]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68k.c
Added new files elflink.c, elflink.h, elfcore.h.
[thirdparty/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "bfd.h"
21 #include "sysdep.h"
22 #include "bfdlink.h"
23 #include "libbfd.h"
24 #include "libelf.h"
25
26 static reloc_howto_type *reloc_type_lookup
27 PARAMS ((bfd *, bfd_reloc_code_real_type));
28 static void rtype_to_howto
29 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
30 static void rtype_to_howto_rel
31 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
32 static boolean elf_m68k_check_relocs
33 PARAMS ((bfd *, struct bfd_link_info *, asection *,
34 const Elf_Internal_Rela *));
35 static boolean elf_m68k_adjust_dynamic_symbol
36 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
37 static boolean elf_m68k_adjust_dynindx
38 PARAMS ((struct elf_link_hash_entry *, PTR));
39 static boolean elf_m68k_size_dynamic_sections
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_m68k_relocate_section
42 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
43 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
44 static boolean elf_m68k_finish_dynamic_symbol
45 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
46 Elf_Internal_Sym *));
47 static boolean elf_m68k_finish_dynamic_sections
48 PARAMS ((bfd *, struct bfd_link_info *));
49
50 /* elf32 m68k code, generated by elf.el */
51 enum reloc_type {
52 R_68K_NONE = 0,
53 R_68K_32 = 1,
54 R_68K_16 = 2,
55 R_68K_8 = 3,
56 R_68K_PC32 = 4,
57 R_68K_PC16 = 5,
58 R_68K_PC8 = 6,
59 R_68K_GOT32 = 7,
60 R_68K_GOT16 = 8,
61 R_68K_GOT8 = 9,
62 R_68K_GOT32O = 10,
63 R_68K_GOT16O = 11,
64 R_68K_GOT8O = 12,
65 R_68K_PLT32 = 13,
66 R_68K_PLT16 = 14,
67 R_68K_PLT8 = 15,
68 R_68K_PLT32O = 16,
69 R_68K_PLT16O = 17,
70 R_68K_PLT8O = 18,
71 R_68K_COPY = 19,
72 R_68K_GLOB_DAT = 20,
73 R_68K_JMP_SLOT = 21,
74 R_68K_RELATIVE = 22,
75 R_68K__max
76 };
77
78 static reloc_howto_type howto_table[] = {
79 HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0x00000000, 0x00000000,false),
80 HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0xffffffff, 0xffffffff,false),
81 HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0x0000ffff, 0x0000ffff,false),
82 HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0x000000ff, 0x000000ff,false),
83 HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC32", false, 0xffffffff, 0xffffffff,true),
84 HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0x0000ffff, 0x0000ffff,true),
85 HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0x000000ff, 0x000000ff,true),
86 HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0xffffffff, 0xffffffff,true),
87 HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0x0000ffff, 0x0000ffff,true),
88 HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0x000000ff, 0x000000ff,true),
89 HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0xffffffff, 0xffffffff,false),
90 HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0x0000ffff, 0x0000ffff,false),
91 HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0x000000ff, 0x000000ff,false),
92 HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0xffffffff, 0xffffffff,true),
93 HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0x0000ffff, 0x0000ffff,true),
94 HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0x000000ff, 0x000000ff,true),
95 HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0xffffffff, 0xffffffff,false),
96 HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0x0000ffff, 0x0000ffff,false),
97 HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0x000000ff, 0x000000ff,false),
98 HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0xffffffff, 0xffffffff,false),
99 HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0xffffffff, 0xffffffff,false),
100 HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0xffffffff, 0xffffffff,false),
101 HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0xffffffff, 0xffffffff,false),
102 };
103
104 static void
105 rtype_to_howto (abfd, cache_ptr, dst)
106 bfd *abfd;
107 arelent *cache_ptr;
108 Elf_Internal_Rela *dst;
109 {
110 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max);
111 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
112 }
113
114 static void
115 rtype_to_howto_rel (abfd, cache_ptr, dst)
116 bfd *abfd;
117 arelent *cache_ptr;
118 Elf_Internal_Rel *dst;
119 {
120 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K__max);
121 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
122 }
123
124 #define elf_info_to_howto rtype_to_howto
125 #define elf_info_to_howto_rel rtype_to_howto_rel
126
127 static const struct { unsigned char bfd_val, elf_val; } reloc_map[] = {
128 { BFD_RELOC_NONE, R_68K_NONE },
129 { BFD_RELOC_32, R_68K_32 },
130 { BFD_RELOC_16, R_68K_16 },
131 { BFD_RELOC_8, R_68K_8 },
132 { BFD_RELOC_32_PCREL, R_68K_PC32 },
133 { BFD_RELOC_16_PCREL, R_68K_PC16 },
134 { BFD_RELOC_8_PCREL, R_68K_PC8 },
135 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
136 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
137 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
138 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
139 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
140 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
141 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
142 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
143 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
144 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
145 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
146 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
147 { BFD_RELOC_NONE, R_68K_COPY },
148 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
149 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
150 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
151 { BFD_RELOC_CTOR, R_68K_32 },
152 };
153
154 static reloc_howto_type *
155 reloc_type_lookup (abfd, code)
156 bfd *abfd;
157 bfd_reloc_code_real_type code;
158 {
159 int i;
160 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
161 {
162 if (reloc_map[i].bfd_val == code)
163 return &howto_table[(int) reloc_map[i].elf_val];
164 }
165 return 0;
166 }
167
168 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
169 #define ELF_ARCH bfd_arch_m68k
170 /* end code generated by elf.el */
171
172 #define USE_RELA
173
174 \f
175 /* Functions for the m68k ELF linker. */
176
177 /* The name of the dynamic interpreter. This is put in the .interp
178 section. */
179
180 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
181
182 /* The size in bytes of an entry in the procedure linkage table. */
183
184 #define PLT_ENTRY_SIZE 20
185
186 /* The first entry in a procedure linkage table looks like this. See
187 the SVR4 ABI m68k supplement to see how this works. */
188
189 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
190 {
191 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
192 0, 0, 0, 0, /* replaced with address of .got + 4. */
193 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
194 0, 0, 0, 0, /* replaced with address of .got + 8. */
195 0, 0, 0, 0 /* pad out to 20 bytes. */
196 };
197
198 /* Subsequent entries in a procedure linkage table look like this. */
199
200 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
201 {
202 0x4e, 0xfb, 0x01, 0x71, /* jmp ([addr]) */
203 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
204 0x2f, 0x3c, /* move.l #offset,-(%sp) */
205 0, 0, 0, 0, /* replaced with offset into relocation table. */
206 0x60, 0xff, /* bra.l .plt */
207 0, 0, 0, 0 /* replaced with offset to start of .plt. */
208 };
209
210 /* Look through the relocs for a section during the first phase, and
211 allocate space in the global offset table or procedure linkage
212 table. */
213
214 static boolean
215 elf_m68k_check_relocs (abfd, info, sec, relocs)
216 bfd *abfd;
217 struct bfd_link_info *info;
218 asection *sec;
219 const Elf_Internal_Rela *relocs;
220 {
221 bfd *dynobj;
222 Elf_Internal_Shdr *symtab_hdr;
223 struct elf_link_hash_entry **sym_hashes;
224 bfd_vma *local_got_offsets;
225 const Elf_Internal_Rela *rel;
226 const Elf_Internal_Rela *rel_end;
227 asection *sgot;
228 asection *srelgot;
229 asection *sreloc;
230
231 if (info->relocateable)
232 return true;
233
234 dynobj = elf_hash_table (info)->dynobj;
235 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
236 sym_hashes = elf_sym_hashes (abfd);
237 local_got_offsets = elf_local_got_offsets (abfd);
238
239 sgot = NULL;
240 srelgot = NULL;
241 sreloc = NULL;
242
243 rel_end = relocs + sec->reloc_count;
244 for (rel = relocs; rel < rel_end; rel++)
245 {
246 long r_symndx;
247 struct elf_link_hash_entry *h;
248
249 r_symndx = ELF32_R_SYM (rel->r_info);
250
251 if (r_symndx < symtab_hdr->sh_info)
252 h = NULL;
253 else
254 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
255
256 switch (ELF32_R_TYPE (rel->r_info))
257 {
258 case R_68K_GOT8:
259 case R_68K_GOT16:
260 case R_68K_GOT32:
261 case R_68K_GOT8O:
262 case R_68K_GOT16O:
263 case R_68K_GOT32O:
264 /* This symbol requires a global offset table entry. */
265
266 if (h != NULL
267 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
268 break;
269
270 if (dynobj == NULL)
271 {
272 /* Create the .got section. */
273 elf_hash_table (info)->dynobj = dynobj = abfd;
274 if (!_bfd_elf_create_got_section (dynobj, info))
275 return false;
276 }
277
278 if (sgot == NULL)
279 {
280 sgot = bfd_get_section_by_name (dynobj, ".got");
281 BFD_ASSERT (sgot != NULL);
282 }
283
284 if (srelgot == NULL
285 && (h != NULL || info->shared))
286 {
287 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
288 if (srelgot == NULL)
289 {
290 srelgot = bfd_make_section (dynobj, ".rela.got");
291 if (srelgot == NULL
292 || !bfd_set_section_flags (dynobj, srelgot,
293 (SEC_ALLOC
294 | SEC_LOAD
295 | SEC_HAS_CONTENTS
296 | SEC_IN_MEMORY
297 | SEC_READONLY))
298 || !bfd_set_section_alignment (dynobj, srelgot, 2))
299 return false;
300 }
301 }
302
303 if (h != NULL)
304 {
305 if (h->got_offset != (bfd_vma) -1)
306 {
307 /* We have already allocated space in the .got. */
308 break;
309 }
310 h->got_offset = sgot->_raw_size;
311
312 /* Make sure this symbol is output as a dynamic symbol. */
313 if (h->dynindx == -1)
314 {
315 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
316 return false;
317 }
318
319 srelgot->_raw_size += sizeof (Elf32_External_Rela);
320 }
321 else
322 {
323 /* This is a global offset table entry for a local
324 symbol. */
325 if (local_got_offsets == NULL)
326 {
327 size_t size;
328 register int i;
329
330 size = symtab_hdr->sh_info * sizeof (bfd_vma);
331 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
332 if (local_got_offsets == NULL)
333 {
334 bfd_set_error (bfd_error_no_memory);
335 return false;
336 }
337 elf_local_got_offsets (abfd) = local_got_offsets;
338 for (i = 0; i < symtab_hdr->sh_info; i++)
339 local_got_offsets[i] = (bfd_vma) -1;
340 }
341 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
342 {
343 /* We have already allocated space in the .got. */
344 break;
345 }
346 local_got_offsets[r_symndx] = sgot->_raw_size;
347
348 if (info->shared)
349 {
350 /* If we are generating a shared object, we need to
351 output a R_68K_RELATIVE reloc so that the dynamic
352 linker can adjust this GOT entry. */
353 srelgot->_raw_size += sizeof (Elf32_External_Rela);
354 }
355 }
356
357 sgot->_raw_size += 4;
358 break;
359
360 case R_68K_PLT8:
361 case R_68K_PLT16:
362 case R_68K_PLT32:
363 case R_68K_PLT8O:
364 case R_68K_PLT16O:
365 case R_68K_PLT32O:
366 /* This symbol requires a procedure linkage table entry. We
367 actually build the entry in adjust_dynamic_symbol,
368 because this might be a case of linking PIC code without
369 linking in any dynamic objects, in which case we don't
370 need to generate a procedure linkage table after all. */
371
372 /* If this is a local symbol, we resolve it directly without
373 creating a procedure linkage table entry. */
374 if (h == NULL)
375 continue;
376
377 /* Make sure this symbol is output as a dynamic symbol. */
378 if (h->dynindx == -1)
379 {
380 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
381 return false;
382 }
383
384 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
385 break;
386
387 case R_68K_8:
388 case R_68K_16:
389 case R_68K_32:
390 case R_68K_PC8:
391 case R_68K_PC16:
392 case R_68K_PC32:
393 if (info->shared
394 && (sec->flags & SEC_ALLOC) != 0)
395 {
396 /* When creating a shared object, we must copy these
397 reloc types into the output file. We create a reloc
398 section in dynobj and make room for this reloc. */
399 if (sreloc == NULL)
400 {
401 const char *name;
402
403 name = (bfd_elf_string_from_elf_section
404 (abfd,
405 elf_elfheader (abfd)->e_shstrndx,
406 elf_section_data (sec)->rel_hdr.sh_name));
407 if (name == NULL)
408 return false;
409
410 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
411 && strcmp (bfd_get_section_name (abfd, sec),
412 name + 5) == 0);
413
414 sreloc = bfd_get_section_by_name (dynobj, name);
415 if (sreloc == NULL)
416 {
417 sreloc = bfd_make_section (dynobj, name);
418 if (sreloc == NULL
419 || !bfd_set_section_flags (dynobj, sreloc,
420 (SEC_ALLOC
421 | SEC_LOAD
422 | SEC_HAS_CONTENTS
423 | SEC_IN_MEMORY
424 | SEC_READONLY))
425 || !bfd_set_section_alignment (dynobj, sreloc, 2))
426 return false;
427 }
428 }
429
430 sreloc->_raw_size += sizeof (Elf32_External_Rela);
431 }
432
433 break;
434
435 default:
436 break;
437 }
438 }
439
440 return true;
441 }
442
443 /* Adjust a symbol defined by a dynamic object and referenced by a
444 regular object. The current definition is in some section of the
445 dynamic object, but we're not including those sections. We have to
446 change the definition to something the rest of the link can
447 understand. */
448
449 static boolean
450 elf_m68k_adjust_dynamic_symbol (info, h)
451 struct bfd_link_info *info;
452 struct elf_link_hash_entry *h;
453 {
454 bfd *dynobj;
455 asection *s;
456 unsigned int power_of_two;
457
458 dynobj = elf_hash_table (info)->dynobj;
459
460 /* Make sure we know what is going on here. */
461 BFD_ASSERT (dynobj != NULL
462 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
463 || ((h->elf_link_hash_flags
464 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
465 && (h->elf_link_hash_flags
466 & ELF_LINK_HASH_REF_REGULAR) != 0
467 && (h->elf_link_hash_flags
468 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
469
470 /* If this is a function, put it in the procedure linkage table. We
471 will fill in the contents of the procedure linkage table later,
472 when we know the address of the .got section. */
473 if (h->type == STT_FUNC
474 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
475 {
476 if (!elf_hash_table (info)->dynamic_sections_created)
477 {
478 /* This case can occur if we saw a PLT32 reloc in an input
479 file, but none of the input files were dynamic objects.
480 In such a case, we don't actually need to build a
481 procedure linkage table, and we can just do a PC32 reloc
482 instead. */
483 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
484 return true;
485 }
486
487 s = bfd_get_section_by_name (dynobj, ".plt");
488 BFD_ASSERT (s != NULL);
489
490 /* If this is the first .plt entry, make room for the special
491 first entry. */
492 if (s->_raw_size == 0)
493 s->_raw_size += PLT_ENTRY_SIZE;
494
495 /* If this symbol is not defined in a regular file, and we are
496 not generating a shared library, then set the symbol to this
497 location in the .plt. This is required to make function
498 pointers compare as equal between the normal executable and
499 the shared library. */
500 if (!info->shared
501 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
502 {
503 h->root.u.def.section = s;
504 h->root.u.def.value = s->_raw_size;
505 }
506
507 h->plt_offset = s->_raw_size;
508
509 /* Make room for this entry. */
510 s->_raw_size += PLT_ENTRY_SIZE;
511
512 /* We also need to make an entry in the .got.plt section, which
513 will be placed in the .got section by the linker script. */
514
515 s = bfd_get_section_by_name (dynobj, ".got.plt");
516 BFD_ASSERT (s != NULL);
517 s->_raw_size += 4;
518
519 /* We also need to make an entry in the .rela.plt section. */
520
521 s = bfd_get_section_by_name (dynobj, ".rela.plt");
522 BFD_ASSERT (s != NULL);
523 s->_raw_size += sizeof (Elf32_External_Rela);
524
525 return true;
526 }
527
528 /* If this is a weak symbol, and there is a real definition, the
529 processor independent code will have arranged for us to see the
530 real definition first, and we can just use the same value. */
531 if (h->weakdef != NULL)
532 {
533 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
534 || h->weakdef->root.type == bfd_link_hash_defweak);
535 h->root.u.def.section = h->weakdef->root.u.def.section;
536 h->root.u.def.value = h->weakdef->root.u.def.value;
537 return true;
538 }
539
540 /* This is a reference to a symbol defined by a dynamic object which
541 is not a function. */
542
543 /* If we are creating a shared library, we must presume that the
544 only references to the symbol are via the global offset table.
545 For such cases we need not do anything here; the relocations will
546 be handled correctly by relocate_section. */
547 if (info->shared)
548 return true;
549
550 /* We must allocate the symbol in our .dynbss section, which will
551 become part of the .bss section of the executable. There will be
552 an entry for this symbol in the .dynsym section. The dynamic
553 object will contain position independent code, so all references
554 from the dynamic object to this symbol will go through the global
555 offset table. The dynamic linker will use the .dynsym entry to
556 determine the address it must put in the global offset table, so
557 both the dynamic object and the regular object will refer to the
558 same memory location for the variable. */
559
560 s = bfd_get_section_by_name (dynobj, ".dynbss");
561 BFD_ASSERT (s != NULL);
562
563 /* If the symbol is currently defined in the .bss section of the
564 dynamic object, then it is OK to simply initialize it to zero.
565 If the symbol is in some other section, we must generate a
566 R_68K_COPY reloc to tell the dynamic linker to copy the initial
567 value out of the dynamic object and into the runtime process
568 image. We need to remember the offset into the .rela.bss section
569 we are going to use. */
570 if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
571 {
572 asection *srel;
573
574 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
575 BFD_ASSERT (srel != NULL);
576 srel->_raw_size += sizeof (Elf32_External_Rela);
577 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
578 }
579
580 /* We need to figure out the alignment required for this symbol. I
581 have no idea how ELF linkers handle this. */
582 power_of_two = bfd_log2 (h->size);
583 if (power_of_two > 3)
584 power_of_two = 3;
585
586 /* Apply the required alignment. */
587 s->_raw_size = BFD_ALIGN (s->_raw_size,
588 (bfd_size_type) (1 << power_of_two));
589 if (power_of_two > bfd_get_section_alignment (dynobj, s))
590 {
591 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
592 return false;
593 }
594
595 /* Define the symbol as being at this point in the section. */
596 h->root.u.def.section = s;
597 h->root.u.def.value = s->_raw_size;
598
599 /* Increment the section size to make room for the symbol. */
600 s->_raw_size += h->size;
601
602 return true;
603 }
604
605 /* Set the sizes of the dynamic sections. */
606
607 static boolean
608 elf_m68k_size_dynamic_sections (output_bfd, info)
609 bfd *output_bfd;
610 struct bfd_link_info *info;
611 {
612 bfd *dynobj;
613 asection *s;
614 boolean plt;
615 boolean relocs;
616 boolean reltext;
617
618 dynobj = elf_hash_table (info)->dynobj;
619 BFD_ASSERT (dynobj != NULL);
620
621 if (elf_hash_table (info)->dynamic_sections_created)
622 {
623 /* Set the contents of the .interp section to the interpreter. */
624 if (!info->shared)
625 {
626 s = bfd_get_section_by_name (dynobj, ".interp");
627 BFD_ASSERT (s != NULL);
628 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
629 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
630 }
631 }
632 else
633 {
634 /* We may have created entries in the .rela.got section.
635 However, if we are not creating the dynamic sections, we will
636 not actually use these entries. Reset the size of .rela.got,
637 which will cause it to get stripped from the output file
638 below. */
639 s = bfd_get_section_by_name (dynobj, ".rela.got");
640 if (s != NULL)
641 s->_raw_size = 0;
642 }
643
644 /* The check_relocs and adjust_dynamic_symbol entry points have
645 determined the sizes of the various dynamic sections. Allocate
646 memory for them. */
647 plt = false;
648 relocs = false;
649 reltext = false;
650 for (s = dynobj->sections; s != NULL; s = s->next)
651 {
652 const char *name;
653 boolean strip;
654
655 if ((s->flags & SEC_IN_MEMORY) == 0)
656 continue;
657
658 /* It's OK to base decisions on the section name, because none
659 of the dynobj section names depend upon the input files. */
660 name = bfd_get_section_name (dynobj, s);
661
662 strip = false;
663
664 if (strcmp (name, ".plt") == 0)
665 {
666 if (s->_raw_size == 0)
667 {
668 /* Strip this section if we don't need it; see the
669 comment below. */
670 strip = true;
671 }
672 else
673 {
674 /* Remember whether there is a PLT. */
675 plt = true;
676 }
677 }
678 else if (strncmp (name, ".rela", 5) == 0)
679 {
680 if (s->_raw_size == 0)
681 {
682 /* If we don't need this section, strip it from the
683 output file. This is mostly to handle .rela.bss and
684 .rela.plt. We must create both sections in
685 create_dynamic_sections, because they must be created
686 before the linker maps input sections to output
687 sections. The linker does that before
688 adjust_dynamic_symbol is called, and it is that
689 function which decides whether anything needs to go
690 into these sections. */
691 strip = true;
692 }
693 else
694 {
695 asection *target;
696
697 /* Remember whether there are any reloc sections other
698 than .rela.plt. */
699 if (strcmp (name, ".rela.plt") != 0)
700 {
701 relocs = true;
702
703 /* If this relocation section applies to a read only
704 section, then we probably need a DT_TEXTREL
705 entry. .rela.plt is actually associated with
706 .got.plt, which is never readonly. */
707 target = bfd_get_section_by_name (output_bfd, name + 5);
708 if (target != NULL
709 && (target->flags & SEC_READONLY) != 0)
710 reltext = true;
711 }
712
713 /* We use the reloc_count field as a counter if we need
714 to copy relocs into the output file. */
715 s->reloc_count = 0;
716 }
717 }
718 else if (strncmp (name, ".got", 4) != 0)
719 {
720 /* It's not one of our sections, so don't allocate space. */
721 continue;
722 }
723
724 if (strip)
725 {
726 asection **spp;
727
728 for (spp = &s->output_section->owner->sections;
729 *spp != s->output_section;
730 spp = &(*spp)->next)
731 ;
732 *spp = s->output_section->next;
733 --s->output_section->owner->section_count;
734
735 continue;
736 }
737
738 /* Allocate memory for the section contents. */
739 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
740 if (s->contents == NULL && s->_raw_size != 0)
741 {
742 bfd_set_error (bfd_error_no_memory);
743 return false;
744 }
745 }
746
747 if (elf_hash_table (info)->dynamic_sections_created)
748 {
749 /* Add some entries to the .dynamic section. We fill in the
750 values later, in elf_m68k_finish_dynamic_sections, but we
751 must add the entries now so that we get the correct size for
752 the .dynamic section. The DT_DEBUG entry is filled in by the
753 dynamic linker and used by the debugger. */
754 if (!info->shared)
755 {
756 if (!bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
757 return false;
758 }
759
760 if (plt)
761 {
762 if (!bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
763 || !bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
764 || !bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
765 || !bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
766 return false;
767 }
768
769 if (relocs)
770 {
771 if (!bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
772 || !bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
773 || !bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
774 sizeof (Elf32_External_Rela)))
775 return false;
776 }
777
778 if (reltext)
779 {
780 if (!bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
781 return false;
782 }
783 }
784
785 /* If we are generating a shared library, we generate a section
786 symbol for each output section. These are local symbols, which
787 means that they must come first in the dynamic symbol table.
788 That means we must increment the dynamic symbol index of every
789 other dynamic symbol. */
790 if (info->shared)
791 {
792 int c, i;
793
794 c = bfd_count_sections (output_bfd);
795 elf_link_hash_traverse (elf_hash_table (info),
796 elf_m68k_adjust_dynindx,
797 (PTR) &c);
798 elf_hash_table (info)->dynsymcount += c;
799
800 for (i = 1, s = output_bfd->sections; s != NULL; s = s->next, i++)
801 {
802 elf_section_data (s)->dynindx = i;
803 /* These symbols will have no names, so we don't need to
804 fiddle with dynstr_index. */
805 }
806 }
807
808 return true;
809 }
810
811 /* Increment the index of a dynamic symbol by a given amount. Called
812 via elf_link_hash_traverse. */
813
814 static boolean
815 elf_m68k_adjust_dynindx (h, cparg)
816 struct elf_link_hash_entry *h;
817 PTR cparg;
818 {
819 int *cp = (int *) cparg;
820
821 if (h->dynindx != -1)
822 h->dynindx += *cp;
823 return true;
824 }
825
826 /* Relocate an M68K ELF section. */
827
828 static boolean
829 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
830 contents, relocs, local_syms, local_sections)
831 bfd *output_bfd;
832 struct bfd_link_info *info;
833 bfd *input_bfd;
834 asection *input_section;
835 bfd_byte *contents;
836 Elf_Internal_Rela *relocs;
837 Elf_Internal_Sym *local_syms;
838 asection **local_sections;
839 {
840 bfd *dynobj;
841 Elf_Internal_Shdr *symtab_hdr;
842 struct elf_link_hash_entry **sym_hashes;
843 bfd_vma *local_got_offsets;
844 asection *sgot;
845 asection *sgotplt;
846 asection *splt;
847 asection *sreloc;
848 Elf_Internal_Rela *rel;
849 Elf_Internal_Rela *relend;
850
851 dynobj = elf_hash_table (info)->dynobj;
852 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
853 sym_hashes = elf_sym_hashes (input_bfd);
854 local_got_offsets = elf_local_got_offsets (input_bfd);
855
856 sgot = NULL;
857 sgotplt = NULL;
858 splt = NULL;
859 sreloc = NULL;
860
861 rel = relocs;
862 relend = relocs + input_section->reloc_count;
863 for (; rel < relend; rel++)
864 {
865 int r_type;
866 reloc_howto_type *howto;
867 long r_symndx;
868 struct elf_link_hash_entry *h;
869 Elf_Internal_Sym *sym;
870 asection *sec;
871 bfd_vma relocation;
872 bfd_reloc_status_type r;
873
874 r_type = ELF32_R_TYPE (rel->r_info);
875 if (r_type < 0 || r_type >= (int) R_68K__max)
876 {
877 bfd_set_error (bfd_error_bad_value);
878 return false;
879 }
880 howto = howto_table + r_type;
881
882 r_symndx = ELF32_R_SYM (rel->r_info);
883
884 if (info->relocateable)
885 {
886 /* This is a relocateable link. We don't have to change
887 anything, unless the reloc is against a section symbol,
888 in which case we have to adjust according to where the
889 section symbol winds up in the output section. */
890 if (r_symndx < symtab_hdr->sh_info)
891 {
892 sym = local_syms + r_symndx;
893 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
894 {
895 sec = local_sections[r_symndx];
896 rel->r_addend += sec->output_offset + sym->st_value;
897 }
898 }
899
900 continue;
901 }
902
903 /* This is a final link. */
904 h = NULL;
905 sym = NULL;
906 sec = NULL;
907 if (r_symndx < symtab_hdr->sh_info)
908 {
909 sym = local_syms + r_symndx;
910 sec = local_sections[r_symndx];
911 relocation = (sec->output_section->vma
912 + sec->output_offset
913 + sym->st_value);
914 }
915 else
916 {
917 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
918 if (h->root.type == bfd_link_hash_defined
919 || h->root.type == bfd_link_hash_defweak)
920 {
921 sec = h->root.u.def.section;
922 if (((r_type == R_68K_PLT8
923 || r_type == R_68K_PLT16
924 || r_type == R_68K_PLT32
925 || r_type == R_68K_PLT8O
926 || r_type == R_68K_PLT16O
927 || r_type == R_68K_PLT32O)
928 && h->plt_offset != (bfd_vma) -1)
929 || ((r_type == R_68K_GOT8O
930 || r_type == R_68K_GOT16O
931 || r_type == R_68K_GOT32O
932 || ((r_type == R_68K_GOT8
933 || r_type == R_68K_GOT16
934 || r_type == R_68K_GOT32)
935 && strcmp (h->root.root.string,
936 "_GLOBAL_OFFSET_TABLE_") != 0))
937 && elf_hash_table (info)->dynamic_sections_created)
938 || (info->shared
939 && (input_section->flags & SEC_ALLOC) != 0
940 && (r_type == R_68K_8
941 || r_type == R_68K_16
942 || r_type == R_68K_32
943 || r_type == R_68K_PC8
944 || r_type == R_68K_PC16
945 || r_type == R_68K_PC32)))
946 {
947 /* In these cases, we don't need the relocation
948 value. We check specially because in some
949 obscure cases sec->output_section will be NULL. */
950 relocation = 0;
951 }
952 else
953 relocation = (h->root.u.def.value
954 + sec->output_section->vma
955 + sec->output_offset);
956 }
957 else if (h->root.type == bfd_link_hash_undefweak)
958 relocation = 0;
959 else if (info->shared)
960 relocation = 0;
961 else
962 {
963 if (!(info->callbacks->undefined_symbol
964 (info, h->root.root.string, input_bfd,
965 input_section, rel->r_offset)))
966 return false;
967 relocation = 0;
968 }
969 }
970
971 switch (r_type)
972 {
973 case R_68K_GOT8:
974 case R_68K_GOT16:
975 case R_68K_GOT32:
976 /* Relocation is to the entry for this symbol in the global
977 offset table. */
978 if (h != NULL
979 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
980 break;
981 /* Fall through. */
982 case R_68K_GOT8O:
983 case R_68K_GOT16O:
984 case R_68K_GOT32O:
985 /* Relocation is the offset of the entry for this symbol in
986 the global offset table. */
987
988 if (sgot == NULL)
989 {
990 sgot = bfd_get_section_by_name (dynobj, ".got");
991 BFD_ASSERT (sgot != NULL);
992 }
993
994 if (sgotplt == NULL)
995 {
996 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
997 BFD_ASSERT (sgotplt != NULL);
998 }
999
1000 if (h != NULL)
1001 {
1002 bfd_vma off;
1003
1004 off = h->got_offset;
1005 BFD_ASSERT (off != (bfd_vma) -1);
1006
1007 if (!elf_hash_table (info)->dynamic_sections_created)
1008 {
1009 /* This is actually a static link. We must
1010 initialize this entry in the global offset table.
1011 Since the offset must always be a multiple of 4,
1012 we use the least significant bit to record
1013 whether we have initialized it already.
1014
1015 When doing a dynamic link, we create a .rela.got
1016 relocation entry to initialize the value. This
1017 is done in the finish_dynamic_symbol routine. */
1018 if ((off & 1) != 0)
1019 off &= ~1;
1020 else
1021 {
1022 bfd_put_32 (output_bfd, relocation,
1023 sgot->contents + off);
1024 h->got_offset |= 1;
1025 }
1026 }
1027
1028 relocation = sgot->output_offset + off;
1029 if (r_type == R_68K_GOT8O
1030 || r_type == R_68K_GOT16O
1031 || r_type == R_68K_GOT32O)
1032 relocation -= sgotplt->output_offset;
1033 }
1034 else
1035 {
1036 bfd_vma off;
1037
1038 BFD_ASSERT (local_got_offsets != NULL
1039 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1040
1041 off = local_got_offsets[r_symndx];
1042
1043 /* The offset must always be a multiple of 4. We use
1044 the least significant bit to record whether we have
1045 already generated the necessary reloc. */
1046 if ((off & 1) != 0)
1047 off &= ~1;
1048 else
1049 {
1050 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1051
1052 if (info->shared)
1053 {
1054 asection *srelgot;
1055 Elf_Internal_Rela outrel;
1056
1057 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1058 BFD_ASSERT (srelgot != NULL);
1059
1060 outrel.r_offset = (sgot->output_section->vma
1061 + sgot->output_offset
1062 + off);
1063 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1064 outrel.r_addend = 0;
1065 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1066 (((Elf32_External_Rela *)
1067 srelgot->contents)
1068 + srelgot->reloc_count));
1069 ++srelgot->reloc_count;
1070 }
1071
1072 local_got_offsets[r_symndx] |= 1;
1073 }
1074
1075 relocation = sgot->output_offset + off;
1076 if (r_type == R_68K_GOT8O
1077 || r_type == R_68K_GOT16O
1078 || r_type == R_68K_GOT32O)
1079 relocation -= sgotplt->output_offset;
1080 }
1081
1082 break;
1083
1084 case R_68K_PLT8:
1085 case R_68K_PLT16:
1086 case R_68K_PLT32:
1087 /* Relocation is to the entry for this symbol in the
1088 procedure linkage table. */
1089
1090 /* Resolve a PLT32 reloc against a local symbol directly,
1091 without using the procedure linkage table. */
1092 if (h == NULL)
1093 break;
1094
1095 if (h->plt_offset == (bfd_vma) -1)
1096 {
1097 /* We didn't make a PLT entry for this symbol. This
1098 happens when statically linking PIC code. */
1099 break;
1100 }
1101
1102 if (splt == NULL)
1103 {
1104 splt = bfd_get_section_by_name (dynobj, ".plt");
1105 BFD_ASSERT (splt != NULL);
1106 }
1107
1108 relocation = (splt->output_section->vma
1109 + splt->output_offset
1110 + h->plt_offset);
1111 break;
1112
1113 case R_68K_PLT8O:
1114 case R_68K_PLT16O:
1115 case R_68K_PLT32O:
1116 /* Relocation is the offset of the entry for this symbol in
1117 the procedure linkage table. */
1118 BFD_ASSERT (h != NULL);
1119
1120 if (h->plt_offset == (bfd_vma) -1)
1121 {
1122 /* We didn't make a PLT entry for this symbol. This
1123 happens when statically linking PIC code. */
1124 break;
1125 }
1126
1127 if (splt == NULL)
1128 {
1129 splt = bfd_get_section_by_name (dynobj, ".plt");
1130 BFD_ASSERT (splt != NULL);
1131 }
1132
1133 relocation = h->plt_offset;
1134 break;
1135
1136 case R_68K_8:
1137 case R_68K_16:
1138 case R_68K_32:
1139 case R_68K_PC8:
1140 case R_68K_PC16:
1141 case R_68K_PC32:
1142 if (info->shared
1143 && (input_section->flags & SEC_ALLOC) != 0)
1144 {
1145 Elf_Internal_Rela outrel;
1146
1147 /* When generating a shared object, these relocations
1148 are copied into the output file to be resolved at run
1149 time. */
1150
1151 if (sreloc == NULL)
1152 {
1153 const char *name;
1154
1155 name = (bfd_elf_string_from_elf_section
1156 (input_bfd,
1157 elf_elfheader (input_bfd)->e_shstrndx,
1158 elf_section_data (input_section)->rel_hdr.sh_name));
1159 if (name == NULL)
1160 return false;
1161
1162 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1163 && strcmp (bfd_get_section_name (input_bfd,
1164 input_section),
1165 name + 5) == 0);
1166
1167 sreloc = bfd_get_section_by_name (dynobj, name);
1168 BFD_ASSERT (sreloc != NULL);
1169 }
1170
1171 outrel.r_offset = (rel->r_offset
1172 + input_section->output_section->vma
1173 + input_section->output_offset);
1174 if (h != NULL)
1175 {
1176 BFD_ASSERT (h->dynindx != -1);
1177 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1178 outrel.r_addend = rel->r_addend;
1179 }
1180 else
1181 {
1182 if (r_type == R_68K_32)
1183 {
1184 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1185 outrel.r_addend = relocation + rel->r_addend;
1186 }
1187 else
1188 {
1189 long indx;
1190
1191 sym = local_syms + r_symndx;
1192
1193 BFD_ASSERT (ELF_ST_TYPE (sym->st_info) == STT_SECTION);
1194
1195 sec = local_sections[r_symndx];
1196 if (sec != NULL && bfd_is_abs_section (sec))
1197 indx = 0;
1198 else if (sec == NULL || sec->owner == NULL)
1199 {
1200 bfd_set_error (bfd_error_bad_value);
1201 return false;
1202 }
1203 else
1204 {
1205 asection *osec;
1206
1207 osec = sec->output_section;
1208 indx = elf_section_data (osec)->dynindx;
1209 if (indx == 0)
1210 abort ();
1211 }
1212
1213 outrel.r_info = ELF32_R_INFO (indx, r_type);
1214 outrel.r_addend = relocation + rel->r_addend;
1215 }
1216 }
1217
1218 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1219 (((Elf32_External_Rela *)
1220 sreloc->contents)
1221 + sreloc->reloc_count));
1222 ++sreloc->reloc_count;
1223
1224 /* This reloc will be computed at runtime, so there's no
1225 need to do anything now. */
1226 continue;
1227 }
1228
1229 break;
1230
1231 default:
1232 break;
1233 }
1234
1235 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1236 contents, rel->r_offset,
1237 relocation, rel->r_addend);
1238
1239 if (r != bfd_reloc_ok)
1240 {
1241 switch (r)
1242 {
1243 default:
1244 case bfd_reloc_outofrange:
1245 abort ();
1246 case bfd_reloc_overflow:
1247 {
1248 const char *name;
1249
1250 if (h != NULL)
1251 name = h->root.root.string;
1252 else
1253 {
1254 name = bfd_elf_string_from_elf_section (input_bfd,
1255 symtab_hdr->sh_link,
1256 sym->st_name);
1257 if (name == NULL)
1258 return false;
1259 if (*name == '\0')
1260 name = bfd_section_name (input_bfd, sec);
1261 }
1262 if (!(info->callbacks->reloc_overflow
1263 (info, name, howto->name, (bfd_vma) 0,
1264 input_bfd, input_section, rel->r_offset)))
1265 return false;
1266 }
1267 break;
1268 }
1269 }
1270 }
1271
1272 return true;
1273 }
1274
1275 /* Finish up dynamic symbol handling. We set the contents of various
1276 dynamic sections here. */
1277
1278 static boolean
1279 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1280 bfd *output_bfd;
1281 struct bfd_link_info *info;
1282 struct elf_link_hash_entry *h;
1283 Elf_Internal_Sym *sym;
1284 {
1285 bfd *dynobj;
1286
1287 dynobj = elf_hash_table (info)->dynobj;
1288
1289 if (h->plt_offset != (bfd_vma) -1)
1290 {
1291 asection *splt;
1292 asection *sgot;
1293 asection *srela;
1294 bfd_vma plt_index;
1295 bfd_vma got_offset;
1296 Elf_Internal_Rela rela;
1297
1298 /* This symbol has an entry in the procedure linkage table. Set
1299 it up. */
1300
1301 BFD_ASSERT (h->dynindx != -1);
1302
1303 splt = bfd_get_section_by_name (dynobj, ".plt");
1304 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1305 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1306 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1307
1308 /* Get the index in the procedure linkage table which
1309 corresponds to this symbol. This is the index of this symbol
1310 in all the symbols for which we are making plt entries. The
1311 first entry in the procedure linkage table is reserved. */
1312 plt_index = h->plt_offset / PLT_ENTRY_SIZE - 1;
1313
1314 /* Get the offset into the .got table of the entry that
1315 corresponds to this function. Each .got entry is 4 bytes.
1316 The first three are reserved. */
1317 got_offset = (plt_index + 3) * 4;
1318
1319 /* Fill in the entry in the procedure linkage table. */
1320 memcpy (splt->contents + h->plt_offset, elf_m68k_plt_entry,
1321 PLT_ENTRY_SIZE);
1322 /* The offset is relative to the first extension word. */
1323 bfd_put_32 (output_bfd,
1324 (sgot->output_section->vma
1325 + sgot->output_offset
1326 + got_offset
1327 - (splt->output_section->vma
1328 + h->plt_offset + 2)),
1329 splt->contents + h->plt_offset + 4);
1330
1331 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1332 splt->contents + h->plt_offset + 10);
1333 bfd_put_32 (output_bfd, - (h->plt_offset + 16),
1334 splt->contents + h->plt_offset + 16);
1335
1336 /* Fill in the entry in the global offset table. */
1337 bfd_put_32 (output_bfd,
1338 (splt->output_section->vma
1339 + splt->output_offset
1340 + h->plt_offset
1341 + 8),
1342 sgot->contents + got_offset);
1343
1344 /* Fill in the entry in the .rela.plt section. */
1345 rela.r_offset = (sgot->output_section->vma
1346 + sgot->output_offset
1347 + got_offset);
1348 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1349 rela.r_addend = 0;
1350 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1351 ((Elf32_External_Rela *) srela->contents
1352 + plt_index));
1353
1354 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1355 {
1356 /* Mark the symbol as undefined, rather than as defined in
1357 the .plt section. Leave the value alone. */
1358 sym->st_shndx = SHN_UNDEF;
1359 }
1360 }
1361
1362 if (h->got_offset != (bfd_vma) -1)
1363 {
1364 asection *sgot;
1365 asection *srela;
1366 Elf_Internal_Rela rela;
1367
1368 /* This symbol has an entry in the global offset table. Set it
1369 up. */
1370
1371 BFD_ASSERT (h->dynindx != -1);
1372
1373 sgot = bfd_get_section_by_name (dynobj, ".got");
1374 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1375 BFD_ASSERT (sgot != NULL && srela != NULL);
1376
1377 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
1378
1379 rela.r_offset = (sgot->output_section->vma
1380 + sgot->output_offset
1381 + h->got_offset);
1382 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
1383 rela.r_addend = 0;
1384 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1385 ((Elf32_External_Rela *) srela->contents
1386 + srela->reloc_count));
1387 ++srela->reloc_count;
1388 }
1389
1390 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1391 {
1392 asection *s;
1393 Elf_Internal_Rela rela;
1394
1395 /* This symbol needs a copy reloc. Set it up. */
1396
1397 BFD_ASSERT (h->dynindx != -1
1398 && (h->root.type == bfd_link_hash_defined
1399 || h->root.type == bfd_link_hash_defweak));
1400
1401 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1402 ".rela.bss");
1403 BFD_ASSERT (s != NULL);
1404
1405 rela.r_offset = (h->root.u.def.value
1406 + h->root.u.def.section->output_section->vma
1407 + h->root.u.def.section->output_offset);
1408 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
1409 rela.r_addend = 0;
1410 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1411 ((Elf32_External_Rela *) s->contents
1412 + s->reloc_count));
1413 ++s->reloc_count;
1414 }
1415
1416 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1417 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1418 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1419 sym->st_shndx = SHN_ABS;
1420
1421 return true;
1422 }
1423
1424 /* Finish up the dynamic sections. */
1425
1426 static boolean
1427 elf_m68k_finish_dynamic_sections (output_bfd, info)
1428 bfd *output_bfd;
1429 struct bfd_link_info *info;
1430 {
1431 bfd *dynobj;
1432 asection *sgot;
1433 asection *sdyn;
1434
1435 dynobj = elf_hash_table (info)->dynobj;
1436
1437 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1438 BFD_ASSERT (sgot != NULL);
1439 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1440
1441 if (elf_hash_table (info)->dynamic_sections_created)
1442 {
1443 asection *splt;
1444 Elf32_External_Dyn *dyncon, *dynconend;
1445
1446 splt = bfd_get_section_by_name (dynobj, ".plt");
1447 BFD_ASSERT (splt != NULL && sdyn != NULL);
1448
1449 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1450 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1451 for (; dyncon < dynconend; dyncon++)
1452 {
1453 Elf_Internal_Dyn dyn;
1454 const char *name;
1455 asection *s;
1456
1457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1458
1459 switch (dyn.d_tag)
1460 {
1461 default:
1462 break;
1463
1464 case DT_PLTGOT:
1465 name = ".got";
1466 goto get_vma;
1467 case DT_JMPREL:
1468 name = ".rela.plt";
1469 get_vma:
1470 s = bfd_get_section_by_name (output_bfd, name);
1471 BFD_ASSERT (s != NULL);
1472 dyn.d_un.d_ptr = s->vma;
1473 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1474 break;
1475
1476 case DT_PLTRELSZ:
1477 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1478 BFD_ASSERT (s != NULL);
1479 if (s->_cooked_size != 0)
1480 dyn.d_un.d_val = s->_cooked_size;
1481 else
1482 dyn.d_un.d_val = s->_raw_size;
1483 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1484 break;
1485
1486 case DT_RELASZ:
1487 /* My reading of the SVR4 ABI indicates that the
1488 procedure linkage table relocs (DT_JMPREL) should be
1489 included in the overall relocs (DT_RELA). This is
1490 what Solaris does. However, UnixWare can not handle
1491 that case. Therefore, we override the DT_RELASZ entry
1492 here to make it not include the JMPREL relocs. Since
1493 the linker script arranges for .rela.plt to follow all
1494 other relocation sections, we don't have to worry
1495 about changing the DT_RELA entry. */
1496 /* FIXME: This comment is from elf32-i386.c, what about
1497 the SVR4/m68k implementations? */
1498 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1499 if (s != NULL)
1500 {
1501 if (s->_cooked_size != 0)
1502 dyn.d_un.d_val -= s->_cooked_size;
1503 else
1504 dyn.d_un.d_val -= s->_raw_size;
1505 }
1506 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1507 break;
1508 }
1509 }
1510
1511 /* Fill in the first entry in the procedure linkage table. */
1512 if (splt->_raw_size > 0)
1513 {
1514 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
1515 bfd_put_32 (output_bfd,
1516 (sgot->output_section->vma
1517 + sgot->output_offset + 4
1518 - (splt->output_section->vma + 2)),
1519 splt->contents + 4);
1520 bfd_put_32 (output_bfd,
1521 (sgot->output_section->vma
1522 + sgot->output_offset + 8
1523 - (splt->output_section->vma + 10)),
1524 splt->contents + 12);
1525 }
1526
1527 elf_section_data (splt->output_section)->this_hdr.sh_entsize
1528 = PLT_ENTRY_SIZE;
1529 }
1530
1531 /* Fill in the first three entries in the global offset table. */
1532 if (sgot->_raw_size > 0)
1533 {
1534 if (sdyn == NULL)
1535 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
1536 else
1537 bfd_put_32 (output_bfd,
1538 sdyn->output_section->vma + sdyn->output_offset,
1539 sgot->contents);
1540 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
1541 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
1542 }
1543
1544 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
1545
1546 return true;
1547 }
1548
1549 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
1550 #define TARGET_BIG_NAME "elf32-m68k"
1551 #define ELF_MACHINE_CODE EM_68K
1552 #define ELF_MAXPAGESIZE 0x2000
1553 #define elf_backend_create_dynamic_sections \
1554 _bfd_elf_create_dynamic_sections
1555 #define elf_backend_check_relocs elf_m68k_check_relocs
1556 #define elf_backend_adjust_dynamic_symbol \
1557 elf_m68k_adjust_dynamic_symbol
1558 #define elf_backend_size_dynamic_sections \
1559 elf_m68k_size_dynamic_sections
1560 #define elf_backend_relocate_section elf_m68k_relocate_section
1561 #define elf_backend_finish_dynamic_symbol \
1562 elf_m68k_finish_dynamic_symbol
1563 #define elf_backend_finish_dynamic_sections \
1564 elf_m68k_finish_dynamic_sections
1565 #define elf_backend_want_got_plt 1
1566 #define elf_backend_plt_readonly 1
1567 #define elf_backend_want_plt_sym 0
1568
1569 #include "elf32-target.h"