]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
Default elf_backend_post_process_headers to set OSABI
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "alloca-conf.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf/hppa.h"
29 #include "libhppa.h"
30 #include "elf64-hppa.h"
31
32
33 #define ARCH_SIZE 64
34
35 #define PLT_ENTRY_SIZE 0x10
36 #define DLT_ENTRY_SIZE 0x8
37 #define OPD_ENTRY_SIZE 0x20
38
39 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
40
41 /* The stub is supposed to load the target address and target's DP
42 value out of the PLT, then do an external branch to the target
43 address.
44
45 LDD PLTOFF(%r27),%r1
46 BVE (%r1)
47 LDD PLTOFF+8(%r27),%r27
48
49 Note that we must use the LDD with a 14 bit displacement, not the one
50 with a 5 bit displacement. */
51 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
52 0x53, 0x7b, 0x00, 0x00 };
53
54 struct elf64_hppa_link_hash_entry
55 {
56 struct elf_link_hash_entry eh;
57
58 /* Offsets for this symbol in various linker sections. */
59 bfd_vma dlt_offset;
60 bfd_vma plt_offset;
61 bfd_vma opd_offset;
62 bfd_vma stub_offset;
63
64 /* The index of the (possibly local) symbol in the input bfd and its
65 associated BFD. Needed so that we can have relocs against local
66 symbols in shared libraries. */
67 long sym_indx;
68 bfd *owner;
69
70 /* Dynamic symbols may need to have two different values. One for
71 the dynamic symbol table, one for the normal symbol table.
72
73 In such cases we store the symbol's real value and section
74 index here so we can restore the real value before we write
75 the normal symbol table. */
76 bfd_vma st_value;
77 int st_shndx;
78
79 /* Used to count non-got, non-plt relocations for delayed sizing
80 of relocation sections. */
81 struct elf64_hppa_dyn_reloc_entry
82 {
83 /* Next relocation in the chain. */
84 struct elf64_hppa_dyn_reloc_entry *next;
85
86 /* The type of the relocation. */
87 int type;
88
89 /* The input section of the relocation. */
90 asection *sec;
91
92 /* Number of relocs copied in this section. */
93 bfd_size_type count;
94
95 /* The index of the section symbol for the input section of
96 the relocation. Only needed when building shared libraries. */
97 int sec_symndx;
98
99 /* The offset within the input section of the relocation. */
100 bfd_vma offset;
101
102 /* The addend for the relocation. */
103 bfd_vma addend;
104
105 } *reloc_entries;
106
107 /* Nonzero if this symbol needs an entry in one of the linker
108 sections. */
109 unsigned want_dlt;
110 unsigned want_plt;
111 unsigned want_opd;
112 unsigned want_stub;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 /* We build tables to map from an input section back to its
142 symbol index. This is the BFD for which we currently have
143 a map. */
144 bfd *section_syms_bfd;
145
146 /* Array of symbol numbers for each input section attached to the
147 current BFD. */
148 int *section_syms;
149 };
150
151 #define hppa_link_hash_table(p) \
152 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
153 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
154
155 #define hppa_elf_hash_entry(ent) \
156 ((struct elf64_hppa_link_hash_entry *)(ent))
157
158 #define eh_name(eh) \
159 (eh ? eh->root.root.string : "<undef>")
160
161 typedef struct bfd_hash_entry *(*new_hash_entry_func)
162 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
163
164 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165 (bfd *abfd);
166
167 /* This must follow the definitions of the various derived linker
168 hash tables and shared functions. */
169 #include "elf-hppa.h"
170
171 static bfd_boolean elf64_hppa_object_p
172 (bfd *);
173
174 static void elf64_hppa_post_process_headers
175 (bfd *, struct bfd_link_info *);
176
177 static bfd_boolean elf64_hppa_create_dynamic_sections
178 (bfd *, struct bfd_link_info *);
179
180 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
181 (struct bfd_link_info *, struct elf_link_hash_entry *);
182
183 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
184 (struct elf_link_hash_entry *, void *);
185
186 static bfd_boolean elf64_hppa_size_dynamic_sections
187 (bfd *, struct bfd_link_info *);
188
189 static int elf64_hppa_link_output_symbol_hook
190 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
191 asection *, struct elf_link_hash_entry *);
192
193 static bfd_boolean elf64_hppa_finish_dynamic_symbol
194 (bfd *, struct bfd_link_info *,
195 struct elf_link_hash_entry *, Elf_Internal_Sym *);
196
197 static bfd_boolean elf64_hppa_finish_dynamic_sections
198 (bfd *, struct bfd_link_info *);
199
200 static bfd_boolean elf64_hppa_check_relocs
201 (bfd *, struct bfd_link_info *,
202 asection *, const Elf_Internal_Rela *);
203
204 static bfd_boolean elf64_hppa_dynamic_symbol_p
205 (struct elf_link_hash_entry *, struct bfd_link_info *);
206
207 static bfd_boolean elf64_hppa_mark_exported_functions
208 (struct elf_link_hash_entry *, void *);
209
210 static bfd_boolean elf64_hppa_finalize_opd
211 (struct elf_link_hash_entry *, void *);
212
213 static bfd_boolean elf64_hppa_finalize_dlt
214 (struct elf_link_hash_entry *, void *);
215
216 static bfd_boolean allocate_global_data_dlt
217 (struct elf_link_hash_entry *, void *);
218
219 static bfd_boolean allocate_global_data_plt
220 (struct elf_link_hash_entry *, void *);
221
222 static bfd_boolean allocate_global_data_stub
223 (struct elf_link_hash_entry *, void *);
224
225 static bfd_boolean allocate_global_data_opd
226 (struct elf_link_hash_entry *, void *);
227
228 static bfd_boolean get_reloc_section
229 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
230
231 static bfd_boolean count_dyn_reloc
232 (bfd *, struct elf64_hppa_link_hash_entry *,
233 int, asection *, int, bfd_vma, bfd_vma);
234
235 static bfd_boolean allocate_dynrel_entries
236 (struct elf_link_hash_entry *, void *);
237
238 static bfd_boolean elf64_hppa_finalize_dynreloc
239 (struct elf_link_hash_entry *, void *);
240
241 static bfd_boolean get_opd
242 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
243
244 static bfd_boolean get_plt
245 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
246
247 static bfd_boolean get_dlt
248 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
249
250 static bfd_boolean get_stub
251 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
252
253 static int elf64_hppa_elf_get_symbol_type
254 (Elf_Internal_Sym *, int);
255
256 /* Initialize an entry in the link hash table. */
257
258 static struct bfd_hash_entry *
259 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
260 struct bfd_hash_table *table,
261 const char *string)
262 {
263 /* Allocate the structure if it has not already been allocated by a
264 subclass. */
265 if (entry == NULL)
266 {
267 entry = bfd_hash_allocate (table,
268 sizeof (struct elf64_hppa_link_hash_entry));
269 if (entry == NULL)
270 return entry;
271 }
272
273 /* Call the allocation method of the superclass. */
274 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
275 if (entry != NULL)
276 {
277 struct elf64_hppa_link_hash_entry *hh;
278
279 /* Initialize our local data. All zeros. */
280 hh = hppa_elf_hash_entry (entry);
281 memset (&hh->dlt_offset, 0,
282 (sizeof (struct elf64_hppa_link_hash_entry)
283 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
284 }
285
286 return entry;
287 }
288
289 /* Create the derived linker hash table. The PA64 ELF port uses this
290 derived hash table to keep information specific to the PA ElF
291 linker (without using static variables). */
292
293 static struct bfd_link_hash_table*
294 elf64_hppa_hash_table_create (bfd *abfd)
295 {
296 struct elf64_hppa_link_hash_table *htab;
297 bfd_size_type amt = sizeof (*htab);
298
299 htab = bfd_zmalloc (amt);
300 if (htab == NULL)
301 return NULL;
302
303 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
304 hppa64_link_hash_newfunc,
305 sizeof (struct elf64_hppa_link_hash_entry),
306 HPPA64_ELF_DATA))
307 {
308 free (htab);
309 return NULL;
310 }
311
312 htab->text_segment_base = (bfd_vma) -1;
313 htab->data_segment_base = (bfd_vma) -1;
314
315 return &htab->root.root;
316 }
317 \f
318 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
319
320 Additionally we set the default architecture and machine. */
321 static bfd_boolean
322 elf64_hppa_object_p (bfd *abfd)
323 {
324 Elf_Internal_Ehdr * i_ehdrp;
325 unsigned int flags;
326
327 i_ehdrp = elf_elfheader (abfd);
328 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
329 {
330 /* GCC on hppa-linux produces binaries with OSABI=GNU,
331 but the kernel produces corefiles with OSABI=SysV. */
332 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
333 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
334 return FALSE;
335 }
336 else
337 {
338 /* HPUX produces binaries with OSABI=HPUX,
339 but the kernel produces corefiles with OSABI=SysV. */
340 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
341 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
342 return FALSE;
343 }
344
345 flags = i_ehdrp->e_flags;
346 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
347 {
348 case EFA_PARISC_1_0:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
350 case EFA_PARISC_1_1:
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
352 case EFA_PARISC_2_0:
353 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
355 else
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
357 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
358 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
359 }
360 /* Don't be fussy. */
361 return TRUE;
362 }
363
364 /* Given section type (hdr->sh_type), return a boolean indicating
365 whether or not the section is an elf64-hppa specific section. */
366 static bfd_boolean
367 elf64_hppa_section_from_shdr (bfd *abfd,
368 Elf_Internal_Shdr *hdr,
369 const char *name,
370 int shindex)
371 {
372 switch (hdr->sh_type)
373 {
374 case SHT_PARISC_EXT:
375 if (strcmp (name, ".PARISC.archext") != 0)
376 return FALSE;
377 break;
378 case SHT_PARISC_UNWIND:
379 if (strcmp (name, ".PARISC.unwind") != 0)
380 return FALSE;
381 break;
382 case SHT_PARISC_DOC:
383 case SHT_PARISC_ANNOT:
384 default:
385 return FALSE;
386 }
387
388 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
389 return FALSE;
390
391 return TRUE;
392 }
393
394 /* SEC is a section containing relocs for an input BFD when linking; return
395 a suitable section for holding relocs in the output BFD for a link. */
396
397 static bfd_boolean
398 get_reloc_section (bfd *abfd,
399 struct elf64_hppa_link_hash_table *hppa_info,
400 asection *sec)
401 {
402 const char *srel_name;
403 asection *srel;
404 bfd *dynobj;
405
406 srel_name = (bfd_elf_string_from_elf_section
407 (abfd, elf_elfheader(abfd)->e_shstrndx,
408 _bfd_elf_single_rel_hdr(sec)->sh_name));
409 if (srel_name == NULL)
410 return FALSE;
411
412 dynobj = hppa_info->root.dynobj;
413 if (!dynobj)
414 hppa_info->root.dynobj = dynobj = abfd;
415
416 srel = bfd_get_linker_section (dynobj, srel_name);
417 if (srel == NULL)
418 {
419 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
420 (SEC_ALLOC
421 | SEC_LOAD
422 | SEC_HAS_CONTENTS
423 | SEC_IN_MEMORY
424 | SEC_LINKER_CREATED
425 | SEC_READONLY));
426 if (srel == NULL
427 || !bfd_set_section_alignment (dynobj, srel, 3))
428 return FALSE;
429 }
430
431 hppa_info->other_rel_sec = srel;
432 return TRUE;
433 }
434
435 /* Add a new entry to the list of dynamic relocations against DYN_H.
436
437 We use this to keep a record of all the FPTR relocations against a
438 particular symbol so that we can create FPTR relocations in the
439 output file. */
440
441 static bfd_boolean
442 count_dyn_reloc (bfd *abfd,
443 struct elf64_hppa_link_hash_entry *hh,
444 int type,
445 asection *sec,
446 int sec_symndx,
447 bfd_vma offset,
448 bfd_vma addend)
449 {
450 struct elf64_hppa_dyn_reloc_entry *rent;
451
452 rent = (struct elf64_hppa_dyn_reloc_entry *)
453 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
454 if (!rent)
455 return FALSE;
456
457 rent->next = hh->reloc_entries;
458 rent->type = type;
459 rent->sec = sec;
460 rent->sec_symndx = sec_symndx;
461 rent->offset = offset;
462 rent->addend = addend;
463 hh->reloc_entries = rent;
464
465 return TRUE;
466 }
467
468 /* Return a pointer to the local DLT, PLT and OPD reference counts
469 for ABFD. Returns NULL if the storage allocation fails. */
470
471 static bfd_signed_vma *
472 hppa64_elf_local_refcounts (bfd *abfd)
473 {
474 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
475 bfd_signed_vma *local_refcounts;
476
477 local_refcounts = elf_local_got_refcounts (abfd);
478 if (local_refcounts == NULL)
479 {
480 bfd_size_type size;
481
482 /* Allocate space for local DLT, PLT and OPD reference
483 counts. Done this way to save polluting elf_obj_tdata
484 with another target specific pointer. */
485 size = symtab_hdr->sh_info;
486 size *= 3 * sizeof (bfd_signed_vma);
487 local_refcounts = bfd_zalloc (abfd, size);
488 elf_local_got_refcounts (abfd) = local_refcounts;
489 }
490 return local_refcounts;
491 }
492
493 /* Scan the RELOCS and record the type of dynamic entries that each
494 referenced symbol needs. */
495
496 static bfd_boolean
497 elf64_hppa_check_relocs (bfd *abfd,
498 struct bfd_link_info *info,
499 asection *sec,
500 const Elf_Internal_Rela *relocs)
501 {
502 struct elf64_hppa_link_hash_table *hppa_info;
503 const Elf_Internal_Rela *relend;
504 Elf_Internal_Shdr *symtab_hdr;
505 const Elf_Internal_Rela *rel;
506 unsigned int sec_symndx;
507
508 if (info->relocatable)
509 return TRUE;
510
511 /* If this is the first dynamic object found in the link, create
512 the special sections required for dynamic linking. */
513 if (! elf_hash_table (info)->dynamic_sections_created)
514 {
515 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
516 return FALSE;
517 }
518
519 hppa_info = hppa_link_hash_table (info);
520 if (hppa_info == NULL)
521 return FALSE;
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523
524 /* If necessary, build a new table holding section symbols indices
525 for this BFD. */
526
527 if (info->shared && hppa_info->section_syms_bfd != abfd)
528 {
529 unsigned long i;
530 unsigned int highest_shndx;
531 Elf_Internal_Sym *local_syms = NULL;
532 Elf_Internal_Sym *isym, *isymend;
533 bfd_size_type amt;
534
535 /* We're done with the old cache of section index to section symbol
536 index information. Free it.
537
538 ?!? Note we leak the last section_syms array. Presumably we
539 could free it in one of the later routines in this file. */
540 if (hppa_info->section_syms)
541 free (hppa_info->section_syms);
542
543 /* Read this BFD's local symbols. */
544 if (symtab_hdr->sh_info != 0)
545 {
546 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
547 if (local_syms == NULL)
548 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
549 symtab_hdr->sh_info, 0,
550 NULL, NULL, NULL);
551 if (local_syms == NULL)
552 return FALSE;
553 }
554
555 /* Record the highest section index referenced by the local symbols. */
556 highest_shndx = 0;
557 isymend = local_syms + symtab_hdr->sh_info;
558 for (isym = local_syms; isym < isymend; isym++)
559 {
560 if (isym->st_shndx > highest_shndx
561 && isym->st_shndx < SHN_LORESERVE)
562 highest_shndx = isym->st_shndx;
563 }
564
565 /* Allocate an array to hold the section index to section symbol index
566 mapping. Bump by one since we start counting at zero. */
567 highest_shndx++;
568 amt = highest_shndx;
569 amt *= sizeof (int);
570 hppa_info->section_syms = (int *) bfd_malloc (amt);
571
572 /* Now walk the local symbols again. If we find a section symbol,
573 record the index of the symbol into the section_syms array. */
574 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
575 {
576 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
577 hppa_info->section_syms[isym->st_shndx] = i;
578 }
579
580 /* We are finished with the local symbols. */
581 if (local_syms != NULL
582 && symtab_hdr->contents != (unsigned char *) local_syms)
583 {
584 if (! info->keep_memory)
585 free (local_syms);
586 else
587 {
588 /* Cache the symbols for elf_link_input_bfd. */
589 symtab_hdr->contents = (unsigned char *) local_syms;
590 }
591 }
592
593 /* Record which BFD we built the section_syms mapping for. */
594 hppa_info->section_syms_bfd = abfd;
595 }
596
597 /* Record the symbol index for this input section. We may need it for
598 relocations when building shared libraries. When not building shared
599 libraries this value is never really used, but assign it to zero to
600 prevent out of bounds memory accesses in other routines. */
601 if (info->shared)
602 {
603 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
604
605 /* If we did not find a section symbol for this section, then
606 something went terribly wrong above. */
607 if (sec_symndx == SHN_BAD)
608 return FALSE;
609
610 if (sec_symndx < SHN_LORESERVE)
611 sec_symndx = hppa_info->section_syms[sec_symndx];
612 else
613 sec_symndx = 0;
614 }
615 else
616 sec_symndx = 0;
617
618 relend = relocs + sec->reloc_count;
619 for (rel = relocs; rel < relend; ++rel)
620 {
621 enum
622 {
623 NEED_DLT = 1,
624 NEED_PLT = 2,
625 NEED_STUB = 4,
626 NEED_OPD = 8,
627 NEED_DYNREL = 16,
628 };
629
630 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
631 struct elf64_hppa_link_hash_entry *hh;
632 int need_entry;
633 bfd_boolean maybe_dynamic;
634 int dynrel_type = R_PARISC_NONE;
635 static reloc_howto_type *howto;
636
637 if (r_symndx >= symtab_hdr->sh_info)
638 {
639 /* We're dealing with a global symbol -- find its hash entry
640 and mark it as being referenced. */
641 long indx = r_symndx - symtab_hdr->sh_info;
642 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
643 while (hh->eh.root.type == bfd_link_hash_indirect
644 || hh->eh.root.type == bfd_link_hash_warning)
645 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
646
647 /* PR15323, ref flags aren't set for references in the same
648 object. */
649 hh->eh.root.non_ir_ref = 1;
650 hh->eh.ref_regular = 1;
651 }
652 else
653 hh = NULL;
654
655 /* We can only get preliminary data on whether a symbol is
656 locally or externally defined, as not all of the input files
657 have yet been processed. Do something with what we know, as
658 this may help reduce memory usage and processing time later. */
659 maybe_dynamic = FALSE;
660 if (hh && ((info->shared
661 && (!info->symbolic
662 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
663 || !hh->eh.def_regular
664 || hh->eh.root.type == bfd_link_hash_defweak))
665 maybe_dynamic = TRUE;
666
667 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
668 need_entry = 0;
669 switch (howto->type)
670 {
671 /* These are simple indirect references to symbols through the
672 DLT. We need to create a DLT entry for any symbols which
673 appears in a DLTIND relocation. */
674 case R_PARISC_DLTIND21L:
675 case R_PARISC_DLTIND14R:
676 case R_PARISC_DLTIND14F:
677 case R_PARISC_DLTIND14WR:
678 case R_PARISC_DLTIND14DR:
679 need_entry = NEED_DLT;
680 break;
681
682 /* ?!? These need a DLT entry. But I have no idea what to do with
683 the "link time TP value. */
684 case R_PARISC_LTOFF_TP21L:
685 case R_PARISC_LTOFF_TP14R:
686 case R_PARISC_LTOFF_TP14F:
687 case R_PARISC_LTOFF_TP64:
688 case R_PARISC_LTOFF_TP14WR:
689 case R_PARISC_LTOFF_TP14DR:
690 case R_PARISC_LTOFF_TP16F:
691 case R_PARISC_LTOFF_TP16WF:
692 case R_PARISC_LTOFF_TP16DF:
693 need_entry = NEED_DLT;
694 break;
695
696 /* These are function calls. Depending on their precise target we
697 may need to make a stub for them. The stub uses the PLT, so we
698 need to create PLT entries for these symbols too. */
699 case R_PARISC_PCREL12F:
700 case R_PARISC_PCREL17F:
701 case R_PARISC_PCREL22F:
702 case R_PARISC_PCREL32:
703 case R_PARISC_PCREL64:
704 case R_PARISC_PCREL21L:
705 case R_PARISC_PCREL17R:
706 case R_PARISC_PCREL17C:
707 case R_PARISC_PCREL14R:
708 case R_PARISC_PCREL14F:
709 case R_PARISC_PCREL22C:
710 case R_PARISC_PCREL14WR:
711 case R_PARISC_PCREL14DR:
712 case R_PARISC_PCREL16F:
713 case R_PARISC_PCREL16WF:
714 case R_PARISC_PCREL16DF:
715 /* Function calls might need to go through the .plt, and
716 might need a long branch stub. */
717 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
718 need_entry = (NEED_PLT | NEED_STUB);
719 else
720 need_entry = 0;
721 break;
722
723 case R_PARISC_PLTOFF21L:
724 case R_PARISC_PLTOFF14R:
725 case R_PARISC_PLTOFF14F:
726 case R_PARISC_PLTOFF14WR:
727 case R_PARISC_PLTOFF14DR:
728 case R_PARISC_PLTOFF16F:
729 case R_PARISC_PLTOFF16WF:
730 case R_PARISC_PLTOFF16DF:
731 need_entry = (NEED_PLT);
732 break;
733
734 case R_PARISC_DIR64:
735 if (info->shared || maybe_dynamic)
736 need_entry = (NEED_DYNREL);
737 dynrel_type = R_PARISC_DIR64;
738 break;
739
740 /* This is an indirect reference through the DLT to get the address
741 of a OPD descriptor. Thus we need to make a DLT entry that points
742 to an OPD entry. */
743 case R_PARISC_LTOFF_FPTR21L:
744 case R_PARISC_LTOFF_FPTR14R:
745 case R_PARISC_LTOFF_FPTR14WR:
746 case R_PARISC_LTOFF_FPTR14DR:
747 case R_PARISC_LTOFF_FPTR32:
748 case R_PARISC_LTOFF_FPTR64:
749 case R_PARISC_LTOFF_FPTR16F:
750 case R_PARISC_LTOFF_FPTR16WF:
751 case R_PARISC_LTOFF_FPTR16DF:
752 if (info->shared || maybe_dynamic)
753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 else
755 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
756 dynrel_type = R_PARISC_FPTR64;
757 break;
758
759 /* This is a simple OPD entry. */
760 case R_PARISC_FPTR64:
761 if (info->shared || maybe_dynamic)
762 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
763 else
764 need_entry = (NEED_OPD | NEED_PLT);
765 dynrel_type = R_PARISC_FPTR64;
766 break;
767
768 /* Add more cases as needed. */
769 }
770
771 if (!need_entry)
772 continue;
773
774 if (hh)
775 {
776 /* Stash away enough information to be able to find this symbol
777 regardless of whether or not it is local or global. */
778 hh->owner = abfd;
779 hh->sym_indx = r_symndx;
780 }
781
782 /* Create what's needed. */
783 if (need_entry & NEED_DLT)
784 {
785 /* Allocate space for a DLT entry, as well as a dynamic
786 relocation for this entry. */
787 if (! hppa_info->dlt_sec
788 && ! get_dlt (abfd, info, hppa_info))
789 goto err_out;
790
791 if (hh != NULL)
792 {
793 hh->want_dlt = 1;
794 hh->eh.got.refcount += 1;
795 }
796 else
797 {
798 bfd_signed_vma *local_dlt_refcounts;
799
800 /* This is a DLT entry for a local symbol. */
801 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
802 if (local_dlt_refcounts == NULL)
803 return FALSE;
804 local_dlt_refcounts[r_symndx] += 1;
805 }
806 }
807
808 if (need_entry & NEED_PLT)
809 {
810 if (! hppa_info->plt_sec
811 && ! get_plt (abfd, info, hppa_info))
812 goto err_out;
813
814 if (hh != NULL)
815 {
816 hh->want_plt = 1;
817 hh->eh.needs_plt = 1;
818 hh->eh.plt.refcount += 1;
819 }
820 else
821 {
822 bfd_signed_vma *local_dlt_refcounts;
823 bfd_signed_vma *local_plt_refcounts;
824
825 /* This is a PLT entry for a local symbol. */
826 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
827 if (local_dlt_refcounts == NULL)
828 return FALSE;
829 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
830 local_plt_refcounts[r_symndx] += 1;
831 }
832 }
833
834 if (need_entry & NEED_STUB)
835 {
836 if (! hppa_info->stub_sec
837 && ! get_stub (abfd, info, hppa_info))
838 goto err_out;
839 if (hh)
840 hh->want_stub = 1;
841 }
842
843 if (need_entry & NEED_OPD)
844 {
845 if (! hppa_info->opd_sec
846 && ! get_opd (abfd, info, hppa_info))
847 goto err_out;
848
849 /* FPTRs are not allocated by the dynamic linker for PA64,
850 though it is possible that will change in the future. */
851
852 if (hh != NULL)
853 hh->want_opd = 1;
854 else
855 {
856 bfd_signed_vma *local_dlt_refcounts;
857 bfd_signed_vma *local_opd_refcounts;
858
859 /* This is a OPD for a local symbol. */
860 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
861 if (local_dlt_refcounts == NULL)
862 return FALSE;
863 local_opd_refcounts = (local_dlt_refcounts
864 + 2 * symtab_hdr->sh_info);
865 local_opd_refcounts[r_symndx] += 1;
866 }
867 }
868
869 /* Add a new dynamic relocation to the chain of dynamic
870 relocations for this symbol. */
871 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
872 {
873 if (! hppa_info->other_rel_sec
874 && ! get_reloc_section (abfd, hppa_info, sec))
875 goto err_out;
876
877 /* Count dynamic relocations against global symbols. */
878 if (hh != NULL
879 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
880 sec_symndx, rel->r_offset, rel->r_addend))
881 goto err_out;
882
883 /* If we are building a shared library and we just recorded
884 a dynamic R_PARISC_FPTR64 relocation, then make sure the
885 section symbol for this section ends up in the dynamic
886 symbol table. */
887 if (info->shared && dynrel_type == R_PARISC_FPTR64
888 && ! (bfd_elf_link_record_local_dynamic_symbol
889 (info, abfd, sec_symndx)))
890 return FALSE;
891 }
892 }
893
894 return TRUE;
895
896 err_out:
897 return FALSE;
898 }
899
900 struct elf64_hppa_allocate_data
901 {
902 struct bfd_link_info *info;
903 bfd_size_type ofs;
904 };
905
906 /* Should we do dynamic things to this symbol? */
907
908 static bfd_boolean
909 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
910 struct bfd_link_info *info)
911 {
912 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
913 and relocations that retrieve a function descriptor? Assume the
914 worst for now. */
915 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
916 {
917 /* ??? Why is this here and not elsewhere is_local_label_name. */
918 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
919 return FALSE;
920
921 return TRUE;
922 }
923 else
924 return FALSE;
925 }
926
927 /* Mark all functions exported by this file so that we can later allocate
928 entries in .opd for them. */
929
930 static bfd_boolean
931 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
932 {
933 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
934 struct bfd_link_info *info = (struct bfd_link_info *)data;
935 struct elf64_hppa_link_hash_table *hppa_info;
936
937 hppa_info = hppa_link_hash_table (info);
938 if (hppa_info == NULL)
939 return FALSE;
940
941 if (eh
942 && (eh->root.type == bfd_link_hash_defined
943 || eh->root.type == bfd_link_hash_defweak)
944 && eh->root.u.def.section->output_section != NULL
945 && eh->type == STT_FUNC)
946 {
947 if (! hppa_info->opd_sec
948 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
949 return FALSE;
950
951 hh->want_opd = 1;
952
953 /* Put a flag here for output_symbol_hook. */
954 hh->st_shndx = -1;
955 eh->needs_plt = 1;
956 }
957
958 return TRUE;
959 }
960
961 /* Allocate space for a DLT entry. */
962
963 static bfd_boolean
964 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
965 {
966 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
967 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
968
969 if (hh->want_dlt)
970 {
971 if (x->info->shared)
972 {
973 /* Possibly add the symbol to the local dynamic symbol
974 table since we might need to create a dynamic relocation
975 against it. */
976 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
977 {
978 bfd *owner = eh->root.u.def.section->owner;
979
980 if (! (bfd_elf_link_record_local_dynamic_symbol
981 (x->info, owner, hh->sym_indx)))
982 return FALSE;
983 }
984 }
985
986 hh->dlt_offset = x->ofs;
987 x->ofs += DLT_ENTRY_SIZE;
988 }
989 return TRUE;
990 }
991
992 /* Allocate space for a DLT.PLT entry. */
993
994 static bfd_boolean
995 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
996 {
997 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
998 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
999
1000 if (hh->want_plt
1001 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1002 && !((eh->root.type == bfd_link_hash_defined
1003 || eh->root.type == bfd_link_hash_defweak)
1004 && eh->root.u.def.section->output_section != NULL))
1005 {
1006 hh->plt_offset = x->ofs;
1007 x->ofs += PLT_ENTRY_SIZE;
1008 if (hh->plt_offset < 0x2000)
1009 {
1010 struct elf64_hppa_link_hash_table *hppa_info;
1011
1012 hppa_info = hppa_link_hash_table (x->info);
1013 if (hppa_info == NULL)
1014 return FALSE;
1015
1016 hppa_info->gp_offset = hh->plt_offset;
1017 }
1018 }
1019 else
1020 hh->want_plt = 0;
1021
1022 return TRUE;
1023 }
1024
1025 /* Allocate space for a STUB entry. */
1026
1027 static bfd_boolean
1028 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1029 {
1030 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032
1033 if (hh->want_stub
1034 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1035 && !((eh->root.type == bfd_link_hash_defined
1036 || eh->root.type == bfd_link_hash_defweak)
1037 && eh->root.u.def.section->output_section != NULL))
1038 {
1039 hh->stub_offset = x->ofs;
1040 x->ofs += sizeof (plt_stub);
1041 }
1042 else
1043 hh->want_stub = 0;
1044 return TRUE;
1045 }
1046
1047 /* Allocate space for a FPTR entry. */
1048
1049 static bfd_boolean
1050 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1051 {
1052 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1053 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1054
1055 if (hh && hh->want_opd)
1056 {
1057 /* We never need an opd entry for a symbol which is not
1058 defined by this output file. */
1059 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1060 || hh->eh.root.type == bfd_link_hash_undefweak
1061 || hh->eh.root.u.def.section->output_section == NULL))
1062 hh->want_opd = 0;
1063
1064 /* If we are creating a shared library, took the address of a local
1065 function or might export this function from this object file, then
1066 we have to create an opd descriptor. */
1067 else if (x->info->shared
1068 || hh == NULL
1069 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1070 || (hh->eh.root.type == bfd_link_hash_defined
1071 || hh->eh.root.type == bfd_link_hash_defweak))
1072 {
1073 /* If we are creating a shared library, then we will have to
1074 create a runtime relocation for the symbol to properly
1075 initialize the .opd entry. Make sure the symbol gets
1076 added to the dynamic symbol table. */
1077 if (x->info->shared
1078 && (hh == NULL || (hh->eh.dynindx == -1)))
1079 {
1080 bfd *owner;
1081 /* PR 6511: Default to using the dynamic symbol table. */
1082 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1083
1084 if (!bfd_elf_link_record_local_dynamic_symbol
1085 (x->info, owner, hh->sym_indx))
1086 return FALSE;
1087 }
1088
1089 /* This may not be necessary or desirable anymore now that
1090 we have some support for dealing with section symbols
1091 in dynamic relocs. But name munging does make the result
1092 much easier to debug. ie, the EPLT reloc will reference
1093 a symbol like .foobar, instead of .text + offset. */
1094 if (x->info->shared && eh)
1095 {
1096 char *new_name;
1097 struct elf_link_hash_entry *nh;
1098
1099 new_name = alloca (strlen (eh->root.root.string) + 2);
1100 new_name[0] = '.';
1101 strcpy (new_name + 1, eh->root.root.string);
1102
1103 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1104 new_name, TRUE, TRUE, TRUE);
1105
1106 nh->root.type = eh->root.type;
1107 nh->root.u.def.value = eh->root.u.def.value;
1108 nh->root.u.def.section = eh->root.u.def.section;
1109
1110 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1111 return FALSE;
1112
1113 }
1114 hh->opd_offset = x->ofs;
1115 x->ofs += OPD_ENTRY_SIZE;
1116 }
1117
1118 /* Otherwise we do not need an opd entry. */
1119 else
1120 hh->want_opd = 0;
1121 }
1122 return TRUE;
1123 }
1124
1125 /* HP requires the EI_OSABI field to be filled in. The assignment to
1126 EI_ABIVERSION may not be strictly necessary. */
1127
1128 static void
1129 elf64_hppa_post_process_headers (bfd *abfd,
1130 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1131 {
1132 Elf_Internal_Ehdr * i_ehdrp;
1133
1134 i_ehdrp = elf_elfheader (abfd);
1135
1136 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1137 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1138 }
1139
1140 /* Create function descriptor section (.opd). This section is called .opd
1141 because it contains "official procedure descriptors". The "official"
1142 refers to the fact that these descriptors are used when taking the address
1143 of a procedure, thus ensuring a unique address for each procedure. */
1144
1145 static bfd_boolean
1146 get_opd (bfd *abfd,
1147 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1148 struct elf64_hppa_link_hash_table *hppa_info)
1149 {
1150 asection *opd;
1151 bfd *dynobj;
1152
1153 opd = hppa_info->opd_sec;
1154 if (!opd)
1155 {
1156 dynobj = hppa_info->root.dynobj;
1157 if (!dynobj)
1158 hppa_info->root.dynobj = dynobj = abfd;
1159
1160 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1161 (SEC_ALLOC
1162 | SEC_LOAD
1163 | SEC_HAS_CONTENTS
1164 | SEC_IN_MEMORY
1165 | SEC_LINKER_CREATED));
1166 if (!opd
1167 || !bfd_set_section_alignment (abfd, opd, 3))
1168 {
1169 BFD_ASSERT (0);
1170 return FALSE;
1171 }
1172
1173 hppa_info->opd_sec = opd;
1174 }
1175
1176 return TRUE;
1177 }
1178
1179 /* Create the PLT section. */
1180
1181 static bfd_boolean
1182 get_plt (bfd *abfd,
1183 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1184 struct elf64_hppa_link_hash_table *hppa_info)
1185 {
1186 asection *plt;
1187 bfd *dynobj;
1188
1189 plt = hppa_info->plt_sec;
1190 if (!plt)
1191 {
1192 dynobj = hppa_info->root.dynobj;
1193 if (!dynobj)
1194 hppa_info->root.dynobj = dynobj = abfd;
1195
1196 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1197 (SEC_ALLOC
1198 | SEC_LOAD
1199 | SEC_HAS_CONTENTS
1200 | SEC_IN_MEMORY
1201 | SEC_LINKER_CREATED));
1202 if (!plt
1203 || !bfd_set_section_alignment (abfd, plt, 3))
1204 {
1205 BFD_ASSERT (0);
1206 return FALSE;
1207 }
1208
1209 hppa_info->plt_sec = plt;
1210 }
1211
1212 return TRUE;
1213 }
1214
1215 /* Create the DLT section. */
1216
1217 static bfd_boolean
1218 get_dlt (bfd *abfd,
1219 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1220 struct elf64_hppa_link_hash_table *hppa_info)
1221 {
1222 asection *dlt;
1223 bfd *dynobj;
1224
1225 dlt = hppa_info->dlt_sec;
1226 if (!dlt)
1227 {
1228 dynobj = hppa_info->root.dynobj;
1229 if (!dynobj)
1230 hppa_info->root.dynobj = dynobj = abfd;
1231
1232 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1233 (SEC_ALLOC
1234 | SEC_LOAD
1235 | SEC_HAS_CONTENTS
1236 | SEC_IN_MEMORY
1237 | SEC_LINKER_CREATED));
1238 if (!dlt
1239 || !bfd_set_section_alignment (abfd, dlt, 3))
1240 {
1241 BFD_ASSERT (0);
1242 return FALSE;
1243 }
1244
1245 hppa_info->dlt_sec = dlt;
1246 }
1247
1248 return TRUE;
1249 }
1250
1251 /* Create the stubs section. */
1252
1253 static bfd_boolean
1254 get_stub (bfd *abfd,
1255 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1256 struct elf64_hppa_link_hash_table *hppa_info)
1257 {
1258 asection *stub;
1259 bfd *dynobj;
1260
1261 stub = hppa_info->stub_sec;
1262 if (!stub)
1263 {
1264 dynobj = hppa_info->root.dynobj;
1265 if (!dynobj)
1266 hppa_info->root.dynobj = dynobj = abfd;
1267
1268 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1269 (SEC_ALLOC | SEC_LOAD
1270 | SEC_HAS_CONTENTS
1271 | SEC_IN_MEMORY
1272 | SEC_READONLY
1273 | SEC_LINKER_CREATED));
1274 if (!stub
1275 || !bfd_set_section_alignment (abfd, stub, 3))
1276 {
1277 BFD_ASSERT (0);
1278 return FALSE;
1279 }
1280
1281 hppa_info->stub_sec = stub;
1282 }
1283
1284 return TRUE;
1285 }
1286
1287 /* Create sections necessary for dynamic linking. This is only a rough
1288 cut and will likely change as we learn more about the somewhat
1289 unusual dynamic linking scheme HP uses.
1290
1291 .stub:
1292 Contains code to implement cross-space calls. The first time one
1293 of the stubs is used it will call into the dynamic linker, later
1294 calls will go straight to the target.
1295
1296 The only stub we support right now looks like
1297
1298 ldd OFFSET(%dp),%r1
1299 bve %r0(%r1)
1300 ldd OFFSET+8(%dp),%dp
1301
1302 Other stubs may be needed in the future. We may want the remove
1303 the break/nop instruction. It is only used right now to keep the
1304 offset of a .plt entry and a .stub entry in sync.
1305
1306 .dlt:
1307 This is what most people call the .got. HP used a different name.
1308 Losers.
1309
1310 .rela.dlt:
1311 Relocations for the DLT.
1312
1313 .plt:
1314 Function pointers as address,gp pairs.
1315
1316 .rela.plt:
1317 Should contain dynamic IPLT (and EPLT?) relocations.
1318
1319 .opd:
1320 FPTRS
1321
1322 .rela.opd:
1323 EPLT relocations for symbols exported from shared libraries. */
1324
1325 static bfd_boolean
1326 elf64_hppa_create_dynamic_sections (bfd *abfd,
1327 struct bfd_link_info *info)
1328 {
1329 asection *s;
1330 struct elf64_hppa_link_hash_table *hppa_info;
1331
1332 hppa_info = hppa_link_hash_table (info);
1333 if (hppa_info == NULL)
1334 return FALSE;
1335
1336 if (! get_stub (abfd, info, hppa_info))
1337 return FALSE;
1338
1339 if (! get_dlt (abfd, info, hppa_info))
1340 return FALSE;
1341
1342 if (! get_plt (abfd, info, hppa_info))
1343 return FALSE;
1344
1345 if (! get_opd (abfd, info, hppa_info))
1346 return FALSE;
1347
1348 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1349 (SEC_ALLOC | SEC_LOAD
1350 | SEC_HAS_CONTENTS
1351 | SEC_IN_MEMORY
1352 | SEC_READONLY
1353 | SEC_LINKER_CREATED));
1354 if (s == NULL
1355 || !bfd_set_section_alignment (abfd, s, 3))
1356 return FALSE;
1357 hppa_info->dlt_rel_sec = s;
1358
1359 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1360 (SEC_ALLOC | SEC_LOAD
1361 | SEC_HAS_CONTENTS
1362 | SEC_IN_MEMORY
1363 | SEC_READONLY
1364 | SEC_LINKER_CREATED));
1365 if (s == NULL
1366 || !bfd_set_section_alignment (abfd, s, 3))
1367 return FALSE;
1368 hppa_info->plt_rel_sec = s;
1369
1370 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1371 (SEC_ALLOC | SEC_LOAD
1372 | SEC_HAS_CONTENTS
1373 | SEC_IN_MEMORY
1374 | SEC_READONLY
1375 | SEC_LINKER_CREATED));
1376 if (s == NULL
1377 || !bfd_set_section_alignment (abfd, s, 3))
1378 return FALSE;
1379 hppa_info->other_rel_sec = s;
1380
1381 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1382 (SEC_ALLOC | SEC_LOAD
1383 | SEC_HAS_CONTENTS
1384 | SEC_IN_MEMORY
1385 | SEC_READONLY
1386 | SEC_LINKER_CREATED));
1387 if (s == NULL
1388 || !bfd_set_section_alignment (abfd, s, 3))
1389 return FALSE;
1390 hppa_info->opd_rel_sec = s;
1391
1392 return TRUE;
1393 }
1394
1395 /* Allocate dynamic relocations for those symbols that turned out
1396 to be dynamic. */
1397
1398 static bfd_boolean
1399 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1400 {
1401 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1402 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1403 struct elf64_hppa_link_hash_table *hppa_info;
1404 struct elf64_hppa_dyn_reloc_entry *rent;
1405 bfd_boolean dynamic_symbol, shared;
1406
1407 hppa_info = hppa_link_hash_table (x->info);
1408 if (hppa_info == NULL)
1409 return FALSE;
1410
1411 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1412 shared = x->info->shared;
1413
1414 /* We may need to allocate relocations for a non-dynamic symbol
1415 when creating a shared library. */
1416 if (!dynamic_symbol && !shared)
1417 return TRUE;
1418
1419 /* Take care of the normal data relocations. */
1420
1421 for (rent = hh->reloc_entries; rent; rent = rent->next)
1422 {
1423 /* Allocate one iff we are building a shared library, the relocation
1424 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1425 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1426 continue;
1427
1428 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1429
1430 /* Make sure this symbol gets into the dynamic symbol table if it is
1431 not already recorded. ?!? This should not be in the loop since
1432 the symbol need only be added once. */
1433 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1434 if (!bfd_elf_link_record_local_dynamic_symbol
1435 (x->info, rent->sec->owner, hh->sym_indx))
1436 return FALSE;
1437 }
1438
1439 /* Take care of the GOT and PLT relocations. */
1440
1441 if ((dynamic_symbol || shared) && hh->want_dlt)
1442 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1443
1444 /* If we are building a shared library, then every symbol that has an
1445 opd entry will need an EPLT relocation to relocate the symbol's address
1446 and __gp value based on the runtime load address. */
1447 if (shared && hh->want_opd)
1448 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1449
1450 if (hh->want_plt && dynamic_symbol)
1451 {
1452 bfd_size_type t = 0;
1453
1454 /* Dynamic symbols get one IPLT relocation. Local symbols in
1455 shared libraries get two REL relocations. Local symbols in
1456 main applications get nothing. */
1457 if (dynamic_symbol)
1458 t = sizeof (Elf64_External_Rela);
1459 else if (shared)
1460 t = 2 * sizeof (Elf64_External_Rela);
1461
1462 hppa_info->plt_rel_sec->size += t;
1463 }
1464
1465 return TRUE;
1466 }
1467
1468 /* Adjust a symbol defined by a dynamic object and referenced by a
1469 regular object. */
1470
1471 static bfd_boolean
1472 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1473 struct elf_link_hash_entry *eh)
1474 {
1475 /* ??? Undefined symbols with PLT entries should be re-defined
1476 to be the PLT entry. */
1477
1478 /* If this is a weak symbol, and there is a real definition, the
1479 processor independent code will have arranged for us to see the
1480 real definition first, and we can just use the same value. */
1481 if (eh->u.weakdef != NULL)
1482 {
1483 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1484 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1485 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1486 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1487 return TRUE;
1488 }
1489
1490 /* If this is a reference to a symbol defined by a dynamic object which
1491 is not a function, we might allocate the symbol in our .dynbss section
1492 and allocate a COPY dynamic relocation.
1493
1494 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1495 of hackery. */
1496
1497 return TRUE;
1498 }
1499
1500 /* This function is called via elf_link_hash_traverse to mark millicode
1501 symbols with a dynindx of -1 and to remove the string table reference
1502 from the dynamic symbol table. If the symbol is not a millicode symbol,
1503 elf64_hppa_mark_exported_functions is called. */
1504
1505 static bfd_boolean
1506 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1507 void *data)
1508 {
1509 struct bfd_link_info *info = (struct bfd_link_info *) data;
1510
1511 if (eh->type == STT_PARISC_MILLI)
1512 {
1513 if (eh->dynindx != -1)
1514 {
1515 eh->dynindx = -1;
1516 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1517 eh->dynstr_index);
1518 }
1519 return TRUE;
1520 }
1521
1522 return elf64_hppa_mark_exported_functions (eh, data);
1523 }
1524
1525 /* Set the final sizes of the dynamic sections and allocate memory for
1526 the contents of our special sections. */
1527
1528 static bfd_boolean
1529 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1530 {
1531 struct elf64_hppa_link_hash_table *hppa_info;
1532 struct elf64_hppa_allocate_data data;
1533 bfd *dynobj;
1534 bfd *ibfd;
1535 asection *sec;
1536 bfd_boolean plt;
1537 bfd_boolean relocs;
1538 bfd_boolean reltext;
1539
1540 hppa_info = hppa_link_hash_table (info);
1541 if (hppa_info == NULL)
1542 return FALSE;
1543
1544 dynobj = elf_hash_table (info)->dynobj;
1545 BFD_ASSERT (dynobj != NULL);
1546
1547 /* Mark each function this program exports so that we will allocate
1548 space in the .opd section for each function's FPTR. If we are
1549 creating dynamic sections, change the dynamic index of millicode
1550 symbols to -1 and remove them from the string table for .dynstr.
1551
1552 We have to traverse the main linker hash table since we have to
1553 find functions which may not have been mentioned in any relocs. */
1554 elf_link_hash_traverse (elf_hash_table (info),
1555 (elf_hash_table (info)->dynamic_sections_created
1556 ? elf64_hppa_mark_milli_and_exported_functions
1557 : elf64_hppa_mark_exported_functions),
1558 info);
1559
1560 if (elf_hash_table (info)->dynamic_sections_created)
1561 {
1562 /* Set the contents of the .interp section to the interpreter. */
1563 if (info->executable)
1564 {
1565 sec = bfd_get_linker_section (dynobj, ".interp");
1566 BFD_ASSERT (sec != NULL);
1567 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1568 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1569 }
1570 }
1571 else
1572 {
1573 /* We may have created entries in the .rela.got section.
1574 However, if we are not creating the dynamic sections, we will
1575 not actually use these entries. Reset the size of .rela.dlt,
1576 which will cause it to get stripped from the output file
1577 below. */
1578 sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1579 if (sec != NULL)
1580 sec->size = 0;
1581 }
1582
1583 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1584 dynamic relocs. */
1585 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1586 {
1587 bfd_signed_vma *local_dlt;
1588 bfd_signed_vma *end_local_dlt;
1589 bfd_signed_vma *local_plt;
1590 bfd_signed_vma *end_local_plt;
1591 bfd_signed_vma *local_opd;
1592 bfd_signed_vma *end_local_opd;
1593 bfd_size_type locsymcount;
1594 Elf_Internal_Shdr *symtab_hdr;
1595 asection *srel;
1596
1597 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1598 continue;
1599
1600 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1601 {
1602 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1603
1604 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1605 elf_section_data (sec)->local_dynrel);
1606 hdh_p != NULL;
1607 hdh_p = hdh_p->next)
1608 {
1609 if (!bfd_is_abs_section (hdh_p->sec)
1610 && bfd_is_abs_section (hdh_p->sec->output_section))
1611 {
1612 /* Input section has been discarded, either because
1613 it is a copy of a linkonce section or due to
1614 linker script /DISCARD/, so we'll be discarding
1615 the relocs too. */
1616 }
1617 else if (hdh_p->count != 0)
1618 {
1619 srel = elf_section_data (hdh_p->sec)->sreloc;
1620 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1621 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1622 info->flags |= DF_TEXTREL;
1623 }
1624 }
1625 }
1626
1627 local_dlt = elf_local_got_refcounts (ibfd);
1628 if (!local_dlt)
1629 continue;
1630
1631 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1632 locsymcount = symtab_hdr->sh_info;
1633 end_local_dlt = local_dlt + locsymcount;
1634 sec = hppa_info->dlt_sec;
1635 srel = hppa_info->dlt_rel_sec;
1636 for (; local_dlt < end_local_dlt; ++local_dlt)
1637 {
1638 if (*local_dlt > 0)
1639 {
1640 *local_dlt = sec->size;
1641 sec->size += DLT_ENTRY_SIZE;
1642 if (info->shared)
1643 {
1644 srel->size += sizeof (Elf64_External_Rela);
1645 }
1646 }
1647 else
1648 *local_dlt = (bfd_vma) -1;
1649 }
1650
1651 local_plt = end_local_dlt;
1652 end_local_plt = local_plt + locsymcount;
1653 if (! hppa_info->root.dynamic_sections_created)
1654 {
1655 /* Won't be used, but be safe. */
1656 for (; local_plt < end_local_plt; ++local_plt)
1657 *local_plt = (bfd_vma) -1;
1658 }
1659 else
1660 {
1661 sec = hppa_info->plt_sec;
1662 srel = hppa_info->plt_rel_sec;
1663 for (; local_plt < end_local_plt; ++local_plt)
1664 {
1665 if (*local_plt > 0)
1666 {
1667 *local_plt = sec->size;
1668 sec->size += PLT_ENTRY_SIZE;
1669 if (info->shared)
1670 srel->size += sizeof (Elf64_External_Rela);
1671 }
1672 else
1673 *local_plt = (bfd_vma) -1;
1674 }
1675 }
1676
1677 local_opd = end_local_plt;
1678 end_local_opd = local_opd + locsymcount;
1679 if (! hppa_info->root.dynamic_sections_created)
1680 {
1681 /* Won't be used, but be safe. */
1682 for (; local_opd < end_local_opd; ++local_opd)
1683 *local_opd = (bfd_vma) -1;
1684 }
1685 else
1686 {
1687 sec = hppa_info->opd_sec;
1688 srel = hppa_info->opd_rel_sec;
1689 for (; local_opd < end_local_opd; ++local_opd)
1690 {
1691 if (*local_opd > 0)
1692 {
1693 *local_opd = sec->size;
1694 sec->size += OPD_ENTRY_SIZE;
1695 if (info->shared)
1696 srel->size += sizeof (Elf64_External_Rela);
1697 }
1698 else
1699 *local_opd = (bfd_vma) -1;
1700 }
1701 }
1702 }
1703
1704 /* Allocate the GOT entries. */
1705
1706 data.info = info;
1707 if (hppa_info->dlt_sec)
1708 {
1709 data.ofs = hppa_info->dlt_sec->size;
1710 elf_link_hash_traverse (elf_hash_table (info),
1711 allocate_global_data_dlt, &data);
1712 hppa_info->dlt_sec->size = data.ofs;
1713 }
1714
1715 if (hppa_info->plt_sec)
1716 {
1717 data.ofs = hppa_info->plt_sec->size;
1718 elf_link_hash_traverse (elf_hash_table (info),
1719 allocate_global_data_plt, &data);
1720 hppa_info->plt_sec->size = data.ofs;
1721 }
1722
1723 if (hppa_info->stub_sec)
1724 {
1725 data.ofs = 0x0;
1726 elf_link_hash_traverse (elf_hash_table (info),
1727 allocate_global_data_stub, &data);
1728 hppa_info->stub_sec->size = data.ofs;
1729 }
1730
1731 /* Allocate space for entries in the .opd section. */
1732 if (hppa_info->opd_sec)
1733 {
1734 data.ofs = hppa_info->opd_sec->size;
1735 elf_link_hash_traverse (elf_hash_table (info),
1736 allocate_global_data_opd, &data);
1737 hppa_info->opd_sec->size = data.ofs;
1738 }
1739
1740 /* Now allocate space for dynamic relocations, if necessary. */
1741 if (hppa_info->root.dynamic_sections_created)
1742 elf_link_hash_traverse (elf_hash_table (info),
1743 allocate_dynrel_entries, &data);
1744
1745 /* The sizes of all the sections are set. Allocate memory for them. */
1746 plt = FALSE;
1747 relocs = FALSE;
1748 reltext = FALSE;
1749 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1750 {
1751 const char *name;
1752
1753 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1754 continue;
1755
1756 /* It's OK to base decisions on the section name, because none
1757 of the dynobj section names depend upon the input files. */
1758 name = bfd_get_section_name (dynobj, sec);
1759
1760 if (strcmp (name, ".plt") == 0)
1761 {
1762 /* Remember whether there is a PLT. */
1763 plt = sec->size != 0;
1764 }
1765 else if (strcmp (name, ".opd") == 0
1766 || CONST_STRNEQ (name, ".dlt")
1767 || strcmp (name, ".stub") == 0
1768 || strcmp (name, ".got") == 0)
1769 {
1770 /* Strip this section if we don't need it; see the comment below. */
1771 }
1772 else if (CONST_STRNEQ (name, ".rela"))
1773 {
1774 if (sec->size != 0)
1775 {
1776 asection *target;
1777
1778 /* Remember whether there are any reloc sections other
1779 than .rela.plt. */
1780 if (strcmp (name, ".rela.plt") != 0)
1781 {
1782 const char *outname;
1783
1784 relocs = TRUE;
1785
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname = bfd_get_section_name (output_bfd,
1792 sec->output_section);
1793 target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 if (target != NULL
1795 && (target->flags & SEC_READONLY) != 0
1796 && (target->flags & SEC_ALLOC) != 0)
1797 reltext = TRUE;
1798 }
1799
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1802 sec->reloc_count = 0;
1803 }
1804 }
1805 else
1806 {
1807 /* It's not one of our sections, so don't allocate space. */
1808 continue;
1809 }
1810
1811 if (sec->size == 0)
1812 {
1813 /* If we don't need this section, strip it from the
1814 output file. This is mostly to handle .rela.bss and
1815 .rela.plt. We must create both sections in
1816 create_dynamic_sections, because they must be created
1817 before the linker maps input sections to output
1818 sections. The linker does that before
1819 adjust_dynamic_symbol is called, and it is that
1820 function which decides whether anything needs to go
1821 into these sections. */
1822 sec->flags |= SEC_EXCLUDE;
1823 continue;
1824 }
1825
1826 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1827 continue;
1828
1829 /* Allocate memory for the section contents if it has not
1830 been allocated already. We use bfd_zalloc here in case
1831 unused entries are not reclaimed before the section's
1832 contents are written out. This should not happen, but this
1833 way if it does, we get a R_PARISC_NONE reloc instead of
1834 garbage. */
1835 if (sec->contents == NULL)
1836 {
1837 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1838 if (sec->contents == NULL)
1839 return FALSE;
1840 }
1841 }
1842
1843 if (elf_hash_table (info)->dynamic_sections_created)
1844 {
1845 /* Always create a DT_PLTGOT. It actually has nothing to do with
1846 the PLT, it is how we communicate the __gp value of a load
1847 module to the dynamic linker. */
1848 #define add_dynamic_entry(TAG, VAL) \
1849 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1850
1851 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1852 || !add_dynamic_entry (DT_PLTGOT, 0))
1853 return FALSE;
1854
1855 /* Add some entries to the .dynamic section. We fill in the
1856 values later, in elf64_hppa_finish_dynamic_sections, but we
1857 must add the entries now so that we get the correct size for
1858 the .dynamic section. The DT_DEBUG entry is filled in by the
1859 dynamic linker and used by the debugger. */
1860 if (! info->shared)
1861 {
1862 if (!add_dynamic_entry (DT_DEBUG, 0)
1863 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1864 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1865 return FALSE;
1866 }
1867
1868 /* Force DT_FLAGS to always be set.
1869 Required by HPUX 11.00 patch PHSS_26559. */
1870 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1871 return FALSE;
1872
1873 if (plt)
1874 {
1875 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1876 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1877 || !add_dynamic_entry (DT_JMPREL, 0))
1878 return FALSE;
1879 }
1880
1881 if (relocs)
1882 {
1883 if (!add_dynamic_entry (DT_RELA, 0)
1884 || !add_dynamic_entry (DT_RELASZ, 0)
1885 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1886 return FALSE;
1887 }
1888
1889 if (reltext)
1890 {
1891 if (!add_dynamic_entry (DT_TEXTREL, 0))
1892 return FALSE;
1893 info->flags |= DF_TEXTREL;
1894 }
1895 }
1896 #undef add_dynamic_entry
1897
1898 return TRUE;
1899 }
1900
1901 /* Called after we have output the symbol into the dynamic symbol
1902 table, but before we output the symbol into the normal symbol
1903 table.
1904
1905 For some symbols we had to change their address when outputting
1906 the dynamic symbol table. We undo that change here so that
1907 the symbols have their expected value in the normal symbol
1908 table. Ick. */
1909
1910 static int
1911 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1912 const char *name,
1913 Elf_Internal_Sym *sym,
1914 asection *input_sec ATTRIBUTE_UNUSED,
1915 struct elf_link_hash_entry *eh)
1916 {
1917 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1918
1919 /* We may be called with the file symbol or section symbols.
1920 They never need munging, so it is safe to ignore them. */
1921 if (!name || !eh)
1922 return 1;
1923
1924 /* Function symbols for which we created .opd entries *may* have been
1925 munged by finish_dynamic_symbol and have to be un-munged here.
1926
1927 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928 into non-dynamic ones, so we initialize st_shndx to -1 in
1929 mark_exported_functions and check to see if it was overwritten
1930 here instead of just checking eh->dynindx. */
1931 if (hh->want_opd && hh->st_shndx != -1)
1932 {
1933 /* Restore the saved value and section index. */
1934 sym->st_value = hh->st_value;
1935 sym->st_shndx = hh->st_shndx;
1936 }
1937
1938 return 1;
1939 }
1940
1941 /* Finish up dynamic symbol handling. We set the contents of various
1942 dynamic sections here. */
1943
1944 static bfd_boolean
1945 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1946 struct bfd_link_info *info,
1947 struct elf_link_hash_entry *eh,
1948 Elf_Internal_Sym *sym)
1949 {
1950 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1951 asection *stub, *splt, *sopd, *spltrel;
1952 struct elf64_hppa_link_hash_table *hppa_info;
1953
1954 hppa_info = hppa_link_hash_table (info);
1955 if (hppa_info == NULL)
1956 return FALSE;
1957
1958 stub = hppa_info->stub_sec;
1959 splt = hppa_info->plt_sec;
1960 sopd = hppa_info->opd_sec;
1961 spltrel = hppa_info->plt_rel_sec;
1962
1963 /* Incredible. It is actually necessary to NOT use the symbol's real
1964 value when building the dynamic symbol table for a shared library.
1965 At least for symbols that refer to functions.
1966
1967 We will store a new value and section index into the symbol long
1968 enough to output it into the dynamic symbol table, then we restore
1969 the original values (in elf64_hppa_link_output_symbol_hook). */
1970 if (hh->want_opd)
1971 {
1972 BFD_ASSERT (sopd != NULL);
1973
1974 /* Save away the original value and section index so that we
1975 can restore them later. */
1976 hh->st_value = sym->st_value;
1977 hh->st_shndx = sym->st_shndx;
1978
1979 /* For the dynamic symbol table entry, we want the value to be
1980 address of this symbol's entry within the .opd section. */
1981 sym->st_value = (hh->opd_offset
1982 + sopd->output_offset
1983 + sopd->output_section->vma);
1984 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1985 sopd->output_section);
1986 }
1987
1988 /* Initialize a .plt entry if requested. */
1989 if (hh->want_plt
1990 && elf64_hppa_dynamic_symbol_p (eh, info))
1991 {
1992 bfd_vma value;
1993 Elf_Internal_Rela rel;
1994 bfd_byte *loc;
1995
1996 BFD_ASSERT (splt != NULL && spltrel != NULL);
1997
1998 /* We do not actually care about the value in the PLT entry
1999 if we are creating a shared library and the symbol is
2000 still undefined, we create a dynamic relocation to fill
2001 in the correct value. */
2002 if (info->shared && eh->root.type == bfd_link_hash_undefined)
2003 value = 0;
2004 else
2005 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2006
2007 /* Fill in the entry in the procedure linkage table.
2008
2009 The format of a plt entry is
2010 <funcaddr> <__gp>.
2011
2012 plt_offset is the offset within the PLT section at which to
2013 install the PLT entry.
2014
2015 We are modifying the in-memory PLT contents here, so we do not add
2016 in the output_offset of the PLT section. */
2017
2018 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2019 value = _bfd_get_gp_value (splt->output_section->owner);
2020 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2021
2022 /* Create a dynamic IPLT relocation for this entry.
2023
2024 We are creating a relocation in the output file's PLT section,
2025 which is included within the DLT secton. So we do need to include
2026 the PLT's output_offset in the computation of the relocation's
2027 address. */
2028 rel.r_offset = (hh->plt_offset + splt->output_offset
2029 + splt->output_section->vma);
2030 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2031 rel.r_addend = 0;
2032
2033 loc = spltrel->contents;
2034 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2035 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2036 }
2037
2038 /* Initialize an external call stub entry if requested. */
2039 if (hh->want_stub
2040 && elf64_hppa_dynamic_symbol_p (eh, info))
2041 {
2042 bfd_vma value;
2043 int insn;
2044 unsigned int max_offset;
2045
2046 BFD_ASSERT (stub != NULL);
2047
2048 /* Install the generic stub template.
2049
2050 We are modifying the contents of the stub section, so we do not
2051 need to include the stub section's output_offset here. */
2052 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2053
2054 /* Fix up the first ldd instruction.
2055
2056 We are modifying the contents of the STUB section in memory,
2057 so we do not need to include its output offset in this computation.
2058
2059 Note the plt_offset value is the value of the PLT entry relative to
2060 the start of the PLT section. These instructions will reference
2061 data relative to the value of __gp, which may not necessarily have
2062 the same address as the start of the PLT section.
2063
2064 gp_offset contains the offset of __gp within the PLT section. */
2065 value = hh->plt_offset - hppa_info->gp_offset;
2066
2067 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2068 if (output_bfd->arch_info->mach >= 25)
2069 {
2070 /* Wide mode allows 16 bit offsets. */
2071 max_offset = 32768;
2072 insn &= ~ 0xfff1;
2073 insn |= re_assemble_16 ((int) value);
2074 }
2075 else
2076 {
2077 max_offset = 8192;
2078 insn &= ~ 0x3ff1;
2079 insn |= re_assemble_14 ((int) value);
2080 }
2081
2082 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2083 {
2084 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 hh->eh.root.root.string,
2086 (long) value);
2087 return FALSE;
2088 }
2089
2090 bfd_put_32 (stub->owner, (bfd_vma) insn,
2091 stub->contents + hh->stub_offset);
2092
2093 /* Fix up the second ldd instruction. */
2094 value += 8;
2095 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2096 if (output_bfd->arch_info->mach >= 25)
2097 {
2098 insn &= ~ 0xfff1;
2099 insn |= re_assemble_16 ((int) value);
2100 }
2101 else
2102 {
2103 insn &= ~ 0x3ff1;
2104 insn |= re_assemble_14 ((int) value);
2105 }
2106 bfd_put_32 (stub->owner, (bfd_vma) insn,
2107 stub->contents + hh->stub_offset + 8);
2108 }
2109
2110 return TRUE;
2111 }
2112
2113 /* The .opd section contains FPTRs for each function this file
2114 exports. Initialize the FPTR entries. */
2115
2116 static bfd_boolean
2117 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2118 {
2119 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2120 struct bfd_link_info *info = (struct bfd_link_info *)data;
2121 struct elf64_hppa_link_hash_table *hppa_info;
2122 asection *sopd;
2123 asection *sopdrel;
2124
2125 hppa_info = hppa_link_hash_table (info);
2126 if (hppa_info == NULL)
2127 return FALSE;
2128
2129 sopd = hppa_info->opd_sec;
2130 sopdrel = hppa_info->opd_rel_sec;
2131
2132 if (hh->want_opd)
2133 {
2134 bfd_vma value;
2135
2136 /* The first two words of an .opd entry are zero.
2137
2138 We are modifying the contents of the OPD section in memory, so we
2139 do not need to include its output offset in this computation. */
2140 memset (sopd->contents + hh->opd_offset, 0, 16);
2141
2142 value = (eh->root.u.def.value
2143 + eh->root.u.def.section->output_section->vma
2144 + eh->root.u.def.section->output_offset);
2145
2146 /* The next word is the address of the function. */
2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2148
2149 /* The last word is our local __gp value. */
2150 value = _bfd_get_gp_value (sopd->output_section->owner);
2151 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2152 }
2153
2154 /* If we are generating a shared library, we must generate EPLT relocations
2155 for each entry in the .opd, even for static functions (they may have
2156 had their address taken). */
2157 if (info->shared && hh->want_opd)
2158 {
2159 Elf_Internal_Rela rel;
2160 bfd_byte *loc;
2161 int dynindx;
2162
2163 /* We may need to do a relocation against a local symbol, in
2164 which case we have to look up it's dynamic symbol index off
2165 the local symbol hash table. */
2166 if (eh->dynindx != -1)
2167 dynindx = eh->dynindx;
2168 else
2169 dynindx
2170 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2171 hh->sym_indx);
2172
2173 /* The offset of this relocation is the absolute address of the
2174 .opd entry for this symbol. */
2175 rel.r_offset = (hh->opd_offset + sopd->output_offset
2176 + sopd->output_section->vma);
2177
2178 /* If H is non-null, then we have an external symbol.
2179
2180 It is imperative that we use a different dynamic symbol for the
2181 EPLT relocation if the symbol has global scope.
2182
2183 In the dynamic symbol table, the function symbol will have a value
2184 which is address of the function's .opd entry.
2185
2186 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 (if we did, the data in the .opd would reference itself rather
2188 than the actual address of the function). Instead we have to use
2189 a new dynamic symbol which has the same value as the original global
2190 function symbol.
2191
2192 We prefix the original symbol with a "." and use the new symbol in
2193 the EPLT relocation. This new symbol has already been recorded in
2194 the symbol table, we just have to look it up and use it.
2195
2196 We do not have such problems with static functions because we do
2197 not make their addresses in the dynamic symbol table point to
2198 the .opd entry. Ultimately this should be safe since a static
2199 function can not be directly referenced outside of its shared
2200 library.
2201
2202 We do have to play similar games for FPTR relocations in shared
2203 libraries, including those for static symbols. See the FPTR
2204 handling in elf64_hppa_finalize_dynreloc. */
2205 if (eh)
2206 {
2207 char *new_name;
2208 struct elf_link_hash_entry *nh;
2209
2210 new_name = alloca (strlen (eh->root.root.string) + 2);
2211 new_name[0] = '.';
2212 strcpy (new_name + 1, eh->root.root.string);
2213
2214 nh = elf_link_hash_lookup (elf_hash_table (info),
2215 new_name, TRUE, TRUE, FALSE);
2216
2217 /* All we really want from the new symbol is its dynamic
2218 symbol index. */
2219 if (nh)
2220 dynindx = nh->dynindx;
2221 }
2222
2223 rel.r_addend = 0;
2224 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2225
2226 loc = sopdrel->contents;
2227 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2228 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2229 }
2230 return TRUE;
2231 }
2232
2233 /* The .dlt section contains addresses for items referenced through the
2234 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2235 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2236
2237 static bfd_boolean
2238 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2239 {
2240 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2241 struct bfd_link_info *info = (struct bfd_link_info *)data;
2242 struct elf64_hppa_link_hash_table *hppa_info;
2243 asection *sdlt, *sdltrel;
2244
2245 hppa_info = hppa_link_hash_table (info);
2246 if (hppa_info == NULL)
2247 return FALSE;
2248
2249 sdlt = hppa_info->dlt_sec;
2250 sdltrel = hppa_info->dlt_rel_sec;
2251
2252 /* H/DYN_H may refer to a local variable and we know it's
2253 address, so there is no need to create a relocation. Just install
2254 the proper value into the DLT, note this shortcut can not be
2255 skipped when building a shared library. */
2256 if (! info->shared && hh && hh->want_dlt)
2257 {
2258 bfd_vma value;
2259
2260 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 to point to the FPTR entry in the .opd section.
2262
2263 We include the OPD's output offset in this computation as
2264 we are referring to an absolute address in the resulting
2265 object file. */
2266 if (hh->want_opd)
2267 {
2268 value = (hh->opd_offset
2269 + hppa_info->opd_sec->output_offset
2270 + hppa_info->opd_sec->output_section->vma);
2271 }
2272 else if ((eh->root.type == bfd_link_hash_defined
2273 || eh->root.type == bfd_link_hash_defweak)
2274 && eh->root.u.def.section)
2275 {
2276 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2277 if (eh->root.u.def.section->output_section)
2278 value += eh->root.u.def.section->output_section->vma;
2279 else
2280 value += eh->root.u.def.section->vma;
2281 }
2282 else
2283 /* We have an undefined function reference. */
2284 value = 0;
2285
2286 /* We do not need to include the output offset of the DLT section
2287 here because we are modifying the in-memory contents. */
2288 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2289 }
2290
2291 /* Create a relocation for the DLT entry associated with this symbol.
2292 When building a shared library the symbol does not have to be dynamic. */
2293 if (hh->want_dlt
2294 && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2295 {
2296 Elf_Internal_Rela rel;
2297 bfd_byte *loc;
2298 int dynindx;
2299
2300 /* We may need to do a relocation against a local symbol, in
2301 which case we have to look up it's dynamic symbol index off
2302 the local symbol hash table. */
2303 if (eh && eh->dynindx != -1)
2304 dynindx = eh->dynindx;
2305 else
2306 dynindx
2307 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2308 hh->sym_indx);
2309
2310 /* Create a dynamic relocation for this entry. Do include the output
2311 offset of the DLT entry since we need an absolute address in the
2312 resulting object file. */
2313 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2314 + sdlt->output_section->vma);
2315 if (eh && eh->type == STT_FUNC)
2316 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2317 else
2318 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2319 rel.r_addend = 0;
2320
2321 loc = sdltrel->contents;
2322 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2323 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2324 }
2325 return TRUE;
2326 }
2327
2328 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2329 for dynamic functions used to initialize static data. */
2330
2331 static bfd_boolean
2332 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2333 void *data)
2334 {
2335 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2336 struct bfd_link_info *info = (struct bfd_link_info *)data;
2337 struct elf64_hppa_link_hash_table *hppa_info;
2338 int dynamic_symbol;
2339
2340 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2341
2342 if (!dynamic_symbol && !info->shared)
2343 return TRUE;
2344
2345 if (hh->reloc_entries)
2346 {
2347 struct elf64_hppa_dyn_reloc_entry *rent;
2348 int dynindx;
2349
2350 hppa_info = hppa_link_hash_table (info);
2351 if (hppa_info == NULL)
2352 return FALSE;
2353
2354 /* We may need to do a relocation against a local symbol, in
2355 which case we have to look up it's dynamic symbol index off
2356 the local symbol hash table. */
2357 if (eh->dynindx != -1)
2358 dynindx = eh->dynindx;
2359 else
2360 dynindx
2361 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2362 hh->sym_indx);
2363
2364 for (rent = hh->reloc_entries; rent; rent = rent->next)
2365 {
2366 Elf_Internal_Rela rel;
2367 bfd_byte *loc;
2368
2369 /* Allocate one iff we are building a shared library, the relocation
2370 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2371 if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2372 continue;
2373
2374 /* Create a dynamic relocation for this entry.
2375
2376 We need the output offset for the reloc's section because
2377 we are creating an absolute address in the resulting object
2378 file. */
2379 rel.r_offset = (rent->offset + rent->sec->output_offset
2380 + rent->sec->output_section->vma);
2381
2382 /* An FPTR64 relocation implies that we took the address of
2383 a function and that the function has an entry in the .opd
2384 section. We want the FPTR64 relocation to reference the
2385 entry in .opd.
2386
2387 We could munge the symbol value in the dynamic symbol table
2388 (in fact we already do for functions with global scope) to point
2389 to the .opd entry. Then we could use that dynamic symbol in
2390 this relocation.
2391
2392 Or we could do something sensible, not munge the symbol's
2393 address and instead just use a different symbol to reference
2394 the .opd entry. At least that seems sensible until you
2395 realize there's no local dynamic symbols we can use for that
2396 purpose. Thus the hair in the check_relocs routine.
2397
2398 We use a section symbol recorded by check_relocs as the
2399 base symbol for the relocation. The addend is the difference
2400 between the section symbol and the address of the .opd entry. */
2401 if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2402 {
2403 bfd_vma value, value2;
2404
2405 /* First compute the address of the opd entry for this symbol. */
2406 value = (hh->opd_offset
2407 + hppa_info->opd_sec->output_section->vma
2408 + hppa_info->opd_sec->output_offset);
2409
2410 /* Compute the value of the start of the section with
2411 the relocation. */
2412 value2 = (rent->sec->output_section->vma
2413 + rent->sec->output_offset);
2414
2415 /* Compute the difference between the start of the section
2416 with the relocation and the opd entry. */
2417 value -= value2;
2418
2419 /* The result becomes the addend of the relocation. */
2420 rel.r_addend = value;
2421
2422 /* The section symbol becomes the symbol for the dynamic
2423 relocation. */
2424 dynindx
2425 = _bfd_elf_link_lookup_local_dynindx (info,
2426 rent->sec->owner,
2427 rent->sec_symndx);
2428 }
2429 else
2430 rel.r_addend = rent->addend;
2431
2432 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2433
2434 loc = hppa_info->other_rel_sec->contents;
2435 loc += (hppa_info->other_rel_sec->reloc_count++
2436 * sizeof (Elf64_External_Rela));
2437 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2438 &rel, loc);
2439 }
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446 dynamic linker, before writing them out. */
2447
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2450 const asection *rel_sec ATTRIBUTE_UNUSED,
2451 const Elf_Internal_Rela *rela)
2452 {
2453 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2454 return reloc_class_relative;
2455
2456 switch ((int) ELF64_R_TYPE (rela->r_info))
2457 {
2458 case R_PARISC_IPLT:
2459 return reloc_class_plt;
2460 case R_PARISC_COPY:
2461 return reloc_class_copy;
2462 default:
2463 return reloc_class_normal;
2464 }
2465 }
2466
2467 /* Finish up the dynamic sections. */
2468
2469 static bfd_boolean
2470 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2471 struct bfd_link_info *info)
2472 {
2473 bfd *dynobj;
2474 asection *sdyn;
2475 struct elf64_hppa_link_hash_table *hppa_info;
2476
2477 hppa_info = hppa_link_hash_table (info);
2478 if (hppa_info == NULL)
2479 return FALSE;
2480
2481 /* Finalize the contents of the .opd section. */
2482 elf_link_hash_traverse (elf_hash_table (info),
2483 elf64_hppa_finalize_opd,
2484 info);
2485
2486 elf_link_hash_traverse (elf_hash_table (info),
2487 elf64_hppa_finalize_dynreloc,
2488 info);
2489
2490 /* Finalize the contents of the .dlt section. */
2491 dynobj = elf_hash_table (info)->dynobj;
2492 /* Finalize the contents of the .dlt section. */
2493 elf_link_hash_traverse (elf_hash_table (info),
2494 elf64_hppa_finalize_dlt,
2495 info);
2496
2497 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2498
2499 if (elf_hash_table (info)->dynamic_sections_created)
2500 {
2501 Elf64_External_Dyn *dyncon, *dynconend;
2502
2503 BFD_ASSERT (sdyn != NULL);
2504
2505 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2506 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2507 for (; dyncon < dynconend; dyncon++)
2508 {
2509 Elf_Internal_Dyn dyn;
2510 asection *s;
2511
2512 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2513
2514 switch (dyn.d_tag)
2515 {
2516 default:
2517 break;
2518
2519 case DT_HP_LOAD_MAP:
2520 /* Compute the absolute address of 16byte scratchpad area
2521 for the dynamic linker.
2522
2523 By convention the linker script will allocate the scratchpad
2524 area at the start of the .data section. So all we have to
2525 to is find the start of the .data section. */
2526 s = bfd_get_section_by_name (output_bfd, ".data");
2527 if (!s)
2528 return FALSE;
2529 dyn.d_un.d_ptr = s->vma;
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_PLTGOT:
2534 /* HP's use PLTGOT to set the GOT register. */
2535 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2536 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 break;
2538
2539 case DT_JMPREL:
2540 s = hppa_info->plt_rel_sec;
2541 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2542 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 break;
2544
2545 case DT_PLTRELSZ:
2546 s = hppa_info->plt_rel_sec;
2547 dyn.d_un.d_val = s->size;
2548 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 break;
2550
2551 case DT_RELA:
2552 s = hppa_info->other_rel_sec;
2553 if (! s || ! s->size)
2554 s = hppa_info->dlt_rel_sec;
2555 if (! s || ! s->size)
2556 s = hppa_info->opd_rel_sec;
2557 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2558 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2559 break;
2560
2561 case DT_RELASZ:
2562 s = hppa_info->other_rel_sec;
2563 dyn.d_un.d_val = s->size;
2564 s = hppa_info->dlt_rel_sec;
2565 dyn.d_un.d_val += s->size;
2566 s = hppa_info->opd_rel_sec;
2567 dyn.d_un.d_val += s->size;
2568 /* There is some question about whether or not the size of
2569 the PLT relocs should be included here. HP's tools do
2570 it, so we'll emulate them. */
2571 s = hppa_info->plt_rel_sec;
2572 dyn.d_un.d_val += s->size;
2573 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2574 break;
2575
2576 }
2577 }
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Support for core dump NOTE sections. */
2584
2585 static bfd_boolean
2586 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2587 {
2588 int offset;
2589 size_t size;
2590
2591 switch (note->descsz)
2592 {
2593 default:
2594 return FALSE;
2595
2596 case 760: /* Linux/hppa */
2597 /* pr_cursig */
2598 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2599
2600 /* pr_pid */
2601 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2602
2603 /* pr_reg */
2604 offset = 112;
2605 size = 640;
2606
2607 break;
2608 }
2609
2610 /* Make a ".reg/999" section. */
2611 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2612 size, note->descpos + offset);
2613 }
2614
2615 static bfd_boolean
2616 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2617 {
2618 char * command;
2619 int n;
2620
2621 switch (note->descsz)
2622 {
2623 default:
2624 return FALSE;
2625
2626 case 136: /* Linux/hppa elf_prpsinfo. */
2627 elf_tdata (abfd)->core->program
2628 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2629 elf_tdata (abfd)->core->command
2630 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2631 }
2632
2633 /* Note that for some reason, a spurious space is tacked
2634 onto the end of the args in some (at least one anyway)
2635 implementations, so strip it off if it exists. */
2636 command = elf_tdata (abfd)->core->command;
2637 n = strlen (command);
2638
2639 if (0 < n && command[n - 1] == ' ')
2640 command[n - 1] = '\0';
2641
2642 return TRUE;
2643 }
2644
2645 /* Return the number of additional phdrs we will need.
2646
2647 The generic ELF code only creates PT_PHDRs for executables. The HP
2648 dynamic linker requires PT_PHDRs for dynamic libraries too.
2649
2650 This routine indicates that the backend needs one additional program
2651 header for that case.
2652
2653 Note we do not have access to the link info structure here, so we have
2654 to guess whether or not we are building a shared library based on the
2655 existence of a .interp section. */
2656
2657 static int
2658 elf64_hppa_additional_program_headers (bfd *abfd,
2659 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2660 {
2661 asection *s;
2662
2663 /* If we are creating a shared library, then we have to create a
2664 PT_PHDR segment. HP's dynamic linker chokes without it. */
2665 s = bfd_get_section_by_name (abfd, ".interp");
2666 if (! s)
2667 return 1;
2668 return 0;
2669 }
2670
2671 /* Allocate and initialize any program headers required by this
2672 specific backend.
2673
2674 The generic ELF code only creates PT_PHDRs for executables. The HP
2675 dynamic linker requires PT_PHDRs for dynamic libraries too.
2676
2677 This allocates the PT_PHDR and initializes it in a manner suitable
2678 for the HP linker.
2679
2680 Note we do not have access to the link info structure here, so we have
2681 to guess whether or not we are building a shared library based on the
2682 existence of a .interp section. */
2683
2684 static bfd_boolean
2685 elf64_hppa_modify_segment_map (bfd *abfd,
2686 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2687 {
2688 struct elf_segment_map *m;
2689 asection *s;
2690
2691 s = bfd_get_section_by_name (abfd, ".interp");
2692 if (! s)
2693 {
2694 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2695 if (m->p_type == PT_PHDR)
2696 break;
2697 if (m == NULL)
2698 {
2699 m = ((struct elf_segment_map *)
2700 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2701 if (m == NULL)
2702 return FALSE;
2703
2704 m->p_type = PT_PHDR;
2705 m->p_flags = PF_R | PF_X;
2706 m->p_flags_valid = 1;
2707 m->p_paddr_valid = 1;
2708 m->includes_phdrs = 1;
2709
2710 m->next = elf_seg_map (abfd);
2711 elf_seg_map (abfd) = m;
2712 }
2713 }
2714
2715 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2716 if (m->p_type == PT_LOAD)
2717 {
2718 unsigned int i;
2719
2720 for (i = 0; i < m->count; i++)
2721 {
2722 /* The code "hint" is not really a hint. It is a requirement
2723 for certain versions of the HP dynamic linker. Worse yet,
2724 it must be set even if the shared library does not have
2725 any code in its "text" segment (thus the check for .hash
2726 to catch this situation). */
2727 if (m->sections[i]->flags & SEC_CODE
2728 || (strcmp (m->sections[i]->name, ".hash") == 0))
2729 m->p_flags |= (PF_X | PF_HP_CODE);
2730 }
2731 }
2732
2733 return TRUE;
2734 }
2735
2736 /* Called when writing out an object file to decide the type of a
2737 symbol. */
2738 static int
2739 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2740 int type)
2741 {
2742 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2743 return STT_PARISC_MILLI;
2744 else
2745 return type;
2746 }
2747
2748 /* Support HP specific sections for core files. */
2749
2750 static bfd_boolean
2751 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2752 const char *typename)
2753 {
2754 if (hdr->p_type == PT_HP_CORE_KERNEL)
2755 {
2756 asection *sect;
2757
2758 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2759 return FALSE;
2760
2761 sect = bfd_make_section_anyway (abfd, ".kernel");
2762 if (sect == NULL)
2763 return FALSE;
2764 sect->size = hdr->p_filesz;
2765 sect->filepos = hdr->p_offset;
2766 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2767 return TRUE;
2768 }
2769
2770 if (hdr->p_type == PT_HP_CORE_PROC)
2771 {
2772 int sig;
2773
2774 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2775 return FALSE;
2776 if (bfd_bread (&sig, 4, abfd) != 4)
2777 return FALSE;
2778
2779 elf_tdata (abfd)->core->signal = sig;
2780
2781 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2782 return FALSE;
2783
2784 /* GDB uses the ".reg" section to read register contents. */
2785 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2786 hdr->p_offset);
2787 }
2788
2789 if (hdr->p_type == PT_HP_CORE_LOADABLE
2790 || hdr->p_type == PT_HP_CORE_STACK
2791 || hdr->p_type == PT_HP_CORE_MMF)
2792 hdr->p_type = PT_LOAD;
2793
2794 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2795 }
2796
2797 /* Hook called by the linker routine which adds symbols from an object
2798 file. HP's libraries define symbols with HP specific section
2799 indices, which we have to handle. */
2800
2801 static bfd_boolean
2802 elf_hppa_add_symbol_hook (bfd *abfd,
2803 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2804 Elf_Internal_Sym *sym,
2805 const char **namep ATTRIBUTE_UNUSED,
2806 flagword *flagsp ATTRIBUTE_UNUSED,
2807 asection **secp,
2808 bfd_vma *valp)
2809 {
2810 unsigned int sec_index = sym->st_shndx;
2811
2812 switch (sec_index)
2813 {
2814 case SHN_PARISC_ANSI_COMMON:
2815 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2816 (*secp)->flags |= SEC_IS_COMMON;
2817 *valp = sym->st_size;
2818 break;
2819
2820 case SHN_PARISC_HUGE_COMMON:
2821 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2822 (*secp)->flags |= SEC_IS_COMMON;
2823 *valp = sym->st_size;
2824 break;
2825 }
2826
2827 return TRUE;
2828 }
2829
2830 static bfd_boolean
2831 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2832 void *data)
2833 {
2834 struct bfd_link_info *info = data;
2835
2836 /* If we are not creating a shared library, and this symbol is
2837 referenced by a shared library but is not defined anywhere, then
2838 the generic code will warn that it is undefined.
2839
2840 This behavior is undesirable on HPs since the standard shared
2841 libraries contain references to undefined symbols.
2842
2843 So we twiddle the flags associated with such symbols so that they
2844 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2845
2846 Ultimately we should have better controls over the generic ELF BFD
2847 linker code. */
2848 if (! info->relocatable
2849 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2850 && h->root.type == bfd_link_hash_undefined
2851 && h->ref_dynamic
2852 && !h->ref_regular)
2853 {
2854 h->ref_dynamic = 0;
2855 h->pointer_equality_needed = 1;
2856 }
2857
2858 return TRUE;
2859 }
2860
2861 static bfd_boolean
2862 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2863 void *data)
2864 {
2865 struct bfd_link_info *info = data;
2866
2867 /* If we are not creating a shared library, and this symbol is
2868 referenced by a shared library but is not defined anywhere, then
2869 the generic code will warn that it is undefined.
2870
2871 This behavior is undesirable on HPs since the standard shared
2872 libraries contain references to undefined symbols.
2873
2874 So we twiddle the flags associated with such symbols so that they
2875 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2876
2877 Ultimately we should have better controls over the generic ELF BFD
2878 linker code. */
2879 if (! info->relocatable
2880 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2881 && h->root.type == bfd_link_hash_undefined
2882 && !h->ref_dynamic
2883 && !h->ref_regular
2884 && h->pointer_equality_needed)
2885 {
2886 h->ref_dynamic = 1;
2887 h->pointer_equality_needed = 0;
2888 }
2889
2890 return TRUE;
2891 }
2892
2893 static bfd_boolean
2894 elf_hppa_is_dynamic_loader_symbol (const char *name)
2895 {
2896 return (! strcmp (name, "__CPU_REVISION")
2897 || ! strcmp (name, "__CPU_KEYBITS_1")
2898 || ! strcmp (name, "__SYSTEM_ID_D")
2899 || ! strcmp (name, "__FPU_MODEL")
2900 || ! strcmp (name, "__FPU_REVISION")
2901 || ! strcmp (name, "__ARGC")
2902 || ! strcmp (name, "__ARGV")
2903 || ! strcmp (name, "__ENVP")
2904 || ! strcmp (name, "__TLS_SIZE_D")
2905 || ! strcmp (name, "__LOAD_INFO")
2906 || ! strcmp (name, "__systab"));
2907 }
2908
2909 /* Record the lowest address for the data and text segments. */
2910 static void
2911 elf_hppa_record_segment_addrs (bfd *abfd,
2912 asection *section,
2913 void *data)
2914 {
2915 struct elf64_hppa_link_hash_table *hppa_info = data;
2916
2917 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2918 {
2919 bfd_vma value;
2920 Elf_Internal_Phdr *p;
2921
2922 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2923 BFD_ASSERT (p != NULL);
2924 value = p->p_vaddr;
2925
2926 if (section->flags & SEC_READONLY)
2927 {
2928 if (value < hppa_info->text_segment_base)
2929 hppa_info->text_segment_base = value;
2930 }
2931 else
2932 {
2933 if (value < hppa_info->data_segment_base)
2934 hppa_info->data_segment_base = value;
2935 }
2936 }
2937 }
2938
2939 /* Called after we have seen all the input files/sections, but before
2940 final symbol resolution and section placement has been determined.
2941
2942 We use this hook to (possibly) provide a value for __gp, then we
2943 fall back to the generic ELF final link routine. */
2944
2945 static bfd_boolean
2946 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2947 {
2948 bfd_boolean retval;
2949 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2950
2951 if (hppa_info == NULL)
2952 return FALSE;
2953
2954 if (! info->relocatable)
2955 {
2956 struct elf_link_hash_entry *gp;
2957 bfd_vma gp_val;
2958
2959 /* The linker script defines a value for __gp iff it was referenced
2960 by one of the objects being linked. First try to find the symbol
2961 in the hash table. If that fails, just compute the value __gp
2962 should have had. */
2963 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2964 FALSE, FALSE);
2965
2966 if (gp)
2967 {
2968
2969 /* Adjust the value of __gp as we may want to slide it into the
2970 .plt section so that the stubs can access PLT entries without
2971 using an addil sequence. */
2972 gp->root.u.def.value += hppa_info->gp_offset;
2973
2974 gp_val = (gp->root.u.def.section->output_section->vma
2975 + gp->root.u.def.section->output_offset
2976 + gp->root.u.def.value);
2977 }
2978 else
2979 {
2980 asection *sec;
2981
2982 /* First look for a .plt section. If found, then __gp is the
2983 address of the .plt + gp_offset.
2984
2985 If no .plt is found, then look for .dlt, .opd and .data (in
2986 that order) and set __gp to the base address of whichever
2987 section is found first. */
2988
2989 sec = hppa_info->plt_sec;
2990 if (sec && ! (sec->flags & SEC_EXCLUDE))
2991 gp_val = (sec->output_offset
2992 + sec->output_section->vma
2993 + hppa_info->gp_offset);
2994 else
2995 {
2996 sec = hppa_info->dlt_sec;
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 sec = hppa_info->opd_sec;
2999 if (!sec || (sec->flags & SEC_EXCLUDE))
3000 sec = bfd_get_section_by_name (abfd, ".data");
3001 if (!sec || (sec->flags & SEC_EXCLUDE))
3002 gp_val = 0;
3003 else
3004 gp_val = sec->output_offset + sec->output_section->vma;
3005 }
3006 }
3007
3008 /* Install whatever value we found/computed for __gp. */
3009 _bfd_set_gp_value (abfd, gp_val);
3010 }
3011
3012 /* We need to know the base of the text and data segments so that we
3013 can perform SEGREL relocations. We will record the base addresses
3014 when we encounter the first SEGREL relocation. */
3015 hppa_info->text_segment_base = (bfd_vma)-1;
3016 hppa_info->data_segment_base = (bfd_vma)-1;
3017
3018 /* HP's shared libraries have references to symbols that are not
3019 defined anywhere. The generic ELF BFD linker code will complain
3020 about such symbols.
3021
3022 So we detect the losing case and arrange for the flags on the symbol
3023 to indicate that it was never referenced. This keeps the generic
3024 ELF BFD link code happy and appears to not create any secondary
3025 problems. Ultimately we need a way to control the behavior of the
3026 generic ELF BFD link code better. */
3027 elf_link_hash_traverse (elf_hash_table (info),
3028 elf_hppa_unmark_useless_dynamic_symbols,
3029 info);
3030
3031 /* Invoke the regular ELF backend linker to do all the work. */
3032 retval = bfd_elf_final_link (abfd, info);
3033
3034 elf_link_hash_traverse (elf_hash_table (info),
3035 elf_hppa_remark_useless_dynamic_symbols,
3036 info);
3037
3038 /* If we're producing a final executable, sort the contents of the
3039 unwind section. */
3040 if (retval && !info->relocatable)
3041 retval = elf_hppa_sort_unwind (abfd);
3042
3043 return retval;
3044 }
3045
3046 /* Relocate the given INSN. VALUE should be the actual value we want
3047 to insert into the instruction, ie by this point we should not be
3048 concerned with computing an offset relative to the DLT, PC, etc.
3049 Instead this routine is meant to handle the bit manipulations needed
3050 to insert the relocation into the given instruction. */
3051
3052 static int
3053 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3054 {
3055 switch (r_type)
3056 {
3057 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3058 the "B" instruction. */
3059 case R_PARISC_PCREL22F:
3060 case R_PARISC_PCREL22C:
3061 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3062
3063 /* This is any 12 bit branch. */
3064 case R_PARISC_PCREL12F:
3065 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3066
3067 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3068 to the "B" instruction as well as BE. */
3069 case R_PARISC_PCREL17F:
3070 case R_PARISC_DIR17F:
3071 case R_PARISC_DIR17R:
3072 case R_PARISC_PCREL17C:
3073 case R_PARISC_PCREL17R:
3074 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3075
3076 /* ADDIL or LDIL instructions. */
3077 case R_PARISC_DLTREL21L:
3078 case R_PARISC_DLTIND21L:
3079 case R_PARISC_LTOFF_FPTR21L:
3080 case R_PARISC_PCREL21L:
3081 case R_PARISC_LTOFF_TP21L:
3082 case R_PARISC_DPREL21L:
3083 case R_PARISC_PLTOFF21L:
3084 case R_PARISC_DIR21L:
3085 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3086
3087 /* LDO and integer loads/stores with 14 bit displacements. */
3088 case R_PARISC_DLTREL14R:
3089 case R_PARISC_DLTREL14F:
3090 case R_PARISC_DLTIND14R:
3091 case R_PARISC_DLTIND14F:
3092 case R_PARISC_LTOFF_FPTR14R:
3093 case R_PARISC_PCREL14R:
3094 case R_PARISC_PCREL14F:
3095 case R_PARISC_LTOFF_TP14R:
3096 case R_PARISC_LTOFF_TP14F:
3097 case R_PARISC_DPREL14R:
3098 case R_PARISC_DPREL14F:
3099 case R_PARISC_PLTOFF14R:
3100 case R_PARISC_PLTOFF14F:
3101 case R_PARISC_DIR14R:
3102 case R_PARISC_DIR14F:
3103 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3104
3105 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3106 case R_PARISC_LTOFF_FPTR16F:
3107 case R_PARISC_PCREL16F:
3108 case R_PARISC_LTOFF_TP16F:
3109 case R_PARISC_GPREL16F:
3110 case R_PARISC_PLTOFF16F:
3111 case R_PARISC_DIR16F:
3112 case R_PARISC_LTOFF16F:
3113 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3114
3115 /* Doubleword loads and stores with a 14 bit displacement. */
3116 case R_PARISC_DLTREL14DR:
3117 case R_PARISC_DLTIND14DR:
3118 case R_PARISC_LTOFF_FPTR14DR:
3119 case R_PARISC_LTOFF_FPTR16DF:
3120 case R_PARISC_PCREL14DR:
3121 case R_PARISC_PCREL16DF:
3122 case R_PARISC_LTOFF_TP14DR:
3123 case R_PARISC_LTOFF_TP16DF:
3124 case R_PARISC_DPREL14DR:
3125 case R_PARISC_GPREL16DF:
3126 case R_PARISC_PLTOFF14DR:
3127 case R_PARISC_PLTOFF16DF:
3128 case R_PARISC_DIR14DR:
3129 case R_PARISC_DIR16DF:
3130 case R_PARISC_LTOFF16DF:
3131 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3132 | ((sym_value & 0x1ff8) << 1));
3133
3134 /* Floating point single word load/store instructions. */
3135 case R_PARISC_DLTREL14WR:
3136 case R_PARISC_DLTIND14WR:
3137 case R_PARISC_LTOFF_FPTR14WR:
3138 case R_PARISC_LTOFF_FPTR16WF:
3139 case R_PARISC_PCREL14WR:
3140 case R_PARISC_PCREL16WF:
3141 case R_PARISC_LTOFF_TP14WR:
3142 case R_PARISC_LTOFF_TP16WF:
3143 case R_PARISC_DPREL14WR:
3144 case R_PARISC_GPREL16WF:
3145 case R_PARISC_PLTOFF14WR:
3146 case R_PARISC_PLTOFF16WF:
3147 case R_PARISC_DIR16WF:
3148 case R_PARISC_DIR14WR:
3149 case R_PARISC_LTOFF16WF:
3150 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3151 | ((sym_value & 0x1ffc) << 1));
3152
3153 default:
3154 return insn;
3155 }
3156 }
3157
3158 /* Compute the value for a relocation (REL) during a final link stage,
3159 then insert the value into the proper location in CONTENTS.
3160
3161 VALUE is a tentative value for the relocation and may be overridden
3162 and modified here based on the specific relocation to be performed.
3163
3164 For example we do conversions for PC-relative branches in this routine
3165 or redirection of calls to external routines to stubs.
3166
3167 The work of actually applying the relocation is left to a helper
3168 routine in an attempt to reduce the complexity and size of this
3169 function. */
3170
3171 static bfd_reloc_status_type
3172 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3173 bfd *input_bfd,
3174 bfd *output_bfd,
3175 asection *input_section,
3176 bfd_byte *contents,
3177 bfd_vma value,
3178 struct bfd_link_info *info,
3179 asection *sym_sec,
3180 struct elf_link_hash_entry *eh)
3181 {
3182 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3183 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3184 bfd_vma *local_offsets;
3185 Elf_Internal_Shdr *symtab_hdr;
3186 int insn;
3187 bfd_vma max_branch_offset = 0;
3188 bfd_vma offset = rel->r_offset;
3189 bfd_signed_vma addend = rel->r_addend;
3190 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3191 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3192 unsigned int r_type = howto->type;
3193 bfd_byte *hit_data = contents + offset;
3194
3195 if (hppa_info == NULL)
3196 return bfd_reloc_notsupported;
3197
3198 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3199 local_offsets = elf_local_got_offsets (input_bfd);
3200 insn = bfd_get_32 (input_bfd, hit_data);
3201
3202 switch (r_type)
3203 {
3204 case R_PARISC_NONE:
3205 break;
3206
3207 /* Basic function call support.
3208
3209 Note for a call to a function defined in another dynamic library
3210 we want to redirect the call to a stub. */
3211
3212 /* PC relative relocs without an implicit offset. */
3213 case R_PARISC_PCREL21L:
3214 case R_PARISC_PCREL14R:
3215 case R_PARISC_PCREL14F:
3216 case R_PARISC_PCREL14WR:
3217 case R_PARISC_PCREL14DR:
3218 case R_PARISC_PCREL16F:
3219 case R_PARISC_PCREL16WF:
3220 case R_PARISC_PCREL16DF:
3221 {
3222 /* If this is a call to a function defined in another dynamic
3223 library, then redirect the call to the local stub for this
3224 function. */
3225 if (sym_sec == NULL || sym_sec->output_section == NULL)
3226 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3227 + hppa_info->stub_sec->output_section->vma);
3228
3229 /* Turn VALUE into a proper PC relative address. */
3230 value -= (offset + input_section->output_offset
3231 + input_section->output_section->vma);
3232
3233 /* Adjust for any field selectors. */
3234 if (r_type == R_PARISC_PCREL21L)
3235 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3236 else if (r_type == R_PARISC_PCREL14F
3237 || r_type == R_PARISC_PCREL16F
3238 || r_type == R_PARISC_PCREL16WF
3239 || r_type == R_PARISC_PCREL16DF)
3240 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3241 else
3242 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3243
3244 /* Apply the relocation to the given instruction. */
3245 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3246 break;
3247 }
3248
3249 case R_PARISC_PCREL12F:
3250 case R_PARISC_PCREL22F:
3251 case R_PARISC_PCREL17F:
3252 case R_PARISC_PCREL22C:
3253 case R_PARISC_PCREL17C:
3254 case R_PARISC_PCREL17R:
3255 {
3256 /* If this is a call to a function defined in another dynamic
3257 library, then redirect the call to the local stub for this
3258 function. */
3259 if (sym_sec == NULL || sym_sec->output_section == NULL)
3260 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3261 + hppa_info->stub_sec->output_section->vma);
3262
3263 /* Turn VALUE into a proper PC relative address. */
3264 value -= (offset + input_section->output_offset
3265 + input_section->output_section->vma);
3266 addend -= 8;
3267
3268 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3269 max_branch_offset = (1 << (22-1)) << 2;
3270 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3271 max_branch_offset = (1 << (17-1)) << 2;
3272 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3273 max_branch_offset = (1 << (12-1)) << 2;
3274
3275 /* Make sure we can reach the branch target. */
3276 if (max_branch_offset != 0
3277 && value + addend + max_branch_offset >= 2*max_branch_offset)
3278 {
3279 (*_bfd_error_handler)
3280 (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3281 input_bfd,
3282 input_section,
3283 offset,
3284 eh ? eh->root.root.string : "unknown");
3285 bfd_set_error (bfd_error_bad_value);
3286 return bfd_reloc_overflow;
3287 }
3288
3289 /* Adjust for any field selectors. */
3290 if (r_type == R_PARISC_PCREL17R)
3291 value = hppa_field_adjust (value, addend, e_rsel);
3292 else
3293 value = hppa_field_adjust (value, addend, e_fsel);
3294
3295 /* All branches are implicitly shifted by 2 places. */
3296 value >>= 2;
3297
3298 /* Apply the relocation to the given instruction. */
3299 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3300 break;
3301 }
3302
3303 /* Indirect references to data through the DLT. */
3304 case R_PARISC_DLTIND14R:
3305 case R_PARISC_DLTIND14F:
3306 case R_PARISC_DLTIND14DR:
3307 case R_PARISC_DLTIND14WR:
3308 case R_PARISC_DLTIND21L:
3309 case R_PARISC_LTOFF_FPTR14R:
3310 case R_PARISC_LTOFF_FPTR14DR:
3311 case R_PARISC_LTOFF_FPTR14WR:
3312 case R_PARISC_LTOFF_FPTR21L:
3313 case R_PARISC_LTOFF_FPTR16F:
3314 case R_PARISC_LTOFF_FPTR16WF:
3315 case R_PARISC_LTOFF_FPTR16DF:
3316 case R_PARISC_LTOFF_TP21L:
3317 case R_PARISC_LTOFF_TP14R:
3318 case R_PARISC_LTOFF_TP14F:
3319 case R_PARISC_LTOFF_TP14WR:
3320 case R_PARISC_LTOFF_TP14DR:
3321 case R_PARISC_LTOFF_TP16F:
3322 case R_PARISC_LTOFF_TP16WF:
3323 case R_PARISC_LTOFF_TP16DF:
3324 case R_PARISC_LTOFF16F:
3325 case R_PARISC_LTOFF16WF:
3326 case R_PARISC_LTOFF16DF:
3327 {
3328 bfd_vma off;
3329
3330 /* If this relocation was against a local symbol, then we still
3331 have not set up the DLT entry (it's not convenient to do so
3332 in the "finalize_dlt" routine because it is difficult to get
3333 to the local symbol's value).
3334
3335 So, if this is a local symbol (h == NULL), then we need to
3336 fill in its DLT entry.
3337
3338 Similarly we may still need to set up an entry in .opd for
3339 a local function which had its address taken. */
3340 if (hh == NULL)
3341 {
3342 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3343
3344 if (local_offsets == NULL)
3345 abort ();
3346
3347 /* Now do .opd creation if needed. */
3348 if (r_type == R_PARISC_LTOFF_FPTR14R
3349 || r_type == R_PARISC_LTOFF_FPTR14DR
3350 || r_type == R_PARISC_LTOFF_FPTR14WR
3351 || r_type == R_PARISC_LTOFF_FPTR21L
3352 || r_type == R_PARISC_LTOFF_FPTR16F
3353 || r_type == R_PARISC_LTOFF_FPTR16WF
3354 || r_type == R_PARISC_LTOFF_FPTR16DF)
3355 {
3356 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3357 off = local_opd_offsets[r_symndx];
3358
3359 /* The last bit records whether we've already initialised
3360 this local .opd entry. */
3361 if ((off & 1) != 0)
3362 {
3363 BFD_ASSERT (off != (bfd_vma) -1);
3364 off &= ~1;
3365 }
3366 else
3367 {
3368 local_opd_offsets[r_symndx] |= 1;
3369
3370 /* The first two words of an .opd entry are zero. */
3371 memset (hppa_info->opd_sec->contents + off, 0, 16);
3372
3373 /* The next word is the address of the function. */
3374 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3375 (hppa_info->opd_sec->contents + off + 16));
3376
3377 /* The last word is our local __gp value. */
3378 value = _bfd_get_gp_value
3379 (hppa_info->opd_sec->output_section->owner);
3380 bfd_put_64 (hppa_info->opd_sec->owner, value,
3381 (hppa_info->opd_sec->contents + off + 24));
3382 }
3383
3384 /* The DLT value is the address of the .opd entry. */
3385 value = (off
3386 + hppa_info->opd_sec->output_offset
3387 + hppa_info->opd_sec->output_section->vma);
3388 addend = 0;
3389 }
3390
3391 local_dlt_offsets = local_offsets;
3392 off = local_dlt_offsets[r_symndx];
3393
3394 if ((off & 1) != 0)
3395 {
3396 BFD_ASSERT (off != (bfd_vma) -1);
3397 off &= ~1;
3398 }
3399 else
3400 {
3401 local_dlt_offsets[r_symndx] |= 1;
3402 bfd_put_64 (hppa_info->dlt_sec->owner,
3403 value + addend,
3404 hppa_info->dlt_sec->contents + off);
3405 }
3406 }
3407 else
3408 off = hh->dlt_offset;
3409
3410 /* We want the value of the DLT offset for this symbol, not
3411 the symbol's actual address. Note that __gp may not point
3412 to the start of the DLT, so we have to compute the absolute
3413 address, then subtract out the value of __gp. */
3414 value = (off
3415 + hppa_info->dlt_sec->output_offset
3416 + hppa_info->dlt_sec->output_section->vma);
3417 value -= _bfd_get_gp_value (output_bfd);
3418
3419 /* All DLTIND relocations are basically the same at this point,
3420 except that we need different field selectors for the 21bit
3421 version vs the 14bit versions. */
3422 if (r_type == R_PARISC_DLTIND21L
3423 || r_type == R_PARISC_LTOFF_FPTR21L
3424 || r_type == R_PARISC_LTOFF_TP21L)
3425 value = hppa_field_adjust (value, 0, e_lsel);
3426 else if (r_type == R_PARISC_DLTIND14F
3427 || r_type == R_PARISC_LTOFF_FPTR16F
3428 || r_type == R_PARISC_LTOFF_FPTR16WF
3429 || r_type == R_PARISC_LTOFF_FPTR16DF
3430 || r_type == R_PARISC_LTOFF16F
3431 || r_type == R_PARISC_LTOFF16DF
3432 || r_type == R_PARISC_LTOFF16WF
3433 || r_type == R_PARISC_LTOFF_TP16F
3434 || r_type == R_PARISC_LTOFF_TP16WF
3435 || r_type == R_PARISC_LTOFF_TP16DF)
3436 value = hppa_field_adjust (value, 0, e_fsel);
3437 else
3438 value = hppa_field_adjust (value, 0, e_rsel);
3439
3440 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3441 break;
3442 }
3443
3444 case R_PARISC_DLTREL14R:
3445 case R_PARISC_DLTREL14F:
3446 case R_PARISC_DLTREL14DR:
3447 case R_PARISC_DLTREL14WR:
3448 case R_PARISC_DLTREL21L:
3449 case R_PARISC_DPREL21L:
3450 case R_PARISC_DPREL14WR:
3451 case R_PARISC_DPREL14DR:
3452 case R_PARISC_DPREL14R:
3453 case R_PARISC_DPREL14F:
3454 case R_PARISC_GPREL16F:
3455 case R_PARISC_GPREL16WF:
3456 case R_PARISC_GPREL16DF:
3457 {
3458 /* Subtract out the global pointer value to make value a DLT
3459 relative address. */
3460 value -= _bfd_get_gp_value (output_bfd);
3461
3462 /* All DLTREL relocations are basically the same at this point,
3463 except that we need different field selectors for the 21bit
3464 version vs the 14bit versions. */
3465 if (r_type == R_PARISC_DLTREL21L
3466 || r_type == R_PARISC_DPREL21L)
3467 value = hppa_field_adjust (value, addend, e_lrsel);
3468 else if (r_type == R_PARISC_DLTREL14F
3469 || r_type == R_PARISC_DPREL14F
3470 || r_type == R_PARISC_GPREL16F
3471 || r_type == R_PARISC_GPREL16WF
3472 || r_type == R_PARISC_GPREL16DF)
3473 value = hppa_field_adjust (value, addend, e_fsel);
3474 else
3475 value = hppa_field_adjust (value, addend, e_rrsel);
3476
3477 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3478 break;
3479 }
3480
3481 case R_PARISC_DIR21L:
3482 case R_PARISC_DIR17R:
3483 case R_PARISC_DIR17F:
3484 case R_PARISC_DIR14R:
3485 case R_PARISC_DIR14F:
3486 case R_PARISC_DIR14WR:
3487 case R_PARISC_DIR14DR:
3488 case R_PARISC_DIR16F:
3489 case R_PARISC_DIR16WF:
3490 case R_PARISC_DIR16DF:
3491 {
3492 /* All DIR relocations are basically the same at this point,
3493 except that branch offsets need to be divided by four, and
3494 we need different field selectors. Note that we don't
3495 redirect absolute calls to local stubs. */
3496
3497 if (r_type == R_PARISC_DIR21L)
3498 value = hppa_field_adjust (value, addend, e_lrsel);
3499 else if (r_type == R_PARISC_DIR17F
3500 || r_type == R_PARISC_DIR16F
3501 || r_type == R_PARISC_DIR16WF
3502 || r_type == R_PARISC_DIR16DF
3503 || r_type == R_PARISC_DIR14F)
3504 value = hppa_field_adjust (value, addend, e_fsel);
3505 else
3506 value = hppa_field_adjust (value, addend, e_rrsel);
3507
3508 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3509 /* All branches are implicitly shifted by 2 places. */
3510 value >>= 2;
3511
3512 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3513 break;
3514 }
3515
3516 case R_PARISC_PLTOFF21L:
3517 case R_PARISC_PLTOFF14R:
3518 case R_PARISC_PLTOFF14F:
3519 case R_PARISC_PLTOFF14WR:
3520 case R_PARISC_PLTOFF14DR:
3521 case R_PARISC_PLTOFF16F:
3522 case R_PARISC_PLTOFF16WF:
3523 case R_PARISC_PLTOFF16DF:
3524 {
3525 /* We want the value of the PLT offset for this symbol, not
3526 the symbol's actual address. Note that __gp may not point
3527 to the start of the DLT, so we have to compute the absolute
3528 address, then subtract out the value of __gp. */
3529 value = (hh->plt_offset
3530 + hppa_info->plt_sec->output_offset
3531 + hppa_info->plt_sec->output_section->vma);
3532 value -= _bfd_get_gp_value (output_bfd);
3533
3534 /* All PLTOFF relocations are basically the same at this point,
3535 except that we need different field selectors for the 21bit
3536 version vs the 14bit versions. */
3537 if (r_type == R_PARISC_PLTOFF21L)
3538 value = hppa_field_adjust (value, addend, e_lrsel);
3539 else if (r_type == R_PARISC_PLTOFF14F
3540 || r_type == R_PARISC_PLTOFF16F
3541 || r_type == R_PARISC_PLTOFF16WF
3542 || r_type == R_PARISC_PLTOFF16DF)
3543 value = hppa_field_adjust (value, addend, e_fsel);
3544 else
3545 value = hppa_field_adjust (value, addend, e_rrsel);
3546
3547 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3548 break;
3549 }
3550
3551 case R_PARISC_LTOFF_FPTR32:
3552 {
3553 /* We may still need to create the FPTR itself if it was for
3554 a local symbol. */
3555 if (hh == NULL)
3556 {
3557 /* The first two words of an .opd entry are zero. */
3558 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3559
3560 /* The next word is the address of the function. */
3561 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3562 (hppa_info->opd_sec->contents
3563 + hh->opd_offset + 16));
3564
3565 /* The last word is our local __gp value. */
3566 value = _bfd_get_gp_value
3567 (hppa_info->opd_sec->output_section->owner);
3568 bfd_put_64 (hppa_info->opd_sec->owner, value,
3569 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3570
3571 /* The DLT value is the address of the .opd entry. */
3572 value = (hh->opd_offset
3573 + hppa_info->opd_sec->output_offset
3574 + hppa_info->opd_sec->output_section->vma);
3575
3576 bfd_put_64 (hppa_info->dlt_sec->owner,
3577 value,
3578 hppa_info->dlt_sec->contents + hh->dlt_offset);
3579 }
3580
3581 /* We want the value of the DLT offset for this symbol, not
3582 the symbol's actual address. Note that __gp may not point
3583 to the start of the DLT, so we have to compute the absolute
3584 address, then subtract out the value of __gp. */
3585 value = (hh->dlt_offset
3586 + hppa_info->dlt_sec->output_offset
3587 + hppa_info->dlt_sec->output_section->vma);
3588 value -= _bfd_get_gp_value (output_bfd);
3589 bfd_put_32 (input_bfd, value, hit_data);
3590 return bfd_reloc_ok;
3591 }
3592
3593 case R_PARISC_LTOFF_FPTR64:
3594 case R_PARISC_LTOFF_TP64:
3595 {
3596 /* We may still need to create the FPTR itself if it was for
3597 a local symbol. */
3598 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3599 {
3600 /* The first two words of an .opd entry are zero. */
3601 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3602
3603 /* The next word is the address of the function. */
3604 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3605 (hppa_info->opd_sec->contents
3606 + hh->opd_offset + 16));
3607
3608 /* The last word is our local __gp value. */
3609 value = _bfd_get_gp_value
3610 (hppa_info->opd_sec->output_section->owner);
3611 bfd_put_64 (hppa_info->opd_sec->owner, value,
3612 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3613
3614 /* The DLT value is the address of the .opd entry. */
3615 value = (hh->opd_offset
3616 + hppa_info->opd_sec->output_offset
3617 + hppa_info->opd_sec->output_section->vma);
3618
3619 bfd_put_64 (hppa_info->dlt_sec->owner,
3620 value,
3621 hppa_info->dlt_sec->contents + hh->dlt_offset);
3622 }
3623
3624 /* We want the value of the DLT offset for this symbol, not
3625 the symbol's actual address. Note that __gp may not point
3626 to the start of the DLT, so we have to compute the absolute
3627 address, then subtract out the value of __gp. */
3628 value = (hh->dlt_offset
3629 + hppa_info->dlt_sec->output_offset
3630 + hppa_info->dlt_sec->output_section->vma);
3631 value -= _bfd_get_gp_value (output_bfd);
3632 bfd_put_64 (input_bfd, value, hit_data);
3633 return bfd_reloc_ok;
3634 }
3635
3636 case R_PARISC_DIR32:
3637 bfd_put_32 (input_bfd, value + addend, hit_data);
3638 return bfd_reloc_ok;
3639
3640 case R_PARISC_DIR64:
3641 bfd_put_64 (input_bfd, value + addend, hit_data);
3642 return bfd_reloc_ok;
3643
3644 case R_PARISC_GPREL64:
3645 /* Subtract out the global pointer value to make value a DLT
3646 relative address. */
3647 value -= _bfd_get_gp_value (output_bfd);
3648
3649 bfd_put_64 (input_bfd, value + addend, hit_data);
3650 return bfd_reloc_ok;
3651
3652 case R_PARISC_LTOFF64:
3653 /* We want the value of the DLT offset for this symbol, not
3654 the symbol's actual address. Note that __gp may not point
3655 to the start of the DLT, so we have to compute the absolute
3656 address, then subtract out the value of __gp. */
3657 value = (hh->dlt_offset
3658 + hppa_info->dlt_sec->output_offset
3659 + hppa_info->dlt_sec->output_section->vma);
3660 value -= _bfd_get_gp_value (output_bfd);
3661
3662 bfd_put_64 (input_bfd, value + addend, hit_data);
3663 return bfd_reloc_ok;
3664
3665 case R_PARISC_PCREL32:
3666 {
3667 /* If this is a call to a function defined in another dynamic
3668 library, then redirect the call to the local stub for this
3669 function. */
3670 if (sym_sec == NULL || sym_sec->output_section == NULL)
3671 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3672 + hppa_info->stub_sec->output_section->vma);
3673
3674 /* Turn VALUE into a proper PC relative address. */
3675 value -= (offset + input_section->output_offset
3676 + input_section->output_section->vma);
3677
3678 value += addend;
3679 value -= 8;
3680 bfd_put_32 (input_bfd, value, hit_data);
3681 return bfd_reloc_ok;
3682 }
3683
3684 case R_PARISC_PCREL64:
3685 {
3686 /* If this is a call to a function defined in another dynamic
3687 library, then redirect the call to the local stub for this
3688 function. */
3689 if (sym_sec == NULL || sym_sec->output_section == NULL)
3690 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3691 + hppa_info->stub_sec->output_section->vma);
3692
3693 /* Turn VALUE into a proper PC relative address. */
3694 value -= (offset + input_section->output_offset
3695 + input_section->output_section->vma);
3696
3697 value += addend;
3698 value -= 8;
3699 bfd_put_64 (input_bfd, value, hit_data);
3700 return bfd_reloc_ok;
3701 }
3702
3703 case R_PARISC_FPTR64:
3704 {
3705 bfd_vma off;
3706
3707 /* We may still need to create the FPTR itself if it was for
3708 a local symbol. */
3709 if (hh == NULL)
3710 {
3711 bfd_vma *local_opd_offsets;
3712
3713 if (local_offsets == NULL)
3714 abort ();
3715
3716 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3717 off = local_opd_offsets[r_symndx];
3718
3719 /* The last bit records whether we've already initialised
3720 this local .opd entry. */
3721 if ((off & 1) != 0)
3722 {
3723 BFD_ASSERT (off != (bfd_vma) -1);
3724 off &= ~1;
3725 }
3726 else
3727 {
3728 /* The first two words of an .opd entry are zero. */
3729 memset (hppa_info->opd_sec->contents + off, 0, 16);
3730
3731 /* The next word is the address of the function. */
3732 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3733 (hppa_info->opd_sec->contents + off + 16));
3734
3735 /* The last word is our local __gp value. */
3736 value = _bfd_get_gp_value
3737 (hppa_info->opd_sec->output_section->owner);
3738 bfd_put_64 (hppa_info->opd_sec->owner, value,
3739 hppa_info->opd_sec->contents + off + 24);
3740 }
3741 }
3742 else
3743 off = hh->opd_offset;
3744
3745 if (hh == NULL || hh->want_opd)
3746 /* We want the value of the OPD offset for this symbol. */
3747 value = (off
3748 + hppa_info->opd_sec->output_offset
3749 + hppa_info->opd_sec->output_section->vma);
3750 else
3751 /* We want the address of the symbol. */
3752 value += addend;
3753
3754 bfd_put_64 (input_bfd, value, hit_data);
3755 return bfd_reloc_ok;
3756 }
3757
3758 case R_PARISC_SECREL32:
3759 if (sym_sec)
3760 value -= sym_sec->output_section->vma;
3761 bfd_put_32 (input_bfd, value + addend, hit_data);
3762 return bfd_reloc_ok;
3763
3764 case R_PARISC_SEGREL32:
3765 case R_PARISC_SEGREL64:
3766 {
3767 /* If this is the first SEGREL relocation, then initialize
3768 the segment base values. */
3769 if (hppa_info->text_segment_base == (bfd_vma) -1)
3770 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3771 hppa_info);
3772
3773 /* VALUE holds the absolute address. We want to include the
3774 addend, then turn it into a segment relative address.
3775
3776 The segment is derived from SYM_SEC. We assume that there are
3777 only two segments of note in the resulting executable/shlib.
3778 A readonly segment (.text) and a readwrite segment (.data). */
3779 value += addend;
3780
3781 if (sym_sec->flags & SEC_CODE)
3782 value -= hppa_info->text_segment_base;
3783 else
3784 value -= hppa_info->data_segment_base;
3785
3786 if (r_type == R_PARISC_SEGREL32)
3787 bfd_put_32 (input_bfd, value, hit_data);
3788 else
3789 bfd_put_64 (input_bfd, value, hit_data);
3790 return bfd_reloc_ok;
3791 }
3792
3793 /* Something we don't know how to handle. */
3794 default:
3795 return bfd_reloc_notsupported;
3796 }
3797
3798 /* Update the instruction word. */
3799 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3800 return bfd_reloc_ok;
3801 }
3802
3803 /* Relocate an HPPA ELF section. */
3804
3805 static bfd_boolean
3806 elf64_hppa_relocate_section (bfd *output_bfd,
3807 struct bfd_link_info *info,
3808 bfd *input_bfd,
3809 asection *input_section,
3810 bfd_byte *contents,
3811 Elf_Internal_Rela *relocs,
3812 Elf_Internal_Sym *local_syms,
3813 asection **local_sections)
3814 {
3815 Elf_Internal_Shdr *symtab_hdr;
3816 Elf_Internal_Rela *rel;
3817 Elf_Internal_Rela *relend;
3818 struct elf64_hppa_link_hash_table *hppa_info;
3819
3820 hppa_info = hppa_link_hash_table (info);
3821 if (hppa_info == NULL)
3822 return FALSE;
3823
3824 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3825
3826 rel = relocs;
3827 relend = relocs + input_section->reloc_count;
3828 for (; rel < relend; rel++)
3829 {
3830 int r_type;
3831 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3832 unsigned long r_symndx;
3833 struct elf_link_hash_entry *eh;
3834 Elf_Internal_Sym *sym;
3835 asection *sym_sec;
3836 bfd_vma relocation;
3837 bfd_reloc_status_type r;
3838
3839 r_type = ELF_R_TYPE (rel->r_info);
3840 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3841 {
3842 bfd_set_error (bfd_error_bad_value);
3843 return FALSE;
3844 }
3845 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3846 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3847 continue;
3848
3849 /* This is a final link. */
3850 r_symndx = ELF_R_SYM (rel->r_info);
3851 eh = NULL;
3852 sym = NULL;
3853 sym_sec = NULL;
3854 if (r_symndx < symtab_hdr->sh_info)
3855 {
3856 /* This is a local symbol, hh defaults to NULL. */
3857 sym = local_syms + r_symndx;
3858 sym_sec = local_sections[r_symndx];
3859 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3860 }
3861 else
3862 {
3863 /* This is not a local symbol. */
3864 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3865
3866 /* It seems this can happen with erroneous or unsupported
3867 input (mixing a.out and elf in an archive, for example.) */
3868 if (sym_hashes == NULL)
3869 return FALSE;
3870
3871 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3872
3873 while (eh->root.type == bfd_link_hash_indirect
3874 || eh->root.type == bfd_link_hash_warning)
3875 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3876
3877 relocation = 0;
3878 if (eh->root.type == bfd_link_hash_defined
3879 || eh->root.type == bfd_link_hash_defweak)
3880 {
3881 sym_sec = eh->root.u.def.section;
3882 if (sym_sec != NULL
3883 && sym_sec->output_section != NULL)
3884 relocation = (eh->root.u.def.value
3885 + sym_sec->output_section->vma
3886 + sym_sec->output_offset);
3887 }
3888 else if (eh->root.type == bfd_link_hash_undefweak)
3889 ;
3890 else if (info->unresolved_syms_in_objects == RM_IGNORE
3891 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3892 ;
3893 else if (!info->relocatable
3894 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3895 continue;
3896 else if (!info->relocatable)
3897 {
3898 bfd_boolean err;
3899 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3900 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3901 if (!info->callbacks->undefined_symbol (info,
3902 eh->root.root.string,
3903 input_bfd,
3904 input_section,
3905 rel->r_offset, err))
3906 return FALSE;
3907 }
3908
3909 if (!info->relocatable
3910 && relocation == 0
3911 && eh->root.type != bfd_link_hash_defined
3912 && eh->root.type != bfd_link_hash_defweak
3913 && eh->root.type != bfd_link_hash_undefweak)
3914 {
3915 if (info->unresolved_syms_in_objects == RM_IGNORE
3916 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3917 && eh->type == STT_PARISC_MILLI)
3918 {
3919 if (! info->callbacks->undefined_symbol
3920 (info, eh_name (eh), input_bfd,
3921 input_section, rel->r_offset, FALSE))
3922 return FALSE;
3923 }
3924 }
3925 }
3926
3927 if (sym_sec != NULL && discarded_section (sym_sec))
3928 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3929 rel, 1, relend, howto, 0, contents);
3930
3931 if (info->relocatable)
3932 continue;
3933
3934 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3935 input_section, contents,
3936 relocation, info, sym_sec,
3937 eh);
3938
3939 if (r != bfd_reloc_ok)
3940 {
3941 switch (r)
3942 {
3943 default:
3944 abort ();
3945 case bfd_reloc_overflow:
3946 {
3947 const char *sym_name;
3948
3949 if (eh != NULL)
3950 sym_name = NULL;
3951 else
3952 {
3953 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3954 symtab_hdr->sh_link,
3955 sym->st_name);
3956 if (sym_name == NULL)
3957 return FALSE;
3958 if (*sym_name == '\0')
3959 sym_name = bfd_section_name (input_bfd, sym_sec);
3960 }
3961
3962 if (!((*info->callbacks->reloc_overflow)
3963 (info, (eh ? &eh->root : NULL), sym_name,
3964 howto->name, (bfd_vma) 0, input_bfd,
3965 input_section, rel->r_offset)))
3966 return FALSE;
3967 }
3968 break;
3969 }
3970 }
3971 }
3972 return TRUE;
3973 }
3974
3975 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3976 {
3977 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3978 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3979 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3980 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3981 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3982 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3983 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3984 { NULL, 0, 0, 0, 0 }
3985 };
3986
3987 /* The hash bucket size is the standard one, namely 4. */
3988
3989 const struct elf_size_info hppa64_elf_size_info =
3990 {
3991 sizeof (Elf64_External_Ehdr),
3992 sizeof (Elf64_External_Phdr),
3993 sizeof (Elf64_External_Shdr),
3994 sizeof (Elf64_External_Rel),
3995 sizeof (Elf64_External_Rela),
3996 sizeof (Elf64_External_Sym),
3997 sizeof (Elf64_External_Dyn),
3998 sizeof (Elf_External_Note),
3999 4,
4000 1,
4001 64, 3,
4002 ELFCLASS64, EV_CURRENT,
4003 bfd_elf64_write_out_phdrs,
4004 bfd_elf64_write_shdrs_and_ehdr,
4005 bfd_elf64_checksum_contents,
4006 bfd_elf64_write_relocs,
4007 bfd_elf64_swap_symbol_in,
4008 bfd_elf64_swap_symbol_out,
4009 bfd_elf64_slurp_reloc_table,
4010 bfd_elf64_slurp_symbol_table,
4011 bfd_elf64_swap_dyn_in,
4012 bfd_elf64_swap_dyn_out,
4013 bfd_elf64_swap_reloc_in,
4014 bfd_elf64_swap_reloc_out,
4015 bfd_elf64_swap_reloca_in,
4016 bfd_elf64_swap_reloca_out
4017 };
4018
4019 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
4020 #define TARGET_BIG_NAME "elf64-hppa"
4021 #define ELF_ARCH bfd_arch_hppa
4022 #define ELF_TARGET_ID HPPA64_ELF_DATA
4023 #define ELF_MACHINE_CODE EM_PARISC
4024 /* This is not strictly correct. The maximum page size for PA2.0 is
4025 64M. But everything still uses 4k. */
4026 #define ELF_MAXPAGESIZE 0x1000
4027 #define ELF_OSABI ELFOSABI_HPUX
4028
4029 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4030 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4031 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4032 #define elf_info_to_howto elf_hppa_info_to_howto
4033 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4034
4035 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4036 #define elf_backend_object_p elf64_hppa_object_p
4037 #define elf_backend_final_write_processing \
4038 elf_hppa_final_write_processing
4039 #define elf_backend_fake_sections elf_hppa_fake_sections
4040 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4041
4042 #define elf_backend_relocate_section elf_hppa_relocate_section
4043
4044 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4045
4046 #define elf_backend_create_dynamic_sections \
4047 elf64_hppa_create_dynamic_sections
4048 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4049
4050 #define elf_backend_omit_section_dynsym \
4051 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4052 #define elf_backend_adjust_dynamic_symbol \
4053 elf64_hppa_adjust_dynamic_symbol
4054
4055 #define elf_backend_size_dynamic_sections \
4056 elf64_hppa_size_dynamic_sections
4057
4058 #define elf_backend_finish_dynamic_symbol \
4059 elf64_hppa_finish_dynamic_symbol
4060 #define elf_backend_finish_dynamic_sections \
4061 elf64_hppa_finish_dynamic_sections
4062 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4063 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4064
4065 /* Stuff for the BFD linker: */
4066 #define bfd_elf64_bfd_link_hash_table_create \
4067 elf64_hppa_hash_table_create
4068
4069 #define elf_backend_check_relocs \
4070 elf64_hppa_check_relocs
4071
4072 #define elf_backend_size_info \
4073 hppa64_elf_size_info
4074
4075 #define elf_backend_additional_program_headers \
4076 elf64_hppa_additional_program_headers
4077
4078 #define elf_backend_modify_segment_map \
4079 elf64_hppa_modify_segment_map
4080
4081 #define elf_backend_link_output_symbol_hook \
4082 elf64_hppa_link_output_symbol_hook
4083
4084 #define elf_backend_want_got_plt 0
4085 #define elf_backend_plt_readonly 0
4086 #define elf_backend_want_plt_sym 0
4087 #define elf_backend_got_header_size 0
4088 #define elf_backend_type_change_ok TRUE
4089 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4090 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4091 #define elf_backend_rela_normal 1
4092 #define elf_backend_special_sections elf64_hppa_special_sections
4093 #define elf_backend_action_discarded elf_hppa_action_discarded
4094 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4095
4096 #define elf64_bed elf64_hppa_hpux_bed
4097
4098 #include "elf64-target.h"
4099
4100 #undef TARGET_BIG_SYM
4101 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
4102 #undef TARGET_BIG_NAME
4103 #define TARGET_BIG_NAME "elf64-hppa-linux"
4104 #undef ELF_OSABI
4105 #define ELF_OSABI ELFOSABI_GNU
4106 #undef elf64_bed
4107 #define elf64_bed elf64_hppa_linux_bed
4108
4109 #include "elf64-target.h"