]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68k.c
* elf-bfd.h (struct got_entry, struct plt_entry): Forward declare.
[thirdparty/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27
28 static reloc_howto_type *reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void rtype_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
33 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
34 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
35 PARAMS ((bfd *));
36 static bfd_boolean elf_m68k_check_relocs
37 PARAMS ((bfd *, struct bfd_link_info *, asection *,
38 const Elf_Internal_Rela *));
39 static asection *elf_m68k_gc_mark_hook
40 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
41 struct elf_link_hash_entry *, Elf_Internal_Sym *));
42 static bfd_boolean elf_m68k_gc_sweep_hook
43 PARAMS ((bfd *, struct bfd_link_info *, asection *,
44 const Elf_Internal_Rela *));
45 static bfd_boolean elf_m68k_adjust_dynamic_symbol
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static bfd_boolean elf_m68k_size_dynamic_sections
48 PARAMS ((bfd *, struct bfd_link_info *));
49 static bfd_boolean elf_m68k_relocate_section
50 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
51 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
52 static bfd_boolean elf_m68k_finish_dynamic_symbol
53 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
54 Elf_Internal_Sym *));
55 static bfd_boolean elf_m68k_finish_dynamic_sections
56 PARAMS ((bfd *, struct bfd_link_info *));
57
58 static bfd_boolean elf32_m68k_set_private_flags
59 PARAMS ((bfd *, flagword));
60 static bfd_boolean elf32_m68k_merge_private_bfd_data
61 PARAMS ((bfd *, bfd *));
62 static bfd_boolean elf32_m68k_print_private_bfd_data
63 PARAMS ((bfd *, PTR));
64 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
65 PARAMS ((const Elf_Internal_Rela *));
66
67 static reloc_howto_type howto_table[] = {
68 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
69 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
70 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
71 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
72 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
73 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
74 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
75 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
76 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
77 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
78 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
79 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
80 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
81 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
82 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
83 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
84 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
85 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
86 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
87 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
89 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
90 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
91 /* GNU extension to record C++ vtable hierarchy */
92 HOWTO (R_68K_GNU_VTINHERIT, /* type */
93 0, /* rightshift */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
95 0, /* bitsize */
96 FALSE, /* pc_relative */
97 0, /* bitpos */
98 complain_overflow_dont, /* complain_on_overflow */
99 NULL, /* special_function */
100 "R_68K_GNU_VTINHERIT", /* name */
101 FALSE, /* partial_inplace */
102 0, /* src_mask */
103 0, /* dst_mask */
104 FALSE),
105 /* GNU extension to record C++ vtable member usage */
106 HOWTO (R_68K_GNU_VTENTRY, /* type */
107 0, /* rightshift */
108 2, /* size (0 = byte, 1 = short, 2 = long) */
109 0, /* bitsize */
110 FALSE, /* pc_relative */
111 0, /* bitpos */
112 complain_overflow_dont, /* complain_on_overflow */
113 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
114 "R_68K_GNU_VTENTRY", /* name */
115 FALSE, /* partial_inplace */
116 0, /* src_mask */
117 0, /* dst_mask */
118 FALSE),
119 };
120
121 static void
122 rtype_to_howto (abfd, cache_ptr, dst)
123 bfd *abfd ATTRIBUTE_UNUSED;
124 arelent *cache_ptr;
125 Elf_Internal_Rela *dst;
126 {
127 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
128 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
129 }
130
131 #define elf_info_to_howto rtype_to_howto
132
133 static const struct
134 {
135 bfd_reloc_code_real_type bfd_val;
136 int elf_val;
137 } reloc_map[] = {
138 { BFD_RELOC_NONE, R_68K_NONE },
139 { BFD_RELOC_32, R_68K_32 },
140 { BFD_RELOC_16, R_68K_16 },
141 { BFD_RELOC_8, R_68K_8 },
142 { BFD_RELOC_32_PCREL, R_68K_PC32 },
143 { BFD_RELOC_16_PCREL, R_68K_PC16 },
144 { BFD_RELOC_8_PCREL, R_68K_PC8 },
145 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
146 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
147 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
148 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
149 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
150 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
151 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
152 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
153 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
154 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
155 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
156 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
157 { BFD_RELOC_NONE, R_68K_COPY },
158 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
159 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
160 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
161 { BFD_RELOC_CTOR, R_68K_32 },
162 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
163 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
164 };
165
166 static reloc_howto_type *
167 reloc_type_lookup (abfd, code)
168 bfd *abfd ATTRIBUTE_UNUSED;
169 bfd_reloc_code_real_type code;
170 {
171 unsigned int i;
172 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
173 {
174 if (reloc_map[i].bfd_val == code)
175 return &howto_table[reloc_map[i].elf_val];
176 }
177 return 0;
178 }
179
180 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
181 #define ELF_ARCH bfd_arch_m68k
182 /* end code generated by elf.el */
183 \f
184 /* Functions for the m68k ELF linker. */
185
186 /* The name of the dynamic interpreter. This is put in the .interp
187 section. */
188
189 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
190
191 /* The size in bytes of an entry in the procedure linkage table. */
192
193 #define PLT_ENTRY_SIZE 20
194
195 /* The first entry in a procedure linkage table looks like this. See
196 the SVR4 ABI m68k supplement to see how this works. */
197
198 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
199 {
200 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
201 0, 0, 0, 0, /* replaced with offset to .got + 4. */
202 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
203 0, 0, 0, 0, /* replaced with offset to .got + 8. */
204 0, 0, 0, 0 /* pad out to 20 bytes. */
205 };
206
207 /* Subsequent entries in a procedure linkage table look like this. */
208
209 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
210 {
211 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
212 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
213 0x2f, 0x3c, /* move.l #offset,-(%sp) */
214 0, 0, 0, 0, /* replaced with offset into relocation table. */
215 0x60, 0xff, /* bra.l .plt */
216 0, 0, 0, 0 /* replaced with offset to start of .plt. */
217 };
218
219 #define CPU32_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_CPU32)
220
221 #define PLT_CPU32_ENTRY_SIZE 24
222 /* Procedure linkage table entries for the cpu32 */
223 static const bfd_byte elf_cpu32_plt0_entry[PLT_CPU32_ENTRY_SIZE] =
224 {
225 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
226 0, 0, 0, 0, /* replaced with offset to .got + 4. */
227 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
228 0, 0, 0, 0, /* replace with offset to .got +8. */
229 0x4e, 0xd1, /* jmp %a1@ */
230 0, 0, 0, 0, /* pad out to 24 bytes. */
231 0, 0
232 };
233
234 static const bfd_byte elf_cpu32_plt_entry[PLT_CPU32_ENTRY_SIZE] =
235 {
236 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
237 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
238 0x4e, 0xd1, /* jmp %a1@ */
239 0x2f, 0x3c, /* move.l #offset,-(%sp) */
240 0, 0, 0, 0, /* replaced with offset into relocation table. */
241 0x60, 0xff, /* bra.l .plt */
242 0, 0, 0, 0, /* replaced with offset to start of .plt. */
243 0, 0
244 };
245
246 /* The m68k linker needs to keep track of the number of relocs that it
247 decides to copy in check_relocs for each symbol. This is so that it
248 can discard PC relative relocs if it doesn't need them when linking
249 with -Bsymbolic. We store the information in a field extending the
250 regular ELF linker hash table. */
251
252 /* This structure keeps track of the number of PC relative relocs we have
253 copied for a given symbol. */
254
255 struct elf_m68k_pcrel_relocs_copied
256 {
257 /* Next section. */
258 struct elf_m68k_pcrel_relocs_copied *next;
259 /* A section in dynobj. */
260 asection *section;
261 /* Number of relocs copied in this section. */
262 bfd_size_type count;
263 };
264
265 /* m68k ELF linker hash entry. */
266
267 struct elf_m68k_link_hash_entry
268 {
269 struct elf_link_hash_entry root;
270
271 /* Number of PC relative relocs copied for this symbol. */
272 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
273 };
274
275 /* m68k ELF linker hash table. */
276
277 struct elf_m68k_link_hash_table
278 {
279 struct elf_link_hash_table root;
280
281 /* Small local sym to section mapping cache. */
282 struct sym_sec_cache sym_sec;
283 };
284
285 /* Declare this now that the above structures are defined. */
286
287 static bfd_boolean elf_m68k_discard_copies
288 PARAMS ((struct elf_m68k_link_hash_entry *, PTR));
289
290 /* Traverse an m68k ELF linker hash table. */
291
292 #define elf_m68k_link_hash_traverse(table, func, info) \
293 (elf_link_hash_traverse \
294 (&(table)->root, \
295 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
296 (info)))
297
298 /* Get the m68k ELF linker hash table from a link_info structure. */
299
300 #define elf_m68k_hash_table(p) \
301 ((struct elf_m68k_link_hash_table *) (p)->hash)
302
303 /* Create an entry in an m68k ELF linker hash table. */
304
305 static struct bfd_hash_entry *
306 elf_m68k_link_hash_newfunc (entry, table, string)
307 struct bfd_hash_entry *entry;
308 struct bfd_hash_table *table;
309 const char *string;
310 {
311 struct elf_m68k_link_hash_entry *ret =
312 (struct elf_m68k_link_hash_entry *) entry;
313
314 /* Allocate the structure if it has not already been allocated by a
315 subclass. */
316 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
317 ret = ((struct elf_m68k_link_hash_entry *)
318 bfd_hash_allocate (table,
319 sizeof (struct elf_m68k_link_hash_entry)));
320 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
321 return (struct bfd_hash_entry *) ret;
322
323 /* Call the allocation method of the superclass. */
324 ret = ((struct elf_m68k_link_hash_entry *)
325 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
326 table, string));
327 if (ret != (struct elf_m68k_link_hash_entry *) NULL)
328 {
329 ret->pcrel_relocs_copied = NULL;
330 }
331
332 return (struct bfd_hash_entry *) ret;
333 }
334
335 /* Create an m68k ELF linker hash table. */
336
337 static struct bfd_link_hash_table *
338 elf_m68k_link_hash_table_create (abfd)
339 bfd *abfd;
340 {
341 struct elf_m68k_link_hash_table *ret;
342 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
343
344 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
345 if (ret == (struct elf_m68k_link_hash_table *) NULL)
346 return NULL;
347
348 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
349 elf_m68k_link_hash_newfunc))
350 {
351 free (ret);
352 return NULL;
353 }
354
355 ret->sym_sec.abfd = NULL;
356
357 return &ret->root.root;
358 }
359
360 /* Keep m68k-specific flags in the ELF header */
361 static bfd_boolean
362 elf32_m68k_set_private_flags (abfd, flags)
363 bfd *abfd;
364 flagword flags;
365 {
366 elf_elfheader (abfd)->e_flags = flags;
367 elf_flags_init (abfd) = TRUE;
368 return TRUE;
369 }
370
371 /* Merge backend specific data from an object file to the output
372 object file when linking. */
373 static bfd_boolean
374 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
375 bfd *ibfd;
376 bfd *obfd;
377 {
378 flagword out_flags;
379 flagword in_flags;
380
381 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
382 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
383 return TRUE;
384
385 in_flags = elf_elfheader (ibfd)->e_flags;
386 out_flags = elf_elfheader (obfd)->e_flags;
387
388 if (!elf_flags_init (obfd))
389 {
390 elf_flags_init (obfd) = TRUE;
391 elf_elfheader (obfd)->e_flags = in_flags;
392 }
393
394 return TRUE;
395 }
396
397 /* Display the flags field */
398 static bfd_boolean
399 elf32_m68k_print_private_bfd_data (abfd, ptr)
400 bfd *abfd;
401 PTR ptr;
402 {
403 FILE *file = (FILE *) ptr;
404
405 BFD_ASSERT (abfd != NULL && ptr != NULL);
406
407 /* Print normal ELF private data. */
408 _bfd_elf_print_private_bfd_data (abfd, ptr);
409
410 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
411
412 /* xgettext:c-format */
413 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
414
415 if (elf_elfheader (abfd)->e_flags & EF_CPU32)
416 fprintf (file, _(" [cpu32]"));
417
418 if (elf_elfheader (abfd)->e_flags & EF_M68000)
419 fprintf (file, _(" [m68000]"));
420
421 fputc ('\n', file);
422
423 return TRUE;
424 }
425 /* Look through the relocs for a section during the first phase, and
426 allocate space in the global offset table or procedure linkage
427 table. */
428
429 static bfd_boolean
430 elf_m68k_check_relocs (abfd, info, sec, relocs)
431 bfd *abfd;
432 struct bfd_link_info *info;
433 asection *sec;
434 const Elf_Internal_Rela *relocs;
435 {
436 bfd *dynobj;
437 Elf_Internal_Shdr *symtab_hdr;
438 struct elf_link_hash_entry **sym_hashes;
439 bfd_signed_vma *local_got_refcounts;
440 const Elf_Internal_Rela *rel;
441 const Elf_Internal_Rela *rel_end;
442 asection *sgot;
443 asection *srelgot;
444 asection *sreloc;
445
446 if (info->relocateable)
447 return TRUE;
448
449 dynobj = elf_hash_table (info)->dynobj;
450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
451 sym_hashes = elf_sym_hashes (abfd);
452 local_got_refcounts = elf_local_got_refcounts (abfd);
453
454 sgot = NULL;
455 srelgot = NULL;
456 sreloc = NULL;
457
458 rel_end = relocs + sec->reloc_count;
459 for (rel = relocs; rel < rel_end; rel++)
460 {
461 unsigned long r_symndx;
462 struct elf_link_hash_entry *h;
463
464 r_symndx = ELF32_R_SYM (rel->r_info);
465
466 if (r_symndx < symtab_hdr->sh_info)
467 h = NULL;
468 else
469 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
470
471 switch (ELF32_R_TYPE (rel->r_info))
472 {
473 case R_68K_GOT8:
474 case R_68K_GOT16:
475 case R_68K_GOT32:
476 if (h != NULL
477 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
478 break;
479 /* Fall through. */
480 case R_68K_GOT8O:
481 case R_68K_GOT16O:
482 case R_68K_GOT32O:
483 /* This symbol requires a global offset table entry. */
484
485 if (dynobj == NULL)
486 {
487 /* Create the .got section. */
488 elf_hash_table (info)->dynobj = dynobj = abfd;
489 if (!_bfd_elf_create_got_section (dynobj, info))
490 return FALSE;
491 }
492
493 if (sgot == NULL)
494 {
495 sgot = bfd_get_section_by_name (dynobj, ".got");
496 BFD_ASSERT (sgot != NULL);
497 }
498
499 if (srelgot == NULL
500 && (h != NULL || info->shared))
501 {
502 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
503 if (srelgot == NULL)
504 {
505 srelgot = bfd_make_section (dynobj, ".rela.got");
506 if (srelgot == NULL
507 || !bfd_set_section_flags (dynobj, srelgot,
508 (SEC_ALLOC
509 | SEC_LOAD
510 | SEC_HAS_CONTENTS
511 | SEC_IN_MEMORY
512 | SEC_LINKER_CREATED
513 | SEC_READONLY))
514 || !bfd_set_section_alignment (dynobj, srelgot, 2))
515 return FALSE;
516 }
517 }
518
519 if (h != NULL)
520 {
521 if (h->got.refcount == 0)
522 {
523 /* Make sure this symbol is output as a dynamic symbol. */
524 if (h->dynindx == -1
525 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
526 {
527 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
528 return FALSE;
529 }
530
531 /* Allocate space in the .got section. */
532 sgot->_raw_size += 4;
533 /* Allocate relocation space. */
534 srelgot->_raw_size += sizeof (Elf32_External_Rela);
535 }
536 h->got.refcount++;
537 }
538 else
539 {
540 /* This is a global offset table entry for a local symbol. */
541 if (local_got_refcounts == NULL)
542 {
543 bfd_size_type size;
544
545 size = symtab_hdr->sh_info;
546 size *= sizeof (bfd_signed_vma);
547 local_got_refcounts = ((bfd_signed_vma *)
548 bfd_zalloc (abfd, size));
549 if (local_got_refcounts == NULL)
550 return FALSE;
551 elf_local_got_refcounts (abfd) = local_got_refcounts;
552 }
553 if (local_got_refcounts[r_symndx] == 0)
554 {
555 sgot->_raw_size += 4;
556 if (info->shared)
557 {
558 /* If we are generating a shared object, we need to
559 output a R_68K_RELATIVE reloc so that the dynamic
560 linker can adjust this GOT entry. */
561 srelgot->_raw_size += sizeof (Elf32_External_Rela);
562 }
563 }
564 local_got_refcounts[r_symndx]++;
565 }
566 break;
567
568 case R_68K_PLT8:
569 case R_68K_PLT16:
570 case R_68K_PLT32:
571 /* This symbol requires a procedure linkage table entry. We
572 actually build the entry in adjust_dynamic_symbol,
573 because this might be a case of linking PIC code which is
574 never referenced by a dynamic object, in which case we
575 don't need to generate a procedure linkage table entry
576 after all. */
577
578 /* If this is a local symbol, we resolve it directly without
579 creating a procedure linkage table entry. */
580 if (h == NULL)
581 continue;
582
583 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
584 h->plt.refcount++;
585 break;
586
587 case R_68K_PLT8O:
588 case R_68K_PLT16O:
589 case R_68K_PLT32O:
590 /* This symbol requires a procedure linkage table entry. */
591
592 if (h == NULL)
593 {
594 /* It does not make sense to have this relocation for a
595 local symbol. FIXME: does it? How to handle it if
596 it does make sense? */
597 bfd_set_error (bfd_error_bad_value);
598 return FALSE;
599 }
600
601 /* Make sure this symbol is output as a dynamic symbol. */
602 if (h->dynindx == -1
603 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
604 {
605 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
606 return FALSE;
607 }
608
609 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
610 h->plt.refcount++;
611 break;
612
613 case R_68K_PC8:
614 case R_68K_PC16:
615 case R_68K_PC32:
616 /* If we are creating a shared library and this is not a local
617 symbol, we need to copy the reloc into the shared library.
618 However when linking with -Bsymbolic and this is a global
619 symbol which is defined in an object we are including in the
620 link (i.e., DEF_REGULAR is set), then we can resolve the
621 reloc directly. At this point we have not seen all the input
622 files, so it is possible that DEF_REGULAR is not set now but
623 will be set later (it is never cleared). We account for that
624 possibility below by storing information in the
625 pcrel_relocs_copied field of the hash table entry. */
626 if (!(info->shared
627 && (sec->flags & SEC_ALLOC) != 0
628 && h != NULL
629 && (!info->symbolic
630 || h->root.type == bfd_link_hash_defweak
631 || (h->elf_link_hash_flags
632 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
633 {
634 if (h != NULL)
635 {
636 /* Make sure a plt entry is created for this symbol if
637 it turns out to be a function defined by a dynamic
638 object. */
639 h->plt.refcount++;
640 }
641 break;
642 }
643 /* Fall through. */
644 case R_68K_8:
645 case R_68K_16:
646 case R_68K_32:
647 if (h != NULL)
648 {
649 /* Make sure a plt entry is created for this symbol if it
650 turns out to be a function defined by a dynamic object. */
651 h->plt.refcount++;
652 }
653
654 /* If we are creating a shared library, we need to copy the
655 reloc into the shared library. */
656 if (info->shared
657 && (sec->flags & SEC_ALLOC) != 0)
658 {
659 /* When creating a shared object, we must copy these
660 reloc types into the output file. We create a reloc
661 section in dynobj and make room for this reloc. */
662 if (sreloc == NULL)
663 {
664 const char *name;
665
666 name = (bfd_elf_string_from_elf_section
667 (abfd,
668 elf_elfheader (abfd)->e_shstrndx,
669 elf_section_data (sec)->rel_hdr.sh_name));
670 if (name == NULL)
671 return FALSE;
672
673 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
674 && strcmp (bfd_get_section_name (abfd, sec),
675 name + 5) == 0);
676
677 sreloc = bfd_get_section_by_name (dynobj, name);
678 if (sreloc == NULL)
679 {
680 sreloc = bfd_make_section (dynobj, name);
681 if (sreloc == NULL
682 || !bfd_set_section_flags (dynobj, sreloc,
683 (SEC_ALLOC
684 | SEC_LOAD
685 | SEC_HAS_CONTENTS
686 | SEC_IN_MEMORY
687 | SEC_LINKER_CREATED
688 | SEC_READONLY))
689 || !bfd_set_section_alignment (dynobj, sreloc, 2))
690 return FALSE;
691 }
692 }
693
694 if (sec->flags & SEC_READONLY
695 /* Don't set DF_TEXTREL yet for PC relative
696 relocations, they might be discarded later. */
697 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
698 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
699 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
700 info->flags |= DF_TEXTREL;
701
702 sreloc->_raw_size += sizeof (Elf32_External_Rela);
703
704 /* We count the number of PC relative relocations we have
705 entered for this symbol, so that we can discard them
706 again if, in the -Bsymbolic case, the symbol is later
707 defined by a regular object, or, in the normal shared
708 case, the symbol is forced to be local. Note that this
709 function is only called if we are using an m68kelf linker
710 hash table, which means that h is really a pointer to an
711 elf_m68k_link_hash_entry. */
712 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
713 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
714 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
715 {
716 struct elf_m68k_pcrel_relocs_copied *p;
717 struct elf_m68k_pcrel_relocs_copied **head;
718
719 if (h != NULL)
720 {
721 struct elf_m68k_link_hash_entry *eh
722 = (struct elf_m68k_link_hash_entry *) h;
723 head = &eh->pcrel_relocs_copied;
724 }
725 else
726 {
727 asection *s;
728 s = (bfd_section_from_r_symndx
729 (abfd, &elf_m68k_hash_table (info)->sym_sec,
730 sec, r_symndx));
731 if (s == NULL)
732 return FALSE;
733
734 head = ((struct elf_m68k_pcrel_relocs_copied **)
735 &elf_section_data (s)->local_dynrel);
736 }
737
738 for (p = *head; p != NULL; p = p->next)
739 if (p->section == sreloc)
740 break;
741
742 if (p == NULL)
743 {
744 p = ((struct elf_m68k_pcrel_relocs_copied *)
745 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
746 if (p == NULL)
747 return FALSE;
748 p->next = *head;
749 *head = p;
750 p->section = sreloc;
751 p->count = 0;
752 }
753
754 ++p->count;
755 }
756 }
757
758 break;
759
760 /* This relocation describes the C++ object vtable hierarchy.
761 Reconstruct it for later use during GC. */
762 case R_68K_GNU_VTINHERIT:
763 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
764 return FALSE;
765 break;
766
767 /* This relocation describes which C++ vtable entries are actually
768 used. Record for later use during GC. */
769 case R_68K_GNU_VTENTRY:
770 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
771 return FALSE;
772 break;
773
774 default:
775 break;
776 }
777 }
778
779 return TRUE;
780 }
781
782 /* Return the section that should be marked against GC for a given
783 relocation. */
784
785 static asection *
786 elf_m68k_gc_mark_hook (sec, info, rel, h, sym)
787 asection *sec;
788 struct bfd_link_info *info ATTRIBUTE_UNUSED;
789 Elf_Internal_Rela *rel;
790 struct elf_link_hash_entry *h;
791 Elf_Internal_Sym *sym;
792 {
793 if (h != NULL)
794 {
795 switch (ELF32_R_TYPE (rel->r_info))
796 {
797 case R_68K_GNU_VTINHERIT:
798 case R_68K_GNU_VTENTRY:
799 break;
800
801 default:
802 switch (h->root.type)
803 {
804 default:
805 break;
806
807 case bfd_link_hash_defined:
808 case bfd_link_hash_defweak:
809 return h->root.u.def.section;
810
811 case bfd_link_hash_common:
812 return h->root.u.c.p->section;
813 }
814 }
815 }
816 else
817 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
818
819 return NULL;
820 }
821
822 /* Update the got entry reference counts for the section being removed. */
823
824 static bfd_boolean
825 elf_m68k_gc_sweep_hook (abfd, info, sec, relocs)
826 bfd *abfd;
827 struct bfd_link_info *info;
828 asection *sec;
829 const Elf_Internal_Rela *relocs;
830 {
831 Elf_Internal_Shdr *symtab_hdr;
832 struct elf_link_hash_entry **sym_hashes;
833 bfd_signed_vma *local_got_refcounts;
834 const Elf_Internal_Rela *rel, *relend;
835 unsigned long r_symndx;
836 struct elf_link_hash_entry *h;
837 bfd *dynobj;
838 asection *sgot;
839 asection *srelgot;
840
841 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
842 sym_hashes = elf_sym_hashes (abfd);
843 local_got_refcounts = elf_local_got_refcounts (abfd);
844
845 dynobj = elf_hash_table (info)->dynobj;
846 if (dynobj == NULL)
847 return TRUE;
848
849 sgot = bfd_get_section_by_name (dynobj, ".got");
850 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
851
852 relend = relocs + sec->reloc_count;
853 for (rel = relocs; rel < relend; rel++)
854 {
855 switch (ELF32_R_TYPE (rel->r_info))
856 {
857 case R_68K_GOT8:
858 case R_68K_GOT16:
859 case R_68K_GOT32:
860 case R_68K_GOT8O:
861 case R_68K_GOT16O:
862 case R_68K_GOT32O:
863 r_symndx = ELF32_R_SYM (rel->r_info);
864 if (r_symndx >= symtab_hdr->sh_info)
865 {
866 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
867 if (h->got.refcount > 0)
868 {
869 --h->got.refcount;
870 if (h->got.refcount == 0)
871 {
872 /* We don't need the .got entry any more. */
873 sgot->_raw_size -= 4;
874 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
875 }
876 }
877 }
878 else if (local_got_refcounts != NULL)
879 {
880 if (local_got_refcounts[r_symndx] > 0)
881 {
882 --local_got_refcounts[r_symndx];
883 if (local_got_refcounts[r_symndx] == 0)
884 {
885 /* We don't need the .got entry any more. */
886 sgot->_raw_size -= 4;
887 if (info->shared)
888 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
889 }
890 }
891 }
892 break;
893
894 case R_68K_PLT8:
895 case R_68K_PLT16:
896 case R_68K_PLT32:
897 case R_68K_PLT8O:
898 case R_68K_PLT16O:
899 case R_68K_PLT32O:
900 case R_68K_PC8:
901 case R_68K_PC16:
902 case R_68K_PC32:
903 case R_68K_8:
904 case R_68K_16:
905 case R_68K_32:
906 r_symndx = ELF32_R_SYM (rel->r_info);
907 if (r_symndx >= symtab_hdr->sh_info)
908 {
909 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
910 if (h->plt.refcount > 0)
911 --h->plt.refcount;
912 }
913 break;
914
915 default:
916 break;
917 }
918 }
919
920 return TRUE;
921 }
922
923 /* Adjust a symbol defined by a dynamic object and referenced by a
924 regular object. The current definition is in some section of the
925 dynamic object, but we're not including those sections. We have to
926 change the definition to something the rest of the link can
927 understand. */
928
929 static bfd_boolean
930 elf_m68k_adjust_dynamic_symbol (info, h)
931 struct bfd_link_info *info;
932 struct elf_link_hash_entry *h;
933 {
934 bfd *dynobj;
935 asection *s;
936 unsigned int power_of_two;
937
938 dynobj = elf_hash_table (info)->dynobj;
939
940 /* Make sure we know what is going on here. */
941 BFD_ASSERT (dynobj != NULL
942 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
943 || h->weakdef != NULL
944 || ((h->elf_link_hash_flags
945 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
946 && (h->elf_link_hash_flags
947 & ELF_LINK_HASH_REF_REGULAR) != 0
948 && (h->elf_link_hash_flags
949 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
950
951 /* If this is a function, put it in the procedure linkage table. We
952 will fill in the contents of the procedure linkage table later,
953 when we know the address of the .got section. */
954 if (h->type == STT_FUNC
955 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
956 {
957 if (! info->shared
958 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
959 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
960 /* We must always create the plt entry if it was referenced
961 by a PLTxxO relocation. In this case we already recorded
962 it as a dynamic symbol. */
963 && h->dynindx == -1)
964 {
965 /* This case can occur if we saw a PLTxx reloc in an input
966 file, but the symbol was never referred to by a dynamic
967 object. In such a case, we don't actually need to build
968 a procedure linkage table, and we can just do a PCxx
969 reloc instead. */
970 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
971 h->plt.offset = (bfd_vma) -1;
972 return TRUE;
973 }
974
975 /* GC may have rendered this entry unused. */
976 if (h->plt.refcount <= 0)
977 {
978 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
979 h->plt.offset = (bfd_vma) -1;
980 return TRUE;
981 }
982
983 /* Make sure this symbol is output as a dynamic symbol. */
984 if (h->dynindx == -1
985 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
986 {
987 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
988 return FALSE;
989 }
990
991 s = bfd_get_section_by_name (dynobj, ".plt");
992 BFD_ASSERT (s != NULL);
993
994 /* If this is the first .plt entry, make room for the special
995 first entry. */
996 if (s->_raw_size == 0)
997 {
998 if (CPU32_FLAG (dynobj))
999 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
1000 else
1001 s->_raw_size += PLT_ENTRY_SIZE;
1002 }
1003
1004 /* If this symbol is not defined in a regular file, and we are
1005 not generating a shared library, then set the symbol to this
1006 location in the .plt. This is required to make function
1007 pointers compare as equal between the normal executable and
1008 the shared library. */
1009 if (!info->shared
1010 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1011 {
1012 h->root.u.def.section = s;
1013 h->root.u.def.value = s->_raw_size;
1014 }
1015
1016 h->plt.offset = s->_raw_size;
1017
1018 /* Make room for this entry. */
1019 if (CPU32_FLAG (dynobj))
1020 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
1021 else
1022 s->_raw_size += PLT_ENTRY_SIZE;
1023
1024 /* We also need to make an entry in the .got.plt section, which
1025 will be placed in the .got section by the linker script. */
1026
1027 s = bfd_get_section_by_name (dynobj, ".got.plt");
1028 BFD_ASSERT (s != NULL);
1029 s->_raw_size += 4;
1030
1031 /* We also need to make an entry in the .rela.plt section. */
1032
1033 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1034 BFD_ASSERT (s != NULL);
1035 s->_raw_size += sizeof (Elf32_External_Rela);
1036
1037 return TRUE;
1038 }
1039
1040 /* Reinitialize the plt offset now that it is not used as a reference
1041 count any more. */
1042 h->plt.offset = (bfd_vma) -1;
1043
1044 /* If this is a weak symbol, and there is a real definition, the
1045 processor independent code will have arranged for us to see the
1046 real definition first, and we can just use the same value. */
1047 if (h->weakdef != NULL)
1048 {
1049 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1050 || h->weakdef->root.type == bfd_link_hash_defweak);
1051 h->root.u.def.section = h->weakdef->root.u.def.section;
1052 h->root.u.def.value = h->weakdef->root.u.def.value;
1053 return TRUE;
1054 }
1055
1056 /* This is a reference to a symbol defined by a dynamic object which
1057 is not a function. */
1058
1059 /* If we are creating a shared library, we must presume that the
1060 only references to the symbol are via the global offset table.
1061 For such cases we need not do anything here; the relocations will
1062 be handled correctly by relocate_section. */
1063 if (info->shared)
1064 return TRUE;
1065
1066 /* We must allocate the symbol in our .dynbss section, which will
1067 become part of the .bss section of the executable. There will be
1068 an entry for this symbol in the .dynsym section. The dynamic
1069 object will contain position independent code, so all references
1070 from the dynamic object to this symbol will go through the global
1071 offset table. The dynamic linker will use the .dynsym entry to
1072 determine the address it must put in the global offset table, so
1073 both the dynamic object and the regular object will refer to the
1074 same memory location for the variable. */
1075
1076 s = bfd_get_section_by_name (dynobj, ".dynbss");
1077 BFD_ASSERT (s != NULL);
1078
1079 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
1080 copy the initial value out of the dynamic object and into the
1081 runtime process image. We need to remember the offset into the
1082 .rela.bss section we are going to use. */
1083 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1084 {
1085 asection *srel;
1086
1087 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1088 BFD_ASSERT (srel != NULL);
1089 srel->_raw_size += sizeof (Elf32_External_Rela);
1090 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1091 }
1092
1093 /* We need to figure out the alignment required for this symbol. I
1094 have no idea how ELF linkers handle this. */
1095 power_of_two = bfd_log2 (h->size);
1096 if (power_of_two > 3)
1097 power_of_two = 3;
1098
1099 /* Apply the required alignment. */
1100 s->_raw_size = BFD_ALIGN (s->_raw_size,
1101 (bfd_size_type) (1 << power_of_two));
1102 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1103 {
1104 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
1105 return FALSE;
1106 }
1107
1108 /* Define the symbol as being at this point in the section. */
1109 h->root.u.def.section = s;
1110 h->root.u.def.value = s->_raw_size;
1111
1112 /* Increment the section size to make room for the symbol. */
1113 s->_raw_size += h->size;
1114
1115 return TRUE;
1116 }
1117
1118 /* Set the sizes of the dynamic sections. */
1119
1120 static bfd_boolean
1121 elf_m68k_size_dynamic_sections (output_bfd, info)
1122 bfd *output_bfd ATTRIBUTE_UNUSED;
1123 struct bfd_link_info *info;
1124 {
1125 bfd *dynobj;
1126 asection *s;
1127 bfd_boolean plt;
1128 bfd_boolean relocs;
1129
1130 dynobj = elf_hash_table (info)->dynobj;
1131 BFD_ASSERT (dynobj != NULL);
1132
1133 if (elf_hash_table (info)->dynamic_sections_created)
1134 {
1135 /* Set the contents of the .interp section to the interpreter. */
1136 if (!info->shared)
1137 {
1138 s = bfd_get_section_by_name (dynobj, ".interp");
1139 BFD_ASSERT (s != NULL);
1140 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1141 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1142 }
1143 }
1144 else
1145 {
1146 /* We may have created entries in the .rela.got section.
1147 However, if we are not creating the dynamic sections, we will
1148 not actually use these entries. Reset the size of .rela.got,
1149 which will cause it to get stripped from the output file
1150 below. */
1151 s = bfd_get_section_by_name (dynobj, ".rela.got");
1152 if (s != NULL)
1153 s->_raw_size = 0;
1154 }
1155
1156 /* If this is a -Bsymbolic shared link, then we need to discard all
1157 PC relative relocs against symbols defined in a regular object.
1158 For the normal shared case we discard the PC relative relocs
1159 against symbols that have become local due to visibility changes.
1160 We allocated space for them in the check_relocs routine, but we
1161 will not fill them in in the relocate_section routine. */
1162 if (info->shared)
1163 elf_m68k_link_hash_traverse (elf_m68k_hash_table (info),
1164 elf_m68k_discard_copies,
1165 (PTR) info);
1166
1167 /* The check_relocs and adjust_dynamic_symbol entry points have
1168 determined the sizes of the various dynamic sections. Allocate
1169 memory for them. */
1170 plt = FALSE;
1171 relocs = FALSE;
1172 for (s = dynobj->sections; s != NULL; s = s->next)
1173 {
1174 const char *name;
1175 bfd_boolean strip;
1176
1177 if ((s->flags & SEC_LINKER_CREATED) == 0)
1178 continue;
1179
1180 /* It's OK to base decisions on the section name, because none
1181 of the dynobj section names depend upon the input files. */
1182 name = bfd_get_section_name (dynobj, s);
1183
1184 strip = FALSE;
1185
1186 if (strcmp (name, ".plt") == 0)
1187 {
1188 if (s->_raw_size == 0)
1189 {
1190 /* Strip this section if we don't need it; see the
1191 comment below. */
1192 strip = TRUE;
1193 }
1194 else
1195 {
1196 /* Remember whether there is a PLT. */
1197 plt = TRUE;
1198 }
1199 }
1200 else if (strncmp (name, ".rela", 5) == 0)
1201 {
1202 if (s->_raw_size == 0)
1203 {
1204 /* If we don't need this section, strip it from the
1205 output file. This is mostly to handle .rela.bss and
1206 .rela.plt. We must create both sections in
1207 create_dynamic_sections, because they must be created
1208 before the linker maps input sections to output
1209 sections. The linker does that before
1210 adjust_dynamic_symbol is called, and it is that
1211 function which decides whether anything needs to go
1212 into these sections. */
1213 strip = TRUE;
1214 }
1215 else
1216 {
1217 relocs = TRUE;
1218
1219 /* We use the reloc_count field as a counter if we need
1220 to copy relocs into the output file. */
1221 s->reloc_count = 0;
1222 }
1223 }
1224 else if (strncmp (name, ".got", 4) != 0)
1225 {
1226 /* It's not one of our sections, so don't allocate space. */
1227 continue;
1228 }
1229
1230 if (strip)
1231 {
1232 _bfd_strip_section_from_output (info, s);
1233 continue;
1234 }
1235
1236 /* Allocate memory for the section contents. */
1237 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
1238 Unused entries should be reclaimed before the section's contents
1239 are written out, but at the moment this does not happen. Thus in
1240 order to prevent writing out garbage, we initialise the section's
1241 contents to zero. */
1242 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1243 if (s->contents == NULL && s->_raw_size != 0)
1244 return FALSE;
1245 }
1246
1247 if (elf_hash_table (info)->dynamic_sections_created)
1248 {
1249 /* Add some entries to the .dynamic section. We fill in the
1250 values later, in elf_m68k_finish_dynamic_sections, but we
1251 must add the entries now so that we get the correct size for
1252 the .dynamic section. The DT_DEBUG entry is filled in by the
1253 dynamic linker and used by the debugger. */
1254 #define add_dynamic_entry(TAG, VAL) \
1255 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1256
1257 if (!info->shared)
1258 {
1259 if (!add_dynamic_entry (DT_DEBUG, 0))
1260 return FALSE;
1261 }
1262
1263 if (plt)
1264 {
1265 if (!add_dynamic_entry (DT_PLTGOT, 0)
1266 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1267 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1268 || !add_dynamic_entry (DT_JMPREL, 0))
1269 return FALSE;
1270 }
1271
1272 if (relocs)
1273 {
1274 if (!add_dynamic_entry (DT_RELA, 0)
1275 || !add_dynamic_entry (DT_RELASZ, 0)
1276 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1277 return FALSE;
1278 }
1279
1280 if ((info->flags & DF_TEXTREL) != 0)
1281 {
1282 if (!add_dynamic_entry (DT_TEXTREL, 0))
1283 return FALSE;
1284 }
1285 }
1286 #undef add_dynamic_entry
1287
1288 return TRUE;
1289 }
1290
1291 /* This function is called via elf_m68k_link_hash_traverse if we are
1292 creating a shared object. In the -Bsymbolic case it discards the
1293 space allocated to copy PC relative relocs against symbols which
1294 are defined in regular objects. For the normal shared case, it
1295 discards space for pc-relative relocs that have become local due to
1296 symbol visibility changes. We allocated space for them in the
1297 check_relocs routine, but we won't fill them in in the
1298 relocate_section routine.
1299
1300 We also check whether any of the remaining relocations apply
1301 against a readonly section, and set the DF_TEXTREL flag in this
1302 case. */
1303
1304 static bfd_boolean
1305 elf_m68k_discard_copies (h, inf)
1306 struct elf_m68k_link_hash_entry *h;
1307 PTR inf;
1308 {
1309 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1310 struct elf_m68k_pcrel_relocs_copied *s;
1311
1312 if (h->root.root.type == bfd_link_hash_warning)
1313 h = (struct elf_m68k_link_hash_entry *) h->root.root.u.i.link;
1314
1315 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1316 || (!info->symbolic
1317 && (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1318 {
1319 if ((info->flags & DF_TEXTREL) == 0)
1320 {
1321 /* Look for relocations against read-only sections. */
1322 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1323 if ((s->section->flags & SEC_READONLY) != 0)
1324 {
1325 info->flags |= DF_TEXTREL;
1326 break;
1327 }
1328 }
1329 return TRUE;
1330 }
1331
1332 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1333 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1334
1335 return TRUE;
1336 }
1337
1338 /* Relocate an M68K ELF section. */
1339
1340 static bfd_boolean
1341 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
1342 contents, relocs, local_syms, local_sections)
1343 bfd *output_bfd;
1344 struct bfd_link_info *info;
1345 bfd *input_bfd;
1346 asection *input_section;
1347 bfd_byte *contents;
1348 Elf_Internal_Rela *relocs;
1349 Elf_Internal_Sym *local_syms;
1350 asection **local_sections;
1351 {
1352 bfd *dynobj;
1353 Elf_Internal_Shdr *symtab_hdr;
1354 struct elf_link_hash_entry **sym_hashes;
1355 bfd_vma *local_got_offsets;
1356 asection *sgot;
1357 asection *splt;
1358 asection *sreloc;
1359 Elf_Internal_Rela *rel;
1360 Elf_Internal_Rela *relend;
1361
1362 if (info->relocateable)
1363 return TRUE;
1364
1365 dynobj = elf_hash_table (info)->dynobj;
1366 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1367 sym_hashes = elf_sym_hashes (input_bfd);
1368 local_got_offsets = elf_local_got_offsets (input_bfd);
1369
1370 sgot = NULL;
1371 splt = NULL;
1372 sreloc = NULL;
1373
1374 rel = relocs;
1375 relend = relocs + input_section->reloc_count;
1376 for (; rel < relend; rel++)
1377 {
1378 int r_type;
1379 reloc_howto_type *howto;
1380 unsigned long r_symndx;
1381 struct elf_link_hash_entry *h;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 bfd_vma relocation;
1385 bfd_reloc_status_type r;
1386
1387 r_type = ELF32_R_TYPE (rel->r_info);
1388 if (r_type < 0 || r_type >= (int) R_68K_max)
1389 {
1390 bfd_set_error (bfd_error_bad_value);
1391 return FALSE;
1392 }
1393 howto = howto_table + r_type;
1394
1395 r_symndx = ELF32_R_SYM (rel->r_info);
1396
1397 h = NULL;
1398 sym = NULL;
1399 sec = NULL;
1400 if (r_symndx < symtab_hdr->sh_info)
1401 {
1402 sym = local_syms + r_symndx;
1403 sec = local_sections[r_symndx];
1404 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1405 }
1406 else
1407 {
1408 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1409 while (h->root.type == bfd_link_hash_indirect
1410 || h->root.type == bfd_link_hash_warning)
1411 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1412 if (h->root.type == bfd_link_hash_defined
1413 || h->root.type == bfd_link_hash_defweak)
1414 {
1415 sec = h->root.u.def.section;
1416 if (((r_type == R_68K_PLT8
1417 || r_type == R_68K_PLT16
1418 || r_type == R_68K_PLT32
1419 || r_type == R_68K_PLT8O
1420 || r_type == R_68K_PLT16O
1421 || r_type == R_68K_PLT32O)
1422 && h->plt.offset != (bfd_vma) -1
1423 && elf_hash_table (info)->dynamic_sections_created)
1424 || ((r_type == R_68K_GOT8O
1425 || r_type == R_68K_GOT16O
1426 || r_type == R_68K_GOT32O
1427 || ((r_type == R_68K_GOT8
1428 || r_type == R_68K_GOT16
1429 || r_type == R_68K_GOT32)
1430 && strcmp (h->root.root.string,
1431 "_GLOBAL_OFFSET_TABLE_") != 0))
1432 && elf_hash_table (info)->dynamic_sections_created
1433 && (! info->shared
1434 || (! info->symbolic && h->dynindx != -1)
1435 || (h->elf_link_hash_flags
1436 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1437 || (info->shared
1438 && ((! info->symbolic && h->dynindx != -1)
1439 || (h->elf_link_hash_flags
1440 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1441 && ((input_section->flags & SEC_ALLOC) != 0
1442 /* DWARF will emit R_68K_32 relocations in its
1443 sections against symbols defined externally
1444 in shared libraries. We can't do anything
1445 with them here. */
1446 || ((input_section->flags & SEC_DEBUGGING) != 0
1447 && (h->elf_link_hash_flags
1448 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1449 && (r_type == R_68K_8
1450 || r_type == R_68K_16
1451 || r_type == R_68K_32
1452 || r_type == R_68K_PC8
1453 || r_type == R_68K_PC16
1454 || r_type == R_68K_PC32)))
1455 {
1456 /* In these cases, we don't need the relocation
1457 value. We check specially because in some
1458 obscure cases sec->output_section will be NULL. */
1459 relocation = 0;
1460 }
1461 else
1462 relocation = (h->root.u.def.value
1463 + sec->output_section->vma
1464 + sec->output_offset);
1465 }
1466 else if (h->root.type == bfd_link_hash_undefweak)
1467 relocation = 0;
1468 else if (info->shared
1469 && (!info->symbolic || info->allow_shlib_undefined)
1470 && !info->no_undefined
1471 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1472 relocation = 0;
1473 else
1474 {
1475 if (!(info->callbacks->undefined_symbol
1476 (info, h->root.root.string, input_bfd,
1477 input_section, rel->r_offset,
1478 (!info->shared || info->no_undefined
1479 || ELF_ST_VISIBILITY (h->other)))))
1480 return FALSE;
1481 relocation = 0;
1482 }
1483 }
1484
1485 switch (r_type)
1486 {
1487 case R_68K_GOT8:
1488 case R_68K_GOT16:
1489 case R_68K_GOT32:
1490 /* Relocation is to the address of the entry for this symbol
1491 in the global offset table. */
1492 if (h != NULL
1493 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1494 break;
1495 /* Fall through. */
1496 case R_68K_GOT8O:
1497 case R_68K_GOT16O:
1498 case R_68K_GOT32O:
1499 /* Relocation is the offset of the entry for this symbol in
1500 the global offset table. */
1501
1502 {
1503 bfd_vma off;
1504
1505 if (sgot == NULL)
1506 {
1507 sgot = bfd_get_section_by_name (dynobj, ".got");
1508 BFD_ASSERT (sgot != NULL);
1509 }
1510
1511 if (h != NULL)
1512 {
1513 off = h->got.offset;
1514 BFD_ASSERT (off != (bfd_vma) -1);
1515
1516 if (!elf_hash_table (info)->dynamic_sections_created
1517 || (info->shared
1518 && (info->symbolic || h->dynindx == -1)
1519 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1520 {
1521 /* This is actually a static link, or it is a
1522 -Bsymbolic link and the symbol is defined
1523 locally, or the symbol was forced to be local
1524 because of a version file.. We must initialize
1525 this entry in the global offset table. Since
1526 the offset must always be a multiple of 4, we
1527 use the least significant bit to record whether
1528 we have initialized it already.
1529
1530 When doing a dynamic link, we create a .rela.got
1531 relocation entry to initialize the value. This
1532 is done in the finish_dynamic_symbol routine. */
1533 if ((off & 1) != 0)
1534 off &= ~1;
1535 else
1536 {
1537 bfd_put_32 (output_bfd, relocation,
1538 sgot->contents + off);
1539 h->got.offset |= 1;
1540 }
1541 }
1542 }
1543 else
1544 {
1545 BFD_ASSERT (local_got_offsets != NULL
1546 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1547
1548 off = local_got_offsets[r_symndx];
1549
1550 /* The offset must always be a multiple of 4. We use
1551 the least significant bit to record whether we have
1552 already generated the necessary reloc. */
1553 if ((off & 1) != 0)
1554 off &= ~1;
1555 else
1556 {
1557 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1558
1559 if (info->shared)
1560 {
1561 asection *s;
1562 Elf_Internal_Rela outrel;
1563 bfd_byte *loc;
1564
1565 s = bfd_get_section_by_name (dynobj, ".rela.got");
1566 BFD_ASSERT (s != NULL);
1567
1568 outrel.r_offset = (sgot->output_section->vma
1569 + sgot->output_offset
1570 + off);
1571 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1572 outrel.r_addend = relocation;
1573 loc = s->contents;
1574 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
1575 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1576 }
1577
1578 local_got_offsets[r_symndx] |= 1;
1579 }
1580 }
1581
1582 relocation = sgot->output_offset + off;
1583 if (r_type == R_68K_GOT8O
1584 || r_type == R_68K_GOT16O
1585 || r_type == R_68K_GOT32O)
1586 {
1587 /* This relocation does not use the addend. */
1588 rel->r_addend = 0;
1589 }
1590 else
1591 relocation += sgot->output_section->vma;
1592 }
1593 break;
1594
1595 case R_68K_PLT8:
1596 case R_68K_PLT16:
1597 case R_68K_PLT32:
1598 /* Relocation is to the entry for this symbol in the
1599 procedure linkage table. */
1600
1601 /* Resolve a PLTxx reloc against a local symbol directly,
1602 without using the procedure linkage table. */
1603 if (h == NULL)
1604 break;
1605
1606 if (h->plt.offset == (bfd_vma) -1
1607 || !elf_hash_table (info)->dynamic_sections_created)
1608 {
1609 /* We didn't make a PLT entry for this symbol. This
1610 happens when statically linking PIC code, or when
1611 using -Bsymbolic. */
1612 break;
1613 }
1614
1615 if (splt == NULL)
1616 {
1617 splt = bfd_get_section_by_name (dynobj, ".plt");
1618 BFD_ASSERT (splt != NULL);
1619 }
1620
1621 relocation = (splt->output_section->vma
1622 + splt->output_offset
1623 + h->plt.offset);
1624 break;
1625
1626 case R_68K_PLT8O:
1627 case R_68K_PLT16O:
1628 case R_68K_PLT32O:
1629 /* Relocation is the offset of the entry for this symbol in
1630 the procedure linkage table. */
1631 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
1632
1633 if (splt == NULL)
1634 {
1635 splt = bfd_get_section_by_name (dynobj, ".plt");
1636 BFD_ASSERT (splt != NULL);
1637 }
1638
1639 relocation = h->plt.offset;
1640
1641 /* This relocation does not use the addend. */
1642 rel->r_addend = 0;
1643
1644 break;
1645
1646 case R_68K_PC8:
1647 case R_68K_PC16:
1648 case R_68K_PC32:
1649 if (h == NULL
1650 || (info->shared
1651 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1652 break;
1653 /* Fall through. */
1654 case R_68K_8:
1655 case R_68K_16:
1656 case R_68K_32:
1657 if (info->shared
1658 && r_symndx != 0
1659 && (input_section->flags & SEC_ALLOC) != 0
1660 && ((r_type != R_68K_PC8
1661 && r_type != R_68K_PC16
1662 && r_type != R_68K_PC32)
1663 || (!info->symbolic
1664 || (h->elf_link_hash_flags
1665 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1666 {
1667 Elf_Internal_Rela outrel;
1668 bfd_byte *loc;
1669 bfd_boolean skip, relocate;
1670
1671 /* When generating a shared object, these relocations
1672 are copied into the output file to be resolved at run
1673 time. */
1674
1675 if (sreloc == NULL)
1676 {
1677 const char *name;
1678
1679 name = (bfd_elf_string_from_elf_section
1680 (input_bfd,
1681 elf_elfheader (input_bfd)->e_shstrndx,
1682 elf_section_data (input_section)->rel_hdr.sh_name));
1683 if (name == NULL)
1684 return FALSE;
1685
1686 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1687 && strcmp (bfd_get_section_name (input_bfd,
1688 input_section),
1689 name + 5) == 0);
1690
1691 sreloc = bfd_get_section_by_name (dynobj, name);
1692 BFD_ASSERT (sreloc != NULL);
1693 }
1694
1695 skip = FALSE;
1696 relocate = FALSE;
1697
1698 outrel.r_offset =
1699 _bfd_elf_section_offset (output_bfd, info, input_section,
1700 rel->r_offset);
1701 if (outrel.r_offset == (bfd_vma) -1)
1702 skip = TRUE;
1703 else if (outrel.r_offset == (bfd_vma) -2)
1704 skip = TRUE, relocate = TRUE;
1705 outrel.r_offset += (input_section->output_section->vma
1706 + input_section->output_offset);
1707
1708 if (skip)
1709 memset (&outrel, 0, sizeof outrel);
1710 /* h->dynindx may be -1 if the symbol was marked to
1711 become local. */
1712 else if (h != NULL
1713 && ((! info->symbolic && h->dynindx != -1)
1714 || (h->elf_link_hash_flags
1715 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1716 {
1717 BFD_ASSERT (h->dynindx != -1);
1718 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1719 outrel.r_addend = relocation + rel->r_addend;
1720 }
1721 else
1722 {
1723 if (r_type == R_68K_32)
1724 {
1725 relocate = TRUE;
1726 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1727 outrel.r_addend = relocation + rel->r_addend;
1728 }
1729 else
1730 {
1731 long indx;
1732
1733 if (h == NULL)
1734 sec = local_sections[r_symndx];
1735 else
1736 {
1737 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1738 || (h->root.type
1739 == bfd_link_hash_defweak));
1740 sec = h->root.u.def.section;
1741 }
1742 if (sec != NULL && bfd_is_abs_section (sec))
1743 indx = 0;
1744 else if (sec == NULL || sec->owner == NULL)
1745 {
1746 bfd_set_error (bfd_error_bad_value);
1747 return FALSE;
1748 }
1749 else
1750 {
1751 asection *osec;
1752
1753 osec = sec->output_section;
1754 indx = elf_section_data (osec)->dynindx;
1755 BFD_ASSERT (indx > 0);
1756 }
1757
1758 outrel.r_info = ELF32_R_INFO (indx, r_type);
1759 outrel.r_addend = relocation + rel->r_addend;
1760 }
1761 }
1762
1763 loc = sreloc->contents;
1764 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
1765 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1766
1767 /* This reloc will be computed at runtime, so there's no
1768 need to do anything now, except for R_68K_32
1769 relocations that have been turned into
1770 R_68K_RELATIVE. */
1771 if (!relocate)
1772 continue;
1773 }
1774
1775 break;
1776
1777 case R_68K_GNU_VTINHERIT:
1778 case R_68K_GNU_VTENTRY:
1779 /* These are no-ops in the end. */
1780 continue;
1781
1782 default:
1783 break;
1784 }
1785
1786 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1787 contents, rel->r_offset,
1788 relocation, rel->r_addend);
1789
1790 if (r != bfd_reloc_ok)
1791 {
1792 switch (r)
1793 {
1794 default:
1795 case bfd_reloc_outofrange:
1796 abort ();
1797 case bfd_reloc_overflow:
1798 {
1799 const char *name;
1800
1801 if (h != NULL)
1802 name = h->root.root.string;
1803 else
1804 {
1805 name = bfd_elf_string_from_elf_section (input_bfd,
1806 symtab_hdr->sh_link,
1807 sym->st_name);
1808 if (name == NULL)
1809 return FALSE;
1810 if (*name == '\0')
1811 name = bfd_section_name (input_bfd, sec);
1812 }
1813 if (!(info->callbacks->reloc_overflow
1814 (info, name, howto->name, (bfd_vma) 0,
1815 input_bfd, input_section, rel->r_offset)))
1816 return FALSE;
1817 }
1818 break;
1819 }
1820 }
1821 }
1822
1823 return TRUE;
1824 }
1825
1826 /* Finish up dynamic symbol handling. We set the contents of various
1827 dynamic sections here. */
1828
1829 static bfd_boolean
1830 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1831 bfd *output_bfd;
1832 struct bfd_link_info *info;
1833 struct elf_link_hash_entry *h;
1834 Elf_Internal_Sym *sym;
1835 {
1836 bfd *dynobj;
1837 int plt_off1, plt_off2, plt_off3;
1838
1839 dynobj = elf_hash_table (info)->dynobj;
1840
1841 if (h->plt.offset != (bfd_vma) -1)
1842 {
1843 asection *splt;
1844 asection *sgot;
1845 asection *srela;
1846 bfd_vma plt_index;
1847 bfd_vma got_offset;
1848 Elf_Internal_Rela rela;
1849 bfd_byte *loc;
1850
1851 /* This symbol has an entry in the procedure linkage table. Set
1852 it up. */
1853
1854 BFD_ASSERT (h->dynindx != -1);
1855
1856 splt = bfd_get_section_by_name (dynobj, ".plt");
1857 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1858 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1859 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1860
1861 /* Get the index in the procedure linkage table which
1862 corresponds to this symbol. This is the index of this symbol
1863 in all the symbols for which we are making plt entries. The
1864 first entry in the procedure linkage table is reserved. */
1865 if ( CPU32_FLAG (output_bfd))
1866 plt_index = h->plt.offset / PLT_CPU32_ENTRY_SIZE - 1;
1867 else
1868 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1869
1870 /* Get the offset into the .got table of the entry that
1871 corresponds to this function. Each .got entry is 4 bytes.
1872 The first three are reserved. */
1873 got_offset = (plt_index + 3) * 4;
1874
1875 if ( CPU32_FLAG (output_bfd))
1876 {
1877 /* Fill in the entry in the procedure linkage table. */
1878 memcpy (splt->contents + h->plt.offset, elf_cpu32_plt_entry,
1879 PLT_CPU32_ENTRY_SIZE);
1880 plt_off1 = 4;
1881 plt_off2 = 12;
1882 plt_off3 = 18;
1883 }
1884 else
1885 {
1886 /* Fill in the entry in the procedure linkage table. */
1887 memcpy (splt->contents + h->plt.offset, elf_m68k_plt_entry,
1888 PLT_ENTRY_SIZE);
1889 plt_off1 = 4;
1890 plt_off2 = 10;
1891 plt_off3 = 16;
1892 }
1893
1894 /* The offset is relative to the first extension word. */
1895 bfd_put_32 (output_bfd,
1896 (sgot->output_section->vma
1897 + sgot->output_offset
1898 + got_offset
1899 - (splt->output_section->vma
1900 + h->plt.offset + 2)),
1901 splt->contents + h->plt.offset + plt_off1);
1902
1903 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1904 splt->contents + h->plt.offset + plt_off2);
1905 bfd_put_32 (output_bfd, - (h->plt.offset + plt_off3),
1906 splt->contents + h->plt.offset + plt_off3);
1907
1908 /* Fill in the entry in the global offset table. */
1909 bfd_put_32 (output_bfd,
1910 (splt->output_section->vma
1911 + splt->output_offset
1912 + h->plt.offset
1913 + 8),
1914 sgot->contents + got_offset);
1915
1916 /* Fill in the entry in the .rela.plt section. */
1917 rela.r_offset = (sgot->output_section->vma
1918 + sgot->output_offset
1919 + got_offset);
1920 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1921 rela.r_addend = 0;
1922 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
1923 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
1924
1925 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1926 {
1927 /* Mark the symbol as undefined, rather than as defined in
1928 the .plt section. Leave the value alone. */
1929 sym->st_shndx = SHN_UNDEF;
1930 }
1931 }
1932
1933 if (h->got.offset != (bfd_vma) -1)
1934 {
1935 asection *sgot;
1936 asection *srela;
1937 Elf_Internal_Rela rela;
1938 bfd_byte *loc;
1939
1940 /* This symbol has an entry in the global offset table. Set it
1941 up. */
1942
1943 sgot = bfd_get_section_by_name (dynobj, ".got");
1944 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1945 BFD_ASSERT (sgot != NULL && srela != NULL);
1946
1947 rela.r_offset = (sgot->output_section->vma
1948 + sgot->output_offset
1949 + (h->got.offset &~ (bfd_vma) 1));
1950
1951 /* If this is a -Bsymbolic link, and the symbol is defined
1952 locally, we just want to emit a RELATIVE reloc. Likewise if
1953 the symbol was forced to be local because of a version file.
1954 The entry in the global offset table will already have been
1955 initialized in the relocate_section function. */
1956 if (info->shared
1957 && (info->symbolic || h->dynindx == -1)
1958 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1959 {
1960 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1961 rela.r_addend = bfd_get_signed_32 (output_bfd,
1962 (sgot->contents
1963 + (h->got.offset &~ (bfd_vma) 1)));
1964 }
1965 else
1966 {
1967 bfd_put_32 (output_bfd, (bfd_vma) 0,
1968 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
1969 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
1970 rela.r_addend = 0;
1971 }
1972
1973 loc = srela->contents;
1974 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
1975 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
1976 }
1977
1978 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1979 {
1980 asection *s;
1981 Elf_Internal_Rela rela;
1982 bfd_byte *loc;
1983
1984 /* This symbol needs a copy reloc. Set it up. */
1985
1986 BFD_ASSERT (h->dynindx != -1
1987 && (h->root.type == bfd_link_hash_defined
1988 || h->root.type == bfd_link_hash_defweak));
1989
1990 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1991 ".rela.bss");
1992 BFD_ASSERT (s != NULL);
1993
1994 rela.r_offset = (h->root.u.def.value
1995 + h->root.u.def.section->output_section->vma
1996 + h->root.u.def.section->output_offset);
1997 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
1998 rela.r_addend = 0;
1999 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
2000 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2001 }
2002
2003 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2004 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2005 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2006 sym->st_shndx = SHN_ABS;
2007
2008 return TRUE;
2009 }
2010
2011 /* Finish up the dynamic sections. */
2012
2013 static bfd_boolean
2014 elf_m68k_finish_dynamic_sections (output_bfd, info)
2015 bfd *output_bfd;
2016 struct bfd_link_info *info;
2017 {
2018 bfd *dynobj;
2019 asection *sgot;
2020 asection *sdyn;
2021
2022 dynobj = elf_hash_table (info)->dynobj;
2023
2024 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2025 BFD_ASSERT (sgot != NULL);
2026 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2027
2028 if (elf_hash_table (info)->dynamic_sections_created)
2029 {
2030 asection *splt;
2031 Elf32_External_Dyn *dyncon, *dynconend;
2032
2033 splt = bfd_get_section_by_name (dynobj, ".plt");
2034 BFD_ASSERT (splt != NULL && sdyn != NULL);
2035
2036 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2037 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2038 for (; dyncon < dynconend; dyncon++)
2039 {
2040 Elf_Internal_Dyn dyn;
2041 const char *name;
2042 asection *s;
2043
2044 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2045
2046 switch (dyn.d_tag)
2047 {
2048 default:
2049 break;
2050
2051 case DT_PLTGOT:
2052 name = ".got";
2053 goto get_vma;
2054 case DT_JMPREL:
2055 name = ".rela.plt";
2056 get_vma:
2057 s = bfd_get_section_by_name (output_bfd, name);
2058 BFD_ASSERT (s != NULL);
2059 dyn.d_un.d_ptr = s->vma;
2060 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2061 break;
2062
2063 case DT_PLTRELSZ:
2064 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2065 BFD_ASSERT (s != NULL);
2066 if (s->_cooked_size != 0)
2067 dyn.d_un.d_val = s->_cooked_size;
2068 else
2069 dyn.d_un.d_val = s->_raw_size;
2070 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2071 break;
2072
2073 case DT_RELASZ:
2074 /* The procedure linkage table relocs (DT_JMPREL) should
2075 not be included in the overall relocs (DT_RELA).
2076 Therefore, we override the DT_RELASZ entry here to
2077 make it not include the JMPREL relocs. Since the
2078 linker script arranges for .rela.plt to follow all
2079 other relocation sections, we don't have to worry
2080 about changing the DT_RELA entry. */
2081 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2082 if (s != NULL)
2083 {
2084 if (s->_cooked_size != 0)
2085 dyn.d_un.d_val -= s->_cooked_size;
2086 else
2087 dyn.d_un.d_val -= s->_raw_size;
2088 }
2089 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2090 break;
2091 }
2092 }
2093
2094 /* Fill in the first entry in the procedure linkage table. */
2095 if (splt->_raw_size > 0)
2096 {
2097 if (!CPU32_FLAG (output_bfd))
2098 {
2099 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
2100 bfd_put_32 (output_bfd,
2101 (sgot->output_section->vma
2102 + sgot->output_offset + 4
2103 - (splt->output_section->vma + 2)),
2104 splt->contents + 4);
2105 bfd_put_32 (output_bfd,
2106 (sgot->output_section->vma
2107 + sgot->output_offset + 8
2108 - (splt->output_section->vma + 10)),
2109 splt->contents + 12);
2110 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2111 = PLT_ENTRY_SIZE;
2112 }
2113 else /* cpu32 */
2114 {
2115 memcpy (splt->contents, elf_cpu32_plt0_entry, PLT_CPU32_ENTRY_SIZE);
2116 bfd_put_32 (output_bfd,
2117 (sgot->output_section->vma
2118 + sgot->output_offset + 4
2119 - (splt->output_section->vma + 2)),
2120 splt->contents + 4);
2121 bfd_put_32 (output_bfd,
2122 (sgot->output_section->vma
2123 + sgot->output_offset + 8
2124 - (splt->output_section->vma + 10)),
2125 splt->contents + 12);
2126 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2127 = PLT_CPU32_ENTRY_SIZE;
2128 }
2129 }
2130 }
2131
2132 /* Fill in the first three entries in the global offset table. */
2133 if (sgot->_raw_size > 0)
2134 {
2135 if (sdyn == NULL)
2136 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2137 else
2138 bfd_put_32 (output_bfd,
2139 sdyn->output_section->vma + sdyn->output_offset,
2140 sgot->contents);
2141 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2142 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2143 }
2144
2145 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2146
2147 return TRUE;
2148 }
2149
2150 /* Given a .data section and a .emreloc in-memory section, store
2151 relocation information into the .emreloc section which can be
2152 used at runtime to relocate the section. This is called by the
2153 linker when the --embedded-relocs switch is used. This is called
2154 after the add_symbols entry point has been called for all the
2155 objects, and before the final_link entry point is called. */
2156
2157 bfd_boolean
2158 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2159 bfd *abfd;
2160 struct bfd_link_info *info;
2161 asection *datasec;
2162 asection *relsec;
2163 char **errmsg;
2164 {
2165 Elf_Internal_Shdr *symtab_hdr;
2166 Elf_Internal_Sym *isymbuf = NULL;
2167 Elf_Internal_Rela *internal_relocs = NULL;
2168 Elf_Internal_Rela *irel, *irelend;
2169 bfd_byte *p;
2170 bfd_size_type amt;
2171
2172 BFD_ASSERT (! info->relocateable);
2173
2174 *errmsg = NULL;
2175
2176 if (datasec->reloc_count == 0)
2177 return TRUE;
2178
2179 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2180
2181 /* Get a copy of the native relocations. */
2182 internal_relocs = (_bfd_elf32_link_read_relocs
2183 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
2184 info->keep_memory));
2185 if (internal_relocs == NULL)
2186 goto error_return;
2187
2188 amt = (bfd_size_type) datasec->reloc_count * 12;
2189 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
2190 if (relsec->contents == NULL)
2191 goto error_return;
2192
2193 p = relsec->contents;
2194
2195 irelend = internal_relocs + datasec->reloc_count;
2196 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
2197 {
2198 asection *targetsec;
2199
2200 /* We are going to write a four byte longword into the runtime
2201 reloc section. The longword will be the address in the data
2202 section which must be relocated. It is followed by the name
2203 of the target section NUL-padded or truncated to 8
2204 characters. */
2205
2206 /* We can only relocate absolute longword relocs at run time. */
2207 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
2208 {
2209 *errmsg = _("unsupported reloc type");
2210 bfd_set_error (bfd_error_bad_value);
2211 goto error_return;
2212 }
2213
2214 /* Get the target section referred to by the reloc. */
2215 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2216 {
2217 /* A local symbol. */
2218 Elf_Internal_Sym *isym;
2219
2220 /* Read this BFD's local symbols if we haven't done so already. */
2221 if (isymbuf == NULL)
2222 {
2223 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2224 if (isymbuf == NULL)
2225 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2226 symtab_hdr->sh_info, 0,
2227 NULL, NULL, NULL);
2228 if (isymbuf == NULL)
2229 goto error_return;
2230 }
2231
2232 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2233 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2234 }
2235 else
2236 {
2237 unsigned long indx;
2238 struct elf_link_hash_entry *h;
2239
2240 /* An external symbol. */
2241 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2242 h = elf_sym_hashes (abfd)[indx];
2243 BFD_ASSERT (h != NULL);
2244 if (h->root.type == bfd_link_hash_defined
2245 || h->root.type == bfd_link_hash_defweak)
2246 targetsec = h->root.u.def.section;
2247 else
2248 targetsec = NULL;
2249 }
2250
2251 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
2252 memset (p + 4, 0, 8);
2253 if (targetsec != NULL)
2254 strncpy (p + 4, targetsec->output_section->name, 8);
2255 }
2256
2257 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
2258 free (isymbuf);
2259 if (internal_relocs != NULL
2260 && elf_section_data (datasec)->relocs != internal_relocs)
2261 free (internal_relocs);
2262 return TRUE;
2263
2264 error_return:
2265 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
2266 free (isymbuf);
2267 if (internal_relocs != NULL
2268 && elf_section_data (datasec)->relocs != internal_relocs)
2269 free (internal_relocs);
2270 return FALSE;
2271 }
2272
2273 static enum elf_reloc_type_class
2274 elf32_m68k_reloc_type_class (rela)
2275 const Elf_Internal_Rela *rela;
2276 {
2277 switch ((int) ELF32_R_TYPE (rela->r_info))
2278 {
2279 case R_68K_RELATIVE:
2280 return reloc_class_relative;
2281 case R_68K_JMP_SLOT:
2282 return reloc_class_plt;
2283 case R_68K_COPY:
2284 return reloc_class_copy;
2285 default:
2286 return reloc_class_normal;
2287 }
2288 }
2289
2290 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
2291 #define TARGET_BIG_NAME "elf32-m68k"
2292 #define ELF_MACHINE_CODE EM_68K
2293 #define ELF_MAXPAGESIZE 0x2000
2294 #define elf_backend_create_dynamic_sections \
2295 _bfd_elf_create_dynamic_sections
2296 #define bfd_elf32_bfd_link_hash_table_create \
2297 elf_m68k_link_hash_table_create
2298 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2299
2300 #define elf_backend_check_relocs elf_m68k_check_relocs
2301 #define elf_backend_adjust_dynamic_symbol \
2302 elf_m68k_adjust_dynamic_symbol
2303 #define elf_backend_size_dynamic_sections \
2304 elf_m68k_size_dynamic_sections
2305 #define elf_backend_relocate_section elf_m68k_relocate_section
2306 #define elf_backend_finish_dynamic_symbol \
2307 elf_m68k_finish_dynamic_symbol
2308 #define elf_backend_finish_dynamic_sections \
2309 elf_m68k_finish_dynamic_sections
2310 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
2311 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
2312 #define bfd_elf32_bfd_merge_private_bfd_data \
2313 elf32_m68k_merge_private_bfd_data
2314 #define bfd_elf32_bfd_set_private_flags \
2315 elf32_m68k_set_private_flags
2316 #define bfd_elf32_bfd_print_private_bfd_data \
2317 elf32_m68k_print_private_bfd_data
2318 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
2319
2320 #define elf_backend_can_gc_sections 1
2321 #define elf_backend_can_refcount 1
2322 #define elf_backend_want_got_plt 1
2323 #define elf_backend_plt_readonly 1
2324 #define elf_backend_want_plt_sym 0
2325 #define elf_backend_got_header_size 12
2326 #define elf_backend_rela_normal 1
2327
2328 #include "elf32-target.h"