]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-mmix.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /* No specific ABI or "processor-specific supplement" defined. */
25
26 /* TODO:
27 - "Traditional" linker relaxation (shrinking whole sections).
28 - Merge reloc stubs jumping to same location.
29 - GETA stub relaxation (call a stub for out of range new
30 R_MMIX_GETA_STUBBABLE). */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "elf-bfd.h"
36 #include "elf/mmix.h"
37 #include "opcode/mmix.h"
38
39 #define MINUS_ONE (((bfd_vma) 0) - 1)
40
41 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
42
43 /* Put these everywhere in new code. */
44 #define FATAL_DEBUG \
45 _bfd_abort (__FILE__, __LINE__, \
46 "Internal: Non-debugged code (test-case missing)")
47
48 #define BAD_CASE(x) \
49 _bfd_abort (__FILE__, __LINE__, \
50 "bad case for " #x)
51
52 struct _mmix_elf_section_data
53 {
54 struct bfd_elf_section_data elf;
55 union
56 {
57 struct bpo_reloc_section_info *reloc;
58 struct bpo_greg_section_info *greg;
59 } bpo;
60
61 struct pushj_stub_info
62 {
63 /* Maximum number of stubs needed for this section. */
64 bfd_size_type n_pushj_relocs;
65
66 /* Size of stubs after a mmix_elf_relax_section round. */
67 bfd_size_type stubs_size_sum;
68
69 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
70 of these. Allocated in mmix_elf_check_common_relocs. */
71 bfd_size_type *stub_size;
72
73 /* Offset of next stub during relocation. Somewhat redundant with the
74 above: error coverage is easier and we don't have to reset the
75 stubs_size_sum for relocation. */
76 bfd_size_type stub_offset;
77 } pjs;
78 };
79
80 #define mmix_elf_section_data(sec) \
81 ((struct _mmix_elf_section_data *) elf_section_data (sec))
82
83 /* For each section containing a base-plus-offset (BPO) reloc, we attach
84 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
85 NULL. */
86 struct bpo_reloc_section_info
87 {
88 /* The base is 1; this is the first number in this section. */
89 size_t first_base_plus_offset_reloc;
90
91 /* Number of BPO-relocs in this section. */
92 size_t n_bpo_relocs_this_section;
93
94 /* Running index, used at relocation time. */
95 size_t bpo_index;
96
97 /* We don't have access to the bfd_link_info struct in
98 mmix_final_link_relocate. What we really want to get at is the
99 global single struct greg_relocation, so we stash it here. */
100 asection *bpo_greg_section;
101 };
102
103 /* Helper struct (in global context) for the one below.
104 There's one of these created for every BPO reloc. */
105 struct bpo_reloc_request
106 {
107 bfd_vma value;
108
109 /* Valid after relaxation. The base is 0; the first register number
110 must be added. The offset is in range 0..255. */
111 size_t regindex;
112 size_t offset;
113
114 /* The order number for this BPO reloc, corresponding to the order in
115 which BPO relocs were found. Used to create an index after reloc
116 requests are sorted. */
117 size_t bpo_reloc_no;
118
119 /* Set when the value is computed. Better than coding "guard values"
120 into the other members. Is FALSE only for BPO relocs in a GC:ed
121 section. */
122 bfd_boolean valid;
123 };
124
125 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
126 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
127 which is linked into the register contents section
128 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
129 linker; using the same hook as for usual with BPO relocs does not
130 collide. */
131 struct bpo_greg_section_info
132 {
133 /* After GC, this reflects the number of remaining, non-excluded
134 BPO-relocs. */
135 size_t n_bpo_relocs;
136
137 /* This is the number of allocated bpo_reloc_requests; the size of
138 sorted_indexes. Valid after the check.*relocs functions are called
139 for all incoming sections. It includes the number of BPO relocs in
140 sections that were GC:ed. */
141 size_t n_max_bpo_relocs;
142
143 /* A counter used to find out when to fold the BPO gregs, since we
144 don't have a single "after-relaxation" hook. */
145 size_t n_remaining_bpo_relocs_this_relaxation_round;
146
147 /* The number of linker-allocated GREGs resulting from BPO relocs.
148 This is an approximation after _bfd_mmix_before_linker_allocation
149 and supposedly accurate after mmix_elf_relax_section is called for
150 all incoming non-collected sections. */
151 size_t n_allocated_bpo_gregs;
152
153 /* Index into reloc_request[], sorted on increasing "value", secondary
154 by increasing index for strict sorting order. */
155 size_t *bpo_reloc_indexes;
156
157 /* An array of all relocations, with the "value" member filled in by
158 the relaxation function. */
159 struct bpo_reloc_request *reloc_request;
160 };
161
162 static int mmix_elf_link_output_symbol_hook
163 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
164 asection *, struct elf_link_hash_entry *));
165
166 static bfd_reloc_status_type mmix_elf_reloc
167 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
168
169 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
170 PARAMS ((bfd *, bfd_reloc_code_real_type));
171
172 static void mmix_info_to_howto_rela
173 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
174
175 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
176
177 static bfd_boolean mmix_elf_new_section_hook
178 PARAMS ((bfd *, asection *));
179
180 static bfd_boolean mmix_elf_check_relocs
181 PARAMS ((bfd *, struct bfd_link_info *, asection *,
182 const Elf_Internal_Rela *));
183
184 static bfd_boolean mmix_elf_check_common_relocs
185 PARAMS ((bfd *, struct bfd_link_info *, asection *,
186 const Elf_Internal_Rela *));
187
188 static bfd_boolean mmix_elf_relocate_section
189 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
190 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
191
192 static bfd_reloc_status_type mmix_final_link_relocate
193 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
194 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
195
196 static bfd_reloc_status_type mmix_elf_perform_relocation
197 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
198
199 static bfd_boolean mmix_elf_section_from_bfd_section
200 PARAMS ((bfd *, asection *, int *));
201
202 static bfd_boolean mmix_elf_add_symbol_hook
203 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
204 const char **, flagword *, asection **, bfd_vma *));
205
206 static bfd_boolean mmix_elf_is_local_label_name
207 PARAMS ((bfd *, const char *));
208
209 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
210
211 static bfd_boolean mmix_elf_relax_section
212 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
213 bfd_boolean *again));
214
215 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
216
217 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
218
219 /* Only intended to be called from a debugger. */
220 extern void mmix_dump_bpo_gregs
221 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
222
223 static void
224 mmix_set_relaxable_size
225 PARAMS ((bfd *, asection *, void *));
226
227
228 /* Watch out: this currently needs to have elements with the same index as
229 their R_MMIX_ number. */
230 static reloc_howto_type elf_mmix_howto_table[] =
231 {
232 /* This reloc does nothing. */
233 HOWTO (R_MMIX_NONE, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_MMIX_NONE", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An 8 bit absolute relocation. */
248 HOWTO (R_MMIX_8, /* type */
249 0, /* rightshift */
250 0, /* size (0 = byte, 1 = short, 2 = long) */
251 8, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_bitfield, /* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_MMIX_8", /* name */
257 FALSE, /* partial_inplace */
258 0, /* src_mask */
259 0xff, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 /* An 16 bit absolute relocation. */
263 HOWTO (R_MMIX_16, /* type */
264 0, /* rightshift */
265 1, /* size (0 = byte, 1 = short, 2 = long) */
266 16, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_bitfield, /* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_MMIX_16", /* name */
272 FALSE, /* partial_inplace */
273 0, /* src_mask */
274 0xffff, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 /* An 24 bit absolute relocation. */
278 HOWTO (R_MMIX_24, /* type */
279 0, /* rightshift */
280 2, /* size (0 = byte, 1 = short, 2 = long) */
281 24, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_bitfield, /* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_MMIX_24", /* name */
287 FALSE, /* partial_inplace */
288 ~0xffffff, /* src_mask */
289 0xffffff, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* A 32 bit absolute relocation. */
293 HOWTO (R_MMIX_32, /* type */
294 0, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 32, /* bitsize */
297 FALSE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_bitfield, /* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_MMIX_32", /* name */
302 FALSE, /* partial_inplace */
303 0, /* src_mask */
304 0xffffffff, /* dst_mask */
305 FALSE), /* pcrel_offset */
306
307 /* 64 bit relocation. */
308 HOWTO (R_MMIX_64, /* type */
309 0, /* rightshift */
310 4, /* size (0 = byte, 1 = short, 2 = long) */
311 64, /* bitsize */
312 FALSE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_bitfield, /* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_MMIX_64", /* name */
317 FALSE, /* partial_inplace */
318 0, /* src_mask */
319 MINUS_ONE, /* dst_mask */
320 FALSE), /* pcrel_offset */
321
322 /* An 8 bit PC-relative relocation. */
323 HOWTO (R_MMIX_PC_8, /* type */
324 0, /* rightshift */
325 0, /* size (0 = byte, 1 = short, 2 = long) */
326 8, /* bitsize */
327 TRUE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield, /* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_MMIX_PC_8", /* name */
332 FALSE, /* partial_inplace */
333 0, /* src_mask */
334 0xff, /* dst_mask */
335 TRUE), /* pcrel_offset */
336
337 /* An 16 bit PC-relative relocation. */
338 HOWTO (R_MMIX_PC_16, /* type */
339 0, /* rightshift */
340 1, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 TRUE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_MMIX_PC_16", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0xffff, /* dst_mask */
350 TRUE), /* pcrel_offset */
351
352 /* An 24 bit PC-relative relocation. */
353 HOWTO (R_MMIX_PC_24, /* type */
354 0, /* rightshift */
355 2, /* size (0 = byte, 1 = short, 2 = long) */
356 24, /* bitsize */
357 TRUE, /* pc_relative */
358 0, /* bitpos */
359 complain_overflow_bitfield, /* complain_on_overflow */
360 bfd_elf_generic_reloc, /* special_function */
361 "R_MMIX_PC_24", /* name */
362 FALSE, /* partial_inplace */
363 ~0xffffff, /* src_mask */
364 0xffffff, /* dst_mask */
365 TRUE), /* pcrel_offset */
366
367 /* A 32 bit absolute PC-relative relocation. */
368 HOWTO (R_MMIX_PC_32, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 TRUE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield, /* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_MMIX_PC_32", /* name */
377 FALSE, /* partial_inplace */
378 0, /* src_mask */
379 0xffffffff, /* dst_mask */
380 TRUE), /* pcrel_offset */
381
382 /* 64 bit PC-relative relocation. */
383 HOWTO (R_MMIX_PC_64, /* type */
384 0, /* rightshift */
385 4, /* size (0 = byte, 1 = short, 2 = long) */
386 64, /* bitsize */
387 TRUE, /* pc_relative */
388 0, /* bitpos */
389 complain_overflow_bitfield, /* complain_on_overflow */
390 bfd_elf_generic_reloc, /* special_function */
391 "R_MMIX_PC_64", /* name */
392 FALSE, /* partial_inplace */
393 0, /* src_mask */
394 MINUS_ONE, /* dst_mask */
395 TRUE), /* pcrel_offset */
396
397 /* GNU extension to record C++ vtable hierarchy. */
398 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
399 0, /* rightshift */
400 0, /* size (0 = byte, 1 = short, 2 = long) */
401 0, /* bitsize */
402 FALSE, /* pc_relative */
403 0, /* bitpos */
404 complain_overflow_dont, /* complain_on_overflow */
405 NULL, /* special_function */
406 "R_MMIX_GNU_VTINHERIT", /* name */
407 FALSE, /* partial_inplace */
408 0, /* src_mask */
409 0, /* dst_mask */
410 TRUE), /* pcrel_offset */
411
412 /* GNU extension to record C++ vtable member usage. */
413 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
414 0, /* rightshift */
415 0, /* size (0 = byte, 1 = short, 2 = long) */
416 0, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_dont, /* complain_on_overflow */
420 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
421 "R_MMIX_GNU_VTENTRY", /* name */
422 FALSE, /* partial_inplace */
423 0, /* src_mask */
424 0, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 /* The GETA relocation is supposed to get any address that could
428 possibly be reached by the GETA instruction. It can silently expand
429 to get a 64-bit operand, but will complain if any of the two least
430 significant bits are set. The howto members reflect a simple GETA. */
431 HOWTO (R_MMIX_GETA, /* type */
432 2, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 19, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 mmix_elf_reloc, /* special_function */
439 "R_MMIX_GETA", /* name */
440 FALSE, /* partial_inplace */
441 ~0x0100ffff, /* src_mask */
442 0x0100ffff, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 HOWTO (R_MMIX_GETA_1, /* type */
446 2, /* rightshift */
447 2, /* size (0 = byte, 1 = short, 2 = long) */
448 19, /* bitsize */
449 TRUE, /* pc_relative */
450 0, /* bitpos */
451 complain_overflow_signed, /* complain_on_overflow */
452 mmix_elf_reloc, /* special_function */
453 "R_MMIX_GETA_1", /* name */
454 FALSE, /* partial_inplace */
455 ~0x0100ffff, /* src_mask */
456 0x0100ffff, /* dst_mask */
457 TRUE), /* pcrel_offset */
458
459 HOWTO (R_MMIX_GETA_2, /* type */
460 2, /* rightshift */
461 2, /* size (0 = byte, 1 = short, 2 = long) */
462 19, /* bitsize */
463 TRUE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_signed, /* complain_on_overflow */
466 mmix_elf_reloc, /* special_function */
467 "R_MMIX_GETA_2", /* name */
468 FALSE, /* partial_inplace */
469 ~0x0100ffff, /* src_mask */
470 0x0100ffff, /* dst_mask */
471 TRUE), /* pcrel_offset */
472
473 HOWTO (R_MMIX_GETA_3, /* type */
474 2, /* rightshift */
475 2, /* size (0 = byte, 1 = short, 2 = long) */
476 19, /* bitsize */
477 TRUE, /* pc_relative */
478 0, /* bitpos */
479 complain_overflow_signed, /* complain_on_overflow */
480 mmix_elf_reloc, /* special_function */
481 "R_MMIX_GETA_3", /* name */
482 FALSE, /* partial_inplace */
483 ~0x0100ffff, /* src_mask */
484 0x0100ffff, /* dst_mask */
485 TRUE), /* pcrel_offset */
486
487 /* The conditional branches are supposed to reach any (code) address.
488 It can silently expand to a 64-bit operand, but will emit an error if
489 any of the two least significant bits are set. The howto members
490 reflect a simple branch. */
491 HOWTO (R_MMIX_CBRANCH, /* type */
492 2, /* rightshift */
493 2, /* size (0 = byte, 1 = short, 2 = long) */
494 19, /* bitsize */
495 TRUE, /* pc_relative */
496 0, /* bitpos */
497 complain_overflow_signed, /* complain_on_overflow */
498 mmix_elf_reloc, /* special_function */
499 "R_MMIX_CBRANCH", /* name */
500 FALSE, /* partial_inplace */
501 ~0x0100ffff, /* src_mask */
502 0x0100ffff, /* dst_mask */
503 TRUE), /* pcrel_offset */
504
505 HOWTO (R_MMIX_CBRANCH_J, /* type */
506 2, /* rightshift */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
508 19, /* bitsize */
509 TRUE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_signed, /* complain_on_overflow */
512 mmix_elf_reloc, /* special_function */
513 "R_MMIX_CBRANCH_J", /* name */
514 FALSE, /* partial_inplace */
515 ~0x0100ffff, /* src_mask */
516 0x0100ffff, /* dst_mask */
517 TRUE), /* pcrel_offset */
518
519 HOWTO (R_MMIX_CBRANCH_1, /* type */
520 2, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 19, /* bitsize */
523 TRUE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 mmix_elf_reloc, /* special_function */
527 "R_MMIX_CBRANCH_1", /* name */
528 FALSE, /* partial_inplace */
529 ~0x0100ffff, /* src_mask */
530 0x0100ffff, /* dst_mask */
531 TRUE), /* pcrel_offset */
532
533 HOWTO (R_MMIX_CBRANCH_2, /* type */
534 2, /* rightshift */
535 2, /* size (0 = byte, 1 = short, 2 = long) */
536 19, /* bitsize */
537 TRUE, /* pc_relative */
538 0, /* bitpos */
539 complain_overflow_signed, /* complain_on_overflow */
540 mmix_elf_reloc, /* special_function */
541 "R_MMIX_CBRANCH_2", /* name */
542 FALSE, /* partial_inplace */
543 ~0x0100ffff, /* src_mask */
544 0x0100ffff, /* dst_mask */
545 TRUE), /* pcrel_offset */
546
547 HOWTO (R_MMIX_CBRANCH_3, /* type */
548 2, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 19, /* bitsize */
551 TRUE, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_signed, /* complain_on_overflow */
554 mmix_elf_reloc, /* special_function */
555 "R_MMIX_CBRANCH_3", /* name */
556 FALSE, /* partial_inplace */
557 ~0x0100ffff, /* src_mask */
558 0x0100ffff, /* dst_mask */
559 TRUE), /* pcrel_offset */
560
561 /* The PUSHJ instruction can reach any (code) address, as long as it's
562 the beginning of a function (no usable restriction). It can silently
563 expand to a 64-bit operand, but will emit an error if any of the two
564 least significant bits are set. It can also expand into a call to a
565 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
566 PUSHJ. */
567 HOWTO (R_MMIX_PUSHJ, /* type */
568 2, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 19, /* bitsize */
571 TRUE, /* pc_relative */
572 0, /* bitpos */
573 complain_overflow_signed, /* complain_on_overflow */
574 mmix_elf_reloc, /* special_function */
575 "R_MMIX_PUSHJ", /* name */
576 FALSE, /* partial_inplace */
577 ~0x0100ffff, /* src_mask */
578 0x0100ffff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_MMIX_PUSHJ_1, /* type */
582 2, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 19, /* bitsize */
585 TRUE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 mmix_elf_reloc, /* special_function */
589 "R_MMIX_PUSHJ_1", /* name */
590 FALSE, /* partial_inplace */
591 ~0x0100ffff, /* src_mask */
592 0x0100ffff, /* dst_mask */
593 TRUE), /* pcrel_offset */
594
595 HOWTO (R_MMIX_PUSHJ_2, /* type */
596 2, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 19, /* bitsize */
599 TRUE, /* pc_relative */
600 0, /* bitpos */
601 complain_overflow_signed, /* complain_on_overflow */
602 mmix_elf_reloc, /* special_function */
603 "R_MMIX_PUSHJ_2", /* name */
604 FALSE, /* partial_inplace */
605 ~0x0100ffff, /* src_mask */
606 0x0100ffff, /* dst_mask */
607 TRUE), /* pcrel_offset */
608
609 HOWTO (R_MMIX_PUSHJ_3, /* type */
610 2, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 19, /* bitsize */
613 TRUE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_signed, /* complain_on_overflow */
616 mmix_elf_reloc, /* special_function */
617 "R_MMIX_PUSHJ_3", /* name */
618 FALSE, /* partial_inplace */
619 ~0x0100ffff, /* src_mask */
620 0x0100ffff, /* dst_mask */
621 TRUE), /* pcrel_offset */
622
623 /* A JMP is supposed to reach any (code) address. By itself, it can
624 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
625 limit is soon reached if you link the program in wildly different
626 memory segments. The howto members reflect a trivial JMP. */
627 HOWTO (R_MMIX_JMP, /* type */
628 2, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 27, /* bitsize */
631 TRUE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 mmix_elf_reloc, /* special_function */
635 "R_MMIX_JMP", /* name */
636 FALSE, /* partial_inplace */
637 ~0x1ffffff, /* src_mask */
638 0x1ffffff, /* dst_mask */
639 TRUE), /* pcrel_offset */
640
641 HOWTO (R_MMIX_JMP_1, /* type */
642 2, /* rightshift */
643 2, /* size (0 = byte, 1 = short, 2 = long) */
644 27, /* bitsize */
645 TRUE, /* pc_relative */
646 0, /* bitpos */
647 complain_overflow_signed, /* complain_on_overflow */
648 mmix_elf_reloc, /* special_function */
649 "R_MMIX_JMP_1", /* name */
650 FALSE, /* partial_inplace */
651 ~0x1ffffff, /* src_mask */
652 0x1ffffff, /* dst_mask */
653 TRUE), /* pcrel_offset */
654
655 HOWTO (R_MMIX_JMP_2, /* type */
656 2, /* rightshift */
657 2, /* size (0 = byte, 1 = short, 2 = long) */
658 27, /* bitsize */
659 TRUE, /* pc_relative */
660 0, /* bitpos */
661 complain_overflow_signed, /* complain_on_overflow */
662 mmix_elf_reloc, /* special_function */
663 "R_MMIX_JMP_2", /* name */
664 FALSE, /* partial_inplace */
665 ~0x1ffffff, /* src_mask */
666 0x1ffffff, /* dst_mask */
667 TRUE), /* pcrel_offset */
668
669 HOWTO (R_MMIX_JMP_3, /* type */
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 27, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 mmix_elf_reloc, /* special_function */
677 "R_MMIX_JMP_3", /* name */
678 FALSE, /* partial_inplace */
679 ~0x1ffffff, /* src_mask */
680 0x1ffffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* When we don't emit link-time-relaxable code from the assembler, or
684 when relaxation has done all it can do, these relocs are used. For
685 GETA/PUSHJ/branches. */
686 HOWTO (R_MMIX_ADDR19, /* type */
687 2, /* rightshift */
688 2, /* size (0 = byte, 1 = short, 2 = long) */
689 19, /* bitsize */
690 TRUE, /* pc_relative */
691 0, /* bitpos */
692 complain_overflow_signed, /* complain_on_overflow */
693 mmix_elf_reloc, /* special_function */
694 "R_MMIX_ADDR19", /* name */
695 FALSE, /* partial_inplace */
696 ~0x0100ffff, /* src_mask */
697 0x0100ffff, /* dst_mask */
698 TRUE), /* pcrel_offset */
699
700 /* For JMP. */
701 HOWTO (R_MMIX_ADDR27, /* type */
702 2, /* rightshift */
703 2, /* size (0 = byte, 1 = short, 2 = long) */
704 27, /* bitsize */
705 TRUE, /* pc_relative */
706 0, /* bitpos */
707 complain_overflow_signed, /* complain_on_overflow */
708 mmix_elf_reloc, /* special_function */
709 "R_MMIX_ADDR27", /* name */
710 FALSE, /* partial_inplace */
711 ~0x1ffffff, /* src_mask */
712 0x1ffffff, /* dst_mask */
713 TRUE), /* pcrel_offset */
714
715 /* A general register or the value 0..255. If a value, then the
716 instruction (offset -3) needs adjusting. */
717 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
718 0, /* rightshift */
719 1, /* size (0 = byte, 1 = short, 2 = long) */
720 8, /* bitsize */
721 FALSE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_bitfield, /* complain_on_overflow */
724 mmix_elf_reloc, /* special_function */
725 "R_MMIX_REG_OR_BYTE", /* name */
726 FALSE, /* partial_inplace */
727 0, /* src_mask */
728 0xff, /* dst_mask */
729 FALSE), /* pcrel_offset */
730
731 /* A general register. */
732 HOWTO (R_MMIX_REG, /* type */
733 0, /* rightshift */
734 1, /* size (0 = byte, 1 = short, 2 = long) */
735 8, /* bitsize */
736 FALSE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield, /* complain_on_overflow */
739 mmix_elf_reloc, /* special_function */
740 "R_MMIX_REG", /* name */
741 FALSE, /* partial_inplace */
742 0, /* src_mask */
743 0xff, /* dst_mask */
744 FALSE), /* pcrel_offset */
745
746 /* A register plus an index, corresponding to the relocation expression.
747 The sizes must correspond to the valid range of the expression, while
748 the bitmasks correspond to what we store in the image. */
749 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
750 0, /* rightshift */
751 4, /* size (0 = byte, 1 = short, 2 = long) */
752 64, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_bitfield, /* complain_on_overflow */
756 mmix_elf_reloc, /* special_function */
757 "R_MMIX_BASE_PLUS_OFFSET", /* name */
758 FALSE, /* partial_inplace */
759 0, /* src_mask */
760 0xffff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 /* A "magic" relocation for a LOCAL expression, asserting that the
764 expression is less than the number of global registers. No actual
765 modification of the contents is done. Implementing this as a
766 relocation was less intrusive than e.g. putting such expressions in a
767 section to discard *after* relocation. */
768 HOWTO (R_MMIX_LOCAL, /* type */
769 0, /* rightshift */
770 0, /* size (0 = byte, 1 = short, 2 = long) */
771 0, /* bitsize */
772 FALSE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 mmix_elf_reloc, /* special_function */
776 "R_MMIX_LOCAL", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0, /* dst_mask */
780 FALSE), /* pcrel_offset */
781
782 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
783 2, /* rightshift */
784 2, /* size (0 = byte, 1 = short, 2 = long) */
785 19, /* bitsize */
786 TRUE, /* pc_relative */
787 0, /* bitpos */
788 complain_overflow_signed, /* complain_on_overflow */
789 mmix_elf_reloc, /* special_function */
790 "R_MMIX_PUSHJ_STUBBABLE", /* name */
791 FALSE, /* partial_inplace */
792 ~0x0100ffff, /* src_mask */
793 0x0100ffff, /* dst_mask */
794 TRUE) /* pcrel_offset */
795 };
796
797
798 /* Map BFD reloc types to MMIX ELF reloc types. */
799
800 struct mmix_reloc_map
801 {
802 bfd_reloc_code_real_type bfd_reloc_val;
803 enum elf_mmix_reloc_type elf_reloc_val;
804 };
805
806
807 static const struct mmix_reloc_map mmix_reloc_map[] =
808 {
809 {BFD_RELOC_NONE, R_MMIX_NONE},
810 {BFD_RELOC_8, R_MMIX_8},
811 {BFD_RELOC_16, R_MMIX_16},
812 {BFD_RELOC_24, R_MMIX_24},
813 {BFD_RELOC_32, R_MMIX_32},
814 {BFD_RELOC_64, R_MMIX_64},
815 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
816 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
817 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
818 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
819 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
820 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
821 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
822 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
823 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
824 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
825 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
826 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
827 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
828 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
829 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
830 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
831 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
832 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
833 };
834
835 static reloc_howto_type *
836 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
837 bfd *abfd ATTRIBUTE_UNUSED;
838 bfd_reloc_code_real_type code;
839 {
840 unsigned int i;
841
842 for (i = 0;
843 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
844 i++)
845 {
846 if (mmix_reloc_map[i].bfd_reloc_val == code)
847 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
848 }
849
850 return NULL;
851 }
852
853 static reloc_howto_type *
854 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
855 const char *r_name)
856 {
857 unsigned int i;
858
859 for (i = 0;
860 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
861 i++)
862 if (elf_mmix_howto_table[i].name != NULL
863 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
864 return &elf_mmix_howto_table[i];
865
866 return NULL;
867 }
868
869 static bfd_boolean
870 mmix_elf_new_section_hook (abfd, sec)
871 bfd *abfd;
872 asection *sec;
873 {
874 if (!sec->used_by_bfd)
875 {
876 struct _mmix_elf_section_data *sdata;
877 bfd_size_type amt = sizeof (*sdata);
878
879 sdata = bfd_zalloc (abfd, amt);
880 if (sdata == NULL)
881 return FALSE;
882 sec->used_by_bfd = sdata;
883 }
884
885 return _bfd_elf_new_section_hook (abfd, sec);
886 }
887
888
889 /* This function performs the actual bitfiddling and sanity check for a
890 final relocation. Each relocation gets its *worst*-case expansion
891 in size when it arrives here; any reduction in size should have been
892 caught in linker relaxation earlier. When we get here, the relocation
893 looks like the smallest instruction with SWYM:s (nop:s) appended to the
894 max size. We fill in those nop:s.
895
896 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
897 GETA $N,foo
898 ->
899 SETL $N,foo & 0xffff
900 INCML $N,(foo >> 16) & 0xffff
901 INCMH $N,(foo >> 32) & 0xffff
902 INCH $N,(foo >> 48) & 0xffff
903
904 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
905 condbranches needing relaxation might be rare enough to not be
906 worthwhile.)
907 [P]Bcc $N,foo
908 ->
909 [~P]B~cc $N,.+20
910 SETL $255,foo & ...
911 INCML ...
912 INCMH ...
913 INCH ...
914 GO $255,$255,0
915
916 R_MMIX_PUSHJ: (FIXME: Relaxation...)
917 PUSHJ $N,foo
918 ->
919 SETL $255,foo & ...
920 INCML ...
921 INCMH ...
922 INCH ...
923 PUSHGO $N,$255,0
924
925 R_MMIX_JMP: (FIXME: Relaxation...)
926 JMP foo
927 ->
928 SETL $255,foo & ...
929 INCML ...
930 INCMH ...
931 INCH ...
932 GO $255,$255,0
933
934 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
935
936 static bfd_reloc_status_type
937 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
938 asection *isec;
939 reloc_howto_type *howto;
940 PTR datap;
941 bfd_vma addr;
942 bfd_vma value;
943 {
944 bfd *abfd = isec->owner;
945 bfd_reloc_status_type flag = bfd_reloc_ok;
946 bfd_reloc_status_type r;
947 int offs = 0;
948 int reg = 255;
949
950 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
951 We handle the differences here and the common sequence later. */
952 switch (howto->type)
953 {
954 case R_MMIX_GETA:
955 offs = 0;
956 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
957
958 /* We change to an absolute value. */
959 value += addr;
960 break;
961
962 case R_MMIX_CBRANCH:
963 {
964 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
965
966 /* Invert the condition and prediction bit, and set the offset
967 to five instructions ahead.
968
969 We *can* do better if we want to. If the branch is found to be
970 within limits, we could leave the branch as is; there'll just
971 be a bunch of NOP:s after it. But we shouldn't see this
972 sequence often enough that it's worth doing it. */
973
974 bfd_put_32 (abfd,
975 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
976 | (24/4)),
977 (bfd_byte *) datap);
978
979 /* Put a "GO $255,$255,0" after the common sequence. */
980 bfd_put_32 (abfd,
981 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
982 (bfd_byte *) datap + 20);
983
984 /* Common sequence starts at offset 4. */
985 offs = 4;
986
987 /* We change to an absolute value. */
988 value += addr;
989 }
990 break;
991
992 case R_MMIX_PUSHJ_STUBBABLE:
993 /* If the address fits, we're fine. */
994 if ((value & 3) == 0
995 /* Note rightshift 0; see R_MMIX_JMP case below. */
996 && (r = bfd_check_overflow (complain_overflow_signed,
997 howto->bitsize,
998 0,
999 bfd_arch_bits_per_address (abfd),
1000 value)) == bfd_reloc_ok)
1001 goto pcrel_mmix_reloc_fits;
1002 else
1003 {
1004 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
1005
1006 /* We have the bytes at the PUSHJ insn and need to get the
1007 position for the stub. There's supposed to be room allocated
1008 for the stub. */
1009 bfd_byte *stubcontents
1010 = ((bfd_byte *) datap
1011 - (addr - (isec->output_section->vma + isec->output_offset))
1012 + size
1013 + mmix_elf_section_data (isec)->pjs.stub_offset);
1014 bfd_vma stubaddr;
1015
1016 /* The address doesn't fit, so redirect the PUSHJ to the
1017 location of the stub. */
1018 r = mmix_elf_perform_relocation (isec,
1019 &elf_mmix_howto_table
1020 [R_MMIX_ADDR19],
1021 datap,
1022 addr,
1023 isec->output_section->vma
1024 + isec->output_offset
1025 + size
1026 + (mmix_elf_section_data (isec)
1027 ->pjs.stub_offset)
1028 - addr);
1029 if (r != bfd_reloc_ok)
1030 return r;
1031
1032 stubaddr
1033 = (isec->output_section->vma
1034 + isec->output_offset
1035 + size
1036 + mmix_elf_section_data (isec)->pjs.stub_offset);
1037
1038 /* We generate a simple JMP if that suffices, else the whole 5
1039 insn stub. */
1040 if (bfd_check_overflow (complain_overflow_signed,
1041 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1042 0,
1043 bfd_arch_bits_per_address (abfd),
1044 addr + value - stubaddr) == bfd_reloc_ok)
1045 {
1046 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1047 r = mmix_elf_perform_relocation (isec,
1048 &elf_mmix_howto_table
1049 [R_MMIX_ADDR27],
1050 stubcontents,
1051 stubaddr,
1052 value + addr - stubaddr);
1053 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1054
1055 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1056 > isec->size)
1057 abort ();
1058
1059 return r;
1060 }
1061 else
1062 {
1063 /* Put a "GO $255,0" after the common sequence. */
1064 bfd_put_32 (abfd,
1065 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1066 | 0xff00, (bfd_byte *) stubcontents + 16);
1067
1068 /* Prepare for the general code to set the first part of the
1069 linker stub, and */
1070 value += addr;
1071 datap = stubcontents;
1072 mmix_elf_section_data (isec)->pjs.stub_offset
1073 += MAX_PUSHJ_STUB_SIZE;
1074 }
1075 }
1076 break;
1077
1078 case R_MMIX_PUSHJ:
1079 {
1080 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1081
1082 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1083 bfd_put_32 (abfd,
1084 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1085 | (inreg << 16)
1086 | 0xff00,
1087 (bfd_byte *) datap + 16);
1088
1089 /* We change to an absolute value. */
1090 value += addr;
1091 }
1092 break;
1093
1094 case R_MMIX_JMP:
1095 /* This one is a little special. If we get here on a non-relaxing
1096 link, and the destination is actually in range, we don't need to
1097 execute the nops.
1098 If so, we fall through to the bit-fiddling relocs.
1099
1100 FIXME: bfd_check_overflow seems broken; the relocation is
1101 rightshifted before testing, so supply a zero rightshift. */
1102
1103 if (! ((value & 3) == 0
1104 && (r = bfd_check_overflow (complain_overflow_signed,
1105 howto->bitsize,
1106 0,
1107 bfd_arch_bits_per_address (abfd),
1108 value)) == bfd_reloc_ok))
1109 {
1110 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1111 modified below, and put a "GO $255,$255,0" after the
1112 address-loading sequence. */
1113 bfd_put_32 (abfd,
1114 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1115 | 0xffff00,
1116 (bfd_byte *) datap + 16);
1117
1118 /* We change to an absolute value. */
1119 value += addr;
1120 break;
1121 }
1122 /* FALLTHROUGH. */
1123 case R_MMIX_ADDR19:
1124 case R_MMIX_ADDR27:
1125 pcrel_mmix_reloc_fits:
1126 /* These must be in range, or else we emit an error. */
1127 if ((value & 3) == 0
1128 /* Note rightshift 0; see above. */
1129 && (r = bfd_check_overflow (complain_overflow_signed,
1130 howto->bitsize,
1131 0,
1132 bfd_arch_bits_per_address (abfd),
1133 value)) == bfd_reloc_ok)
1134 {
1135 bfd_vma in1
1136 = bfd_get_32 (abfd, (bfd_byte *) datap);
1137 bfd_vma highbit;
1138
1139 if ((bfd_signed_vma) value < 0)
1140 {
1141 highbit = 1 << 24;
1142 value += (1 << (howto->bitsize - 1));
1143 }
1144 else
1145 highbit = 0;
1146
1147 value >>= 2;
1148
1149 bfd_put_32 (abfd,
1150 (in1 & howto->src_mask)
1151 | highbit
1152 | (value & howto->dst_mask),
1153 (bfd_byte *) datap);
1154
1155 return bfd_reloc_ok;
1156 }
1157 else
1158 return bfd_reloc_overflow;
1159
1160 case R_MMIX_BASE_PLUS_OFFSET:
1161 {
1162 struct bpo_reloc_section_info *bpodata
1163 = mmix_elf_section_data (isec)->bpo.reloc;
1164 asection *bpo_greg_section
1165 = bpodata->bpo_greg_section;
1166 struct bpo_greg_section_info *gregdata
1167 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1168 size_t bpo_index
1169 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1170
1171 /* A consistency check: The value we now have in "relocation" must
1172 be the same as the value we stored for that relocation. It
1173 doesn't cost much, so can be left in at all times. */
1174 if (value != gregdata->reloc_request[bpo_index].value)
1175 {
1176 (*_bfd_error_handler)
1177 (_("%s: Internal inconsistency error for value for\n\
1178 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1179 bfd_get_filename (isec->owner),
1180 (unsigned long) (value >> 32), (unsigned long) value,
1181 (unsigned long) (gregdata->reloc_request[bpo_index].value
1182 >> 32),
1183 (unsigned long) gregdata->reloc_request[bpo_index].value);
1184 bfd_set_error (bfd_error_bad_value);
1185 return bfd_reloc_overflow;
1186 }
1187
1188 /* Then store the register number and offset for that register
1189 into datap and datap + 1 respectively. */
1190 bfd_put_8 (abfd,
1191 gregdata->reloc_request[bpo_index].regindex
1192 + bpo_greg_section->output_section->vma / 8,
1193 datap);
1194 bfd_put_8 (abfd,
1195 gregdata->reloc_request[bpo_index].offset,
1196 ((unsigned char *) datap) + 1);
1197 return bfd_reloc_ok;
1198 }
1199
1200 case R_MMIX_REG_OR_BYTE:
1201 case R_MMIX_REG:
1202 if (value > 255)
1203 return bfd_reloc_overflow;
1204 bfd_put_8 (abfd, value, datap);
1205 return bfd_reloc_ok;
1206
1207 default:
1208 BAD_CASE (howto->type);
1209 }
1210
1211 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1212 sequence. */
1213
1214 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1215 everything that looks strange. */
1216 if (value & 3)
1217 flag = bfd_reloc_overflow;
1218
1219 bfd_put_32 (abfd,
1220 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs);
1222 bfd_put_32 (abfd,
1223 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 4);
1225 bfd_put_32 (abfd,
1226 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1227 (bfd_byte *) datap + offs + 8);
1228 bfd_put_32 (abfd,
1229 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1230 (bfd_byte *) datap + offs + 12);
1231
1232 return flag;
1233 }
1234
1235 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1236
1237 static void
1238 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1239 bfd *abfd ATTRIBUTE_UNUSED;
1240 arelent *cache_ptr;
1241 Elf_Internal_Rela *dst;
1242 {
1243 unsigned int r_type;
1244
1245 r_type = ELF64_R_TYPE (dst->r_info);
1246 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1247 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1248 }
1249
1250 /* Any MMIX-specific relocation gets here at assembly time or when linking
1251 to other formats (such as mmo); this is the relocation function from
1252 the reloc_table. We don't get here for final pure ELF linking. */
1253
1254 static bfd_reloc_status_type
1255 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1256 output_bfd, error_message)
1257 bfd *abfd;
1258 arelent *reloc_entry;
1259 asymbol *symbol;
1260 PTR data;
1261 asection *input_section;
1262 bfd *output_bfd;
1263 char **error_message ATTRIBUTE_UNUSED;
1264 {
1265 bfd_vma relocation;
1266 bfd_reloc_status_type r;
1267 asection *reloc_target_output_section;
1268 bfd_reloc_status_type flag = bfd_reloc_ok;
1269 bfd_vma output_base = 0;
1270
1271 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1272 input_section, output_bfd, error_message);
1273
1274 /* If that was all that was needed (i.e. this isn't a final link, only
1275 some segment adjustments), we're done. */
1276 if (r != bfd_reloc_continue)
1277 return r;
1278
1279 if (bfd_is_und_section (symbol->section)
1280 && (symbol->flags & BSF_WEAK) == 0
1281 && output_bfd == (bfd *) NULL)
1282 return bfd_reloc_undefined;
1283
1284 /* Is the address of the relocation really within the section? */
1285 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1286 return bfd_reloc_outofrange;
1287
1288 /* Work out which section the relocation is targeted at and the
1289 initial relocation command value. */
1290
1291 /* Get symbol value. (Common symbols are special.) */
1292 if (bfd_is_com_section (symbol->section))
1293 relocation = 0;
1294 else
1295 relocation = symbol->value;
1296
1297 reloc_target_output_section = bfd_get_output_section (symbol);
1298
1299 /* Here the variable relocation holds the final address of the symbol we
1300 are relocating against, plus any addend. */
1301 if (output_bfd)
1302 output_base = 0;
1303 else
1304 output_base = reloc_target_output_section->vma;
1305
1306 relocation += output_base + symbol->section->output_offset;
1307
1308 if (output_bfd != (bfd *) NULL)
1309 {
1310 /* Add in supplied addend. */
1311 relocation += reloc_entry->addend;
1312
1313 /* This is a partial relocation, and we want to apply the
1314 relocation to the reloc entry rather than the raw data.
1315 Modify the reloc inplace to reflect what we now know. */
1316 reloc_entry->addend = relocation;
1317 reloc_entry->address += input_section->output_offset;
1318 return flag;
1319 }
1320
1321 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1322 data, reloc_entry->address,
1323 reloc_entry->addend, relocation,
1324 bfd_asymbol_name (symbol),
1325 reloc_target_output_section);
1326 }
1327 \f
1328 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1329 for guidance if you're thinking of copying this. */
1330
1331 static bfd_boolean
1332 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1333 contents, relocs, local_syms, local_sections)
1334 bfd *output_bfd ATTRIBUTE_UNUSED;
1335 struct bfd_link_info *info;
1336 bfd *input_bfd;
1337 asection *input_section;
1338 bfd_byte *contents;
1339 Elf_Internal_Rela *relocs;
1340 Elf_Internal_Sym *local_syms;
1341 asection **local_sections;
1342 {
1343 Elf_Internal_Shdr *symtab_hdr;
1344 struct elf_link_hash_entry **sym_hashes;
1345 Elf_Internal_Rela *rel;
1346 Elf_Internal_Rela *relend;
1347 bfd_size_type size;
1348 size_t pjsno = 0;
1349
1350 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352 sym_hashes = elf_sym_hashes (input_bfd);
1353 relend = relocs + input_section->reloc_count;
1354
1355 /* Zero the stub area before we start. */
1356 if (input_section->rawsize != 0
1357 && input_section->size > input_section->rawsize)
1358 memset (contents + input_section->rawsize, 0,
1359 input_section->size - input_section->rawsize);
1360
1361 for (rel = relocs; rel < relend; rel ++)
1362 {
1363 reloc_howto_type *howto;
1364 unsigned long r_symndx;
1365 Elf_Internal_Sym *sym;
1366 asection *sec;
1367 struct elf_link_hash_entry *h;
1368 bfd_vma relocation;
1369 bfd_reloc_status_type r;
1370 const char *name = NULL;
1371 int r_type;
1372 bfd_boolean undefined_signalled = FALSE;
1373
1374 r_type = ELF64_R_TYPE (rel->r_info);
1375
1376 if (r_type == R_MMIX_GNU_VTINHERIT
1377 || r_type == R_MMIX_GNU_VTENTRY)
1378 continue;
1379
1380 r_symndx = ELF64_R_SYM (rel->r_info);
1381
1382 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1383 h = NULL;
1384 sym = NULL;
1385 sec = NULL;
1386
1387 if (r_symndx < symtab_hdr->sh_info)
1388 {
1389 sym = local_syms + r_symndx;
1390 sec = local_sections [r_symndx];
1391 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1392
1393 name = bfd_elf_string_from_elf_section (input_bfd,
1394 symtab_hdr->sh_link,
1395 sym->st_name);
1396 if (name == NULL)
1397 name = bfd_section_name (input_bfd, sec);
1398 }
1399 else
1400 {
1401 bfd_boolean unresolved_reloc;
1402
1403 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1404 r_symndx, symtab_hdr, sym_hashes,
1405 h, sec, relocation,
1406 unresolved_reloc, undefined_signalled);
1407 name = h->root.root.string;
1408 }
1409
1410 if (sec != NULL && elf_discarded_section (sec))
1411 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1412 rel, relend, howto, contents);
1413
1414 if (info->relocatable)
1415 {
1416 /* This is a relocatable link. For most relocs we don't have to
1417 change anything, unless the reloc is against a section
1418 symbol, in which case we have to adjust according to where
1419 the section symbol winds up in the output section. */
1420 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1421 rel->r_addend += sec->output_offset;
1422
1423 /* For PUSHJ stub relocs however, we may need to change the
1424 reloc and the section contents, if the reloc doesn't reach
1425 beyond the end of the output section and previous stubs.
1426 Then we change the section contents to be a PUSHJ to the end
1427 of the input section plus stubs (we can do that without using
1428 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1429 at the stub location. */
1430 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1431 {
1432 /* We've already checked whether we need a stub; use that
1433 knowledge. */
1434 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1435 != 0)
1436 {
1437 Elf_Internal_Rela relcpy;
1438
1439 if (mmix_elf_section_data (input_section)
1440 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1441 abort ();
1442
1443 /* There's already a PUSHJ insn there, so just fill in
1444 the offset bits to the stub. */
1445 if (mmix_final_link_relocate (elf_mmix_howto_table
1446 + R_MMIX_ADDR19,
1447 input_section,
1448 contents,
1449 rel->r_offset,
1450 0,
1451 input_section
1452 ->output_section->vma
1453 + input_section->output_offset
1454 + size
1455 + mmix_elf_section_data (input_section)
1456 ->pjs.stub_offset,
1457 NULL, NULL) != bfd_reloc_ok)
1458 return FALSE;
1459
1460 /* Put a JMP insn at the stub; it goes with the
1461 R_MMIX_JMP reloc. */
1462 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1463 contents
1464 + size
1465 + mmix_elf_section_data (input_section)
1466 ->pjs.stub_offset);
1467
1468 /* Change the reloc to be at the stub, and to a full
1469 R_MMIX_JMP reloc. */
1470 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1471 rel->r_offset
1472 = (size
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset);
1475
1476 mmix_elf_section_data (input_section)->pjs.stub_offset
1477 += MAX_PUSHJ_STUB_SIZE;
1478
1479 /* Shift this reloc to the end of the relocs to maintain
1480 the r_offset sorted reloc order. */
1481 relcpy = *rel;
1482 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1483 relend[-1] = relcpy;
1484
1485 /* Back up one reloc, or else we'd skip the next reloc
1486 in turn. */
1487 rel--;
1488 }
1489
1490 pjsno++;
1491 }
1492 continue;
1493 }
1494
1495 r = mmix_final_link_relocate (howto, input_section,
1496 contents, rel->r_offset,
1497 rel->r_addend, relocation, name, sec);
1498
1499 if (r != bfd_reloc_ok)
1500 {
1501 bfd_boolean check_ok = TRUE;
1502 const char * msg = (const char *) NULL;
1503
1504 switch (r)
1505 {
1506 case bfd_reloc_overflow:
1507 check_ok = info->callbacks->reloc_overflow
1508 (info, (h ? &h->root : NULL), name, howto->name,
1509 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1510 break;
1511
1512 case bfd_reloc_undefined:
1513 /* We may have sent this message above. */
1514 if (! undefined_signalled)
1515 check_ok = info->callbacks->undefined_symbol
1516 (info, name, input_bfd, input_section, rel->r_offset,
1517 TRUE);
1518 undefined_signalled = TRUE;
1519 break;
1520
1521 case bfd_reloc_outofrange:
1522 msg = _("internal error: out of range error");
1523 break;
1524
1525 case bfd_reloc_notsupported:
1526 msg = _("internal error: unsupported relocation error");
1527 break;
1528
1529 case bfd_reloc_dangerous:
1530 msg = _("internal error: dangerous relocation");
1531 break;
1532
1533 default:
1534 msg = _("internal error: unknown error");
1535 break;
1536 }
1537
1538 if (msg)
1539 check_ok = info->callbacks->warning
1540 (info, msg, name, input_bfd, input_section, rel->r_offset);
1541
1542 if (! check_ok)
1543 return FALSE;
1544 }
1545 }
1546
1547 return TRUE;
1548 }
1549 \f
1550 /* Perform a single relocation. By default we use the standard BFD
1551 routines. A few relocs we have to do ourselves. */
1552
1553 static bfd_reloc_status_type
1554 mmix_final_link_relocate (howto, input_section, contents,
1555 r_offset, r_addend, relocation, symname, symsec)
1556 reloc_howto_type *howto;
1557 asection *input_section;
1558 bfd_byte *contents;
1559 bfd_vma r_offset;
1560 bfd_signed_vma r_addend;
1561 bfd_vma relocation;
1562 const char *symname;
1563 asection *symsec;
1564 {
1565 bfd_reloc_status_type r = bfd_reloc_ok;
1566 bfd_vma addr
1567 = (input_section->output_section->vma
1568 + input_section->output_offset
1569 + r_offset);
1570 bfd_signed_vma srel
1571 = (bfd_signed_vma) relocation + r_addend;
1572
1573 switch (howto->type)
1574 {
1575 /* All these are PC-relative. */
1576 case R_MMIX_PUSHJ_STUBBABLE:
1577 case R_MMIX_PUSHJ:
1578 case R_MMIX_CBRANCH:
1579 case R_MMIX_ADDR19:
1580 case R_MMIX_GETA:
1581 case R_MMIX_ADDR27:
1582 case R_MMIX_JMP:
1583 contents += r_offset;
1584
1585 srel -= (input_section->output_section->vma
1586 + input_section->output_offset
1587 + r_offset);
1588
1589 r = mmix_elf_perform_relocation (input_section, howto, contents,
1590 addr, srel);
1591 break;
1592
1593 case R_MMIX_BASE_PLUS_OFFSET:
1594 if (symsec == NULL)
1595 return bfd_reloc_undefined;
1596
1597 /* Check that we're not relocating against a register symbol. */
1598 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1599 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1600 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1601 MMIX_REG_SECTION_NAME) == 0)
1602 {
1603 /* Note: This is separated out into two messages in order
1604 to ease the translation into other languages. */
1605 if (symname == NULL || *symname == 0)
1606 (*_bfd_error_handler)
1607 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1608 bfd_get_filename (input_section->owner),
1609 bfd_get_section_name (symsec->owner, symsec));
1610 else
1611 (*_bfd_error_handler)
1612 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1613 bfd_get_filename (input_section->owner), symname,
1614 bfd_get_section_name (symsec->owner, symsec));
1615 return bfd_reloc_overflow;
1616 }
1617 goto do_mmix_reloc;
1618
1619 case R_MMIX_REG_OR_BYTE:
1620 case R_MMIX_REG:
1621 /* For now, we handle these alike. They must refer to an register
1622 symbol, which is either relative to the register section and in
1623 the range 0..255, or is in the register contents section with vma
1624 regno * 8. */
1625
1626 /* FIXME: A better way to check for reg contents section?
1627 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1628 if (symsec == NULL)
1629 return bfd_reloc_undefined;
1630
1631 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1632 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1633 {
1634 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1635 {
1636 /* The bfd_reloc_outofrange return value, though intuitively
1637 a better value, will not get us an error. */
1638 return bfd_reloc_overflow;
1639 }
1640 srel /= 8;
1641 }
1642 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1643 MMIX_REG_SECTION_NAME) == 0)
1644 {
1645 if (srel < 0 || srel > 255)
1646 /* The bfd_reloc_outofrange return value, though intuitively a
1647 better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 else
1651 {
1652 /* Note: This is separated out into two messages in order
1653 to ease the translation into other languages. */
1654 if (symname == NULL || *symname == 0)
1655 (*_bfd_error_handler)
1656 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1657 bfd_get_filename (input_section->owner),
1658 bfd_get_section_name (symsec->owner, symsec));
1659 else
1660 (*_bfd_error_handler)
1661 (_("%s: register relocation against non-register symbol: %s in %s"),
1662 bfd_get_filename (input_section->owner), symname,
1663 bfd_get_section_name (symsec->owner, symsec));
1664
1665 /* The bfd_reloc_outofrange return value, though intuitively a
1666 better value, will not get us an error. */
1667 return bfd_reloc_overflow;
1668 }
1669 do_mmix_reloc:
1670 contents += r_offset;
1671 r = mmix_elf_perform_relocation (input_section, howto, contents,
1672 addr, srel);
1673 break;
1674
1675 case R_MMIX_LOCAL:
1676 /* This isn't a real relocation, it's just an assertion that the
1677 final relocation value corresponds to a local register. We
1678 ignore the actual relocation; nothing is changed. */
1679 {
1680 asection *regsec
1681 = bfd_get_section_by_name (input_section->output_section->owner,
1682 MMIX_REG_CONTENTS_SECTION_NAME);
1683 bfd_vma first_global;
1684
1685 /* Check that this is an absolute value, or a reference to the
1686 register contents section or the register (symbol) section.
1687 Absolute numbers can get here as undefined section. Undefined
1688 symbols are signalled elsewhere, so there's no conflict in us
1689 accidentally handling it. */
1690 if (!bfd_is_abs_section (symsec)
1691 && !bfd_is_und_section (symsec)
1692 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1693 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1694 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1695 MMIX_REG_SECTION_NAME) != 0)
1696 {
1697 (*_bfd_error_handler)
1698 (_("%s: directive LOCAL valid only with a register or absolute value"),
1699 bfd_get_filename (input_section->owner));
1700
1701 return bfd_reloc_overflow;
1702 }
1703
1704 /* If we don't have a register contents section, then $255 is the
1705 first global register. */
1706 if (regsec == NULL)
1707 first_global = 255;
1708 else
1709 {
1710 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1711 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1712 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1713 {
1714 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1715 /* The bfd_reloc_outofrange return value, though
1716 intuitively a better value, will not get us an error. */
1717 return bfd_reloc_overflow;
1718 srel /= 8;
1719 }
1720 }
1721
1722 if ((bfd_vma) srel >= first_global)
1723 {
1724 /* FIXME: Better error message. */
1725 (*_bfd_error_handler)
1726 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1727 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1728
1729 return bfd_reloc_overflow;
1730 }
1731 }
1732 r = bfd_reloc_ok;
1733 break;
1734
1735 default:
1736 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1737 contents, r_offset,
1738 relocation, r_addend);
1739 }
1740
1741 return r;
1742 }
1743 \f
1744 /* Return the section that should be marked against GC for a given
1745 relocation. */
1746
1747 static asection *
1748 mmix_elf_gc_mark_hook (asection *sec,
1749 struct bfd_link_info *info,
1750 Elf_Internal_Rela *rel,
1751 struct elf_link_hash_entry *h,
1752 Elf_Internal_Sym *sym)
1753 {
1754 if (h != NULL)
1755 switch (ELF64_R_TYPE (rel->r_info))
1756 {
1757 case R_MMIX_GNU_VTINHERIT:
1758 case R_MMIX_GNU_VTENTRY:
1759 return NULL;
1760 }
1761
1762 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1763 }
1764
1765 /* Update relocation info for a GC-excluded section. We could supposedly
1766 perform the allocation after GC, but there's no suitable hook between
1767 GC (or section merge) and the point when all input sections must be
1768 present. Better to waste some memory and (perhaps) a little time. */
1769
1770 static bfd_boolean
1771 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1772 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1773 asection *sec,
1774 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1775 {
1776 struct bpo_reloc_section_info *bpodata
1777 = mmix_elf_section_data (sec)->bpo.reloc;
1778 asection *allocated_gregs_section;
1779
1780 /* If no bpodata here, we have nothing to do. */
1781 if (bpodata == NULL)
1782 return TRUE;
1783
1784 allocated_gregs_section = bpodata->bpo_greg_section;
1785
1786 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1787 -= bpodata->n_bpo_relocs_this_section;
1788
1789 return TRUE;
1790 }
1791 \f
1792 /* Sort register relocs to come before expanding relocs. */
1793
1794 static int
1795 mmix_elf_sort_relocs (p1, p2)
1796 const PTR p1;
1797 const PTR p2;
1798 {
1799 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1800 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1801 int r1_is_reg, r2_is_reg;
1802
1803 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1804 insns. */
1805 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1806 return 1;
1807 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1808 return -1;
1809
1810 r1_is_reg
1811 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1812 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1813 r2_is_reg
1814 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1815 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1816 if (r1_is_reg != r2_is_reg)
1817 return r2_is_reg - r1_is_reg;
1818
1819 /* Neither or both are register relocs. Then sort on full offset. */
1820 if (r1->r_offset > r2->r_offset)
1821 return 1;
1822 else if (r1->r_offset < r2->r_offset)
1823 return -1;
1824 return 0;
1825 }
1826
1827 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1828
1829 static bfd_boolean
1830 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1831 bfd *abfd;
1832 struct bfd_link_info *info;
1833 asection *sec;
1834 const Elf_Internal_Rela *relocs;
1835 {
1836 bfd *bpo_greg_owner = NULL;
1837 asection *allocated_gregs_section = NULL;
1838 struct bpo_greg_section_info *gregdata = NULL;
1839 struct bpo_reloc_section_info *bpodata = NULL;
1840 const Elf_Internal_Rela *rel;
1841 const Elf_Internal_Rela *rel_end;
1842
1843 /* We currently have to abuse this COFF-specific member, since there's
1844 no target-machine-dedicated member. There's no alternative outside
1845 the bfd_link_info struct; we can't specialize a hash-table since
1846 they're different between ELF and mmo. */
1847 bpo_greg_owner = (bfd *) info->base_file;
1848
1849 rel_end = relocs + sec->reloc_count;
1850 for (rel = relocs; rel < rel_end; rel++)
1851 {
1852 switch (ELF64_R_TYPE (rel->r_info))
1853 {
1854 /* This relocation causes a GREG allocation. We need to count
1855 them, and we need to create a section for them, so we need an
1856 object to fake as the owner of that section. We can't use
1857 the ELF dynobj for this, since the ELF bits assume lots of
1858 DSO-related stuff if that member is non-NULL. */
1859 case R_MMIX_BASE_PLUS_OFFSET:
1860 /* We don't do anything with this reloc for a relocatable link. */
1861 if (info->relocatable)
1862 break;
1863
1864 if (bpo_greg_owner == NULL)
1865 {
1866 bpo_greg_owner = abfd;
1867 info->base_file = (PTR) bpo_greg_owner;
1868 }
1869
1870 if (allocated_gregs_section == NULL)
1871 allocated_gregs_section
1872 = bfd_get_section_by_name (bpo_greg_owner,
1873 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1874
1875 if (allocated_gregs_section == NULL)
1876 {
1877 allocated_gregs_section
1878 = bfd_make_section_with_flags (bpo_greg_owner,
1879 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1880 (SEC_HAS_CONTENTS
1881 | SEC_IN_MEMORY
1882 | SEC_LINKER_CREATED));
1883 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1884 treated like any other section, and we'd get errors for
1885 address overlap with the text section. Let's set none of
1886 those flags, as that is what currently happens for usual
1887 GREG allocations, and that works. */
1888 if (allocated_gregs_section == NULL
1889 || !bfd_set_section_alignment (bpo_greg_owner,
1890 allocated_gregs_section,
1891 3))
1892 return FALSE;
1893
1894 gregdata = (struct bpo_greg_section_info *)
1895 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1896 if (gregdata == NULL)
1897 return FALSE;
1898 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1899 = gregdata;
1900 }
1901 else if (gregdata == NULL)
1902 gregdata
1903 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1904
1905 /* Get ourselves some auxiliary info for the BPO-relocs. */
1906 if (bpodata == NULL)
1907 {
1908 /* No use doing a separate iteration pass to find the upper
1909 limit - just use the number of relocs. */
1910 bpodata = (struct bpo_reloc_section_info *)
1911 bfd_alloc (bpo_greg_owner,
1912 sizeof (struct bpo_reloc_section_info)
1913 * (sec->reloc_count + 1));
1914 if (bpodata == NULL)
1915 return FALSE;
1916 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1917 bpodata->first_base_plus_offset_reloc
1918 = bpodata->bpo_index
1919 = gregdata->n_max_bpo_relocs;
1920 bpodata->bpo_greg_section
1921 = allocated_gregs_section;
1922 bpodata->n_bpo_relocs_this_section = 0;
1923 }
1924
1925 bpodata->n_bpo_relocs_this_section++;
1926 gregdata->n_max_bpo_relocs++;
1927
1928 /* We don't get another chance to set this before GC; we've not
1929 set up any hook that runs before GC. */
1930 gregdata->n_bpo_relocs
1931 = gregdata->n_max_bpo_relocs;
1932 break;
1933
1934 case R_MMIX_PUSHJ_STUBBABLE:
1935 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1936 break;
1937 }
1938 }
1939
1940 /* Allocate per-reloc stub storage and initialize it to the max stub
1941 size. */
1942 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1943 {
1944 size_t i;
1945
1946 mmix_elf_section_data (sec)->pjs.stub_size
1947 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1948 * sizeof (mmix_elf_section_data (sec)
1949 ->pjs.stub_size[0]));
1950 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1951 return FALSE;
1952
1953 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1954 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1955 }
1956
1957 return TRUE;
1958 }
1959
1960 /* Look through the relocs for a section during the first phase. */
1961
1962 static bfd_boolean
1963 mmix_elf_check_relocs (abfd, info, sec, relocs)
1964 bfd *abfd;
1965 struct bfd_link_info *info;
1966 asection *sec;
1967 const Elf_Internal_Rela *relocs;
1968 {
1969 Elf_Internal_Shdr *symtab_hdr;
1970 struct elf_link_hash_entry **sym_hashes;
1971 const Elf_Internal_Rela *rel;
1972 const Elf_Internal_Rela *rel_end;
1973
1974 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1975 sym_hashes = elf_sym_hashes (abfd);
1976
1977 /* First we sort the relocs so that any register relocs come before
1978 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1979 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1980 mmix_elf_sort_relocs);
1981
1982 /* Do the common part. */
1983 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1984 return FALSE;
1985
1986 if (info->relocatable)
1987 return TRUE;
1988
1989 rel_end = relocs + sec->reloc_count;
1990 for (rel = relocs; rel < rel_end; rel++)
1991 {
1992 struct elf_link_hash_entry *h;
1993 unsigned long r_symndx;
1994
1995 r_symndx = ELF64_R_SYM (rel->r_info);
1996 if (r_symndx < symtab_hdr->sh_info)
1997 h = NULL;
1998 else
1999 {
2000 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2001 while (h->root.type == bfd_link_hash_indirect
2002 || h->root.type == bfd_link_hash_warning)
2003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2004 }
2005
2006 switch (ELF64_R_TYPE (rel->r_info))
2007 {
2008 /* This relocation describes the C++ object vtable hierarchy.
2009 Reconstruct it for later use during GC. */
2010 case R_MMIX_GNU_VTINHERIT:
2011 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2012 return FALSE;
2013 break;
2014
2015 /* This relocation describes which C++ vtable entries are actually
2016 used. Record for later use during GC. */
2017 case R_MMIX_GNU_VTENTRY:
2018 BFD_ASSERT (h != NULL);
2019 if (h != NULL
2020 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2021 return FALSE;
2022 break;
2023 }
2024 }
2025
2026 return TRUE;
2027 }
2028
2029 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2030 Copied from elf_link_add_object_symbols. */
2031
2032 bfd_boolean
2033 _bfd_mmix_check_all_relocs (abfd, info)
2034 bfd *abfd;
2035 struct bfd_link_info *info;
2036 {
2037 asection *o;
2038
2039 for (o = abfd->sections; o != NULL; o = o->next)
2040 {
2041 Elf_Internal_Rela *internal_relocs;
2042 bfd_boolean ok;
2043
2044 if ((o->flags & SEC_RELOC) == 0
2045 || o->reloc_count == 0
2046 || ((info->strip == strip_all || info->strip == strip_debugger)
2047 && (o->flags & SEC_DEBUGGING) != 0)
2048 || bfd_is_abs_section (o->output_section))
2049 continue;
2050
2051 internal_relocs
2052 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2053 (Elf_Internal_Rela *) NULL,
2054 info->keep_memory);
2055 if (internal_relocs == NULL)
2056 return FALSE;
2057
2058 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2059
2060 if (! info->keep_memory)
2061 free (internal_relocs);
2062
2063 if (! ok)
2064 return FALSE;
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Change symbols relative to the reg contents section to instead be to
2071 the register section, and scale them down to correspond to the register
2072 number. */
2073
2074 static int
2075 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2076 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2077 const char *name ATTRIBUTE_UNUSED;
2078 Elf_Internal_Sym *sym;
2079 asection *input_sec;
2080 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2081 {
2082 if (input_sec != NULL
2083 && input_sec->name != NULL
2084 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2085 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2086 {
2087 sym->st_value /= 8;
2088 sym->st_shndx = SHN_REGISTER;
2089 }
2090
2091 return 1;
2092 }
2093
2094 /* We fake a register section that holds values that are register numbers.
2095 Having a SHN_REGISTER and register section translates better to other
2096 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2097 This section faking is based on a construct in elf32-mips.c. */
2098 static asection mmix_elf_reg_section;
2099 static asymbol mmix_elf_reg_section_symbol;
2100 static asymbol *mmix_elf_reg_section_symbol_ptr;
2101
2102 /* Handle the special section numbers that a symbol may use. */
2103
2104 void
2105 mmix_elf_symbol_processing (abfd, asym)
2106 bfd *abfd ATTRIBUTE_UNUSED;
2107 asymbol *asym;
2108 {
2109 elf_symbol_type *elfsym;
2110
2111 elfsym = (elf_symbol_type *) asym;
2112 switch (elfsym->internal_elf_sym.st_shndx)
2113 {
2114 case SHN_REGISTER:
2115 if (mmix_elf_reg_section.name == NULL)
2116 {
2117 /* Initialize the register section. */
2118 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2119 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2120 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2121 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2122 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2123 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2124 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2125 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2126 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2127 }
2128 asym->section = &mmix_elf_reg_section;
2129 break;
2130
2131 default:
2132 break;
2133 }
2134 }
2135
2136 /* Given a BFD section, try to locate the corresponding ELF section
2137 index. */
2138
2139 static bfd_boolean
2140 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2141 bfd * abfd ATTRIBUTE_UNUSED;
2142 asection * sec;
2143 int * retval;
2144 {
2145 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2146 *retval = SHN_REGISTER;
2147 else
2148 return FALSE;
2149
2150 return TRUE;
2151 }
2152
2153 /* Hook called by the linker routine which adds symbols from an object
2154 file. We must handle the special SHN_REGISTER section number here.
2155
2156 We also check that we only have *one* each of the section-start
2157 symbols, since otherwise having two with the same value would cause
2158 them to be "merged", but with the contents serialized. */
2159
2160 bfd_boolean
2161 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2162 bfd *abfd;
2163 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2164 Elf_Internal_Sym *sym;
2165 const char **namep ATTRIBUTE_UNUSED;
2166 flagword *flagsp ATTRIBUTE_UNUSED;
2167 asection **secp;
2168 bfd_vma *valp ATTRIBUTE_UNUSED;
2169 {
2170 if (sym->st_shndx == SHN_REGISTER)
2171 {
2172 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2173 (*secp)->flags |= SEC_LINKER_CREATED;
2174 }
2175 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2176 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2177 {
2178 /* See if we have another one. */
2179 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2180 *namep,
2181 FALSE,
2182 FALSE,
2183 FALSE);
2184
2185 if (h != NULL && h->type != bfd_link_hash_undefined)
2186 {
2187 /* How do we get the asymbol (or really: the filename) from h?
2188 h->u.def.section->owner is NULL. */
2189 ((*_bfd_error_handler)
2190 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2191 bfd_get_filename (abfd), *namep,
2192 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2193 bfd_set_error (bfd_error_bad_value);
2194 return FALSE;
2195 }
2196 }
2197
2198 return TRUE;
2199 }
2200
2201 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2202
2203 bfd_boolean
2204 mmix_elf_is_local_label_name (abfd, name)
2205 bfd *abfd;
2206 const char *name;
2207 {
2208 const char *colpos;
2209 int digits;
2210
2211 /* Also include the default local-label definition. */
2212 if (_bfd_elf_is_local_label_name (abfd, name))
2213 return TRUE;
2214
2215 if (*name != 'L')
2216 return FALSE;
2217
2218 /* If there's no ":", or more than one, it's not a local symbol. */
2219 colpos = strchr (name, ':');
2220 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2221 return FALSE;
2222
2223 /* Check that there are remaining characters and that they are digits. */
2224 if (colpos[1] == 0)
2225 return FALSE;
2226
2227 digits = strspn (colpos + 1, "0123456789");
2228 return digits != 0 && colpos[1 + digits] == 0;
2229 }
2230
2231 /* We get rid of the register section here. */
2232
2233 bfd_boolean
2234 mmix_elf_final_link (abfd, info)
2235 bfd *abfd;
2236 struct bfd_link_info *info;
2237 {
2238 /* We never output a register section, though we create one for
2239 temporary measures. Check that nobody entered contents into it. */
2240 asection *reg_section;
2241
2242 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2243
2244 if (reg_section != NULL)
2245 {
2246 /* FIXME: Pass error state gracefully. */
2247 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2248 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2249
2250 /* Really remove the section, if it hasn't already been done. */
2251 if (!bfd_section_removed_from_list (abfd, reg_section))
2252 {
2253 bfd_section_list_remove (abfd, reg_section);
2254 --abfd->section_count;
2255 }
2256 }
2257
2258 if (! bfd_elf_final_link (abfd, info))
2259 return FALSE;
2260
2261 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2262 the regular linker machinery. We do it here, like other targets with
2263 special sections. */
2264 if (info->base_file != NULL)
2265 {
2266 asection *greg_section
2267 = bfd_get_section_by_name ((bfd *) info->base_file,
2268 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2269 if (!bfd_set_section_contents (abfd,
2270 greg_section->output_section,
2271 greg_section->contents,
2272 (file_ptr) greg_section->output_offset,
2273 greg_section->size))
2274 return FALSE;
2275 }
2276 return TRUE;
2277 }
2278
2279 /* We need to include the maximum size of PUSHJ-stubs in the initial
2280 section size. This is expected to shrink during linker relaxation. */
2281
2282 static void
2283 mmix_set_relaxable_size (abfd, sec, ptr)
2284 bfd *abfd ATTRIBUTE_UNUSED;
2285 asection *sec;
2286 void *ptr;
2287 {
2288 struct bfd_link_info *info = ptr;
2289
2290 /* Make sure we only do this for section where we know we want this,
2291 otherwise we might end up resetting the size of COMMONs. */
2292 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2293 return;
2294
2295 sec->rawsize = sec->size;
2296 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2297 * MAX_PUSHJ_STUB_SIZE);
2298
2299 /* For use in relocatable link, we start with a max stubs size. See
2300 mmix_elf_relax_section. */
2301 if (info->relocatable && sec->output_section)
2302 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2303 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2304 * MAX_PUSHJ_STUB_SIZE);
2305 }
2306
2307 /* Initialize stuff for the linker-generated GREGs to match
2308 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2309
2310 bfd_boolean
2311 _bfd_mmix_before_linker_allocation (abfd, info)
2312 bfd *abfd ATTRIBUTE_UNUSED;
2313 struct bfd_link_info *info;
2314 {
2315 asection *bpo_gregs_section;
2316 bfd *bpo_greg_owner;
2317 struct bpo_greg_section_info *gregdata;
2318 size_t n_gregs;
2319 bfd_vma gregs_size;
2320 size_t i;
2321 size_t *bpo_reloc_indexes;
2322 bfd *ibfd;
2323
2324 /* Set the initial size of sections. */
2325 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2326 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2327
2328 /* The bpo_greg_owner bfd is supposed to have been set by
2329 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2330 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2331 bpo_greg_owner = (bfd *) info->base_file;
2332 if (bpo_greg_owner == NULL)
2333 return TRUE;
2334
2335 bpo_gregs_section
2336 = bfd_get_section_by_name (bpo_greg_owner,
2337 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2338
2339 if (bpo_gregs_section == NULL)
2340 return TRUE;
2341
2342 /* We use the target-data handle in the ELF section data. */
2343 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2344 if (gregdata == NULL)
2345 return FALSE;
2346
2347 n_gregs = gregdata->n_bpo_relocs;
2348 gregdata->n_allocated_bpo_gregs = n_gregs;
2349
2350 /* When this reaches zero during relaxation, all entries have been
2351 filled in and the size of the linker gregs can be calculated. */
2352 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2353
2354 /* Set the zeroth-order estimate for the GREGs size. */
2355 gregs_size = n_gregs * 8;
2356
2357 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2358 return FALSE;
2359
2360 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2361 time. Note that we must use the max number ever noted for the array,
2362 since the index numbers were created before GC. */
2363 gregdata->reloc_request
2364 = bfd_zalloc (bpo_greg_owner,
2365 sizeof (struct bpo_reloc_request)
2366 * gregdata->n_max_bpo_relocs);
2367
2368 gregdata->bpo_reloc_indexes
2369 = bpo_reloc_indexes
2370 = bfd_alloc (bpo_greg_owner,
2371 gregdata->n_max_bpo_relocs
2372 * sizeof (size_t));
2373 if (bpo_reloc_indexes == NULL)
2374 return FALSE;
2375
2376 /* The default order is an identity mapping. */
2377 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2378 {
2379 bpo_reloc_indexes[i] = i;
2380 gregdata->reloc_request[i].bpo_reloc_no = i;
2381 }
2382
2383 return TRUE;
2384 }
2385 \f
2386 /* Fill in contents in the linker allocated gregs. Everything is
2387 calculated at this point; we just move the contents into place here. */
2388
2389 bfd_boolean
2390 _bfd_mmix_after_linker_allocation (abfd, link_info)
2391 bfd *abfd ATTRIBUTE_UNUSED;
2392 struct bfd_link_info *link_info;
2393 {
2394 asection *bpo_gregs_section;
2395 bfd *bpo_greg_owner;
2396 struct bpo_greg_section_info *gregdata;
2397 size_t n_gregs;
2398 size_t i, j;
2399 size_t lastreg;
2400 bfd_byte *contents;
2401
2402 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2403 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2404 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2405 bpo_greg_owner = (bfd *) link_info->base_file;
2406 if (bpo_greg_owner == NULL)
2407 return TRUE;
2408
2409 bpo_gregs_section
2410 = bfd_get_section_by_name (bpo_greg_owner,
2411 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2412
2413 /* This can't happen without DSO handling. When DSOs are handled
2414 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2415 section. */
2416 if (bpo_gregs_section == NULL)
2417 return TRUE;
2418
2419 /* We use the target-data handle in the ELF section data. */
2420
2421 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2422 if (gregdata == NULL)
2423 return FALSE;
2424
2425 n_gregs = gregdata->n_allocated_bpo_gregs;
2426
2427 bpo_gregs_section->contents
2428 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2429 if (contents == NULL)
2430 return FALSE;
2431
2432 /* Sanity check: If these numbers mismatch, some relocation has not been
2433 accounted for and the rest of gregdata is probably inconsistent.
2434 It's a bug, but it's more helpful to identify it than segfaulting
2435 below. */
2436 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2437 != gregdata->n_bpo_relocs)
2438 {
2439 (*_bfd_error_handler)
2440 (_("Internal inconsistency: remaining %u != max %u.\n\
2441 Please report this bug."),
2442 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2443 gregdata->n_bpo_relocs);
2444 return FALSE;
2445 }
2446
2447 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2448 if (gregdata->reloc_request[i].regindex != lastreg)
2449 {
2450 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2451 contents + j * 8);
2452 lastreg = gregdata->reloc_request[i].regindex;
2453 j++;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 /* Sort valid relocs to come before non-valid relocs, then on increasing
2460 value. */
2461
2462 static int
2463 bpo_reloc_request_sort_fn (p1, p2)
2464 const PTR p1;
2465 const PTR p2;
2466 {
2467 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2468 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2469
2470 /* Primary function is validity; non-valid relocs sorted after valid
2471 ones. */
2472 if (r1->valid != r2->valid)
2473 return r2->valid - r1->valid;
2474
2475 /* Then sort on value. Don't simplify and return just the difference of
2476 the values: the upper bits of the 64-bit value would be truncated on
2477 a host with 32-bit ints. */
2478 if (r1->value != r2->value)
2479 return r1->value > r2->value ? 1 : -1;
2480
2481 /* As a last re-sort, use the relocation number, so we get a stable
2482 sort. The *addresses* aren't stable since items are swapped during
2483 sorting. It depends on the qsort implementation if this actually
2484 happens. */
2485 return r1->bpo_reloc_no > r2->bpo_reloc_no
2486 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2487 }
2488
2489 /* For debug use only. Dumps the global register allocations resulting
2490 from base-plus-offset relocs. */
2491
2492 void
2493 mmix_dump_bpo_gregs (link_info, pf)
2494 struct bfd_link_info *link_info;
2495 bfd_error_handler_type pf;
2496 {
2497 bfd *bpo_greg_owner;
2498 asection *bpo_gregs_section;
2499 struct bpo_greg_section_info *gregdata;
2500 unsigned int i;
2501
2502 if (link_info == NULL || link_info->base_file == NULL)
2503 return;
2504
2505 bpo_greg_owner = (bfd *) link_info->base_file;
2506
2507 bpo_gregs_section
2508 = bfd_get_section_by_name (bpo_greg_owner,
2509 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2510
2511 if (bpo_gregs_section == NULL)
2512 return;
2513
2514 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2515 if (gregdata == NULL)
2516 return;
2517
2518 if (pf == NULL)
2519 pf = _bfd_error_handler;
2520
2521 /* These format strings are not translated. They are for debug purposes
2522 only and never displayed to an end user. Should they escape, we
2523 surely want them in original. */
2524 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2525 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2526 gregdata->n_max_bpo_relocs,
2527 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2528 gregdata->n_allocated_bpo_gregs);
2529
2530 if (gregdata->reloc_request)
2531 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2532 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2533 i,
2534 (gregdata->bpo_reloc_indexes != NULL
2535 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2536 gregdata->reloc_request[i].bpo_reloc_no,
2537 gregdata->reloc_request[i].valid,
2538
2539 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2540 (unsigned long) gregdata->reloc_request[i].value,
2541 gregdata->reloc_request[i].regindex,
2542 gregdata->reloc_request[i].offset);
2543 }
2544
2545 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2546 when the last such reloc is done, an index-array is sorted according to
2547 the values and iterated over to produce register numbers (indexed by 0
2548 from the first allocated register number) and offsets for use in real
2549 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2550
2551 PUSHJ stub accounting is also done here.
2552
2553 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2554
2555 static bfd_boolean
2556 mmix_elf_relax_section (abfd, sec, link_info, again)
2557 bfd *abfd;
2558 asection *sec;
2559 struct bfd_link_info *link_info;
2560 bfd_boolean *again;
2561 {
2562 Elf_Internal_Shdr *symtab_hdr;
2563 Elf_Internal_Rela *internal_relocs;
2564 Elf_Internal_Rela *irel, *irelend;
2565 asection *bpo_gregs_section = NULL;
2566 struct bpo_greg_section_info *gregdata;
2567 struct bpo_reloc_section_info *bpodata
2568 = mmix_elf_section_data (sec)->bpo.reloc;
2569 /* The initialization is to quiet compiler warnings. The value is to
2570 spot a missing actual initialization. */
2571 size_t bpono = (size_t) -1;
2572 size_t pjsno = 0;
2573 Elf_Internal_Sym *isymbuf = NULL;
2574 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2575
2576 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2577
2578 /* Assume nothing changes. */
2579 *again = FALSE;
2580
2581 /* We don't have to do anything if this section does not have relocs, or
2582 if this is not a code section. */
2583 if ((sec->flags & SEC_RELOC) == 0
2584 || sec->reloc_count == 0
2585 || (sec->flags & SEC_CODE) == 0
2586 || (sec->flags & SEC_LINKER_CREATED) != 0
2587 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2588 then nothing to do. */
2589 || (bpodata == NULL
2590 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2591 return TRUE;
2592
2593 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2594
2595 if (bpodata != NULL)
2596 {
2597 bpo_gregs_section = bpodata->bpo_greg_section;
2598 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2599 bpono = bpodata->first_base_plus_offset_reloc;
2600 }
2601 else
2602 gregdata = NULL;
2603
2604 /* Get a copy of the native relocations. */
2605 internal_relocs
2606 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2607 (Elf_Internal_Rela *) NULL,
2608 link_info->keep_memory);
2609 if (internal_relocs == NULL)
2610 goto error_return;
2611
2612 /* Walk through them looking for relaxing opportunities. */
2613 irelend = internal_relocs + sec->reloc_count;
2614 for (irel = internal_relocs; irel < irelend; irel++)
2615 {
2616 bfd_vma symval;
2617 struct elf_link_hash_entry *h = NULL;
2618
2619 /* We only process two relocs. */
2620 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2621 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2622 continue;
2623
2624 /* We process relocs in a distinctly different way when this is a
2625 relocatable link (for one, we don't look at symbols), so we avoid
2626 mixing its code with that for the "normal" relaxation. */
2627 if (link_info->relocatable)
2628 {
2629 /* The only transformation in a relocatable link is to generate
2630 a full stub at the location of the stub calculated for the
2631 input section, if the relocated stub location, the end of the
2632 output section plus earlier stubs, cannot be reached. Thus
2633 relocatable linking can only lead to worse code, but it still
2634 works. */
2635 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2636 {
2637 /* If we can reach the end of the output-section and beyond
2638 any current stubs, then we don't need a stub for this
2639 reloc. The relaxed order of output stub allocation may
2640 not exactly match the straightforward order, so we always
2641 assume presence of output stubs, which will allow
2642 relaxation only on relocations indifferent to the
2643 presence of output stub allocations for other relocations
2644 and thus the order of output stub allocation. */
2645 if (bfd_check_overflow (complain_overflow_signed,
2646 19,
2647 0,
2648 bfd_arch_bits_per_address (abfd),
2649 /* Output-stub location. */
2650 sec->output_section->rawsize
2651 + (mmix_elf_section_data (sec
2652 ->output_section)
2653 ->pjs.stubs_size_sum)
2654 /* Location of this PUSHJ reloc. */
2655 - (sec->output_offset + irel->r_offset)
2656 /* Don't count *this* stub twice. */
2657 - (mmix_elf_section_data (sec)
2658 ->pjs.stub_size[pjsno]
2659 + MAX_PUSHJ_STUB_SIZE))
2660 == bfd_reloc_ok)
2661 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2662
2663 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2664 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2665
2666 pjsno++;
2667 }
2668
2669 continue;
2670 }
2671
2672 /* Get the value of the symbol referred to by the reloc. */
2673 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2674 {
2675 /* A local symbol. */
2676 Elf_Internal_Sym *isym;
2677 asection *sym_sec;
2678
2679 /* Read this BFD's local symbols if we haven't already. */
2680 if (isymbuf == NULL)
2681 {
2682 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2683 if (isymbuf == NULL)
2684 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2685 symtab_hdr->sh_info, 0,
2686 NULL, NULL, NULL);
2687 if (isymbuf == 0)
2688 goto error_return;
2689 }
2690
2691 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2692 if (isym->st_shndx == SHN_UNDEF)
2693 sym_sec = bfd_und_section_ptr;
2694 else if (isym->st_shndx == SHN_ABS)
2695 sym_sec = bfd_abs_section_ptr;
2696 else if (isym->st_shndx == SHN_COMMON)
2697 sym_sec = bfd_com_section_ptr;
2698 else
2699 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2700 symval = (isym->st_value
2701 + sym_sec->output_section->vma
2702 + sym_sec->output_offset);
2703 }
2704 else
2705 {
2706 unsigned long indx;
2707
2708 /* An external symbol. */
2709 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2710 h = elf_sym_hashes (abfd)[indx];
2711 BFD_ASSERT (h != NULL);
2712 if (h->root.type != bfd_link_hash_defined
2713 && h->root.type != bfd_link_hash_defweak)
2714 {
2715 /* This appears to be a reference to an undefined symbol. Just
2716 ignore it--it will be caught by the regular reloc processing.
2717 We need to keep BPO reloc accounting consistent, though
2718 else we'll abort instead of emitting an error message. */
2719 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2720 && gregdata != NULL)
2721 {
2722 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2723 bpono++;
2724 }
2725 continue;
2726 }
2727
2728 symval = (h->root.u.def.value
2729 + h->root.u.def.section->output_section->vma
2730 + h->root.u.def.section->output_offset);
2731 }
2732
2733 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2734 {
2735 bfd_vma value = symval + irel->r_addend;
2736 bfd_vma dot
2737 = (sec->output_section->vma
2738 + sec->output_offset
2739 + irel->r_offset);
2740 bfd_vma stubaddr
2741 = (sec->output_section->vma
2742 + sec->output_offset
2743 + size
2744 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2745
2746 if ((value & 3) == 0
2747 && bfd_check_overflow (complain_overflow_signed,
2748 19,
2749 0,
2750 bfd_arch_bits_per_address (abfd),
2751 value - dot
2752 - (value > dot
2753 ? mmix_elf_section_data (sec)
2754 ->pjs.stub_size[pjsno]
2755 : 0))
2756 == bfd_reloc_ok)
2757 /* If the reloc fits, no stub is needed. */
2758 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2759 else
2760 /* Maybe we can get away with just a JMP insn? */
2761 if ((value & 3) == 0
2762 && bfd_check_overflow (complain_overflow_signed,
2763 27,
2764 0,
2765 bfd_arch_bits_per_address (abfd),
2766 value - stubaddr
2767 - (value > dot
2768 ? mmix_elf_section_data (sec)
2769 ->pjs.stub_size[pjsno] - 4
2770 : 0))
2771 == bfd_reloc_ok)
2772 /* Yep, account for a stub consisting of a single JMP insn. */
2773 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2774 else
2775 /* Nope, go for the full insn stub. It doesn't seem useful to
2776 emit the intermediate sizes; those will only be useful for
2777 a >64M program assuming contiguous code. */
2778 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2779 = MAX_PUSHJ_STUB_SIZE;
2780
2781 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2782 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2783 pjsno++;
2784 continue;
2785 }
2786
2787 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2788
2789 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2790 = symval + irel->r_addend;
2791 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2792 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2793 }
2794
2795 /* Check if that was the last BPO-reloc. If so, sort the values and
2796 calculate how many registers we need to cover them. Set the size of
2797 the linker gregs, and if the number of registers changed, indicate
2798 that we need to relax some more because we have more work to do. */
2799 if (gregdata != NULL
2800 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2801 {
2802 size_t i;
2803 bfd_vma prev_base;
2804 size_t regindex;
2805
2806 /* First, reset the remaining relocs for the next round. */
2807 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2808 = gregdata->n_bpo_relocs;
2809
2810 qsort ((PTR) gregdata->reloc_request,
2811 gregdata->n_max_bpo_relocs,
2812 sizeof (struct bpo_reloc_request),
2813 bpo_reloc_request_sort_fn);
2814
2815 /* Recalculate indexes. When we find a change (however unlikely
2816 after the initial iteration), we know we need to relax again,
2817 since items in the GREG-array are sorted by increasing value and
2818 stored in the relaxation phase. */
2819 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2820 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2821 != i)
2822 {
2823 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2824 = i;
2825 *again = TRUE;
2826 }
2827
2828 /* Allocate register numbers (indexing from 0). Stop at the first
2829 non-valid reloc. */
2830 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2831 i < gregdata->n_bpo_relocs;
2832 i++)
2833 {
2834 if (gregdata->reloc_request[i].value > prev_base + 255)
2835 {
2836 regindex++;
2837 prev_base = gregdata->reloc_request[i].value;
2838 }
2839 gregdata->reloc_request[i].regindex = regindex;
2840 gregdata->reloc_request[i].offset
2841 = gregdata->reloc_request[i].value - prev_base;
2842 }
2843
2844 /* If it's not the same as the last time, we need to relax again,
2845 because the size of the section has changed. I'm not sure we
2846 actually need to do any adjustments since the shrinking happens
2847 at the start of this section, but better safe than sorry. */
2848 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2849 {
2850 gregdata->n_allocated_bpo_gregs = regindex + 1;
2851 *again = TRUE;
2852 }
2853
2854 bpo_gregs_section->size = (regindex + 1) * 8;
2855 }
2856
2857 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2858 {
2859 if (! link_info->keep_memory)
2860 free (isymbuf);
2861 else
2862 {
2863 /* Cache the symbols for elf_link_input_bfd. */
2864 symtab_hdr->contents = (unsigned char *) isymbuf;
2865 }
2866 }
2867
2868 if (internal_relocs != NULL
2869 && elf_section_data (sec)->relocs != internal_relocs)
2870 free (internal_relocs);
2871
2872 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2873 abort ();
2874
2875 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2876 {
2877 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2878 *again = TRUE;
2879 }
2880
2881 return TRUE;
2882
2883 error_return:
2884 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2885 free (isymbuf);
2886 if (internal_relocs != NULL
2887 && elf_section_data (sec)->relocs != internal_relocs)
2888 free (internal_relocs);
2889 return FALSE;
2890 }
2891 \f
2892 #define ELF_ARCH bfd_arch_mmix
2893 #define ELF_MACHINE_CODE EM_MMIX
2894
2895 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2896 However, that's too much for something somewhere in the linker part of
2897 BFD; perhaps the start-address has to be a non-zero multiple of this
2898 number, or larger than this number. The symptom is that the linker
2899 complains: "warning: allocated section `.text' not in segment". We
2900 settle for 64k; the page-size used in examples is 8k.
2901 #define ELF_MAXPAGESIZE 0x10000
2902
2903 Unfortunately, this causes excessive padding in the supposedly small
2904 for-education programs that are the expected usage (where people would
2905 inspect output). We stick to 256 bytes just to have *some* default
2906 alignment. */
2907 #define ELF_MAXPAGESIZE 0x100
2908
2909 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2910 #define TARGET_BIG_NAME "elf64-mmix"
2911
2912 #define elf_info_to_howto_rel NULL
2913 #define elf_info_to_howto mmix_info_to_howto_rela
2914 #define elf_backend_relocate_section mmix_elf_relocate_section
2915 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2916 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2917
2918 #define elf_backend_link_output_symbol_hook \
2919 mmix_elf_link_output_symbol_hook
2920 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2921
2922 #define elf_backend_check_relocs mmix_elf_check_relocs
2923 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2924 #define elf_backend_omit_section_dynsym \
2925 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2926
2927 #define bfd_elf64_bfd_is_local_label_name \
2928 mmix_elf_is_local_label_name
2929
2930 #define elf_backend_may_use_rel_p 0
2931 #define elf_backend_may_use_rela_p 1
2932 #define elf_backend_default_use_rela_p 1
2933
2934 #define elf_backend_can_gc_sections 1
2935 #define elf_backend_section_from_bfd_section \
2936 mmix_elf_section_from_bfd_section
2937
2938 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2939 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2940 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2941
2942 #include "elf64-target.h"