]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-mmix.c
PR ld/15323
[thirdparty/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011,
3 2012
4 Free Software Foundation, Inc.
5 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /* No specific ABI or "processor-specific supplement" defined. */
26
27 /* TODO:
28 - "Traditional" linker relaxation (shrinking whole sections).
29 - Merge reloc stubs jumping to same location.
30 - GETA stub relaxation (call a stub for out of range new
31 R_MMIX_GETA_STUBBABLE). */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "elf/mmix.h"
38 #include "opcode/mmix.h"
39
40 #define MINUS_ONE (((bfd_vma) 0) - 1)
41
42 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
43
44 /* Put these everywhere in new code. */
45 #define FATAL_DEBUG \
46 _bfd_abort (__FILE__, __LINE__, \
47 "Internal: Non-debugged code (test-case missing)")
48
49 #define BAD_CASE(x) \
50 _bfd_abort (__FILE__, __LINE__, \
51 "bad case for " #x)
52
53 struct _mmix_elf_section_data
54 {
55 struct bfd_elf_section_data elf;
56 union
57 {
58 struct bpo_reloc_section_info *reloc;
59 struct bpo_greg_section_info *greg;
60 } bpo;
61
62 struct pushj_stub_info
63 {
64 /* Maximum number of stubs needed for this section. */
65 bfd_size_type n_pushj_relocs;
66
67 /* Size of stubs after a mmix_elf_relax_section round. */
68 bfd_size_type stubs_size_sum;
69
70 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
71 of these. Allocated in mmix_elf_check_common_relocs. */
72 bfd_size_type *stub_size;
73
74 /* Offset of next stub during relocation. Somewhat redundant with the
75 above: error coverage is easier and we don't have to reset the
76 stubs_size_sum for relocation. */
77 bfd_size_type stub_offset;
78 } pjs;
79
80 /* Whether there has been a warning that this section could not be
81 linked due to a specific cause. FIXME: a way to access the
82 linker info or output section, then stuff the limiter guard
83 there. */
84 bfd_boolean has_warned_bpo;
85 bfd_boolean has_warned_pushj;
86 };
87
88 #define mmix_elf_section_data(sec) \
89 ((struct _mmix_elf_section_data *) elf_section_data (sec))
90
91 /* For each section containing a base-plus-offset (BPO) reloc, we attach
92 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
93 NULL. */
94 struct bpo_reloc_section_info
95 {
96 /* The base is 1; this is the first number in this section. */
97 size_t first_base_plus_offset_reloc;
98
99 /* Number of BPO-relocs in this section. */
100 size_t n_bpo_relocs_this_section;
101
102 /* Running index, used at relocation time. */
103 size_t bpo_index;
104
105 /* We don't have access to the bfd_link_info struct in
106 mmix_final_link_relocate. What we really want to get at is the
107 global single struct greg_relocation, so we stash it here. */
108 asection *bpo_greg_section;
109 };
110
111 /* Helper struct (in global context) for the one below.
112 There's one of these created for every BPO reloc. */
113 struct bpo_reloc_request
114 {
115 bfd_vma value;
116
117 /* Valid after relaxation. The base is 0; the first register number
118 must be added. The offset is in range 0..255. */
119 size_t regindex;
120 size_t offset;
121
122 /* The order number for this BPO reloc, corresponding to the order in
123 which BPO relocs were found. Used to create an index after reloc
124 requests are sorted. */
125 size_t bpo_reloc_no;
126
127 /* Set when the value is computed. Better than coding "guard values"
128 into the other members. Is FALSE only for BPO relocs in a GC:ed
129 section. */
130 bfd_boolean valid;
131 };
132
133 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
134 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
135 which is linked into the register contents section
136 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
137 linker; using the same hook as for usual with BPO relocs does not
138 collide. */
139 struct bpo_greg_section_info
140 {
141 /* After GC, this reflects the number of remaining, non-excluded
142 BPO-relocs. */
143 size_t n_bpo_relocs;
144
145 /* This is the number of allocated bpo_reloc_requests; the size of
146 sorted_indexes. Valid after the check.*relocs functions are called
147 for all incoming sections. It includes the number of BPO relocs in
148 sections that were GC:ed. */
149 size_t n_max_bpo_relocs;
150
151 /* A counter used to find out when to fold the BPO gregs, since we
152 don't have a single "after-relaxation" hook. */
153 size_t n_remaining_bpo_relocs_this_relaxation_round;
154
155 /* The number of linker-allocated GREGs resulting from BPO relocs.
156 This is an approximation after _bfd_mmix_before_linker_allocation
157 and supposedly accurate after mmix_elf_relax_section is called for
158 all incoming non-collected sections. */
159 size_t n_allocated_bpo_gregs;
160
161 /* Index into reloc_request[], sorted on increasing "value", secondary
162 by increasing index for strict sorting order. */
163 size_t *bpo_reloc_indexes;
164
165 /* An array of all relocations, with the "value" member filled in by
166 the relaxation function. */
167 struct bpo_reloc_request *reloc_request;
168 };
169
170
171 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
172
173 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
174
175 /* Only intended to be called from a debugger. */
176 extern void mmix_dump_bpo_gregs
177 (struct bfd_link_info *, bfd_error_handler_type);
178
179 static void
180 mmix_set_relaxable_size (bfd *, asection *, void *);
181 static bfd_reloc_status_type
182 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
183 asection *, bfd *, char **);
184 static bfd_reloc_status_type
185 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
186 bfd_signed_vma, bfd_vma, const char *, asection *,
187 char **);
188
189
190 /* Watch out: this currently needs to have elements with the same index as
191 their R_MMIX_ number. */
192 static reloc_howto_type elf_mmix_howto_table[] =
193 {
194 /* This reloc does nothing. */
195 HOWTO (R_MMIX_NONE, /* type */
196 0, /* rightshift */
197 2, /* size (0 = byte, 1 = short, 2 = long) */
198 32, /* bitsize */
199 FALSE, /* pc_relative */
200 0, /* bitpos */
201 complain_overflow_bitfield, /* complain_on_overflow */
202 bfd_elf_generic_reloc, /* special_function */
203 "R_MMIX_NONE", /* name */
204 FALSE, /* partial_inplace */
205 0, /* src_mask */
206 0, /* dst_mask */
207 FALSE), /* pcrel_offset */
208
209 /* An 8 bit absolute relocation. */
210 HOWTO (R_MMIX_8, /* type */
211 0, /* rightshift */
212 0, /* size (0 = byte, 1 = short, 2 = long) */
213 8, /* bitsize */
214 FALSE, /* pc_relative */
215 0, /* bitpos */
216 complain_overflow_bitfield, /* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_MMIX_8", /* name */
219 FALSE, /* partial_inplace */
220 0, /* src_mask */
221 0xff, /* dst_mask */
222 FALSE), /* pcrel_offset */
223
224 /* An 16 bit absolute relocation. */
225 HOWTO (R_MMIX_16, /* type */
226 0, /* rightshift */
227 1, /* size (0 = byte, 1 = short, 2 = long) */
228 16, /* bitsize */
229 FALSE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_bitfield, /* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_MMIX_16", /* name */
234 FALSE, /* partial_inplace */
235 0, /* src_mask */
236 0xffff, /* dst_mask */
237 FALSE), /* pcrel_offset */
238
239 /* An 24 bit absolute relocation. */
240 HOWTO (R_MMIX_24, /* type */
241 0, /* rightshift */
242 2, /* size (0 = byte, 1 = short, 2 = long) */
243 24, /* bitsize */
244 FALSE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_MMIX_24", /* name */
249 FALSE, /* partial_inplace */
250 ~0xffffff, /* src_mask */
251 0xffffff, /* dst_mask */
252 FALSE), /* pcrel_offset */
253
254 /* A 32 bit absolute relocation. */
255 HOWTO (R_MMIX_32, /* type */
256 0, /* rightshift */
257 2, /* size (0 = byte, 1 = short, 2 = long) */
258 32, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_bitfield, /* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_MMIX_32", /* name */
264 FALSE, /* partial_inplace */
265 0, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 /* 64 bit relocation. */
270 HOWTO (R_MMIX_64, /* type */
271 0, /* rightshift */
272 4, /* size (0 = byte, 1 = short, 2 = long) */
273 64, /* bitsize */
274 FALSE, /* pc_relative */
275 0, /* bitpos */
276 complain_overflow_bitfield, /* complain_on_overflow */
277 bfd_elf_generic_reloc, /* special_function */
278 "R_MMIX_64", /* name */
279 FALSE, /* partial_inplace */
280 0, /* src_mask */
281 MINUS_ONE, /* dst_mask */
282 FALSE), /* pcrel_offset */
283
284 /* An 8 bit PC-relative relocation. */
285 HOWTO (R_MMIX_PC_8, /* type */
286 0, /* rightshift */
287 0, /* size (0 = byte, 1 = short, 2 = long) */
288 8, /* bitsize */
289 TRUE, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_bitfield, /* complain_on_overflow */
292 bfd_elf_generic_reloc, /* special_function */
293 "R_MMIX_PC_8", /* name */
294 FALSE, /* partial_inplace */
295 0, /* src_mask */
296 0xff, /* dst_mask */
297 TRUE), /* pcrel_offset */
298
299 /* An 16 bit PC-relative relocation. */
300 HOWTO (R_MMIX_PC_16, /* type */
301 0, /* rightshift */
302 1, /* size (0 = byte, 1 = short, 2 = long) */
303 16, /* bitsize */
304 TRUE, /* pc_relative */
305 0, /* bitpos */
306 complain_overflow_bitfield, /* complain_on_overflow */
307 bfd_elf_generic_reloc, /* special_function */
308 "R_MMIX_PC_16", /* name */
309 FALSE, /* partial_inplace */
310 0, /* src_mask */
311 0xffff, /* dst_mask */
312 TRUE), /* pcrel_offset */
313
314 /* An 24 bit PC-relative relocation. */
315 HOWTO (R_MMIX_PC_24, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 24, /* bitsize */
319 TRUE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_bitfield, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_MMIX_PC_24", /* name */
324 FALSE, /* partial_inplace */
325 ~0xffffff, /* src_mask */
326 0xffffff, /* dst_mask */
327 TRUE), /* pcrel_offset */
328
329 /* A 32 bit absolute PC-relative relocation. */
330 HOWTO (R_MMIX_PC_32, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 32, /* bitsize */
334 TRUE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 bfd_elf_generic_reloc, /* special_function */
338 "R_MMIX_PC_32", /* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0xffffffff, /* dst_mask */
342 TRUE), /* pcrel_offset */
343
344 /* 64 bit PC-relative relocation. */
345 HOWTO (R_MMIX_PC_64, /* type */
346 0, /* rightshift */
347 4, /* size (0 = byte, 1 = short, 2 = long) */
348 64, /* bitsize */
349 TRUE, /* pc_relative */
350 0, /* bitpos */
351 complain_overflow_bitfield, /* complain_on_overflow */
352 bfd_elf_generic_reloc, /* special_function */
353 "R_MMIX_PC_64", /* name */
354 FALSE, /* partial_inplace */
355 0, /* src_mask */
356 MINUS_ONE, /* dst_mask */
357 TRUE), /* pcrel_offset */
358
359 /* GNU extension to record C++ vtable hierarchy. */
360 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
361 0, /* rightshift */
362 0, /* size (0 = byte, 1 = short, 2 = long) */
363 0, /* bitsize */
364 FALSE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_dont, /* complain_on_overflow */
367 NULL, /* special_function */
368 "R_MMIX_GNU_VTINHERIT", /* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 0, /* dst_mask */
372 TRUE), /* pcrel_offset */
373
374 /* GNU extension to record C++ vtable member usage. */
375 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
376 0, /* rightshift */
377 0, /* size (0 = byte, 1 = short, 2 = long) */
378 0, /* bitsize */
379 FALSE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_dont, /* complain_on_overflow */
382 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
383 "R_MMIX_GNU_VTENTRY", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0, /* dst_mask */
387 FALSE), /* pcrel_offset */
388
389 /* The GETA relocation is supposed to get any address that could
390 possibly be reached by the GETA instruction. It can silently expand
391 to get a 64-bit operand, but will complain if any of the two least
392 significant bits are set. The howto members reflect a simple GETA. */
393 HOWTO (R_MMIX_GETA, /* type */
394 2, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 19, /* bitsize */
397 TRUE, /* pc_relative */
398 0, /* bitpos */
399 complain_overflow_signed, /* complain_on_overflow */
400 mmix_elf_reloc, /* special_function */
401 "R_MMIX_GETA", /* name */
402 FALSE, /* partial_inplace */
403 ~0x0100ffff, /* src_mask */
404 0x0100ffff, /* dst_mask */
405 TRUE), /* pcrel_offset */
406
407 HOWTO (R_MMIX_GETA_1, /* type */
408 2, /* rightshift */
409 2, /* size (0 = byte, 1 = short, 2 = long) */
410 19, /* bitsize */
411 TRUE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_signed, /* complain_on_overflow */
414 mmix_elf_reloc, /* special_function */
415 "R_MMIX_GETA_1", /* name */
416 FALSE, /* partial_inplace */
417 ~0x0100ffff, /* src_mask */
418 0x0100ffff, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 HOWTO (R_MMIX_GETA_2, /* type */
422 2, /* rightshift */
423 2, /* size (0 = byte, 1 = short, 2 = long) */
424 19, /* bitsize */
425 TRUE, /* pc_relative */
426 0, /* bitpos */
427 complain_overflow_signed, /* complain_on_overflow */
428 mmix_elf_reloc, /* special_function */
429 "R_MMIX_GETA_2", /* name */
430 FALSE, /* partial_inplace */
431 ~0x0100ffff, /* src_mask */
432 0x0100ffff, /* dst_mask */
433 TRUE), /* pcrel_offset */
434
435 HOWTO (R_MMIX_GETA_3, /* type */
436 2, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 19, /* bitsize */
439 TRUE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_signed, /* complain_on_overflow */
442 mmix_elf_reloc, /* special_function */
443 "R_MMIX_GETA_3", /* name */
444 FALSE, /* partial_inplace */
445 ~0x0100ffff, /* src_mask */
446 0x0100ffff, /* dst_mask */
447 TRUE), /* pcrel_offset */
448
449 /* The conditional branches are supposed to reach any (code) address.
450 It can silently expand to a 64-bit operand, but will emit an error if
451 any of the two least significant bits are set. The howto members
452 reflect a simple branch. */
453 HOWTO (R_MMIX_CBRANCH, /* type */
454 2, /* rightshift */
455 2, /* size (0 = byte, 1 = short, 2 = long) */
456 19, /* bitsize */
457 TRUE, /* pc_relative */
458 0, /* bitpos */
459 complain_overflow_signed, /* complain_on_overflow */
460 mmix_elf_reloc, /* special_function */
461 "R_MMIX_CBRANCH", /* name */
462 FALSE, /* partial_inplace */
463 ~0x0100ffff, /* src_mask */
464 0x0100ffff, /* dst_mask */
465 TRUE), /* pcrel_offset */
466
467 HOWTO (R_MMIX_CBRANCH_J, /* type */
468 2, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 19, /* bitsize */
471 TRUE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_signed, /* complain_on_overflow */
474 mmix_elf_reloc, /* special_function */
475 "R_MMIX_CBRANCH_J", /* name */
476 FALSE, /* partial_inplace */
477 ~0x0100ffff, /* src_mask */
478 0x0100ffff, /* dst_mask */
479 TRUE), /* pcrel_offset */
480
481 HOWTO (R_MMIX_CBRANCH_1, /* type */
482 2, /* rightshift */
483 2, /* size (0 = byte, 1 = short, 2 = long) */
484 19, /* bitsize */
485 TRUE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 mmix_elf_reloc, /* special_function */
489 "R_MMIX_CBRANCH_1", /* name */
490 FALSE, /* partial_inplace */
491 ~0x0100ffff, /* src_mask */
492 0x0100ffff, /* dst_mask */
493 TRUE), /* pcrel_offset */
494
495 HOWTO (R_MMIX_CBRANCH_2, /* type */
496 2, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 19, /* bitsize */
499 TRUE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_signed, /* complain_on_overflow */
502 mmix_elf_reloc, /* special_function */
503 "R_MMIX_CBRANCH_2", /* name */
504 FALSE, /* partial_inplace */
505 ~0x0100ffff, /* src_mask */
506 0x0100ffff, /* dst_mask */
507 TRUE), /* pcrel_offset */
508
509 HOWTO (R_MMIX_CBRANCH_3, /* type */
510 2, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 19, /* bitsize */
513 TRUE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_signed, /* complain_on_overflow */
516 mmix_elf_reloc, /* special_function */
517 "R_MMIX_CBRANCH_3", /* name */
518 FALSE, /* partial_inplace */
519 ~0x0100ffff, /* src_mask */
520 0x0100ffff, /* dst_mask */
521 TRUE), /* pcrel_offset */
522
523 /* The PUSHJ instruction can reach any (code) address, as long as it's
524 the beginning of a function (no usable restriction). It can silently
525 expand to a 64-bit operand, but will emit an error if any of the two
526 least significant bits are set. It can also expand into a call to a
527 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
528 PUSHJ. */
529 HOWTO (R_MMIX_PUSHJ, /* type */
530 2, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 19, /* bitsize */
533 TRUE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 mmix_elf_reloc, /* special_function */
537 "R_MMIX_PUSHJ", /* name */
538 FALSE, /* partial_inplace */
539 ~0x0100ffff, /* src_mask */
540 0x0100ffff, /* dst_mask */
541 TRUE), /* pcrel_offset */
542
543 HOWTO (R_MMIX_PUSHJ_1, /* type */
544 2, /* rightshift */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
546 19, /* bitsize */
547 TRUE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_signed, /* complain_on_overflow */
550 mmix_elf_reloc, /* special_function */
551 "R_MMIX_PUSHJ_1", /* name */
552 FALSE, /* partial_inplace */
553 ~0x0100ffff, /* src_mask */
554 0x0100ffff, /* dst_mask */
555 TRUE), /* pcrel_offset */
556
557 HOWTO (R_MMIX_PUSHJ_2, /* type */
558 2, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 19, /* bitsize */
561 TRUE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_signed, /* complain_on_overflow */
564 mmix_elf_reloc, /* special_function */
565 "R_MMIX_PUSHJ_2", /* name */
566 FALSE, /* partial_inplace */
567 ~0x0100ffff, /* src_mask */
568 0x0100ffff, /* dst_mask */
569 TRUE), /* pcrel_offset */
570
571 HOWTO (R_MMIX_PUSHJ_3, /* type */
572 2, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 19, /* bitsize */
575 TRUE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_signed, /* complain_on_overflow */
578 mmix_elf_reloc, /* special_function */
579 "R_MMIX_PUSHJ_3", /* name */
580 FALSE, /* partial_inplace */
581 ~0x0100ffff, /* src_mask */
582 0x0100ffff, /* dst_mask */
583 TRUE), /* pcrel_offset */
584
585 /* A JMP is supposed to reach any (code) address. By itself, it can
586 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
587 limit is soon reached if you link the program in wildly different
588 memory segments. The howto members reflect a trivial JMP. */
589 HOWTO (R_MMIX_JMP, /* type */
590 2, /* rightshift */
591 2, /* size (0 = byte, 1 = short, 2 = long) */
592 27, /* bitsize */
593 TRUE, /* pc_relative */
594 0, /* bitpos */
595 complain_overflow_signed, /* complain_on_overflow */
596 mmix_elf_reloc, /* special_function */
597 "R_MMIX_JMP", /* name */
598 FALSE, /* partial_inplace */
599 ~0x1ffffff, /* src_mask */
600 0x1ffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 HOWTO (R_MMIX_JMP_1, /* type */
604 2, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 27, /* bitsize */
607 TRUE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 mmix_elf_reloc, /* special_function */
611 "R_MMIX_JMP_1", /* name */
612 FALSE, /* partial_inplace */
613 ~0x1ffffff, /* src_mask */
614 0x1ffffff, /* dst_mask */
615 TRUE), /* pcrel_offset */
616
617 HOWTO (R_MMIX_JMP_2, /* type */
618 2, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 27, /* bitsize */
621 TRUE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_signed, /* complain_on_overflow */
624 mmix_elf_reloc, /* special_function */
625 "R_MMIX_JMP_2", /* name */
626 FALSE, /* partial_inplace */
627 ~0x1ffffff, /* src_mask */
628 0x1ffffff, /* dst_mask */
629 TRUE), /* pcrel_offset */
630
631 HOWTO (R_MMIX_JMP_3, /* type */
632 2, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 27, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 complain_overflow_signed, /* complain_on_overflow */
638 mmix_elf_reloc, /* special_function */
639 "R_MMIX_JMP_3", /* name */
640 FALSE, /* partial_inplace */
641 ~0x1ffffff, /* src_mask */
642 0x1ffffff, /* dst_mask */
643 TRUE), /* pcrel_offset */
644
645 /* When we don't emit link-time-relaxable code from the assembler, or
646 when relaxation has done all it can do, these relocs are used. For
647 GETA/PUSHJ/branches. */
648 HOWTO (R_MMIX_ADDR19, /* type */
649 2, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 19, /* bitsize */
652 TRUE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_signed, /* complain_on_overflow */
655 mmix_elf_reloc, /* special_function */
656 "R_MMIX_ADDR19", /* name */
657 FALSE, /* partial_inplace */
658 ~0x0100ffff, /* src_mask */
659 0x0100ffff, /* dst_mask */
660 TRUE), /* pcrel_offset */
661
662 /* For JMP. */
663 HOWTO (R_MMIX_ADDR27, /* type */
664 2, /* rightshift */
665 2, /* size (0 = byte, 1 = short, 2 = long) */
666 27, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 mmix_elf_reloc, /* special_function */
671 "R_MMIX_ADDR27", /* name */
672 FALSE, /* partial_inplace */
673 ~0x1ffffff, /* src_mask */
674 0x1ffffff, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* A general register or the value 0..255. If a value, then the
678 instruction (offset -3) needs adjusting. */
679 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
680 0, /* rightshift */
681 1, /* size (0 = byte, 1 = short, 2 = long) */
682 8, /* bitsize */
683 FALSE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_bitfield, /* complain_on_overflow */
686 mmix_elf_reloc, /* special_function */
687 "R_MMIX_REG_OR_BYTE", /* name */
688 FALSE, /* partial_inplace */
689 0, /* src_mask */
690 0xff, /* dst_mask */
691 FALSE), /* pcrel_offset */
692
693 /* A general register. */
694 HOWTO (R_MMIX_REG, /* type */
695 0, /* rightshift */
696 1, /* size (0 = byte, 1 = short, 2 = long) */
697 8, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_bitfield, /* complain_on_overflow */
701 mmix_elf_reloc, /* special_function */
702 "R_MMIX_REG", /* name */
703 FALSE, /* partial_inplace */
704 0, /* src_mask */
705 0xff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 /* A register plus an index, corresponding to the relocation expression.
709 The sizes must correspond to the valid range of the expression, while
710 the bitmasks correspond to what we store in the image. */
711 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
712 0, /* rightshift */
713 4, /* size (0 = byte, 1 = short, 2 = long) */
714 64, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_bitfield, /* complain_on_overflow */
718 mmix_elf_reloc, /* special_function */
719 "R_MMIX_BASE_PLUS_OFFSET", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* A "magic" relocation for a LOCAL expression, asserting that the
726 expression is less than the number of global registers. No actual
727 modification of the contents is done. Implementing this as a
728 relocation was less intrusive than e.g. putting such expressions in a
729 section to discard *after* relocation. */
730 HOWTO (R_MMIX_LOCAL, /* type */
731 0, /* rightshift */
732 0, /* size (0 = byte, 1 = short, 2 = long) */
733 0, /* bitsize */
734 FALSE, /* pc_relative */
735 0, /* bitpos */
736 complain_overflow_dont, /* complain_on_overflow */
737 mmix_elf_reloc, /* special_function */
738 "R_MMIX_LOCAL", /* name */
739 FALSE, /* partial_inplace */
740 0, /* src_mask */
741 0, /* dst_mask */
742 FALSE), /* pcrel_offset */
743
744 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 19, /* bitsize */
748 TRUE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_signed, /* complain_on_overflow */
751 mmix_elf_reloc, /* special_function */
752 "R_MMIX_PUSHJ_STUBBABLE", /* name */
753 FALSE, /* partial_inplace */
754 ~0x0100ffff, /* src_mask */
755 0x0100ffff, /* dst_mask */
756 TRUE) /* pcrel_offset */
757 };
758
759
760 /* Map BFD reloc types to MMIX ELF reloc types. */
761
762 struct mmix_reloc_map
763 {
764 bfd_reloc_code_real_type bfd_reloc_val;
765 enum elf_mmix_reloc_type elf_reloc_val;
766 };
767
768
769 static const struct mmix_reloc_map mmix_reloc_map[] =
770 {
771 {BFD_RELOC_NONE, R_MMIX_NONE},
772 {BFD_RELOC_8, R_MMIX_8},
773 {BFD_RELOC_16, R_MMIX_16},
774 {BFD_RELOC_24, R_MMIX_24},
775 {BFD_RELOC_32, R_MMIX_32},
776 {BFD_RELOC_64, R_MMIX_64},
777 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
778 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
779 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
780 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
781 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
782 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
783 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
784 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
785 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
786 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
787 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
788 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
789 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
790 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
791 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
792 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
793 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
794 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
795 };
796
797 static reloc_howto_type *
798 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
799 bfd_reloc_code_real_type code)
800 {
801 unsigned int i;
802
803 for (i = 0;
804 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
805 i++)
806 {
807 if (mmix_reloc_map[i].bfd_reloc_val == code)
808 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
809 }
810
811 return NULL;
812 }
813
814 static reloc_howto_type *
815 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
816 const char *r_name)
817 {
818 unsigned int i;
819
820 for (i = 0;
821 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
822 i++)
823 if (elf_mmix_howto_table[i].name != NULL
824 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
825 return &elf_mmix_howto_table[i];
826
827 return NULL;
828 }
829
830 static bfd_boolean
831 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
832 {
833 if (!sec->used_by_bfd)
834 {
835 struct _mmix_elf_section_data *sdata;
836 bfd_size_type amt = sizeof (*sdata);
837
838 sdata = bfd_zalloc (abfd, amt);
839 if (sdata == NULL)
840 return FALSE;
841 sec->used_by_bfd = sdata;
842 }
843
844 return _bfd_elf_new_section_hook (abfd, sec);
845 }
846
847
848 /* This function performs the actual bitfiddling and sanity check for a
849 final relocation. Each relocation gets its *worst*-case expansion
850 in size when it arrives here; any reduction in size should have been
851 caught in linker relaxation earlier. When we get here, the relocation
852 looks like the smallest instruction with SWYM:s (nop:s) appended to the
853 max size. We fill in those nop:s.
854
855 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
856 GETA $N,foo
857 ->
858 SETL $N,foo & 0xffff
859 INCML $N,(foo >> 16) & 0xffff
860 INCMH $N,(foo >> 32) & 0xffff
861 INCH $N,(foo >> 48) & 0xffff
862
863 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
864 condbranches needing relaxation might be rare enough to not be
865 worthwhile.)
866 [P]Bcc $N,foo
867 ->
868 [~P]B~cc $N,.+20
869 SETL $255,foo & ...
870 INCML ...
871 INCMH ...
872 INCH ...
873 GO $255,$255,0
874
875 R_MMIX_PUSHJ: (FIXME: Relaxation...)
876 PUSHJ $N,foo
877 ->
878 SETL $255,foo & ...
879 INCML ...
880 INCMH ...
881 INCH ...
882 PUSHGO $N,$255,0
883
884 R_MMIX_JMP: (FIXME: Relaxation...)
885 JMP foo
886 ->
887 SETL $255,foo & ...
888 INCML ...
889 INCMH ...
890 INCH ...
891 GO $255,$255,0
892
893 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
894
895 static bfd_reloc_status_type
896 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
897 void *datap, bfd_vma addr, bfd_vma value,
898 char **error_message)
899 {
900 bfd *abfd = isec->owner;
901 bfd_reloc_status_type flag = bfd_reloc_ok;
902 bfd_reloc_status_type r;
903 int offs = 0;
904 int reg = 255;
905
906 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
907 We handle the differences here and the common sequence later. */
908 switch (howto->type)
909 {
910 case R_MMIX_GETA:
911 offs = 0;
912 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
913
914 /* We change to an absolute value. */
915 value += addr;
916 break;
917
918 case R_MMIX_CBRANCH:
919 {
920 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
921
922 /* Invert the condition and prediction bit, and set the offset
923 to five instructions ahead.
924
925 We *can* do better if we want to. If the branch is found to be
926 within limits, we could leave the branch as is; there'll just
927 be a bunch of NOP:s after it. But we shouldn't see this
928 sequence often enough that it's worth doing it. */
929
930 bfd_put_32 (abfd,
931 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
932 | (24/4)),
933 (bfd_byte *) datap);
934
935 /* Put a "GO $255,$255,0" after the common sequence. */
936 bfd_put_32 (abfd,
937 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
938 (bfd_byte *) datap + 20);
939
940 /* Common sequence starts at offset 4. */
941 offs = 4;
942
943 /* We change to an absolute value. */
944 value += addr;
945 }
946 break;
947
948 case R_MMIX_PUSHJ_STUBBABLE:
949 /* If the address fits, we're fine. */
950 if ((value & 3) == 0
951 /* Note rightshift 0; see R_MMIX_JMP case below. */
952 && (r = bfd_check_overflow (complain_overflow_signed,
953 howto->bitsize,
954 0,
955 bfd_arch_bits_per_address (abfd),
956 value)) == bfd_reloc_ok)
957 goto pcrel_mmix_reloc_fits;
958 else
959 {
960 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
961
962 /* We have the bytes at the PUSHJ insn and need to get the
963 position for the stub. There's supposed to be room allocated
964 for the stub. */
965 bfd_byte *stubcontents
966 = ((bfd_byte *) datap
967 - (addr - (isec->output_section->vma + isec->output_offset))
968 + size
969 + mmix_elf_section_data (isec)->pjs.stub_offset);
970 bfd_vma stubaddr;
971
972 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
973 {
974 /* This shouldn't happen when linking to ELF or mmo, so
975 this is an attempt to link to "binary", right? We
976 can't access the output bfd, so we can't verify that
977 assumption. We only know that the critical
978 mmix_elf_check_common_relocs has not been called,
979 which happens when the output format is different
980 from the input format (and is not mmo). */
981 if (! mmix_elf_section_data (isec)->has_warned_pushj)
982 {
983 /* For the first such error per input section, produce
984 a verbose message. */
985 *error_message
986 = _("invalid input relocation when producing"
987 " non-ELF, non-mmo format output."
988 "\n Please use the objcopy program to convert from"
989 " ELF or mmo,"
990 "\n or assemble using"
991 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
992 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
993 return bfd_reloc_dangerous;
994 }
995
996 /* For subsequent errors, return this one, which is
997 rate-limited but looks a little bit different,
998 hopefully without affecting user-friendliness. */
999 return bfd_reloc_overflow;
1000 }
1001
1002 /* The address doesn't fit, so redirect the PUSHJ to the
1003 location of the stub. */
1004 r = mmix_elf_perform_relocation (isec,
1005 &elf_mmix_howto_table
1006 [R_MMIX_ADDR19],
1007 datap,
1008 addr,
1009 isec->output_section->vma
1010 + isec->output_offset
1011 + size
1012 + (mmix_elf_section_data (isec)
1013 ->pjs.stub_offset)
1014 - addr,
1015 error_message);
1016 if (r != bfd_reloc_ok)
1017 return r;
1018
1019 stubaddr
1020 = (isec->output_section->vma
1021 + isec->output_offset
1022 + size
1023 + mmix_elf_section_data (isec)->pjs.stub_offset);
1024
1025 /* We generate a simple JMP if that suffices, else the whole 5
1026 insn stub. */
1027 if (bfd_check_overflow (complain_overflow_signed,
1028 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1029 0,
1030 bfd_arch_bits_per_address (abfd),
1031 addr + value - stubaddr) == bfd_reloc_ok)
1032 {
1033 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1034 r = mmix_elf_perform_relocation (isec,
1035 &elf_mmix_howto_table
1036 [R_MMIX_ADDR27],
1037 stubcontents,
1038 stubaddr,
1039 value + addr - stubaddr,
1040 error_message);
1041 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1042
1043 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1044 > isec->size)
1045 abort ();
1046
1047 return r;
1048 }
1049 else
1050 {
1051 /* Put a "GO $255,0" after the common sequence. */
1052 bfd_put_32 (abfd,
1053 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1054 | 0xff00, (bfd_byte *) stubcontents + 16);
1055
1056 /* Prepare for the general code to set the first part of the
1057 linker stub, and */
1058 value += addr;
1059 datap = stubcontents;
1060 mmix_elf_section_data (isec)->pjs.stub_offset
1061 += MAX_PUSHJ_STUB_SIZE;
1062 }
1063 }
1064 break;
1065
1066 case R_MMIX_PUSHJ:
1067 {
1068 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1069
1070 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1071 bfd_put_32 (abfd,
1072 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1073 | (inreg << 16)
1074 | 0xff00,
1075 (bfd_byte *) datap + 16);
1076
1077 /* We change to an absolute value. */
1078 value += addr;
1079 }
1080 break;
1081
1082 case R_MMIX_JMP:
1083 /* This one is a little special. If we get here on a non-relaxing
1084 link, and the destination is actually in range, we don't need to
1085 execute the nops.
1086 If so, we fall through to the bit-fiddling relocs.
1087
1088 FIXME: bfd_check_overflow seems broken; the relocation is
1089 rightshifted before testing, so supply a zero rightshift. */
1090
1091 if (! ((value & 3) == 0
1092 && (r = bfd_check_overflow (complain_overflow_signed,
1093 howto->bitsize,
1094 0,
1095 bfd_arch_bits_per_address (abfd),
1096 value)) == bfd_reloc_ok))
1097 {
1098 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1099 modified below, and put a "GO $255,$255,0" after the
1100 address-loading sequence. */
1101 bfd_put_32 (abfd,
1102 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1103 | 0xffff00,
1104 (bfd_byte *) datap + 16);
1105
1106 /* We change to an absolute value. */
1107 value += addr;
1108 break;
1109 }
1110 /* FALLTHROUGH. */
1111 case R_MMIX_ADDR19:
1112 case R_MMIX_ADDR27:
1113 pcrel_mmix_reloc_fits:
1114 /* These must be in range, or else we emit an error. */
1115 if ((value & 3) == 0
1116 /* Note rightshift 0; see above. */
1117 && (r = bfd_check_overflow (complain_overflow_signed,
1118 howto->bitsize,
1119 0,
1120 bfd_arch_bits_per_address (abfd),
1121 value)) == bfd_reloc_ok)
1122 {
1123 bfd_vma in1
1124 = bfd_get_32 (abfd, (bfd_byte *) datap);
1125 bfd_vma highbit;
1126
1127 if ((bfd_signed_vma) value < 0)
1128 {
1129 highbit = 1 << 24;
1130 value += (1 << (howto->bitsize - 1));
1131 }
1132 else
1133 highbit = 0;
1134
1135 value >>= 2;
1136
1137 bfd_put_32 (abfd,
1138 (in1 & howto->src_mask)
1139 | highbit
1140 | (value & howto->dst_mask),
1141 (bfd_byte *) datap);
1142
1143 return bfd_reloc_ok;
1144 }
1145 else
1146 return bfd_reloc_overflow;
1147
1148 case R_MMIX_BASE_PLUS_OFFSET:
1149 {
1150 struct bpo_reloc_section_info *bpodata
1151 = mmix_elf_section_data (isec)->bpo.reloc;
1152 asection *bpo_greg_section;
1153 struct bpo_greg_section_info *gregdata;
1154 size_t bpo_index;
1155
1156 if (bpodata == NULL)
1157 {
1158 /* This shouldn't happen when linking to ELF or mmo, so
1159 this is an attempt to link to "binary", right? We
1160 can't access the output bfd, so we can't verify that
1161 assumption. We only know that the critical
1162 mmix_elf_check_common_relocs has not been called, which
1163 happens when the output format is different from the
1164 input format (and is not mmo). */
1165 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1166 {
1167 /* For the first such error per input section, produce
1168 a verbose message. */
1169 *error_message
1170 = _("invalid input relocation when producing"
1171 " non-ELF, non-mmo format output."
1172 "\n Please use the objcopy program to convert from"
1173 " ELF or mmo,"
1174 "\n or compile using the gcc-option"
1175 " \"-mno-base-addresses\".");
1176 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1177 return bfd_reloc_dangerous;
1178 }
1179
1180 /* For subsequent errors, return this one, which is
1181 rate-limited but looks a little bit different,
1182 hopefully without affecting user-friendliness. */
1183 return bfd_reloc_overflow;
1184 }
1185
1186 bpo_greg_section = bpodata->bpo_greg_section;
1187 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1188 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1189
1190 /* A consistency check: The value we now have in "relocation" must
1191 be the same as the value we stored for that relocation. It
1192 doesn't cost much, so can be left in at all times. */
1193 if (value != gregdata->reloc_request[bpo_index].value)
1194 {
1195 (*_bfd_error_handler)
1196 (_("%s: Internal inconsistency error for value for\n\
1197 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1198 bfd_get_filename (isec->owner),
1199 (unsigned long) (value >> 32), (unsigned long) value,
1200 (unsigned long) (gregdata->reloc_request[bpo_index].value
1201 >> 32),
1202 (unsigned long) gregdata->reloc_request[bpo_index].value);
1203 bfd_set_error (bfd_error_bad_value);
1204 return bfd_reloc_overflow;
1205 }
1206
1207 /* Then store the register number and offset for that register
1208 into datap and datap + 1 respectively. */
1209 bfd_put_8 (abfd,
1210 gregdata->reloc_request[bpo_index].regindex
1211 + bpo_greg_section->output_section->vma / 8,
1212 datap);
1213 bfd_put_8 (abfd,
1214 gregdata->reloc_request[bpo_index].offset,
1215 ((unsigned char *) datap) + 1);
1216 return bfd_reloc_ok;
1217 }
1218
1219 case R_MMIX_REG_OR_BYTE:
1220 case R_MMIX_REG:
1221 if (value > 255)
1222 return bfd_reloc_overflow;
1223 bfd_put_8 (abfd, value, datap);
1224 return bfd_reloc_ok;
1225
1226 default:
1227 BAD_CASE (howto->type);
1228 }
1229
1230 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1231 sequence. */
1232
1233 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1234 everything that looks strange. */
1235 if (value & 3)
1236 flag = bfd_reloc_overflow;
1237
1238 bfd_put_32 (abfd,
1239 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs);
1241 bfd_put_32 (abfd,
1242 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 4);
1244 bfd_put_32 (abfd,
1245 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 8);
1247 bfd_put_32 (abfd,
1248 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1249 (bfd_byte *) datap + offs + 12);
1250
1251 return flag;
1252 }
1253
1254 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1255
1256 static void
1257 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1258 arelent *cache_ptr,
1259 Elf_Internal_Rela *dst)
1260 {
1261 unsigned int r_type;
1262
1263 r_type = ELF64_R_TYPE (dst->r_info);
1264 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1265 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1266 }
1267
1268 /* Any MMIX-specific relocation gets here at assembly time or when linking
1269 to other formats (such as mmo); this is the relocation function from
1270 the reloc_table. We don't get here for final pure ELF linking. */
1271
1272 static bfd_reloc_status_type
1273 mmix_elf_reloc (bfd *abfd,
1274 arelent *reloc_entry,
1275 asymbol *symbol,
1276 void * data,
1277 asection *input_section,
1278 bfd *output_bfd,
1279 char **error_message)
1280 {
1281 bfd_vma relocation;
1282 bfd_reloc_status_type r;
1283 asection *reloc_target_output_section;
1284 bfd_reloc_status_type flag = bfd_reloc_ok;
1285 bfd_vma output_base = 0;
1286
1287 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1288 input_section, output_bfd, error_message);
1289
1290 /* If that was all that was needed (i.e. this isn't a final link, only
1291 some segment adjustments), we're done. */
1292 if (r != bfd_reloc_continue)
1293 return r;
1294
1295 if (bfd_is_und_section (symbol->section)
1296 && (symbol->flags & BSF_WEAK) == 0
1297 && output_bfd == (bfd *) NULL)
1298 return bfd_reloc_undefined;
1299
1300 /* Is the address of the relocation really within the section? */
1301 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1302 return bfd_reloc_outofrange;
1303
1304 /* Work out which section the relocation is targeted at and the
1305 initial relocation command value. */
1306
1307 /* Get symbol value. (Common symbols are special.) */
1308 if (bfd_is_com_section (symbol->section))
1309 relocation = 0;
1310 else
1311 relocation = symbol->value;
1312
1313 reloc_target_output_section = bfd_get_output_section (symbol);
1314
1315 /* Here the variable relocation holds the final address of the symbol we
1316 are relocating against, plus any addend. */
1317 if (output_bfd)
1318 output_base = 0;
1319 else
1320 output_base = reloc_target_output_section->vma;
1321
1322 relocation += output_base + symbol->section->output_offset;
1323
1324 if (output_bfd != (bfd *) NULL)
1325 {
1326 /* Add in supplied addend. */
1327 relocation += reloc_entry->addend;
1328
1329 /* This is a partial relocation, and we want to apply the
1330 relocation to the reloc entry rather than the raw data.
1331 Modify the reloc inplace to reflect what we now know. */
1332 reloc_entry->addend = relocation;
1333 reloc_entry->address += input_section->output_offset;
1334 return flag;
1335 }
1336
1337 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1338 data, reloc_entry->address,
1339 reloc_entry->addend, relocation,
1340 bfd_asymbol_name (symbol),
1341 reloc_target_output_section,
1342 error_message);
1343 }
1344 \f
1345 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1346 for guidance if you're thinking of copying this. */
1347
1348 static bfd_boolean
1349 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1350 struct bfd_link_info *info,
1351 bfd *input_bfd,
1352 asection *input_section,
1353 bfd_byte *contents,
1354 Elf_Internal_Rela *relocs,
1355 Elf_Internal_Sym *local_syms,
1356 asection **local_sections)
1357 {
1358 Elf_Internal_Shdr *symtab_hdr;
1359 struct elf_link_hash_entry **sym_hashes;
1360 Elf_Internal_Rela *rel;
1361 Elf_Internal_Rela *relend;
1362 bfd_size_type size;
1363 size_t pjsno = 0;
1364
1365 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1366 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1367 sym_hashes = elf_sym_hashes (input_bfd);
1368 relend = relocs + input_section->reloc_count;
1369
1370 /* Zero the stub area before we start. */
1371 if (input_section->rawsize != 0
1372 && input_section->size > input_section->rawsize)
1373 memset (contents + input_section->rawsize, 0,
1374 input_section->size - input_section->rawsize);
1375
1376 for (rel = relocs; rel < relend; rel ++)
1377 {
1378 reloc_howto_type *howto;
1379 unsigned long r_symndx;
1380 Elf_Internal_Sym *sym;
1381 asection *sec;
1382 struct elf_link_hash_entry *h;
1383 bfd_vma relocation;
1384 bfd_reloc_status_type r;
1385 const char *name = NULL;
1386 int r_type;
1387 bfd_boolean undefined_signalled = FALSE;
1388
1389 r_type = ELF64_R_TYPE (rel->r_info);
1390
1391 if (r_type == R_MMIX_GNU_VTINHERIT
1392 || r_type == R_MMIX_GNU_VTENTRY)
1393 continue;
1394
1395 r_symndx = ELF64_R_SYM (rel->r_info);
1396
1397 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1398 h = NULL;
1399 sym = NULL;
1400 sec = NULL;
1401
1402 if (r_symndx < symtab_hdr->sh_info)
1403 {
1404 sym = local_syms + r_symndx;
1405 sec = local_sections [r_symndx];
1406 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1407
1408 name = bfd_elf_string_from_elf_section (input_bfd,
1409 symtab_hdr->sh_link,
1410 sym->st_name);
1411 if (name == NULL)
1412 name = bfd_section_name (input_bfd, sec);
1413 }
1414 else
1415 {
1416 bfd_boolean unresolved_reloc;
1417
1418 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1419 r_symndx, symtab_hdr, sym_hashes,
1420 h, sec, relocation,
1421 unresolved_reloc, undefined_signalled);
1422 name = h->root.root.string;
1423 }
1424
1425 if (sec != NULL && discarded_section (sec))
1426 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1427 rel, 1, relend, howto, 0, contents);
1428
1429 if (info->relocatable)
1430 {
1431 /* This is a relocatable link. For most relocs we don't have to
1432 change anything, unless the reloc is against a section
1433 symbol, in which case we have to adjust according to where
1434 the section symbol winds up in the output section. */
1435 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1436 rel->r_addend += sec->output_offset;
1437
1438 /* For PUSHJ stub relocs however, we may need to change the
1439 reloc and the section contents, if the reloc doesn't reach
1440 beyond the end of the output section and previous stubs.
1441 Then we change the section contents to be a PUSHJ to the end
1442 of the input section plus stubs (we can do that without using
1443 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1444 at the stub location. */
1445 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1446 {
1447 /* We've already checked whether we need a stub; use that
1448 knowledge. */
1449 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1450 != 0)
1451 {
1452 Elf_Internal_Rela relcpy;
1453
1454 if (mmix_elf_section_data (input_section)
1455 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1456 abort ();
1457
1458 /* There's already a PUSHJ insn there, so just fill in
1459 the offset bits to the stub. */
1460 if (mmix_final_link_relocate (elf_mmix_howto_table
1461 + R_MMIX_ADDR19,
1462 input_section,
1463 contents,
1464 rel->r_offset,
1465 0,
1466 input_section
1467 ->output_section->vma
1468 + input_section->output_offset
1469 + size
1470 + mmix_elf_section_data (input_section)
1471 ->pjs.stub_offset,
1472 NULL, NULL, NULL) != bfd_reloc_ok)
1473 return FALSE;
1474
1475 /* Put a JMP insn at the stub; it goes with the
1476 R_MMIX_JMP reloc. */
1477 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1478 contents
1479 + size
1480 + mmix_elf_section_data (input_section)
1481 ->pjs.stub_offset);
1482
1483 /* Change the reloc to be at the stub, and to a full
1484 R_MMIX_JMP reloc. */
1485 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1486 rel->r_offset
1487 = (size
1488 + mmix_elf_section_data (input_section)
1489 ->pjs.stub_offset);
1490
1491 mmix_elf_section_data (input_section)->pjs.stub_offset
1492 += MAX_PUSHJ_STUB_SIZE;
1493
1494 /* Shift this reloc to the end of the relocs to maintain
1495 the r_offset sorted reloc order. */
1496 relcpy = *rel;
1497 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1498 relend[-1] = relcpy;
1499
1500 /* Back up one reloc, or else we'd skip the next reloc
1501 in turn. */
1502 rel--;
1503 }
1504
1505 pjsno++;
1506 }
1507 continue;
1508 }
1509
1510 r = mmix_final_link_relocate (howto, input_section,
1511 contents, rel->r_offset,
1512 rel->r_addend, relocation, name, sec, NULL);
1513
1514 if (r != bfd_reloc_ok)
1515 {
1516 bfd_boolean check_ok = TRUE;
1517 const char * msg = (const char *) NULL;
1518
1519 switch (r)
1520 {
1521 case bfd_reloc_overflow:
1522 check_ok = info->callbacks->reloc_overflow
1523 (info, (h ? &h->root : NULL), name, howto->name,
1524 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1525 break;
1526
1527 case bfd_reloc_undefined:
1528 /* We may have sent this message above. */
1529 if (! undefined_signalled)
1530 check_ok = info->callbacks->undefined_symbol
1531 (info, name, input_bfd, input_section, rel->r_offset,
1532 TRUE);
1533 undefined_signalled = TRUE;
1534 break;
1535
1536 case bfd_reloc_outofrange:
1537 msg = _("internal error: out of range error");
1538 break;
1539
1540 case bfd_reloc_notsupported:
1541 msg = _("internal error: unsupported relocation error");
1542 break;
1543
1544 case bfd_reloc_dangerous:
1545 msg = _("internal error: dangerous relocation");
1546 break;
1547
1548 default:
1549 msg = _("internal error: unknown error");
1550 break;
1551 }
1552
1553 if (msg)
1554 check_ok = info->callbacks->warning
1555 (info, msg, name, input_bfd, input_section, rel->r_offset);
1556
1557 if (! check_ok)
1558 return FALSE;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564 \f
1565 /* Perform a single relocation. By default we use the standard BFD
1566 routines. A few relocs we have to do ourselves. */
1567
1568 static bfd_reloc_status_type
1569 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1570 bfd_byte *contents, bfd_vma r_offset,
1571 bfd_signed_vma r_addend, bfd_vma relocation,
1572 const char *symname, asection *symsec,
1573 char **error_message)
1574 {
1575 bfd_reloc_status_type r = bfd_reloc_ok;
1576 bfd_vma addr
1577 = (input_section->output_section->vma
1578 + input_section->output_offset
1579 + r_offset);
1580 bfd_signed_vma srel
1581 = (bfd_signed_vma) relocation + r_addend;
1582
1583 switch (howto->type)
1584 {
1585 /* All these are PC-relative. */
1586 case R_MMIX_PUSHJ_STUBBABLE:
1587 case R_MMIX_PUSHJ:
1588 case R_MMIX_CBRANCH:
1589 case R_MMIX_ADDR19:
1590 case R_MMIX_GETA:
1591 case R_MMIX_ADDR27:
1592 case R_MMIX_JMP:
1593 contents += r_offset;
1594
1595 srel -= (input_section->output_section->vma
1596 + input_section->output_offset
1597 + r_offset);
1598
1599 r = mmix_elf_perform_relocation (input_section, howto, contents,
1600 addr, srel, error_message);
1601 break;
1602
1603 case R_MMIX_BASE_PLUS_OFFSET:
1604 if (symsec == NULL)
1605 return bfd_reloc_undefined;
1606
1607 /* Check that we're not relocating against a register symbol. */
1608 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1610 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1611 MMIX_REG_SECTION_NAME) == 0)
1612 {
1613 /* Note: This is separated out into two messages in order
1614 to ease the translation into other languages. */
1615 if (symname == NULL || *symname == 0)
1616 (*_bfd_error_handler)
1617 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1618 bfd_get_filename (input_section->owner),
1619 bfd_get_section_name (symsec->owner, symsec));
1620 else
1621 (*_bfd_error_handler)
1622 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1623 bfd_get_filename (input_section->owner), symname,
1624 bfd_get_section_name (symsec->owner, symsec));
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
1662 /* Note: This is separated out into two messages in order
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
1665 (*_bfd_error_handler)
1666 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1667 bfd_get_filename (input_section->owner),
1668 bfd_get_section_name (symsec->owner, symsec));
1669 else
1670 (*_bfd_error_handler)
1671 (_("%s: register relocation against non-register symbol: %s in %s"),
1672 bfd_get_filename (input_section->owner), symname,
1673 bfd_get_section_name (symsec->owner, symsec));
1674
1675 /* The bfd_reloc_outofrange return value, though intuitively a
1676 better value, will not get us an error. */
1677 return bfd_reloc_overflow;
1678 }
1679 do_mmix_reloc:
1680 contents += r_offset;
1681 r = mmix_elf_perform_relocation (input_section, howto, contents,
1682 addr, srel, error_message);
1683 break;
1684
1685 case R_MMIX_LOCAL:
1686 /* This isn't a real relocation, it's just an assertion that the
1687 final relocation value corresponds to a local register. We
1688 ignore the actual relocation; nothing is changed. */
1689 {
1690 asection *regsec
1691 = bfd_get_section_by_name (input_section->output_section->owner,
1692 MMIX_REG_CONTENTS_SECTION_NAME);
1693 bfd_vma first_global;
1694
1695 /* Check that this is an absolute value, or a reference to the
1696 register contents section or the register (symbol) section.
1697 Absolute numbers can get here as undefined section. Undefined
1698 symbols are signalled elsewhere, so there's no conflict in us
1699 accidentally handling it. */
1700 if (!bfd_is_abs_section (symsec)
1701 && !bfd_is_und_section (symsec)
1702 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1703 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_SECTION_NAME) != 0)
1706 {
1707 (*_bfd_error_handler)
1708 (_("%s: directive LOCAL valid only with a register or absolute value"),
1709 bfd_get_filename (input_section->owner));
1710
1711 return bfd_reloc_overflow;
1712 }
1713
1714 /* If we don't have a register contents section, then $255 is the
1715 first global register. */
1716 if (regsec == NULL)
1717 first_global = 255;
1718 else
1719 {
1720 first_global
1721 = bfd_get_section_vma (input_section->output_section->owner,
1722 regsec) / 8;
1723 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1724 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1725 {
1726 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1727 /* The bfd_reloc_outofrange return value, though
1728 intuitively a better value, will not get us an error. */
1729 return bfd_reloc_overflow;
1730 srel /= 8;
1731 }
1732 }
1733
1734 if ((bfd_vma) srel >= first_global)
1735 {
1736 /* FIXME: Better error message. */
1737 (*_bfd_error_handler)
1738 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1739 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1740
1741 return bfd_reloc_overflow;
1742 }
1743 }
1744 r = bfd_reloc_ok;
1745 break;
1746
1747 default:
1748 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1749 contents, r_offset,
1750 relocation, r_addend);
1751 }
1752
1753 return r;
1754 }
1755 \f
1756 /* Return the section that should be marked against GC for a given
1757 relocation. */
1758
1759 static asection *
1760 mmix_elf_gc_mark_hook (asection *sec,
1761 struct bfd_link_info *info,
1762 Elf_Internal_Rela *rel,
1763 struct elf_link_hash_entry *h,
1764 Elf_Internal_Sym *sym)
1765 {
1766 if (h != NULL)
1767 switch (ELF64_R_TYPE (rel->r_info))
1768 {
1769 case R_MMIX_GNU_VTINHERIT:
1770 case R_MMIX_GNU_VTENTRY:
1771 return NULL;
1772 }
1773
1774 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1775 }
1776
1777 /* Update relocation info for a GC-excluded section. We could supposedly
1778 perform the allocation after GC, but there's no suitable hook between
1779 GC (or section merge) and the point when all input sections must be
1780 present. Better to waste some memory and (perhaps) a little time. */
1781
1782 static bfd_boolean
1783 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1784 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1785 asection *sec,
1786 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1787 {
1788 struct bpo_reloc_section_info *bpodata
1789 = mmix_elf_section_data (sec)->bpo.reloc;
1790 asection *allocated_gregs_section;
1791
1792 /* If no bpodata here, we have nothing to do. */
1793 if (bpodata == NULL)
1794 return TRUE;
1795
1796 allocated_gregs_section = bpodata->bpo_greg_section;
1797
1798 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1799 -= bpodata->n_bpo_relocs_this_section;
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* Sort register relocs to come before expanding relocs. */
1805
1806 static int
1807 mmix_elf_sort_relocs (const void * p1, const void * p2)
1808 {
1809 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1810 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1811 int r1_is_reg, r2_is_reg;
1812
1813 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1814 insns. */
1815 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1816 return 1;
1817 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1818 return -1;
1819
1820 r1_is_reg
1821 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1822 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1823 r2_is_reg
1824 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1825 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1826 if (r1_is_reg != r2_is_reg)
1827 return r2_is_reg - r1_is_reg;
1828
1829 /* Neither or both are register relocs. Then sort on full offset. */
1830 if (r1->r_offset > r2->r_offset)
1831 return 1;
1832 else if (r1->r_offset < r2->r_offset)
1833 return -1;
1834 return 0;
1835 }
1836
1837 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1838
1839 static bfd_boolean
1840 mmix_elf_check_common_relocs (bfd *abfd,
1841 struct bfd_link_info *info,
1842 asection *sec,
1843 const Elf_Internal_Rela *relocs)
1844 {
1845 bfd *bpo_greg_owner = NULL;
1846 asection *allocated_gregs_section = NULL;
1847 struct bpo_greg_section_info *gregdata = NULL;
1848 struct bpo_reloc_section_info *bpodata = NULL;
1849 const Elf_Internal_Rela *rel;
1850 const Elf_Internal_Rela *rel_end;
1851
1852 /* We currently have to abuse this COFF-specific member, since there's
1853 no target-machine-dedicated member. There's no alternative outside
1854 the bfd_link_info struct; we can't specialize a hash-table since
1855 they're different between ELF and mmo. */
1856 bpo_greg_owner = (bfd *) info->base_file;
1857
1858 rel_end = relocs + sec->reloc_count;
1859 for (rel = relocs; rel < rel_end; rel++)
1860 {
1861 switch (ELF64_R_TYPE (rel->r_info))
1862 {
1863 /* This relocation causes a GREG allocation. We need to count
1864 them, and we need to create a section for them, so we need an
1865 object to fake as the owner of that section. We can't use
1866 the ELF dynobj for this, since the ELF bits assume lots of
1867 DSO-related stuff if that member is non-NULL. */
1868 case R_MMIX_BASE_PLUS_OFFSET:
1869 /* We don't do anything with this reloc for a relocatable link. */
1870 if (info->relocatable)
1871 break;
1872
1873 if (bpo_greg_owner == NULL)
1874 {
1875 bpo_greg_owner = abfd;
1876 info->base_file = bpo_greg_owner;
1877 }
1878
1879 if (allocated_gregs_section == NULL)
1880 allocated_gregs_section
1881 = bfd_get_section_by_name (bpo_greg_owner,
1882 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1883
1884 if (allocated_gregs_section == NULL)
1885 {
1886 allocated_gregs_section
1887 = bfd_make_section_with_flags (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1889 (SEC_HAS_CONTENTS
1890 | SEC_IN_MEMORY
1891 | SEC_LINKER_CREATED));
1892 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1893 treated like any other section, and we'd get errors for
1894 address overlap with the text section. Let's set none of
1895 those flags, as that is what currently happens for usual
1896 GREG allocations, and that works. */
1897 if (allocated_gregs_section == NULL
1898 || !bfd_set_section_alignment (bpo_greg_owner,
1899 allocated_gregs_section,
1900 3))
1901 return FALSE;
1902
1903 gregdata = (struct bpo_greg_section_info *)
1904 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1905 if (gregdata == NULL)
1906 return FALSE;
1907 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1908 = gregdata;
1909 }
1910 else if (gregdata == NULL)
1911 gregdata
1912 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1913
1914 /* Get ourselves some auxiliary info for the BPO-relocs. */
1915 if (bpodata == NULL)
1916 {
1917 /* No use doing a separate iteration pass to find the upper
1918 limit - just use the number of relocs. */
1919 bpodata = (struct bpo_reloc_section_info *)
1920 bfd_alloc (bpo_greg_owner,
1921 sizeof (struct bpo_reloc_section_info)
1922 * (sec->reloc_count + 1));
1923 if (bpodata == NULL)
1924 return FALSE;
1925 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1926 bpodata->first_base_plus_offset_reloc
1927 = bpodata->bpo_index
1928 = gregdata->n_max_bpo_relocs;
1929 bpodata->bpo_greg_section
1930 = allocated_gregs_section;
1931 bpodata->n_bpo_relocs_this_section = 0;
1932 }
1933
1934 bpodata->n_bpo_relocs_this_section++;
1935 gregdata->n_max_bpo_relocs++;
1936
1937 /* We don't get another chance to set this before GC; we've not
1938 set up any hook that runs before GC. */
1939 gregdata->n_bpo_relocs
1940 = gregdata->n_max_bpo_relocs;
1941 break;
1942
1943 case R_MMIX_PUSHJ_STUBBABLE:
1944 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1945 break;
1946 }
1947 }
1948
1949 /* Allocate per-reloc stub storage and initialize it to the max stub
1950 size. */
1951 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1952 {
1953 size_t i;
1954
1955 mmix_elf_section_data (sec)->pjs.stub_size
1956 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1957 * sizeof (mmix_elf_section_data (sec)
1958 ->pjs.stub_size[0]));
1959 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1960 return FALSE;
1961
1962 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1963 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1964 }
1965
1966 return TRUE;
1967 }
1968
1969 /* Look through the relocs for a section during the first phase. */
1970
1971 static bfd_boolean
1972 mmix_elf_check_relocs (bfd *abfd,
1973 struct bfd_link_info *info,
1974 asection *sec,
1975 const Elf_Internal_Rela *relocs)
1976 {
1977 Elf_Internal_Shdr *symtab_hdr;
1978 struct elf_link_hash_entry **sym_hashes;
1979 const Elf_Internal_Rela *rel;
1980 const Elf_Internal_Rela *rel_end;
1981
1982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1983 sym_hashes = elf_sym_hashes (abfd);
1984
1985 /* First we sort the relocs so that any register relocs come before
1986 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1987 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1988 mmix_elf_sort_relocs);
1989
1990 /* Do the common part. */
1991 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1992 return FALSE;
1993
1994 if (info->relocatable)
1995 return TRUE;
1996
1997 rel_end = relocs + sec->reloc_count;
1998 for (rel = relocs; rel < rel_end; rel++)
1999 {
2000 struct elf_link_hash_entry *h;
2001 unsigned long r_symndx;
2002
2003 r_symndx = ELF64_R_SYM (rel->r_info);
2004 if (r_symndx < symtab_hdr->sh_info)
2005 h = NULL;
2006 else
2007 {
2008 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2009 while (h->root.type == bfd_link_hash_indirect
2010 || h->root.type == bfd_link_hash_warning)
2011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2012
2013 /* PR15323, ref flags aren't set for references in the same
2014 object. */
2015 h->root.non_ir_ref = 1;
2016 }
2017
2018 switch (ELF64_R_TYPE (rel->r_info))
2019 {
2020 /* This relocation describes the C++ object vtable hierarchy.
2021 Reconstruct it for later use during GC. */
2022 case R_MMIX_GNU_VTINHERIT:
2023 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2024 return FALSE;
2025 break;
2026
2027 /* This relocation describes which C++ vtable entries are actually
2028 used. Record for later use during GC. */
2029 case R_MMIX_GNU_VTENTRY:
2030 BFD_ASSERT (h != NULL);
2031 if (h != NULL
2032 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2033 return FALSE;
2034 break;
2035 }
2036 }
2037
2038 return TRUE;
2039 }
2040
2041 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2042 Copied from elf_link_add_object_symbols. */
2043
2044 bfd_boolean
2045 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2046 {
2047 asection *o;
2048
2049 for (o = abfd->sections; o != NULL; o = o->next)
2050 {
2051 Elf_Internal_Rela *internal_relocs;
2052 bfd_boolean ok;
2053
2054 if ((o->flags & SEC_RELOC) == 0
2055 || o->reloc_count == 0
2056 || ((info->strip == strip_all || info->strip == strip_debugger)
2057 && (o->flags & SEC_DEBUGGING) != 0)
2058 || bfd_is_abs_section (o->output_section))
2059 continue;
2060
2061 internal_relocs
2062 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2063 (Elf_Internal_Rela *) NULL,
2064 info->keep_memory);
2065 if (internal_relocs == NULL)
2066 return FALSE;
2067
2068 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2069
2070 if (! info->keep_memory)
2071 free (internal_relocs);
2072
2073 if (! ok)
2074 return FALSE;
2075 }
2076
2077 return TRUE;
2078 }
2079 \f
2080 /* Change symbols relative to the reg contents section to instead be to
2081 the register section, and scale them down to correspond to the register
2082 number. */
2083
2084 static int
2085 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2086 const char *name ATTRIBUTE_UNUSED,
2087 Elf_Internal_Sym *sym,
2088 asection *input_sec,
2089 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2090 {
2091 if (input_sec != NULL
2092 && input_sec->name != NULL
2093 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2094 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2095 {
2096 sym->st_value /= 8;
2097 sym->st_shndx = SHN_REGISTER;
2098 }
2099
2100 return 1;
2101 }
2102
2103 /* We fake a register section that holds values that are register numbers.
2104 Having a SHN_REGISTER and register section translates better to other
2105 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2106 This section faking is based on a construct in elf32-mips.c. */
2107 static asection mmix_elf_reg_section;
2108 static asymbol mmix_elf_reg_section_symbol;
2109 static asymbol *mmix_elf_reg_section_symbol_ptr;
2110
2111 /* Handle the special section numbers that a symbol may use. */
2112
2113 void
2114 mmix_elf_symbol_processing (abfd, asym)
2115 bfd *abfd ATTRIBUTE_UNUSED;
2116 asymbol *asym;
2117 {
2118 elf_symbol_type *elfsym;
2119
2120 elfsym = (elf_symbol_type *) asym;
2121 switch (elfsym->internal_elf_sym.st_shndx)
2122 {
2123 case SHN_REGISTER:
2124 if (mmix_elf_reg_section.name == NULL)
2125 {
2126 /* Initialize the register section. */
2127 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2128 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2129 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2130 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2131 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2132 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2133 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2134 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2135 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2136 }
2137 asym->section = &mmix_elf_reg_section;
2138 break;
2139
2140 default:
2141 break;
2142 }
2143 }
2144
2145 /* Given a BFD section, try to locate the corresponding ELF section
2146 index. */
2147
2148 static bfd_boolean
2149 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2150 asection * sec,
2151 int * retval)
2152 {
2153 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2154 *retval = SHN_REGISTER;
2155 else
2156 return FALSE;
2157
2158 return TRUE;
2159 }
2160
2161 /* Hook called by the linker routine which adds symbols from an object
2162 file. We must handle the special SHN_REGISTER section number here.
2163
2164 We also check that we only have *one* each of the section-start
2165 symbols, since otherwise having two with the same value would cause
2166 them to be "merged", but with the contents serialized. */
2167
2168 static bfd_boolean
2169 mmix_elf_add_symbol_hook (bfd *abfd,
2170 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2171 Elf_Internal_Sym *sym,
2172 const char **namep ATTRIBUTE_UNUSED,
2173 flagword *flagsp ATTRIBUTE_UNUSED,
2174 asection **secp,
2175 bfd_vma *valp ATTRIBUTE_UNUSED)
2176 {
2177 if (sym->st_shndx == SHN_REGISTER)
2178 {
2179 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2180 (*secp)->flags |= SEC_LINKER_CREATED;
2181 }
2182 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2183 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2184 {
2185 /* See if we have another one. */
2186 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2187 *namep,
2188 FALSE,
2189 FALSE,
2190 FALSE);
2191
2192 if (h != NULL && h->type != bfd_link_hash_undefined)
2193 {
2194 /* How do we get the asymbol (or really: the filename) from h?
2195 h->u.def.section->owner is NULL. */
2196 ((*_bfd_error_handler)
2197 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2198 bfd_get_filename (abfd), *namep,
2199 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203 }
2204
2205 return TRUE;
2206 }
2207
2208 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2209
2210 static bfd_boolean
2211 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2212 {
2213 const char *colpos;
2214 int digits;
2215
2216 /* Also include the default local-label definition. */
2217 if (_bfd_elf_is_local_label_name (abfd, name))
2218 return TRUE;
2219
2220 if (*name != 'L')
2221 return FALSE;
2222
2223 /* If there's no ":", or more than one, it's not a local symbol. */
2224 colpos = strchr (name, ':');
2225 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2226 return FALSE;
2227
2228 /* Check that there are remaining characters and that they are digits. */
2229 if (colpos[1] == 0)
2230 return FALSE;
2231
2232 digits = strspn (colpos + 1, "0123456789");
2233 return digits != 0 && colpos[1 + digits] == 0;
2234 }
2235
2236 /* We get rid of the register section here. */
2237
2238 bfd_boolean
2239 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2240 {
2241 /* We never output a register section, though we create one for
2242 temporary measures. Check that nobody entered contents into it. */
2243 asection *reg_section;
2244
2245 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2246
2247 if (reg_section != NULL)
2248 {
2249 /* FIXME: Pass error state gracefully. */
2250 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2251 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2252
2253 /* Really remove the section, if it hasn't already been done. */
2254 if (!bfd_section_removed_from_list (abfd, reg_section))
2255 {
2256 bfd_section_list_remove (abfd, reg_section);
2257 --abfd->section_count;
2258 }
2259 }
2260
2261 if (! bfd_elf_final_link (abfd, info))
2262 return FALSE;
2263
2264 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2265 the regular linker machinery. We do it here, like other targets with
2266 special sections. */
2267 if (info->base_file != NULL)
2268 {
2269 asection *greg_section
2270 = bfd_get_section_by_name ((bfd *) info->base_file,
2271 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2272 if (!bfd_set_section_contents (abfd,
2273 greg_section->output_section,
2274 greg_section->contents,
2275 (file_ptr) greg_section->output_offset,
2276 greg_section->size))
2277 return FALSE;
2278 }
2279 return TRUE;
2280 }
2281
2282 /* We need to include the maximum size of PUSHJ-stubs in the initial
2283 section size. This is expected to shrink during linker relaxation. */
2284
2285 static void
2286 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2287 asection *sec,
2288 void *ptr)
2289 {
2290 struct bfd_link_info *info = ptr;
2291
2292 /* Make sure we only do this for section where we know we want this,
2293 otherwise we might end up resetting the size of COMMONs. */
2294 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2295 return;
2296
2297 sec->rawsize = sec->size;
2298 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2299 * MAX_PUSHJ_STUB_SIZE);
2300
2301 /* For use in relocatable link, we start with a max stubs size. See
2302 mmix_elf_relax_section. */
2303 if (info->relocatable && sec->output_section)
2304 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2305 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2306 * MAX_PUSHJ_STUB_SIZE);
2307 }
2308
2309 /* Initialize stuff for the linker-generated GREGs to match
2310 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2311
2312 bfd_boolean
2313 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2314 struct bfd_link_info *info)
2315 {
2316 asection *bpo_gregs_section;
2317 bfd *bpo_greg_owner;
2318 struct bpo_greg_section_info *gregdata;
2319 size_t n_gregs;
2320 bfd_vma gregs_size;
2321 size_t i;
2322 size_t *bpo_reloc_indexes;
2323 bfd *ibfd;
2324
2325 /* Set the initial size of sections. */
2326 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2327 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2328
2329 /* The bpo_greg_owner bfd is supposed to have been set by
2330 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2331 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2332 bpo_greg_owner = (bfd *) info->base_file;
2333 if (bpo_greg_owner == NULL)
2334 return TRUE;
2335
2336 bpo_gregs_section
2337 = bfd_get_section_by_name (bpo_greg_owner,
2338 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2339
2340 if (bpo_gregs_section == NULL)
2341 return TRUE;
2342
2343 /* We use the target-data handle in the ELF section data. */
2344 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2345 if (gregdata == NULL)
2346 return FALSE;
2347
2348 n_gregs = gregdata->n_bpo_relocs;
2349 gregdata->n_allocated_bpo_gregs = n_gregs;
2350
2351 /* When this reaches zero during relaxation, all entries have been
2352 filled in and the size of the linker gregs can be calculated. */
2353 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2354
2355 /* Set the zeroth-order estimate for the GREGs size. */
2356 gregs_size = n_gregs * 8;
2357
2358 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2359 return FALSE;
2360
2361 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2362 time. Note that we must use the max number ever noted for the array,
2363 since the index numbers were created before GC. */
2364 gregdata->reloc_request
2365 = bfd_zalloc (bpo_greg_owner,
2366 sizeof (struct bpo_reloc_request)
2367 * gregdata->n_max_bpo_relocs);
2368
2369 gregdata->bpo_reloc_indexes
2370 = bpo_reloc_indexes
2371 = bfd_alloc (bpo_greg_owner,
2372 gregdata->n_max_bpo_relocs
2373 * sizeof (size_t));
2374 if (bpo_reloc_indexes == NULL)
2375 return FALSE;
2376
2377 /* The default order is an identity mapping. */
2378 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2379 {
2380 bpo_reloc_indexes[i] = i;
2381 gregdata->reloc_request[i].bpo_reloc_no = i;
2382 }
2383
2384 return TRUE;
2385 }
2386 \f
2387 /* Fill in contents in the linker allocated gregs. Everything is
2388 calculated at this point; we just move the contents into place here. */
2389
2390 bfd_boolean
2391 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2392 struct bfd_link_info *link_info)
2393 {
2394 asection *bpo_gregs_section;
2395 bfd *bpo_greg_owner;
2396 struct bpo_greg_section_info *gregdata;
2397 size_t n_gregs;
2398 size_t i, j;
2399 size_t lastreg;
2400 bfd_byte *contents;
2401
2402 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2403 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2404 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2405 bpo_greg_owner = (bfd *) link_info->base_file;
2406 if (bpo_greg_owner == NULL)
2407 return TRUE;
2408
2409 bpo_gregs_section
2410 = bfd_get_section_by_name (bpo_greg_owner,
2411 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2412
2413 /* This can't happen without DSO handling. When DSOs are handled
2414 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2415 section. */
2416 if (bpo_gregs_section == NULL)
2417 return TRUE;
2418
2419 /* We use the target-data handle in the ELF section data. */
2420
2421 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2422 if (gregdata == NULL)
2423 return FALSE;
2424
2425 n_gregs = gregdata->n_allocated_bpo_gregs;
2426
2427 bpo_gregs_section->contents
2428 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2429 if (contents == NULL)
2430 return FALSE;
2431
2432 /* Sanity check: If these numbers mismatch, some relocation has not been
2433 accounted for and the rest of gregdata is probably inconsistent.
2434 It's a bug, but it's more helpful to identify it than segfaulting
2435 below. */
2436 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2437 != gregdata->n_bpo_relocs)
2438 {
2439 (*_bfd_error_handler)
2440 (_("Internal inconsistency: remaining %u != max %u.\n\
2441 Please report this bug."),
2442 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2443 gregdata->n_bpo_relocs);
2444 return FALSE;
2445 }
2446
2447 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2448 if (gregdata->reloc_request[i].regindex != lastreg)
2449 {
2450 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2451 contents + j * 8);
2452 lastreg = gregdata->reloc_request[i].regindex;
2453 j++;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 /* Sort valid relocs to come before non-valid relocs, then on increasing
2460 value. */
2461
2462 static int
2463 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2464 {
2465 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2466 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2467
2468 /* Primary function is validity; non-valid relocs sorted after valid
2469 ones. */
2470 if (r1->valid != r2->valid)
2471 return r2->valid - r1->valid;
2472
2473 /* Then sort on value. Don't simplify and return just the difference of
2474 the values: the upper bits of the 64-bit value would be truncated on
2475 a host with 32-bit ints. */
2476 if (r1->value != r2->value)
2477 return r1->value > r2->value ? 1 : -1;
2478
2479 /* As a last re-sort, use the relocation number, so we get a stable
2480 sort. The *addresses* aren't stable since items are swapped during
2481 sorting. It depends on the qsort implementation if this actually
2482 happens. */
2483 return r1->bpo_reloc_no > r2->bpo_reloc_no
2484 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2485 }
2486
2487 /* For debug use only. Dumps the global register allocations resulting
2488 from base-plus-offset relocs. */
2489
2490 void
2491 mmix_dump_bpo_gregs (link_info, pf)
2492 struct bfd_link_info *link_info;
2493 bfd_error_handler_type pf;
2494 {
2495 bfd *bpo_greg_owner;
2496 asection *bpo_gregs_section;
2497 struct bpo_greg_section_info *gregdata;
2498 unsigned int i;
2499
2500 if (link_info == NULL || link_info->base_file == NULL)
2501 return;
2502
2503 bpo_greg_owner = (bfd *) link_info->base_file;
2504
2505 bpo_gregs_section
2506 = bfd_get_section_by_name (bpo_greg_owner,
2507 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2508
2509 if (bpo_gregs_section == NULL)
2510 return;
2511
2512 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2513 if (gregdata == NULL)
2514 return;
2515
2516 if (pf == NULL)
2517 pf = _bfd_error_handler;
2518
2519 /* These format strings are not translated. They are for debug purposes
2520 only and never displayed to an end user. Should they escape, we
2521 surely want them in original. */
2522 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2523 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2524 gregdata->n_max_bpo_relocs,
2525 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2526 gregdata->n_allocated_bpo_gregs);
2527
2528 if (gregdata->reloc_request)
2529 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2530 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2531 i,
2532 (gregdata->bpo_reloc_indexes != NULL
2533 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2534 gregdata->reloc_request[i].bpo_reloc_no,
2535 gregdata->reloc_request[i].valid,
2536
2537 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2538 (unsigned long) gregdata->reloc_request[i].value,
2539 gregdata->reloc_request[i].regindex,
2540 gregdata->reloc_request[i].offset);
2541 }
2542
2543 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2544 when the last such reloc is done, an index-array is sorted according to
2545 the values and iterated over to produce register numbers (indexed by 0
2546 from the first allocated register number) and offsets for use in real
2547 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2548
2549 PUSHJ stub accounting is also done here.
2550
2551 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2552
2553 static bfd_boolean
2554 mmix_elf_relax_section (bfd *abfd,
2555 asection *sec,
2556 struct bfd_link_info *link_info,
2557 bfd_boolean *again)
2558 {
2559 Elf_Internal_Shdr *symtab_hdr;
2560 Elf_Internal_Rela *internal_relocs;
2561 Elf_Internal_Rela *irel, *irelend;
2562 asection *bpo_gregs_section = NULL;
2563 struct bpo_greg_section_info *gregdata;
2564 struct bpo_reloc_section_info *bpodata
2565 = mmix_elf_section_data (sec)->bpo.reloc;
2566 /* The initialization is to quiet compiler warnings. The value is to
2567 spot a missing actual initialization. */
2568 size_t bpono = (size_t) -1;
2569 size_t pjsno = 0;
2570 Elf_Internal_Sym *isymbuf = NULL;
2571 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2572
2573 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2574
2575 /* Assume nothing changes. */
2576 *again = FALSE;
2577
2578 /* We don't have to do anything if this section does not have relocs, or
2579 if this is not a code section. */
2580 if ((sec->flags & SEC_RELOC) == 0
2581 || sec->reloc_count == 0
2582 || (sec->flags & SEC_CODE) == 0
2583 || (sec->flags & SEC_LINKER_CREATED) != 0
2584 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2585 then nothing to do. */
2586 || (bpodata == NULL
2587 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2588 return TRUE;
2589
2590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2591
2592 if (bpodata != NULL)
2593 {
2594 bpo_gregs_section = bpodata->bpo_greg_section;
2595 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2596 bpono = bpodata->first_base_plus_offset_reloc;
2597 }
2598 else
2599 gregdata = NULL;
2600
2601 /* Get a copy of the native relocations. */
2602 internal_relocs
2603 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2604 (Elf_Internal_Rela *) NULL,
2605 link_info->keep_memory);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608
2609 /* Walk through them looking for relaxing opportunities. */
2610 irelend = internal_relocs + sec->reloc_count;
2611 for (irel = internal_relocs; irel < irelend; irel++)
2612 {
2613 bfd_vma symval;
2614 struct elf_link_hash_entry *h = NULL;
2615
2616 /* We only process two relocs. */
2617 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2618 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2619 continue;
2620
2621 /* We process relocs in a distinctly different way when this is a
2622 relocatable link (for one, we don't look at symbols), so we avoid
2623 mixing its code with that for the "normal" relaxation. */
2624 if (link_info->relocatable)
2625 {
2626 /* The only transformation in a relocatable link is to generate
2627 a full stub at the location of the stub calculated for the
2628 input section, if the relocated stub location, the end of the
2629 output section plus earlier stubs, cannot be reached. Thus
2630 relocatable linking can only lead to worse code, but it still
2631 works. */
2632 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2633 {
2634 /* If we can reach the end of the output-section and beyond
2635 any current stubs, then we don't need a stub for this
2636 reloc. The relaxed order of output stub allocation may
2637 not exactly match the straightforward order, so we always
2638 assume presence of output stubs, which will allow
2639 relaxation only on relocations indifferent to the
2640 presence of output stub allocations for other relocations
2641 and thus the order of output stub allocation. */
2642 if (bfd_check_overflow (complain_overflow_signed,
2643 19,
2644 0,
2645 bfd_arch_bits_per_address (abfd),
2646 /* Output-stub location. */
2647 sec->output_section->rawsize
2648 + (mmix_elf_section_data (sec
2649 ->output_section)
2650 ->pjs.stubs_size_sum)
2651 /* Location of this PUSHJ reloc. */
2652 - (sec->output_offset + irel->r_offset)
2653 /* Don't count *this* stub twice. */
2654 - (mmix_elf_section_data (sec)
2655 ->pjs.stub_size[pjsno]
2656 + MAX_PUSHJ_STUB_SIZE))
2657 == bfd_reloc_ok)
2658 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2659
2660 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2661 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2662
2663 pjsno++;
2664 }
2665
2666 continue;
2667 }
2668
2669 /* Get the value of the symbol referred to by the reloc. */
2670 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2671 {
2672 /* A local symbol. */
2673 Elf_Internal_Sym *isym;
2674 asection *sym_sec;
2675
2676 /* Read this BFD's local symbols if we haven't already. */
2677 if (isymbuf == NULL)
2678 {
2679 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2680 if (isymbuf == NULL)
2681 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2682 symtab_hdr->sh_info, 0,
2683 NULL, NULL, NULL);
2684 if (isymbuf == 0)
2685 goto error_return;
2686 }
2687
2688 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2689 if (isym->st_shndx == SHN_UNDEF)
2690 sym_sec = bfd_und_section_ptr;
2691 else if (isym->st_shndx == SHN_ABS)
2692 sym_sec = bfd_abs_section_ptr;
2693 else if (isym->st_shndx == SHN_COMMON)
2694 sym_sec = bfd_com_section_ptr;
2695 else
2696 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2697 symval = (isym->st_value
2698 + sym_sec->output_section->vma
2699 + sym_sec->output_offset);
2700 }
2701 else
2702 {
2703 unsigned long indx;
2704
2705 /* An external symbol. */
2706 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2707 h = elf_sym_hashes (abfd)[indx];
2708 BFD_ASSERT (h != NULL);
2709 if (h->root.type != bfd_link_hash_defined
2710 && h->root.type != bfd_link_hash_defweak)
2711 {
2712 /* This appears to be a reference to an undefined symbol. Just
2713 ignore it--it will be caught by the regular reloc processing.
2714 We need to keep BPO reloc accounting consistent, though
2715 else we'll abort instead of emitting an error message. */
2716 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2717 && gregdata != NULL)
2718 {
2719 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2720 bpono++;
2721 }
2722 continue;
2723 }
2724
2725 symval = (h->root.u.def.value
2726 + h->root.u.def.section->output_section->vma
2727 + h->root.u.def.section->output_offset);
2728 }
2729
2730 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2731 {
2732 bfd_vma value = symval + irel->r_addend;
2733 bfd_vma dot
2734 = (sec->output_section->vma
2735 + sec->output_offset
2736 + irel->r_offset);
2737 bfd_vma stubaddr
2738 = (sec->output_section->vma
2739 + sec->output_offset
2740 + size
2741 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2742
2743 if ((value & 3) == 0
2744 && bfd_check_overflow (complain_overflow_signed,
2745 19,
2746 0,
2747 bfd_arch_bits_per_address (abfd),
2748 value - dot
2749 - (value > dot
2750 ? mmix_elf_section_data (sec)
2751 ->pjs.stub_size[pjsno]
2752 : 0))
2753 == bfd_reloc_ok)
2754 /* If the reloc fits, no stub is needed. */
2755 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2756 else
2757 /* Maybe we can get away with just a JMP insn? */
2758 if ((value & 3) == 0
2759 && bfd_check_overflow (complain_overflow_signed,
2760 27,
2761 0,
2762 bfd_arch_bits_per_address (abfd),
2763 value - stubaddr
2764 - (value > dot
2765 ? mmix_elf_section_data (sec)
2766 ->pjs.stub_size[pjsno] - 4
2767 : 0))
2768 == bfd_reloc_ok)
2769 /* Yep, account for a stub consisting of a single JMP insn. */
2770 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2771 else
2772 /* Nope, go for the full insn stub. It doesn't seem useful to
2773 emit the intermediate sizes; those will only be useful for
2774 a >64M program assuming contiguous code. */
2775 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2776 = MAX_PUSHJ_STUB_SIZE;
2777
2778 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2779 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2780 pjsno++;
2781 continue;
2782 }
2783
2784 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2785
2786 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2787 = symval + irel->r_addend;
2788 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2789 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2790 }
2791
2792 /* Check if that was the last BPO-reloc. If so, sort the values and
2793 calculate how many registers we need to cover them. Set the size of
2794 the linker gregs, and if the number of registers changed, indicate
2795 that we need to relax some more because we have more work to do. */
2796 if (gregdata != NULL
2797 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2798 {
2799 size_t i;
2800 bfd_vma prev_base;
2801 size_t regindex;
2802
2803 /* First, reset the remaining relocs for the next round. */
2804 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2805 = gregdata->n_bpo_relocs;
2806
2807 qsort (gregdata->reloc_request,
2808 gregdata->n_max_bpo_relocs,
2809 sizeof (struct bpo_reloc_request),
2810 bpo_reloc_request_sort_fn);
2811
2812 /* Recalculate indexes. When we find a change (however unlikely
2813 after the initial iteration), we know we need to relax again,
2814 since items in the GREG-array are sorted by increasing value and
2815 stored in the relaxation phase. */
2816 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2817 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2818 != i)
2819 {
2820 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2821 = i;
2822 *again = TRUE;
2823 }
2824
2825 /* Allocate register numbers (indexing from 0). Stop at the first
2826 non-valid reloc. */
2827 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2828 i < gregdata->n_bpo_relocs;
2829 i++)
2830 {
2831 if (gregdata->reloc_request[i].value > prev_base + 255)
2832 {
2833 regindex++;
2834 prev_base = gregdata->reloc_request[i].value;
2835 }
2836 gregdata->reloc_request[i].regindex = regindex;
2837 gregdata->reloc_request[i].offset
2838 = gregdata->reloc_request[i].value - prev_base;
2839 }
2840
2841 /* If it's not the same as the last time, we need to relax again,
2842 because the size of the section has changed. I'm not sure we
2843 actually need to do any adjustments since the shrinking happens
2844 at the start of this section, but better safe than sorry. */
2845 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2846 {
2847 gregdata->n_allocated_bpo_gregs = regindex + 1;
2848 *again = TRUE;
2849 }
2850
2851 bpo_gregs_section->size = (regindex + 1) * 8;
2852 }
2853
2854 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2855 {
2856 if (! link_info->keep_memory)
2857 free (isymbuf);
2858 else
2859 {
2860 /* Cache the symbols for elf_link_input_bfd. */
2861 symtab_hdr->contents = (unsigned char *) isymbuf;
2862 }
2863 }
2864
2865 if (internal_relocs != NULL
2866 && elf_section_data (sec)->relocs != internal_relocs)
2867 free (internal_relocs);
2868
2869 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2870 abort ();
2871
2872 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2873 {
2874 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2875 *again = TRUE;
2876 }
2877
2878 return TRUE;
2879
2880 error_return:
2881 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2882 free (isymbuf);
2883 if (internal_relocs != NULL
2884 && elf_section_data (sec)->relocs != internal_relocs)
2885 free (internal_relocs);
2886 return FALSE;
2887 }
2888 \f
2889 #define ELF_ARCH bfd_arch_mmix
2890 #define ELF_MACHINE_CODE EM_MMIX
2891
2892 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2893 However, that's too much for something somewhere in the linker part of
2894 BFD; perhaps the start-address has to be a non-zero multiple of this
2895 number, or larger than this number. The symptom is that the linker
2896 complains: "warning: allocated section `.text' not in segment". We
2897 settle for 64k; the page-size used in examples is 8k.
2898 #define ELF_MAXPAGESIZE 0x10000
2899
2900 Unfortunately, this causes excessive padding in the supposedly small
2901 for-education programs that are the expected usage (where people would
2902 inspect output). We stick to 256 bytes just to have *some* default
2903 alignment. */
2904 #define ELF_MAXPAGESIZE 0x100
2905
2906 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2907 #define TARGET_BIG_NAME "elf64-mmix"
2908
2909 #define elf_info_to_howto_rel NULL
2910 #define elf_info_to_howto mmix_info_to_howto_rela
2911 #define elf_backend_relocate_section mmix_elf_relocate_section
2912 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2913 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2914
2915 #define elf_backend_link_output_symbol_hook \
2916 mmix_elf_link_output_symbol_hook
2917 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2918
2919 #define elf_backend_check_relocs mmix_elf_check_relocs
2920 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2921 #define elf_backend_omit_section_dynsym \
2922 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2923
2924 #define bfd_elf64_bfd_is_local_label_name \
2925 mmix_elf_is_local_label_name
2926
2927 #define elf_backend_may_use_rel_p 0
2928 #define elf_backend_may_use_rela_p 1
2929 #define elf_backend_default_use_rela_p 1
2930
2931 #define elf_backend_can_gc_sections 1
2932 #define elf_backend_section_from_bfd_section \
2933 mmix_elf_section_from_bfd_section
2934
2935 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2936 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2937 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2938
2939 #include "elf64-target.h"