]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68hc1x.c
ELF: Don't set non_ir_ref_regular in check_relocs
[thirdparty/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "alloca-conf.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf32-m68hc1x.h"
29 #include "elf/m68hc11.h"
30 #include "opcode/m68hc11.h"
31 #include "libiberty.h"
32
33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
34 ((struct elf32_m68hc11_stub_hash_entry *) \
35 bfd_hash_lookup ((table), (string), (create), (copy)))
36
37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
38 (const char *stub_name,
39 asection *section,
40 struct m68hc11_elf_link_hash_table *htab);
41
42 static struct bfd_hash_entry *stub_hash_newfunc
43 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44
45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
46 const char* name, bfd_vma value,
47 asection* sec);
48
49 static bfd_boolean m68hc11_elf_export_one_stub
50 (struct bfd_hash_entry *gen_entry, void *in_arg);
51
52 static void scan_sections_for_abi (bfd*, asection*, void *);
53
54 struct m68hc11_scan_param
55 {
56 struct m68hc11_page_info* pinfo;
57 bfd_boolean use_memory_banks;
58 };
59
60
61 /* Destroy a 68HC11/68HC12 ELF linker hash table. */
62
63 static void
64 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
65 {
66 struct m68hc11_elf_link_hash_table *ret
67 = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
68
69 bfd_hash_table_free (ret->stub_hash_table);
70 free (ret->stub_hash_table);
71 _bfd_elf_link_hash_table_free (obfd);
72 }
73
74 /* Create a 68HC11/68HC12 ELF linker hash table. */
75
76 struct m68hc11_elf_link_hash_table*
77 m68hc11_elf_hash_table_create (bfd *abfd)
78 {
79 struct m68hc11_elf_link_hash_table *ret;
80 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
81
82 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
83 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
84 return NULL;
85
86 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
87 _bfd_elf_link_hash_newfunc,
88 sizeof (struct elf_link_hash_entry),
89 M68HC11_ELF_DATA))
90 {
91 free (ret);
92 return NULL;
93 }
94
95 /* Init the stub hash table too. */
96 amt = sizeof (struct bfd_hash_table);
97 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
98 if (ret->stub_hash_table == NULL)
99 {
100 _bfd_elf_link_hash_table_free (abfd);
101 return NULL;
102 }
103 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
104 sizeof (struct elf32_m68hc11_stub_hash_entry)))
105 {
106 free (ret->stub_hash_table);
107 _bfd_elf_link_hash_table_free (abfd);
108 return NULL;
109 }
110 ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
111
112 return ret;
113 }
114
115 /* Assorted hash table functions. */
116
117 /* Initialize an entry in the stub hash table. */
118
119 static struct bfd_hash_entry *
120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
121 const char *string)
122 {
123 /* Allocate the structure if it has not already been allocated by a
124 subclass. */
125 if (entry == NULL)
126 {
127 entry = bfd_hash_allocate (table,
128 sizeof (struct elf32_m68hc11_stub_hash_entry));
129 if (entry == NULL)
130 return entry;
131 }
132
133 /* Call the allocation method of the superclass. */
134 entry = bfd_hash_newfunc (entry, table, string);
135 if (entry != NULL)
136 {
137 struct elf32_m68hc11_stub_hash_entry *eh;
138
139 /* Initialize the local fields. */
140 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
141 eh->stub_sec = NULL;
142 eh->stub_offset = 0;
143 eh->target_value = 0;
144 eh->target_section = NULL;
145 }
146
147 return entry;
148 }
149
150 /* Add a new stub entry to the stub hash. Not all fields of the new
151 stub entry are initialised. */
152
153 static struct elf32_m68hc11_stub_hash_entry *
154 m68hc12_add_stub (const char *stub_name, asection *section,
155 struct m68hc11_elf_link_hash_table *htab)
156 {
157 struct elf32_m68hc11_stub_hash_entry *stub_entry;
158
159 /* Enter this entry into the linker stub hash table. */
160 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
161 TRUE, FALSE);
162 if (stub_entry == NULL)
163 {
164 /* xgettext:c-format */
165 _bfd_error_handler (_("%B: cannot create stub entry %s"),
166 section->owner, stub_name);
167 return NULL;
168 }
169
170 if (htab->stub_section == 0)
171 {
172 htab->stub_section = (*htab->add_stub_section) (".tramp",
173 htab->tramp_section);
174 }
175
176 stub_entry->stub_sec = htab->stub_section;
177 stub_entry->stub_offset = 0;
178 return stub_entry;
179 }
180
181 /* Hook called by the linker routine which adds symbols from an object
182 file. We use it for identify far symbols and force a loading of
183 the trampoline handler. */
184
185 bfd_boolean
186 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
187 Elf_Internal_Sym *sym,
188 const char **namep ATTRIBUTE_UNUSED,
189 flagword *flagsp ATTRIBUTE_UNUSED,
190 asection **secp ATTRIBUTE_UNUSED,
191 bfd_vma *valp ATTRIBUTE_UNUSED)
192 {
193 if (sym->st_other & STO_M68HC12_FAR)
194 {
195 struct elf_link_hash_entry *h;
196
197 h = (struct elf_link_hash_entry *)
198 bfd_link_hash_lookup (info->hash, "__far_trampoline",
199 FALSE, FALSE, FALSE);
200 if (h == NULL)
201 {
202 struct bfd_link_hash_entry* entry = NULL;
203
204 _bfd_generic_link_add_one_symbol (info, abfd,
205 "__far_trampoline",
206 BSF_GLOBAL,
207 bfd_und_section_ptr,
208 (bfd_vma) 0, (const char*) NULL,
209 FALSE, FALSE, &entry);
210 }
211
212 }
213 return TRUE;
214 }
215
216 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
217 STO_M68HC12_INTERRUPT. */
218
219 void
220 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
221 const Elf_Internal_Sym *isym,
222 bfd_boolean definition,
223 bfd_boolean dynamic ATTRIBUTE_UNUSED)
224 {
225 if (definition)
226 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
227 | ELF_ST_VISIBILITY (h->other));
228 }
229
230 /* External entry points for sizing and building linker stubs. */
231
232 /* Set up various things so that we can make a list of input sections
233 for each output section included in the link. Returns -1 on error,
234 0 when no stubs will be needed, and 1 on success. */
235
236 int
237 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
238 {
239 bfd *input_bfd;
240 unsigned int bfd_count;
241 unsigned int top_id, top_index;
242 asection *section;
243 asection **input_list, **list;
244 bfd_size_type amt;
245 asection *text_section;
246 struct m68hc11_elf_link_hash_table *htab;
247
248 htab = m68hc11_elf_hash_table (info);
249 if (htab == NULL)
250 return -1;
251
252 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
253 return 0;
254
255 /* Count the number of input BFDs and find the top input section id.
256 Also search for an existing ".tramp" section so that we know
257 where generated trampolines must go. Default to ".text" if we
258 can't find it. */
259 htab->tramp_section = 0;
260 text_section = 0;
261 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
262 input_bfd != NULL;
263 input_bfd = input_bfd->link.next)
264 {
265 bfd_count += 1;
266 for (section = input_bfd->sections;
267 section != NULL;
268 section = section->next)
269 {
270 const char* name = bfd_get_section_name (input_bfd, section);
271
272 if (!strcmp (name, ".tramp"))
273 htab->tramp_section = section;
274
275 if (!strcmp (name, ".text"))
276 text_section = section;
277
278 if (top_id < section->id)
279 top_id = section->id;
280 }
281 }
282 htab->bfd_count = bfd_count;
283 if (htab->tramp_section == 0)
284 htab->tramp_section = text_section;
285
286 /* We can't use output_bfd->section_count here to find the top output
287 section index as some sections may have been removed, and
288 strip_excluded_output_sections doesn't renumber the indices. */
289 for (section = output_bfd->sections, top_index = 0;
290 section != NULL;
291 section = section->next)
292 {
293 if (top_index < section->index)
294 top_index = section->index;
295 }
296
297 htab->top_index = top_index;
298 amt = sizeof (asection *) * (top_index + 1);
299 input_list = (asection **) bfd_malloc (amt);
300 htab->input_list = input_list;
301 if (input_list == NULL)
302 return -1;
303
304 /* For sections we aren't interested in, mark their entries with a
305 value we can check later. */
306 list = input_list + top_index;
307 do
308 *list = bfd_abs_section_ptr;
309 while (list-- != input_list);
310
311 for (section = output_bfd->sections;
312 section != NULL;
313 section = section->next)
314 {
315 if ((section->flags & SEC_CODE) != 0)
316 input_list[section->index] = NULL;
317 }
318
319 return 1;
320 }
321
322 /* Determine and set the size of the stub section for a final link.
323
324 The basic idea here is to examine all the relocations looking for
325 PC-relative calls to a target that is unreachable with a "bl"
326 instruction. */
327
328 bfd_boolean
329 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
330 struct bfd_link_info *info,
331 asection * (*add_stub_section) (const char*, asection*))
332 {
333 bfd *input_bfd;
334 asection *section;
335 Elf_Internal_Sym *local_syms, **all_local_syms;
336 unsigned int bfd_indx, bfd_count;
337 bfd_size_type amt;
338 asection *stub_sec;
339 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
340
341 if (htab == NULL)
342 return FALSE;
343
344 /* Stash our params away. */
345 htab->stub_bfd = stub_bfd;
346 htab->add_stub_section = add_stub_section;
347
348 /* Count the number of input BFDs and find the top input section id. */
349 for (input_bfd = info->input_bfds, bfd_count = 0;
350 input_bfd != NULL;
351 input_bfd = input_bfd->link.next)
352 bfd_count += 1;
353
354 /* We want to read in symbol extension records only once. To do this
355 we need to read in the local symbols in parallel and save them for
356 later use; so hold pointers to the local symbols in an array. */
357 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
358 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
359 if (all_local_syms == NULL)
360 return FALSE;
361
362 /* Walk over all the input BFDs, swapping in local symbols. */
363 for (input_bfd = info->input_bfds, bfd_indx = 0;
364 input_bfd != NULL;
365 input_bfd = input_bfd->link.next, bfd_indx++)
366 {
367 Elf_Internal_Shdr *symtab_hdr;
368
369 /* We'll need the symbol table in a second. */
370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
371 if (symtab_hdr->sh_info == 0)
372 continue;
373
374 /* We need an array of the local symbols attached to the input bfd. */
375 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
376 if (local_syms == NULL)
377 {
378 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
379 symtab_hdr->sh_info, 0,
380 NULL, NULL, NULL);
381 /* Cache them for elf_link_input_bfd. */
382 symtab_hdr->contents = (unsigned char *) local_syms;
383 }
384 if (local_syms == NULL)
385 {
386 free (all_local_syms);
387 return FALSE;
388 }
389
390 all_local_syms[bfd_indx] = local_syms;
391 }
392
393 for (input_bfd = info->input_bfds, bfd_indx = 0;
394 input_bfd != NULL;
395 input_bfd = input_bfd->link.next, bfd_indx++)
396 {
397 Elf_Internal_Shdr *symtab_hdr;
398 struct elf_link_hash_entry ** sym_hashes;
399
400 sym_hashes = elf_sym_hashes (input_bfd);
401
402 /* We'll need the symbol table in a second. */
403 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
404 if (symtab_hdr->sh_info == 0)
405 continue;
406
407 local_syms = all_local_syms[bfd_indx];
408
409 /* Walk over each section attached to the input bfd. */
410 for (section = input_bfd->sections;
411 section != NULL;
412 section = section->next)
413 {
414 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
415
416 /* If there aren't any relocs, then there's nothing more
417 to do. */
418 if ((section->flags & SEC_RELOC) == 0
419 || section->reloc_count == 0)
420 continue;
421
422 /* If this section is a link-once section that will be
423 discarded, then don't create any stubs. */
424 if (section->output_section == NULL
425 || section->output_section->owner != output_bfd)
426 continue;
427
428 /* Get the relocs. */
429 internal_relocs
430 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
431 (Elf_Internal_Rela *) NULL,
432 info->keep_memory);
433 if (internal_relocs == NULL)
434 goto error_ret_free_local;
435
436 /* Now examine each relocation. */
437 irela = internal_relocs;
438 irelaend = irela + section->reloc_count;
439 for (; irela < irelaend; irela++)
440 {
441 unsigned int r_type, r_indx;
442 struct elf32_m68hc11_stub_hash_entry *stub_entry;
443 asection *sym_sec;
444 bfd_vma sym_value;
445 struct elf_link_hash_entry *hash;
446 const char *stub_name;
447 Elf_Internal_Sym *sym;
448
449 r_type = ELF32_R_TYPE (irela->r_info);
450
451 /* Only look at 16-bit relocs. */
452 if (r_type != (unsigned int) R_M68HC11_16)
453 continue;
454
455 /* Now determine the call target, its name, value,
456 section. */
457 r_indx = ELF32_R_SYM (irela->r_info);
458 if (r_indx < symtab_hdr->sh_info)
459 {
460 /* It's a local symbol. */
461 Elf_Internal_Shdr *hdr;
462 bfd_boolean is_far;
463
464 sym = local_syms + r_indx;
465 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
466 if (!is_far)
467 continue;
468
469 if (sym->st_shndx >= elf_numsections (input_bfd))
470 sym_sec = NULL;
471 else
472 {
473 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
474 sym_sec = hdr->bfd_section;
475 }
476 stub_name = (bfd_elf_string_from_elf_section
477 (input_bfd, symtab_hdr->sh_link,
478 sym->st_name));
479 sym_value = sym->st_value;
480 hash = NULL;
481 }
482 else
483 {
484 /* It's an external symbol. */
485 int e_indx;
486
487 e_indx = r_indx - symtab_hdr->sh_info;
488 hash = (struct elf_link_hash_entry *)
489 (sym_hashes[e_indx]);
490
491 while (hash->root.type == bfd_link_hash_indirect
492 || hash->root.type == bfd_link_hash_warning)
493 hash = ((struct elf_link_hash_entry *)
494 hash->root.u.i.link);
495
496 if (hash->root.type == bfd_link_hash_defined
497 || hash->root.type == bfd_link_hash_defweak
498 || hash->root.type == bfd_link_hash_new)
499 {
500 if (!(hash->other & STO_M68HC12_FAR))
501 continue;
502 }
503 else if (hash->root.type == bfd_link_hash_undefweak)
504 {
505 continue;
506 }
507 else if (hash->root.type == bfd_link_hash_undefined)
508 {
509 continue;
510 }
511 else
512 {
513 bfd_set_error (bfd_error_bad_value);
514 goto error_ret_free_internal;
515 }
516 sym_sec = hash->root.u.def.section;
517 sym_value = hash->root.u.def.value;
518 stub_name = hash->root.root.string;
519 }
520
521 if (!stub_name)
522 goto error_ret_free_internal;
523
524 stub_entry = m68hc12_stub_hash_lookup
525 (htab->stub_hash_table,
526 stub_name,
527 FALSE, FALSE);
528 if (stub_entry == NULL)
529 {
530 if (add_stub_section == 0)
531 continue;
532
533 stub_entry = m68hc12_add_stub (stub_name, section, htab);
534 if (stub_entry == NULL)
535 {
536 error_ret_free_internal:
537 if (elf_section_data (section)->relocs == NULL)
538 free (internal_relocs);
539 goto error_ret_free_local;
540 }
541 }
542
543 stub_entry->target_value = sym_value;
544 stub_entry->target_section = sym_sec;
545 }
546
547 /* We're done with the internal relocs, free them. */
548 if (elf_section_data (section)->relocs == NULL)
549 free (internal_relocs);
550 }
551 }
552
553 if (add_stub_section)
554 {
555 /* OK, we've added some stubs. Find out the new size of the
556 stub sections. */
557 for (stub_sec = htab->stub_bfd->sections;
558 stub_sec != NULL;
559 stub_sec = stub_sec->next)
560 {
561 stub_sec->size = 0;
562 }
563
564 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
565 }
566 free (all_local_syms);
567 return TRUE;
568
569 error_ret_free_local:
570 free (all_local_syms);
571 return FALSE;
572 }
573
574 /* Export the trampoline addresses in the symbol table. */
575 static bfd_boolean
576 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
577 {
578 struct bfd_link_info *info;
579 struct m68hc11_elf_link_hash_table *htab;
580 struct elf32_m68hc11_stub_hash_entry *stub_entry;
581 char* name;
582 bfd_boolean result;
583
584 info = (struct bfd_link_info *) in_arg;
585 htab = m68hc11_elf_hash_table (info);
586 if (htab == NULL)
587 return FALSE;
588
589 /* Massage our args to the form they really have. */
590 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
591
592 /* Generate the trampoline according to HC11 or HC12. */
593 result = (* htab->build_one_stub) (gen_entry, in_arg);
594
595 /* Make a printable name that does not conflict with the real function. */
596 name = concat ("tramp.", stub_entry->root.string, NULL);
597
598 /* Export the symbol for debugging/disassembling. */
599 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
600 stub_entry->stub_offset,
601 stub_entry->stub_sec);
602 free (name);
603 return result;
604 }
605
606 /* Export a symbol or set its value and section. */
607 static void
608 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
609 const char *name, bfd_vma value, asection *sec)
610 {
611 struct elf_link_hash_entry *h;
612
613 h = (struct elf_link_hash_entry *)
614 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
615 if (h == NULL)
616 {
617 _bfd_generic_link_add_one_symbol (info, abfd,
618 name,
619 BSF_GLOBAL,
620 sec,
621 value,
622 (const char*) NULL,
623 TRUE, FALSE, NULL);
624 }
625 else
626 {
627 h->root.type = bfd_link_hash_defined;
628 h->root.u.def.value = value;
629 h->root.u.def.section = sec;
630 }
631 }
632
633
634 /* Build all the stubs associated with the current output file. The
635 stubs are kept in a hash table attached to the main linker hash
636 table. This function is called via m68hc12elf_finish in the
637 linker. */
638
639 bfd_boolean
640 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
641 {
642 asection *stub_sec;
643 struct bfd_hash_table *table;
644 struct m68hc11_elf_link_hash_table *htab;
645 struct m68hc11_scan_param param;
646
647 m68hc11_elf_get_bank_parameters (info);
648 htab = m68hc11_elf_hash_table (info);
649 if (htab == NULL)
650 return FALSE;
651
652 for (stub_sec = htab->stub_bfd->sections;
653 stub_sec != NULL;
654 stub_sec = stub_sec->next)
655 {
656 bfd_size_type size;
657
658 /* Allocate memory to hold the linker stubs. */
659 size = stub_sec->size;
660 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
661 if (stub_sec->contents == NULL && size != 0)
662 return FALSE;
663 stub_sec->size = 0;
664 }
665
666 /* Build the stubs as directed by the stub hash table. */
667 table = htab->stub_hash_table;
668 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
669
670 /* Scan the output sections to see if we use the memory banks.
671 If so, export the symbols that define how the memory banks
672 are mapped. This is used by gdb and the simulator to obtain
673 the information. It can be used by programs to burn the eprom
674 at the good addresses. */
675 param.use_memory_banks = FALSE;
676 param.pinfo = &htab->pinfo;
677 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
678 if (param.use_memory_banks)
679 {
680 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
681 htab->pinfo.bank_physical,
682 bfd_abs_section_ptr);
683 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
684 htab->pinfo.bank_virtual,
685 bfd_abs_section_ptr);
686 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
687 htab->pinfo.bank_size,
688 bfd_abs_section_ptr);
689 }
690
691 return TRUE;
692 }
693
694 void
695 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
696 {
697 unsigned i;
698 struct m68hc11_page_info *pinfo;
699 struct bfd_link_hash_entry *h;
700 struct m68hc11_elf_link_hash_table *htab;
701
702 htab = m68hc11_elf_hash_table (info);
703 if (htab == NULL)
704 return;
705
706 pinfo = & htab->pinfo;
707 if (pinfo->bank_param_initialized)
708 return;
709
710 pinfo->bank_virtual = M68HC12_BANK_VIRT;
711 pinfo->bank_mask = M68HC12_BANK_MASK;
712 pinfo->bank_physical = M68HC12_BANK_BASE;
713 pinfo->bank_shift = M68HC12_BANK_SHIFT;
714 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
715
716 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
717 FALSE, FALSE, TRUE);
718 if (h != (struct bfd_link_hash_entry*) NULL
719 && h->type == bfd_link_hash_defined)
720 pinfo->bank_physical = (h->u.def.value
721 + h->u.def.section->output_section->vma
722 + h->u.def.section->output_offset);
723
724 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
725 FALSE, FALSE, TRUE);
726 if (h != (struct bfd_link_hash_entry*) NULL
727 && h->type == bfd_link_hash_defined)
728 pinfo->bank_virtual = (h->u.def.value
729 + h->u.def.section->output_section->vma
730 + h->u.def.section->output_offset);
731
732 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
733 FALSE, FALSE, TRUE);
734 if (h != (struct bfd_link_hash_entry*) NULL
735 && h->type == bfd_link_hash_defined)
736 pinfo->bank_size = (h->u.def.value
737 + h->u.def.section->output_section->vma
738 + h->u.def.section->output_offset);
739
740 pinfo->bank_shift = 0;
741 for (i = pinfo->bank_size; i != 0; i >>= 1)
742 pinfo->bank_shift++;
743 pinfo->bank_shift--;
744 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
745 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
746 pinfo->bank_param_initialized = 1;
747
748 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
749 FALSE, TRUE);
750 if (h != (struct bfd_link_hash_entry*) NULL
751 && h->type == bfd_link_hash_defined)
752 pinfo->trampoline_addr = (h->u.def.value
753 + h->u.def.section->output_section->vma
754 + h->u.def.section->output_offset);
755 }
756
757 /* Return 1 if the address is in banked memory.
758 This can be applied to a virtual address and to a physical address. */
759 int
760 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
761 {
762 if (addr >= pinfo->bank_virtual)
763 return 1;
764
765 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
766 return 1;
767
768 return 0;
769 }
770
771 /* Return the physical address seen by the processor, taking
772 into account banked memory. */
773 bfd_vma
774 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
775 {
776 if (addr < pinfo->bank_virtual)
777 return addr;
778
779 /* Map the address to the memory bank. */
780 addr -= pinfo->bank_virtual;
781 addr &= pinfo->bank_mask;
782 addr += pinfo->bank_physical;
783 return addr;
784 }
785
786 /* Return the page number corresponding to an address in banked memory. */
787 bfd_vma
788 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
789 {
790 if (addr < pinfo->bank_virtual)
791 return 0;
792
793 /* Map the address to the memory bank. */
794 addr -= pinfo->bank_virtual;
795 addr >>= pinfo->bank_shift;
796 addr &= 0x0ff;
797 return addr;
798 }
799
800 /* This function is used for relocs which are only used for relaxing,
801 which the linker should otherwise ignore. */
802
803 bfd_reloc_status_type
804 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
805 arelent *reloc_entry,
806 asymbol *symbol ATTRIBUTE_UNUSED,
807 void *data ATTRIBUTE_UNUSED,
808 asection *input_section,
809 bfd *output_bfd,
810 char **error_message ATTRIBUTE_UNUSED)
811 {
812 if (output_bfd != NULL)
813 reloc_entry->address += input_section->output_offset;
814 return bfd_reloc_ok;
815 }
816
817 bfd_reloc_status_type
818 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
819 arelent *reloc_entry,
820 asymbol *symbol,
821 void *data ATTRIBUTE_UNUSED,
822 asection *input_section,
823 bfd *output_bfd,
824 char **error_message ATTRIBUTE_UNUSED)
825 {
826 if (output_bfd != (bfd *) NULL
827 && (symbol->flags & BSF_SECTION_SYM) == 0
828 && (! reloc_entry->howto->partial_inplace
829 || reloc_entry->addend == 0))
830 {
831 reloc_entry->address += input_section->output_offset;
832 return bfd_reloc_ok;
833 }
834
835 if (output_bfd != NULL)
836 return bfd_reloc_continue;
837
838 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
839 return bfd_reloc_outofrange;
840
841 abort();
842 }
843
844 /* Look through the relocs for a section during the first phase.
845 Since we don't do .gots or .plts, we just need to consider the
846 virtual table relocs for gc. */
847
848 bfd_boolean
849 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
850 asection *sec, const Elf_Internal_Rela *relocs)
851 {
852 Elf_Internal_Shdr * symtab_hdr;
853 struct elf_link_hash_entry ** sym_hashes;
854 const Elf_Internal_Rela * rel;
855 const Elf_Internal_Rela * rel_end;
856
857 if (bfd_link_relocatable (info))
858 return TRUE;
859
860 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
861 sym_hashes = elf_sym_hashes (abfd);
862 rel_end = relocs + sec->reloc_count;
863
864 for (rel = relocs; rel < rel_end; rel++)
865 {
866 struct elf_link_hash_entry * h;
867 unsigned long r_symndx;
868
869 r_symndx = ELF32_R_SYM (rel->r_info);
870
871 if (r_symndx < symtab_hdr->sh_info)
872 h = NULL;
873 else
874 {
875 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
876 while (h->root.type == bfd_link_hash_indirect
877 || h->root.type == bfd_link_hash_warning)
878 h = (struct elf_link_hash_entry *) h->root.u.i.link;
879 }
880
881 switch (ELF32_R_TYPE (rel->r_info))
882 {
883 /* This relocation describes the C++ object vtable hierarchy.
884 Reconstruct it for later use during GC. */
885 case R_M68HC11_GNU_VTINHERIT:
886 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
887 return FALSE;
888 break;
889
890 /* This relocation describes which C++ vtable entries are actually
891 used. Record for later use during GC. */
892 case R_M68HC11_GNU_VTENTRY:
893 BFD_ASSERT (h != NULL);
894 if (h != NULL
895 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
896 return FALSE;
897 break;
898 }
899 }
900
901 return TRUE;
902 }
903
904 /* Relocate a 68hc11/68hc12 ELF section. */
905 bfd_boolean
906 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
907 struct bfd_link_info *info,
908 bfd *input_bfd, asection *input_section,
909 bfd_byte *contents, Elf_Internal_Rela *relocs,
910 Elf_Internal_Sym *local_syms,
911 asection **local_sections)
912 {
913 Elf_Internal_Shdr *symtab_hdr;
914 struct elf_link_hash_entry **sym_hashes;
915 Elf_Internal_Rela *rel, *relend;
916 const char *name = NULL;
917 struct m68hc11_page_info *pinfo;
918 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
919 struct m68hc11_elf_link_hash_table *htab;
920 unsigned long e_flags;
921
922 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
923 sym_hashes = elf_sym_hashes (input_bfd);
924 e_flags = elf_elfheader (input_bfd)->e_flags;
925
926 htab = m68hc11_elf_hash_table (info);
927 if (htab == NULL)
928 return FALSE;
929
930 /* Get memory bank parameters. */
931 m68hc11_elf_get_bank_parameters (info);
932
933 pinfo = & htab->pinfo;
934 rel = relocs;
935 relend = relocs + input_section->reloc_count;
936
937 for (; rel < relend; rel++)
938 {
939 int r_type;
940 arelent arel;
941 reloc_howto_type *howto;
942 unsigned long r_symndx;
943 Elf_Internal_Sym *sym;
944 asection *sec;
945 bfd_vma relocation = 0;
946 bfd_reloc_status_type r = bfd_reloc_undefined;
947 bfd_vma phys_page;
948 bfd_vma phys_addr;
949 bfd_vma insn_addr;
950 bfd_vma insn_page;
951 bfd_boolean is_far = FALSE;
952 bfd_boolean is_xgate_symbol = FALSE;
953 bfd_boolean is_section_symbol = FALSE;
954 struct elf_link_hash_entry *h;
955 bfd_vma val;
956 const char * msg;
957 char * buf;
958
959 r_symndx = ELF32_R_SYM (rel->r_info);
960 r_type = ELF32_R_TYPE (rel->r_info);
961
962 if (r_type == R_M68HC11_GNU_VTENTRY
963 || r_type == R_M68HC11_GNU_VTINHERIT)
964 continue;
965
966 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
967 howto = arel.howto;
968
969 h = NULL;
970 sym = NULL;
971 sec = NULL;
972 if (r_symndx < symtab_hdr->sh_info)
973 {
974 sym = local_syms + r_symndx;
975 sec = local_sections[r_symndx];
976 relocation = (sec->output_section->vma
977 + sec->output_offset
978 + sym->st_value);
979 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
980 is_xgate_symbol = (sym && (sym->st_target_internal));
981 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
982 }
983 else
984 {
985 bfd_boolean unresolved_reloc, warned, ignored;
986
987 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
988 r_symndx, symtab_hdr, sym_hashes,
989 h, sec, relocation, unresolved_reloc,
990 warned, ignored);
991
992 is_far = (h && (h->other & STO_M68HC12_FAR));
993 is_xgate_symbol = (h && (h->target_internal));
994 }
995
996 if (sec != NULL && discarded_section (sec))
997 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
998 rel, 1, relend, howto, 0, contents);
999
1000 if (bfd_link_relocatable (info))
1001 {
1002 /* This is a relocatable link. We don't have to change
1003 anything, unless the reloc is against a section symbol,
1004 in which case we have to adjust according to where the
1005 section symbol winds up in the output section. */
1006 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1007 rel->r_addend += sec->output_offset;
1008 continue;
1009 }
1010
1011 if (h != NULL)
1012 name = h->root.root.string;
1013 else
1014 {
1015 name = (bfd_elf_string_from_elf_section
1016 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1017 if (name == NULL || *name == '\0')
1018 name = bfd_section_name (input_bfd, sec);
1019 }
1020
1021 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1022 {
1023 struct elf32_m68hc11_stub_hash_entry* stub;
1024
1025 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1026 name, FALSE, FALSE);
1027 if (stub)
1028 {
1029 relocation = stub->stub_offset
1030 + stub->stub_sec->output_section->vma
1031 + stub->stub_sec->output_offset;
1032 is_far = FALSE;
1033 }
1034 }
1035
1036 /* Do the memory bank mapping. */
1037 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1038 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1039 switch (r_type)
1040 {
1041 case R_M68HC12_LO8XG:
1042 /* This relocation is specific to XGATE IMM16 calls and will precede
1043 a HI8. tc-m68hc11 only generates them in pairs.
1044 Leave the relocation to the HI8XG step. */
1045 r = bfd_reloc_ok;
1046 r_type = R_M68HC11_NONE;
1047 break;
1048
1049 case R_M68HC12_HI8XG:
1050 /* This relocation is specific to XGATE IMM16 calls and must follow
1051 a LO8XG. Does not actually check that it was a LO8XG.
1052 Adjusts high and low bytes. */
1053 relocation = phys_addr;
1054 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1055 && (relocation >= 0x2000))
1056 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
1057
1058 /* Fetch 16 bit value including low byte in previous insn. */
1059 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1060 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1061
1062 /* Add on value to preserve carry, then write zero to high byte. */
1063 relocation += val;
1064
1065 /* Write out top byte. */
1066 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1067 (bfd_byte*) contents + rel->r_offset);
1068
1069 /* Write out low byte to previous instruction. */
1070 bfd_put_8 (input_bfd, relocation & 0xff,
1071 (bfd_byte*) contents + rel->r_offset - 2);
1072
1073 /* Mark as relocation completed. */
1074 r = bfd_reloc_ok;
1075 r_type = R_M68HC11_NONE;
1076 break;
1077
1078 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1079 assembler directives. %hi does not support carry. */
1080 case R_M68HC11_HI8:
1081 case R_M68HC11_LO8:
1082 relocation = phys_addr;
1083 break;
1084
1085 case R_M68HC11_24:
1086 /* Reloc used by 68HC12 call instruction. */
1087 bfd_put_16 (input_bfd, phys_addr,
1088 (bfd_byte*) contents + rel->r_offset);
1089 bfd_put_8 (input_bfd, phys_page,
1090 (bfd_byte*) contents + rel->r_offset + 2);
1091 r = bfd_reloc_ok;
1092 r_type = R_M68HC11_NONE;
1093 break;
1094
1095 case R_M68HC11_NONE:
1096 r = bfd_reloc_ok;
1097 break;
1098
1099 case R_M68HC11_LO16:
1100 /* Reloc generated by %addr(expr) gas to obtain the
1101 address as mapped in the memory bank window. */
1102 relocation = phys_addr;
1103 break;
1104
1105 case R_M68HC11_PAGE:
1106 /* Reloc generated by %page(expr) gas to obtain the
1107 page number associated with the address. */
1108 relocation = phys_page;
1109 break;
1110
1111 case R_M68HC11_16:
1112 /* Get virtual address of instruction having the relocation. */
1113 if (is_far)
1114 {
1115 msg = _("Reference to the far symbol `%s' using a wrong "
1116 "relocation may result in incorrect execution");
1117 buf = xmalloc (strlen (msg) + strlen (name) + 10);
1118 sprintf (buf, msg, name);
1119
1120 (*info->callbacks->warning)
1121 (info, buf, name, input_bfd, NULL, rel->r_offset);
1122 free (buf);
1123 }
1124
1125 /* Get virtual address of instruction having the relocation. */
1126 insn_addr = input_section->output_section->vma
1127 + input_section->output_offset
1128 + rel->r_offset;
1129
1130 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1131
1132 /* If we are linking an S12 instruction against an XGATE symbol, we
1133 need to change the offset of the symbol value so that it's correct
1134 from the S12's perspective. */
1135 if (is_xgate_symbol)
1136 {
1137 /* The ram in the global space is mapped to 0x2000 in the 16-bit
1138 address space for S12 and 0xE000 in the 16-bit address space
1139 for XGATE. */
1140 if (relocation >= 0xE000)
1141 {
1142 /* We offset the address by the difference
1143 between these two mappings. */
1144 relocation -= 0xC000;
1145 break;
1146 }
1147 else
1148 {
1149 msg = _("XGATE address (%lx) is not within shared RAM"
1150 "(0xE000-0xFFFF), therefore you must manually offset "
1151 "the address, and possibly manage the page, in your "
1152 "code.");
1153 buf = xmalloc (strlen (msg) + 128);
1154 sprintf (buf, msg, phys_addr);
1155 (*info->callbacks->warning) (info, buf, name, input_bfd,
1156 input_section, insn_addr);
1157 free (buf);
1158 break;
1159 }
1160 }
1161
1162 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1163 && m68hc11_addr_is_banked (pinfo, insn_addr)
1164 && phys_page != insn_page && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1165 {
1166 /* xgettext:c-format */
1167 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1168 "as current banked address [%lx:%04lx] (%lx)");
1169 buf = xmalloc (strlen (msg) + 128);
1170 sprintf (buf, msg, phys_page, phys_addr,
1171 (long) (relocation + rel->r_addend),
1172 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1173 (long) (insn_addr));
1174 (*info->callbacks->warning) (info, buf, name, input_bfd,
1175 input_section, rel->r_offset);
1176 free (buf);
1177 break;
1178 }
1179
1180 if (phys_page != 0 && insn_page == 0)
1181 {
1182 /* xgettext:c-format */
1183 msg = _("reference to a banked address [%lx:%04lx] in the "
1184 "normal address space at %04lx");
1185 buf = xmalloc (strlen (msg) + 128);
1186 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1187 (*info->callbacks->warning) (info, buf, name, input_bfd,
1188 input_section, insn_addr);
1189 free (buf);
1190 relocation = phys_addr;
1191 break;
1192 }
1193
1194 /* If this is a banked address use the phys_addr so that
1195 we stay in the banked window. */
1196 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1197 relocation = phys_addr;
1198 break;
1199 }
1200
1201 /* If we are linking an XGATE instruction against an S12 symbol, we
1202 need to change the offset of the symbol value so that it's correct
1203 from the XGATE's perspective. */
1204 if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1205 || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1206 {
1207 /* We can only offset S12 addresses that lie within the non-paged
1208 area of RAM. */
1209 if (!is_xgate_symbol && !is_section_symbol)
1210 {
1211 /* The ram in the global space is mapped to 0x2000 and stops at
1212 0x4000 in the 16-bit address space for S12 and 0xE000 in the
1213 16-bit address space for XGATE. */
1214 if (relocation >= 0x2000 && relocation < 0x4000)
1215 /* We offset the address by the difference
1216 between these two mappings. */
1217 relocation += 0xC000;
1218 else
1219 {
1220 /* Get virtual address of instruction having the relocation. */
1221 insn_addr = input_section->output_section->vma
1222 + input_section->output_offset + rel->r_offset;
1223
1224 msg = _("S12 address (%lx) is not within shared RAM"
1225 "(0x2000-0x4000), therefore you must manually "
1226 "offset the address in your code");
1227 buf = xmalloc (strlen (msg) + 128);
1228 sprintf (buf, msg, phys_addr);
1229 (*info->callbacks->warning) (info, buf, name, input_bfd,
1230 input_section, insn_addr);
1231 free (buf);
1232 break;
1233 }
1234 }
1235 }
1236
1237 if (r_type != R_M68HC11_NONE)
1238 {
1239 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1240 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1241 contents, rel->r_offset,
1242 relocation - 2, rel->r_addend);
1243 else
1244 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1245 contents, rel->r_offset,
1246 relocation, rel->r_addend);
1247 }
1248
1249 if (r != bfd_reloc_ok)
1250 {
1251 switch (r)
1252 {
1253 case bfd_reloc_overflow:
1254 (*info->callbacks->reloc_overflow)
1255 (info, NULL, name, howto->name, (bfd_vma) 0,
1256 input_bfd, input_section, rel->r_offset);
1257 break;
1258
1259 case bfd_reloc_undefined:
1260 (*info->callbacks->undefined_symbol)
1261 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1262 break;
1263
1264 case bfd_reloc_outofrange:
1265 msg = _ ("internal error: out of range error");
1266 goto common_error;
1267
1268 case bfd_reloc_notsupported:
1269 msg = _ ("internal error: unsupported relocation error");
1270 goto common_error;
1271
1272 case bfd_reloc_dangerous:
1273 msg = _ ("internal error: dangerous error");
1274 goto common_error;
1275
1276 default:
1277 msg = _ ("internal error: unknown error");
1278 /* fall through */
1279
1280 common_error:
1281 (*info->callbacks->warning) (info, msg, name, input_bfd,
1282 input_section, rel->r_offset);
1283 break;
1284 }
1285 }
1286 }
1287
1288 return TRUE;
1289 }
1290
1291
1292 \f
1293 /* Set and control ELF flags in ELF header. */
1294
1295 bfd_boolean
1296 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1297 {
1298 BFD_ASSERT (!elf_flags_init (abfd)
1299 || elf_elfheader (abfd)->e_flags == flags);
1300
1301 elf_elfheader (abfd)->e_flags = flags;
1302 elf_flags_init (abfd) = TRUE;
1303 return TRUE;
1304 }
1305
1306 /* Merge backend specific data from an object file to the output
1307 object file when linking. */
1308
1309 bfd_boolean
1310 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1311 {
1312 bfd *obfd = info->output_bfd;
1313 flagword old_flags;
1314 flagword new_flags;
1315 bfd_boolean ok = TRUE;
1316
1317 /* Check if we have the same endianness */
1318 if (!_bfd_generic_verify_endian_match (ibfd, info))
1319 return FALSE;
1320
1321 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1322 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1323 return TRUE;
1324
1325 new_flags = elf_elfheader (ibfd)->e_flags;
1326 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1327 old_flags = elf_elfheader (obfd)->e_flags;
1328
1329 if (! elf_flags_init (obfd))
1330 {
1331 elf_flags_init (obfd) = TRUE;
1332 elf_elfheader (obfd)->e_flags = new_flags;
1333 elf_elfheader (obfd)->e_ident[EI_CLASS]
1334 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1335
1336 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1337 && bfd_get_arch_info (obfd)->the_default)
1338 {
1339 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1340 bfd_get_mach (ibfd)))
1341 return FALSE;
1342 }
1343
1344 return TRUE;
1345 }
1346
1347 /* Check ABI compatibility. */
1348 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1349 {
1350 _bfd_error_handler
1351 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1352 "and others for 32-bit integers"), ibfd);
1353 ok = FALSE;
1354 }
1355 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1356 {
1357 _bfd_error_handler
1358 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1359 "and others for 64-bit double"), ibfd);
1360 ok = FALSE;
1361 }
1362
1363 /* Processor compatibility. */
1364 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1365 {
1366 _bfd_error_handler
1367 (_("%B: linking files compiled for HCS12 with "
1368 "others compiled for HC12"), ibfd);
1369 ok = FALSE;
1370 }
1371 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1372 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1373
1374 elf_elfheader (obfd)->e_flags = new_flags;
1375
1376 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1377 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1378
1379 /* Warn about any other mismatches */
1380 if (new_flags != old_flags)
1381 {
1382 _bfd_error_handler
1383 /* xgettext:c-format */
1384 (_("%B: uses different e_flags (%#x) fields than previous modules (%#x)"),
1385 ibfd, new_flags, old_flags);
1386 ok = FALSE;
1387 }
1388
1389 if (! ok)
1390 {
1391 bfd_set_error (bfd_error_bad_value);
1392 return FALSE;
1393 }
1394
1395 return TRUE;
1396 }
1397
1398 bfd_boolean
1399 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1400 {
1401 FILE *file = (FILE *) ptr;
1402
1403 BFD_ASSERT (abfd != NULL && ptr != NULL);
1404
1405 /* Print normal ELF private data. */
1406 _bfd_elf_print_private_bfd_data (abfd, ptr);
1407
1408 /* xgettext:c-format */
1409 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1410
1411 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1412 fprintf (file, _("[abi=32-bit int, "));
1413 else
1414 fprintf (file, _("[abi=16-bit int, "));
1415
1416 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1417 fprintf (file, _("64-bit double, "));
1418 else
1419 fprintf (file, _("32-bit double, "));
1420
1421 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1422 fprintf (file, _("cpu=HC11]"));
1423 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1424 fprintf (file, _("cpu=HCS12]"));
1425 else
1426 fprintf (file, _("cpu=HC12]"));
1427
1428 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1429 fprintf (file, _(" [memory=bank-model]"));
1430 else
1431 fprintf (file, _(" [memory=flat]"));
1432
1433 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1434 fprintf (file, _(" [XGATE RAM offsetting]"));
1435
1436 fputc ('\n', file);
1437
1438 return TRUE;
1439 }
1440
1441 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1442 asection *asect, void *arg)
1443 {
1444 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1445
1446 if (asect->vma >= p->pinfo->bank_virtual)
1447 p->use_memory_banks = TRUE;
1448 }
1449
1450 /* Tweak the OSABI field of the elf header. */
1451
1452 void
1453 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1454 {
1455 struct m68hc11_scan_param param;
1456 struct m68hc11_elf_link_hash_table *htab;
1457
1458 if (link_info == NULL)
1459 return;
1460
1461 htab = m68hc11_elf_hash_table (link_info);
1462 if (htab == NULL)
1463 return;
1464
1465 m68hc11_elf_get_bank_parameters (link_info);
1466
1467 param.use_memory_banks = FALSE;
1468 param.pinfo = & htab->pinfo;
1469
1470 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1471
1472 if (param.use_memory_banks)
1473 {
1474 Elf_Internal_Ehdr * i_ehdrp;
1475
1476 i_ehdrp = elf_elfheader (abfd);
1477 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1478 }
1479 }