bfd,
809 char **error_message ATTRIBUTE_UNUSED)
810 {
811 if (output_bfd != NULL)
812 reloc_entry->address += input_section->output_offset;
813 return bfd_reloc_ok;
814 }
815
816 bfd_reloc_status_type
817 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
818 arelent *reloc_entry,
819 asymbol *symbol,
820 void *data ATTRIBUTE_UNUSED,
821 asection *input_section,
822 bfd *output_bfd,
823 char **error_message ATTRIBUTE_UNUSED)
824 {
825 if (output_bfd != (bfd *) NULL
826 && (symbol->flags & BSF_SECTION_SYM) == 0
827 && (! reloc_entry->howto->partial_inplace
828 || reloc_entry->addend == 0))
829 {
830 reloc_entry->address += input_section->output_offset;
831 return bfd_reloc_ok;
832 }
833
834 if (output_bfd != NULL)
835 return bfd_reloc_continue;
836
837 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
838 return bfd_reloc_outofrange;
839
840 abort();
841 }
842
843 /* Look through the relocs for a section during the first phase.
844 Since we don't do .gots or .plts, we just need to consider the
845 virtual table relocs for gc. */
846
847 bfd_boolean
848 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
849 asection *sec, const Elf_Internal_Rela *relocs)
850 {
851 Elf_Internal_Shdr * symtab_hdr;
852 struct elf_link_hash_entry ** sym_hashes;
853 const Elf_Internal_Rela * rel;
854 const Elf_Internal_Rela * rel_end;
855
856 if (bfd_link_relocatable (info))
857 return TRUE;
858
859 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
860 sym_hashes = elf_sym_hashes (abfd);
861 rel_end = relocs + sec->reloc_count;
862
863 for (rel = relocs; rel < rel_end; rel++)
864 {
865 struct elf_link_hash_entry * h;
866 unsigned long r_symndx;
867
868 r_symndx = ELF32_R_SYM (rel->r_info);
869
870 if (r_symndx < symtab_hdr->sh_info)
871 h = NULL;
872 else
873 {
874 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
875 while (h->root.type == bfd_link_hash_indirect
876 || h->root.type == bfd_link_hash_warning)
877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
878
879 /* PR15323, ref flags aren't set for references in the same
880 object. */
881 h->root.non_ir_ref = 1;
882 }
883
884 switch (ELF32_R_TYPE (rel->r_info))
885 {
886 /* This relocation describes the C++ object vtable hierarchy.
887 Reconstruct it for later use during GC. */
888 case R_M68HC11_GNU_VTINHERIT:
889 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
890 return FALSE;
891 break;
892
893 /* This relocation describes which C++ vtable entries are actually
894 used. Record for later use during GC. */
895 case R_M68HC11_GNU_VTENTRY:
896 BFD_ASSERT (h != NULL);
897 if (h != NULL
898 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
899 return FALSE;
900 break;
901 }
902 }
903
904 return TRUE;
905 }
906
907 /* Relocate a 68hc11/68hc12 ELF section. */
908 bfd_boolean
909 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
910 struct bfd_link_info *info,
911 bfd *input_bfd, asection *input_section,
912 bfd_byte *contents, Elf_Internal_Rela *relocs,
913 Elf_Internal_Sym *local_syms,
914 asection **local_sections)
915 {
916 Elf_Internal_Shdr *symtab_hdr;
917 struct elf_link_hash_entry **sym_hashes;
918 Elf_Internal_Rela *rel, *relend;
919 const char *name = NULL;
920 struct m68hc11_page_info *pinfo;
921 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
922 struct m68hc11_elf_link_hash_table *htab;
923 unsigned long e_flags;
924
925 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
926 sym_hashes = elf_sym_hashes (input_bfd);
927 e_flags = elf_elfheader (input_bfd)->e_flags;
928
929 htab = m68hc11_elf_hash_table (info);
930 if (htab == NULL)
931 return FALSE;
932
933 /* Get memory bank parameters. */
934 m68hc11_elf_get_bank_parameters (info);
935
936 pinfo = & htab->pinfo;
937 rel = relocs;
938 relend = relocs + input_section->reloc_count;
939
940 for (; rel < relend; rel++)
941 {
942 int r_type;
943 arelent arel;
944 reloc_howto_type *howto;
945 unsigned long r_symndx;
946 Elf_Internal_Sym *sym;
947 asection *sec;
948 bfd_vma relocation = 0;
949 bfd_reloc_status_type r = bfd_reloc_undefined;
950 bfd_vma phys_page;
951 bfd_vma phys_addr;
952 bfd_vma insn_addr;
953 bfd_vma insn_page;
954 bfd_boolean is_far = FALSE;
955 bfd_boolean is_xgate_symbol = FALSE;
956 bfd_boolean is_section_symbol = FALSE;
957 struct elf_link_hash_entry *h;
958 bfd_vma val;
959 const char * msg;
960 char * buf;
961 bfd_boolean res;
962
963 r_symndx = ELF32_R_SYM (rel->r_info);
964 r_type = ELF32_R_TYPE (rel->r_info);
965
966 if (r_type == R_M68HC11_GNU_VTENTRY
967 || r_type == R_M68HC11_GNU_VTINHERIT)
968 continue;
969
970 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
971 howto = arel.howto;
972
973 h = NULL;
974 sym = NULL;
975 sec = NULL;
976 if (r_symndx < symtab_hdr->sh_info)
977 {
978 sym = local_syms + r_symndx;
979 sec = local_sections[r_symndx];
980 relocation = (sec->output_section->vma
981 + sec->output_offset
982 + sym->st_value);
983 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
984 is_xgate_symbol = (sym && (sym->st_target_internal));
985 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
986 }
987 else
988 {
989 bfd_boolean unresolved_reloc, warned, ignored;
990
991 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
992 r_symndx, symtab_hdr, sym_hashes,
993 h, sec, relocation, unresolved_reloc,
994 warned, ignored);
995
996 is_far = (h && (h->other & STO_M68HC12_FAR));
997 is_xgate_symbol = (h && (h->target_internal));
998 }
999
1000 if (sec != NULL && discarded_section (sec))
1001 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1002 rel, 1, relend, howto, 0, contents);
1003
1004 if (bfd_link_relocatable (info))
1005 {
1006 /* This is a relocatable link. We don't have to change
1007 anything, unless the reloc is against a section symbol,
1008 in which case we have to adjust according to where the
1009 section symbol winds up in the output section. */
1010 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1011 rel->r_addend += sec->output_offset;
1012 continue;
1013 }
1014
1015 if (h != NULL)
1016 name = h->root.root.string;
1017 else
1018 {
1019 name = (bfd_elf_string_from_elf_section
1020 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1021 if (name == NULL || *name == '\0')
1022 name = bfd_section_name (input_bfd, sec);
1023 }
1024
1025 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1026 {
1027 struct elf32_m68hc11_stub_hash_entry* stub;
1028
1029 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1030 name, FALSE, FALSE);
1031 if (stub)
1032 {
1033 relocation = stub->stub_offset
1034 + stub->stub_sec->output_section->vma
1035 + stub->stub_sec->output_offset;
1036 is_far = FALSE;
1037 }
1038 }
1039
1040 /* Do the memory bank mapping. */
1041 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1042 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1043 switch (r_type)
1044 {
1045 case R_M68HC12_LO8XG:
1046 /* This relocation is specific to XGATE IMM16 calls and will precede
1047 a HI8. tc-m68hc11 only generates them in pairs.
1048 Leave the relocation to the HI8XG step. */
1049 r = bfd_reloc_ok;
1050 r_type = R_M68HC11_NONE;
1051 break;
1052
1053 case R_M68HC12_HI8XG:
1054 /* This relocation is specific to XGATE IMM16 calls and must follow
1055 a LO8XG. Does not actually check that it was a LO8XG.
1056 Adjusts high and low bytes. */
1057 relocation = phys_addr;
1058 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1059 && (relocation >= 0x2000))
1060 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
1061
1062 /* Fetch 16 bit value including low byte in previous insn. */
1063 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1064 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1065
1066 /* Add on value to preserve carry, then write zero to high byte. */
1067 relocation += val;
1068
1069 /* Write out top byte. */
1070 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1071 (bfd_byte*) contents + rel->r_offset);
1072
1073 /* Write out low byte to previous instruction. */
1074 bfd_put_8 (input_bfd, relocation & 0xff,
1075 (bfd_byte*) contents + rel->r_offset - 2);
1076
1077 /* Mark as relocation completed. */
1078 r = bfd_reloc_ok;
1079 r_type = R_M68HC11_NONE;
1080 break;
1081
1082 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1083 assembler directives. %hi does not support carry. */
1084 case R_M68HC11_HI8:
1085 case R_M68HC11_LO8:
1086 relocation = phys_addr;
1087 break;
1088
1089 case R_M68HC11_24:
1090 /* Reloc used by 68HC12 call instruction. */
1091 bfd_put_16 (input_bfd, phys_addr,
1092 (bfd_byte*) contents + rel->r_offset);
1093 bfd_put_8 (input_bfd, phys_page,
1094 (bfd_byte*) contents + rel->r_offset + 2);
1095 r = bfd_reloc_ok;
1096 r_type = R_M68HC11_NONE;
1097 break;
1098
1099 case R_M68HC11_NONE:
1100 r = bfd_reloc_ok;
1101 break;
1102
1103 case R_M68HC11_LO16:
1104 /* Reloc generated by %addr(expr) gas to obtain the
1105 address as mapped in the memory bank window. */
1106 relocation = phys_addr;
1107 break;
1108
1109 case R_M68HC11_PAGE:
1110 /* Reloc generated by %page(expr) gas to obtain the
1111 page number associated with the address. */
1112 relocation = phys_page;
1113 break;
1114
1115 case R_M68HC11_16:
1116 /* Get virtual address of instruction having the relocation. */
1117 if (is_far)
1118 {
1119 msg = _("Reference to the far symbol `%s' using a wrong "
1120 "relocation may result in incorrect execution");
1121 buf = xmalloc (strlen (msg) + strlen (name) + 10);
1122 sprintf (buf, msg, name);
1123
1124 (* info->callbacks->warning)
1125 (info, buf, name, input_bfd, NULL, rel->r_offset);
1126 free (buf);
1127 }
1128
1129 /* Get virtual address of instruction having the relocation. */
1130 insn_addr = input_section->output_section->vma
1131 + input_section->output_offset
1132 + rel->r_offset;
1133
1134 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1135
1136 /* If we are linking an S12 instruction against an XGATE symbol, we
1137 need to change the offset of the symbol value so that it's correct
1138 from the S12's perspective. */
1139 if (is_xgate_symbol)
1140 {
1141 /* The ram in the global space is mapped to 0x2000 in the 16-bit
1142 address space for S12 and 0xE000 in the 16-bit address space
1143 for XGATE. */
1144 if (relocation >= 0xE000)
1145 {
1146 /* We offset the address by the difference
1147 between these two mappings. */
1148 relocation -= 0xC000;
1149 break;
1150 }
1151 else
1152 {
1153 msg = _("XGATE address (%lx) is not within shared RAM"
1154 "(0xE000-0xFFFF), therefore you must manually offset "
1155 "the address, and possibly manage the page, in your "
1156 "code.");
1157 buf = xmalloc (strlen (msg) + 128);
1158 sprintf (buf, msg, phys_addr);
1159 res = (*info->callbacks->warning) (info, buf, name, input_bfd,
1160 input_section, insn_addr);
1161 free (buf);
1162 if (! res)
1163 return FALSE;
1164 break;
1165 }
1166 }
1167
1168 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1169 && m68hc11_addr_is_banked (pinfo, insn_addr)
1170 && phys_page != insn_page && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1171 {
1172 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1173 "as current banked address [%lx:%04lx] (%lx)");
1174 buf = xmalloc (strlen (msg) + 128);
1175 sprintf (buf, msg, phys_page, phys_addr,
1176 (long) (relocation + rel->r_addend),
1177 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1178 (long) (insn_addr));
1179 res = (*info->callbacks->warning)
1180 (info, buf, name, input_bfd, input_section, rel->r_offset);
1181 free (buf);
1182 if (! res)
1183 return FALSE;
1184 break;
1185 }
1186
1187 if (phys_page != 0 && insn_page == 0)
1188 {
1189 msg = _("reference to a banked address [%lx:%04lx] in the "
1190 "normal address space at %04lx");
1191 buf = xmalloc (strlen (msg) + 128);
1192 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1193 res = (*info->callbacks->warning)
1194 (info, buf, name, input_bfd, input_section, insn_addr);
1195 free (buf);
1196 if (! res)
1197 return FALSE;
1198
1199 relocation = phys_addr;
1200 break;
1201 }
1202
1203 /* If this is a banked address use the phys_addr so that
1204 we stay in the banked window. */
1205 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1206 relocation = phys_addr;
1207 break;
1208 }
1209
1210 /* If we are linking an XGATE instruction against an S12 symbol, we
1211 need to change the offset of the symbol value so that it's correct
1212 from the XGATE's perspective. */
1213 if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1214 || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1215 {
1216 /* We can only offset S12 addresses that lie within the non-paged
1217 area of RAM. */
1218 if (!is_xgate_symbol && !is_section_symbol)
1219 {
1220 /* The ram in the global space is mapped to 0x2000 and stops at
1221 0x4000 in the 16-bit address space for S12 and 0xE000 in the
1222 16-bit address space for XGATE. */
1223 if (relocation >= 0x2000 && relocation < 0x4000)
1224 /* We offset the address by the difference
1225 between these two mappings. */
1226 relocation += 0xC000;
1227 else
1228 {
1229 /* Get virtual address of instruction having the relocation. */
1230 insn_addr = input_section->output_section->vma
1231 + input_section->output_offset + rel->r_offset;
1232
1233 msg = _("S12 address (%lx) is not within shared RAM"
1234 "(0x2000-0x4000), therefore you must manually "
1235 "offset the address in your code");
1236 buf = xmalloc (strlen (msg) + 128);
1237 sprintf (buf, msg, phys_addr);
1238 res = (*info->callbacks->warning) (info, buf, name, input_bfd,
1239 input_section, insn_addr);
1240 free (buf);
1241 if (! res)
1242 return FALSE;
1243 break;
1244 }
1245 }
1246 }
1247
1248 if (r_type != R_M68HC11_NONE)
1249 {
1250 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1251 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1252 contents, rel->r_offset,
1253 relocation - 2, rel->r_addend);
1254 else
1255 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1256 contents, rel->r_offset,
1257 relocation, rel->r_addend);
1258 }
1259
1260 if (r != bfd_reloc_ok)
1261 {
1262 switch (r)
1263 {
1264 case bfd_reloc_overflow:
1265 if (!((*info->callbacks->reloc_overflow)
1266 (info, NULL, name, howto->name, (bfd_vma) 0,
1267 input_bfd, input_section, rel->r_offset)))
1268 return FALSE;
1269 break;
1270
1271 case bfd_reloc_undefined:
1272 if (!((*info->callbacks->undefined_symbol)
1273 (info, name, input_bfd, input_section,
1274 rel->r_offset, TRUE)))
1275 return FALSE;
1276 break;
1277
1278 case bfd_reloc_outofrange:
1279 msg = _ ("internal error: out of range error");
1280 goto common_error;
1281
1282 case bfd_reloc_notsupported:
1283 msg = _ ("internal error: unsupported relocation error");
1284 goto common_error;
1285
1286 case bfd_reloc_dangerous:
1287 msg = _ ("internal error: dangerous error");
1288 goto common_error;
1289
1290 default:
1291 msg = _ ("internal error: unknown error");
1292 /* fall through */
1293
1294 common_error:
1295 if (!((*info->callbacks->warning)
1296 (info, msg, name, input_bfd, input_section,
1297 rel->r_offset)))
1298 return FALSE;
1299 break;
1300 }
1301 }
1302 }
1303
1304 return TRUE;
1305 }
1306
1307
1308 \f
1309 /* Set and control ELF flags in ELF header. */
1310
1311 bfd_boolean
1312 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1313 {
1314 BFD_ASSERT (!elf_flags_init (abfd)
1315 || elf_elfheader (abfd)->e_flags == flags);
1316
1317 elf_elfheader (abfd)->e_flags = flags;
1318 elf_flags_init (abfd) = TRUE;
1319 return TRUE;
1320 }
1321
1322 /* Merge backend specific data from an object file to the output
1323 object file when linking. */
1324
1325 bfd_boolean
1326 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1327 {
1328 flagword old_flags;
1329 flagword new_flags;
1330 bfd_boolean ok = TRUE;
1331
1332 /* Check if we have the same endianness */
1333 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1334 return FALSE;
1335
1336 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1337 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1338 return TRUE;
1339
1340 new_flags = elf_elfheader (ibfd)->e_flags;
1341 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1342 old_flags = elf_elfheader (obfd)->e_flags;
1343
1344 if (! elf_flags_init (obfd))
1345 {
1346 elf_flags_init (obfd) = TRUE;
1347 elf_elfheader (obfd)->e_flags = new_flags;
1348 elf_elfheader (obfd)->e_ident[EI_CLASS]
1349 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1350
1351 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1352 && bfd_get_arch_info (obfd)->the_default)
1353 {
1354 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1355 bfd_get_mach (ibfd)))
1356 return FALSE;
1357 }
1358
1359 return TRUE;
1360 }
1361
1362 /* Check ABI compatibility. */
1363 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1364 {
1365 (*_bfd_error_handler)
1366 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1367 "and others for 32-bit integers"), ibfd);
1368 ok = FALSE;
1369 }
1370 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1371 {
1372 (*_bfd_error_handler)
1373 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1374 "and others for 64-bit double"), ibfd);
1375 ok = FALSE;
1376 }
1377
1378 /* Processor compatibility. */
1379 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1380 {
1381 (*_bfd_error_handler)
1382 (_("%B: linking files compiled for HCS12 with "
1383 "others compiled for HC12"), ibfd);
1384 ok = FALSE;
1385 }
1386 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1387 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1388
1389 elf_elfheader (obfd)->e_flags = new_flags;
1390
1391 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1392 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1393
1394 /* Warn about any other mismatches */
1395 if (new_flags != old_flags)
1396 {
1397 (*_bfd_error_handler)
1398 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1399 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1400 ok = FALSE;
1401 }
1402
1403 if (! ok)
1404 {
1405 bfd_set_error (bfd_error_bad_value);
1406 return FALSE;
1407 }
1408
1409 return TRUE;
1410 }
1411
1412 bfd_boolean
1413 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1414 {
1415 FILE *file = (FILE *) ptr;
1416
1417 BFD_ASSERT (abfd != NULL && ptr != NULL);
1418
1419 /* Print normal ELF private data. */
1420 _bfd_elf_print_private_bfd_data (abfd, ptr);
1421
1422 /* xgettext:c-format */
1423 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1424
1425 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1426 fprintf (file, _("[abi=32-bit int, "));
1427 else
1428 fprintf (file, _("[abi=16-bit int, "));
1429
1430 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1431 fprintf (file, _("64-bit double, "));
1432 else
1433 fprintf (file, _("32-bit double, "));
1434
1435 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1436 fprintf (file, _("cpu=HC11]"));
1437 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1438 fprintf (file, _("cpu=HCS12]"));
1439 else
1440 fprintf (file, _("cpu=HC12]"));
1441
1442 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1443 fprintf (file, _(" [memory=bank-model]"));
1444 else
1445 fprintf (file, _(" [memory=flat]"));
1446
1447 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1448 fprintf (file, _(" [XGATE RAM offsetting]"));
1449
1450 fputc ('\n', file);
1451
1452 return TRUE;
1453 }
1454
1455 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1456 asection *asect, void *arg)
1457 {
1458 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1459
1460 if (asect->vma >= p->pinfo->bank_virtual)
1461 p->use_memory_banks = TRUE;
1462 }
1463
1464 /* Tweak the OSABI field of the elf header. */
1465
1466 void
1467 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1468 {
1469 struct m68hc11_scan_param param;
1470 struct m68hc11_elf_link_hash_table *htab;
1471
1472 if (link_info == NULL)
1473 return;
1474
1475 htab = m68hc11_elf_hash_table (link_info);
1476 if (htab == NULL)
1477 return;
1478
1479 m68hc11_elf_get_bank_parameters (link_info);
1480
1481 param.use_memory_banks = FALSE;
1482 param.pinfo = & htab->pinfo;
1483
1484 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1485
1486 if (param.use_memory_banks)
1487 {
1488 Elf_Internal_Ehdr * i_ehdrp;
1489
1490 i_ehdrp = elf_elfheader (abfd);
1491 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1492 }
1493 }