]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-mmix.c
Return void from linker callbacks
[thirdparty/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, bfd_error_handler_type);
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 (*_bfd_error_handler)
1194 (_("%s: Internal inconsistency error for value for\n\
1195 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1196 bfd_get_filename (isec->owner),
1197 (unsigned long) (value >> 32), (unsigned long) value,
1198 (unsigned long) (gregdata->reloc_request[bpo_index].value
1199 >> 32),
1200 (unsigned long) gregdata->reloc_request[bpo_index].value);
1201 bfd_set_error (bfd_error_bad_value);
1202 return bfd_reloc_overflow;
1203 }
1204
1205 /* Then store the register number and offset for that register
1206 into datap and datap + 1 respectively. */
1207 bfd_put_8 (abfd,
1208 gregdata->reloc_request[bpo_index].regindex
1209 + bpo_greg_section->output_section->vma / 8,
1210 datap);
1211 bfd_put_8 (abfd,
1212 gregdata->reloc_request[bpo_index].offset,
1213 ((unsigned char *) datap) + 1);
1214 return bfd_reloc_ok;
1215 }
1216
1217 case R_MMIX_REG_OR_BYTE:
1218 case R_MMIX_REG:
1219 if (value > 255)
1220 return bfd_reloc_overflow;
1221 bfd_put_8 (abfd, value, datap);
1222 return bfd_reloc_ok;
1223
1224 default:
1225 BAD_CASE (howto->type);
1226 }
1227
1228 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1229 sequence. */
1230
1231 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1232 everything that looks strange. */
1233 if (value & 3)
1234 flag = bfd_reloc_overflow;
1235
1236 bfd_put_32 (abfd,
1237 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1238 (bfd_byte *) datap + offs);
1239 bfd_put_32 (abfd,
1240 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1241 (bfd_byte *) datap + offs + 4);
1242 bfd_put_32 (abfd,
1243 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1244 (bfd_byte *) datap + offs + 8);
1245 bfd_put_32 (abfd,
1246 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1247 (bfd_byte *) datap + offs + 12);
1248
1249 return flag;
1250 }
1251
1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1253
1254 static void
1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1256 arelent *cache_ptr,
1257 Elf_Internal_Rela *dst)
1258 {
1259 unsigned int r_type;
1260
1261 r_type = ELF64_R_TYPE (dst->r_info);
1262 if (r_type >= (unsigned int) R_MMIX_max)
1263 {
1264 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1265 r_type = 0;
1266 }
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268 }
1269
1270 /* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274 static bfd_reloc_status_type
1275 mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
1282 {
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1304 return bfd_reloc_outofrange;
1305
1306 /* Work out which section the relocation is targeted at and the
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
1343 reloc_target_output_section,
1344 error_message);
1345 }
1346 \f
1347 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
1350 static bfd_boolean
1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
1359 {
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1364 bfd_size_type size;
1365 size_t pjsno = 0;
1366
1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
1389 bfd_boolean undefined_signalled = FALSE;
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
1418 bfd_boolean unresolved_reloc, ignored;
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
1425 name = h->root.root.string;
1426 }
1427
1428 if (sec != NULL && discarded_section (sec))
1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1430 rel, 1, relend, howto, 0, contents);
1431
1432 if (bfd_link_relocatable (info))
1433 {
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
1440
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
1472 + size
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
1475 NULL, NULL, NULL) != bfd_reloc_ok)
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
1482 + size
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
1490 = (size
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
1510 continue;
1511 }
1512
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
1515 rel->r_addend, relocation, name, sec, NULL);
1516
1517 if (r != bfd_reloc_ok)
1518 {
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1524 info->callbacks->reloc_overflow
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1534 undefined_signalled = TRUE;
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
1557 }
1558 }
1559
1560 return TRUE;
1561 }
1562 \f
1563 /* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566 static bfd_reloc_status_type
1567 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
1572 {
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
1584 case R_MMIX_PUSHJ_STUBBABLE:
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
1598 addr, srel, error_message);
1599 break;
1600
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
1614 (*_bfd_error_handler)
1615 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1616 bfd_get_filename (input_section->owner),
1617 bfd_get_section_name (symsec->owner, symsec));
1618 else
1619 (*_bfd_error_handler)
1620 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1621 bfd_get_filename (input_section->owner), symname,
1622 bfd_get_section_name (symsec->owner, symsec));
1623 return bfd_reloc_overflow;
1624 }
1625 goto do_mmix_reloc;
1626
1627 case R_MMIX_REG_OR_BYTE:
1628 case R_MMIX_REG:
1629 /* For now, we handle these alike. They must refer to an register
1630 symbol, which is either relative to the register section and in
1631 the range 0..255, or is in the register contents section with vma
1632 regno * 8. */
1633
1634 /* FIXME: A better way to check for reg contents section?
1635 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1636 if (symsec == NULL)
1637 return bfd_reloc_undefined;
1638
1639 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1640 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1641 {
1642 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1643 {
1644 /* The bfd_reloc_outofrange return value, though intuitively
1645 a better value, will not get us an error. */
1646 return bfd_reloc_overflow;
1647 }
1648 srel /= 8;
1649 }
1650 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1651 MMIX_REG_SECTION_NAME) == 0)
1652 {
1653 if (srel < 0 || srel > 255)
1654 /* The bfd_reloc_outofrange return value, though intuitively a
1655 better value, will not get us an error. */
1656 return bfd_reloc_overflow;
1657 }
1658 else
1659 {
1660 /* Note: This is separated out into two messages in order
1661 to ease the translation into other languages. */
1662 if (symname == NULL || *symname == 0)
1663 (*_bfd_error_handler)
1664 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1665 bfd_get_filename (input_section->owner),
1666 bfd_get_section_name (symsec->owner, symsec));
1667 else
1668 (*_bfd_error_handler)
1669 (_("%s: register relocation against non-register symbol: %s in %s"),
1670 bfd_get_filename (input_section->owner), symname,
1671 bfd_get_section_name (symsec->owner, symsec));
1672
1673 /* The bfd_reloc_outofrange return value, though intuitively a
1674 better value, will not get us an error. */
1675 return bfd_reloc_overflow;
1676 }
1677 do_mmix_reloc:
1678 contents += r_offset;
1679 r = mmix_elf_perform_relocation (input_section, howto, contents,
1680 addr, srel, error_message);
1681 break;
1682
1683 case R_MMIX_LOCAL:
1684 /* This isn't a real relocation, it's just an assertion that the
1685 final relocation value corresponds to a local register. We
1686 ignore the actual relocation; nothing is changed. */
1687 {
1688 asection *regsec
1689 = bfd_get_section_by_name (input_section->output_section->owner,
1690 MMIX_REG_CONTENTS_SECTION_NAME);
1691 bfd_vma first_global;
1692
1693 /* Check that this is an absolute value, or a reference to the
1694 register contents section or the register (symbol) section.
1695 Absolute numbers can get here as undefined section. Undefined
1696 symbols are signalled elsewhere, so there's no conflict in us
1697 accidentally handling it. */
1698 if (!bfd_is_abs_section (symsec)
1699 && !bfd_is_und_section (symsec)
1700 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1701 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1702 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1703 MMIX_REG_SECTION_NAME) != 0)
1704 {
1705 (*_bfd_error_handler)
1706 (_("%s: directive LOCAL valid only with a register or absolute value"),
1707 bfd_get_filename (input_section->owner));
1708
1709 return bfd_reloc_overflow;
1710 }
1711
1712 /* If we don't have a register contents section, then $255 is the
1713 first global register. */
1714 if (regsec == NULL)
1715 first_global = 255;
1716 else
1717 {
1718 first_global
1719 = bfd_get_section_vma (input_section->output_section->owner,
1720 regsec) / 8;
1721 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1722 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1723 {
1724 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1725 /* The bfd_reloc_outofrange return value, though
1726 intuitively a better value, will not get us an error. */
1727 return bfd_reloc_overflow;
1728 srel /= 8;
1729 }
1730 }
1731
1732 if ((bfd_vma) srel >= first_global)
1733 {
1734 /* FIXME: Better error message. */
1735 (*_bfd_error_handler)
1736 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1737 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1738
1739 return bfd_reloc_overflow;
1740 }
1741 }
1742 r = bfd_reloc_ok;
1743 break;
1744
1745 default:
1746 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1747 contents, r_offset,
1748 relocation, r_addend);
1749 }
1750
1751 return r;
1752 }
1753 \f
1754 /* Return the section that should be marked against GC for a given
1755 relocation. */
1756
1757 static asection *
1758 mmix_elf_gc_mark_hook (asection *sec,
1759 struct bfd_link_info *info,
1760 Elf_Internal_Rela *rel,
1761 struct elf_link_hash_entry *h,
1762 Elf_Internal_Sym *sym)
1763 {
1764 if (h != NULL)
1765 switch (ELF64_R_TYPE (rel->r_info))
1766 {
1767 case R_MMIX_GNU_VTINHERIT:
1768 case R_MMIX_GNU_VTENTRY:
1769 return NULL;
1770 }
1771
1772 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1773 }
1774
1775 /* Update relocation info for a GC-excluded section. We could supposedly
1776 perform the allocation after GC, but there's no suitable hook between
1777 GC (or section merge) and the point when all input sections must be
1778 present. Better to waste some memory and (perhaps) a little time. */
1779
1780 static bfd_boolean
1781 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1782 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1783 asection *sec,
1784 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1785 {
1786 struct bpo_reloc_section_info *bpodata
1787 = mmix_elf_section_data (sec)->bpo.reloc;
1788 asection *allocated_gregs_section;
1789
1790 /* If no bpodata here, we have nothing to do. */
1791 if (bpodata == NULL)
1792 return TRUE;
1793
1794 allocated_gregs_section = bpodata->bpo_greg_section;
1795
1796 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1797 -= bpodata->n_bpo_relocs_this_section;
1798
1799 return TRUE;
1800 }
1801 \f
1802 /* Sort register relocs to come before expanding relocs. */
1803
1804 static int
1805 mmix_elf_sort_relocs (const void * p1, const void * p2)
1806 {
1807 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1808 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1809 int r1_is_reg, r2_is_reg;
1810
1811 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1812 insns. */
1813 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1814 return 1;
1815 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1816 return -1;
1817
1818 r1_is_reg
1819 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1820 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1821 r2_is_reg
1822 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1823 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1824 if (r1_is_reg != r2_is_reg)
1825 return r2_is_reg - r1_is_reg;
1826
1827 /* Neither or both are register relocs. Then sort on full offset. */
1828 if (r1->r_offset > r2->r_offset)
1829 return 1;
1830 else if (r1->r_offset < r2->r_offset)
1831 return -1;
1832 return 0;
1833 }
1834
1835 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1836
1837 static bfd_boolean
1838 mmix_elf_check_common_relocs (bfd *abfd,
1839 struct bfd_link_info *info,
1840 asection *sec,
1841 const Elf_Internal_Rela *relocs)
1842 {
1843 bfd *bpo_greg_owner = NULL;
1844 asection *allocated_gregs_section = NULL;
1845 struct bpo_greg_section_info *gregdata = NULL;
1846 struct bpo_reloc_section_info *bpodata = NULL;
1847 const Elf_Internal_Rela *rel;
1848 const Elf_Internal_Rela *rel_end;
1849
1850 /* We currently have to abuse this COFF-specific member, since there's
1851 no target-machine-dedicated member. There's no alternative outside
1852 the bfd_link_info struct; we can't specialize a hash-table since
1853 they're different between ELF and mmo. */
1854 bpo_greg_owner = (bfd *) info->base_file;
1855
1856 rel_end = relocs + sec->reloc_count;
1857 for (rel = relocs; rel < rel_end; rel++)
1858 {
1859 switch (ELF64_R_TYPE (rel->r_info))
1860 {
1861 /* This relocation causes a GREG allocation. We need to count
1862 them, and we need to create a section for them, so we need an
1863 object to fake as the owner of that section. We can't use
1864 the ELF dynobj for this, since the ELF bits assume lots of
1865 DSO-related stuff if that member is non-NULL. */
1866 case R_MMIX_BASE_PLUS_OFFSET:
1867 /* We don't do anything with this reloc for a relocatable link. */
1868 if (bfd_link_relocatable (info))
1869 break;
1870
1871 if (bpo_greg_owner == NULL)
1872 {
1873 bpo_greg_owner = abfd;
1874 info->base_file = bpo_greg_owner;
1875 }
1876
1877 if (allocated_gregs_section == NULL)
1878 allocated_gregs_section
1879 = bfd_get_section_by_name (bpo_greg_owner,
1880 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1881
1882 if (allocated_gregs_section == NULL)
1883 {
1884 allocated_gregs_section
1885 = bfd_make_section_with_flags (bpo_greg_owner,
1886 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1887 (SEC_HAS_CONTENTS
1888 | SEC_IN_MEMORY
1889 | SEC_LINKER_CREATED));
1890 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1891 treated like any other section, and we'd get errors for
1892 address overlap with the text section. Let's set none of
1893 those flags, as that is what currently happens for usual
1894 GREG allocations, and that works. */
1895 if (allocated_gregs_section == NULL
1896 || !bfd_set_section_alignment (bpo_greg_owner,
1897 allocated_gregs_section,
1898 3))
1899 return FALSE;
1900
1901 gregdata = (struct bpo_greg_section_info *)
1902 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1903 if (gregdata == NULL)
1904 return FALSE;
1905 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1906 = gregdata;
1907 }
1908 else if (gregdata == NULL)
1909 gregdata
1910 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1911
1912 /* Get ourselves some auxiliary info for the BPO-relocs. */
1913 if (bpodata == NULL)
1914 {
1915 /* No use doing a separate iteration pass to find the upper
1916 limit - just use the number of relocs. */
1917 bpodata = (struct bpo_reloc_section_info *)
1918 bfd_alloc (bpo_greg_owner,
1919 sizeof (struct bpo_reloc_section_info)
1920 * (sec->reloc_count + 1));
1921 if (bpodata == NULL)
1922 return FALSE;
1923 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1924 bpodata->first_base_plus_offset_reloc
1925 = bpodata->bpo_index
1926 = gregdata->n_max_bpo_relocs;
1927 bpodata->bpo_greg_section
1928 = allocated_gregs_section;
1929 bpodata->n_bpo_relocs_this_section = 0;
1930 }
1931
1932 bpodata->n_bpo_relocs_this_section++;
1933 gregdata->n_max_bpo_relocs++;
1934
1935 /* We don't get another chance to set this before GC; we've not
1936 set up any hook that runs before GC. */
1937 gregdata->n_bpo_relocs
1938 = gregdata->n_max_bpo_relocs;
1939 break;
1940
1941 case R_MMIX_PUSHJ_STUBBABLE:
1942 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1943 break;
1944 }
1945 }
1946
1947 /* Allocate per-reloc stub storage and initialize it to the max stub
1948 size. */
1949 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1950 {
1951 size_t i;
1952
1953 mmix_elf_section_data (sec)->pjs.stub_size
1954 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1955 * sizeof (mmix_elf_section_data (sec)
1956 ->pjs.stub_size[0]));
1957 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1958 return FALSE;
1959
1960 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1961 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1962 }
1963
1964 return TRUE;
1965 }
1966
1967 /* Look through the relocs for a section during the first phase. */
1968
1969 static bfd_boolean
1970 mmix_elf_check_relocs (bfd *abfd,
1971 struct bfd_link_info *info,
1972 asection *sec,
1973 const Elf_Internal_Rela *relocs)
1974 {
1975 Elf_Internal_Shdr *symtab_hdr;
1976 struct elf_link_hash_entry **sym_hashes;
1977 const Elf_Internal_Rela *rel;
1978 const Elf_Internal_Rela *rel_end;
1979
1980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1981 sym_hashes = elf_sym_hashes (abfd);
1982
1983 /* First we sort the relocs so that any register relocs come before
1984 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1985 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1986 mmix_elf_sort_relocs);
1987
1988 /* Do the common part. */
1989 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1990 return FALSE;
1991
1992 if (bfd_link_relocatable (info))
1993 return TRUE;
1994
1995 rel_end = relocs + sec->reloc_count;
1996 for (rel = relocs; rel < rel_end; rel++)
1997 {
1998 struct elf_link_hash_entry *h;
1999 unsigned long r_symndx;
2000
2001 r_symndx = ELF64_R_SYM (rel->r_info);
2002 if (r_symndx < symtab_hdr->sh_info)
2003 h = NULL;
2004 else
2005 {
2006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2007 while (h->root.type == bfd_link_hash_indirect
2008 || h->root.type == bfd_link_hash_warning)
2009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2010
2011 /* PR15323, ref flags aren't set for references in the same
2012 object. */
2013 h->root.non_ir_ref = 1;
2014 }
2015
2016 switch (ELF64_R_TYPE (rel->r_info))
2017 {
2018 /* This relocation describes the C++ object vtable hierarchy.
2019 Reconstruct it for later use during GC. */
2020 case R_MMIX_GNU_VTINHERIT:
2021 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2022 return FALSE;
2023 break;
2024
2025 /* This relocation describes which C++ vtable entries are actually
2026 used. Record for later use during GC. */
2027 case R_MMIX_GNU_VTENTRY:
2028 BFD_ASSERT (h != NULL);
2029 if (h != NULL
2030 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2031 return FALSE;
2032 break;
2033 }
2034 }
2035
2036 return TRUE;
2037 }
2038
2039 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2040 Copied from elf_link_add_object_symbols. */
2041
2042 bfd_boolean
2043 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2044 {
2045 asection *o;
2046
2047 for (o = abfd->sections; o != NULL; o = o->next)
2048 {
2049 Elf_Internal_Rela *internal_relocs;
2050 bfd_boolean ok;
2051
2052 if ((o->flags & SEC_RELOC) == 0
2053 || o->reloc_count == 0
2054 || ((info->strip == strip_all || info->strip == strip_debugger)
2055 && (o->flags & SEC_DEBUGGING) != 0)
2056 || bfd_is_abs_section (o->output_section))
2057 continue;
2058
2059 internal_relocs
2060 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2061 (Elf_Internal_Rela *) NULL,
2062 info->keep_memory);
2063 if (internal_relocs == NULL)
2064 return FALSE;
2065
2066 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2067
2068 if (! info->keep_memory)
2069 free (internal_relocs);
2070
2071 if (! ok)
2072 return FALSE;
2073 }
2074
2075 return TRUE;
2076 }
2077 \f
2078 /* Change symbols relative to the reg contents section to instead be to
2079 the register section, and scale them down to correspond to the register
2080 number. */
2081
2082 static int
2083 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2084 const char *name ATTRIBUTE_UNUSED,
2085 Elf_Internal_Sym *sym,
2086 asection *input_sec,
2087 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2088 {
2089 if (input_sec != NULL
2090 && input_sec->name != NULL
2091 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2092 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2093 {
2094 sym->st_value /= 8;
2095 sym->st_shndx = SHN_REGISTER;
2096 }
2097
2098 return 1;
2099 }
2100
2101 /* We fake a register section that holds values that are register numbers.
2102 Having a SHN_REGISTER and register section translates better to other
2103 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2104 This section faking is based on a construct in elf32-mips.c. */
2105 static asection mmix_elf_reg_section;
2106 static asymbol mmix_elf_reg_section_symbol;
2107 static asymbol *mmix_elf_reg_section_symbol_ptr;
2108
2109 /* Handle the special section numbers that a symbol may use. */
2110
2111 void
2112 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2113 {
2114 elf_symbol_type *elfsym;
2115
2116 elfsym = (elf_symbol_type *) asym;
2117 switch (elfsym->internal_elf_sym.st_shndx)
2118 {
2119 case SHN_REGISTER:
2120 if (mmix_elf_reg_section.name == NULL)
2121 {
2122 /* Initialize the register section. */
2123 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2124 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2125 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2126 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2127 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2128 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2129 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2130 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2131 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2132 }
2133 asym->section = &mmix_elf_reg_section;
2134 break;
2135
2136 default:
2137 break;
2138 }
2139 }
2140
2141 /* Given a BFD section, try to locate the corresponding ELF section
2142 index. */
2143
2144 static bfd_boolean
2145 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2146 asection * sec,
2147 int * retval)
2148 {
2149 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2150 *retval = SHN_REGISTER;
2151 else
2152 return FALSE;
2153
2154 return TRUE;
2155 }
2156
2157 /* Hook called by the linker routine which adds symbols from an object
2158 file. We must handle the special SHN_REGISTER section number here.
2159
2160 We also check that we only have *one* each of the section-start
2161 symbols, since otherwise having two with the same value would cause
2162 them to be "merged", but with the contents serialized. */
2163
2164 static bfd_boolean
2165 mmix_elf_add_symbol_hook (bfd *abfd,
2166 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2167 Elf_Internal_Sym *sym,
2168 const char **namep ATTRIBUTE_UNUSED,
2169 flagword *flagsp ATTRIBUTE_UNUSED,
2170 asection **secp,
2171 bfd_vma *valp ATTRIBUTE_UNUSED)
2172 {
2173 if (sym->st_shndx == SHN_REGISTER)
2174 {
2175 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2176 (*secp)->flags |= SEC_LINKER_CREATED;
2177 }
2178 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2179 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2180 {
2181 /* See if we have another one. */
2182 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2183 *namep,
2184 FALSE,
2185 FALSE,
2186 FALSE);
2187
2188 if (h != NULL && h->type != bfd_link_hash_undefined)
2189 {
2190 /* How do we get the asymbol (or really: the filename) from h?
2191 h->u.def.section->owner is NULL. */
2192 ((*_bfd_error_handler)
2193 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2194 bfd_get_filename (abfd), *namep,
2195 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2196 bfd_set_error (bfd_error_bad_value);
2197 return FALSE;
2198 }
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2205
2206 static bfd_boolean
2207 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2208 {
2209 const char *colpos;
2210 int digits;
2211
2212 /* Also include the default local-label definition. */
2213 if (_bfd_elf_is_local_label_name (abfd, name))
2214 return TRUE;
2215
2216 if (*name != 'L')
2217 return FALSE;
2218
2219 /* If there's no ":", or more than one, it's not a local symbol. */
2220 colpos = strchr (name, ':');
2221 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2222 return FALSE;
2223
2224 /* Check that there are remaining characters and that they are digits. */
2225 if (colpos[1] == 0)
2226 return FALSE;
2227
2228 digits = strspn (colpos + 1, "0123456789");
2229 return digits != 0 && colpos[1 + digits] == 0;
2230 }
2231
2232 /* We get rid of the register section here. */
2233
2234 bfd_boolean
2235 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2236 {
2237 /* We never output a register section, though we create one for
2238 temporary measures. Check that nobody entered contents into it. */
2239 asection *reg_section;
2240
2241 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2242
2243 if (reg_section != NULL)
2244 {
2245 /* FIXME: Pass error state gracefully. */
2246 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2247 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2248
2249 /* Really remove the section, if it hasn't already been done. */
2250 if (!bfd_section_removed_from_list (abfd, reg_section))
2251 {
2252 bfd_section_list_remove (abfd, reg_section);
2253 --abfd->section_count;
2254 }
2255 }
2256
2257 if (! bfd_elf_final_link (abfd, info))
2258 return FALSE;
2259
2260 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2261 the regular linker machinery. We do it here, like other targets with
2262 special sections. */
2263 if (info->base_file != NULL)
2264 {
2265 asection *greg_section
2266 = bfd_get_section_by_name ((bfd *) info->base_file,
2267 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2268 if (!bfd_set_section_contents (abfd,
2269 greg_section->output_section,
2270 greg_section->contents,
2271 (file_ptr) greg_section->output_offset,
2272 greg_section->size))
2273 return FALSE;
2274 }
2275 return TRUE;
2276 }
2277
2278 /* We need to include the maximum size of PUSHJ-stubs in the initial
2279 section size. This is expected to shrink during linker relaxation. */
2280
2281 static void
2282 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2283 asection *sec,
2284 void *ptr)
2285 {
2286 struct bfd_link_info *info = ptr;
2287
2288 /* Make sure we only do this for section where we know we want this,
2289 otherwise we might end up resetting the size of COMMONs. */
2290 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2291 return;
2292
2293 sec->rawsize = sec->size;
2294 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2295 * MAX_PUSHJ_STUB_SIZE);
2296
2297 /* For use in relocatable link, we start with a max stubs size. See
2298 mmix_elf_relax_section. */
2299 if (bfd_link_relocatable (info) && sec->output_section)
2300 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2301 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2302 * MAX_PUSHJ_STUB_SIZE);
2303 }
2304
2305 /* Initialize stuff for the linker-generated GREGs to match
2306 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2307
2308 bfd_boolean
2309 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2310 struct bfd_link_info *info)
2311 {
2312 asection *bpo_gregs_section;
2313 bfd *bpo_greg_owner;
2314 struct bpo_greg_section_info *gregdata;
2315 size_t n_gregs;
2316 bfd_vma gregs_size;
2317 size_t i;
2318 size_t *bpo_reloc_indexes;
2319 bfd *ibfd;
2320
2321 /* Set the initial size of sections. */
2322 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2323 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2324
2325 /* The bpo_greg_owner bfd is supposed to have been set by
2326 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2327 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2328 bpo_greg_owner = (bfd *) info->base_file;
2329 if (bpo_greg_owner == NULL)
2330 return TRUE;
2331
2332 bpo_gregs_section
2333 = bfd_get_section_by_name (bpo_greg_owner,
2334 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2335
2336 if (bpo_gregs_section == NULL)
2337 return TRUE;
2338
2339 /* We use the target-data handle in the ELF section data. */
2340 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2341 if (gregdata == NULL)
2342 return FALSE;
2343
2344 n_gregs = gregdata->n_bpo_relocs;
2345 gregdata->n_allocated_bpo_gregs = n_gregs;
2346
2347 /* When this reaches zero during relaxation, all entries have been
2348 filled in and the size of the linker gregs can be calculated. */
2349 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2350
2351 /* Set the zeroth-order estimate for the GREGs size. */
2352 gregs_size = n_gregs * 8;
2353
2354 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2355 return FALSE;
2356
2357 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2358 time. Note that we must use the max number ever noted for the array,
2359 since the index numbers were created before GC. */
2360 gregdata->reloc_request
2361 = bfd_zalloc (bpo_greg_owner,
2362 sizeof (struct bpo_reloc_request)
2363 * gregdata->n_max_bpo_relocs);
2364
2365 gregdata->bpo_reloc_indexes
2366 = bpo_reloc_indexes
2367 = bfd_alloc (bpo_greg_owner,
2368 gregdata->n_max_bpo_relocs
2369 * sizeof (size_t));
2370 if (bpo_reloc_indexes == NULL)
2371 return FALSE;
2372
2373 /* The default order is an identity mapping. */
2374 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2375 {
2376 bpo_reloc_indexes[i] = i;
2377 gregdata->reloc_request[i].bpo_reloc_no = i;
2378 }
2379
2380 return TRUE;
2381 }
2382 \f
2383 /* Fill in contents in the linker allocated gregs. Everything is
2384 calculated at this point; we just move the contents into place here. */
2385
2386 bfd_boolean
2387 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2388 struct bfd_link_info *link_info)
2389 {
2390 asection *bpo_gregs_section;
2391 bfd *bpo_greg_owner;
2392 struct bpo_greg_section_info *gregdata;
2393 size_t n_gregs;
2394 size_t i, j;
2395 size_t lastreg;
2396 bfd_byte *contents;
2397
2398 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2399 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2400 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2401 bpo_greg_owner = (bfd *) link_info->base_file;
2402 if (bpo_greg_owner == NULL)
2403 return TRUE;
2404
2405 bpo_gregs_section
2406 = bfd_get_section_by_name (bpo_greg_owner,
2407 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2408
2409 /* This can't happen without DSO handling. When DSOs are handled
2410 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2411 section. */
2412 if (bpo_gregs_section == NULL)
2413 return TRUE;
2414
2415 /* We use the target-data handle in the ELF section data. */
2416
2417 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2418 if (gregdata == NULL)
2419 return FALSE;
2420
2421 n_gregs = gregdata->n_allocated_bpo_gregs;
2422
2423 bpo_gregs_section->contents
2424 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2425 if (contents == NULL)
2426 return FALSE;
2427
2428 /* Sanity check: If these numbers mismatch, some relocation has not been
2429 accounted for and the rest of gregdata is probably inconsistent.
2430 It's a bug, but it's more helpful to identify it than segfaulting
2431 below. */
2432 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2433 != gregdata->n_bpo_relocs)
2434 {
2435 (*_bfd_error_handler)
2436 (_("Internal inconsistency: remaining %u != max %u.\n\
2437 Please report this bug."),
2438 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2439 gregdata->n_bpo_relocs);
2440 return FALSE;
2441 }
2442
2443 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2444 if (gregdata->reloc_request[i].regindex != lastreg)
2445 {
2446 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2447 contents + j * 8);
2448 lastreg = gregdata->reloc_request[i].regindex;
2449 j++;
2450 }
2451
2452 return TRUE;
2453 }
2454
2455 /* Sort valid relocs to come before non-valid relocs, then on increasing
2456 value. */
2457
2458 static int
2459 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2460 {
2461 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2462 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2463
2464 /* Primary function is validity; non-valid relocs sorted after valid
2465 ones. */
2466 if (r1->valid != r2->valid)
2467 return r2->valid - r1->valid;
2468
2469 /* Then sort on value. Don't simplify and return just the difference of
2470 the values: the upper bits of the 64-bit value would be truncated on
2471 a host with 32-bit ints. */
2472 if (r1->value != r2->value)
2473 return r1->value > r2->value ? 1 : -1;
2474
2475 /* As a last re-sort, use the relocation number, so we get a stable
2476 sort. The *addresses* aren't stable since items are swapped during
2477 sorting. It depends on the qsort implementation if this actually
2478 happens. */
2479 return r1->bpo_reloc_no > r2->bpo_reloc_no
2480 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2481 }
2482
2483 /* For debug use only. Dumps the global register allocations resulting
2484 from base-plus-offset relocs. */
2485
2486 void
2487 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2488 bfd_error_handler_type pf)
2489 {
2490 bfd *bpo_greg_owner;
2491 asection *bpo_gregs_section;
2492 struct bpo_greg_section_info *gregdata;
2493 unsigned int i;
2494
2495 if (link_info == NULL || link_info->base_file == NULL)
2496 return;
2497
2498 bpo_greg_owner = (bfd *) link_info->base_file;
2499
2500 bpo_gregs_section
2501 = bfd_get_section_by_name (bpo_greg_owner,
2502 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2503
2504 if (bpo_gregs_section == NULL)
2505 return;
2506
2507 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2508 if (gregdata == NULL)
2509 return;
2510
2511 if (pf == NULL)
2512 pf = _bfd_error_handler;
2513
2514 /* These format strings are not translated. They are for debug purposes
2515 only and never displayed to an end user. Should they escape, we
2516 surely want them in original. */
2517 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2518 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2519 gregdata->n_max_bpo_relocs,
2520 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2521 gregdata->n_allocated_bpo_gregs);
2522
2523 if (gregdata->reloc_request)
2524 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2525 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2526 i,
2527 (gregdata->bpo_reloc_indexes != NULL
2528 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2529 gregdata->reloc_request[i].bpo_reloc_no,
2530 gregdata->reloc_request[i].valid,
2531
2532 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2533 (unsigned long) gregdata->reloc_request[i].value,
2534 gregdata->reloc_request[i].regindex,
2535 gregdata->reloc_request[i].offset);
2536 }
2537
2538 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2539 when the last such reloc is done, an index-array is sorted according to
2540 the values and iterated over to produce register numbers (indexed by 0
2541 from the first allocated register number) and offsets for use in real
2542 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2543
2544 PUSHJ stub accounting is also done here.
2545
2546 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2547
2548 static bfd_boolean
2549 mmix_elf_relax_section (bfd *abfd,
2550 asection *sec,
2551 struct bfd_link_info *link_info,
2552 bfd_boolean *again)
2553 {
2554 Elf_Internal_Shdr *symtab_hdr;
2555 Elf_Internal_Rela *internal_relocs;
2556 Elf_Internal_Rela *irel, *irelend;
2557 asection *bpo_gregs_section = NULL;
2558 struct bpo_greg_section_info *gregdata;
2559 struct bpo_reloc_section_info *bpodata
2560 = mmix_elf_section_data (sec)->bpo.reloc;
2561 /* The initialization is to quiet compiler warnings. The value is to
2562 spot a missing actual initialization. */
2563 size_t bpono = (size_t) -1;
2564 size_t pjsno = 0;
2565 Elf_Internal_Sym *isymbuf = NULL;
2566 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2567
2568 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2569
2570 /* Assume nothing changes. */
2571 *again = FALSE;
2572
2573 /* We don't have to do anything if this section does not have relocs, or
2574 if this is not a code section. */
2575 if ((sec->flags & SEC_RELOC) == 0
2576 || sec->reloc_count == 0
2577 || (sec->flags & SEC_CODE) == 0
2578 || (sec->flags & SEC_LINKER_CREATED) != 0
2579 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2580 then nothing to do. */
2581 || (bpodata == NULL
2582 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2583 return TRUE;
2584
2585 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2586
2587 if (bpodata != NULL)
2588 {
2589 bpo_gregs_section = bpodata->bpo_greg_section;
2590 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2591 bpono = bpodata->first_base_plus_offset_reloc;
2592 }
2593 else
2594 gregdata = NULL;
2595
2596 /* Get a copy of the native relocations. */
2597 internal_relocs
2598 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2599 (Elf_Internal_Rela *) NULL,
2600 link_info->keep_memory);
2601 if (internal_relocs == NULL)
2602 goto error_return;
2603
2604 /* Walk through them looking for relaxing opportunities. */
2605 irelend = internal_relocs + sec->reloc_count;
2606 for (irel = internal_relocs; irel < irelend; irel++)
2607 {
2608 bfd_vma symval;
2609 struct elf_link_hash_entry *h = NULL;
2610
2611 /* We only process two relocs. */
2612 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2613 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2614 continue;
2615
2616 /* We process relocs in a distinctly different way when this is a
2617 relocatable link (for one, we don't look at symbols), so we avoid
2618 mixing its code with that for the "normal" relaxation. */
2619 if (bfd_link_relocatable (link_info))
2620 {
2621 /* The only transformation in a relocatable link is to generate
2622 a full stub at the location of the stub calculated for the
2623 input section, if the relocated stub location, the end of the
2624 output section plus earlier stubs, cannot be reached. Thus
2625 relocatable linking can only lead to worse code, but it still
2626 works. */
2627 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2628 {
2629 /* If we can reach the end of the output-section and beyond
2630 any current stubs, then we don't need a stub for this
2631 reloc. The relaxed order of output stub allocation may
2632 not exactly match the straightforward order, so we always
2633 assume presence of output stubs, which will allow
2634 relaxation only on relocations indifferent to the
2635 presence of output stub allocations for other relocations
2636 and thus the order of output stub allocation. */
2637 if (bfd_check_overflow (complain_overflow_signed,
2638 19,
2639 0,
2640 bfd_arch_bits_per_address (abfd),
2641 /* Output-stub location. */
2642 sec->output_section->rawsize
2643 + (mmix_elf_section_data (sec
2644 ->output_section)
2645 ->pjs.stubs_size_sum)
2646 /* Location of this PUSHJ reloc. */
2647 - (sec->output_offset + irel->r_offset)
2648 /* Don't count *this* stub twice. */
2649 - (mmix_elf_section_data (sec)
2650 ->pjs.stub_size[pjsno]
2651 + MAX_PUSHJ_STUB_SIZE))
2652 == bfd_reloc_ok)
2653 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2654
2655 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2656 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2657
2658 pjsno++;
2659 }
2660
2661 continue;
2662 }
2663
2664 /* Get the value of the symbol referred to by the reloc. */
2665 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2666 {
2667 /* A local symbol. */
2668 Elf_Internal_Sym *isym;
2669 asection *sym_sec;
2670
2671 /* Read this BFD's local symbols if we haven't already. */
2672 if (isymbuf == NULL)
2673 {
2674 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2675 if (isymbuf == NULL)
2676 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2677 symtab_hdr->sh_info, 0,
2678 NULL, NULL, NULL);
2679 if (isymbuf == 0)
2680 goto error_return;
2681 }
2682
2683 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2684 if (isym->st_shndx == SHN_UNDEF)
2685 sym_sec = bfd_und_section_ptr;
2686 else if (isym->st_shndx == SHN_ABS)
2687 sym_sec = bfd_abs_section_ptr;
2688 else if (isym->st_shndx == SHN_COMMON)
2689 sym_sec = bfd_com_section_ptr;
2690 else
2691 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2692 symval = (isym->st_value
2693 + sym_sec->output_section->vma
2694 + sym_sec->output_offset);
2695 }
2696 else
2697 {
2698 unsigned long indx;
2699
2700 /* An external symbol. */
2701 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2702 h = elf_sym_hashes (abfd)[indx];
2703 BFD_ASSERT (h != NULL);
2704 if (h->root.type != bfd_link_hash_defined
2705 && h->root.type != bfd_link_hash_defweak)
2706 {
2707 /* This appears to be a reference to an undefined symbol. Just
2708 ignore it--it will be caught by the regular reloc processing.
2709 We need to keep BPO reloc accounting consistent, though
2710 else we'll abort instead of emitting an error message. */
2711 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2712 && gregdata != NULL)
2713 {
2714 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2715 bpono++;
2716 }
2717 continue;
2718 }
2719
2720 symval = (h->root.u.def.value
2721 + h->root.u.def.section->output_section->vma
2722 + h->root.u.def.section->output_offset);
2723 }
2724
2725 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2726 {
2727 bfd_vma value = symval + irel->r_addend;
2728 bfd_vma dot
2729 = (sec->output_section->vma
2730 + sec->output_offset
2731 + irel->r_offset);
2732 bfd_vma stubaddr
2733 = (sec->output_section->vma
2734 + sec->output_offset
2735 + size
2736 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2737
2738 if ((value & 3) == 0
2739 && bfd_check_overflow (complain_overflow_signed,
2740 19,
2741 0,
2742 bfd_arch_bits_per_address (abfd),
2743 value - dot
2744 - (value > dot
2745 ? mmix_elf_section_data (sec)
2746 ->pjs.stub_size[pjsno]
2747 : 0))
2748 == bfd_reloc_ok)
2749 /* If the reloc fits, no stub is needed. */
2750 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2751 else
2752 /* Maybe we can get away with just a JMP insn? */
2753 if ((value & 3) == 0
2754 && bfd_check_overflow (complain_overflow_signed,
2755 27,
2756 0,
2757 bfd_arch_bits_per_address (abfd),
2758 value - stubaddr
2759 - (value > dot
2760 ? mmix_elf_section_data (sec)
2761 ->pjs.stub_size[pjsno] - 4
2762 : 0))
2763 == bfd_reloc_ok)
2764 /* Yep, account for a stub consisting of a single JMP insn. */
2765 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2766 else
2767 /* Nope, go for the full insn stub. It doesn't seem useful to
2768 emit the intermediate sizes; those will only be useful for
2769 a >64M program assuming contiguous code. */
2770 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2771 = MAX_PUSHJ_STUB_SIZE;
2772
2773 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2774 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2775 pjsno++;
2776 continue;
2777 }
2778
2779 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2780
2781 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2782 = symval + irel->r_addend;
2783 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2784 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2785 }
2786
2787 /* Check if that was the last BPO-reloc. If so, sort the values and
2788 calculate how many registers we need to cover them. Set the size of
2789 the linker gregs, and if the number of registers changed, indicate
2790 that we need to relax some more because we have more work to do. */
2791 if (gregdata != NULL
2792 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2793 {
2794 size_t i;
2795 bfd_vma prev_base;
2796 size_t regindex;
2797
2798 /* First, reset the remaining relocs for the next round. */
2799 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2800 = gregdata->n_bpo_relocs;
2801
2802 qsort (gregdata->reloc_request,
2803 gregdata->n_max_bpo_relocs,
2804 sizeof (struct bpo_reloc_request),
2805 bpo_reloc_request_sort_fn);
2806
2807 /* Recalculate indexes. When we find a change (however unlikely
2808 after the initial iteration), we know we need to relax again,
2809 since items in the GREG-array are sorted by increasing value and
2810 stored in the relaxation phase. */
2811 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2812 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2813 != i)
2814 {
2815 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2816 = i;
2817 *again = TRUE;
2818 }
2819
2820 /* Allocate register numbers (indexing from 0). Stop at the first
2821 non-valid reloc. */
2822 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2823 i < gregdata->n_bpo_relocs;
2824 i++)
2825 {
2826 if (gregdata->reloc_request[i].value > prev_base + 255)
2827 {
2828 regindex++;
2829 prev_base = gregdata->reloc_request[i].value;
2830 }
2831 gregdata->reloc_request[i].regindex = regindex;
2832 gregdata->reloc_request[i].offset
2833 = gregdata->reloc_request[i].value - prev_base;
2834 }
2835
2836 /* If it's not the same as the last time, we need to relax again,
2837 because the size of the section has changed. I'm not sure we
2838 actually need to do any adjustments since the shrinking happens
2839 at the start of this section, but better safe than sorry. */
2840 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2841 {
2842 gregdata->n_allocated_bpo_gregs = regindex + 1;
2843 *again = TRUE;
2844 }
2845
2846 bpo_gregs_section->size = (regindex + 1) * 8;
2847 }
2848
2849 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2850 {
2851 if (! link_info->keep_memory)
2852 free (isymbuf);
2853 else
2854 {
2855 /* Cache the symbols for elf_link_input_bfd. */
2856 symtab_hdr->contents = (unsigned char *) isymbuf;
2857 }
2858 }
2859
2860 if (internal_relocs != NULL
2861 && elf_section_data (sec)->relocs != internal_relocs)
2862 free (internal_relocs);
2863
2864 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2865 abort ();
2866
2867 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2868 {
2869 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2870 *again = TRUE;
2871 }
2872
2873 return TRUE;
2874
2875 error_return:
2876 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2877 free (isymbuf);
2878 if (internal_relocs != NULL
2879 && elf_section_data (sec)->relocs != internal_relocs)
2880 free (internal_relocs);
2881 return FALSE;
2882 }
2883 \f
2884 #define ELF_ARCH bfd_arch_mmix
2885 #define ELF_MACHINE_CODE EM_MMIX
2886
2887 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2888 However, that's too much for something somewhere in the linker part of
2889 BFD; perhaps the start-address has to be a non-zero multiple of this
2890 number, or larger than this number. The symptom is that the linker
2891 complains: "warning: allocated section `.text' not in segment". We
2892 settle for 64k; the page-size used in examples is 8k.
2893 #define ELF_MAXPAGESIZE 0x10000
2894
2895 Unfortunately, this causes excessive padding in the supposedly small
2896 for-education programs that are the expected usage (where people would
2897 inspect output). We stick to 256 bytes just to have *some* default
2898 alignment. */
2899 #define ELF_MAXPAGESIZE 0x100
2900
2901 #define TARGET_BIG_SYM mmix_elf64_vec
2902 #define TARGET_BIG_NAME "elf64-mmix"
2903
2904 #define elf_info_to_howto_rel NULL
2905 #define elf_info_to_howto mmix_info_to_howto_rela
2906 #define elf_backend_relocate_section mmix_elf_relocate_section
2907 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2908 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2909
2910 #define elf_backend_link_output_symbol_hook \
2911 mmix_elf_link_output_symbol_hook
2912 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2913
2914 #define elf_backend_check_relocs mmix_elf_check_relocs
2915 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2916 #define elf_backend_omit_section_dynsym \
2917 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2918
2919 #define bfd_elf64_bfd_is_local_label_name \
2920 mmix_elf_is_local_label_name
2921
2922 #define elf_backend_may_use_rel_p 0
2923 #define elf_backend_may_use_rela_p 1
2924 #define elf_backend_default_use_rela_p 1
2925
2926 #define elf_backend_can_gc_sections 1
2927 #define elf_backend_section_from_bfd_section \
2928 mmix_elf_section_from_bfd_section
2929
2930 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2931 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2932 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2933
2934 #include "elf64-target.h"