]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
SHF_GNU_MBIND requires ELFOSABI_GNU
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147 };
148
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
197
198 static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
201
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205 static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
207
208 static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
225
226 static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229 static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
232
233 static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
235
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
238
239 static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242 static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251 static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
253
254 /* Initialize an entry in the link hash table. */
255
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
259 const char *string)
260 {
261 /* Allocate the structure if it has not already been allocated by a
262 subclass. */
263 if (entry == NULL)
264 {
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
267 if (entry == NULL)
268 return entry;
269 }
270
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273 if (entry != NULL)
274 {
275 struct elf64_hppa_link_hash_entry *hh;
276
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282 }
283
284 return entry;
285 }
286
287 /* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
290
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
296
297 htab = bfd_zmalloc (amt);
298 if (htab == NULL)
299 return NULL;
300
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
304 HPPA64_ELF_DATA))
305 {
306 free (htab);
307 return NULL;
308 }
309
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
312
313 return &htab->root.root;
314 }
315 \f
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317
318 Additionally we set the default architecture and machine. */
319 static bfd_boolean
320 elf64_hppa_object_p (bfd *abfd)
321 {
322 Elf_Internal_Ehdr * i_ehdrp;
323 unsigned int flags;
324
325 i_ehdrp = elf_elfheader (abfd);
326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327 {
328 /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 but the kernel produces corefiles with OSABI=SysV. */
330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 return FALSE;
333 }
334 else
335 {
336 /* HPUX produces binaries with OSABI=HPUX,
337 but the kernel produces corefiles with OSABI=SysV. */
338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 return FALSE;
341 }
342
343 flags = i_ehdrp->e_flags;
344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345 {
346 case EFA_PARISC_1_0:
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348 case EFA_PARISC_1_1:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350 case EFA_PARISC_2_0:
351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353 else
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357 }
358 /* Don't be fussy. */
359 return TRUE;
360 }
361
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364 static bfd_boolean
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 Elf_Internal_Shdr *hdr,
367 const char *name,
368 int shindex)
369 {
370 switch (hdr->sh_type)
371 {
372 case SHT_PARISC_EXT:
373 if (strcmp (name, ".PARISC.archext") != 0)
374 return FALSE;
375 break;
376 case SHT_PARISC_UNWIND:
377 if (strcmp (name, ".PARISC.unwind") != 0)
378 return FALSE;
379 break;
380 case SHT_PARISC_DOC:
381 case SHT_PARISC_ANNOT:
382 default:
383 return FALSE;
384 }
385
386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387 return FALSE;
388
389 return TRUE;
390 }
391
392 /* SEC is a section containing relocs for an input BFD when linking; return
393 a suitable section for holding relocs in the output BFD for a link. */
394
395 static bfd_boolean
396 get_reloc_section (bfd *abfd,
397 struct elf64_hppa_link_hash_table *hppa_info,
398 asection *sec)
399 {
400 const char *srel_name;
401 asection *srel;
402 bfd *dynobj;
403
404 srel_name = (bfd_elf_string_from_elf_section
405 (abfd, elf_elfheader(abfd)->e_shstrndx,
406 _bfd_elf_single_rel_hdr(sec)->sh_name));
407 if (srel_name == NULL)
408 return FALSE;
409
410 dynobj = hppa_info->root.dynobj;
411 if (!dynobj)
412 hppa_info->root.dynobj = dynobj = abfd;
413
414 srel = bfd_get_linker_section (dynobj, srel_name);
415 if (srel == NULL)
416 {
417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 (SEC_ALLOC
419 | SEC_LOAD
420 | SEC_HAS_CONTENTS
421 | SEC_IN_MEMORY
422 | SEC_LINKER_CREATED
423 | SEC_READONLY));
424 if (srel == NULL
425 || !bfd_set_section_alignment (dynobj, srel, 3))
426 return FALSE;
427 }
428
429 hppa_info->other_rel_sec = srel;
430 return TRUE;
431 }
432
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434
435 We use this to keep a record of all the FPTR relocations against a
436 particular symbol so that we can create FPTR relocations in the
437 output file. */
438
439 static bfd_boolean
440 count_dyn_reloc (bfd *abfd,
441 struct elf64_hppa_link_hash_entry *hh,
442 int type,
443 asection *sec,
444 int sec_symndx,
445 bfd_vma offset,
446 bfd_vma addend)
447 {
448 struct elf64_hppa_dyn_reloc_entry *rent;
449
450 rent = (struct elf64_hppa_dyn_reloc_entry *)
451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452 if (!rent)
453 return FALSE;
454
455 rent->next = hh->reloc_entries;
456 rent->type = type;
457 rent->sec = sec;
458 rent->sec_symndx = sec_symndx;
459 rent->offset = offset;
460 rent->addend = addend;
461 hh->reloc_entries = rent;
462
463 return TRUE;
464 }
465
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467 for ABFD. Returns NULL if the storage allocation fails. */
468
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473 bfd_signed_vma *local_refcounts;
474
475 local_refcounts = elf_local_got_refcounts (abfd);
476 if (local_refcounts == NULL)
477 {
478 bfd_size_type size;
479
480 /* Allocate space for local DLT, PLT and OPD reference
481 counts. Done this way to save polluting elf_obj_tdata
482 with another target specific pointer. */
483 size = symtab_hdr->sh_info;
484 size *= 3 * sizeof (bfd_signed_vma);
485 local_refcounts = bfd_zalloc (abfd, size);
486 elf_local_got_refcounts (abfd) = local_refcounts;
487 }
488 return local_refcounts;
489 }
490
491 /* Scan the RELOCS and record the type of dynamic entries that each
492 referenced symbol needs. */
493
494 static bfd_boolean
495 elf64_hppa_check_relocs (bfd *abfd,
496 struct bfd_link_info *info,
497 asection *sec,
498 const Elf_Internal_Rela *relocs)
499 {
500 struct elf64_hppa_link_hash_table *hppa_info;
501 const Elf_Internal_Rela *relend;
502 Elf_Internal_Shdr *symtab_hdr;
503 const Elf_Internal_Rela *rel;
504 unsigned int sec_symndx;
505
506 if (bfd_link_relocatable (info))
507 return TRUE;
508
509 /* If this is the first dynamic object found in the link, create
510 the special sections required for dynamic linking. */
511 if (! elf_hash_table (info)->dynamic_sections_created)
512 {
513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 return FALSE;
515 }
516
517 hppa_info = hppa_link_hash_table (info);
518 if (hppa_info == NULL)
519 return FALSE;
520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521
522 /* If necessary, build a new table holding section symbols indices
523 for this BFD. */
524
525 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526 {
527 unsigned long i;
528 unsigned int highest_shndx;
529 Elf_Internal_Sym *local_syms = NULL;
530 Elf_Internal_Sym *isym, *isymend;
531 bfd_size_type amt;
532
533 /* We're done with the old cache of section index to section symbol
534 index information. Free it.
535
536 ?!? Note we leak the last section_syms array. Presumably we
537 could free it in one of the later routines in this file. */
538 if (hppa_info->section_syms)
539 free (hppa_info->section_syms);
540
541 /* Read this BFD's local symbols. */
542 if (symtab_hdr->sh_info != 0)
543 {
544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 if (local_syms == NULL)
546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 symtab_hdr->sh_info, 0,
548 NULL, NULL, NULL);
549 if (local_syms == NULL)
550 return FALSE;
551 }
552
553 /* Record the highest section index referenced by the local symbols. */
554 highest_shndx = 0;
555 isymend = local_syms + symtab_hdr->sh_info;
556 for (isym = local_syms; isym < isymend; isym++)
557 {
558 if (isym->st_shndx > highest_shndx
559 && isym->st_shndx < SHN_LORESERVE)
560 highest_shndx = isym->st_shndx;
561 }
562
563 /* Allocate an array to hold the section index to section symbol index
564 mapping. Bump by one since we start counting at zero. */
565 highest_shndx++;
566 amt = highest_shndx;
567 amt *= sizeof (int);
568 hppa_info->section_syms = (int *) bfd_malloc (amt);
569
570 /* Now walk the local symbols again. If we find a section symbol,
571 record the index of the symbol into the section_syms array. */
572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 {
574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 hppa_info->section_syms[isym->st_shndx] = i;
576 }
577
578 /* We are finished with the local symbols. */
579 if (local_syms != NULL
580 && symtab_hdr->contents != (unsigned char *) local_syms)
581 {
582 if (! info->keep_memory)
583 free (local_syms);
584 else
585 {
586 /* Cache the symbols for elf_link_input_bfd. */
587 symtab_hdr->contents = (unsigned char *) local_syms;
588 }
589 }
590
591 /* Record which BFD we built the section_syms mapping for. */
592 hppa_info->section_syms_bfd = abfd;
593 }
594
595 /* Record the symbol index for this input section. We may need it for
596 relocations when building shared libraries. When not building shared
597 libraries this value is never really used, but assign it to zero to
598 prevent out of bounds memory accesses in other routines. */
599 if (bfd_link_pic (info))
600 {
601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602
603 /* If we did not find a section symbol for this section, then
604 something went terribly wrong above. */
605 if (sec_symndx == SHN_BAD)
606 return FALSE;
607
608 if (sec_symndx < SHN_LORESERVE)
609 sec_symndx = hppa_info->section_syms[sec_symndx];
610 else
611 sec_symndx = 0;
612 }
613 else
614 sec_symndx = 0;
615
616 relend = relocs + sec->reloc_count;
617 for (rel = relocs; rel < relend; ++rel)
618 {
619 enum
620 {
621 NEED_DLT = 1,
622 NEED_PLT = 2,
623 NEED_STUB = 4,
624 NEED_OPD = 8,
625 NEED_DYNREL = 16,
626 };
627
628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629 struct elf64_hppa_link_hash_entry *hh;
630 int need_entry;
631 bfd_boolean maybe_dynamic;
632 int dynrel_type = R_PARISC_NONE;
633 static reloc_howto_type *howto;
634
635 if (r_symndx >= symtab_hdr->sh_info)
636 {
637 /* We're dealing with a global symbol -- find its hash entry
638 and mark it as being referenced. */
639 long indx = r_symndx - symtab_hdr->sh_info;
640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 while (hh->eh.root.type == bfd_link_hash_indirect
642 || hh->eh.root.type == bfd_link_hash_warning)
643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644
645 /* PR15323, ref flags aren't set for references in the same
646 object. */
647 hh->eh.ref_regular = 1;
648 }
649 else
650 hh = NULL;
651
652 /* We can only get preliminary data on whether a symbol is
653 locally or externally defined, as not all of the input files
654 have yet been processed. Do something with what we know, as
655 this may help reduce memory usage and processing time later. */
656 maybe_dynamic = FALSE;
657 if (hh && ((bfd_link_pic (info)
658 && (!info->symbolic
659 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
660 || !hh->eh.def_regular
661 || hh->eh.root.type == bfd_link_hash_defweak))
662 maybe_dynamic = TRUE;
663
664 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
665 need_entry = 0;
666 switch (howto->type)
667 {
668 /* These are simple indirect references to symbols through the
669 DLT. We need to create a DLT entry for any symbols which
670 appears in a DLTIND relocation. */
671 case R_PARISC_DLTIND21L:
672 case R_PARISC_DLTIND14R:
673 case R_PARISC_DLTIND14F:
674 case R_PARISC_DLTIND14WR:
675 case R_PARISC_DLTIND14DR:
676 need_entry = NEED_DLT;
677 break;
678
679 /* ?!? These need a DLT entry. But I have no idea what to do with
680 the "link time TP value. */
681 case R_PARISC_LTOFF_TP21L:
682 case R_PARISC_LTOFF_TP14R:
683 case R_PARISC_LTOFF_TP14F:
684 case R_PARISC_LTOFF_TP64:
685 case R_PARISC_LTOFF_TP14WR:
686 case R_PARISC_LTOFF_TP14DR:
687 case R_PARISC_LTOFF_TP16F:
688 case R_PARISC_LTOFF_TP16WF:
689 case R_PARISC_LTOFF_TP16DF:
690 need_entry = NEED_DLT;
691 break;
692
693 /* These are function calls. Depending on their precise target we
694 may need to make a stub for them. The stub uses the PLT, so we
695 need to create PLT entries for these symbols too. */
696 case R_PARISC_PCREL12F:
697 case R_PARISC_PCREL17F:
698 case R_PARISC_PCREL22F:
699 case R_PARISC_PCREL32:
700 case R_PARISC_PCREL64:
701 case R_PARISC_PCREL21L:
702 case R_PARISC_PCREL17R:
703 case R_PARISC_PCREL17C:
704 case R_PARISC_PCREL14R:
705 case R_PARISC_PCREL14F:
706 case R_PARISC_PCREL22C:
707 case R_PARISC_PCREL14WR:
708 case R_PARISC_PCREL14DR:
709 case R_PARISC_PCREL16F:
710 case R_PARISC_PCREL16WF:
711 case R_PARISC_PCREL16DF:
712 /* Function calls might need to go through the .plt, and
713 might need a long branch stub. */
714 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
715 need_entry = (NEED_PLT | NEED_STUB);
716 else
717 need_entry = 0;
718 break;
719
720 case R_PARISC_PLTOFF21L:
721 case R_PARISC_PLTOFF14R:
722 case R_PARISC_PLTOFF14F:
723 case R_PARISC_PLTOFF14WR:
724 case R_PARISC_PLTOFF14DR:
725 case R_PARISC_PLTOFF16F:
726 case R_PARISC_PLTOFF16WF:
727 case R_PARISC_PLTOFF16DF:
728 need_entry = (NEED_PLT);
729 break;
730
731 case R_PARISC_DIR64:
732 if (bfd_link_pic (info) || maybe_dynamic)
733 need_entry = (NEED_DYNREL);
734 dynrel_type = R_PARISC_DIR64;
735 break;
736
737 /* This is an indirect reference through the DLT to get the address
738 of a OPD descriptor. Thus we need to make a DLT entry that points
739 to an OPD entry. */
740 case R_PARISC_LTOFF_FPTR21L:
741 case R_PARISC_LTOFF_FPTR14R:
742 case R_PARISC_LTOFF_FPTR14WR:
743 case R_PARISC_LTOFF_FPTR14DR:
744 case R_PARISC_LTOFF_FPTR32:
745 case R_PARISC_LTOFF_FPTR64:
746 case R_PARISC_LTOFF_FPTR16F:
747 case R_PARISC_LTOFF_FPTR16WF:
748 case R_PARISC_LTOFF_FPTR16DF:
749 if (bfd_link_pic (info) || maybe_dynamic)
750 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
751 else
752 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 dynrel_type = R_PARISC_FPTR64;
754 break;
755
756 /* This is a simple OPD entry. */
757 case R_PARISC_FPTR64:
758 if (bfd_link_pic (info) || maybe_dynamic)
759 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
760 else
761 need_entry = (NEED_OPD | NEED_PLT);
762 dynrel_type = R_PARISC_FPTR64;
763 break;
764
765 /* Add more cases as needed. */
766 }
767
768 if (!need_entry)
769 continue;
770
771 if (hh)
772 {
773 /* Stash away enough information to be able to find this symbol
774 regardless of whether or not it is local or global. */
775 hh->owner = abfd;
776 hh->sym_indx = r_symndx;
777 }
778
779 /* Create what's needed. */
780 if (need_entry & NEED_DLT)
781 {
782 /* Allocate space for a DLT entry, as well as a dynamic
783 relocation for this entry. */
784 if (! hppa_info->dlt_sec
785 && ! get_dlt (abfd, info, hppa_info))
786 goto err_out;
787
788 if (hh != NULL)
789 {
790 hh->want_dlt = 1;
791 hh->eh.got.refcount += 1;
792 }
793 else
794 {
795 bfd_signed_vma *local_dlt_refcounts;
796
797 /* This is a DLT entry for a local symbol. */
798 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
799 if (local_dlt_refcounts == NULL)
800 return FALSE;
801 local_dlt_refcounts[r_symndx] += 1;
802 }
803 }
804
805 if (need_entry & NEED_PLT)
806 {
807 if (! hppa_info->plt_sec
808 && ! get_plt (abfd, info, hppa_info))
809 goto err_out;
810
811 if (hh != NULL)
812 {
813 hh->want_plt = 1;
814 hh->eh.needs_plt = 1;
815 hh->eh.plt.refcount += 1;
816 }
817 else
818 {
819 bfd_signed_vma *local_dlt_refcounts;
820 bfd_signed_vma *local_plt_refcounts;
821
822 /* This is a PLT entry for a local symbol. */
823 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
824 if (local_dlt_refcounts == NULL)
825 return FALSE;
826 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
827 local_plt_refcounts[r_symndx] += 1;
828 }
829 }
830
831 if (need_entry & NEED_STUB)
832 {
833 if (! hppa_info->stub_sec
834 && ! get_stub (abfd, info, hppa_info))
835 goto err_out;
836 if (hh)
837 hh->want_stub = 1;
838 }
839
840 if (need_entry & NEED_OPD)
841 {
842 if (! hppa_info->opd_sec
843 && ! get_opd (abfd, info, hppa_info))
844 goto err_out;
845
846 /* FPTRs are not allocated by the dynamic linker for PA64,
847 though it is possible that will change in the future. */
848
849 if (hh != NULL)
850 hh->want_opd = 1;
851 else
852 {
853 bfd_signed_vma *local_dlt_refcounts;
854 bfd_signed_vma *local_opd_refcounts;
855
856 /* This is a OPD for a local symbol. */
857 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
858 if (local_dlt_refcounts == NULL)
859 return FALSE;
860 local_opd_refcounts = (local_dlt_refcounts
861 + 2 * symtab_hdr->sh_info);
862 local_opd_refcounts[r_symndx] += 1;
863 }
864 }
865
866 /* Add a new dynamic relocation to the chain of dynamic
867 relocations for this symbol. */
868 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
869 {
870 if (! hppa_info->other_rel_sec
871 && ! get_reloc_section (abfd, hppa_info, sec))
872 goto err_out;
873
874 /* Count dynamic relocations against global symbols. */
875 if (hh != NULL
876 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
877 sec_symndx, rel->r_offset, rel->r_addend))
878 goto err_out;
879
880 /* If we are building a shared library and we just recorded
881 a dynamic R_PARISC_FPTR64 relocation, then make sure the
882 section symbol for this section ends up in the dynamic
883 symbol table. */
884 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
885 && ! (bfd_elf_link_record_local_dynamic_symbol
886 (info, abfd, sec_symndx)))
887 return FALSE;
888 }
889 }
890
891 return TRUE;
892
893 err_out:
894 return FALSE;
895 }
896
897 struct elf64_hppa_allocate_data
898 {
899 struct bfd_link_info *info;
900 bfd_size_type ofs;
901 };
902
903 /* Should we do dynamic things to this symbol? */
904
905 static bfd_boolean
906 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
907 struct bfd_link_info *info)
908 {
909 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
910 and relocations that retrieve a function descriptor? Assume the
911 worst for now. */
912 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
913 {
914 /* ??? Why is this here and not elsewhere is_local_label_name. */
915 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
916 return FALSE;
917
918 return TRUE;
919 }
920 else
921 return FALSE;
922 }
923
924 /* Mark all functions exported by this file so that we can later allocate
925 entries in .opd for them. */
926
927 static bfd_boolean
928 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
929 {
930 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
931 struct bfd_link_info *info = (struct bfd_link_info *)data;
932 struct elf64_hppa_link_hash_table *hppa_info;
933
934 hppa_info = hppa_link_hash_table (info);
935 if (hppa_info == NULL)
936 return FALSE;
937
938 if (eh
939 && (eh->root.type == bfd_link_hash_defined
940 || eh->root.type == bfd_link_hash_defweak)
941 && eh->root.u.def.section->output_section != NULL
942 && eh->type == STT_FUNC)
943 {
944 if (! hppa_info->opd_sec
945 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
946 return FALSE;
947
948 hh->want_opd = 1;
949
950 /* Put a flag here for output_symbol_hook. */
951 hh->st_shndx = -1;
952 eh->needs_plt = 1;
953 }
954
955 return TRUE;
956 }
957
958 /* Allocate space for a DLT entry. */
959
960 static bfd_boolean
961 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
962 {
963 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
964 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
965
966 if (hh->want_dlt)
967 {
968 if (bfd_link_pic (x->info))
969 {
970 /* Possibly add the symbol to the local dynamic symbol
971 table since we might need to create a dynamic relocation
972 against it. */
973 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
974 {
975 bfd *owner = eh->root.u.def.section->owner;
976
977 if (! (bfd_elf_link_record_local_dynamic_symbol
978 (x->info, owner, hh->sym_indx)))
979 return FALSE;
980 }
981 }
982
983 hh->dlt_offset = x->ofs;
984 x->ofs += DLT_ENTRY_SIZE;
985 }
986 return TRUE;
987 }
988
989 /* Allocate space for a DLT.PLT entry. */
990
991 static bfd_boolean
992 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
993 {
994 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
995 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
996
997 if (hh->want_plt
998 && elf64_hppa_dynamic_symbol_p (eh, x->info)
999 && !((eh->root.type == bfd_link_hash_defined
1000 || eh->root.type == bfd_link_hash_defweak)
1001 && eh->root.u.def.section->output_section != NULL))
1002 {
1003 hh->plt_offset = x->ofs;
1004 x->ofs += PLT_ENTRY_SIZE;
1005 if (hh->plt_offset < 0x2000)
1006 {
1007 struct elf64_hppa_link_hash_table *hppa_info;
1008
1009 hppa_info = hppa_link_hash_table (x->info);
1010 if (hppa_info == NULL)
1011 return FALSE;
1012
1013 hppa_info->gp_offset = hh->plt_offset;
1014 }
1015 }
1016 else
1017 hh->want_plt = 0;
1018
1019 return TRUE;
1020 }
1021
1022 /* Allocate space for a STUB entry. */
1023
1024 static bfd_boolean
1025 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1026 {
1027 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1028 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029
1030 if (hh->want_stub
1031 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1032 && !((eh->root.type == bfd_link_hash_defined
1033 || eh->root.type == bfd_link_hash_defweak)
1034 && eh->root.u.def.section->output_section != NULL))
1035 {
1036 hh->stub_offset = x->ofs;
1037 x->ofs += sizeof (plt_stub);
1038 }
1039 else
1040 hh->want_stub = 0;
1041 return TRUE;
1042 }
1043
1044 /* Allocate space for a FPTR entry. */
1045
1046 static bfd_boolean
1047 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1048 {
1049 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1050 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1051
1052 if (hh && hh->want_opd)
1053 {
1054 /* We never need an opd entry for a symbol which is not
1055 defined by this output file. */
1056 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1057 || hh->eh.root.type == bfd_link_hash_undefweak
1058 || hh->eh.root.u.def.section->output_section == NULL))
1059 hh->want_opd = 0;
1060
1061 /* If we are creating a shared library, took the address of a local
1062 function or might export this function from this object file, then
1063 we have to create an opd descriptor. */
1064 else if (bfd_link_pic (x->info)
1065 || hh == NULL
1066 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1067 || (hh->eh.root.type == bfd_link_hash_defined
1068 || hh->eh.root.type == bfd_link_hash_defweak))
1069 {
1070 /* If we are creating a shared library, then we will have to
1071 create a runtime relocation for the symbol to properly
1072 initialize the .opd entry. Make sure the symbol gets
1073 added to the dynamic symbol table. */
1074 if (bfd_link_pic (x->info)
1075 && (hh == NULL || (hh->eh.dynindx == -1)))
1076 {
1077 bfd *owner;
1078 /* PR 6511: Default to using the dynamic symbol table. */
1079 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1080
1081 if (!bfd_elf_link_record_local_dynamic_symbol
1082 (x->info, owner, hh->sym_indx))
1083 return FALSE;
1084 }
1085
1086 /* This may not be necessary or desirable anymore now that
1087 we have some support for dealing with section symbols
1088 in dynamic relocs. But name munging does make the result
1089 much easier to debug. ie, the EPLT reloc will reference
1090 a symbol like .foobar, instead of .text + offset. */
1091 if (bfd_link_pic (x->info) && eh)
1092 {
1093 char *new_name;
1094 struct elf_link_hash_entry *nh;
1095
1096 new_name = concat (".", eh->root.root.string, NULL);
1097
1098 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1099 new_name, TRUE, TRUE, TRUE);
1100
1101 free (new_name);
1102 nh->root.type = eh->root.type;
1103 nh->root.u.def.value = eh->root.u.def.value;
1104 nh->root.u.def.section = eh->root.u.def.section;
1105
1106 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1107 return FALSE;
1108 }
1109 hh->opd_offset = x->ofs;
1110 x->ofs += OPD_ENTRY_SIZE;
1111 }
1112
1113 /* Otherwise we do not need an opd entry. */
1114 else
1115 hh->want_opd = 0;
1116 }
1117 return TRUE;
1118 }
1119
1120 /* HP requires the EI_OSABI field to be filled in. The assignment to
1121 EI_ABIVERSION may not be strictly necessary. */
1122
1123 static void
1124 elf64_hppa_post_process_headers (bfd *abfd,
1125 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1126 {
1127 Elf_Internal_Ehdr * i_ehdrp;
1128
1129 i_ehdrp = elf_elfheader (abfd);
1130
1131 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1132 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1133 }
1134
1135 /* Create function descriptor section (.opd). This section is called .opd
1136 because it contains "official procedure descriptors". The "official"
1137 refers to the fact that these descriptors are used when taking the address
1138 of a procedure, thus ensuring a unique address for each procedure. */
1139
1140 static bfd_boolean
1141 get_opd (bfd *abfd,
1142 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1143 struct elf64_hppa_link_hash_table *hppa_info)
1144 {
1145 asection *opd;
1146 bfd *dynobj;
1147
1148 opd = hppa_info->opd_sec;
1149 if (!opd)
1150 {
1151 dynobj = hppa_info->root.dynobj;
1152 if (!dynobj)
1153 hppa_info->root.dynobj = dynobj = abfd;
1154
1155 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1156 (SEC_ALLOC
1157 | SEC_LOAD
1158 | SEC_HAS_CONTENTS
1159 | SEC_IN_MEMORY
1160 | SEC_LINKER_CREATED));
1161 if (!opd
1162 || !bfd_set_section_alignment (abfd, opd, 3))
1163 {
1164 BFD_ASSERT (0);
1165 return FALSE;
1166 }
1167
1168 hppa_info->opd_sec = opd;
1169 }
1170
1171 return TRUE;
1172 }
1173
1174 /* Create the PLT section. */
1175
1176 static bfd_boolean
1177 get_plt (bfd *abfd,
1178 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1179 struct elf64_hppa_link_hash_table *hppa_info)
1180 {
1181 asection *plt;
1182 bfd *dynobj;
1183
1184 plt = hppa_info->plt_sec;
1185 if (!plt)
1186 {
1187 dynobj = hppa_info->root.dynobj;
1188 if (!dynobj)
1189 hppa_info->root.dynobj = dynobj = abfd;
1190
1191 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1192 (SEC_ALLOC
1193 | SEC_LOAD
1194 | SEC_HAS_CONTENTS
1195 | SEC_IN_MEMORY
1196 | SEC_LINKER_CREATED));
1197 if (!plt
1198 || !bfd_set_section_alignment (abfd, plt, 3))
1199 {
1200 BFD_ASSERT (0);
1201 return FALSE;
1202 }
1203
1204 hppa_info->plt_sec = plt;
1205 }
1206
1207 return TRUE;
1208 }
1209
1210 /* Create the DLT section. */
1211
1212 static bfd_boolean
1213 get_dlt (bfd *abfd,
1214 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1215 struct elf64_hppa_link_hash_table *hppa_info)
1216 {
1217 asection *dlt;
1218 bfd *dynobj;
1219
1220 dlt = hppa_info->dlt_sec;
1221 if (!dlt)
1222 {
1223 dynobj = hppa_info->root.dynobj;
1224 if (!dynobj)
1225 hppa_info->root.dynobj = dynobj = abfd;
1226
1227 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1228 (SEC_ALLOC
1229 | SEC_LOAD
1230 | SEC_HAS_CONTENTS
1231 | SEC_IN_MEMORY
1232 | SEC_LINKER_CREATED));
1233 if (!dlt
1234 || !bfd_set_section_alignment (abfd, dlt, 3))
1235 {
1236 BFD_ASSERT (0);
1237 return FALSE;
1238 }
1239
1240 hppa_info->dlt_sec = dlt;
1241 }
1242
1243 return TRUE;
1244 }
1245
1246 /* Create the stubs section. */
1247
1248 static bfd_boolean
1249 get_stub (bfd *abfd,
1250 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1251 struct elf64_hppa_link_hash_table *hppa_info)
1252 {
1253 asection *stub;
1254 bfd *dynobj;
1255
1256 stub = hppa_info->stub_sec;
1257 if (!stub)
1258 {
1259 dynobj = hppa_info->root.dynobj;
1260 if (!dynobj)
1261 hppa_info->root.dynobj = dynobj = abfd;
1262
1263 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1264 (SEC_ALLOC | SEC_LOAD
1265 | SEC_HAS_CONTENTS
1266 | SEC_IN_MEMORY
1267 | SEC_READONLY
1268 | SEC_LINKER_CREATED));
1269 if (!stub
1270 || !bfd_set_section_alignment (abfd, stub, 3))
1271 {
1272 BFD_ASSERT (0);
1273 return FALSE;
1274 }
1275
1276 hppa_info->stub_sec = stub;
1277 }
1278
1279 return TRUE;
1280 }
1281
1282 /* Create sections necessary for dynamic linking. This is only a rough
1283 cut and will likely change as we learn more about the somewhat
1284 unusual dynamic linking scheme HP uses.
1285
1286 .stub:
1287 Contains code to implement cross-space calls. The first time one
1288 of the stubs is used it will call into the dynamic linker, later
1289 calls will go straight to the target.
1290
1291 The only stub we support right now looks like
1292
1293 ldd OFFSET(%dp),%r1
1294 bve %r0(%r1)
1295 ldd OFFSET+8(%dp),%dp
1296
1297 Other stubs may be needed in the future. We may want the remove
1298 the break/nop instruction. It is only used right now to keep the
1299 offset of a .plt entry and a .stub entry in sync.
1300
1301 .dlt:
1302 This is what most people call the .got. HP used a different name.
1303 Losers.
1304
1305 .rela.dlt:
1306 Relocations for the DLT.
1307
1308 .plt:
1309 Function pointers as address,gp pairs.
1310
1311 .rela.plt:
1312 Should contain dynamic IPLT (and EPLT?) relocations.
1313
1314 .opd:
1315 FPTRS
1316
1317 .rela.opd:
1318 EPLT relocations for symbols exported from shared libraries. */
1319
1320 static bfd_boolean
1321 elf64_hppa_create_dynamic_sections (bfd *abfd,
1322 struct bfd_link_info *info)
1323 {
1324 asection *s;
1325 struct elf64_hppa_link_hash_table *hppa_info;
1326
1327 hppa_info = hppa_link_hash_table (info);
1328 if (hppa_info == NULL)
1329 return FALSE;
1330
1331 if (! get_stub (abfd, info, hppa_info))
1332 return FALSE;
1333
1334 if (! get_dlt (abfd, info, hppa_info))
1335 return FALSE;
1336
1337 if (! get_plt (abfd, info, hppa_info))
1338 return FALSE;
1339
1340 if (! get_opd (abfd, info, hppa_info))
1341 return FALSE;
1342
1343 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1344 (SEC_ALLOC | SEC_LOAD
1345 | SEC_HAS_CONTENTS
1346 | SEC_IN_MEMORY
1347 | SEC_READONLY
1348 | SEC_LINKER_CREATED));
1349 if (s == NULL
1350 || !bfd_set_section_alignment (abfd, s, 3))
1351 return FALSE;
1352 hppa_info->dlt_rel_sec = s;
1353
1354 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1355 (SEC_ALLOC | SEC_LOAD
1356 | SEC_HAS_CONTENTS
1357 | SEC_IN_MEMORY
1358 | SEC_READONLY
1359 | SEC_LINKER_CREATED));
1360 if (s == NULL
1361 || !bfd_set_section_alignment (abfd, s, 3))
1362 return FALSE;
1363 hppa_info->plt_rel_sec = s;
1364
1365 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1366 (SEC_ALLOC | SEC_LOAD
1367 | SEC_HAS_CONTENTS
1368 | SEC_IN_MEMORY
1369 | SEC_READONLY
1370 | SEC_LINKER_CREATED));
1371 if (s == NULL
1372 || !bfd_set_section_alignment (abfd, s, 3))
1373 return FALSE;
1374 hppa_info->other_rel_sec = s;
1375
1376 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1377 (SEC_ALLOC | SEC_LOAD
1378 | SEC_HAS_CONTENTS
1379 | SEC_IN_MEMORY
1380 | SEC_READONLY
1381 | SEC_LINKER_CREATED));
1382 if (s == NULL
1383 || !bfd_set_section_alignment (abfd, s, 3))
1384 return FALSE;
1385 hppa_info->opd_rel_sec = s;
1386
1387 return TRUE;
1388 }
1389
1390 /* Allocate dynamic relocations for those symbols that turned out
1391 to be dynamic. */
1392
1393 static bfd_boolean
1394 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1395 {
1396 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1397 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1398 struct elf64_hppa_link_hash_table *hppa_info;
1399 struct elf64_hppa_dyn_reloc_entry *rent;
1400 bfd_boolean dynamic_symbol, shared;
1401
1402 hppa_info = hppa_link_hash_table (x->info);
1403 if (hppa_info == NULL)
1404 return FALSE;
1405
1406 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1407 shared = bfd_link_pic (x->info);
1408
1409 /* We may need to allocate relocations for a non-dynamic symbol
1410 when creating a shared library. */
1411 if (!dynamic_symbol && !shared)
1412 return TRUE;
1413
1414 /* Take care of the normal data relocations. */
1415
1416 for (rent = hh->reloc_entries; rent; rent = rent->next)
1417 {
1418 /* Allocate one iff we are building a shared library, the relocation
1419 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1420 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1421 continue;
1422
1423 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1424
1425 /* Make sure this symbol gets into the dynamic symbol table if it is
1426 not already recorded. ?!? This should not be in the loop since
1427 the symbol need only be added once. */
1428 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1429 if (!bfd_elf_link_record_local_dynamic_symbol
1430 (x->info, rent->sec->owner, hh->sym_indx))
1431 return FALSE;
1432 }
1433
1434 /* Take care of the GOT and PLT relocations. */
1435
1436 if ((dynamic_symbol || shared) && hh->want_dlt)
1437 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1438
1439 /* If we are building a shared library, then every symbol that has an
1440 opd entry will need an EPLT relocation to relocate the symbol's address
1441 and __gp value based on the runtime load address. */
1442 if (shared && hh->want_opd)
1443 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1444
1445 if (hh->want_plt && dynamic_symbol)
1446 {
1447 bfd_size_type t = 0;
1448
1449 /* Dynamic symbols get one IPLT relocation. Local symbols in
1450 shared libraries get two REL relocations. Local symbols in
1451 main applications get nothing. */
1452 if (dynamic_symbol)
1453 t = sizeof (Elf64_External_Rela);
1454 else if (shared)
1455 t = 2 * sizeof (Elf64_External_Rela);
1456
1457 hppa_info->plt_rel_sec->size += t;
1458 }
1459
1460 return TRUE;
1461 }
1462
1463 /* Adjust a symbol defined by a dynamic object and referenced by a
1464 regular object. */
1465
1466 static bfd_boolean
1467 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 struct elf_link_hash_entry *eh)
1469 {
1470 /* ??? Undefined symbols with PLT entries should be re-defined
1471 to be the PLT entry. */
1472
1473 /* If this is a weak symbol, and there is a real definition, the
1474 processor independent code will have arranged for us to see the
1475 real definition first, and we can just use the same value. */
1476 if (eh->is_weakalias)
1477 {
1478 struct elf_link_hash_entry *def = weakdef (eh);
1479 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1480 eh->root.u.def.section = def->root.u.def.section;
1481 eh->root.u.def.value = def->root.u.def.value;
1482 return TRUE;
1483 }
1484
1485 /* If this is a reference to a symbol defined by a dynamic object which
1486 is not a function, we might allocate the symbol in our .dynbss section
1487 and allocate a COPY dynamic relocation.
1488
1489 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1490 of hackery. */
1491
1492 return TRUE;
1493 }
1494
1495 /* This function is called via elf_link_hash_traverse to mark millicode
1496 symbols with a dynindx of -1 and to remove the string table reference
1497 from the dynamic symbol table. If the symbol is not a millicode symbol,
1498 elf64_hppa_mark_exported_functions is called. */
1499
1500 static bfd_boolean
1501 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1502 void *data)
1503 {
1504 struct bfd_link_info *info = (struct bfd_link_info *) data;
1505
1506 if (eh->type == STT_PARISC_MILLI)
1507 {
1508 if (eh->dynindx != -1)
1509 {
1510 eh->dynindx = -1;
1511 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1512 eh->dynstr_index);
1513 }
1514 return TRUE;
1515 }
1516
1517 return elf64_hppa_mark_exported_functions (eh, data);
1518 }
1519
1520 /* Set the final sizes of the dynamic sections and allocate memory for
1521 the contents of our special sections. */
1522
1523 static bfd_boolean
1524 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1525 {
1526 struct elf64_hppa_link_hash_table *hppa_info;
1527 struct elf64_hppa_allocate_data data;
1528 bfd *dynobj;
1529 bfd *ibfd;
1530 asection *sec;
1531 bfd_boolean plt;
1532 bfd_boolean relocs;
1533 bfd_boolean reltext;
1534
1535 hppa_info = hppa_link_hash_table (info);
1536 if (hppa_info == NULL)
1537 return FALSE;
1538
1539 dynobj = hppa_info->root.dynobj;
1540 BFD_ASSERT (dynobj != NULL);
1541
1542 /* Mark each function this program exports so that we will allocate
1543 space in the .opd section for each function's FPTR. If we are
1544 creating dynamic sections, change the dynamic index of millicode
1545 symbols to -1 and remove them from the string table for .dynstr.
1546
1547 We have to traverse the main linker hash table since we have to
1548 find functions which may not have been mentioned in any relocs. */
1549 elf_link_hash_traverse (&hppa_info->root,
1550 (hppa_info->root.dynamic_sections_created
1551 ? elf64_hppa_mark_milli_and_exported_functions
1552 : elf64_hppa_mark_exported_functions),
1553 info);
1554
1555 if (hppa_info->root.dynamic_sections_created)
1556 {
1557 /* Set the contents of the .interp section to the interpreter. */
1558 if (bfd_link_executable (info) && !info->nointerp)
1559 {
1560 sec = bfd_get_linker_section (dynobj, ".interp");
1561 BFD_ASSERT (sec != NULL);
1562 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1563 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1564 }
1565 }
1566 else
1567 {
1568 /* We may have created entries in the .rela.got section.
1569 However, if we are not creating the dynamic sections, we will
1570 not actually use these entries. Reset the size of .rela.dlt,
1571 which will cause it to get stripped from the output file
1572 below. */
1573 sec = hppa_info->dlt_rel_sec;
1574 if (sec != NULL)
1575 sec->size = 0;
1576 }
1577
1578 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1579 dynamic relocs. */
1580 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1581 {
1582 bfd_signed_vma *local_dlt;
1583 bfd_signed_vma *end_local_dlt;
1584 bfd_signed_vma *local_plt;
1585 bfd_signed_vma *end_local_plt;
1586 bfd_signed_vma *local_opd;
1587 bfd_signed_vma *end_local_opd;
1588 bfd_size_type locsymcount;
1589 Elf_Internal_Shdr *symtab_hdr;
1590 asection *srel;
1591
1592 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1593 continue;
1594
1595 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1596 {
1597 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1598
1599 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1600 elf_section_data (sec)->local_dynrel);
1601 hdh_p != NULL;
1602 hdh_p = hdh_p->next)
1603 {
1604 if (!bfd_is_abs_section (hdh_p->sec)
1605 && bfd_is_abs_section (hdh_p->sec->output_section))
1606 {
1607 /* Input section has been discarded, either because
1608 it is a copy of a linkonce section or due to
1609 linker script /DISCARD/, so we'll be discarding
1610 the relocs too. */
1611 }
1612 else if (hdh_p->count != 0)
1613 {
1614 srel = elf_section_data (hdh_p->sec)->sreloc;
1615 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1616 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1617 info->flags |= DF_TEXTREL;
1618 }
1619 }
1620 }
1621
1622 local_dlt = elf_local_got_refcounts (ibfd);
1623 if (!local_dlt)
1624 continue;
1625
1626 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1627 locsymcount = symtab_hdr->sh_info;
1628 end_local_dlt = local_dlt + locsymcount;
1629 sec = hppa_info->dlt_sec;
1630 srel = hppa_info->dlt_rel_sec;
1631 for (; local_dlt < end_local_dlt; ++local_dlt)
1632 {
1633 if (*local_dlt > 0)
1634 {
1635 *local_dlt = sec->size;
1636 sec->size += DLT_ENTRY_SIZE;
1637 if (bfd_link_pic (info))
1638 {
1639 srel->size += sizeof (Elf64_External_Rela);
1640 }
1641 }
1642 else
1643 *local_dlt = (bfd_vma) -1;
1644 }
1645
1646 local_plt = end_local_dlt;
1647 end_local_plt = local_plt + locsymcount;
1648 if (! hppa_info->root.dynamic_sections_created)
1649 {
1650 /* Won't be used, but be safe. */
1651 for (; local_plt < end_local_plt; ++local_plt)
1652 *local_plt = (bfd_vma) -1;
1653 }
1654 else
1655 {
1656 sec = hppa_info->plt_sec;
1657 srel = hppa_info->plt_rel_sec;
1658 for (; local_plt < end_local_plt; ++local_plt)
1659 {
1660 if (*local_plt > 0)
1661 {
1662 *local_plt = sec->size;
1663 sec->size += PLT_ENTRY_SIZE;
1664 if (bfd_link_pic (info))
1665 srel->size += sizeof (Elf64_External_Rela);
1666 }
1667 else
1668 *local_plt = (bfd_vma) -1;
1669 }
1670 }
1671
1672 local_opd = end_local_plt;
1673 end_local_opd = local_opd + locsymcount;
1674 if (! hppa_info->root.dynamic_sections_created)
1675 {
1676 /* Won't be used, but be safe. */
1677 for (; local_opd < end_local_opd; ++local_opd)
1678 *local_opd = (bfd_vma) -1;
1679 }
1680 else
1681 {
1682 sec = hppa_info->opd_sec;
1683 srel = hppa_info->opd_rel_sec;
1684 for (; local_opd < end_local_opd; ++local_opd)
1685 {
1686 if (*local_opd > 0)
1687 {
1688 *local_opd = sec->size;
1689 sec->size += OPD_ENTRY_SIZE;
1690 if (bfd_link_pic (info))
1691 srel->size += sizeof (Elf64_External_Rela);
1692 }
1693 else
1694 *local_opd = (bfd_vma) -1;
1695 }
1696 }
1697 }
1698
1699 /* Allocate the GOT entries. */
1700
1701 data.info = info;
1702 if (hppa_info->dlt_sec)
1703 {
1704 data.ofs = hppa_info->dlt_sec->size;
1705 elf_link_hash_traverse (&hppa_info->root,
1706 allocate_global_data_dlt, &data);
1707 hppa_info->dlt_sec->size = data.ofs;
1708 }
1709
1710 if (hppa_info->plt_sec)
1711 {
1712 data.ofs = hppa_info->plt_sec->size;
1713 elf_link_hash_traverse (&hppa_info->root,
1714 allocate_global_data_plt, &data);
1715 hppa_info->plt_sec->size = data.ofs;
1716 }
1717
1718 if (hppa_info->stub_sec)
1719 {
1720 data.ofs = 0x0;
1721 elf_link_hash_traverse (&hppa_info->root,
1722 allocate_global_data_stub, &data);
1723 hppa_info->stub_sec->size = data.ofs;
1724 }
1725
1726 /* Allocate space for entries in the .opd section. */
1727 if (hppa_info->opd_sec)
1728 {
1729 data.ofs = hppa_info->opd_sec->size;
1730 elf_link_hash_traverse (&hppa_info->root,
1731 allocate_global_data_opd, &data);
1732 hppa_info->opd_sec->size = data.ofs;
1733 }
1734
1735 /* Now allocate space for dynamic relocations, if necessary. */
1736 if (hppa_info->root.dynamic_sections_created)
1737 elf_link_hash_traverse (&hppa_info->root,
1738 allocate_dynrel_entries, &data);
1739
1740 /* The sizes of all the sections are set. Allocate memory for them. */
1741 plt = FALSE;
1742 relocs = FALSE;
1743 reltext = FALSE;
1744 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1745 {
1746 const char *name;
1747
1748 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1749 continue;
1750
1751 /* It's OK to base decisions on the section name, because none
1752 of the dynobj section names depend upon the input files. */
1753 name = bfd_get_section_name (dynobj, sec);
1754
1755 if (strcmp (name, ".plt") == 0)
1756 {
1757 /* Remember whether there is a PLT. */
1758 plt = sec->size != 0;
1759 }
1760 else if (strcmp (name, ".opd") == 0
1761 || CONST_STRNEQ (name, ".dlt")
1762 || strcmp (name, ".stub") == 0
1763 || strcmp (name, ".got") == 0)
1764 {
1765 /* Strip this section if we don't need it; see the comment below. */
1766 }
1767 else if (CONST_STRNEQ (name, ".rela"))
1768 {
1769 if (sec->size != 0)
1770 {
1771 asection *target;
1772
1773 /* Remember whether there are any reloc sections other
1774 than .rela.plt. */
1775 if (strcmp (name, ".rela.plt") != 0)
1776 {
1777 const char *outname;
1778
1779 relocs = TRUE;
1780
1781 /* If this relocation section applies to a read only
1782 section, then we probably need a DT_TEXTREL
1783 entry. The entries in the .rela.plt section
1784 really apply to the .got section, which we
1785 created ourselves and so know is not readonly. */
1786 outname = bfd_get_section_name (output_bfd,
1787 sec->output_section);
1788 target = bfd_get_section_by_name (output_bfd, outname + 4);
1789 if (target != NULL
1790 && (target->flags & SEC_READONLY) != 0
1791 && (target->flags & SEC_ALLOC) != 0)
1792 reltext = TRUE;
1793 }
1794
1795 /* We use the reloc_count field as a counter if we need
1796 to copy relocs into the output file. */
1797 sec->reloc_count = 0;
1798 }
1799 }
1800 else
1801 {
1802 /* It's not one of our sections, so don't allocate space. */
1803 continue;
1804 }
1805
1806 if (sec->size == 0)
1807 {
1808 /* If we don't need this section, strip it from the
1809 output file. This is mostly to handle .rela.bss and
1810 .rela.plt. We must create both sections in
1811 create_dynamic_sections, because they must be created
1812 before the linker maps input sections to output
1813 sections. The linker does that before
1814 adjust_dynamic_symbol is called, and it is that
1815 function which decides whether anything needs to go
1816 into these sections. */
1817 sec->flags |= SEC_EXCLUDE;
1818 continue;
1819 }
1820
1821 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1822 continue;
1823
1824 /* Allocate memory for the section contents if it has not
1825 been allocated already. We use bfd_zalloc here in case
1826 unused entries are not reclaimed before the section's
1827 contents are written out. This should not happen, but this
1828 way if it does, we get a R_PARISC_NONE reloc instead of
1829 garbage. */
1830 if (sec->contents == NULL)
1831 {
1832 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1833 if (sec->contents == NULL)
1834 return FALSE;
1835 }
1836 }
1837
1838 if (hppa_info->root.dynamic_sections_created)
1839 {
1840 /* Always create a DT_PLTGOT. It actually has nothing to do with
1841 the PLT, it is how we communicate the __gp value of a load
1842 module to the dynamic linker. */
1843 #define add_dynamic_entry(TAG, VAL) \
1844 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1845
1846 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1847 || !add_dynamic_entry (DT_PLTGOT, 0))
1848 return FALSE;
1849
1850 /* Add some entries to the .dynamic section. We fill in the
1851 values later, in elf64_hppa_finish_dynamic_sections, but we
1852 must add the entries now so that we get the correct size for
1853 the .dynamic section. The DT_DEBUG entry is filled in by the
1854 dynamic linker and used by the debugger. */
1855 if (! bfd_link_pic (info))
1856 {
1857 if (!add_dynamic_entry (DT_DEBUG, 0)
1858 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1859 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1860 return FALSE;
1861 }
1862
1863 /* Force DT_FLAGS to always be set.
1864 Required by HPUX 11.00 patch PHSS_26559. */
1865 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1866 return FALSE;
1867
1868 if (plt)
1869 {
1870 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1871 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1872 || !add_dynamic_entry (DT_JMPREL, 0))
1873 return FALSE;
1874 }
1875
1876 if (relocs)
1877 {
1878 if (!add_dynamic_entry (DT_RELA, 0)
1879 || !add_dynamic_entry (DT_RELASZ, 0)
1880 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1881 return FALSE;
1882 }
1883
1884 if (reltext)
1885 {
1886 if (!add_dynamic_entry (DT_TEXTREL, 0))
1887 return FALSE;
1888 info->flags |= DF_TEXTREL;
1889 }
1890 }
1891 #undef add_dynamic_entry
1892
1893 return TRUE;
1894 }
1895
1896 /* Called after we have output the symbol into the dynamic symbol
1897 table, but before we output the symbol into the normal symbol
1898 table.
1899
1900 For some symbols we had to change their address when outputting
1901 the dynamic symbol table. We undo that change here so that
1902 the symbols have their expected value in the normal symbol
1903 table. Ick. */
1904
1905 static int
1906 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1907 const char *name,
1908 Elf_Internal_Sym *sym,
1909 asection *input_sec ATTRIBUTE_UNUSED,
1910 struct elf_link_hash_entry *eh)
1911 {
1912 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1913
1914 /* We may be called with the file symbol or section symbols.
1915 They never need munging, so it is safe to ignore them. */
1916 if (!name || !eh)
1917 return 1;
1918
1919 /* Function symbols for which we created .opd entries *may* have been
1920 munged by finish_dynamic_symbol and have to be un-munged here.
1921
1922 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1923 into non-dynamic ones, so we initialize st_shndx to -1 in
1924 mark_exported_functions and check to see if it was overwritten
1925 here instead of just checking eh->dynindx. */
1926 if (hh->want_opd && hh->st_shndx != -1)
1927 {
1928 /* Restore the saved value and section index. */
1929 sym->st_value = hh->st_value;
1930 sym->st_shndx = hh->st_shndx;
1931 }
1932
1933 return 1;
1934 }
1935
1936 /* Finish up dynamic symbol handling. We set the contents of various
1937 dynamic sections here. */
1938
1939 static bfd_boolean
1940 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1941 struct bfd_link_info *info,
1942 struct elf_link_hash_entry *eh,
1943 Elf_Internal_Sym *sym)
1944 {
1945 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1946 asection *stub, *splt, *sopd, *spltrel;
1947 struct elf64_hppa_link_hash_table *hppa_info;
1948
1949 hppa_info = hppa_link_hash_table (info);
1950 if (hppa_info == NULL)
1951 return FALSE;
1952
1953 stub = hppa_info->stub_sec;
1954 splt = hppa_info->plt_sec;
1955 sopd = hppa_info->opd_sec;
1956 spltrel = hppa_info->plt_rel_sec;
1957
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1961
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (hh->want_opd)
1966 {
1967 BFD_ASSERT (sopd != NULL);
1968
1969 /* Save away the original value and section index so that we
1970 can restore them later. */
1971 hh->st_value = sym->st_value;
1972 hh->st_shndx = sym->st_shndx;
1973
1974 /* For the dynamic symbol table entry, we want the value to be
1975 address of this symbol's entry within the .opd section. */
1976 sym->st_value = (hh->opd_offset
1977 + sopd->output_offset
1978 + sopd->output_section->vma);
1979 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 sopd->output_section);
1981 }
1982
1983 /* Initialize a .plt entry if requested. */
1984 if (hh->want_plt
1985 && elf64_hppa_dynamic_symbol_p (eh, info))
1986 {
1987 bfd_vma value;
1988 Elf_Internal_Rela rel;
1989 bfd_byte *loc;
1990
1991 BFD_ASSERT (splt != NULL && spltrel != NULL);
1992
1993 /* We do not actually care about the value in the PLT entry
1994 if we are creating a shared library and the symbol is
1995 still undefined, we create a dynamic relocation to fill
1996 in the correct value. */
1997 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1998 value = 0;
1999 else
2000 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2001
2002 /* Fill in the entry in the procedure linkage table.
2003
2004 The format of a plt entry is
2005 <funcaddr> <__gp>.
2006
2007 plt_offset is the offset within the PLT section at which to
2008 install the PLT entry.
2009
2010 We are modifying the in-memory PLT contents here, so we do not add
2011 in the output_offset of the PLT section. */
2012
2013 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2014 value = _bfd_get_gp_value (info->output_bfd);
2015 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2016
2017 /* Create a dynamic IPLT relocation for this entry.
2018
2019 We are creating a relocation in the output file's PLT section,
2020 which is included within the DLT secton. So we do need to include
2021 the PLT's output_offset in the computation of the relocation's
2022 address. */
2023 rel.r_offset = (hh->plt_offset + splt->output_offset
2024 + splt->output_section->vma);
2025 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2026 rel.r_addend = 0;
2027
2028 loc = spltrel->contents;
2029 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2030 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2031 }
2032
2033 /* Initialize an external call stub entry if requested. */
2034 if (hh->want_stub
2035 && elf64_hppa_dynamic_symbol_p (eh, info))
2036 {
2037 bfd_vma value;
2038 int insn;
2039 unsigned int max_offset;
2040
2041 BFD_ASSERT (stub != NULL);
2042
2043 /* Install the generic stub template.
2044
2045 We are modifying the contents of the stub section, so we do not
2046 need to include the stub section's output_offset here. */
2047 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2048
2049 /* Fix up the first ldd instruction.
2050
2051 We are modifying the contents of the STUB section in memory,
2052 so we do not need to include its output offset in this computation.
2053
2054 Note the plt_offset value is the value of the PLT entry relative to
2055 the start of the PLT section. These instructions will reference
2056 data relative to the value of __gp, which may not necessarily have
2057 the same address as the start of the PLT section.
2058
2059 gp_offset contains the offset of __gp within the PLT section. */
2060 value = hh->plt_offset - hppa_info->gp_offset;
2061
2062 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2063 if (output_bfd->arch_info->mach >= 25)
2064 {
2065 /* Wide mode allows 16 bit offsets. */
2066 max_offset = 32768;
2067 insn &= ~ 0xfff1;
2068 insn |= re_assemble_16 ((int) value);
2069 }
2070 else
2071 {
2072 max_offset = 8192;
2073 insn &= ~ 0x3ff1;
2074 insn |= re_assemble_14 ((int) value);
2075 }
2076
2077 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2078 {
2079 _bfd_error_handler
2080 /* xgettext:c-format */
2081 (_("stub entry for %s cannot load .plt, dp offset = %" PRId64),
2082 hh->eh.root.root.string, (int64_t) value);
2083 return FALSE;
2084 }
2085
2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 stub->contents + hh->stub_offset);
2088
2089 /* Fix up the second ldd instruction. */
2090 value += 8;
2091 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2092 if (output_bfd->arch_info->mach >= 25)
2093 {
2094 insn &= ~ 0xfff1;
2095 insn |= re_assemble_16 ((int) value);
2096 }
2097 else
2098 {
2099 insn &= ~ 0x3ff1;
2100 insn |= re_assemble_14 ((int) value);
2101 }
2102 bfd_put_32 (stub->owner, (bfd_vma) insn,
2103 stub->contents + hh->stub_offset + 8);
2104 }
2105
2106 return TRUE;
2107 }
2108
2109 /* The .opd section contains FPTRs for each function this file
2110 exports. Initialize the FPTR entries. */
2111
2112 static bfd_boolean
2113 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2114 {
2115 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2116 struct bfd_link_info *info = (struct bfd_link_info *)data;
2117 struct elf64_hppa_link_hash_table *hppa_info;
2118 asection *sopd;
2119 asection *sopdrel;
2120
2121 hppa_info = hppa_link_hash_table (info);
2122 if (hppa_info == NULL)
2123 return FALSE;
2124
2125 sopd = hppa_info->opd_sec;
2126 sopdrel = hppa_info->opd_rel_sec;
2127
2128 if (hh->want_opd)
2129 {
2130 bfd_vma value;
2131
2132 /* The first two words of an .opd entry are zero.
2133
2134 We are modifying the contents of the OPD section in memory, so we
2135 do not need to include its output offset in this computation. */
2136 memset (sopd->contents + hh->opd_offset, 0, 16);
2137
2138 value = (eh->root.u.def.value
2139 + eh->root.u.def.section->output_section->vma
2140 + eh->root.u.def.section->output_offset);
2141
2142 /* The next word is the address of the function. */
2143 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2144
2145 /* The last word is our local __gp value. */
2146 value = _bfd_get_gp_value (info->output_bfd);
2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2148 }
2149
2150 /* If we are generating a shared library, we must generate EPLT relocations
2151 for each entry in the .opd, even for static functions (they may have
2152 had their address taken). */
2153 if (bfd_link_pic (info) && hh->want_opd)
2154 {
2155 Elf_Internal_Rela rel;
2156 bfd_byte *loc;
2157 int dynindx;
2158
2159 /* We may need to do a relocation against a local symbol, in
2160 which case we have to look up it's dynamic symbol index off
2161 the local symbol hash table. */
2162 if (eh->dynindx != -1)
2163 dynindx = eh->dynindx;
2164 else
2165 dynindx
2166 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2167 hh->sym_indx);
2168
2169 /* The offset of this relocation is the absolute address of the
2170 .opd entry for this symbol. */
2171 rel.r_offset = (hh->opd_offset + sopd->output_offset
2172 + sopd->output_section->vma);
2173
2174 /* If H is non-null, then we have an external symbol.
2175
2176 It is imperative that we use a different dynamic symbol for the
2177 EPLT relocation if the symbol has global scope.
2178
2179 In the dynamic symbol table, the function symbol will have a value
2180 which is address of the function's .opd entry.
2181
2182 Thus, we can not use that dynamic symbol for the EPLT relocation
2183 (if we did, the data in the .opd would reference itself rather
2184 than the actual address of the function). Instead we have to use
2185 a new dynamic symbol which has the same value as the original global
2186 function symbol.
2187
2188 We prefix the original symbol with a "." and use the new symbol in
2189 the EPLT relocation. This new symbol has already been recorded in
2190 the symbol table, we just have to look it up and use it.
2191
2192 We do not have such problems with static functions because we do
2193 not make their addresses in the dynamic symbol table point to
2194 the .opd entry. Ultimately this should be safe since a static
2195 function can not be directly referenced outside of its shared
2196 library.
2197
2198 We do have to play similar games for FPTR relocations in shared
2199 libraries, including those for static symbols. See the FPTR
2200 handling in elf64_hppa_finalize_dynreloc. */
2201 if (eh)
2202 {
2203 char *new_name;
2204 struct elf_link_hash_entry *nh;
2205
2206 new_name = concat (".", eh->root.root.string, NULL);
2207
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
2209 new_name, TRUE, TRUE, FALSE);
2210
2211 /* All we really want from the new symbol is its dynamic
2212 symbol index. */
2213 if (nh)
2214 dynindx = nh->dynindx;
2215 free (new_name);
2216 }
2217
2218 rel.r_addend = 0;
2219 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2220
2221 loc = sopdrel->contents;
2222 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2223 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2224 }
2225 return TRUE;
2226 }
2227
2228 /* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2231
2232 static bfd_boolean
2233 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2234 {
2235 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2236 struct bfd_link_info *info = (struct bfd_link_info *)data;
2237 struct elf64_hppa_link_hash_table *hppa_info;
2238 asection *sdlt, *sdltrel;
2239
2240 hppa_info = hppa_link_hash_table (info);
2241 if (hppa_info == NULL)
2242 return FALSE;
2243
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2246
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
2251 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2252 {
2253 bfd_vma value;
2254
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 to point to the FPTR entry in the .opd section.
2257
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2260 object file. */
2261 if (hh->want_opd)
2262 {
2263 value = (hh->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2266 }
2267 else if ((eh->root.type == bfd_link_hash_defined
2268 || eh->root.type == bfd_link_hash_defweak)
2269 && eh->root.u.def.section)
2270 {
2271 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2272 if (eh->root.u.def.section->output_section)
2273 value += eh->root.u.def.section->output_section->vma;
2274 else
2275 value += eh->root.u.def.section->vma;
2276 }
2277 else
2278 /* We have an undefined function reference. */
2279 value = 0;
2280
2281 /* We do not need to include the output offset of the DLT section
2282 here because we are modifying the in-memory contents. */
2283 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2284 }
2285
2286 /* Create a relocation for the DLT entry associated with this symbol.
2287 When building a shared library the symbol does not have to be dynamic. */
2288 if (hh->want_dlt
2289 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2290 {
2291 Elf_Internal_Rela rel;
2292 bfd_byte *loc;
2293 int dynindx;
2294
2295 /* We may need to do a relocation against a local symbol, in
2296 which case we have to look up it's dynamic symbol index off
2297 the local symbol hash table. */
2298 if (eh && eh->dynindx != -1)
2299 dynindx = eh->dynindx;
2300 else
2301 dynindx
2302 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2303 hh->sym_indx);
2304
2305 /* Create a dynamic relocation for this entry. Do include the output
2306 offset of the DLT entry since we need an absolute address in the
2307 resulting object file. */
2308 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2309 + sdlt->output_section->vma);
2310 if (eh && eh->type == STT_FUNC)
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2312 else
2313 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2314 rel.r_addend = 0;
2315
2316 loc = sdltrel->contents;
2317 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2318 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2319 }
2320 return TRUE;
2321 }
2322
2323 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2324 for dynamic functions used to initialize static data. */
2325
2326 static bfd_boolean
2327 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2328 void *data)
2329 {
2330 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2331 struct bfd_link_info *info = (struct bfd_link_info *)data;
2332 struct elf64_hppa_link_hash_table *hppa_info;
2333 int dynamic_symbol;
2334
2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2336
2337 if (!dynamic_symbol && !bfd_link_pic (info))
2338 return TRUE;
2339
2340 if (hh->reloc_entries)
2341 {
2342 struct elf64_hppa_dyn_reloc_entry *rent;
2343 int dynindx;
2344
2345 hppa_info = hppa_link_hash_table (info);
2346 if (hppa_info == NULL)
2347 return FALSE;
2348
2349 /* We may need to do a relocation against a local symbol, in
2350 which case we have to look up it's dynamic symbol index off
2351 the local symbol hash table. */
2352 if (eh->dynindx != -1)
2353 dynindx = eh->dynindx;
2354 else
2355 dynindx
2356 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2357 hh->sym_indx);
2358
2359 for (rent = hh->reloc_entries; rent; rent = rent->next)
2360 {
2361 Elf_Internal_Rela rel;
2362 bfd_byte *loc;
2363
2364 /* Allocate one iff we are building a shared library, the relocation
2365 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2366 if (!bfd_link_pic (info)
2367 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2368 continue;
2369
2370 /* Create a dynamic relocation for this entry.
2371
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2374 file. */
2375 rel.r_offset = (rent->offset + rent->sec->output_offset
2376 + rent->sec->output_section->vma);
2377
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2381 entry in .opd.
2382
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2386 this relocation.
2387
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
2393
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (bfd_link_pic (info)
2398 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2399 {
2400 bfd_vma value, value2;
2401
2402 /* First compute the address of the opd entry for this symbol. */
2403 value = (hh->opd_offset
2404 + hppa_info->opd_sec->output_section->vma
2405 + hppa_info->opd_sec->output_offset);
2406
2407 /* Compute the value of the start of the section with
2408 the relocation. */
2409 value2 = (rent->sec->output_section->vma
2410 + rent->sec->output_offset);
2411
2412 /* Compute the difference between the start of the section
2413 with the relocation and the opd entry. */
2414 value -= value2;
2415
2416 /* The result becomes the addend of the relocation. */
2417 rel.r_addend = value;
2418
2419 /* The section symbol becomes the symbol for the dynamic
2420 relocation. */
2421 dynindx
2422 = _bfd_elf_link_lookup_local_dynindx (info,
2423 rent->sec->owner,
2424 rent->sec_symndx);
2425 }
2426 else
2427 rel.r_addend = rent->addend;
2428
2429 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2430
2431 loc = hppa_info->other_rel_sec->contents;
2432 loc += (hppa_info->other_rel_sec->reloc_count++
2433 * sizeof (Elf64_External_Rela));
2434 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2435 }
2436 }
2437
2438 return TRUE;
2439 }
2440
2441 /* Used to decide how to sort relocs in an optimal manner for the
2442 dynamic linker, before writing them out. */
2443
2444 static enum elf_reloc_type_class
2445 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2446 const asection *rel_sec ATTRIBUTE_UNUSED,
2447 const Elf_Internal_Rela *rela)
2448 {
2449 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2450 return reloc_class_relative;
2451
2452 switch ((int) ELF64_R_TYPE (rela->r_info))
2453 {
2454 case R_PARISC_IPLT:
2455 return reloc_class_plt;
2456 case R_PARISC_COPY:
2457 return reloc_class_copy;
2458 default:
2459 return reloc_class_normal;
2460 }
2461 }
2462
2463 /* Finish up the dynamic sections. */
2464
2465 static bfd_boolean
2466 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2467 struct bfd_link_info *info)
2468 {
2469 bfd *dynobj;
2470 asection *sdyn;
2471 struct elf64_hppa_link_hash_table *hppa_info;
2472
2473 hppa_info = hppa_link_hash_table (info);
2474 if (hppa_info == NULL)
2475 return FALSE;
2476
2477 /* Finalize the contents of the .opd section. */
2478 elf_link_hash_traverse (elf_hash_table (info),
2479 elf64_hppa_finalize_opd,
2480 info);
2481
2482 elf_link_hash_traverse (elf_hash_table (info),
2483 elf64_hppa_finalize_dynreloc,
2484 info);
2485
2486 /* Finalize the contents of the .dlt section. */
2487 dynobj = elf_hash_table (info)->dynobj;
2488 /* Finalize the contents of the .dlt section. */
2489 elf_link_hash_traverse (elf_hash_table (info),
2490 elf64_hppa_finalize_dlt,
2491 info);
2492
2493 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2494
2495 if (elf_hash_table (info)->dynamic_sections_created)
2496 {
2497 Elf64_External_Dyn *dyncon, *dynconend;
2498
2499 BFD_ASSERT (sdyn != NULL);
2500
2501 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2502 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2503 for (; dyncon < dynconend; dyncon++)
2504 {
2505 Elf_Internal_Dyn dyn;
2506 asection *s;
2507
2508 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2509
2510 switch (dyn.d_tag)
2511 {
2512 default:
2513 break;
2514
2515 case DT_HP_LOAD_MAP:
2516 /* Compute the absolute address of 16byte scratchpad area
2517 for the dynamic linker.
2518
2519 By convention the linker script will allocate the scratchpad
2520 area at the start of the .data section. So all we have to
2521 to is find the start of the .data section. */
2522 s = bfd_get_section_by_name (output_bfd, ".data");
2523 if (!s)
2524 return FALSE;
2525 dyn.d_un.d_ptr = s->vma;
2526 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 break;
2528
2529 case DT_PLTGOT:
2530 /* HP's use PLTGOT to set the GOT register. */
2531 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2534
2535 case DT_JMPREL:
2536 s = hppa_info->plt_rel_sec;
2537 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2538 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 break;
2540
2541 case DT_PLTRELSZ:
2542 s = hppa_info->plt_rel_sec;
2543 dyn.d_un.d_val = s->size;
2544 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2545 break;
2546
2547 case DT_RELA:
2548 s = hppa_info->other_rel_sec;
2549 if (! s || ! s->size)
2550 s = hppa_info->dlt_rel_sec;
2551 if (! s || ! s->size)
2552 s = hppa_info->opd_rel_sec;
2553 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2554 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2555 break;
2556
2557 case DT_RELASZ:
2558 s = hppa_info->other_rel_sec;
2559 dyn.d_un.d_val = s->size;
2560 s = hppa_info->dlt_rel_sec;
2561 dyn.d_un.d_val += s->size;
2562 s = hppa_info->opd_rel_sec;
2563 dyn.d_un.d_val += s->size;
2564 /* There is some question about whether or not the size of
2565 the PLT relocs should be included here. HP's tools do
2566 it, so we'll emulate them. */
2567 s = hppa_info->plt_rel_sec;
2568 dyn.d_un.d_val += s->size;
2569 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2570 break;
2571
2572 }
2573 }
2574 }
2575
2576 return TRUE;
2577 }
2578
2579 /* Support for core dump NOTE sections. */
2580
2581 static bfd_boolean
2582 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2583 {
2584 int offset;
2585 size_t size;
2586
2587 switch (note->descsz)
2588 {
2589 default:
2590 return FALSE;
2591
2592 case 760: /* Linux/hppa */
2593 /* pr_cursig */
2594 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2595
2596 /* pr_pid */
2597 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2598
2599 /* pr_reg */
2600 offset = 112;
2601 size = 640;
2602
2603 break;
2604 }
2605
2606 /* Make a ".reg/999" section. */
2607 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2608 size, note->descpos + offset);
2609 }
2610
2611 static bfd_boolean
2612 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2613 {
2614 char * command;
2615 int n;
2616
2617 switch (note->descsz)
2618 {
2619 default:
2620 return FALSE;
2621
2622 case 136: /* Linux/hppa elf_prpsinfo. */
2623 elf_tdata (abfd)->core->program
2624 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2625 elf_tdata (abfd)->core->command
2626 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2627 }
2628
2629 /* Note that for some reason, a spurious space is tacked
2630 onto the end of the args in some (at least one anyway)
2631 implementations, so strip it off if it exists. */
2632 command = elf_tdata (abfd)->core->command;
2633 n = strlen (command);
2634
2635 if (0 < n && command[n - 1] == ' ')
2636 command[n - 1] = '\0';
2637
2638 return TRUE;
2639 }
2640
2641 /* Return the number of additional phdrs we will need.
2642
2643 The generic ELF code only creates PT_PHDRs for executables. The HP
2644 dynamic linker requires PT_PHDRs for dynamic libraries too.
2645
2646 This routine indicates that the backend needs one additional program
2647 header for that case.
2648
2649 Note we do not have access to the link info structure here, so we have
2650 to guess whether or not we are building a shared library based on the
2651 existence of a .interp section. */
2652
2653 static int
2654 elf64_hppa_additional_program_headers (bfd *abfd,
2655 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2656 {
2657 asection *s;
2658
2659 /* If we are creating a shared library, then we have to create a
2660 PT_PHDR segment. HP's dynamic linker chokes without it. */
2661 s = bfd_get_section_by_name (abfd, ".interp");
2662 if (! s)
2663 return 1;
2664 return 0;
2665 }
2666
2667 static bfd_boolean
2668 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2669 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2670 unsigned int count ATTRIBUTE_UNUSED)
2671 {
2672 return TRUE;
2673 }
2674
2675 /* Allocate and initialize any program headers required by this
2676 specific backend.
2677
2678 The generic ELF code only creates PT_PHDRs for executables. The HP
2679 dynamic linker requires PT_PHDRs for dynamic libraries too.
2680
2681 This allocates the PT_PHDR and initializes it in a manner suitable
2682 for the HP linker.
2683
2684 Note we do not have access to the link info structure here, so we have
2685 to guess whether or not we are building a shared library based on the
2686 existence of a .interp section. */
2687
2688 static bfd_boolean
2689 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2690 {
2691 struct elf_segment_map *m;
2692
2693 m = elf_seg_map (abfd);
2694 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2695 {
2696 m = ((struct elf_segment_map *)
2697 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2698 if (m == NULL)
2699 return FALSE;
2700
2701 m->p_type = PT_PHDR;
2702 m->p_flags = PF_R | PF_X;
2703 m->p_flags_valid = 1;
2704 m->p_paddr_valid = 1;
2705 m->includes_phdrs = 1;
2706
2707 m->next = elf_seg_map (abfd);
2708 elf_seg_map (abfd) = m;
2709 }
2710
2711 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2712 if (m->p_type == PT_LOAD)
2713 {
2714 unsigned int i;
2715
2716 for (i = 0; i < m->count; i++)
2717 {
2718 /* The code "hint" is not really a hint. It is a requirement
2719 for certain versions of the HP dynamic linker. Worse yet,
2720 it must be set even if the shared library does not have
2721 any code in its "text" segment (thus the check for .hash
2722 to catch this situation). */
2723 if (m->sections[i]->flags & SEC_CODE
2724 || (strcmp (m->sections[i]->name, ".hash") == 0))
2725 m->p_flags |= (PF_X | PF_HP_CODE);
2726 }
2727 }
2728
2729 return TRUE;
2730 }
2731
2732 /* Called when writing out an object file to decide the type of a
2733 symbol. */
2734 static int
2735 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2736 int type)
2737 {
2738 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2739 return STT_PARISC_MILLI;
2740 else
2741 return type;
2742 }
2743
2744 /* Support HP specific sections for core files. */
2745
2746 static bfd_boolean
2747 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2748 const char *typename)
2749 {
2750 if (hdr->p_type == PT_HP_CORE_KERNEL)
2751 {
2752 asection *sect;
2753
2754 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2755 return FALSE;
2756
2757 sect = bfd_make_section_anyway (abfd, ".kernel");
2758 if (sect == NULL)
2759 return FALSE;
2760 sect->size = hdr->p_filesz;
2761 sect->filepos = hdr->p_offset;
2762 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2763 return TRUE;
2764 }
2765
2766 if (hdr->p_type == PT_HP_CORE_PROC)
2767 {
2768 int sig;
2769
2770 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2771 return FALSE;
2772 if (bfd_bread (&sig, 4, abfd) != 4)
2773 return FALSE;
2774
2775 elf_tdata (abfd)->core->signal = sig;
2776
2777 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2778 return FALSE;
2779
2780 /* GDB uses the ".reg" section to read register contents. */
2781 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2782 hdr->p_offset);
2783 }
2784
2785 if (hdr->p_type == PT_HP_CORE_LOADABLE
2786 || hdr->p_type == PT_HP_CORE_STACK
2787 || hdr->p_type == PT_HP_CORE_MMF)
2788 hdr->p_type = PT_LOAD;
2789
2790 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2791 }
2792
2793 /* Hook called by the linker routine which adds symbols from an object
2794 file. HP's libraries define symbols with HP specific section
2795 indices, which we have to handle. */
2796
2797 static bfd_boolean
2798 elf_hppa_add_symbol_hook (bfd *abfd,
2799 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2800 Elf_Internal_Sym *sym,
2801 const char **namep ATTRIBUTE_UNUSED,
2802 flagword *flagsp ATTRIBUTE_UNUSED,
2803 asection **secp,
2804 bfd_vma *valp)
2805 {
2806 unsigned int sec_index = sym->st_shndx;
2807
2808 switch (sec_index)
2809 {
2810 case SHN_PARISC_ANSI_COMMON:
2811 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2812 (*secp)->flags |= SEC_IS_COMMON;
2813 *valp = sym->st_size;
2814 break;
2815
2816 case SHN_PARISC_HUGE_COMMON:
2817 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2818 (*secp)->flags |= SEC_IS_COMMON;
2819 *valp = sym->st_size;
2820 break;
2821 }
2822
2823 return TRUE;
2824 }
2825
2826 static bfd_boolean
2827 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2828 void *data)
2829 {
2830 struct bfd_link_info *info = data;
2831
2832 /* If we are not creating a shared library, and this symbol is
2833 referenced by a shared library but is not defined anywhere, then
2834 the generic code will warn that it is undefined.
2835
2836 This behavior is undesirable on HPs since the standard shared
2837 libraries contain references to undefined symbols.
2838
2839 So we twiddle the flags associated with such symbols so that they
2840 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2841
2842 Ultimately we should have better controls over the generic ELF BFD
2843 linker code. */
2844 if (! bfd_link_relocatable (info)
2845 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2846 && h->root.type == bfd_link_hash_undefined
2847 && h->ref_dynamic
2848 && !h->ref_regular)
2849 {
2850 h->ref_dynamic = 0;
2851 h->pointer_equality_needed = 1;
2852 }
2853
2854 return TRUE;
2855 }
2856
2857 static bfd_boolean
2858 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2859 void *data)
2860 {
2861 struct bfd_link_info *info = data;
2862
2863 /* If we are not creating a shared library, and this symbol is
2864 referenced by a shared library but is not defined anywhere, then
2865 the generic code will warn that it is undefined.
2866
2867 This behavior is undesirable on HPs since the standard shared
2868 libraries contain references to undefined symbols.
2869
2870 So we twiddle the flags associated with such symbols so that they
2871 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2872
2873 Ultimately we should have better controls over the generic ELF BFD
2874 linker code. */
2875 if (! bfd_link_relocatable (info)
2876 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2877 && h->root.type == bfd_link_hash_undefined
2878 && !h->ref_dynamic
2879 && !h->ref_regular
2880 && h->pointer_equality_needed)
2881 {
2882 h->ref_dynamic = 1;
2883 h->pointer_equality_needed = 0;
2884 }
2885
2886 return TRUE;
2887 }
2888
2889 static bfd_boolean
2890 elf_hppa_is_dynamic_loader_symbol (const char *name)
2891 {
2892 return (! strcmp (name, "__CPU_REVISION")
2893 || ! strcmp (name, "__CPU_KEYBITS_1")
2894 || ! strcmp (name, "__SYSTEM_ID_D")
2895 || ! strcmp (name, "__FPU_MODEL")
2896 || ! strcmp (name, "__FPU_REVISION")
2897 || ! strcmp (name, "__ARGC")
2898 || ! strcmp (name, "__ARGV")
2899 || ! strcmp (name, "__ENVP")
2900 || ! strcmp (name, "__TLS_SIZE_D")
2901 || ! strcmp (name, "__LOAD_INFO")
2902 || ! strcmp (name, "__systab"));
2903 }
2904
2905 /* Record the lowest address for the data and text segments. */
2906 static void
2907 elf_hppa_record_segment_addrs (bfd *abfd,
2908 asection *section,
2909 void *data)
2910 {
2911 struct elf64_hppa_link_hash_table *hppa_info = data;
2912
2913 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2914 {
2915 bfd_vma value;
2916 Elf_Internal_Phdr *p;
2917
2918 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2919 BFD_ASSERT (p != NULL);
2920 value = p->p_vaddr;
2921
2922 if (section->flags & SEC_READONLY)
2923 {
2924 if (value < hppa_info->text_segment_base)
2925 hppa_info->text_segment_base = value;
2926 }
2927 else
2928 {
2929 if (value < hppa_info->data_segment_base)
2930 hppa_info->data_segment_base = value;
2931 }
2932 }
2933 }
2934
2935 /* Called after we have seen all the input files/sections, but before
2936 final symbol resolution and section placement has been determined.
2937
2938 We use this hook to (possibly) provide a value for __gp, then we
2939 fall back to the generic ELF final link routine. */
2940
2941 static bfd_boolean
2942 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2943 {
2944 struct stat buf;
2945 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2946
2947 if (hppa_info == NULL)
2948 return FALSE;
2949
2950 if (! bfd_link_relocatable (info))
2951 {
2952 struct elf_link_hash_entry *gp;
2953 bfd_vma gp_val;
2954
2955 /* The linker script defines a value for __gp iff it was referenced
2956 by one of the objects being linked. First try to find the symbol
2957 in the hash table. If that fails, just compute the value __gp
2958 should have had. */
2959 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2960 FALSE, FALSE);
2961
2962 if (gp)
2963 {
2964
2965 /* Adjust the value of __gp as we may want to slide it into the
2966 .plt section so that the stubs can access PLT entries without
2967 using an addil sequence. */
2968 gp->root.u.def.value += hppa_info->gp_offset;
2969
2970 gp_val = (gp->root.u.def.section->output_section->vma
2971 + gp->root.u.def.section->output_offset
2972 + gp->root.u.def.value);
2973 }
2974 else
2975 {
2976 asection *sec;
2977
2978 /* First look for a .plt section. If found, then __gp is the
2979 address of the .plt + gp_offset.
2980
2981 If no .plt is found, then look for .dlt, .opd and .data (in
2982 that order) and set __gp to the base address of whichever
2983 section is found first. */
2984
2985 sec = hppa_info->plt_sec;
2986 if (sec && ! (sec->flags & SEC_EXCLUDE))
2987 gp_val = (sec->output_offset
2988 + sec->output_section->vma
2989 + hppa_info->gp_offset);
2990 else
2991 {
2992 sec = hppa_info->dlt_sec;
2993 if (!sec || (sec->flags & SEC_EXCLUDE))
2994 sec = hppa_info->opd_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = bfd_get_section_by_name (abfd, ".data");
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 gp_val = 0;
2999 else
3000 gp_val = sec->output_offset + sec->output_section->vma;
3001 }
3002 }
3003
3004 /* Install whatever value we found/computed for __gp. */
3005 _bfd_set_gp_value (abfd, gp_val);
3006 }
3007
3008 /* We need to know the base of the text and data segments so that we
3009 can perform SEGREL relocations. We will record the base addresses
3010 when we encounter the first SEGREL relocation. */
3011 hppa_info->text_segment_base = (bfd_vma)-1;
3012 hppa_info->data_segment_base = (bfd_vma)-1;
3013
3014 /* HP's shared libraries have references to symbols that are not
3015 defined anywhere. The generic ELF BFD linker code will complain
3016 about such symbols.
3017
3018 So we detect the losing case and arrange for the flags on the symbol
3019 to indicate that it was never referenced. This keeps the generic
3020 ELF BFD link code happy and appears to not create any secondary
3021 problems. Ultimately we need a way to control the behavior of the
3022 generic ELF BFD link code better. */
3023 elf_link_hash_traverse (elf_hash_table (info),
3024 elf_hppa_unmark_useless_dynamic_symbols,
3025 info);
3026
3027 /* Invoke the regular ELF backend linker to do all the work. */
3028 if (!bfd_elf_final_link (abfd, info))
3029 return FALSE;
3030
3031 elf_link_hash_traverse (elf_hash_table (info),
3032 elf_hppa_remark_useless_dynamic_symbols,
3033 info);
3034
3035 /* If we're producing a final executable, sort the contents of the
3036 unwind section. */
3037 if (bfd_link_relocatable (info))
3038 return TRUE;
3039
3040 /* Do not attempt to sort non-regular files. This is here
3041 especially for configure scripts and kernel builds which run
3042 tests with "ld [...] -o /dev/null". */
3043 if (stat (abfd->filename, &buf) != 0
3044 || !S_ISREG(buf.st_mode))
3045 return TRUE;
3046
3047 return elf_hppa_sort_unwind (abfd);
3048 }
3049
3050 /* Relocate the given INSN. VALUE should be the actual value we want
3051 to insert into the instruction, ie by this point we should not be
3052 concerned with computing an offset relative to the DLT, PC, etc.
3053 Instead this routine is meant to handle the bit manipulations needed
3054 to insert the relocation into the given instruction. */
3055
3056 static int
3057 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3058 {
3059 switch (r_type)
3060 {
3061 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3062 the "B" instruction. */
3063 case R_PARISC_PCREL22F:
3064 case R_PARISC_PCREL22C:
3065 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3066
3067 /* This is any 12 bit branch. */
3068 case R_PARISC_PCREL12F:
3069 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3070
3071 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3072 to the "B" instruction as well as BE. */
3073 case R_PARISC_PCREL17F:
3074 case R_PARISC_DIR17F:
3075 case R_PARISC_DIR17R:
3076 case R_PARISC_PCREL17C:
3077 case R_PARISC_PCREL17R:
3078 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3079
3080 /* ADDIL or LDIL instructions. */
3081 case R_PARISC_DLTREL21L:
3082 case R_PARISC_DLTIND21L:
3083 case R_PARISC_LTOFF_FPTR21L:
3084 case R_PARISC_PCREL21L:
3085 case R_PARISC_LTOFF_TP21L:
3086 case R_PARISC_DPREL21L:
3087 case R_PARISC_PLTOFF21L:
3088 case R_PARISC_DIR21L:
3089 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3090
3091 /* LDO and integer loads/stores with 14 bit displacements. */
3092 case R_PARISC_DLTREL14R:
3093 case R_PARISC_DLTREL14F:
3094 case R_PARISC_DLTIND14R:
3095 case R_PARISC_DLTIND14F:
3096 case R_PARISC_LTOFF_FPTR14R:
3097 case R_PARISC_PCREL14R:
3098 case R_PARISC_PCREL14F:
3099 case R_PARISC_LTOFF_TP14R:
3100 case R_PARISC_LTOFF_TP14F:
3101 case R_PARISC_DPREL14R:
3102 case R_PARISC_DPREL14F:
3103 case R_PARISC_PLTOFF14R:
3104 case R_PARISC_PLTOFF14F:
3105 case R_PARISC_DIR14R:
3106 case R_PARISC_DIR14F:
3107 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3108
3109 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3110 case R_PARISC_LTOFF_FPTR16F:
3111 case R_PARISC_PCREL16F:
3112 case R_PARISC_LTOFF_TP16F:
3113 case R_PARISC_GPREL16F:
3114 case R_PARISC_PLTOFF16F:
3115 case R_PARISC_DIR16F:
3116 case R_PARISC_LTOFF16F:
3117 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3118
3119 /* Doubleword loads and stores with a 14 bit displacement. */
3120 case R_PARISC_DLTREL14DR:
3121 case R_PARISC_DLTIND14DR:
3122 case R_PARISC_LTOFF_FPTR14DR:
3123 case R_PARISC_LTOFF_FPTR16DF:
3124 case R_PARISC_PCREL14DR:
3125 case R_PARISC_PCREL16DF:
3126 case R_PARISC_LTOFF_TP14DR:
3127 case R_PARISC_LTOFF_TP16DF:
3128 case R_PARISC_DPREL14DR:
3129 case R_PARISC_GPREL16DF:
3130 case R_PARISC_PLTOFF14DR:
3131 case R_PARISC_PLTOFF16DF:
3132 case R_PARISC_DIR14DR:
3133 case R_PARISC_DIR16DF:
3134 case R_PARISC_LTOFF16DF:
3135 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3136 | ((sym_value & 0x1ff8) << 1));
3137
3138 /* Floating point single word load/store instructions. */
3139 case R_PARISC_DLTREL14WR:
3140 case R_PARISC_DLTIND14WR:
3141 case R_PARISC_LTOFF_FPTR14WR:
3142 case R_PARISC_LTOFF_FPTR16WF:
3143 case R_PARISC_PCREL14WR:
3144 case R_PARISC_PCREL16WF:
3145 case R_PARISC_LTOFF_TP14WR:
3146 case R_PARISC_LTOFF_TP16WF:
3147 case R_PARISC_DPREL14WR:
3148 case R_PARISC_GPREL16WF:
3149 case R_PARISC_PLTOFF14WR:
3150 case R_PARISC_PLTOFF16WF:
3151 case R_PARISC_DIR16WF:
3152 case R_PARISC_DIR14WR:
3153 case R_PARISC_LTOFF16WF:
3154 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3155 | ((sym_value & 0x1ffc) << 1));
3156
3157 default:
3158 return insn;
3159 }
3160 }
3161
3162 /* Compute the value for a relocation (REL) during a final link stage,
3163 then insert the value into the proper location in CONTENTS.
3164
3165 VALUE is a tentative value for the relocation and may be overridden
3166 and modified here based on the specific relocation to be performed.
3167
3168 For example we do conversions for PC-relative branches in this routine
3169 or redirection of calls to external routines to stubs.
3170
3171 The work of actually applying the relocation is left to a helper
3172 routine in an attempt to reduce the complexity and size of this
3173 function. */
3174
3175 static bfd_reloc_status_type
3176 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3177 bfd *input_bfd,
3178 bfd *output_bfd,
3179 asection *input_section,
3180 bfd_byte *contents,
3181 bfd_vma value,
3182 struct bfd_link_info *info,
3183 asection *sym_sec,
3184 struct elf_link_hash_entry *eh)
3185 {
3186 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3187 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3188 bfd_vma *local_offsets;
3189 Elf_Internal_Shdr *symtab_hdr;
3190 int insn;
3191 bfd_vma max_branch_offset = 0;
3192 bfd_vma offset = rel->r_offset;
3193 bfd_signed_vma addend = rel->r_addend;
3194 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3195 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3196 unsigned int r_type = howto->type;
3197 bfd_byte *hit_data = contents + offset;
3198
3199 if (hppa_info == NULL)
3200 return bfd_reloc_notsupported;
3201
3202 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3203 local_offsets = elf_local_got_offsets (input_bfd);
3204 insn = bfd_get_32 (input_bfd, hit_data);
3205
3206 switch (r_type)
3207 {
3208 case R_PARISC_NONE:
3209 break;
3210
3211 /* Basic function call support.
3212
3213 Note for a call to a function defined in another dynamic library
3214 we want to redirect the call to a stub. */
3215
3216 /* PC relative relocs without an implicit offset. */
3217 case R_PARISC_PCREL21L:
3218 case R_PARISC_PCREL14R:
3219 case R_PARISC_PCREL14F:
3220 case R_PARISC_PCREL14WR:
3221 case R_PARISC_PCREL14DR:
3222 case R_PARISC_PCREL16F:
3223 case R_PARISC_PCREL16WF:
3224 case R_PARISC_PCREL16DF:
3225 {
3226 /* If this is a call to a function defined in another dynamic
3227 library, then redirect the call to the local stub for this
3228 function. */
3229 if (sym_sec == NULL || sym_sec->output_section == NULL)
3230 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3231 + hppa_info->stub_sec->output_section->vma);
3232
3233 /* Turn VALUE into a proper PC relative address. */
3234 value -= (offset + input_section->output_offset
3235 + input_section->output_section->vma);
3236
3237 /* Adjust for any field selectors. */
3238 if (r_type == R_PARISC_PCREL21L)
3239 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3240 else if (r_type == R_PARISC_PCREL14F
3241 || r_type == R_PARISC_PCREL16F
3242 || r_type == R_PARISC_PCREL16WF
3243 || r_type == R_PARISC_PCREL16DF)
3244 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3245 else
3246 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3247
3248 /* Apply the relocation to the given instruction. */
3249 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3250 break;
3251 }
3252
3253 case R_PARISC_PCREL12F:
3254 case R_PARISC_PCREL22F:
3255 case R_PARISC_PCREL17F:
3256 case R_PARISC_PCREL22C:
3257 case R_PARISC_PCREL17C:
3258 case R_PARISC_PCREL17R:
3259 {
3260 /* If this is a call to a function defined in another dynamic
3261 library, then redirect the call to the local stub for this
3262 function. */
3263 if (sym_sec == NULL || sym_sec->output_section == NULL)
3264 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3265 + hppa_info->stub_sec->output_section->vma);
3266
3267 /* Turn VALUE into a proper PC relative address. */
3268 value -= (offset + input_section->output_offset
3269 + input_section->output_section->vma);
3270 addend -= 8;
3271
3272 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3273 max_branch_offset = (1 << (22-1)) << 2;
3274 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3275 max_branch_offset = (1 << (17-1)) << 2;
3276 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3277 max_branch_offset = (1 << (12-1)) << 2;
3278
3279 /* Make sure we can reach the branch target. */
3280 if (max_branch_offset != 0
3281 && value + addend + max_branch_offset >= 2*max_branch_offset)
3282 {
3283 _bfd_error_handler
3284 /* xgettext:c-format */
3285 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"),
3286 input_bfd,
3287 input_section,
3288 (uint64_t) offset,
3289 eh ? eh->root.root.string : "unknown");
3290 bfd_set_error (bfd_error_bad_value);
3291 return bfd_reloc_overflow;
3292 }
3293
3294 /* Adjust for any field selectors. */
3295 if (r_type == R_PARISC_PCREL17R)
3296 value = hppa_field_adjust (value, addend, e_rsel);
3297 else
3298 value = hppa_field_adjust (value, addend, e_fsel);
3299
3300 /* All branches are implicitly shifted by 2 places. */
3301 value >>= 2;
3302
3303 /* Apply the relocation to the given instruction. */
3304 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3305 break;
3306 }
3307
3308 /* Indirect references to data through the DLT. */
3309 case R_PARISC_DLTIND14R:
3310 case R_PARISC_DLTIND14F:
3311 case R_PARISC_DLTIND14DR:
3312 case R_PARISC_DLTIND14WR:
3313 case R_PARISC_DLTIND21L:
3314 case R_PARISC_LTOFF_FPTR14R:
3315 case R_PARISC_LTOFF_FPTR14DR:
3316 case R_PARISC_LTOFF_FPTR14WR:
3317 case R_PARISC_LTOFF_FPTR21L:
3318 case R_PARISC_LTOFF_FPTR16F:
3319 case R_PARISC_LTOFF_FPTR16WF:
3320 case R_PARISC_LTOFF_FPTR16DF:
3321 case R_PARISC_LTOFF_TP21L:
3322 case R_PARISC_LTOFF_TP14R:
3323 case R_PARISC_LTOFF_TP14F:
3324 case R_PARISC_LTOFF_TP14WR:
3325 case R_PARISC_LTOFF_TP14DR:
3326 case R_PARISC_LTOFF_TP16F:
3327 case R_PARISC_LTOFF_TP16WF:
3328 case R_PARISC_LTOFF_TP16DF:
3329 case R_PARISC_LTOFF16F:
3330 case R_PARISC_LTOFF16WF:
3331 case R_PARISC_LTOFF16DF:
3332 {
3333 bfd_vma off;
3334
3335 /* If this relocation was against a local symbol, then we still
3336 have not set up the DLT entry (it's not convenient to do so
3337 in the "finalize_dlt" routine because it is difficult to get
3338 to the local symbol's value).
3339
3340 So, if this is a local symbol (h == NULL), then we need to
3341 fill in its DLT entry.
3342
3343 Similarly we may still need to set up an entry in .opd for
3344 a local function which had its address taken. */
3345 if (hh == NULL)
3346 {
3347 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3348
3349 if (local_offsets == NULL)
3350 abort ();
3351
3352 /* Now do .opd creation if needed. */
3353 if (r_type == R_PARISC_LTOFF_FPTR14R
3354 || r_type == R_PARISC_LTOFF_FPTR14DR
3355 || r_type == R_PARISC_LTOFF_FPTR14WR
3356 || r_type == R_PARISC_LTOFF_FPTR21L
3357 || r_type == R_PARISC_LTOFF_FPTR16F
3358 || r_type == R_PARISC_LTOFF_FPTR16WF
3359 || r_type == R_PARISC_LTOFF_FPTR16DF)
3360 {
3361 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3362 off = local_opd_offsets[r_symndx];
3363
3364 /* The last bit records whether we've already initialised
3365 this local .opd entry. */
3366 if ((off & 1) != 0)
3367 {
3368 BFD_ASSERT (off != (bfd_vma) -1);
3369 off &= ~1;
3370 }
3371 else
3372 {
3373 local_opd_offsets[r_symndx] |= 1;
3374
3375 /* The first two words of an .opd entry are zero. */
3376 memset (hppa_info->opd_sec->contents + off, 0, 16);
3377
3378 /* The next word is the address of the function. */
3379 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3380 (hppa_info->opd_sec->contents + off + 16));
3381
3382 /* The last word is our local __gp value. */
3383 value = _bfd_get_gp_value (info->output_bfd);
3384 bfd_put_64 (hppa_info->opd_sec->owner, value,
3385 (hppa_info->opd_sec->contents + off + 24));
3386 }
3387
3388 /* The DLT value is the address of the .opd entry. */
3389 value = (off
3390 + hppa_info->opd_sec->output_offset
3391 + hppa_info->opd_sec->output_section->vma);
3392 addend = 0;
3393 }
3394
3395 local_dlt_offsets = local_offsets;
3396 off = local_dlt_offsets[r_symndx];
3397
3398 if ((off & 1) != 0)
3399 {
3400 BFD_ASSERT (off != (bfd_vma) -1);
3401 off &= ~1;
3402 }
3403 else
3404 {
3405 local_dlt_offsets[r_symndx] |= 1;
3406 bfd_put_64 (hppa_info->dlt_sec->owner,
3407 value + addend,
3408 hppa_info->dlt_sec->contents + off);
3409 }
3410 }
3411 else
3412 off = hh->dlt_offset;
3413
3414 /* We want the value of the DLT offset for this symbol, not
3415 the symbol's actual address. Note that __gp may not point
3416 to the start of the DLT, so we have to compute the absolute
3417 address, then subtract out the value of __gp. */
3418 value = (off
3419 + hppa_info->dlt_sec->output_offset
3420 + hppa_info->dlt_sec->output_section->vma);
3421 value -= _bfd_get_gp_value (output_bfd);
3422
3423 /* All DLTIND relocations are basically the same at this point,
3424 except that we need different field selectors for the 21bit
3425 version vs the 14bit versions. */
3426 if (r_type == R_PARISC_DLTIND21L
3427 || r_type == R_PARISC_LTOFF_FPTR21L
3428 || r_type == R_PARISC_LTOFF_TP21L)
3429 value = hppa_field_adjust (value, 0, e_lsel);
3430 else if (r_type == R_PARISC_DLTIND14F
3431 || r_type == R_PARISC_LTOFF_FPTR16F
3432 || r_type == R_PARISC_LTOFF_FPTR16WF
3433 || r_type == R_PARISC_LTOFF_FPTR16DF
3434 || r_type == R_PARISC_LTOFF16F
3435 || r_type == R_PARISC_LTOFF16DF
3436 || r_type == R_PARISC_LTOFF16WF
3437 || r_type == R_PARISC_LTOFF_TP16F
3438 || r_type == R_PARISC_LTOFF_TP16WF
3439 || r_type == R_PARISC_LTOFF_TP16DF)
3440 value = hppa_field_adjust (value, 0, e_fsel);
3441 else
3442 value = hppa_field_adjust (value, 0, e_rsel);
3443
3444 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3445 break;
3446 }
3447
3448 case R_PARISC_DLTREL14R:
3449 case R_PARISC_DLTREL14F:
3450 case R_PARISC_DLTREL14DR:
3451 case R_PARISC_DLTREL14WR:
3452 case R_PARISC_DLTREL21L:
3453 case R_PARISC_DPREL21L:
3454 case R_PARISC_DPREL14WR:
3455 case R_PARISC_DPREL14DR:
3456 case R_PARISC_DPREL14R:
3457 case R_PARISC_DPREL14F:
3458 case R_PARISC_GPREL16F:
3459 case R_PARISC_GPREL16WF:
3460 case R_PARISC_GPREL16DF:
3461 {
3462 /* Subtract out the global pointer value to make value a DLT
3463 relative address. */
3464 value -= _bfd_get_gp_value (output_bfd);
3465
3466 /* All DLTREL relocations are basically the same at this point,
3467 except that we need different field selectors for the 21bit
3468 version vs the 14bit versions. */
3469 if (r_type == R_PARISC_DLTREL21L
3470 || r_type == R_PARISC_DPREL21L)
3471 value = hppa_field_adjust (value, addend, e_lrsel);
3472 else if (r_type == R_PARISC_DLTREL14F
3473 || r_type == R_PARISC_DPREL14F
3474 || r_type == R_PARISC_GPREL16F
3475 || r_type == R_PARISC_GPREL16WF
3476 || r_type == R_PARISC_GPREL16DF)
3477 value = hppa_field_adjust (value, addend, e_fsel);
3478 else
3479 value = hppa_field_adjust (value, addend, e_rrsel);
3480
3481 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3482 break;
3483 }
3484
3485 case R_PARISC_DIR21L:
3486 case R_PARISC_DIR17R:
3487 case R_PARISC_DIR17F:
3488 case R_PARISC_DIR14R:
3489 case R_PARISC_DIR14F:
3490 case R_PARISC_DIR14WR:
3491 case R_PARISC_DIR14DR:
3492 case R_PARISC_DIR16F:
3493 case R_PARISC_DIR16WF:
3494 case R_PARISC_DIR16DF:
3495 {
3496 /* All DIR relocations are basically the same at this point,
3497 except that branch offsets need to be divided by four, and
3498 we need different field selectors. Note that we don't
3499 redirect absolute calls to local stubs. */
3500
3501 if (r_type == R_PARISC_DIR21L)
3502 value = hppa_field_adjust (value, addend, e_lrsel);
3503 else if (r_type == R_PARISC_DIR17F
3504 || r_type == R_PARISC_DIR16F
3505 || r_type == R_PARISC_DIR16WF
3506 || r_type == R_PARISC_DIR16DF
3507 || r_type == R_PARISC_DIR14F)
3508 value = hppa_field_adjust (value, addend, e_fsel);
3509 else
3510 value = hppa_field_adjust (value, addend, e_rrsel);
3511
3512 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3513 /* All branches are implicitly shifted by 2 places. */
3514 value >>= 2;
3515
3516 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3517 break;
3518 }
3519
3520 case R_PARISC_PLTOFF21L:
3521 case R_PARISC_PLTOFF14R:
3522 case R_PARISC_PLTOFF14F:
3523 case R_PARISC_PLTOFF14WR:
3524 case R_PARISC_PLTOFF14DR:
3525 case R_PARISC_PLTOFF16F:
3526 case R_PARISC_PLTOFF16WF:
3527 case R_PARISC_PLTOFF16DF:
3528 {
3529 /* We want the value of the PLT offset for this symbol, not
3530 the symbol's actual address. Note that __gp may not point
3531 to the start of the DLT, so we have to compute the absolute
3532 address, then subtract out the value of __gp. */
3533 value = (hh->plt_offset
3534 + hppa_info->plt_sec->output_offset
3535 + hppa_info->plt_sec->output_section->vma);
3536 value -= _bfd_get_gp_value (output_bfd);
3537
3538 /* All PLTOFF relocations are basically the same at this point,
3539 except that we need different field selectors for the 21bit
3540 version vs the 14bit versions. */
3541 if (r_type == R_PARISC_PLTOFF21L)
3542 value = hppa_field_adjust (value, addend, e_lrsel);
3543 else if (r_type == R_PARISC_PLTOFF14F
3544 || r_type == R_PARISC_PLTOFF16F
3545 || r_type == R_PARISC_PLTOFF16WF
3546 || r_type == R_PARISC_PLTOFF16DF)
3547 value = hppa_field_adjust (value, addend, e_fsel);
3548 else
3549 value = hppa_field_adjust (value, addend, e_rrsel);
3550
3551 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3552 break;
3553 }
3554
3555 case R_PARISC_LTOFF_FPTR32:
3556 {
3557 /* FIXME: There used to be code here to create the FPTR itself if
3558 the relocation was against a local symbol. But the code could
3559 never have worked. If the assert below is ever triggered then
3560 the code will need to be reinstated and fixed so that it does
3561 what is needed. */
3562 BFD_ASSERT (hh != NULL);
3563
3564 /* We want the value of the DLT offset for this symbol, not
3565 the symbol's actual address. Note that __gp may not point
3566 to the start of the DLT, so we have to compute the absolute
3567 address, then subtract out the value of __gp. */
3568 value = (hh->dlt_offset
3569 + hppa_info->dlt_sec->output_offset
3570 + hppa_info->dlt_sec->output_section->vma);
3571 value -= _bfd_get_gp_value (output_bfd);
3572 bfd_put_32 (input_bfd, value, hit_data);
3573 return bfd_reloc_ok;
3574 }
3575
3576 case R_PARISC_LTOFF_FPTR64:
3577 case R_PARISC_LTOFF_TP64:
3578 {
3579 /* We may still need to create the FPTR itself if it was for
3580 a local symbol. */
3581 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3582 {
3583 /* The first two words of an .opd entry are zero. */
3584 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3585
3586 /* The next word is the address of the function. */
3587 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3588 (hppa_info->opd_sec->contents
3589 + hh->opd_offset + 16));
3590
3591 /* The last word is our local __gp value. */
3592 value = _bfd_get_gp_value (info->output_bfd);
3593 bfd_put_64 (hppa_info->opd_sec->owner, value,
3594 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3595
3596 /* The DLT value is the address of the .opd entry. */
3597 value = (hh->opd_offset
3598 + hppa_info->opd_sec->output_offset
3599 + hppa_info->opd_sec->output_section->vma);
3600
3601 bfd_put_64 (hppa_info->dlt_sec->owner,
3602 value,
3603 hppa_info->dlt_sec->contents + hh->dlt_offset);
3604 }
3605
3606 /* We want the value of the DLT offset for this symbol, not
3607 the symbol's actual address. Note that __gp may not point
3608 to the start of the DLT, so we have to compute the absolute
3609 address, then subtract out the value of __gp. */
3610 value = (hh->dlt_offset
3611 + hppa_info->dlt_sec->output_offset
3612 + hppa_info->dlt_sec->output_section->vma);
3613 value -= _bfd_get_gp_value (output_bfd);
3614 bfd_put_64 (input_bfd, value, hit_data);
3615 return bfd_reloc_ok;
3616 }
3617
3618 case R_PARISC_DIR32:
3619 bfd_put_32 (input_bfd, value + addend, hit_data);
3620 return bfd_reloc_ok;
3621
3622 case R_PARISC_DIR64:
3623 bfd_put_64 (input_bfd, value + addend, hit_data);
3624 return bfd_reloc_ok;
3625
3626 case R_PARISC_GPREL64:
3627 /* Subtract out the global pointer value to make value a DLT
3628 relative address. */
3629 value -= _bfd_get_gp_value (output_bfd);
3630
3631 bfd_put_64 (input_bfd, value + addend, hit_data);
3632 return bfd_reloc_ok;
3633
3634 case R_PARISC_LTOFF64:
3635 /* We want the value of the DLT offset for this symbol, not
3636 the symbol's actual address. Note that __gp may not point
3637 to the start of the DLT, so we have to compute the absolute
3638 address, then subtract out the value of __gp. */
3639 value = (hh->dlt_offset
3640 + hppa_info->dlt_sec->output_offset
3641 + hppa_info->dlt_sec->output_section->vma);
3642 value -= _bfd_get_gp_value (output_bfd);
3643
3644 bfd_put_64 (input_bfd, value + addend, hit_data);
3645 return bfd_reloc_ok;
3646
3647 case R_PARISC_PCREL32:
3648 {
3649 /* If this is a call to a function defined in another dynamic
3650 library, then redirect the call to the local stub for this
3651 function. */
3652 if (sym_sec == NULL || sym_sec->output_section == NULL)
3653 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3654 + hppa_info->stub_sec->output_section->vma);
3655
3656 /* Turn VALUE into a proper PC relative address. */
3657 value -= (offset + input_section->output_offset
3658 + input_section->output_section->vma);
3659
3660 value += addend;
3661 value -= 8;
3662 bfd_put_32 (input_bfd, value, hit_data);
3663 return bfd_reloc_ok;
3664 }
3665
3666 case R_PARISC_PCREL64:
3667 {
3668 /* If this is a call to a function defined in another dynamic
3669 library, then redirect the call to the local stub for this
3670 function. */
3671 if (sym_sec == NULL || sym_sec->output_section == NULL)
3672 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3673 + hppa_info->stub_sec->output_section->vma);
3674
3675 /* Turn VALUE into a proper PC relative address. */
3676 value -= (offset + input_section->output_offset
3677 + input_section->output_section->vma);
3678
3679 value += addend;
3680 value -= 8;
3681 bfd_put_64 (input_bfd, value, hit_data);
3682 return bfd_reloc_ok;
3683 }
3684
3685 case R_PARISC_FPTR64:
3686 {
3687 bfd_vma off;
3688
3689 /* We may still need to create the FPTR itself if it was for
3690 a local symbol. */
3691 if (hh == NULL)
3692 {
3693 bfd_vma *local_opd_offsets;
3694
3695 if (local_offsets == NULL)
3696 abort ();
3697
3698 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3699 off = local_opd_offsets[r_symndx];
3700
3701 /* The last bit records whether we've already initialised
3702 this local .opd entry. */
3703 if ((off & 1) != 0)
3704 {
3705 BFD_ASSERT (off != (bfd_vma) -1);
3706 off &= ~1;
3707 }
3708 else
3709 {
3710 /* The first two words of an .opd entry are zero. */
3711 memset (hppa_info->opd_sec->contents + off, 0, 16);
3712
3713 /* The next word is the address of the function. */
3714 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3715 (hppa_info->opd_sec->contents + off + 16));
3716
3717 /* The last word is our local __gp value. */
3718 value = _bfd_get_gp_value (info->output_bfd);
3719 bfd_put_64 (hppa_info->opd_sec->owner, value,
3720 hppa_info->opd_sec->contents + off + 24);
3721 }
3722 }
3723 else
3724 off = hh->opd_offset;
3725
3726 if (hh == NULL || hh->want_opd)
3727 /* We want the value of the OPD offset for this symbol. */
3728 value = (off
3729 + hppa_info->opd_sec->output_offset
3730 + hppa_info->opd_sec->output_section->vma);
3731 else
3732 /* We want the address of the symbol. */
3733 value += addend;
3734
3735 bfd_put_64 (input_bfd, value, hit_data);
3736 return bfd_reloc_ok;
3737 }
3738
3739 case R_PARISC_SECREL32:
3740 if (sym_sec)
3741 value -= sym_sec->output_section->vma;
3742 bfd_put_32 (input_bfd, value + addend, hit_data);
3743 return bfd_reloc_ok;
3744
3745 case R_PARISC_SEGREL32:
3746 case R_PARISC_SEGREL64:
3747 {
3748 /* If this is the first SEGREL relocation, then initialize
3749 the segment base values. */
3750 if (hppa_info->text_segment_base == (bfd_vma) -1)
3751 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3752 hppa_info);
3753
3754 /* VALUE holds the absolute address. We want to include the
3755 addend, then turn it into a segment relative address.
3756
3757 The segment is derived from SYM_SEC. We assume that there are
3758 only two segments of note in the resulting executable/shlib.
3759 A readonly segment (.text) and a readwrite segment (.data). */
3760 value += addend;
3761
3762 if (sym_sec->flags & SEC_CODE)
3763 value -= hppa_info->text_segment_base;
3764 else
3765 value -= hppa_info->data_segment_base;
3766
3767 if (r_type == R_PARISC_SEGREL32)
3768 bfd_put_32 (input_bfd, value, hit_data);
3769 else
3770 bfd_put_64 (input_bfd, value, hit_data);
3771 return bfd_reloc_ok;
3772 }
3773
3774 /* Something we don't know how to handle. */
3775 default:
3776 return bfd_reloc_notsupported;
3777 }
3778
3779 /* Update the instruction word. */
3780 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3781 return bfd_reloc_ok;
3782 }
3783
3784 /* Relocate an HPPA ELF section. */
3785
3786 static bfd_boolean
3787 elf64_hppa_relocate_section (bfd *output_bfd,
3788 struct bfd_link_info *info,
3789 bfd *input_bfd,
3790 asection *input_section,
3791 bfd_byte *contents,
3792 Elf_Internal_Rela *relocs,
3793 Elf_Internal_Sym *local_syms,
3794 asection **local_sections)
3795 {
3796 Elf_Internal_Shdr *symtab_hdr;
3797 Elf_Internal_Rela *rel;
3798 Elf_Internal_Rela *relend;
3799 struct elf64_hppa_link_hash_table *hppa_info;
3800
3801 hppa_info = hppa_link_hash_table (info);
3802 if (hppa_info == NULL)
3803 return FALSE;
3804
3805 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3806
3807 rel = relocs;
3808 relend = relocs + input_section->reloc_count;
3809 for (; rel < relend; rel++)
3810 {
3811 int r_type;
3812 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3813 unsigned long r_symndx;
3814 struct elf_link_hash_entry *eh;
3815 Elf_Internal_Sym *sym;
3816 asection *sym_sec;
3817 bfd_vma relocation;
3818 bfd_reloc_status_type r;
3819
3820 r_type = ELF_R_TYPE (rel->r_info);
3821 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3822 {
3823 bfd_set_error (bfd_error_bad_value);
3824 return FALSE;
3825 }
3826 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3827 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3828 continue;
3829
3830 /* This is a final link. */
3831 r_symndx = ELF_R_SYM (rel->r_info);
3832 eh = NULL;
3833 sym = NULL;
3834 sym_sec = NULL;
3835 if (r_symndx < symtab_hdr->sh_info)
3836 {
3837 /* This is a local symbol, hh defaults to NULL. */
3838 sym = local_syms + r_symndx;
3839 sym_sec = local_sections[r_symndx];
3840 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3841 }
3842 else
3843 {
3844 /* This is not a local symbol. */
3845 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3846
3847 /* It seems this can happen with erroneous or unsupported
3848 input (mixing a.out and elf in an archive, for example.) */
3849 if (sym_hashes == NULL)
3850 return FALSE;
3851
3852 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3853
3854 if (info->wrap_hash != NULL
3855 && (input_section->flags & SEC_DEBUGGING) != 0)
3856 eh = ((struct elf_link_hash_entry *)
3857 unwrap_hash_lookup (info, input_bfd, &eh->root));
3858
3859 while (eh->root.type == bfd_link_hash_indirect
3860 || eh->root.type == bfd_link_hash_warning)
3861 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3862
3863 relocation = 0;
3864 if (eh->root.type == bfd_link_hash_defined
3865 || eh->root.type == bfd_link_hash_defweak)
3866 {
3867 sym_sec = eh->root.u.def.section;
3868 if (sym_sec != NULL
3869 && sym_sec->output_section != NULL)
3870 relocation = (eh->root.u.def.value
3871 + sym_sec->output_section->vma
3872 + sym_sec->output_offset);
3873 }
3874 else if (eh->root.type == bfd_link_hash_undefweak)
3875 ;
3876 else if (info->unresolved_syms_in_objects == RM_IGNORE
3877 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3878 ;
3879 else if (!bfd_link_relocatable (info)
3880 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3881 continue;
3882 else if (!bfd_link_relocatable (info))
3883 {
3884 bfd_boolean err;
3885 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3886 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3887 (*info->callbacks->undefined_symbol) (info,
3888 eh->root.root.string,
3889 input_bfd,
3890 input_section,
3891 rel->r_offset, err);
3892 }
3893
3894 if (!bfd_link_relocatable (info)
3895 && relocation == 0
3896 && eh->root.type != bfd_link_hash_defined
3897 && eh->root.type != bfd_link_hash_defweak
3898 && eh->root.type != bfd_link_hash_undefweak)
3899 {
3900 if (info->unresolved_syms_in_objects == RM_IGNORE
3901 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3902 && eh->type == STT_PARISC_MILLI)
3903 (*info->callbacks->undefined_symbol)
3904 (info, eh_name (eh), input_bfd,
3905 input_section, rel->r_offset, FALSE);
3906 }
3907 }
3908
3909 if (sym_sec != NULL && discarded_section (sym_sec))
3910 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3911 rel, 1, relend, howto, 0, contents);
3912
3913 if (bfd_link_relocatable (info))
3914 continue;
3915
3916 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3917 input_section, contents,
3918 relocation, info, sym_sec,
3919 eh);
3920
3921 if (r != bfd_reloc_ok)
3922 {
3923 switch (r)
3924 {
3925 default:
3926 abort ();
3927 case bfd_reloc_overflow:
3928 {
3929 const char *sym_name;
3930
3931 if (eh != NULL)
3932 sym_name = NULL;
3933 else
3934 {
3935 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3936 symtab_hdr->sh_link,
3937 sym->st_name);
3938 if (sym_name == NULL)
3939 return FALSE;
3940 if (*sym_name == '\0')
3941 sym_name = bfd_section_name (input_bfd, sym_sec);
3942 }
3943
3944 (*info->callbacks->reloc_overflow)
3945 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3946 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3947 }
3948 break;
3949 }
3950 }
3951 }
3952 return TRUE;
3953 }
3954
3955 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3956 {
3957 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3958 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3959 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3960 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3961 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3962 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3963 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3964 { NULL, 0, 0, 0, 0 }
3965 };
3966
3967 /* The hash bucket size is the standard one, namely 4. */
3968
3969 const struct elf_size_info hppa64_elf_size_info =
3970 {
3971 sizeof (Elf64_External_Ehdr),
3972 sizeof (Elf64_External_Phdr),
3973 sizeof (Elf64_External_Shdr),
3974 sizeof (Elf64_External_Rel),
3975 sizeof (Elf64_External_Rela),
3976 sizeof (Elf64_External_Sym),
3977 sizeof (Elf64_External_Dyn),
3978 sizeof (Elf_External_Note),
3979 4,
3980 1,
3981 64, 3,
3982 ELFCLASS64, EV_CURRENT,
3983 bfd_elf64_write_out_phdrs,
3984 bfd_elf64_write_shdrs_and_ehdr,
3985 bfd_elf64_checksum_contents,
3986 bfd_elf64_write_relocs,
3987 bfd_elf64_swap_symbol_in,
3988 bfd_elf64_swap_symbol_out,
3989 bfd_elf64_slurp_reloc_table,
3990 bfd_elf64_slurp_symbol_table,
3991 bfd_elf64_swap_dyn_in,
3992 bfd_elf64_swap_dyn_out,
3993 bfd_elf64_swap_reloc_in,
3994 bfd_elf64_swap_reloc_out,
3995 bfd_elf64_swap_reloca_in,
3996 bfd_elf64_swap_reloca_out
3997 };
3998
3999 #define TARGET_BIG_SYM hppa_elf64_vec
4000 #define TARGET_BIG_NAME "elf64-hppa"
4001 #define ELF_ARCH bfd_arch_hppa
4002 #define ELF_TARGET_ID HPPA64_ELF_DATA
4003 #define ELF_MACHINE_CODE EM_PARISC
4004 /* This is not strictly correct. The maximum page size for PA2.0 is
4005 64M. But everything still uses 4k. */
4006 #define ELF_MAXPAGESIZE 0x1000
4007 #define ELF_OSABI ELFOSABI_HPUX
4008
4009 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4010 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4011 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4012 #define elf_info_to_howto elf_hppa_info_to_howto
4013 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4014
4015 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4016 #define elf_backend_object_p elf64_hppa_object_p
4017 #define elf_backend_final_write_processing \
4018 elf_hppa_final_write_processing
4019 #define elf_backend_fake_sections elf_hppa_fake_sections
4020 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4021
4022 #define elf_backend_relocate_section elf_hppa_relocate_section
4023
4024 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4025
4026 #define elf_backend_create_dynamic_sections \
4027 elf64_hppa_create_dynamic_sections
4028 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4029
4030 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
4031
4032 #define elf_backend_adjust_dynamic_symbol \
4033 elf64_hppa_adjust_dynamic_symbol
4034
4035 #define elf_backend_size_dynamic_sections \
4036 elf64_hppa_size_dynamic_sections
4037
4038 #define elf_backend_finish_dynamic_symbol \
4039 elf64_hppa_finish_dynamic_symbol
4040 #define elf_backend_finish_dynamic_sections \
4041 elf64_hppa_finish_dynamic_sections
4042 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4043 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4044
4045 /* Stuff for the BFD linker: */
4046 #define bfd_elf64_bfd_link_hash_table_create \
4047 elf64_hppa_hash_table_create
4048
4049 #define elf_backend_check_relocs \
4050 elf64_hppa_check_relocs
4051
4052 #define elf_backend_size_info \
4053 hppa64_elf_size_info
4054
4055 #define elf_backend_additional_program_headers \
4056 elf64_hppa_additional_program_headers
4057
4058 #define elf_backend_modify_segment_map \
4059 elf64_hppa_modify_segment_map
4060
4061 #define elf_backend_allow_non_load_phdr \
4062 elf64_hppa_allow_non_load_phdr
4063
4064 #define elf_backend_link_output_symbol_hook \
4065 elf64_hppa_link_output_symbol_hook
4066
4067 #define elf_backend_want_got_plt 0
4068 #define elf_backend_plt_readonly 0
4069 #define elf_backend_want_plt_sym 0
4070 #define elf_backend_got_header_size 0
4071 #define elf_backend_type_change_ok TRUE
4072 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4073 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4074 #define elf_backend_rela_normal 1
4075 #define elf_backend_special_sections elf64_hppa_special_sections
4076 #define elf_backend_action_discarded elf_hppa_action_discarded
4077 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4078
4079 #define elf64_bed elf64_hppa_hpux_bed
4080
4081 #include "elf64-target.h"
4082
4083 #undef TARGET_BIG_SYM
4084 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4085 #undef TARGET_BIG_NAME
4086 #define TARGET_BIG_NAME "elf64-hppa-linux"
4087 #undef ELF_OSABI
4088 #define ELF_OSABI ELFOSABI_GNU
4089 #undef elf64_bed
4090 #define elf64_bed elf64_hppa_linux_bed
4091 #undef elf_backend_special_sections
4092 #define elf_backend_special_sections (elf64_hppa_special_sections + 1)
4093
4094 #include "elf64-target.h"