]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-ppc.c
[PowerPC64] correct tprel offset limit
[thirdparty/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_prefix_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_vma opd_entry_value
59 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
60
61 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
62 #define TARGET_LITTLE_NAME "elf64-powerpcle"
63 #define TARGET_BIG_SYM powerpc_elf64_vec
64 #define TARGET_BIG_NAME "elf64-powerpc"
65 #define ELF_ARCH bfd_arch_powerpc
66 #define ELF_TARGET_ID PPC64_ELF_DATA
67 #define ELF_MACHINE_CODE EM_PPC64
68 #define ELF_MAXPAGESIZE 0x10000
69 #define ELF_COMMONPAGESIZE 0x1000
70 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
71 #define elf_info_to_howto ppc64_elf_info_to_howto
72
73 #define elf_backend_want_got_sym 0
74 #define elf_backend_want_plt_sym 0
75 #define elf_backend_plt_alignment 3
76 #define elf_backend_plt_not_loaded 1
77 #define elf_backend_got_header_size 8
78 #define elf_backend_want_dynrelro 1
79 #define elf_backend_can_gc_sections 1
80 #define elf_backend_can_refcount 1
81 #define elf_backend_rela_normal 1
82 #define elf_backend_dtrel_excludes_plt 1
83 #define elf_backend_default_execstack 0
84
85 #define bfd_elf64_mkobject ppc64_elf_mkobject
86 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
87 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
88 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
89 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
90 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
91 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
92 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
93 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
94 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
95
96 #define elf_backend_object_p ppc64_elf_object_p
97 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
98 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
99 #define elf_backend_write_core_note ppc64_elf_write_core_note
100 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
101 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
102 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
103 #define elf_backend_check_directives ppc64_elf_before_check_relocs
104 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
105 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
106 #define elf_backend_check_relocs ppc64_elf_check_relocs
107 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
108 #define elf_backend_gc_keep ppc64_elf_gc_keep
109 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
110 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
111 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
112 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
113 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
114 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
115 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
116 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
117 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
118 #define elf_backend_action_discarded ppc64_elf_action_discarded
119 #define elf_backend_relocate_section ppc64_elf_relocate_section
120 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
121 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
122 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
123 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
124 #define elf_backend_special_sections ppc64_elf_special_sections
125 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
126 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
127 #define elf_backend_get_reloc_section bfd_get_section_by_name
128
129 /* The name of the dynamic interpreter. This is put in the .interp
130 section. */
131 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
132
133 /* The size in bytes of an entry in the procedure linkage table. */
134 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
135 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
136
137 /* The initial size of the plt reserved for the dynamic linker. */
138 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
139
140 /* Offsets to some stack save slots. */
141 #define STK_LR 16
142 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
143 /* This one is dodgy. ELFv2 does not have a linker word, so use the
144 CR save slot. Used only by optimised __tls_get_addr call stub,
145 relying on __tls_get_addr_opt not saving CR.. */
146 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
147
148 /* TOC base pointers offset from start of TOC. */
149 #define TOC_BASE_OFF 0x8000
150 /* TOC base alignment. */
151 #define TOC_BASE_ALIGN 256
152
153 /* Offset of tp and dtp pointers from start of TLS block. */
154 #define TP_OFFSET 0x7000
155 #define DTP_OFFSET 0x8000
156
157 /* .plt call stub instructions. The normal stub is like this, but
158 sometimes the .plt entry crosses a 64k boundary and we need to
159 insert an addi to adjust r11. */
160 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
161 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
162 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
163 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
164 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
165 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
166 #define BCTR 0x4e800420 /* bctr */
167
168 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
169 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
170 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
171 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
172 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
173
174 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
175 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
176 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
177 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
178 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
179 #define BNECTR 0x4ca20420 /* bnectr+ */
180 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
181
182 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
183 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
184 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
185
186 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
187 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
188 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
189
190 #define LI_R11_0 0x39600000 /* li %r11,0 */
191 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
192 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
193 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
194 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
195 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
196 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
197 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
198 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
199 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
200 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
201 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
202 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
203 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
204 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
205 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
206 #define PADDI_R12_PC 0x0610000039800000ULL
207 #define PLD_R12_PC 0x04100000e5800000ULL
208 #define PNOP 0x0700000000000000ULL
209
210 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
211 #define GLINK_PLTRESOLVE_SIZE(htab) \
212 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
213 /* 0: */
214 /* .quad plt0-1f */
215 /* __glink: */
216 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
217 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
218 /* 1: */
219 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
220 /* ld %2,(0b-1b)(%11) */
221 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
222 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
223 /* ld %12,0(%11) */
224 /* ld %2,8(%11) */
225 /* mtctr %12 */
226 /* ld %11,16(%11) */
227 /* bctr */
228 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
229 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
230 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
231 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
232 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
233
234 /* Pad with this. */
235 #define NOP 0x60000000
236
237 /* Some other nops. */
238 #define CROR_151515 0x4def7b82
239 #define CROR_313131 0x4ffffb82
240
241 /* .glink entries for the first 32k functions are two instructions. */
242 #define LI_R0_0 0x38000000 /* li %r0,0 */
243 #define B_DOT 0x48000000 /* b . */
244
245 /* After that, we need two instructions to load the index, followed by
246 a branch. */
247 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
248 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
249
250 /* Instructions used by the save and restore reg functions. */
251 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
252 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
253 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
254 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
255 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
256 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
257 #define LI_R12_0 0x39800000 /* li %r12,0 */
258 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
259 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
260 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
261 #define BLR 0x4e800020 /* blr */
262
263 /* Since .opd is an array of descriptors and each entry will end up
264 with identical R_PPC64_RELATIVE relocs, there is really no need to
265 propagate .opd relocs; The dynamic linker should be taught to
266 relocate .opd without reloc entries. */
267 #ifndef NO_OPD_RELOCS
268 #define NO_OPD_RELOCS 0
269 #endif
270
271 #ifndef ARRAY_SIZE
272 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
273 #endif
274
275 static inline int
276 abiversion (bfd *abfd)
277 {
278 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
279 }
280
281 static inline void
282 set_abiversion (bfd *abfd, int ver)
283 {
284 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
285 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
286 }
287 \f
288 /* Relocation HOWTO's. */
289 /* Like other ELF RELA targets that don't apply multiple
290 field-altering relocations to the same localation, src_mask is
291 always zero and pcrel_offset is the same as pc_relative.
292 PowerPC can always use a zero bitpos, even when the field is not at
293 the LSB. For example, a REL24 could use rightshift=2, bisize=24
294 and bitpos=2 which matches the ABI description, or as we do here,
295 rightshift=0, bitsize=26 and bitpos=0. */
296 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
297 complain, special_func) \
298 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
299 complain_overflow_ ## complain, special_func, \
300 #type, FALSE, 0, mask, pc_relative)
301
302 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
303
304 static reloc_howto_type ppc64_elf_howto_raw[] =
305 {
306 /* This reloc does nothing. */
307 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
308 bfd_elf_generic_reloc),
309
310 /* A standard 32 bit relocation. */
311 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
312 bfd_elf_generic_reloc),
313
314 /* An absolute 26 bit branch; the lower two bits must be zero.
315 FIXME: we don't check that, we just clear them. */
316 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
317 bfd_elf_generic_reloc),
318
319 /* A standard 16 bit relocation. */
320 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A 16 bit relocation without overflow. */
324 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
325 bfd_elf_generic_reloc),
326
327 /* Bits 16-31 of an address. */
328 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
332 bits, treated as a signed number, is negative. */
333 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
334 ppc64_elf_ha_reloc),
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
339 ppc64_elf_branch_reloc),
340
341 /* An absolute 16 bit branch, for which bit 10 should be set to
342 indicate that the branch is expected to be taken. The lower two
343 bits must be zero. */
344 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
345 ppc64_elf_brtaken_reloc),
346
347 /* An absolute 16 bit branch, for which bit 10 should be set to
348 indicate that the branch is not expected to be taken. The lower
349 two bits must be zero. */
350 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
351 ppc64_elf_brtaken_reloc),
352
353 /* A relative 26 bit branch; the lower two bits must be zero. */
354 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
355 ppc64_elf_branch_reloc),
356
357 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
358 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A relative 16 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch. Bit 10 should be set to indicate that
366 the branch is expected to be taken. The lower two bits must be
367 zero. */
368 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
369 ppc64_elf_brtaken_reloc),
370
371 /* A relative 16 bit branch. Bit 10 should be set to indicate that
372 the branch is not expected to be taken. The lower two bits must
373 be zero. */
374 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
375 ppc64_elf_brtaken_reloc),
376
377 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
378 symbol. */
379 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
380 ppc64_elf_unhandled_reloc),
381
382 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
383 the symbol. */
384 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
385 ppc64_elf_unhandled_reloc),
386
387 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
388 the symbol. */
389 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
390 ppc64_elf_unhandled_reloc),
391
392 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
393 the symbol. */
394 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
395 ppc64_elf_unhandled_reloc),
396
397 /* This is used only by the dynamic linker. The symbol should exist
398 both in the object being run and in some shared library. The
399 dynamic linker copies the data addressed by the symbol from the
400 shared library into the object, because the object being
401 run has to have the data at some particular address. */
402 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
403 ppc64_elf_unhandled_reloc),
404
405 /* Like R_PPC64_ADDR64, but used when setting global offset table
406 entries. */
407 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
408 ppc64_elf_unhandled_reloc),
409
410 /* Created by the link editor. Marks a procedure linkage table
411 entry for a symbol. */
412 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
413 ppc64_elf_unhandled_reloc),
414
415 /* Used only by the dynamic linker. When the object is run, this
416 doubleword64 is set to the load address of the object, plus the
417 addend. */
418 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
419 bfd_elf_generic_reloc),
420
421 /* Like R_PPC64_ADDR32, but may be unaligned. */
422 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR16, but may be unaligned. */
426 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* 32-bit PC relative. */
430 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit relocation to the symbol's procedure linkage table. */
434 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
435 ppc64_elf_unhandled_reloc),
436
437 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
438 FIXME: R_PPC64_PLTREL32 not supported. */
439 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
440 ppc64_elf_unhandled_reloc),
441
442 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
443 the symbol. */
444 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
445 ppc64_elf_unhandled_reloc),
446
447 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
448 the symbol. */
449 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
450 ppc64_elf_unhandled_reloc),
451
452 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
453 the symbol. */
454 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
455 ppc64_elf_unhandled_reloc),
456
457 /* 16-bit section relative relocation. */
458 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
459 ppc64_elf_sectoff_reloc),
460
461 /* Like R_PPC64_SECTOFF, but no overflow warning. */
462 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
463 ppc64_elf_sectoff_reloc),
464
465 /* 16-bit upper half section relative relocation. */
466 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half adjusted section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_ha_reloc),
472
473 /* Like R_PPC64_REL24 without touching the two least significant bits. */
474 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
475 bfd_elf_generic_reloc),
476
477 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
478
479 /* A standard 64-bit relocation. */
480 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
481 bfd_elf_generic_reloc),
482
483 /* The bits 32-47 of an address. */
484 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address, plus 1 if the contents of the low
488 16 bits, treated as a signed number, is negative. */
489 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
490 ppc64_elf_ha_reloc),
491
492 /* The bits 48-63 of an address. */
493 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
494 bfd_elf_generic_reloc),
495
496 /* The bits 48-63 of an address, plus 1 if the contents of the low
497 16 bits, treated as a signed number, is negative. */
498 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
499 ppc64_elf_ha_reloc),
500
501 /* Like ADDR64, but may be unaligned. */
502 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
503 bfd_elf_generic_reloc),
504
505 /* 64-bit relative relocation. */
506 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relocation to the symbol's procedure linkage table. */
510 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
511 ppc64_elf_unhandled_reloc),
512
513 /* 64-bit PC relative relocation to the symbol's procedure linkage
514 table. */
515 /* FIXME: R_PPC64_PLTREL64 not supported. */
516 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
517 ppc64_elf_unhandled_reloc),
518
519 /* 16 bit TOC-relative relocation. */
520 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
521 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
522 ppc64_elf_toc_reloc),
523
524 /* 16 bit TOC-relative relocation without overflow. */
525 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
526 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
527 ppc64_elf_toc_reloc),
528
529 /* 16 bit TOC-relative relocation, high 16 bits. */
530 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
531 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
532 ppc64_elf_toc_reloc),
533
534 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
535 contents of the low 16 bits, treated as a signed number, is
536 negative. */
537 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
538 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
539 ppc64_elf_toc_ha_reloc),
540
541 /* 64-bit relocation; insert value of TOC base (.TOC.). */
542 /* R_PPC64_TOC 51 doubleword64 .TOC. */
543 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
544 ppc64_elf_toc64_reloc),
545
546 /* Like R_PPC64_GOT16, but also informs the link editor that the
547 value to relocate may (!) refer to a PLT entry which the link
548 editor (a) may replace with the symbol value. If the link editor
549 is unable to fully resolve the symbol, it may (b) create a PLT
550 entry and store the address to the new PLT entry in the GOT.
551 This permits lazy resolution of function symbols at run time.
552 The link editor may also skip all of this and just (c) emit a
553 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
554 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
555 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
556 ppc64_elf_unhandled_reloc),
557
558 /* Like R_PPC64_PLTGOT16, but without overflow. */
559 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
560 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
561 ppc64_elf_unhandled_reloc),
562
563 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
564 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
565 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
566 ppc64_elf_unhandled_reloc),
567
568 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
569 1 if the contents of the low 16 bits, treated as a signed number,
570 is negative. */
571 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
572 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
573 ppc64_elf_unhandled_reloc),
574
575 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
576 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
577 bfd_elf_generic_reloc),
578
579 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
584 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
585 ppc64_elf_unhandled_reloc),
586
587 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
596 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
597 ppc64_elf_sectoff_reloc),
598
599 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
604 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
605 ppc64_elf_toc_reloc),
606
607 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
612 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
613 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
614 ppc64_elf_unhandled_reloc),
615
616 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
617 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
618 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
619 ppc64_elf_unhandled_reloc),
620
621 /* Marker relocs for TLS. */
622 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
623 bfd_elf_generic_reloc),
624
625 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
626 bfd_elf_generic_reloc),
627
628 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
629 bfd_elf_generic_reloc),
630
631 /* Marker reloc for optimizing r2 save in prologue rather than on
632 each plt call stub. */
633 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
634 bfd_elf_generic_reloc),
635
636 /* Marker relocs on inline plt call instructions. */
637 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
641 bfd_elf_generic_reloc),
642
643 /* Computes the load module index of the load module that contains the
644 definition of its TLS sym. */
645 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
646 ppc64_elf_unhandled_reloc),
647
648 /* Computes a dtv-relative displacement, the difference between the value
649 of sym+add and the base address of the thread-local storage block that
650 contains the definition of sym, minus 0x8000. */
651 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
652 ppc64_elf_unhandled_reloc),
653
654 /* A 16 bit dtprel reloc. */
655 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
656 ppc64_elf_unhandled_reloc),
657
658 /* Like DTPREL16, but no overflow. */
659 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16_LO, but next higher group of 16 bits. */
663 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_HI, but adjust for low 16 bits. */
667 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16, but for insns with a DS field. */
687 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16_DS, but no overflow. */
691 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
692 ppc64_elf_unhandled_reloc),
693
694 /* Computes a tp-relative displacement, the difference between the value of
695 sym+add and the value of the thread pointer (r13). */
696 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
697 ppc64_elf_unhandled_reloc),
698
699 /* A 16 bit tprel reloc. */
700 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
701 ppc64_elf_unhandled_reloc),
702
703 /* Like TPREL16, but no overflow. */
704 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16_LO, but next higher group of 16 bits. */
708 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_HI, but adjust for low 16 bits. */
712 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16, but for insns with a DS field. */
732 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16_DS, but no overflow. */
736 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
737 ppc64_elf_unhandled_reloc),
738
739 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
740 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
741 to the first entry relative to the TOC base (r2). */
742 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
743 ppc64_elf_unhandled_reloc),
744
745 /* Like GOT_TLSGD16, but no overflow. */
746 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
750 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
758 with values (sym+add)@dtpmod and zero, and computes the offset to the
759 first entry relative to the TOC base (r2). */
760 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
761 ppc64_elf_unhandled_reloc),
762
763 /* Like GOT_TLSLD16, but no overflow. */
764 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
768 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
776 the offset to the entry relative to the TOC base (r2). */
777 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
778 ppc64_elf_unhandled_reloc),
779
780 /* Like GOT_DTPREL16_DS, but no overflow. */
781 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
785 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
793 offset to the entry relative to the TOC base (r2). */
794 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
795 ppc64_elf_unhandled_reloc),
796
797 /* Like GOT_TPREL16_DS, but no overflow. */
798 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
802 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
810 ppc64_elf_unhandled_reloc),
811
812 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
813 bfd_elf_generic_reloc),
814
815 /* A 16 bit relative relocation. */
816 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation without overflow. */
820 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
821 bfd_elf_generic_reloc),
822
823 /* The high order 16 bits of a relative address. */
824 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address, plus 1 if the contents of
828 the low 16 bits, treated as a signed number, is negative. */
829 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
830 ppc64_elf_ha_reloc),
831
832 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
833 bfd_elf_generic_reloc),
834
835 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
836 ppc64_elf_ha_reloc),
837
838 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
839 bfd_elf_generic_reloc),
840
841 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
842 ppc64_elf_ha_reloc),
843
844 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
845 bfd_elf_generic_reloc),
846
847 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
848 ppc64_elf_ha_reloc),
849
850 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
851 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
852 ppc64_elf_ha_reloc),
853
854 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
855 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* Like R_PPC64_ADDR16_HI, but no overflow. */
859 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
860 bfd_elf_generic_reloc),
861
862 /* Like R_PPC64_ADDR16_HA, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
864 ppc64_elf_ha_reloc),
865
866 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
867 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_unhandled_reloc),
869
870 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_TPREL16_HI, but no overflow. */
875 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HA, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Marker reloc on ELFv2 large-model function entry. */
883 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
884 bfd_elf_generic_reloc),
885
886 /* Like ADDR64, but use local entry point of function. */
887 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
891 bfd_elf_generic_reloc),
892
893 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
894 bfd_elf_generic_reloc),
895
896 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
897 bfd_elf_generic_reloc),
898
899 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
900 ppc64_elf_prefix_reloc),
901
902 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
903 ppc64_elf_prefix_reloc),
904
905 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
906 ppc64_elf_prefix_reloc),
907
908 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
909 ppc64_elf_prefix_reloc),
910
911 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
912 ppc64_elf_prefix_reloc),
913
914 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
915 ppc64_elf_unhandled_reloc),
916
917 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
918 ppc64_elf_unhandled_reloc),
919
920 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
921 ppc64_elf_unhandled_reloc),
922
923 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
924 bfd_elf_generic_reloc),
925
926 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
927 ppc64_elf_ha_reloc),
928
929 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
930 bfd_elf_generic_reloc),
931
932 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
933 ppc64_elf_ha_reloc),
934
935 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
936 bfd_elf_generic_reloc),
937
938 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
939 ppc64_elf_ha_reloc),
940
941 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
942 bfd_elf_generic_reloc),
943
944 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
945 ppc64_elf_ha_reloc),
946
947 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
948 ppc64_elf_prefix_reloc),
949
950 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
951 ppc64_elf_prefix_reloc),
952
953 /* GNU extension to record C++ vtable hierarchy. */
954 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
955 NULL),
956
957 /* GNU extension to record C++ vtable member usage. */
958 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
959 NULL),
960 };
961
962 \f
963 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
964 be done. */
965
966 static void
967 ppc_howto_init (void)
968 {
969 unsigned int i, type;
970
971 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
972 {
973 type = ppc64_elf_howto_raw[i].type;
974 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
975 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
976 }
977 }
978
979 static reloc_howto_type *
980 ppc64_elf_reloc_type_lookup (bfd *abfd,
981 bfd_reloc_code_real_type code)
982 {
983 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
984
985 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
986 /* Initialize howto table if needed. */
987 ppc_howto_init ();
988
989 switch (code)
990 {
991 default:
992 /* xgettext:c-format */
993 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
994 (int) code);
995 bfd_set_error (bfd_error_bad_value);
996 return NULL;
997
998 case BFD_RELOC_NONE: r = R_PPC64_NONE;
999 break;
1000 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1001 break;
1002 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1003 break;
1004 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1005 break;
1006 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1007 break;
1008 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1009 break;
1010 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1011 break;
1012 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1013 break;
1014 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1015 break;
1016 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1017 break;
1018 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1019 break;
1020 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1021 break;
1022 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1023 break;
1024 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1025 break;
1026 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1027 break;
1028 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1029 break;
1030 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1031 break;
1032 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1033 break;
1034 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1035 break;
1036 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1037 break;
1038 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1039 break;
1040 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1041 break;
1042 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1043 break;
1044 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1045 break;
1046 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1047 break;
1048 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1049 break;
1050 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1051 break;
1052 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1053 break;
1054 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1055 break;
1056 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1057 break;
1058 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1059 break;
1060 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1061 break;
1062 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1063 break;
1064 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1065 break;
1066 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1067 break;
1068 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1069 break;
1070 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1071 break;
1072 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1073 break;
1074 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1075 break;
1076 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1077 break;
1078 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1079 break;
1080 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1081 break;
1082 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1083 break;
1084 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1085 break;
1086 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1087 break;
1088 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1089 break;
1090 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1091 break;
1092 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1093 break;
1094 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1095 break;
1096 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1097 break;
1098 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1099 break;
1100 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1101 break;
1102 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1103 break;
1104 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1105 break;
1106 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1107 break;
1108 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1109 break;
1110 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1111 break;
1112 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1113 break;
1114 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1115 break;
1116 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1117 break;
1118 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1119 break;
1120 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1121 break;
1122 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1123 break;
1124 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1125 break;
1126 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1127 break;
1128 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1129 break;
1130 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1131 break;
1132 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1133 break;
1134 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1135 break;
1136 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1137 break;
1138 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1139 break;
1140 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1141 break;
1142 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1143 break;
1144 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1145 break;
1146 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1147 break;
1148 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1149 break;
1150 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1151 break;
1152 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1153 break;
1154 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1155 break;
1156 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1157 break;
1158 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1159 break;
1160 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1161 break;
1162 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1163 break;
1164 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1165 break;
1166 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1167 break;
1168 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1169 break;
1170 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1171 break;
1172 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1173 break;
1174 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1175 break;
1176 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1177 break;
1178 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1179 break;
1180 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1181 break;
1182 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1183 break;
1184 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1185 break;
1186 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1187 break;
1188 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1189 break;
1190 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1191 break;
1192 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1193 break;
1194 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1195 break;
1196 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1197 break;
1198 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1199 break;
1200 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1201 break;
1202 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1203 break;
1204 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1205 break;
1206 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1207 break;
1208 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1209 break;
1210 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1211 break;
1212 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1213 break;
1214 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1215 break;
1216 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1217 break;
1218 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1219 break;
1220 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1221 break;
1222 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1223 break;
1224 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1225 break;
1226 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1227 break;
1228 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1229 break;
1230 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1231 break;
1232 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1233 break;
1234 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1235 break;
1236 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1237 break;
1238 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1239 break;
1240 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1241 break;
1242 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1243 break;
1244 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1245 break;
1246 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1247 break;
1248 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1249 break;
1250 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1251 break;
1252 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1253 break;
1254 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1255 break;
1256 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1257 break;
1258 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1259 break;
1260 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1261 break;
1262 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1263 break;
1264 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1265 break;
1266 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1267 break;
1268 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1269 break;
1270 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1271 break;
1272 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1273 break;
1274 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1275 break;
1276 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1277 break;
1278 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1279 break;
1280 }
1281
1282 return ppc64_elf_howto_table[r];
1283 };
1284
1285 static reloc_howto_type *
1286 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1287 const char *r_name)
1288 {
1289 unsigned int i;
1290
1291 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1292 if (ppc64_elf_howto_raw[i].name != NULL
1293 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1294 return &ppc64_elf_howto_raw[i];
1295
1296 return NULL;
1297 }
1298
1299 /* Set the howto pointer for a PowerPC ELF reloc. */
1300
1301 static bfd_boolean
1302 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1303 Elf_Internal_Rela *dst)
1304 {
1305 unsigned int type;
1306
1307 /* Initialize howto table if needed. */
1308 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1309 ppc_howto_init ();
1310
1311 type = ELF64_R_TYPE (dst->r_info);
1312 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1313 {
1314 /* xgettext:c-format */
1315 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1316 abfd, type);
1317 bfd_set_error (bfd_error_bad_value);
1318 return FALSE;
1319 }
1320 cache_ptr->howto = ppc64_elf_howto_table[type];
1321 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1322 {
1323 /* xgettext:c-format */
1324 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1325 abfd, type);
1326 bfd_set_error (bfd_error_bad_value);
1327 return FALSE;
1328 }
1329
1330 return TRUE;
1331 }
1332
1333 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1334
1335 static bfd_reloc_status_type
1336 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1337 void *data, asection *input_section,
1338 bfd *output_bfd, char **error_message)
1339 {
1340 enum elf_ppc64_reloc_type r_type;
1341 long insn;
1342 bfd_size_type octets;
1343 bfd_vma value;
1344
1345 /* If this is a relocatable link (output_bfd test tells us), just
1346 call the generic function. Any adjustment will be done at final
1347 link time. */
1348 if (output_bfd != NULL)
1349 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1350 input_section, output_bfd, error_message);
1351
1352 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1353 We won't actually be using the low bits, so trashing them
1354 doesn't matter. */
1355 r_type = reloc_entry->howto->type;
1356 if (r_type == R_PPC64_ADDR16_HIGHERA34
1357 || r_type == R_PPC64_ADDR16_HIGHESTA34
1358 || r_type == R_PPC64_REL16_HIGHERA34
1359 || r_type == R_PPC64_REL16_HIGHESTA34)
1360 reloc_entry->addend += 1ULL << 33;
1361 else
1362 reloc_entry->addend += 1U << 15;
1363 if (r_type != R_PPC64_REL16DX_HA)
1364 return bfd_reloc_continue;
1365
1366 value = 0;
1367 if (!bfd_is_com_section (symbol->section))
1368 value = symbol->value;
1369 value += (reloc_entry->addend
1370 + symbol->section->output_offset
1371 + symbol->section->output_section->vma);
1372 value -= (reloc_entry->address
1373 + input_section->output_offset
1374 + input_section->output_section->vma);
1375 value = (bfd_signed_vma) value >> 16;
1376
1377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1379 insn &= ~0x1fffc1;
1380 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1381 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1382 if (value + 0x8000 > 0xffff)
1383 return bfd_reloc_overflow;
1384 return bfd_reloc_ok;
1385 }
1386
1387 static bfd_reloc_status_type
1388 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1389 void *data, asection *input_section,
1390 bfd *output_bfd, char **error_message)
1391 {
1392 if (output_bfd != NULL)
1393 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1394 input_section, output_bfd, error_message);
1395
1396 if (strcmp (symbol->section->name, ".opd") == 0
1397 && (symbol->section->owner->flags & DYNAMIC) == 0)
1398 {
1399 bfd_vma dest = opd_entry_value (symbol->section,
1400 symbol->value + reloc_entry->addend,
1401 NULL, NULL, FALSE);
1402 if (dest != (bfd_vma) -1)
1403 reloc_entry->addend = dest - (symbol->value
1404 + symbol->section->output_section->vma
1405 + symbol->section->output_offset);
1406 }
1407 else
1408 {
1409 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1410
1411 if (symbol->section->owner != abfd
1412 && symbol->section->owner != NULL
1413 && abiversion (symbol->section->owner) >= 2)
1414 {
1415 unsigned int i;
1416
1417 for (i = 0; i < symbol->section->owner->symcount; ++i)
1418 {
1419 asymbol *symdef = symbol->section->owner->outsymbols[i];
1420
1421 if (strcmp (symdef->name, symbol->name) == 0)
1422 {
1423 elfsym = (elf_symbol_type *) symdef;
1424 break;
1425 }
1426 }
1427 }
1428 reloc_entry->addend
1429 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1430 }
1431 return bfd_reloc_continue;
1432 }
1433
1434 static bfd_reloc_status_type
1435 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1436 void *data, asection *input_section,
1437 bfd *output_bfd, char **error_message)
1438 {
1439 long insn;
1440 enum elf_ppc64_reloc_type r_type;
1441 bfd_size_type octets;
1442 /* Assume 'at' branch hints. */
1443 bfd_boolean is_isa_v2 = TRUE;
1444
1445 /* If this is a relocatable link (output_bfd test tells us), just
1446 call the generic function. Any adjustment will be done at final
1447 link time. */
1448 if (output_bfd != NULL)
1449 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1450 input_section, output_bfd, error_message);
1451
1452 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1453 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1454 insn &= ~(0x01 << 21);
1455 r_type = reloc_entry->howto->type;
1456 if (r_type == R_PPC64_ADDR14_BRTAKEN
1457 || r_type == R_PPC64_REL14_BRTAKEN)
1458 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1459
1460 if (is_isa_v2)
1461 {
1462 /* Set 'a' bit. This is 0b00010 in BO field for branch
1463 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1464 for branch on CTR insns (BO == 1a00t or 1a01t). */
1465 if ((insn & (0x14 << 21)) == (0x04 << 21))
1466 insn |= 0x02 << 21;
1467 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1468 insn |= 0x08 << 21;
1469 else
1470 goto out;
1471 }
1472 else
1473 {
1474 bfd_vma target = 0;
1475 bfd_vma from;
1476
1477 if (!bfd_is_com_section (symbol->section))
1478 target = symbol->value;
1479 target += symbol->section->output_section->vma;
1480 target += symbol->section->output_offset;
1481 target += reloc_entry->addend;
1482
1483 from = (reloc_entry->address
1484 + input_section->output_offset
1485 + input_section->output_section->vma);
1486
1487 /* Invert 'y' bit if not the default. */
1488 if ((bfd_signed_vma) (target - from) < 0)
1489 insn ^= 0x01 << 21;
1490 }
1491 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1492 out:
1493 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1494 input_section, output_bfd, error_message);
1495 }
1496
1497 static bfd_reloc_status_type
1498 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1499 void *data, asection *input_section,
1500 bfd *output_bfd, char **error_message)
1501 {
1502 /* If this is a relocatable link (output_bfd test tells us), just
1503 call the generic function. Any adjustment will be done at final
1504 link time. */
1505 if (output_bfd != NULL)
1506 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1507 input_section, output_bfd, error_message);
1508
1509 /* Subtract the symbol section base address. */
1510 reloc_entry->addend -= symbol->section->output_section->vma;
1511 return bfd_reloc_continue;
1512 }
1513
1514 static bfd_reloc_status_type
1515 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1516 void *data, asection *input_section,
1517 bfd *output_bfd, char **error_message)
1518 {
1519 /* If this is a relocatable link (output_bfd test tells us), just
1520 call the generic function. Any adjustment will be done at final
1521 link time. */
1522 if (output_bfd != NULL)
1523 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1524 input_section, output_bfd, error_message);
1525
1526 /* Subtract the symbol section base address. */
1527 reloc_entry->addend -= symbol->section->output_section->vma;
1528
1529 /* Adjust the addend for sign extension of the low 16 bits. */
1530 reloc_entry->addend += 0x8000;
1531 return bfd_reloc_continue;
1532 }
1533
1534 static bfd_reloc_status_type
1535 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1536 void *data, asection *input_section,
1537 bfd *output_bfd, char **error_message)
1538 {
1539 bfd_vma TOCstart;
1540
1541 /* If this is a relocatable link (output_bfd test tells us), just
1542 call the generic function. Any adjustment will be done at final
1543 link time. */
1544 if (output_bfd != NULL)
1545 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1546 input_section, output_bfd, error_message);
1547
1548 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1549 if (TOCstart == 0)
1550 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1551
1552 /* Subtract the TOC base address. */
1553 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1554 return bfd_reloc_continue;
1555 }
1556
1557 static bfd_reloc_status_type
1558 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1559 void *data, asection *input_section,
1560 bfd *output_bfd, char **error_message)
1561 {
1562 bfd_vma TOCstart;
1563
1564 /* If this is a relocatable link (output_bfd test tells us), just
1565 call the generic function. Any adjustment will be done at final
1566 link time. */
1567 if (output_bfd != NULL)
1568 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1569 input_section, output_bfd, error_message);
1570
1571 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1572 if (TOCstart == 0)
1573 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1574
1575 /* Subtract the TOC base address. */
1576 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1577
1578 /* Adjust the addend for sign extension of the low 16 bits. */
1579 reloc_entry->addend += 0x8000;
1580 return bfd_reloc_continue;
1581 }
1582
1583 static bfd_reloc_status_type
1584 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1585 void *data, asection *input_section,
1586 bfd *output_bfd, char **error_message)
1587 {
1588 bfd_vma TOCstart;
1589 bfd_size_type octets;
1590
1591 /* If this is a relocatable link (output_bfd test tells us), just
1592 call the generic function. Any adjustment will be done at final
1593 link time. */
1594 if (output_bfd != NULL)
1595 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1596 input_section, output_bfd, error_message);
1597
1598 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1599 if (TOCstart == 0)
1600 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1601
1602 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1603 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1604 return bfd_reloc_ok;
1605 }
1606
1607 static bfd_reloc_status_type
1608 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1609 void *data, asection *input_section,
1610 bfd *output_bfd, char **error_message)
1611 {
1612 uint64_t insn;
1613 bfd_vma targ;
1614
1615 if (output_bfd != NULL)
1616 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1617 input_section, output_bfd, error_message);
1618
1619 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1620 insn <<= 32;
1621 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1622
1623 targ = (symbol->section->output_section->vma
1624 + symbol->section->output_offset
1625 + reloc_entry->addend);
1626 if (!bfd_is_com_section (symbol->section))
1627 targ += symbol->value;
1628 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1629 targ += 1ULL << 33;
1630 if (reloc_entry->howto->pc_relative)
1631 {
1632 bfd_vma from = (reloc_entry->address
1633 + input_section->output_offset
1634 + input_section->output_section->vma);
1635 targ -=from;
1636 }
1637 targ >>= reloc_entry->howto->rightshift;
1638 insn &= ~reloc_entry->howto->dst_mask;
1639 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1640 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1641 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1642 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1643 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1644 >= 1ULL << reloc_entry->howto->bitsize))
1645 return bfd_reloc_overflow;
1646 return bfd_reloc_ok;
1647 }
1648
1649 static bfd_reloc_status_type
1650 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1651 void *data, asection *input_section,
1652 bfd *output_bfd, char **error_message)
1653 {
1654 /* If this is a relocatable link (output_bfd test tells us), just
1655 call the generic function. Any adjustment will be done at final
1656 link time. */
1657 if (output_bfd != NULL)
1658 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1659 input_section, output_bfd, error_message);
1660
1661 if (error_message != NULL)
1662 {
1663 static char buf[60];
1664 sprintf (buf, "generic linker can't handle %s",
1665 reloc_entry->howto->name);
1666 *error_message = buf;
1667 }
1668 return bfd_reloc_dangerous;
1669 }
1670
1671 /* Track GOT entries needed for a given symbol. We might need more
1672 than one got entry per symbol. */
1673 struct got_entry
1674 {
1675 struct got_entry *next;
1676
1677 /* The symbol addend that we'll be placing in the GOT. */
1678 bfd_vma addend;
1679
1680 /* Unlike other ELF targets, we use separate GOT entries for the same
1681 symbol referenced from different input files. This is to support
1682 automatic multiple TOC/GOT sections, where the TOC base can vary
1683 from one input file to another. After partitioning into TOC groups
1684 we merge entries within the group.
1685
1686 Point to the BFD owning this GOT entry. */
1687 bfd *owner;
1688
1689 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1690 TLS_TPREL or TLS_DTPREL for tls entries. */
1691 unsigned char tls_type;
1692
1693 /* Non-zero if got.ent points to real entry. */
1694 unsigned char is_indirect;
1695
1696 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1697 union
1698 {
1699 bfd_signed_vma refcount;
1700 bfd_vma offset;
1701 struct got_entry *ent;
1702 } got;
1703 };
1704
1705 /* The same for PLT. */
1706 struct plt_entry
1707 {
1708 struct plt_entry *next;
1709
1710 bfd_vma addend;
1711
1712 union
1713 {
1714 bfd_signed_vma refcount;
1715 bfd_vma offset;
1716 } plt;
1717 };
1718
1719 struct ppc64_elf_obj_tdata
1720 {
1721 struct elf_obj_tdata elf;
1722
1723 /* Shortcuts to dynamic linker sections. */
1724 asection *got;
1725 asection *relgot;
1726
1727 /* Used during garbage collection. We attach global symbols defined
1728 on removed .opd entries to this section so that the sym is removed. */
1729 asection *deleted_section;
1730
1731 /* TLS local dynamic got entry handling. Support for multiple GOT
1732 sections means we potentially need one of these for each input bfd. */
1733 struct got_entry tlsld_got;
1734
1735 union
1736 {
1737 /* A copy of relocs before they are modified for --emit-relocs. */
1738 Elf_Internal_Rela *relocs;
1739
1740 /* Section contents. */
1741 bfd_byte *contents;
1742 } opd;
1743
1744 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1745 the reloc to be in the range -32768 to 32767. */
1746 unsigned int has_small_toc_reloc : 1;
1747
1748 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1749 instruction not one we handle. */
1750 unsigned int unexpected_toc_insn : 1;
1751
1752 /* Set if got relocs that can be optimised are present in this file. */
1753 unsigned int has_gotrel : 1;
1754 };
1755
1756 #define ppc64_elf_tdata(bfd) \
1757 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1758
1759 #define ppc64_tlsld_got(bfd) \
1760 (&ppc64_elf_tdata (bfd)->tlsld_got)
1761
1762 #define is_ppc64_elf(bfd) \
1763 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1764 && elf_object_id (bfd) == PPC64_ELF_DATA)
1765
1766 /* Override the generic function because we store some extras. */
1767
1768 static bfd_boolean
1769 ppc64_elf_mkobject (bfd *abfd)
1770 {
1771 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1772 PPC64_ELF_DATA);
1773 }
1774
1775 /* Fix bad default arch selected for a 64 bit input bfd when the
1776 default is 32 bit. Also select arch based on apuinfo. */
1777
1778 static bfd_boolean
1779 ppc64_elf_object_p (bfd *abfd)
1780 {
1781 if (!abfd->arch_info->the_default)
1782 return TRUE;
1783
1784 if (abfd->arch_info->bits_per_word == 32)
1785 {
1786 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1787
1788 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1789 {
1790 /* Relies on arch after 32 bit default being 64 bit default. */
1791 abfd->arch_info = abfd->arch_info->next;
1792 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1793 }
1794 }
1795 return _bfd_elf_ppc_set_arch (abfd);
1796 }
1797
1798 /* Support for core dump NOTE sections. */
1799
1800 static bfd_boolean
1801 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1802 {
1803 size_t offset, size;
1804
1805 if (note->descsz != 504)
1806 return FALSE;
1807
1808 /* pr_cursig */
1809 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1810
1811 /* pr_pid */
1812 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1813
1814 /* pr_reg */
1815 offset = 112;
1816 size = 384;
1817
1818 /* Make a ".reg/999" section. */
1819 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1820 size, note->descpos + offset);
1821 }
1822
1823 static bfd_boolean
1824 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1825 {
1826 if (note->descsz != 136)
1827 return FALSE;
1828
1829 elf_tdata (abfd)->core->pid
1830 = bfd_get_32 (abfd, note->descdata + 24);
1831 elf_tdata (abfd)->core->program
1832 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1833 elf_tdata (abfd)->core->command
1834 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1835
1836 return TRUE;
1837 }
1838
1839 static char *
1840 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1841 ...)
1842 {
1843 switch (note_type)
1844 {
1845 default:
1846 return NULL;
1847
1848 case NT_PRPSINFO:
1849 {
1850 char data[136] ATTRIBUTE_NONSTRING;
1851 va_list ap;
1852
1853 va_start (ap, note_type);
1854 memset (data, 0, sizeof (data));
1855 strncpy (data + 40, va_arg (ap, const char *), 16);
1856 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1857 DIAGNOSTIC_PUSH;
1858 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1859 -Wstringop-truncation:
1860 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1861 */
1862 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1863 #endif
1864 strncpy (data + 56, va_arg (ap, const char *), 80);
1865 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1866 DIAGNOSTIC_POP;
1867 #endif
1868 va_end (ap);
1869 return elfcore_write_note (abfd, buf, bufsiz,
1870 "CORE", note_type, data, sizeof (data));
1871 }
1872
1873 case NT_PRSTATUS:
1874 {
1875 char data[504];
1876 va_list ap;
1877 long pid;
1878 int cursig;
1879 const void *greg;
1880
1881 va_start (ap, note_type);
1882 memset (data, 0, 112);
1883 pid = va_arg (ap, long);
1884 bfd_put_32 (abfd, pid, data + 32);
1885 cursig = va_arg (ap, int);
1886 bfd_put_16 (abfd, cursig, data + 12);
1887 greg = va_arg (ap, const void *);
1888 memcpy (data + 112, greg, 384);
1889 memset (data + 496, 0, 8);
1890 va_end (ap);
1891 return elfcore_write_note (abfd, buf, bufsiz,
1892 "CORE", note_type, data, sizeof (data));
1893 }
1894 }
1895 }
1896
1897 /* Add extra PPC sections. */
1898
1899 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1900 {
1901 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1902 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1903 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1904 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1905 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1906 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1907 { NULL, 0, 0, 0, 0 }
1908 };
1909
1910 enum _ppc64_sec_type {
1911 sec_normal = 0,
1912 sec_opd = 1,
1913 sec_toc = 2
1914 };
1915
1916 struct _ppc64_elf_section_data
1917 {
1918 struct bfd_elf_section_data elf;
1919
1920 union
1921 {
1922 /* An array with one entry for each opd function descriptor,
1923 and some spares since opd entries may be either 16 or 24 bytes. */
1924 #define OPD_NDX(OFF) ((OFF) >> 4)
1925 struct _opd_sec_data
1926 {
1927 /* Points to the function code section for local opd entries. */
1928 asection **func_sec;
1929
1930 /* After editing .opd, adjust references to opd local syms. */
1931 long *adjust;
1932 } opd;
1933
1934 /* An array for toc sections, indexed by offset/8. */
1935 struct _toc_sec_data
1936 {
1937 /* Specifies the relocation symbol index used at a given toc offset. */
1938 unsigned *symndx;
1939
1940 /* And the relocation addend. */
1941 bfd_vma *add;
1942 } toc;
1943 } u;
1944
1945 enum _ppc64_sec_type sec_type:2;
1946
1947 /* Flag set when small branches are detected. Used to
1948 select suitable defaults for the stub group size. */
1949 unsigned int has_14bit_branch:1;
1950
1951 /* Flag set when PLTCALL relocs are detected. */
1952 unsigned int has_pltcall:1;
1953
1954 /* Flag set when section has GOT relocations that can be optimised. */
1955 unsigned int has_gotrel:1;
1956 };
1957
1958 #define ppc64_elf_section_data(sec) \
1959 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1960
1961 static bfd_boolean
1962 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
1963 {
1964 if (!sec->used_by_bfd)
1965 {
1966 struct _ppc64_elf_section_data *sdata;
1967 bfd_size_type amt = sizeof (*sdata);
1968
1969 sdata = bfd_zalloc (abfd, amt);
1970 if (sdata == NULL)
1971 return FALSE;
1972 sec->used_by_bfd = sdata;
1973 }
1974
1975 return _bfd_elf_new_section_hook (abfd, sec);
1976 }
1977
1978 static struct _opd_sec_data *
1979 get_opd_info (asection * sec)
1980 {
1981 if (sec != NULL
1982 && ppc64_elf_section_data (sec) != NULL
1983 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
1984 return &ppc64_elf_section_data (sec)->u.opd;
1985 return NULL;
1986 }
1987 \f
1988 /* Parameters for the qsort hook. */
1989 static bfd_boolean synthetic_relocatable;
1990 static asection *synthetic_opd;
1991
1992 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
1993
1994 static int
1995 compare_symbols (const void *ap, const void *bp)
1996 {
1997 const asymbol *a = *(const asymbol **) ap;
1998 const asymbol *b = *(const asymbol **) bp;
1999
2000 /* Section symbols first. */
2001 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2002 return -1;
2003 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2004 return 1;
2005
2006 /* then .opd symbols. */
2007 if (synthetic_opd != NULL)
2008 {
2009 if (strcmp (a->section->name, ".opd") == 0
2010 && strcmp (b->section->name, ".opd") != 0)
2011 return -1;
2012 if (strcmp (a->section->name, ".opd") != 0
2013 && strcmp (b->section->name, ".opd") == 0)
2014 return 1;
2015 }
2016
2017 /* then other code symbols. */
2018 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2019 == (SEC_CODE | SEC_ALLOC))
2020 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2021 != (SEC_CODE | SEC_ALLOC)))
2022 return -1;
2023
2024 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2025 != (SEC_CODE | SEC_ALLOC))
2026 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2027 == (SEC_CODE | SEC_ALLOC)))
2028 return 1;
2029
2030 if (synthetic_relocatable)
2031 {
2032 if (a->section->id < b->section->id)
2033 return -1;
2034
2035 if (a->section->id > b->section->id)
2036 return 1;
2037 }
2038
2039 if (a->value + a->section->vma < b->value + b->section->vma)
2040 return -1;
2041
2042 if (a->value + a->section->vma > b->value + b->section->vma)
2043 return 1;
2044
2045 /* For syms with the same value, prefer strong dynamic global function
2046 syms over other syms. */
2047 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2048 return -1;
2049
2050 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2051 return 1;
2052
2053 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2054 return -1;
2055
2056 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2057 return 1;
2058
2059 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2060 return -1;
2061
2062 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2063 return 1;
2064
2065 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2066 return -1;
2067
2068 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2069 return 1;
2070
2071 return a > b;
2072 }
2073
2074 /* Search SYMS for a symbol of the given VALUE. */
2075
2076 static asymbol *
2077 sym_exists_at (asymbol **syms, long lo, long hi, unsigned int id, bfd_vma value)
2078 {
2079 long mid;
2080
2081 if (id == (unsigned) -1)
2082 {
2083 while (lo < hi)
2084 {
2085 mid = (lo + hi) >> 1;
2086 if (syms[mid]->value + syms[mid]->section->vma < value)
2087 lo = mid + 1;
2088 else if (syms[mid]->value + syms[mid]->section->vma > value)
2089 hi = mid;
2090 else
2091 return syms[mid];
2092 }
2093 }
2094 else
2095 {
2096 while (lo < hi)
2097 {
2098 mid = (lo + hi) >> 1;
2099 if (syms[mid]->section->id < id)
2100 lo = mid + 1;
2101 else if (syms[mid]->section->id > id)
2102 hi = mid;
2103 else if (syms[mid]->value < value)
2104 lo = mid + 1;
2105 else if (syms[mid]->value > value)
2106 hi = mid;
2107 else
2108 return syms[mid];
2109 }
2110 }
2111 return NULL;
2112 }
2113
2114 static bfd_boolean
2115 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2116 {
2117 bfd_vma vma = *(bfd_vma *) ptr;
2118 return ((section->flags & SEC_ALLOC) != 0
2119 && section->vma <= vma
2120 && vma < section->vma + section->size);
2121 }
2122
2123 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2124 entry syms. Also generate @plt symbols for the glink branch table.
2125 Returns count of synthetic symbols in RET or -1 on error. */
2126
2127 static long
2128 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2129 long static_count, asymbol **static_syms,
2130 long dyn_count, asymbol **dyn_syms,
2131 asymbol **ret)
2132 {
2133 asymbol *s;
2134 size_t i, j, count;
2135 char *names;
2136 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2137 asection *opd = NULL;
2138 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2139 asymbol **syms;
2140 int abi = abiversion (abfd);
2141
2142 *ret = NULL;
2143
2144 if (abi < 2)
2145 {
2146 opd = bfd_get_section_by_name (abfd, ".opd");
2147 if (opd == NULL && abi == 1)
2148 return 0;
2149 }
2150
2151 syms = NULL;
2152 codesecsym = 0;
2153 codesecsymend = 0;
2154 secsymend = 0;
2155 opdsymend = 0;
2156 symcount = 0;
2157 if (opd != NULL)
2158 {
2159 symcount = static_count;
2160 if (!relocatable)
2161 symcount += dyn_count;
2162 if (symcount == 0)
2163 return 0;
2164
2165 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2166 if (syms == NULL)
2167 return -1;
2168
2169 if (!relocatable && static_count != 0 && dyn_count != 0)
2170 {
2171 /* Use both symbol tables. */
2172 memcpy (syms, static_syms, static_count * sizeof (*syms));
2173 memcpy (syms + static_count, dyn_syms,
2174 (dyn_count + 1) * sizeof (*syms));
2175 }
2176 else if (!relocatable && static_count == 0)
2177 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2178 else
2179 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2180
2181 /* Trim uninteresting symbols. Interesting symbols are section,
2182 function, and notype symbols. */
2183 for (i = 0, j = 0; i < symcount; ++i)
2184 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2185 | BSF_RELC | BSF_SRELC)) == 0)
2186 syms[j++] = syms[i];
2187 symcount = j;
2188
2189 synthetic_relocatable = relocatable;
2190 synthetic_opd = opd;
2191 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2192
2193 if (!relocatable && symcount > 1)
2194 {
2195 /* Trim duplicate syms, since we may have merged the normal
2196 and dynamic symbols. Actually, we only care about syms
2197 that have different values, so trim any with the same
2198 value. Don't consider ifunc and ifunc resolver symbols
2199 duplicates however, because GDB wants to know whether a
2200 text symbol is an ifunc resolver. */
2201 for (i = 1, j = 1; i < symcount; ++i)
2202 {
2203 const asymbol *s0 = syms[i - 1];
2204 const asymbol *s1 = syms[i];
2205
2206 if ((s0->value + s0->section->vma
2207 != s1->value + s1->section->vma)
2208 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2209 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2210 syms[j++] = syms[i];
2211 }
2212 symcount = j;
2213 }
2214
2215 i = 0;
2216 /* Note that here and in compare_symbols we can't compare opd and
2217 sym->section directly. With separate debug info files, the
2218 symbols will be extracted from the debug file while abfd passed
2219 to this function is the real binary. */
2220 if (strcmp (syms[i]->section->name, ".opd") == 0)
2221 ++i;
2222 codesecsym = i;
2223
2224 for (; i < symcount; ++i)
2225 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2226 | SEC_THREAD_LOCAL))
2227 != (SEC_CODE | SEC_ALLOC))
2228 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2229 break;
2230 codesecsymend = i;
2231
2232 for (; i < symcount; ++i)
2233 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2234 break;
2235 secsymend = i;
2236
2237 for (; i < symcount; ++i)
2238 if (strcmp (syms[i]->section->name, ".opd") != 0)
2239 break;
2240 opdsymend = i;
2241
2242 for (; i < symcount; ++i)
2243 if (((syms[i]->section->flags
2244 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2245 != (SEC_CODE | SEC_ALLOC))
2246 break;
2247 symcount = i;
2248 }
2249 count = 0;
2250
2251 if (relocatable)
2252 {
2253 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2254 arelent *r;
2255 size_t size;
2256 size_t relcount;
2257
2258 if (opdsymend == secsymend)
2259 goto done;
2260
2261 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2262 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2263 if (relcount == 0)
2264 goto done;
2265
2266 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2267 {
2268 count = -1;
2269 goto done;
2270 }
2271
2272 size = 0;
2273 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2274 {
2275 asymbol *sym;
2276
2277 while (r < opd->relocation + relcount
2278 && r->address < syms[i]->value + opd->vma)
2279 ++r;
2280
2281 if (r == opd->relocation + relcount)
2282 break;
2283
2284 if (r->address != syms[i]->value + opd->vma)
2285 continue;
2286
2287 if (r->howto->type != R_PPC64_ADDR64)
2288 continue;
2289
2290 sym = *r->sym_ptr_ptr;
2291 if (!sym_exists_at (syms, opdsymend, symcount,
2292 sym->section->id, sym->value + r->addend))
2293 {
2294 ++count;
2295 size += sizeof (asymbol);
2296 size += strlen (syms[i]->name) + 2;
2297 }
2298 }
2299
2300 if (size == 0)
2301 goto done;
2302 s = *ret = bfd_malloc (size);
2303 if (s == NULL)
2304 {
2305 count = -1;
2306 goto done;
2307 }
2308
2309 names = (char *) (s + count);
2310
2311 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2312 {
2313 asymbol *sym;
2314
2315 while (r < opd->relocation + relcount
2316 && r->address < syms[i]->value + opd->vma)
2317 ++r;
2318
2319 if (r == opd->relocation + relcount)
2320 break;
2321
2322 if (r->address != syms[i]->value + opd->vma)
2323 continue;
2324
2325 if (r->howto->type != R_PPC64_ADDR64)
2326 continue;
2327
2328 sym = *r->sym_ptr_ptr;
2329 if (!sym_exists_at (syms, opdsymend, symcount,
2330 sym->section->id, sym->value + r->addend))
2331 {
2332 size_t len;
2333
2334 *s = *syms[i];
2335 s->flags |= BSF_SYNTHETIC;
2336 s->section = sym->section;
2337 s->value = sym->value + r->addend;
2338 s->name = names;
2339 *names++ = '.';
2340 len = strlen (syms[i]->name);
2341 memcpy (names, syms[i]->name, len + 1);
2342 names += len + 1;
2343 /* Have udata.p point back to the original symbol this
2344 synthetic symbol was derived from. */
2345 s->udata.p = syms[i];
2346 s++;
2347 }
2348 }
2349 }
2350 else
2351 {
2352 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2353 bfd_byte *contents = NULL;
2354 size_t size;
2355 size_t plt_count = 0;
2356 bfd_vma glink_vma = 0, resolv_vma = 0;
2357 asection *dynamic, *glink = NULL, *relplt = NULL;
2358 arelent *p;
2359
2360 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2361 {
2362 free_contents_and_exit_err:
2363 count = -1;
2364 free_contents_and_exit:
2365 if (contents)
2366 free (contents);
2367 goto done;
2368 }
2369
2370 size = 0;
2371 for (i = secsymend; i < opdsymend; ++i)
2372 {
2373 bfd_vma ent;
2374
2375 /* Ignore bogus symbols. */
2376 if (syms[i]->value > opd->size - 8)
2377 continue;
2378
2379 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2380 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2381 {
2382 ++count;
2383 size += sizeof (asymbol);
2384 size += strlen (syms[i]->name) + 2;
2385 }
2386 }
2387
2388 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2389 if (dyn_count != 0
2390 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2391 {
2392 bfd_byte *dynbuf, *extdyn, *extdynend;
2393 size_t extdynsize;
2394 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2395
2396 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2397 goto free_contents_and_exit_err;
2398
2399 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2400 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2401
2402 extdyn = dynbuf;
2403 extdynend = extdyn + dynamic->size;
2404 for (; extdyn < extdynend; extdyn += extdynsize)
2405 {
2406 Elf_Internal_Dyn dyn;
2407 (*swap_dyn_in) (abfd, extdyn, &dyn);
2408
2409 if (dyn.d_tag == DT_NULL)
2410 break;
2411
2412 if (dyn.d_tag == DT_PPC64_GLINK)
2413 {
2414 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2415 See comment in ppc64_elf_finish_dynamic_sections. */
2416 glink_vma = dyn.d_un.d_val + 8 * 4;
2417 /* The .glink section usually does not survive the final
2418 link; search for the section (usually .text) where the
2419 glink stubs now reside. */
2420 glink = bfd_sections_find_if (abfd, section_covers_vma,
2421 &glink_vma);
2422 break;
2423 }
2424 }
2425
2426 free (dynbuf);
2427 }
2428
2429 if (glink != NULL)
2430 {
2431 /* Determine __glink trampoline by reading the relative branch
2432 from the first glink stub. */
2433 bfd_byte buf[4];
2434 unsigned int off = 0;
2435
2436 while (bfd_get_section_contents (abfd, glink, buf,
2437 glink_vma + off - glink->vma, 4))
2438 {
2439 unsigned int insn = bfd_get_32 (abfd, buf);
2440 insn ^= B_DOT;
2441 if ((insn & ~0x3fffffc) == 0)
2442 {
2443 resolv_vma
2444 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2445 break;
2446 }
2447 off += 4;
2448 if (off > 4)
2449 break;
2450 }
2451
2452 if (resolv_vma)
2453 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2454
2455 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2456 if (relplt != NULL)
2457 {
2458 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2459 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2460 goto free_contents_and_exit_err;
2461
2462 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2463 size += plt_count * sizeof (asymbol);
2464
2465 p = relplt->relocation;
2466 for (i = 0; i < plt_count; i++, p++)
2467 {
2468 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2469 if (p->addend != 0)
2470 size += sizeof ("+0x") - 1 + 16;
2471 }
2472 }
2473 }
2474
2475 if (size == 0)
2476 goto free_contents_and_exit;
2477 s = *ret = bfd_malloc (size);
2478 if (s == NULL)
2479 goto free_contents_and_exit_err;
2480
2481 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2482
2483 for (i = secsymend; i < opdsymend; ++i)
2484 {
2485 bfd_vma ent;
2486
2487 if (syms[i]->value > opd->size - 8)
2488 continue;
2489
2490 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2491 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2492 {
2493 size_t lo, hi;
2494 size_t len;
2495 asection *sec = abfd->sections;
2496
2497 *s = *syms[i];
2498 lo = codesecsym;
2499 hi = codesecsymend;
2500 while (lo < hi)
2501 {
2502 size_t mid = (lo + hi) >> 1;
2503 if (syms[mid]->section->vma < ent)
2504 lo = mid + 1;
2505 else if (syms[mid]->section->vma > ent)
2506 hi = mid;
2507 else
2508 {
2509 sec = syms[mid]->section;
2510 break;
2511 }
2512 }
2513
2514 if (lo >= hi && lo > codesecsym)
2515 sec = syms[lo - 1]->section;
2516
2517 for (; sec != NULL; sec = sec->next)
2518 {
2519 if (sec->vma > ent)
2520 break;
2521 /* SEC_LOAD may not be set if SEC is from a separate debug
2522 info file. */
2523 if ((sec->flags & SEC_ALLOC) == 0)
2524 break;
2525 if ((sec->flags & SEC_CODE) != 0)
2526 s->section = sec;
2527 }
2528 s->flags |= BSF_SYNTHETIC;
2529 s->value = ent - s->section->vma;
2530 s->name = names;
2531 *names++ = '.';
2532 len = strlen (syms[i]->name);
2533 memcpy (names, syms[i]->name, len + 1);
2534 names += len + 1;
2535 /* Have udata.p point back to the original symbol this
2536 synthetic symbol was derived from. */
2537 s->udata.p = syms[i];
2538 s++;
2539 }
2540 }
2541 free (contents);
2542
2543 if (glink != NULL && relplt != NULL)
2544 {
2545 if (resolv_vma)
2546 {
2547 /* Add a symbol for the main glink trampoline. */
2548 memset (s, 0, sizeof *s);
2549 s->the_bfd = abfd;
2550 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2551 s->section = glink;
2552 s->value = resolv_vma - glink->vma;
2553 s->name = names;
2554 memcpy (names, "__glink_PLTresolve",
2555 sizeof ("__glink_PLTresolve"));
2556 names += sizeof ("__glink_PLTresolve");
2557 s++;
2558 count++;
2559 }
2560
2561 /* FIXME: It would be very much nicer to put sym@plt on the
2562 stub rather than on the glink branch table entry. The
2563 objdump disassembler would then use a sensible symbol
2564 name on plt calls. The difficulty in doing so is
2565 a) finding the stubs, and,
2566 b) matching stubs against plt entries, and,
2567 c) there can be multiple stubs for a given plt entry.
2568
2569 Solving (a) could be done by code scanning, but older
2570 ppc64 binaries used different stubs to current code.
2571 (b) is the tricky one since you need to known the toc
2572 pointer for at least one function that uses a pic stub to
2573 be able to calculate the plt address referenced.
2574 (c) means gdb would need to set multiple breakpoints (or
2575 find the glink branch itself) when setting breakpoints
2576 for pending shared library loads. */
2577 p = relplt->relocation;
2578 for (i = 0; i < plt_count; i++, p++)
2579 {
2580 size_t len;
2581
2582 *s = **p->sym_ptr_ptr;
2583 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2584 we are defining a symbol, ensure one of them is set. */
2585 if ((s->flags & BSF_LOCAL) == 0)
2586 s->flags |= BSF_GLOBAL;
2587 s->flags |= BSF_SYNTHETIC;
2588 s->section = glink;
2589 s->value = glink_vma - glink->vma;
2590 s->name = names;
2591 s->udata.p = NULL;
2592 len = strlen ((*p->sym_ptr_ptr)->name);
2593 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2594 names += len;
2595 if (p->addend != 0)
2596 {
2597 memcpy (names, "+0x", sizeof ("+0x") - 1);
2598 names += sizeof ("+0x") - 1;
2599 bfd_sprintf_vma (abfd, names, p->addend);
2600 names += strlen (names);
2601 }
2602 memcpy (names, "@plt", sizeof ("@plt"));
2603 names += sizeof ("@plt");
2604 s++;
2605 if (abi < 2)
2606 {
2607 glink_vma += 8;
2608 if (i >= 0x8000)
2609 glink_vma += 4;
2610 }
2611 else
2612 glink_vma += 4;
2613 }
2614 count += plt_count;
2615 }
2616 }
2617
2618 done:
2619 free (syms);
2620 return count;
2621 }
2622 \f
2623 /* The following functions are specific to the ELF linker, while
2624 functions above are used generally. Those named ppc64_elf_* are
2625 called by the main ELF linker code. They appear in this file more
2626 or less in the order in which they are called. eg.
2627 ppc64_elf_check_relocs is called early in the link process,
2628 ppc64_elf_finish_dynamic_sections is one of the last functions
2629 called.
2630
2631 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2632 functions have both a function code symbol and a function descriptor
2633 symbol. A call to foo in a relocatable object file looks like:
2634
2635 . .text
2636 . x:
2637 . bl .foo
2638 . nop
2639
2640 The function definition in another object file might be:
2641
2642 . .section .opd
2643 . foo: .quad .foo
2644 . .quad .TOC.@tocbase
2645 . .quad 0
2646 .
2647 . .text
2648 . .foo: blr
2649
2650 When the linker resolves the call during a static link, the branch
2651 unsurprisingly just goes to .foo and the .opd information is unused.
2652 If the function definition is in a shared library, things are a little
2653 different: The call goes via a plt call stub, the opd information gets
2654 copied to the plt, and the linker patches the nop.
2655
2656 . x:
2657 . bl .foo_stub
2658 . ld 2,40(1)
2659 .
2660 .
2661 . .foo_stub:
2662 . std 2,40(1) # in practice, the call stub
2663 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2664 . addi 11,11,Lfoo@toc@l # this is the general idea
2665 . ld 12,0(11)
2666 . ld 2,8(11)
2667 . mtctr 12
2668 . ld 11,16(11)
2669 . bctr
2670 .
2671 . .section .plt
2672 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2673
2674 The "reloc ()" notation is supposed to indicate that the linker emits
2675 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2676 copying.
2677
2678 What are the difficulties here? Well, firstly, the relocations
2679 examined by the linker in check_relocs are against the function code
2680 sym .foo, while the dynamic relocation in the plt is emitted against
2681 the function descriptor symbol, foo. Somewhere along the line, we need
2682 to carefully copy dynamic link information from one symbol to the other.
2683 Secondly, the generic part of the elf linker will make .foo a dynamic
2684 symbol as is normal for most other backends. We need foo dynamic
2685 instead, at least for an application final link. However, when
2686 creating a shared library containing foo, we need to have both symbols
2687 dynamic so that references to .foo are satisfied during the early
2688 stages of linking. Otherwise the linker might decide to pull in a
2689 definition from some other object, eg. a static library.
2690
2691 Update: As of August 2004, we support a new convention. Function
2692 calls may use the function descriptor symbol, ie. "bl foo". This
2693 behaves exactly as "bl .foo". */
2694
2695 /* Of those relocs that might be copied as dynamic relocs, this
2696 function selects those that must be copied when linking a shared
2697 library or PIE, even when the symbol is local. */
2698
2699 static int
2700 must_be_dyn_reloc (struct bfd_link_info *info,
2701 enum elf_ppc64_reloc_type r_type)
2702 {
2703 switch (r_type)
2704 {
2705 default:
2706 /* Only relative relocs can be resolved when the object load
2707 address isn't fixed. DTPREL64 is excluded because the
2708 dynamic linker needs to differentiate global dynamic from
2709 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2710 return 1;
2711
2712 case R_PPC64_REL32:
2713 case R_PPC64_REL64:
2714 case R_PPC64_REL30:
2715 return 0;
2716
2717 case R_PPC64_TPREL16:
2718 case R_PPC64_TPREL16_LO:
2719 case R_PPC64_TPREL16_HI:
2720 case R_PPC64_TPREL16_HA:
2721 case R_PPC64_TPREL16_DS:
2722 case R_PPC64_TPREL16_LO_DS:
2723 case R_PPC64_TPREL16_HIGH:
2724 case R_PPC64_TPREL16_HIGHA:
2725 case R_PPC64_TPREL16_HIGHER:
2726 case R_PPC64_TPREL16_HIGHERA:
2727 case R_PPC64_TPREL16_HIGHEST:
2728 case R_PPC64_TPREL16_HIGHESTA:
2729 case R_PPC64_TPREL64:
2730 /* These relocations are relative but in a shared library the
2731 linker doesn't know the thread pointer base. */
2732 return bfd_link_dll (info);
2733 }
2734 }
2735
2736 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2737 copying dynamic variables from a shared lib into an app's dynbss
2738 section, and instead use a dynamic relocation to point into the
2739 shared lib. With code that gcc generates, it's vital that this be
2740 enabled; In the PowerPC64 ABI, the address of a function is actually
2741 the address of a function descriptor, which resides in the .opd
2742 section. gcc uses the descriptor directly rather than going via the
2743 GOT as some other ABI's do, which means that initialized function
2744 pointers must reference the descriptor. Thus, a function pointer
2745 initialized to the address of a function in a shared library will
2746 either require a copy reloc, or a dynamic reloc. Using a copy reloc
2747 redefines the function descriptor symbol to point to the copy. This
2748 presents a problem as a plt entry for that function is also
2749 initialized from the function descriptor symbol and the copy reloc
2750 may not be initialized first. */
2751 #define ELIMINATE_COPY_RELOCS 1
2752
2753 /* Section name for stubs is the associated section name plus this
2754 string. */
2755 #define STUB_SUFFIX ".stub"
2756
2757 /* Linker stubs.
2758 ppc_stub_long_branch:
2759 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2760 destination, but a 24 bit branch in a stub section will reach.
2761 . b dest
2762
2763 ppc_stub_plt_branch:
2764 Similar to the above, but a 24 bit branch in the stub section won't
2765 reach its destination.
2766 . addis %r11,%r2,xxx@toc@ha
2767 . ld %r12,xxx@toc@l(%r11)
2768 . mtctr %r12
2769 . bctr
2770
2771 ppc_stub_plt_call:
2772 Used to call a function in a shared library. If it so happens that
2773 the plt entry referenced crosses a 64k boundary, then an extra
2774 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2775 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2776 . addis %r11,%r2,xxx@toc@ha
2777 . ld %r12,xxx+0@toc@l(%r11)
2778 . mtctr %r12
2779 . ld %r2,xxx+8@toc@l(%r11)
2780 . ld %r11,xxx+16@toc@l(%r11)
2781 . bctr
2782
2783 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2784 code to adjust the value and save r2 to support multiple toc sections.
2785 A ppc_stub_long_branch with an r2 offset looks like:
2786 . std %r2,40(%r1)
2787 . addis %r2,%r2,off@ha
2788 . addi %r2,%r2,off@l
2789 . b dest
2790
2791 A ppc_stub_plt_branch with an r2 offset looks like:
2792 . std %r2,40(%r1)
2793 . addis %r11,%r2,xxx@toc@ha
2794 . ld %r12,xxx@toc@l(%r11)
2795 . addis %r2,%r2,off@ha
2796 . addi %r2,%r2,off@l
2797 . mtctr %r12
2798 . bctr
2799
2800 All of the above stubs are shown as their ELFv1 variants. ELFv2
2801 variants exist too, simpler for plt calls since a new toc pointer
2802 and static chain are not loaded by the stub. In addition, ELFv2
2803 has some more complex stubs to handle calls marked with NOTOC
2804 relocs from functions where r2 is not a valid toc pointer. These
2805 come in two flavours, the ones shown below, and _both variants that
2806 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2807 one call is from a function where r2 is used as the toc pointer but
2808 needs a toc adjusting stub for small-model multi-toc, and another
2809 call is from a function where r2 is not valid.
2810 ppc_stub_long_branch_notoc:
2811 . mflr %r12
2812 . bcl 20,31,1f
2813 . 1:
2814 . mflr %r11
2815 . mtlr %r12
2816 . addis %r12,%r11,dest-1b@ha
2817 . addi %r12,%r12,dest-1b@l
2818 . b dest
2819
2820 ppc_stub_plt_branch_notoc:
2821 . mflr %r12
2822 . bcl 20,31,1f
2823 . 1:
2824 . mflr %r11
2825 . mtlr %r12
2826 . lis %r12,xxx-1b@highest
2827 . ori %r12,%r12,xxx-1b@higher
2828 . sldi %r12,%r12,32
2829 . oris %r12,%r12,xxx-1b@high
2830 . ori %r12,%r12,xxx-1b@l
2831 . add %r12,%r11,%r12
2832 . mtctr %r12
2833 . bctr
2834
2835 ppc_stub_plt_call_notoc:
2836 . mflr %r12
2837 . bcl 20,31,1f
2838 . 1:
2839 . mflr %r11
2840 . mtlr %r12
2841 . lis %r12,xxx-1b@highest
2842 . ori %r12,%r12,xxx-1b@higher
2843 . sldi %r12,%r12,32
2844 . oris %r12,%r12,xxx-1b@high
2845 . ori %r12,%r12,xxx-1b@l
2846 . ldx %r12,%r11,%r12
2847 . mtctr %r12
2848 . bctr
2849
2850 There are also ELFv1 powerxx variants of these stubs.
2851 ppc_stub_long_branch_notoc:
2852 . pla %r12,dest@pcrel
2853 . b dest
2854 ppc_stub_plt_branch_notoc:
2855 . lis %r11,(dest-1f)@highesta34
2856 . ori %r11,%r11,(dest-1f)@highera34
2857 . sldi %r11,%r11,34
2858 . 1: pla %r12,dest@pcrel
2859 . add %r12,%r11,%r12
2860 . mtctr %r12
2861 . bctr
2862 ppc_stub_plt_call_notoc:
2863 . lis %r11,(xxx-1f)@highesta34
2864 . ori %r11,%r11,(xxx-1f)@highera34
2865 . sldi %r11,%r11,34
2866 . 1: pla %r12,xxx@pcrel
2867 . ldx %r12,%r11,%r12
2868 . mtctr %r12
2869 . bctr
2870
2871 In cases where the high instructions would add zero, they are
2872 omitted and following instructions modified in some cases.
2873 For example, a powerxx ppc_stub_plt_call_notoc might simplify down
2874 to
2875 . pld %r12,xxx@pcrel
2876 . mtctr %r12
2877 . bctr
2878
2879 For a given stub group (a set of sections all using the same toc
2880 pointer value) there will be just one stub type used for any
2881 particular function symbol. For example, if printf is called from
2882 code with the tocsave optimization (ie. r2 saved in function
2883 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2884 and from other code without the tocsave optimization requiring a
2885 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2886 type will be created. Calls with the tocsave optimization will
2887 enter this stub after the instruction saving r2. A similar
2888 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2889 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2890 to call an external function like printf. If other calls to printf
2891 require a ppc_stub_plt_call linkage stub then a single
2892 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2893 call. If other calls to printf require a ppc_stub_plt_call_r2save
2894 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2895 be created and calls not requiring r2 to be saved will enter the
2896 stub after the r2 save instruction. There is an analogous
2897 hierarchy of long branch and plt branch stubs for local call
2898 linkage. */
2899
2900 enum ppc_stub_type
2901 {
2902 ppc_stub_none,
2903 ppc_stub_long_branch,
2904 ppc_stub_long_branch_r2off,
2905 ppc_stub_long_branch_notoc,
2906 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2907 ppc_stub_plt_branch,
2908 ppc_stub_plt_branch_r2off,
2909 ppc_stub_plt_branch_notoc,
2910 ppc_stub_plt_branch_both,
2911 ppc_stub_plt_call,
2912 ppc_stub_plt_call_r2save,
2913 ppc_stub_plt_call_notoc,
2914 ppc_stub_plt_call_both,
2915 ppc_stub_global_entry,
2916 ppc_stub_save_res
2917 };
2918
2919 /* Information on stub grouping. */
2920 struct map_stub
2921 {
2922 /* The stub section. */
2923 asection *stub_sec;
2924 /* This is the section to which stubs in the group will be attached. */
2925 asection *link_sec;
2926 /* Next group. */
2927 struct map_stub *next;
2928 /* Whether to emit a copy of register save/restore functions in this
2929 group. */
2930 int needs_save_res;
2931 /* Current offset within stubs after the insn restoring lr in a
2932 _notoc or _both stub using bcl for pc-relative addressing, or
2933 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
2934 unsigned int lr_restore;
2935 /* Accumulated size of EH info emitted to describe return address
2936 if stubs modify lr. Does not include 17 byte FDE header. */
2937 unsigned int eh_size;
2938 /* Offset in glink_eh_frame to the start of EH info for this group. */
2939 unsigned int eh_base;
2940 };
2941
2942 struct ppc_stub_hash_entry
2943 {
2944 /* Base hash table entry structure. */
2945 struct bfd_hash_entry root;
2946
2947 enum ppc_stub_type stub_type;
2948
2949 /* Group information. */
2950 struct map_stub *group;
2951
2952 /* Offset within stub_sec of the beginning of this stub. */
2953 bfd_vma stub_offset;
2954
2955 /* Given the symbol's value and its section we can determine its final
2956 value when building the stubs (so the stub knows where to jump. */
2957 bfd_vma target_value;
2958 asection *target_section;
2959
2960 /* The symbol table entry, if any, that this was derived from. */
2961 struct ppc_link_hash_entry *h;
2962 struct plt_entry *plt_ent;
2963
2964 /* Symbol type. */
2965 unsigned char symtype;
2966
2967 /* Symbol st_other. */
2968 unsigned char other;
2969 };
2970
2971 struct ppc_branch_hash_entry
2972 {
2973 /* Base hash table entry structure. */
2974 struct bfd_hash_entry root;
2975
2976 /* Offset within branch lookup table. */
2977 unsigned int offset;
2978
2979 /* Generation marker. */
2980 unsigned int iter;
2981 };
2982
2983 /* Used to track dynamic relocations for local symbols. */
2984 struct ppc_dyn_relocs
2985 {
2986 struct ppc_dyn_relocs *next;
2987
2988 /* The input section of the reloc. */
2989 asection *sec;
2990
2991 /* Total number of relocs copied for the input section. */
2992 unsigned int count : 31;
2993
2994 /* Whether this entry is for STT_GNU_IFUNC symbols. */
2995 unsigned int ifunc : 1;
2996 };
2997
2998 struct ppc_link_hash_entry
2999 {
3000 struct elf_link_hash_entry elf;
3001
3002 union
3003 {
3004 /* A pointer to the most recently used stub hash entry against this
3005 symbol. */
3006 struct ppc_stub_hash_entry *stub_cache;
3007
3008 /* A pointer to the next symbol starting with a '.' */
3009 struct ppc_link_hash_entry *next_dot_sym;
3010 } u;
3011
3012 /* Track dynamic relocs copied for this symbol. */
3013 struct elf_dyn_relocs *dyn_relocs;
3014
3015 /* Link between function code and descriptor symbols. */
3016 struct ppc_link_hash_entry *oh;
3017
3018 /* Flag function code and descriptor symbols. */
3019 unsigned int is_func:1;
3020 unsigned int is_func_descriptor:1;
3021 unsigned int fake:1;
3022
3023 /* Whether global opd/toc sym has been adjusted or not.
3024 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3025 should be set for all globals defined in any opd/toc section. */
3026 unsigned int adjust_done:1;
3027
3028 /* Set if this is an out-of-line register save/restore function,
3029 with non-standard calling convention. */
3030 unsigned int save_res:1;
3031
3032 /* Set if a duplicate symbol with non-zero localentry is detected,
3033 even when the duplicate symbol does not provide a definition. */
3034 unsigned int non_zero_localentry:1;
3035
3036 /* Contexts in which symbol is used in the GOT (or TOC).
3037 Bits are or'd into the mask as the corresponding relocs are
3038 encountered during check_relocs, with TLS_TLS being set when any
3039 of the other TLS bits are set. tls_optimize clears bits when
3040 optimizing to indicate the corresponding GOT entry type is not
3041 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3042 set TLS_TPRELGD when a GD reloc turns into a TPREL one. We use a
3043 separate flag rather than setting TPREL just for convenience in
3044 distinguishing the two cases.
3045 These flags are also kept for local symbols. */
3046 #define TLS_TLS 1 /* Any TLS reloc. */
3047 #define TLS_GD 2 /* GD reloc. */
3048 #define TLS_LD 4 /* LD reloc. */
3049 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3050 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3051 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3052 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3053 #define TLS_EXPLICIT 128 /* Marks TOC section TLS relocs. */
3054 unsigned char tls_mask;
3055
3056 /* The above field is also used to mark function symbols. In which
3057 case TLS_TLS will be 0. */
3058 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3059 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3060 #define NON_GOT 256 /* local symbol plt, not stored. */
3061 };
3062
3063 /* ppc64 ELF linker hash table. */
3064
3065 struct ppc_link_hash_table
3066 {
3067 struct elf_link_hash_table elf;
3068
3069 /* The stub hash table. */
3070 struct bfd_hash_table stub_hash_table;
3071
3072 /* Another hash table for plt_branch stubs. */
3073 struct bfd_hash_table branch_hash_table;
3074
3075 /* Hash table for function prologue tocsave. */
3076 htab_t tocsave_htab;
3077
3078 /* Various options and other info passed from the linker. */
3079 struct ppc64_elf_params *params;
3080
3081 /* The size of sec_info below. */
3082 unsigned int sec_info_arr_size;
3083
3084 /* Per-section array of extra section info. Done this way rather
3085 than as part of ppc64_elf_section_data so we have the info for
3086 non-ppc64 sections. */
3087 struct
3088 {
3089 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3090 bfd_vma toc_off;
3091
3092 union
3093 {
3094 /* The section group that this section belongs to. */
3095 struct map_stub *group;
3096 /* A temp section list pointer. */
3097 asection *list;
3098 } u;
3099 } *sec_info;
3100
3101 /* Linked list of groups. */
3102 struct map_stub *group;
3103
3104 /* Temp used when calculating TOC pointers. */
3105 bfd_vma toc_curr;
3106 bfd *toc_bfd;
3107 asection *toc_first_sec;
3108
3109 /* Used when adding symbols. */
3110 struct ppc_link_hash_entry *dot_syms;
3111
3112 /* Shortcuts to get to dynamic linker sections. */
3113 asection *glink;
3114 asection *global_entry;
3115 asection *sfpr;
3116 asection *pltlocal;
3117 asection *relpltlocal;
3118 asection *brlt;
3119 asection *relbrlt;
3120 asection *glink_eh_frame;
3121
3122 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3123 struct ppc_link_hash_entry *tls_get_addr;
3124 struct ppc_link_hash_entry *tls_get_addr_fd;
3125
3126 /* The size of reliplt used by got entry relocs. */
3127 bfd_size_type got_reli_size;
3128
3129 /* Statistics. */
3130 unsigned long stub_count[ppc_stub_global_entry];
3131
3132 /* Number of stubs against global syms. */
3133 unsigned long stub_globals;
3134
3135 /* Set if we're linking code with function descriptors. */
3136 unsigned int opd_abi:1;
3137
3138 /* Support for multiple toc sections. */
3139 unsigned int do_multi_toc:1;
3140 unsigned int multi_toc_needed:1;
3141 unsigned int second_toc_pass:1;
3142 unsigned int do_toc_opt:1;
3143
3144 /* Set if tls optimization is enabled. */
3145 unsigned int do_tls_opt:1;
3146
3147 /* Set if inline plt calls should be converted to direct calls. */
3148 unsigned int can_convert_all_inline_plt:1;
3149
3150 /* Set on error. */
3151 unsigned int stub_error:1;
3152
3153 /* Whether func_desc_adjust needs to be run over symbols. */
3154 unsigned int need_func_desc_adj:1;
3155
3156 /* Whether there exist local gnu indirect function resolvers,
3157 referenced by dynamic relocations. */
3158 unsigned int local_ifunc_resolver:1;
3159 unsigned int maybe_local_ifunc_resolver:1;
3160
3161 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3162 unsigned int has_plt_localentry0:1;
3163
3164 /* Whether calls are made via the PLT from NOTOC functions. */
3165 unsigned int notoc_plt:1;
3166
3167 /* Whether to use powerxx instructions in linkage stubs. */
3168 unsigned int powerxx_stubs:1;
3169
3170 /* Incremented every time we size stubs. */
3171 unsigned int stub_iteration;
3172
3173 /* Small local sym cache. */
3174 struct sym_cache sym_cache;
3175 };
3176
3177 /* Rename some of the generic section flags to better document how they
3178 are used here. */
3179
3180 /* Nonzero if this section has TLS related relocations. */
3181 #define has_tls_reloc sec_flg0
3182
3183 /* Nonzero if this section has an old-style call to __tls_get_addr. */
3184 #define has_tls_get_addr_call sec_flg1
3185
3186 /* Nonzero if this section has any toc or got relocs. */
3187 #define has_toc_reloc sec_flg2
3188
3189 /* Nonzero if this section has a call to another section that uses
3190 the toc or got. */
3191 #define makes_toc_func_call sec_flg3
3192
3193 /* Recursion protection when determining above flag. */
3194 #define call_check_in_progress sec_flg4
3195 #define call_check_done sec_flg5
3196
3197 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3198
3199 #define ppc_hash_table(p) \
3200 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3201 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3202
3203 #define ppc_stub_hash_lookup(table, string, create, copy) \
3204 ((struct ppc_stub_hash_entry *) \
3205 bfd_hash_lookup ((table), (string), (create), (copy)))
3206
3207 #define ppc_branch_hash_lookup(table, string, create, copy) \
3208 ((struct ppc_branch_hash_entry *) \
3209 bfd_hash_lookup ((table), (string), (create), (copy)))
3210
3211 /* Create an entry in the stub hash table. */
3212
3213 static struct bfd_hash_entry *
3214 stub_hash_newfunc (struct bfd_hash_entry *entry,
3215 struct bfd_hash_table *table,
3216 const char *string)
3217 {
3218 /* Allocate the structure if it has not already been allocated by a
3219 subclass. */
3220 if (entry == NULL)
3221 {
3222 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3223 if (entry == NULL)
3224 return entry;
3225 }
3226
3227 /* Call the allocation method of the superclass. */
3228 entry = bfd_hash_newfunc (entry, table, string);
3229 if (entry != NULL)
3230 {
3231 struct ppc_stub_hash_entry *eh;
3232
3233 /* Initialize the local fields. */
3234 eh = (struct ppc_stub_hash_entry *) entry;
3235 eh->stub_type = ppc_stub_none;
3236 eh->group = NULL;
3237 eh->stub_offset = 0;
3238 eh->target_value = 0;
3239 eh->target_section = NULL;
3240 eh->h = NULL;
3241 eh->plt_ent = NULL;
3242 eh->other = 0;
3243 }
3244
3245 return entry;
3246 }
3247
3248 /* Create an entry in the branch hash table. */
3249
3250 static struct bfd_hash_entry *
3251 branch_hash_newfunc (struct bfd_hash_entry *entry,
3252 struct bfd_hash_table *table,
3253 const char *string)
3254 {
3255 /* Allocate the structure if it has not already been allocated by a
3256 subclass. */
3257 if (entry == NULL)
3258 {
3259 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3260 if (entry == NULL)
3261 return entry;
3262 }
3263
3264 /* Call the allocation method of the superclass. */
3265 entry = bfd_hash_newfunc (entry, table, string);
3266 if (entry != NULL)
3267 {
3268 struct ppc_branch_hash_entry *eh;
3269
3270 /* Initialize the local fields. */
3271 eh = (struct ppc_branch_hash_entry *) entry;
3272 eh->offset = 0;
3273 eh->iter = 0;
3274 }
3275
3276 return entry;
3277 }
3278
3279 /* Create an entry in a ppc64 ELF linker hash table. */
3280
3281 static struct bfd_hash_entry *
3282 link_hash_newfunc (struct bfd_hash_entry *entry,
3283 struct bfd_hash_table *table,
3284 const char *string)
3285 {
3286 /* Allocate the structure if it has not already been allocated by a
3287 subclass. */
3288 if (entry == NULL)
3289 {
3290 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3291 if (entry == NULL)
3292 return entry;
3293 }
3294
3295 /* Call the allocation method of the superclass. */
3296 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3297 if (entry != NULL)
3298 {
3299 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3300
3301 memset (&eh->u.stub_cache, 0,
3302 (sizeof (struct ppc_link_hash_entry)
3303 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3304
3305 /* When making function calls, old ABI code references function entry
3306 points (dot symbols), while new ABI code references the function
3307 descriptor symbol. We need to make any combination of reference and
3308 definition work together, without breaking archive linking.
3309
3310 For a defined function "foo" and an undefined call to "bar":
3311 An old object defines "foo" and ".foo", references ".bar" (possibly
3312 "bar" too).
3313 A new object defines "foo" and references "bar".
3314
3315 A new object thus has no problem with its undefined symbols being
3316 satisfied by definitions in an old object. On the other hand, the
3317 old object won't have ".bar" satisfied by a new object.
3318
3319 Keep a list of newly added dot-symbols. */
3320
3321 if (string[0] == '.')
3322 {
3323 struct ppc_link_hash_table *htab;
3324
3325 htab = (struct ppc_link_hash_table *) table;
3326 eh->u.next_dot_sym = htab->dot_syms;
3327 htab->dot_syms = eh;
3328 }
3329 }
3330
3331 return entry;
3332 }
3333
3334 struct tocsave_entry
3335 {
3336 asection *sec;
3337 bfd_vma offset;
3338 };
3339
3340 static hashval_t
3341 tocsave_htab_hash (const void *p)
3342 {
3343 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3344 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3345 }
3346
3347 static int
3348 tocsave_htab_eq (const void *p1, const void *p2)
3349 {
3350 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3351 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3352 return e1->sec == e2->sec && e1->offset == e2->offset;
3353 }
3354
3355 /* Destroy a ppc64 ELF linker hash table. */
3356
3357 static void
3358 ppc64_elf_link_hash_table_free (bfd *obfd)
3359 {
3360 struct ppc_link_hash_table *htab;
3361
3362 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3363 if (htab->tocsave_htab)
3364 htab_delete (htab->tocsave_htab);
3365 bfd_hash_table_free (&htab->branch_hash_table);
3366 bfd_hash_table_free (&htab->stub_hash_table);
3367 _bfd_elf_link_hash_table_free (obfd);
3368 }
3369
3370 /* Create a ppc64 ELF linker hash table. */
3371
3372 static struct bfd_link_hash_table *
3373 ppc64_elf_link_hash_table_create (bfd *abfd)
3374 {
3375 struct ppc_link_hash_table *htab;
3376 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3377
3378 htab = bfd_zmalloc (amt);
3379 if (htab == NULL)
3380 return NULL;
3381
3382 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3383 sizeof (struct ppc_link_hash_entry),
3384 PPC64_ELF_DATA))
3385 {
3386 free (htab);
3387 return NULL;
3388 }
3389
3390 /* Init the stub hash table too. */
3391 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3392 sizeof (struct ppc_stub_hash_entry)))
3393 {
3394 _bfd_elf_link_hash_table_free (abfd);
3395 return NULL;
3396 }
3397
3398 /* And the branch hash table. */
3399 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3400 sizeof (struct ppc_branch_hash_entry)))
3401 {
3402 bfd_hash_table_free (&htab->stub_hash_table);
3403 _bfd_elf_link_hash_table_free (abfd);
3404 return NULL;
3405 }
3406
3407 htab->tocsave_htab = htab_try_create (1024,
3408 tocsave_htab_hash,
3409 tocsave_htab_eq,
3410 NULL);
3411 if (htab->tocsave_htab == NULL)
3412 {
3413 ppc64_elf_link_hash_table_free (abfd);
3414 return NULL;
3415 }
3416 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3417
3418 /* Initializing two fields of the union is just cosmetic. We really
3419 only care about glist, but when compiled on a 32-bit host the
3420 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3421 debugger inspection of these fields look nicer. */
3422 htab->elf.init_got_refcount.refcount = 0;
3423 htab->elf.init_got_refcount.glist = NULL;
3424 htab->elf.init_plt_refcount.refcount = 0;
3425 htab->elf.init_plt_refcount.glist = NULL;
3426 htab->elf.init_got_offset.offset = 0;
3427 htab->elf.init_got_offset.glist = NULL;
3428 htab->elf.init_plt_offset.offset = 0;
3429 htab->elf.init_plt_offset.glist = NULL;
3430
3431 return &htab->elf.root;
3432 }
3433
3434 /* Create sections for linker generated code. */
3435
3436 static bfd_boolean
3437 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3438 {
3439 struct ppc_link_hash_table *htab;
3440 flagword flags;
3441
3442 htab = ppc_hash_table (info);
3443
3444 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3445 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3446 if (htab->params->save_restore_funcs)
3447 {
3448 /* Create .sfpr for code to save and restore fp regs. */
3449 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3450 flags);
3451 if (htab->sfpr == NULL
3452 || !bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3453 return FALSE;
3454 }
3455
3456 if (bfd_link_relocatable (info))
3457 return TRUE;
3458
3459 /* Create .glink for lazy dynamic linking support. */
3460 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3461 flags);
3462 if (htab->glink == NULL
3463 || !bfd_set_section_alignment (dynobj, htab->glink, 3))
3464 return FALSE;
3465
3466 /* The part of .glink used by global entry stubs, separate so that
3467 it can be aligned appropriately without affecting htab->glink. */
3468 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3469 flags);
3470 if (htab->global_entry == NULL
3471 || !bfd_set_section_alignment (dynobj, htab->global_entry, 2))
3472 return FALSE;
3473
3474 if (!info->no_ld_generated_unwind_info)
3475 {
3476 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3477 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3478 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3479 ".eh_frame",
3480 flags);
3481 if (htab->glink_eh_frame == NULL
3482 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
3483 return FALSE;
3484 }
3485
3486 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3487 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3488 if (htab->elf.iplt == NULL
3489 || !bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
3490 return FALSE;
3491
3492 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3493 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3494 htab->elf.irelplt
3495 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3496 if (htab->elf.irelplt == NULL
3497 || !bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
3498 return FALSE;
3499
3500 /* Create branch lookup table for plt_branch stubs. */
3501 flags = (SEC_ALLOC | SEC_LOAD
3502 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3503 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3504 flags);
3505 if (htab->brlt == NULL
3506 || !bfd_set_section_alignment (dynobj, htab->brlt, 3))
3507 return FALSE;
3508
3509 /* Local plt entries, put in .branch_lt but a separate section for
3510 convenience. */
3511 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3512 flags);
3513 if (htab->pltlocal == NULL
3514 || !bfd_set_section_alignment (dynobj, htab->pltlocal, 3))
3515 return FALSE;
3516
3517 if (!bfd_link_pic (info))
3518 return TRUE;
3519
3520 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3521 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3522 htab->relbrlt
3523 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3524 if (htab->relbrlt == NULL
3525 || !bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3526 return FALSE;
3527
3528 htab->relpltlocal
3529 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3530 if (htab->relpltlocal == NULL
3531 || !bfd_set_section_alignment (dynobj, htab->relpltlocal, 3))
3532 return FALSE;
3533
3534 return TRUE;
3535 }
3536
3537 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3538
3539 bfd_boolean
3540 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3541 struct ppc64_elf_params *params)
3542 {
3543 struct ppc_link_hash_table *htab;
3544
3545 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3546
3547 /* Always hook our dynamic sections into the first bfd, which is the
3548 linker created stub bfd. This ensures that the GOT header is at
3549 the start of the output TOC section. */
3550 htab = ppc_hash_table (info);
3551 htab->elf.dynobj = params->stub_bfd;
3552 htab->params = params;
3553
3554 return create_linkage_sections (htab->elf.dynobj, info);
3555 }
3556
3557 /* Build a name for an entry in the stub hash table. */
3558
3559 static char *
3560 ppc_stub_name (const asection *input_section,
3561 const asection *sym_sec,
3562 const struct ppc_link_hash_entry *h,
3563 const Elf_Internal_Rela *rel)
3564 {
3565 char *stub_name;
3566 ssize_t len;
3567
3568 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3569 offsets from a sym as a branch target? In fact, we could
3570 probably assume the addend is always zero. */
3571 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3572
3573 if (h)
3574 {
3575 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3576 stub_name = bfd_malloc (len);
3577 if (stub_name == NULL)
3578 return stub_name;
3579
3580 len = sprintf (stub_name, "%08x.%s+%x",
3581 input_section->id & 0xffffffff,
3582 h->elf.root.root.string,
3583 (int) rel->r_addend & 0xffffffff);
3584 }
3585 else
3586 {
3587 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3588 stub_name = bfd_malloc (len);
3589 if (stub_name == NULL)
3590 return stub_name;
3591
3592 len = sprintf (stub_name, "%08x.%x:%x+%x",
3593 input_section->id & 0xffffffff,
3594 sym_sec->id & 0xffffffff,
3595 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3596 (int) rel->r_addend & 0xffffffff);
3597 }
3598 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3599 stub_name[len - 2] = 0;
3600 return stub_name;
3601 }
3602
3603 /* Look up an entry in the stub hash. Stub entries are cached because
3604 creating the stub name takes a bit of time. */
3605
3606 static struct ppc_stub_hash_entry *
3607 ppc_get_stub_entry (const asection *input_section,
3608 const asection *sym_sec,
3609 struct ppc_link_hash_entry *h,
3610 const Elf_Internal_Rela *rel,
3611 struct ppc_link_hash_table *htab)
3612 {
3613 struct ppc_stub_hash_entry *stub_entry;
3614 struct map_stub *group;
3615
3616 /* If this input section is part of a group of sections sharing one
3617 stub section, then use the id of the first section in the group.
3618 Stub names need to include a section id, as there may well be
3619 more than one stub used to reach say, printf, and we need to
3620 distinguish between them. */
3621 group = htab->sec_info[input_section->id].u.group;
3622 if (group == NULL)
3623 return NULL;
3624
3625 if (h != NULL && h->u.stub_cache != NULL
3626 && h->u.stub_cache->h == h
3627 && h->u.stub_cache->group == group)
3628 {
3629 stub_entry = h->u.stub_cache;
3630 }
3631 else
3632 {
3633 char *stub_name;
3634
3635 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3636 if (stub_name == NULL)
3637 return NULL;
3638
3639 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3640 stub_name, FALSE, FALSE);
3641 if (h != NULL)
3642 h->u.stub_cache = stub_entry;
3643
3644 free (stub_name);
3645 }
3646
3647 return stub_entry;
3648 }
3649
3650 /* Add a new stub entry to the stub hash. Not all fields of the new
3651 stub entry are initialised. */
3652
3653 static struct ppc_stub_hash_entry *
3654 ppc_add_stub (const char *stub_name,
3655 asection *section,
3656 struct bfd_link_info *info)
3657 {
3658 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3659 struct map_stub *group;
3660 asection *link_sec;
3661 asection *stub_sec;
3662 struct ppc_stub_hash_entry *stub_entry;
3663
3664 group = htab->sec_info[section->id].u.group;
3665 link_sec = group->link_sec;
3666 stub_sec = group->stub_sec;
3667 if (stub_sec == NULL)
3668 {
3669 size_t namelen;
3670 bfd_size_type len;
3671 char *s_name;
3672
3673 namelen = strlen (link_sec->name);
3674 len = namelen + sizeof (STUB_SUFFIX);
3675 s_name = bfd_alloc (htab->params->stub_bfd, len);
3676 if (s_name == NULL)
3677 return NULL;
3678
3679 memcpy (s_name, link_sec->name, namelen);
3680 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3681 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3682 if (stub_sec == NULL)
3683 return NULL;
3684 group->stub_sec = stub_sec;
3685 }
3686
3687 /* Enter this entry into the linker stub hash table. */
3688 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3689 TRUE, FALSE);
3690 if (stub_entry == NULL)
3691 {
3692 /* xgettext:c-format */
3693 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3694 section->owner, stub_name);
3695 return NULL;
3696 }
3697
3698 stub_entry->group = group;
3699 stub_entry->stub_offset = 0;
3700 return stub_entry;
3701 }
3702
3703 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3704 not already done. */
3705
3706 static bfd_boolean
3707 create_got_section (bfd *abfd, struct bfd_link_info *info)
3708 {
3709 asection *got, *relgot;
3710 flagword flags;
3711 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3712
3713 if (!is_ppc64_elf (abfd))
3714 return FALSE;
3715 if (htab == NULL)
3716 return FALSE;
3717
3718 if (!htab->elf.sgot
3719 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3720 return FALSE;
3721
3722 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3723 | SEC_LINKER_CREATED);
3724
3725 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3726 if (!got
3727 || !bfd_set_section_alignment (abfd, got, 3))
3728 return FALSE;
3729
3730 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3731 flags | SEC_READONLY);
3732 if (!relgot
3733 || !bfd_set_section_alignment (abfd, relgot, 3))
3734 return FALSE;
3735
3736 ppc64_elf_tdata (abfd)->got = got;
3737 ppc64_elf_tdata (abfd)->relgot = relgot;
3738 return TRUE;
3739 }
3740
3741 /* Follow indirect and warning symbol links. */
3742
3743 static inline struct bfd_link_hash_entry *
3744 follow_link (struct bfd_link_hash_entry *h)
3745 {
3746 while (h->type == bfd_link_hash_indirect
3747 || h->type == bfd_link_hash_warning)
3748 h = h->u.i.link;
3749 return h;
3750 }
3751
3752 static inline struct elf_link_hash_entry *
3753 elf_follow_link (struct elf_link_hash_entry *h)
3754 {
3755 return (struct elf_link_hash_entry *) follow_link (&h->root);
3756 }
3757
3758 static inline struct ppc_link_hash_entry *
3759 ppc_follow_link (struct ppc_link_hash_entry *h)
3760 {
3761 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
3762 }
3763
3764 /* Merge PLT info on FROM with that on TO. */
3765
3766 static void
3767 move_plt_plist (struct ppc_link_hash_entry *from,
3768 struct ppc_link_hash_entry *to)
3769 {
3770 if (from->elf.plt.plist != NULL)
3771 {
3772 if (to->elf.plt.plist != NULL)
3773 {
3774 struct plt_entry **entp;
3775 struct plt_entry *ent;
3776
3777 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3778 {
3779 struct plt_entry *dent;
3780
3781 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3782 if (dent->addend == ent->addend)
3783 {
3784 dent->plt.refcount += ent->plt.refcount;
3785 *entp = ent->next;
3786 break;
3787 }
3788 if (dent == NULL)
3789 entp = &ent->next;
3790 }
3791 *entp = to->elf.plt.plist;
3792 }
3793
3794 to->elf.plt.plist = from->elf.plt.plist;
3795 from->elf.plt.plist = NULL;
3796 }
3797 }
3798
3799 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3800
3801 static void
3802 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3803 struct elf_link_hash_entry *dir,
3804 struct elf_link_hash_entry *ind)
3805 {
3806 struct ppc_link_hash_entry *edir, *eind;
3807
3808 edir = (struct ppc_link_hash_entry *) dir;
3809 eind = (struct ppc_link_hash_entry *) ind;
3810
3811 edir->is_func |= eind->is_func;
3812 edir->is_func_descriptor |= eind->is_func_descriptor;
3813 edir->tls_mask |= eind->tls_mask;
3814 if (eind->oh != NULL)
3815 edir->oh = ppc_follow_link (eind->oh);
3816
3817 if (edir->elf.versioned != versioned_hidden)
3818 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3819 edir->elf.ref_regular |= eind->elf.ref_regular;
3820 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3821 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3822 edir->elf.needs_plt |= eind->elf.needs_plt;
3823 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3824
3825 /* If we were called to copy over info for a weak sym, don't copy
3826 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3827 in order to simplify readonly_dynrelocs and save a field in the
3828 symbol hash entry, but that means dyn_relocs can't be used in any
3829 tests about a specific symbol, or affect other symbol flags which
3830 are then tested. */
3831 if (eind->elf.root.type != bfd_link_hash_indirect)
3832 return;
3833
3834 /* Copy over any dynamic relocs we may have on the indirect sym. */
3835 if (eind->dyn_relocs != NULL)
3836 {
3837 if (edir->dyn_relocs != NULL)
3838 {
3839 struct elf_dyn_relocs **pp;
3840 struct elf_dyn_relocs *p;
3841
3842 /* Add reloc counts against the indirect sym to the direct sym
3843 list. Merge any entries against the same section. */
3844 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3845 {
3846 struct elf_dyn_relocs *q;
3847
3848 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3849 if (q->sec == p->sec)
3850 {
3851 q->pc_count += p->pc_count;
3852 q->count += p->count;
3853 *pp = p->next;
3854 break;
3855 }
3856 if (q == NULL)
3857 pp = &p->next;
3858 }
3859 *pp = edir->dyn_relocs;
3860 }
3861
3862 edir->dyn_relocs = eind->dyn_relocs;
3863 eind->dyn_relocs = NULL;
3864 }
3865
3866 /* Copy over got entries that we may have already seen to the
3867 symbol which just became indirect. */
3868 if (eind->elf.got.glist != NULL)
3869 {
3870 if (edir->elf.got.glist != NULL)
3871 {
3872 struct got_entry **entp;
3873 struct got_entry *ent;
3874
3875 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3876 {
3877 struct got_entry *dent;
3878
3879 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3880 if (dent->addend == ent->addend
3881 && dent->owner == ent->owner
3882 && dent->tls_type == ent->tls_type)
3883 {
3884 dent->got.refcount += ent->got.refcount;
3885 *entp = ent->next;
3886 break;
3887 }
3888 if (dent == NULL)
3889 entp = &ent->next;
3890 }
3891 *entp = edir->elf.got.glist;
3892 }
3893
3894 edir->elf.got.glist = eind->elf.got.glist;
3895 eind->elf.got.glist = NULL;
3896 }
3897
3898 /* And plt entries. */
3899 move_plt_plist (eind, edir);
3900
3901 if (eind->elf.dynindx != -1)
3902 {
3903 if (edir->elf.dynindx != -1)
3904 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3905 edir->elf.dynstr_index);
3906 edir->elf.dynindx = eind->elf.dynindx;
3907 edir->elf.dynstr_index = eind->elf.dynstr_index;
3908 eind->elf.dynindx = -1;
3909 eind->elf.dynstr_index = 0;
3910 }
3911 }
3912
3913 /* Find the function descriptor hash entry from the given function code
3914 hash entry FH. Link the entries via their OH fields. */
3915
3916 static struct ppc_link_hash_entry *
3917 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3918 {
3919 struct ppc_link_hash_entry *fdh = fh->oh;
3920
3921 if (fdh == NULL)
3922 {
3923 const char *fd_name = fh->elf.root.root.string + 1;
3924
3925 fdh = (struct ppc_link_hash_entry *)
3926 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3927 if (fdh == NULL)
3928 return fdh;
3929
3930 fdh->is_func_descriptor = 1;
3931 fdh->oh = fh;
3932 fh->is_func = 1;
3933 fh->oh = fdh;
3934 }
3935
3936 fdh = ppc_follow_link (fdh);
3937 fdh->is_func_descriptor = 1;
3938 fdh->oh = fh;
3939 return fdh;
3940 }
3941
3942 /* Make a fake function descriptor sym for the undefined code sym FH. */
3943
3944 static struct ppc_link_hash_entry *
3945 make_fdh (struct bfd_link_info *info,
3946 struct ppc_link_hash_entry *fh)
3947 {
3948 bfd *abfd = fh->elf.root.u.undef.abfd;
3949 struct bfd_link_hash_entry *bh = NULL;
3950 struct ppc_link_hash_entry *fdh;
3951 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
3952 ? BSF_WEAK
3953 : BSF_GLOBAL);
3954
3955 if (!_bfd_generic_link_add_one_symbol (info, abfd,
3956 fh->elf.root.root.string + 1,
3957 flags, bfd_und_section_ptr, 0,
3958 NULL, FALSE, FALSE, &bh))
3959 return NULL;
3960
3961 fdh = (struct ppc_link_hash_entry *) bh;
3962 fdh->elf.non_elf = 0;
3963 fdh->fake = 1;
3964 fdh->is_func_descriptor = 1;
3965 fdh->oh = fh;
3966 fh->is_func = 1;
3967 fh->oh = fdh;
3968 return fdh;
3969 }
3970
3971 /* Fix function descriptor symbols defined in .opd sections to be
3972 function type. */
3973
3974 static bfd_boolean
3975 ppc64_elf_add_symbol_hook (bfd *ibfd,
3976 struct bfd_link_info *info,
3977 Elf_Internal_Sym *isym,
3978 const char **name,
3979 flagword *flags ATTRIBUTE_UNUSED,
3980 asection **sec,
3981 bfd_vma *value)
3982 {
3983 if (*sec != NULL
3984 && strcmp ((*sec)->name, ".opd") == 0)
3985 {
3986 asection *code_sec;
3987
3988 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
3989 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
3990 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3991
3992 /* If the symbol is a function defined in .opd, and the function
3993 code is in a discarded group, let it appear to be undefined. */
3994 if (!bfd_link_relocatable (info)
3995 && (*sec)->reloc_count != 0
3996 && opd_entry_value (*sec, *value, &code_sec, NULL,
3997 FALSE) != (bfd_vma) -1
3998 && discarded_section (code_sec))
3999 {
4000 *sec = bfd_und_section_ptr;
4001 isym->st_shndx = SHN_UNDEF;
4002 }
4003 }
4004 else if (*sec != NULL
4005 && strcmp ((*sec)->name, ".toc") == 0
4006 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4007 {
4008 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4009 if (htab != NULL)
4010 htab->params->object_in_toc = 1;
4011 }
4012
4013 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4014 {
4015 if (abiversion (ibfd) == 0)
4016 set_abiversion (ibfd, 2);
4017 else if (abiversion (ibfd) == 1)
4018 {
4019 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4020 " for ABI version 1"), *name);
4021 bfd_set_error (bfd_error_bad_value);
4022 return FALSE;
4023 }
4024 }
4025
4026 return TRUE;
4027 }
4028
4029 /* Merge non-visibility st_other attributes: local entry point. */
4030
4031 static void
4032 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4033 const Elf_Internal_Sym *isym,
4034 bfd_boolean definition,
4035 bfd_boolean dynamic)
4036 {
4037 if (definition && (!dynamic || !h->def_regular))
4038 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4039 | ELF_ST_VISIBILITY (h->other));
4040 }
4041
4042 /* Hook called on merging a symbol. We use this to clear "fake" since
4043 we now have a real symbol. */
4044
4045 static bfd_boolean
4046 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4047 const Elf_Internal_Sym *isym,
4048 asection **psec ATTRIBUTE_UNUSED,
4049 bfd_boolean newdef ATTRIBUTE_UNUSED,
4050 bfd_boolean olddef ATTRIBUTE_UNUSED,
4051 bfd *oldbfd ATTRIBUTE_UNUSED,
4052 const asection *oldsec ATTRIBUTE_UNUSED)
4053 {
4054 ((struct ppc_link_hash_entry *) h)->fake = 0;
4055 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4056 ((struct ppc_link_hash_entry *) h)->non_zero_localentry = 1;
4057 return TRUE;
4058 }
4059
4060 /* This function makes an old ABI object reference to ".bar" cause the
4061 inclusion of a new ABI object archive that defines "bar".
4062 NAME is a symbol defined in an archive. Return a symbol in the hash
4063 table that might be satisfied by the archive symbols. */
4064
4065 static struct elf_link_hash_entry *
4066 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4067 struct bfd_link_info *info,
4068 const char *name)
4069 {
4070 struct elf_link_hash_entry *h;
4071 char *dot_name;
4072 size_t len;
4073
4074 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4075 if (h != NULL
4076 /* Don't return this sym if it is a fake function descriptor
4077 created by add_symbol_adjust. */
4078 && !((struct ppc_link_hash_entry *) h)->fake)
4079 return h;
4080
4081 if (name[0] == '.')
4082 return h;
4083
4084 len = strlen (name);
4085 dot_name = bfd_alloc (abfd, len + 2);
4086 if (dot_name == NULL)
4087 return (struct elf_link_hash_entry *) -1;
4088 dot_name[0] = '.';
4089 memcpy (dot_name + 1, name, len + 1);
4090 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4091 bfd_release (abfd, dot_name);
4092 return h;
4093 }
4094
4095 /* This function satisfies all old ABI object references to ".bar" if a
4096 new ABI object defines "bar". Well, at least, undefined dot symbols
4097 are made weak. This stops later archive searches from including an
4098 object if we already have a function descriptor definition. It also
4099 prevents the linker complaining about undefined symbols.
4100 We also check and correct mismatched symbol visibility here. The
4101 most restrictive visibility of the function descriptor and the
4102 function entry symbol is used. */
4103
4104 static bfd_boolean
4105 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4106 {
4107 struct ppc_link_hash_table *htab;
4108 struct ppc_link_hash_entry *fdh;
4109
4110 if (eh->elf.root.type == bfd_link_hash_warning)
4111 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4112
4113 if (eh->elf.root.type == bfd_link_hash_indirect)
4114 return TRUE;
4115
4116 if (eh->elf.root.root.string[0] != '.')
4117 abort ();
4118
4119 htab = ppc_hash_table (info);
4120 if (htab == NULL)
4121 return FALSE;
4122
4123 fdh = lookup_fdh (eh, htab);
4124 if (fdh == NULL
4125 && !bfd_link_relocatable (info)
4126 && (eh->elf.root.type == bfd_link_hash_undefined
4127 || eh->elf.root.type == bfd_link_hash_undefweak)
4128 && eh->elf.ref_regular)
4129 {
4130 /* Make an undefined function descriptor sym, in order to
4131 pull in an --as-needed shared lib. Archives are handled
4132 elsewhere. */
4133 fdh = make_fdh (info, eh);
4134 if (fdh == NULL)
4135 return FALSE;
4136 }
4137
4138 if (fdh != NULL)
4139 {
4140 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4141 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4142
4143 /* Make both descriptor and entry symbol have the most
4144 constraining visibility of either symbol. */
4145 if (entry_vis < descr_vis)
4146 fdh->elf.other += entry_vis - descr_vis;
4147 else if (entry_vis > descr_vis)
4148 eh->elf.other += descr_vis - entry_vis;
4149
4150 /* Propagate reference flags from entry symbol to function
4151 descriptor symbol. */
4152 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4153 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4154 fdh->elf.ref_regular |= eh->elf.ref_regular;
4155 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4156
4157 if (!fdh->elf.forced_local
4158 && fdh->elf.dynindx == -1
4159 && fdh->elf.versioned != versioned_hidden
4160 && (bfd_link_dll (info)
4161 || fdh->elf.def_dynamic
4162 || fdh->elf.ref_dynamic)
4163 && (eh->elf.ref_regular
4164 || eh->elf.def_regular))
4165 {
4166 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4167 return FALSE;
4168 }
4169 }
4170
4171 return TRUE;
4172 }
4173
4174 /* Set up opd section info and abiversion for IBFD, and process list
4175 of dot-symbols we made in link_hash_newfunc. */
4176
4177 static bfd_boolean
4178 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4179 {
4180 struct ppc_link_hash_table *htab;
4181 struct ppc_link_hash_entry **p, *eh;
4182 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4183
4184 if (opd != NULL && opd->size != 0)
4185 {
4186 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4187 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4188
4189 if (abiversion (ibfd) == 0)
4190 set_abiversion (ibfd, 1);
4191 else if (abiversion (ibfd) >= 2)
4192 {
4193 /* xgettext:c-format */
4194 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4195 ibfd, abiversion (ibfd));
4196 bfd_set_error (bfd_error_bad_value);
4197 return FALSE;
4198 }
4199 }
4200
4201 if (is_ppc64_elf (info->output_bfd))
4202 {
4203 /* For input files without an explicit abiversion in e_flags
4204 we should have flagged any with symbol st_other bits set
4205 as ELFv1 and above flagged those with .opd as ELFv2.
4206 Set the output abiversion if not yet set, and for any input
4207 still ambiguous, take its abiversion from the output.
4208 Differences in ABI are reported later. */
4209 if (abiversion (info->output_bfd) == 0)
4210 set_abiversion (info->output_bfd, abiversion (ibfd));
4211 else if (abiversion (ibfd) == 0)
4212 set_abiversion (ibfd, abiversion (info->output_bfd));
4213 }
4214
4215 htab = ppc_hash_table (info);
4216 if (htab == NULL)
4217 return TRUE;
4218
4219 if (opd != NULL && opd->size != 0
4220 && (ibfd->flags & DYNAMIC) == 0
4221 && (opd->flags & SEC_RELOC) != 0
4222 && opd->reloc_count != 0
4223 && !bfd_is_abs_section (opd->output_section)
4224 && info->gc_sections)
4225 {
4226 /* Garbage collection needs some extra help with .opd sections.
4227 We don't want to necessarily keep everything referenced by
4228 relocs in .opd, as that would keep all functions. Instead,
4229 if we reference an .opd symbol (a function descriptor), we
4230 want to keep the function code symbol's section. This is
4231 easy for global symbols, but for local syms we need to keep
4232 information about the associated function section. */
4233 bfd_size_type amt;
4234 asection **opd_sym_map;
4235 Elf_Internal_Shdr *symtab_hdr;
4236 Elf_Internal_Rela *relocs, *rel_end, *rel;
4237
4238 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4239 opd_sym_map = bfd_zalloc (ibfd, amt);
4240 if (opd_sym_map == NULL)
4241 return FALSE;
4242 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4243 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4244 info->keep_memory);
4245 if (relocs == NULL)
4246 return FALSE;
4247 symtab_hdr = &elf_symtab_hdr (ibfd);
4248 rel_end = relocs + opd->reloc_count - 1;
4249 for (rel = relocs; rel < rel_end; rel++)
4250 {
4251 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4252 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4253
4254 if (r_type == R_PPC64_ADDR64
4255 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4256 && r_symndx < symtab_hdr->sh_info)
4257 {
4258 Elf_Internal_Sym *isym;
4259 asection *s;
4260
4261 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4262 if (isym == NULL)
4263 {
4264 if (elf_section_data (opd)->relocs != relocs)
4265 free (relocs);
4266 return FALSE;
4267 }
4268
4269 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4270 if (s != NULL && s != opd)
4271 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4272 }
4273 }
4274 if (elf_section_data (opd)->relocs != relocs)
4275 free (relocs);
4276 }
4277
4278 p = &htab->dot_syms;
4279 while ((eh = *p) != NULL)
4280 {
4281 *p = NULL;
4282 if (&eh->elf == htab->elf.hgot)
4283 ;
4284 else if (htab->elf.hgot == NULL
4285 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4286 htab->elf.hgot = &eh->elf;
4287 else if (abiversion (ibfd) <= 1)
4288 {
4289 htab->need_func_desc_adj = 1;
4290 if (!add_symbol_adjust (eh, info))
4291 return FALSE;
4292 }
4293 p = &eh->u.next_dot_sym;
4294 }
4295 return TRUE;
4296 }
4297
4298 /* Undo hash table changes when an --as-needed input file is determined
4299 not to be needed. */
4300
4301 static bfd_boolean
4302 ppc64_elf_notice_as_needed (bfd *ibfd,
4303 struct bfd_link_info *info,
4304 enum notice_asneeded_action act)
4305 {
4306 if (act == notice_not_needed)
4307 {
4308 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4309
4310 if (htab == NULL)
4311 return FALSE;
4312
4313 htab->dot_syms = NULL;
4314 }
4315 return _bfd_elf_notice_as_needed (ibfd, info, act);
4316 }
4317
4318 /* If --just-symbols against a final linked binary, then assume we need
4319 toc adjusting stubs when calling functions defined there. */
4320
4321 static void
4322 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4323 {
4324 if ((sec->flags & SEC_CODE) != 0
4325 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4326 && is_ppc64_elf (sec->owner))
4327 {
4328 if (abiversion (sec->owner) >= 2
4329 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4330 sec->has_toc_reloc = 1;
4331 }
4332 _bfd_elf_link_just_syms (sec, info);
4333 }
4334
4335 static struct plt_entry **
4336 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4337 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4338 {
4339 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4340 struct plt_entry **local_plt;
4341 unsigned char *local_got_tls_masks;
4342
4343 if (local_got_ents == NULL)
4344 {
4345 bfd_size_type size = symtab_hdr->sh_info;
4346
4347 size *= (sizeof (*local_got_ents)
4348 + sizeof (*local_plt)
4349 + sizeof (*local_got_tls_masks));
4350 local_got_ents = bfd_zalloc (abfd, size);
4351 if (local_got_ents == NULL)
4352 return NULL;
4353 elf_local_got_ents (abfd) = local_got_ents;
4354 }
4355
4356 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4357 {
4358 struct got_entry *ent;
4359
4360 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4361 if (ent->addend == r_addend
4362 && ent->owner == abfd
4363 && ent->tls_type == tls_type)
4364 break;
4365 if (ent == NULL)
4366 {
4367 bfd_size_type amt = sizeof (*ent);
4368 ent = bfd_alloc (abfd, amt);
4369 if (ent == NULL)
4370 return FALSE;
4371 ent->next = local_got_ents[r_symndx];
4372 ent->addend = r_addend;
4373 ent->owner = abfd;
4374 ent->tls_type = tls_type;
4375 ent->is_indirect = FALSE;
4376 ent->got.refcount = 0;
4377 local_got_ents[r_symndx] = ent;
4378 }
4379 ent->got.refcount += 1;
4380 }
4381
4382 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4383 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4384 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4385
4386 return local_plt + r_symndx;
4387 }
4388
4389 static bfd_boolean
4390 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4391 {
4392 struct plt_entry *ent;
4393
4394 for (ent = *plist; ent != NULL; ent = ent->next)
4395 if (ent->addend == addend)
4396 break;
4397 if (ent == NULL)
4398 {
4399 bfd_size_type amt = sizeof (*ent);
4400 ent = bfd_alloc (abfd, amt);
4401 if (ent == NULL)
4402 return FALSE;
4403 ent->next = *plist;
4404 ent->addend = addend;
4405 ent->plt.refcount = 0;
4406 *plist = ent;
4407 }
4408 ent->plt.refcount += 1;
4409 return TRUE;
4410 }
4411
4412 static bfd_boolean
4413 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4414 {
4415 return (r_type == R_PPC64_REL24
4416 || r_type == R_PPC64_REL24_NOTOC
4417 || r_type == R_PPC64_REL14
4418 || r_type == R_PPC64_REL14_BRTAKEN
4419 || r_type == R_PPC64_REL14_BRNTAKEN
4420 || r_type == R_PPC64_ADDR24
4421 || r_type == R_PPC64_ADDR14
4422 || r_type == R_PPC64_ADDR14_BRTAKEN
4423 || r_type == R_PPC64_ADDR14_BRNTAKEN
4424 || r_type == R_PPC64_PLTCALL
4425 || r_type == R_PPC64_PLTCALL_NOTOC);
4426 }
4427
4428 /* Relocs on inline plt call sequence insns prior to the call. */
4429
4430 static bfd_boolean
4431 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4432 {
4433 return (r_type == R_PPC64_PLT16_HA
4434 || r_type == R_PPC64_PLT16_HI
4435 || r_type == R_PPC64_PLT16_LO
4436 || r_type == R_PPC64_PLT16_LO_DS
4437 || r_type == R_PPC64_PLT_PCREL34
4438 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4439 || r_type == R_PPC64_PLTSEQ
4440 || r_type == R_PPC64_PLTSEQ_NOTOC);
4441 }
4442
4443 /* Look through the relocs for a section during the first phase, and
4444 calculate needed space in the global offset table, procedure
4445 linkage table, and dynamic reloc sections. */
4446
4447 static bfd_boolean
4448 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4449 asection *sec, const Elf_Internal_Rela *relocs)
4450 {
4451 struct ppc_link_hash_table *htab;
4452 Elf_Internal_Shdr *symtab_hdr;
4453 struct elf_link_hash_entry **sym_hashes;
4454 const Elf_Internal_Rela *rel;
4455 const Elf_Internal_Rela *rel_end;
4456 asection *sreloc;
4457 struct elf_link_hash_entry *tga, *dottga;
4458 bfd_boolean is_opd;
4459
4460 if (bfd_link_relocatable (info))
4461 return TRUE;
4462
4463 /* Don't do anything special with non-loaded, non-alloced sections.
4464 In particular, any relocs in such sections should not affect GOT
4465 and PLT reference counting (ie. we don't allow them to create GOT
4466 or PLT entries), there's no possibility or desire to optimize TLS
4467 relocs, and there's not much point in propagating relocs to shared
4468 libs that the dynamic linker won't relocate. */
4469 if ((sec->flags & SEC_ALLOC) == 0)
4470 return TRUE;
4471
4472 BFD_ASSERT (is_ppc64_elf (abfd));
4473
4474 htab = ppc_hash_table (info);
4475 if (htab == NULL)
4476 return FALSE;
4477
4478 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4479 FALSE, FALSE, TRUE);
4480 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4481 FALSE, FALSE, TRUE);
4482 symtab_hdr = &elf_symtab_hdr (abfd);
4483 sym_hashes = elf_sym_hashes (abfd);
4484 sreloc = NULL;
4485 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4486 rel_end = relocs + sec->reloc_count;
4487 for (rel = relocs; rel < rel_end; rel++)
4488 {
4489 unsigned long r_symndx;
4490 struct elf_link_hash_entry *h;
4491 enum elf_ppc64_reloc_type r_type;
4492 int tls_type;
4493 struct _ppc64_elf_section_data *ppc64_sec;
4494 struct plt_entry **ifunc, **plt_list;
4495 bfd_vma sym_addend;
4496
4497 r_symndx = ELF64_R_SYM (rel->r_info);
4498 if (r_symndx < symtab_hdr->sh_info)
4499 h = NULL;
4500 else
4501 {
4502 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4503 h = elf_follow_link (h);
4504
4505 if (h == htab->elf.hgot)
4506 sec->has_toc_reloc = 1;
4507 }
4508
4509 tls_type = 0;
4510 ifunc = NULL;
4511 r_type = ELF64_R_TYPE (rel->r_info);
4512 switch (r_type)
4513 {
4514 case R_PPC64_D34:
4515 case R_PPC64_D34_LO:
4516 case R_PPC64_D34_HI30:
4517 case R_PPC64_D34_HA30:
4518 case R_PPC64_D28:
4519 htab->powerxx_stubs = 1;
4520 /* Fall through. */
4521 default:
4522 /* Somewhat foolishly, because the ABIs don't specifically
4523 allow it, ppc64 gas and ld support GOT and PLT relocs
4524 with non-zero addends where the addend results in
4525 sym+addend being stored in the GOT or PLT entry. This
4526 can't be supported for pcrel relocs because the addend is
4527 used to specify the pcrel offset. */
4528 sym_addend = rel->r_addend;
4529 break;
4530
4531 case R_PPC64_PCREL34:
4532 case R_PPC64_GOT_PCREL34:
4533 case R_PPC64_PLT_PCREL34:
4534 case R_PPC64_PLT_PCREL34_NOTOC:
4535 case R_PPC64_PCREL28:
4536 htab->powerxx_stubs = 1;
4537 sym_addend = 0;
4538 break;
4539 }
4540 if (h != NULL)
4541 {
4542 if (h->type == STT_GNU_IFUNC)
4543 {
4544 h->needs_plt = 1;
4545 ifunc = &h->plt.plist;
4546 }
4547 }
4548 else
4549 {
4550 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4551 abfd, r_symndx);
4552 if (isym == NULL)
4553 return FALSE;
4554
4555 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4556 {
4557 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4558 sym_addend,
4559 NON_GOT | PLT_IFUNC);
4560 if (ifunc == NULL)
4561 return FALSE;
4562 }
4563 }
4564
4565 switch (r_type)
4566 {
4567 case R_PPC64_TLSGD:
4568 case R_PPC64_TLSLD:
4569 /* These special tls relocs tie a call to __tls_get_addr with
4570 its parameter symbol. */
4571 if (h != NULL)
4572 ((struct ppc_link_hash_entry *) h)->tls_mask |= TLS_TLS | TLS_MARK;
4573 else
4574 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4575 sym_addend,
4576 NON_GOT | TLS_TLS | TLS_MARK))
4577 return FALSE;
4578 sec->has_tls_reloc = 1;
4579 break;
4580
4581 case R_PPC64_GOT_TLSLD16:
4582 case R_PPC64_GOT_TLSLD16_LO:
4583 case R_PPC64_GOT_TLSLD16_HI:
4584 case R_PPC64_GOT_TLSLD16_HA:
4585 tls_type = TLS_TLS | TLS_LD;
4586 goto dogottls;
4587
4588 case R_PPC64_GOT_TLSGD16:
4589 case R_PPC64_GOT_TLSGD16_LO:
4590 case R_PPC64_GOT_TLSGD16_HI:
4591 case R_PPC64_GOT_TLSGD16_HA:
4592 tls_type = TLS_TLS | TLS_GD;
4593 goto dogottls;
4594
4595 case R_PPC64_GOT_TPREL16_DS:
4596 case R_PPC64_GOT_TPREL16_LO_DS:
4597 case R_PPC64_GOT_TPREL16_HI:
4598 case R_PPC64_GOT_TPREL16_HA:
4599 if (bfd_link_dll (info))
4600 info->flags |= DF_STATIC_TLS;
4601 tls_type = TLS_TLS | TLS_TPREL;
4602 goto dogottls;
4603
4604 case R_PPC64_GOT_DTPREL16_DS:
4605 case R_PPC64_GOT_DTPREL16_LO_DS:
4606 case R_PPC64_GOT_DTPREL16_HI:
4607 case R_PPC64_GOT_DTPREL16_HA:
4608 tls_type = TLS_TLS | TLS_DTPREL;
4609 dogottls:
4610 sec->has_tls_reloc = 1;
4611 goto dogot;
4612
4613 case R_PPC64_GOT16_HA:
4614 case R_PPC64_GOT16_LO_DS:
4615 case R_PPC64_GOT_PCREL34:
4616 ppc64_elf_tdata (abfd)->has_gotrel = 1;
4617 ppc64_elf_section_data (sec)->has_gotrel = 1;
4618 /* Fall through. */
4619
4620 case R_PPC64_GOT16_DS:
4621 case R_PPC64_GOT16:
4622 case R_PPC64_GOT16_HI:
4623 case R_PPC64_GOT16_LO:
4624 dogot:
4625 /* This symbol requires a global offset table entry. */
4626 sec->has_toc_reloc = 1;
4627 if (r_type == R_PPC64_GOT_TLSLD16
4628 || r_type == R_PPC64_GOT_TLSGD16
4629 || r_type == R_PPC64_GOT_TPREL16_DS
4630 || r_type == R_PPC64_GOT_DTPREL16_DS
4631 || r_type == R_PPC64_GOT16
4632 || r_type == R_PPC64_GOT16_DS)
4633 {
4634 htab->do_multi_toc = 1;
4635 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4636 }
4637
4638 if (ppc64_elf_tdata (abfd)->got == NULL
4639 && !create_got_section (abfd, info))
4640 return FALSE;
4641
4642 if (h != NULL)
4643 {
4644 struct ppc_link_hash_entry *eh;
4645 struct got_entry *ent;
4646
4647 eh = (struct ppc_link_hash_entry *) h;
4648 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4649 if (ent->addend == sym_addend
4650 && ent->owner == abfd
4651 && ent->tls_type == tls_type)
4652 break;
4653 if (ent == NULL)
4654 {
4655 bfd_size_type amt = sizeof (*ent);
4656 ent = bfd_alloc (abfd, amt);
4657 if (ent == NULL)
4658 return FALSE;
4659 ent->next = eh->elf.got.glist;
4660 ent->addend = sym_addend;
4661 ent->owner = abfd;
4662 ent->tls_type = tls_type;
4663 ent->is_indirect = FALSE;
4664 ent->got.refcount = 0;
4665 eh->elf.got.glist = ent;
4666 }
4667 ent->got.refcount += 1;
4668 eh->tls_mask |= tls_type;
4669 }
4670 else
4671 /* This is a global offset table entry for a local symbol. */
4672 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4673 sym_addend, tls_type))
4674 return FALSE;
4675
4676 /* We may also need a plt entry if the symbol turns out to be
4677 an ifunc. */
4678 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1)
4679 {
4680 if (!update_plt_info (abfd, &h->plt.plist, sym_addend))
4681 return FALSE;
4682 }
4683 break;
4684
4685 case R_PPC64_PLT16_HA:
4686 case R_PPC64_PLT16_HI:
4687 case R_PPC64_PLT16_LO:
4688 case R_PPC64_PLT16_LO_DS:
4689 case R_PPC64_PLT_PCREL34:
4690 case R_PPC64_PLT_PCREL34_NOTOC:
4691 case R_PPC64_PLT32:
4692 case R_PPC64_PLT64:
4693 /* This symbol requires a procedure linkage table entry. */
4694 plt_list = ifunc;
4695 if (h != NULL)
4696 {
4697 h->needs_plt = 1;
4698 if (h->root.root.string[0] == '.'
4699 && h->root.root.string[1] != '\0')
4700 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4701 ((struct ppc_link_hash_entry *) h)->tls_mask |= PLT_KEEP;
4702 plt_list = &h->plt.plist;
4703 }
4704 if (plt_list == NULL)
4705 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4706 sym_addend,
4707 NON_GOT | PLT_KEEP);
4708 if (!update_plt_info (abfd, plt_list, sym_addend))
4709 return FALSE;
4710 break;
4711
4712 /* The following relocations don't need to propagate the
4713 relocation if linking a shared object since they are
4714 section relative. */
4715 case R_PPC64_SECTOFF:
4716 case R_PPC64_SECTOFF_LO:
4717 case R_PPC64_SECTOFF_HI:
4718 case R_PPC64_SECTOFF_HA:
4719 case R_PPC64_SECTOFF_DS:
4720 case R_PPC64_SECTOFF_LO_DS:
4721 case R_PPC64_DTPREL16:
4722 case R_PPC64_DTPREL16_LO:
4723 case R_PPC64_DTPREL16_HI:
4724 case R_PPC64_DTPREL16_HA:
4725 case R_PPC64_DTPREL16_DS:
4726 case R_PPC64_DTPREL16_LO_DS:
4727 case R_PPC64_DTPREL16_HIGH:
4728 case R_PPC64_DTPREL16_HIGHA:
4729 case R_PPC64_DTPREL16_HIGHER:
4730 case R_PPC64_DTPREL16_HIGHERA:
4731 case R_PPC64_DTPREL16_HIGHEST:
4732 case R_PPC64_DTPREL16_HIGHESTA:
4733 break;
4734
4735 /* Nor do these. */
4736 case R_PPC64_REL16:
4737 case R_PPC64_REL16_LO:
4738 case R_PPC64_REL16_HI:
4739 case R_PPC64_REL16_HA:
4740 case R_PPC64_REL16_HIGH:
4741 case R_PPC64_REL16_HIGHA:
4742 case R_PPC64_REL16_HIGHER:
4743 case R_PPC64_REL16_HIGHERA:
4744 case R_PPC64_REL16_HIGHEST:
4745 case R_PPC64_REL16_HIGHESTA:
4746 case R_PPC64_REL16_HIGHER34:
4747 case R_PPC64_REL16_HIGHERA34:
4748 case R_PPC64_REL16_HIGHEST34:
4749 case R_PPC64_REL16_HIGHESTA34:
4750 case R_PPC64_REL16DX_HA:
4751 break;
4752
4753 /* Not supported as a dynamic relocation. */
4754 case R_PPC64_ADDR64_LOCAL:
4755 if (bfd_link_pic (info))
4756 {
4757 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4758 ppc_howto_init ();
4759 /* xgettext:c-format */
4760 info->callbacks->einfo (_("%H: %s reloc unsupported "
4761 "in shared libraries and PIEs\n"),
4762 abfd, sec, rel->r_offset,
4763 ppc64_elf_howto_table[r_type]->name);
4764 bfd_set_error (bfd_error_bad_value);
4765 return FALSE;
4766 }
4767 break;
4768
4769 case R_PPC64_TOC16:
4770 case R_PPC64_TOC16_DS:
4771 htab->do_multi_toc = 1;
4772 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4773 /* Fall through. */
4774 case R_PPC64_TOC16_LO:
4775 case R_PPC64_TOC16_HI:
4776 case R_PPC64_TOC16_HA:
4777 case R_PPC64_TOC16_LO_DS:
4778 sec->has_toc_reloc = 1;
4779 break;
4780
4781 /* Marker reloc. */
4782 case R_PPC64_ENTRY:
4783 break;
4784
4785 /* This relocation describes the C++ object vtable hierarchy.
4786 Reconstruct it for later use during GC. */
4787 case R_PPC64_GNU_VTINHERIT:
4788 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4789 return FALSE;
4790 break;
4791
4792 /* This relocation describes which C++ vtable entries are actually
4793 used. Record for later use during GC. */
4794 case R_PPC64_GNU_VTENTRY:
4795 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4796 return FALSE;
4797 break;
4798
4799 case R_PPC64_REL14:
4800 case R_PPC64_REL14_BRTAKEN:
4801 case R_PPC64_REL14_BRNTAKEN:
4802 {
4803 asection *dest = NULL;
4804
4805 /* Heuristic: If jumping outside our section, chances are
4806 we are going to need a stub. */
4807 if (h != NULL)
4808 {
4809 /* If the sym is weak it may be overridden later, so
4810 don't assume we know where a weak sym lives. */
4811 if (h->root.type == bfd_link_hash_defined)
4812 dest = h->root.u.def.section;
4813 }
4814 else
4815 {
4816 Elf_Internal_Sym *isym;
4817
4818 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4819 abfd, r_symndx);
4820 if (isym == NULL)
4821 return FALSE;
4822
4823 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4824 }
4825
4826 if (dest != sec)
4827 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4828 }
4829 goto rel24;
4830
4831 case R_PPC64_PLTCALL:
4832 case R_PPC64_PLTCALL_NOTOC:
4833 ppc64_elf_section_data (sec)->has_pltcall = 1;
4834 /* Fall through. */
4835
4836 case R_PPC64_REL24:
4837 case R_PPC64_REL24_NOTOC:
4838 rel24:
4839 plt_list = ifunc;
4840 if (h != NULL)
4841 {
4842 h->needs_plt = 1;
4843 if (h->root.root.string[0] == '.'
4844 && h->root.root.string[1] != '\0')
4845 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4846
4847 if (h == tga || h == dottga)
4848 {
4849 sec->has_tls_reloc = 1;
4850 if (rel != relocs
4851 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4852 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4853 /* We have a new-style __tls_get_addr call with
4854 a marker reloc. */
4855 ;
4856 else
4857 /* Mark this section as having an old-style call. */
4858 sec->has_tls_get_addr_call = 1;
4859 }
4860 plt_list = &h->plt.plist;
4861 }
4862
4863 /* We may need a .plt entry if the function this reloc
4864 refers to is in a shared lib. */
4865 if (plt_list
4866 && !update_plt_info (abfd, plt_list, sym_addend))
4867 return FALSE;
4868 break;
4869
4870 case R_PPC64_ADDR14:
4871 case R_PPC64_ADDR14_BRNTAKEN:
4872 case R_PPC64_ADDR14_BRTAKEN:
4873 case R_PPC64_ADDR24:
4874 goto dodyn;
4875
4876 case R_PPC64_TPREL64:
4877 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4878 if (bfd_link_dll (info))
4879 info->flags |= DF_STATIC_TLS;
4880 goto dotlstoc;
4881
4882 case R_PPC64_DTPMOD64:
4883 if (rel + 1 < rel_end
4884 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4885 && rel[1].r_offset == rel->r_offset + 8)
4886 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4887 else
4888 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4889 goto dotlstoc;
4890
4891 case R_PPC64_DTPREL64:
4892 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4893 if (rel != relocs
4894 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4895 && rel[-1].r_offset == rel->r_offset - 8)
4896 /* This is the second reloc of a dtpmod, dtprel pair.
4897 Don't mark with TLS_DTPREL. */
4898 goto dodyn;
4899
4900 dotlstoc:
4901 sec->has_tls_reloc = 1;
4902 if (h != NULL)
4903 {
4904 struct ppc_link_hash_entry *eh;
4905 eh = (struct ppc_link_hash_entry *) h;
4906 eh->tls_mask |= tls_type;
4907 }
4908 else
4909 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4910 sym_addend, tls_type))
4911 return FALSE;
4912
4913 ppc64_sec = ppc64_elf_section_data (sec);
4914 if (ppc64_sec->sec_type != sec_toc)
4915 {
4916 bfd_size_type amt;
4917
4918 /* One extra to simplify get_tls_mask. */
4919 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
4920 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
4921 if (ppc64_sec->u.toc.symndx == NULL)
4922 return FALSE;
4923 amt = sec->size * sizeof (bfd_vma) / 8;
4924 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
4925 if (ppc64_sec->u.toc.add == NULL)
4926 return FALSE;
4927 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4928 ppc64_sec->sec_type = sec_toc;
4929 }
4930 BFD_ASSERT (rel->r_offset % 8 == 0);
4931 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
4932 ppc64_sec->u.toc.add[rel->r_offset / 8] = sym_addend;
4933
4934 /* Mark the second slot of a GD or LD entry.
4935 -1 to indicate GD and -2 to indicate LD. */
4936 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4937 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
4938 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4939 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
4940 goto dodyn;
4941
4942 case R_PPC64_TPREL16:
4943 case R_PPC64_TPREL16_LO:
4944 case R_PPC64_TPREL16_HI:
4945 case R_PPC64_TPREL16_HA:
4946 case R_PPC64_TPREL16_DS:
4947 case R_PPC64_TPREL16_LO_DS:
4948 case R_PPC64_TPREL16_HIGH:
4949 case R_PPC64_TPREL16_HIGHA:
4950 case R_PPC64_TPREL16_HIGHER:
4951 case R_PPC64_TPREL16_HIGHERA:
4952 case R_PPC64_TPREL16_HIGHEST:
4953 case R_PPC64_TPREL16_HIGHESTA:
4954 if (bfd_link_dll (info))
4955 info->flags |= DF_STATIC_TLS;
4956 goto dodyn;
4957
4958 case R_PPC64_ADDR64:
4959 if (is_opd
4960 && rel + 1 < rel_end
4961 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4962 {
4963 if (h != NULL)
4964 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4965 }
4966 /* Fall through. */
4967
4968 case R_PPC64_ADDR16:
4969 case R_PPC64_ADDR16_DS:
4970 case R_PPC64_ADDR16_HA:
4971 case R_PPC64_ADDR16_HI:
4972 case R_PPC64_ADDR16_HIGH:
4973 case R_PPC64_ADDR16_HIGHA:
4974 case R_PPC64_ADDR16_HIGHER:
4975 case R_PPC64_ADDR16_HIGHERA:
4976 case R_PPC64_ADDR16_HIGHEST:
4977 case R_PPC64_ADDR16_HIGHESTA:
4978 case R_PPC64_ADDR16_LO:
4979 case R_PPC64_ADDR16_LO_DS:
4980 case R_PPC64_D34:
4981 case R_PPC64_D34_LO:
4982 case R_PPC64_D34_HI30:
4983 case R_PPC64_D34_HA30:
4984 case R_PPC64_ADDR16_HIGHER34:
4985 case R_PPC64_ADDR16_HIGHERA34:
4986 case R_PPC64_ADDR16_HIGHEST34:
4987 case R_PPC64_ADDR16_HIGHESTA34:
4988 case R_PPC64_D28:
4989 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
4990 && rel->r_addend == 0)
4991 {
4992 /* We may need a .plt entry if this reloc refers to a
4993 function in a shared lib. */
4994 if (!update_plt_info (abfd, &h->plt.plist, 0))
4995 return FALSE;
4996 h->pointer_equality_needed = 1;
4997 }
4998 /* Fall through. */
4999
5000 case R_PPC64_REL30:
5001 case R_PPC64_REL32:
5002 case R_PPC64_REL64:
5003 case R_PPC64_ADDR32:
5004 case R_PPC64_UADDR16:
5005 case R_PPC64_UADDR32:
5006 case R_PPC64_UADDR64:
5007 case R_PPC64_TOC:
5008 if (h != NULL && !bfd_link_pic (info))
5009 /* We may need a copy reloc. */
5010 h->non_got_ref = 1;
5011
5012 /* Don't propagate .opd relocs. */
5013 if (NO_OPD_RELOCS && is_opd)
5014 break;
5015
5016 /* If we are creating a shared library, and this is a reloc
5017 against a global symbol, or a non PC relative reloc
5018 against a local symbol, then we need to copy the reloc
5019 into the shared library. However, if we are linking with
5020 -Bsymbolic, we do not need to copy a reloc against a
5021 global symbol which is defined in an object we are
5022 including in the link (i.e., DEF_REGULAR is set). At
5023 this point we have not seen all the input files, so it is
5024 possible that DEF_REGULAR is not set now but will be set
5025 later (it is never cleared). In case of a weak definition,
5026 DEF_REGULAR may be cleared later by a strong definition in
5027 a shared library. We account for that possibility below by
5028 storing information in the dyn_relocs field of the hash
5029 table entry. A similar situation occurs when creating
5030 shared libraries and symbol visibility changes render the
5031 symbol local.
5032
5033 If on the other hand, we are creating an executable, we
5034 may need to keep relocations for symbols satisfied by a
5035 dynamic library if we manage to avoid copy relocs for the
5036 symbol. */
5037 dodyn:
5038 if ((bfd_link_pic (info)
5039 && (must_be_dyn_reloc (info, r_type)
5040 || (h != NULL
5041 && (!SYMBOLIC_BIND (info, h)
5042 || h->root.type == bfd_link_hash_defweak
5043 || !h->def_regular))))
5044 || (ELIMINATE_COPY_RELOCS
5045 && !bfd_link_pic (info)
5046 && h != NULL
5047 && (h->root.type == bfd_link_hash_defweak
5048 || !h->def_regular))
5049 || (!bfd_link_pic (info)
5050 && ifunc != NULL))
5051 {
5052 /* We must copy these reloc types into the output file.
5053 Create a reloc section in dynobj and make room for
5054 this reloc. */
5055 if (sreloc == NULL)
5056 {
5057 sreloc = _bfd_elf_make_dynamic_reloc_section
5058 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5059
5060 if (sreloc == NULL)
5061 return FALSE;
5062 }
5063
5064 /* If this is a global symbol, we count the number of
5065 relocations we need for this symbol. */
5066 if (h != NULL)
5067 {
5068 struct elf_dyn_relocs *p;
5069 struct elf_dyn_relocs **head;
5070
5071 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5072 p = *head;
5073 if (p == NULL || p->sec != sec)
5074 {
5075 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5076 if (p == NULL)
5077 return FALSE;
5078 p->next = *head;
5079 *head = p;
5080 p->sec = sec;
5081 p->count = 0;
5082 p->pc_count = 0;
5083 }
5084 p->count += 1;
5085 if (!must_be_dyn_reloc (info, r_type))
5086 p->pc_count += 1;
5087 }
5088 else
5089 {
5090 /* Track dynamic relocs needed for local syms too.
5091 We really need local syms available to do this
5092 easily. Oh well. */
5093 struct ppc_dyn_relocs *p;
5094 struct ppc_dyn_relocs **head;
5095 bfd_boolean is_ifunc;
5096 asection *s;
5097 void *vpp;
5098 Elf_Internal_Sym *isym;
5099
5100 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5101 abfd, r_symndx);
5102 if (isym == NULL)
5103 return FALSE;
5104
5105 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5106 if (s == NULL)
5107 s = sec;
5108
5109 vpp = &elf_section_data (s)->local_dynrel;
5110 head = (struct ppc_dyn_relocs **) vpp;
5111 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5112 p = *head;
5113 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5114 p = p->next;
5115 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5116 {
5117 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5118 if (p == NULL)
5119 return FALSE;
5120 p->next = *head;
5121 *head = p;
5122 p->sec = sec;
5123 p->ifunc = is_ifunc;
5124 p->count = 0;
5125 }
5126 p->count += 1;
5127 }
5128 }
5129 break;
5130
5131 default:
5132 break;
5133 }
5134 }
5135
5136 return TRUE;
5137 }
5138
5139 /* Merge backend specific data from an object file to the output
5140 object file when linking. */
5141
5142 static bfd_boolean
5143 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5144 {
5145 bfd *obfd = info->output_bfd;
5146 unsigned long iflags, oflags;
5147
5148 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5149 return TRUE;
5150
5151 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5152 return TRUE;
5153
5154 if (!_bfd_generic_verify_endian_match (ibfd, info))
5155 return FALSE;
5156
5157 iflags = elf_elfheader (ibfd)->e_flags;
5158 oflags = elf_elfheader (obfd)->e_flags;
5159
5160 if (iflags & ~EF_PPC64_ABI)
5161 {
5162 _bfd_error_handler
5163 /* xgettext:c-format */
5164 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5165 bfd_set_error (bfd_error_bad_value);
5166 return FALSE;
5167 }
5168 else if (iflags != oflags && iflags != 0)
5169 {
5170 _bfd_error_handler
5171 /* xgettext:c-format */
5172 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5173 ibfd, iflags, oflags);
5174 bfd_set_error (bfd_error_bad_value);
5175 return FALSE;
5176 }
5177
5178 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5179 return FALSE;
5180
5181 /* Merge Tag_compatibility attributes and any common GNU ones. */
5182 return _bfd_elf_merge_object_attributes (ibfd, info);
5183 }
5184
5185 static bfd_boolean
5186 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5187 {
5188 /* Print normal ELF private data. */
5189 _bfd_elf_print_private_bfd_data (abfd, ptr);
5190
5191 if (elf_elfheader (abfd)->e_flags != 0)
5192 {
5193 FILE *file = ptr;
5194
5195 fprintf (file, _("private flags = 0x%lx:"),
5196 elf_elfheader (abfd)->e_flags);
5197
5198 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5199 fprintf (file, _(" [abiv%ld]"),
5200 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5201 fputc ('\n', file);
5202 }
5203
5204 return TRUE;
5205 }
5206
5207 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5208 of the code entry point, and its section, which must be in the same
5209 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5210
5211 static bfd_vma
5212 opd_entry_value (asection *opd_sec,
5213 bfd_vma offset,
5214 asection **code_sec,
5215 bfd_vma *code_off,
5216 bfd_boolean in_code_sec)
5217 {
5218 bfd *opd_bfd = opd_sec->owner;
5219 Elf_Internal_Rela *relocs;
5220 Elf_Internal_Rela *lo, *hi, *look;
5221 bfd_vma val;
5222
5223 /* No relocs implies we are linking a --just-symbols object, or looking
5224 at a final linked executable with addr2line or somesuch. */
5225 if (opd_sec->reloc_count == 0)
5226 {
5227 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5228
5229 if (contents == NULL)
5230 {
5231 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5232 return (bfd_vma) -1;
5233 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5234 }
5235
5236 /* PR 17512: file: 64b9dfbb. */
5237 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5238 return (bfd_vma) -1;
5239
5240 val = bfd_get_64 (opd_bfd, contents + offset);
5241 if (code_sec != NULL)
5242 {
5243 asection *sec, *likely = NULL;
5244
5245 if (in_code_sec)
5246 {
5247 sec = *code_sec;
5248 if (sec->vma <= val
5249 && val < sec->vma + sec->size)
5250 likely = sec;
5251 else
5252 val = -1;
5253 }
5254 else
5255 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5256 if (sec->vma <= val
5257 && (sec->flags & SEC_LOAD) != 0
5258 && (sec->flags & SEC_ALLOC) != 0)
5259 likely = sec;
5260 if (likely != NULL)
5261 {
5262 *code_sec = likely;
5263 if (code_off != NULL)
5264 *code_off = val - likely->vma;
5265 }
5266 }
5267 return val;
5268 }
5269
5270 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5271
5272 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5273 if (relocs == NULL)
5274 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5275 /* PR 17512: file: df8e1fd6. */
5276 if (relocs == NULL)
5277 return (bfd_vma) -1;
5278
5279 /* Go find the opd reloc at the sym address. */
5280 lo = relocs;
5281 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5282 val = (bfd_vma) -1;
5283 while (lo < hi)
5284 {
5285 look = lo + (hi - lo) / 2;
5286 if (look->r_offset < offset)
5287 lo = look + 1;
5288 else if (look->r_offset > offset)
5289 hi = look;
5290 else
5291 {
5292 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5293
5294 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5295 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5296 {
5297 unsigned long symndx = ELF64_R_SYM (look->r_info);
5298 asection *sec = NULL;
5299
5300 if (symndx >= symtab_hdr->sh_info
5301 && elf_sym_hashes (opd_bfd) != NULL)
5302 {
5303 struct elf_link_hash_entry **sym_hashes;
5304 struct elf_link_hash_entry *rh;
5305
5306 sym_hashes = elf_sym_hashes (opd_bfd);
5307 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5308 if (rh != NULL)
5309 {
5310 rh = elf_follow_link (rh);
5311 if (rh->root.type != bfd_link_hash_defined
5312 && rh->root.type != bfd_link_hash_defweak)
5313 break;
5314 if (rh->root.u.def.section->owner == opd_bfd)
5315 {
5316 val = rh->root.u.def.value;
5317 sec = rh->root.u.def.section;
5318 }
5319 }
5320 }
5321
5322 if (sec == NULL)
5323 {
5324 Elf_Internal_Sym *sym;
5325
5326 if (symndx < symtab_hdr->sh_info)
5327 {
5328 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5329 if (sym == NULL)
5330 {
5331 size_t symcnt = symtab_hdr->sh_info;
5332 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5333 symcnt, 0,
5334 NULL, NULL, NULL);
5335 if (sym == NULL)
5336 break;
5337 symtab_hdr->contents = (bfd_byte *) sym;
5338 }
5339 sym += symndx;
5340 }
5341 else
5342 {
5343 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5344 1, symndx,
5345 NULL, NULL, NULL);
5346 if (sym == NULL)
5347 break;
5348 }
5349 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5350 if (sec == NULL)
5351 break;
5352 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5353 val = sym->st_value;
5354 }
5355
5356 val += look->r_addend;
5357 if (code_off != NULL)
5358 *code_off = val;
5359 if (code_sec != NULL)
5360 {
5361 if (in_code_sec && *code_sec != sec)
5362 return -1;
5363 else
5364 *code_sec = sec;
5365 }
5366 if (sec->output_section != NULL)
5367 val += sec->output_section->vma + sec->output_offset;
5368 }
5369 break;
5370 }
5371 }
5372
5373 return val;
5374 }
5375
5376 /* If the ELF symbol SYM might be a function in SEC, return the
5377 function size and set *CODE_OFF to the function's entry point,
5378 otherwise return zero. */
5379
5380 static bfd_size_type
5381 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5382 bfd_vma *code_off)
5383 {
5384 bfd_size_type size;
5385
5386 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5387 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5388 return 0;
5389
5390 size = 0;
5391 if (!(sym->flags & BSF_SYNTHETIC))
5392 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5393
5394 if (strcmp (sym->section->name, ".opd") == 0)
5395 {
5396 struct _opd_sec_data *opd = get_opd_info (sym->section);
5397 bfd_vma symval = sym->value;
5398
5399 if (opd != NULL
5400 && opd->adjust != NULL
5401 && elf_section_data (sym->section)->relocs != NULL)
5402 {
5403 /* opd_entry_value will use cached relocs that have been
5404 adjusted, but with raw symbols. That means both local
5405 and global symbols need adjusting. */
5406 long adjust = opd->adjust[OPD_NDX (symval)];
5407 if (adjust == -1)
5408 return 0;
5409 symval += adjust;
5410 }
5411
5412 if (opd_entry_value (sym->section, symval,
5413 &sec, code_off, TRUE) == (bfd_vma) -1)
5414 return 0;
5415 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5416 symbol. This size has nothing to do with the code size of the
5417 function, which is what we're supposed to return, but the
5418 code size isn't available without looking up the dot-sym.
5419 However, doing that would be a waste of time particularly
5420 since elf_find_function will look at the dot-sym anyway.
5421 Now, elf_find_function will keep the largest size of any
5422 function sym found at the code address of interest, so return
5423 1 here to avoid it incorrectly caching a larger function size
5424 for a small function. This does mean we return the wrong
5425 size for a new-ABI function of size 24, but all that does is
5426 disable caching for such functions. */
5427 if (size == 24)
5428 size = 1;
5429 }
5430 else
5431 {
5432 if (sym->section != sec)
5433 return 0;
5434 *code_off = sym->value;
5435 }
5436 if (size == 0)
5437 size = 1;
5438 return size;
5439 }
5440
5441 /* Return true if symbol is a strong function defined in an ELFv2
5442 object with st_other localentry bits of zero, ie. its local entry
5443 point coincides with its global entry point. */
5444
5445 static bfd_boolean
5446 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5447 {
5448 return (h != NULL
5449 && h->type == STT_FUNC
5450 && h->root.type == bfd_link_hash_defined
5451 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5452 && !((struct ppc_link_hash_entry *) h)->non_zero_localentry
5453 && is_ppc64_elf (h->root.u.def.section->owner)
5454 && abiversion (h->root.u.def.section->owner) >= 2);
5455 }
5456
5457 /* Return true if symbol is defined in a regular object file. */
5458
5459 static bfd_boolean
5460 is_static_defined (struct elf_link_hash_entry *h)
5461 {
5462 return ((h->root.type == bfd_link_hash_defined
5463 || h->root.type == bfd_link_hash_defweak)
5464 && h->root.u.def.section != NULL
5465 && h->root.u.def.section->output_section != NULL);
5466 }
5467
5468 /* If FDH is a function descriptor symbol, return the associated code
5469 entry symbol if it is defined. Return NULL otherwise. */
5470
5471 static struct ppc_link_hash_entry *
5472 defined_code_entry (struct ppc_link_hash_entry *fdh)
5473 {
5474 if (fdh->is_func_descriptor)
5475 {
5476 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5477 if (fh->elf.root.type == bfd_link_hash_defined
5478 || fh->elf.root.type == bfd_link_hash_defweak)
5479 return fh;
5480 }
5481 return NULL;
5482 }
5483
5484 /* If FH is a function code entry symbol, return the associated
5485 function descriptor symbol if it is defined. Return NULL otherwise. */
5486
5487 static struct ppc_link_hash_entry *
5488 defined_func_desc (struct ppc_link_hash_entry *fh)
5489 {
5490 if (fh->oh != NULL
5491 && fh->oh->is_func_descriptor)
5492 {
5493 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5494 if (fdh->elf.root.type == bfd_link_hash_defined
5495 || fdh->elf.root.type == bfd_link_hash_defweak)
5496 return fdh;
5497 }
5498 return NULL;
5499 }
5500
5501 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5502
5503 /* Garbage collect sections, after first dealing with dot-symbols. */
5504
5505 static bfd_boolean
5506 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5507 {
5508 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5509
5510 if (htab != NULL && htab->need_func_desc_adj)
5511 {
5512 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5513 htab->need_func_desc_adj = 0;
5514 }
5515 return bfd_elf_gc_sections (abfd, info);
5516 }
5517
5518 /* Mark all our entry sym sections, both opd and code section. */
5519
5520 static void
5521 ppc64_elf_gc_keep (struct bfd_link_info *info)
5522 {
5523 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5524 struct bfd_sym_chain *sym;
5525
5526 if (htab == NULL)
5527 return;
5528
5529 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5530 {
5531 struct ppc_link_hash_entry *eh, *fh;
5532 asection *sec;
5533
5534 eh = (struct ppc_link_hash_entry *)
5535 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5536 if (eh == NULL)
5537 continue;
5538 if (eh->elf.root.type != bfd_link_hash_defined
5539 && eh->elf.root.type != bfd_link_hash_defweak)
5540 continue;
5541
5542 fh = defined_code_entry (eh);
5543 if (fh != NULL)
5544 {
5545 sec = fh->elf.root.u.def.section;
5546 sec->flags |= SEC_KEEP;
5547 }
5548 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5549 && opd_entry_value (eh->elf.root.u.def.section,
5550 eh->elf.root.u.def.value,
5551 &sec, NULL, FALSE) != (bfd_vma) -1)
5552 sec->flags |= SEC_KEEP;
5553
5554 sec = eh->elf.root.u.def.section;
5555 sec->flags |= SEC_KEEP;
5556 }
5557 }
5558
5559 /* Mark sections containing dynamically referenced symbols. When
5560 building shared libraries, we must assume that any visible symbol is
5561 referenced. */
5562
5563 static bfd_boolean
5564 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5565 {
5566 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5567 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5568 struct ppc_link_hash_entry *fdh;
5569 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5570
5571 /* Dynamic linking info is on the func descriptor sym. */
5572 fdh = defined_func_desc (eh);
5573 if (fdh != NULL)
5574 eh = fdh;
5575
5576 if ((eh->elf.root.type == bfd_link_hash_defined
5577 || eh->elf.root.type == bfd_link_hash_defweak)
5578 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5579 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5580 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5581 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5582 && (!bfd_link_executable (info)
5583 || info->gc_keep_exported
5584 || info->export_dynamic
5585 || (eh->elf.dynamic
5586 && d != NULL
5587 && (*d->match) (&d->head, NULL,
5588 eh->elf.root.root.string)))
5589 && (eh->elf.versioned >= versioned
5590 || !bfd_hide_sym_by_version (info->version_info,
5591 eh->elf.root.root.string)))))
5592 {
5593 asection *code_sec;
5594 struct ppc_link_hash_entry *fh;
5595
5596 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5597
5598 /* Function descriptor syms cause the associated
5599 function code sym section to be marked. */
5600 fh = defined_code_entry (eh);
5601 if (fh != NULL)
5602 {
5603 code_sec = fh->elf.root.u.def.section;
5604 code_sec->flags |= SEC_KEEP;
5605 }
5606 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5607 && opd_entry_value (eh->elf.root.u.def.section,
5608 eh->elf.root.u.def.value,
5609 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5610 code_sec->flags |= SEC_KEEP;
5611 }
5612
5613 return TRUE;
5614 }
5615
5616 /* Return the section that should be marked against GC for a given
5617 relocation. */
5618
5619 static asection *
5620 ppc64_elf_gc_mark_hook (asection *sec,
5621 struct bfd_link_info *info,
5622 Elf_Internal_Rela *rel,
5623 struct elf_link_hash_entry *h,
5624 Elf_Internal_Sym *sym)
5625 {
5626 asection *rsec;
5627
5628 /* Syms return NULL if we're marking .opd, so we avoid marking all
5629 function sections, as all functions are referenced in .opd. */
5630 rsec = NULL;
5631 if (get_opd_info (sec) != NULL)
5632 return rsec;
5633
5634 if (h != NULL)
5635 {
5636 enum elf_ppc64_reloc_type r_type;
5637 struct ppc_link_hash_entry *eh, *fh, *fdh;
5638
5639 r_type = ELF64_R_TYPE (rel->r_info);
5640 switch (r_type)
5641 {
5642 case R_PPC64_GNU_VTINHERIT:
5643 case R_PPC64_GNU_VTENTRY:
5644 break;
5645
5646 default:
5647 switch (h->root.type)
5648 {
5649 case bfd_link_hash_defined:
5650 case bfd_link_hash_defweak:
5651 eh = (struct ppc_link_hash_entry *) h;
5652 fdh = defined_func_desc (eh);
5653 if (fdh != NULL)
5654 {
5655 /* -mcall-aixdesc code references the dot-symbol on
5656 a call reloc. Mark the function descriptor too
5657 against garbage collection. */
5658 fdh->elf.mark = 1;
5659 if (fdh->elf.is_weakalias)
5660 weakdef (&fdh->elf)->mark = 1;
5661 eh = fdh;
5662 }
5663
5664 /* Function descriptor syms cause the associated
5665 function code sym section to be marked. */
5666 fh = defined_code_entry (eh);
5667 if (fh != NULL)
5668 {
5669 /* They also mark their opd section. */
5670 eh->elf.root.u.def.section->gc_mark = 1;
5671
5672 rsec = fh->elf.root.u.def.section;
5673 }
5674 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5675 && opd_entry_value (eh->elf.root.u.def.section,
5676 eh->elf.root.u.def.value,
5677 &rsec, NULL, FALSE) != (bfd_vma) -1)
5678 eh->elf.root.u.def.section->gc_mark = 1;
5679 else
5680 rsec = h->root.u.def.section;
5681 break;
5682
5683 case bfd_link_hash_common:
5684 rsec = h->root.u.c.p->section;
5685 break;
5686
5687 default:
5688 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5689 }
5690 }
5691 }
5692 else
5693 {
5694 struct _opd_sec_data *opd;
5695
5696 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5697 opd = get_opd_info (rsec);
5698 if (opd != NULL && opd->func_sec != NULL)
5699 {
5700 rsec->gc_mark = 1;
5701
5702 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5703 }
5704 }
5705
5706 return rsec;
5707 }
5708
5709 /* The maximum size of .sfpr. */
5710 #define SFPR_MAX (218*4)
5711
5712 struct sfpr_def_parms
5713 {
5714 const char name[12];
5715 unsigned char lo, hi;
5716 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5717 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5718 };
5719
5720 /* Auto-generate _save*, _rest* functions in .sfpr.
5721 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5722 instead. */
5723
5724 static bfd_boolean
5725 sfpr_define (struct bfd_link_info *info,
5726 const struct sfpr_def_parms *parm,
5727 asection *stub_sec)
5728 {
5729 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5730 unsigned int i;
5731 size_t len = strlen (parm->name);
5732 bfd_boolean writing = FALSE;
5733 char sym[16];
5734
5735 if (htab == NULL)
5736 return FALSE;
5737
5738 memcpy (sym, parm->name, len);
5739 sym[len + 2] = 0;
5740
5741 for (i = parm->lo; i <= parm->hi; i++)
5742 {
5743 struct ppc_link_hash_entry *h;
5744
5745 sym[len + 0] = i / 10 + '0';
5746 sym[len + 1] = i % 10 + '0';
5747 h = (struct ppc_link_hash_entry *)
5748 elf_link_hash_lookup (&htab->elf, sym, writing, TRUE, TRUE);
5749 if (stub_sec != NULL)
5750 {
5751 if (h != NULL
5752 && h->elf.root.type == bfd_link_hash_defined
5753 && h->elf.root.u.def.section == htab->sfpr)
5754 {
5755 struct elf_link_hash_entry *s;
5756 char buf[32];
5757 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5758 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5759 if (s == NULL)
5760 return FALSE;
5761 if (s->root.type == bfd_link_hash_new
5762 || (s->root.type = bfd_link_hash_defined
5763 && s->root.u.def.section == stub_sec))
5764 {
5765 s->root.type = bfd_link_hash_defined;
5766 s->root.u.def.section = stub_sec;
5767 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5768 + h->elf.root.u.def.value);
5769 s->ref_regular = 1;
5770 s->def_regular = 1;
5771 s->ref_regular_nonweak = 1;
5772 s->forced_local = 1;
5773 s->non_elf = 0;
5774 s->root.linker_def = 1;
5775 }
5776 }
5777 continue;
5778 }
5779 if (h != NULL)
5780 {
5781 h->save_res = 1;
5782 if (!h->elf.def_regular)
5783 {
5784 h->elf.root.type = bfd_link_hash_defined;
5785 h->elf.root.u.def.section = htab->sfpr;
5786 h->elf.root.u.def.value = htab->sfpr->size;
5787 h->elf.type = STT_FUNC;
5788 h->elf.def_regular = 1;
5789 h->elf.non_elf = 0;
5790 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5791 writing = TRUE;
5792 if (htab->sfpr->contents == NULL)
5793 {
5794 htab->sfpr->contents
5795 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5796 if (htab->sfpr->contents == NULL)
5797 return FALSE;
5798 }
5799 }
5800 }
5801 if (writing)
5802 {
5803 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5804 if (i != parm->hi)
5805 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5806 else
5807 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5808 htab->sfpr->size = p - htab->sfpr->contents;
5809 }
5810 }
5811
5812 return TRUE;
5813 }
5814
5815 static bfd_byte *
5816 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5817 {
5818 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5819 return p + 4;
5820 }
5821
5822 static bfd_byte *
5823 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5824 {
5825 p = savegpr0 (abfd, p, r);
5826 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5827 p = p + 4;
5828 bfd_put_32 (abfd, BLR, p);
5829 return p + 4;
5830 }
5831
5832 static bfd_byte *
5833 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5834 {
5835 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5836 return p + 4;
5837 }
5838
5839 static bfd_byte *
5840 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5841 {
5842 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5843 p = p + 4;
5844 p = restgpr0 (abfd, p, r);
5845 bfd_put_32 (abfd, MTLR_R0, p);
5846 p = p + 4;
5847 if (r == 29)
5848 {
5849 p = restgpr0 (abfd, p, 30);
5850 p = restgpr0 (abfd, p, 31);
5851 }
5852 bfd_put_32 (abfd, BLR, p);
5853 return p + 4;
5854 }
5855
5856 static bfd_byte *
5857 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5858 {
5859 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5860 return p + 4;
5861 }
5862
5863 static bfd_byte *
5864 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5865 {
5866 p = savegpr1 (abfd, p, r);
5867 bfd_put_32 (abfd, BLR, p);
5868 return p + 4;
5869 }
5870
5871 static bfd_byte *
5872 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5873 {
5874 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5875 return p + 4;
5876 }
5877
5878 static bfd_byte *
5879 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5880 {
5881 p = restgpr1 (abfd, p, r);
5882 bfd_put_32 (abfd, BLR, p);
5883 return p + 4;
5884 }
5885
5886 static bfd_byte *
5887 savefpr (bfd *abfd, bfd_byte *p, int r)
5888 {
5889 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5890 return p + 4;
5891 }
5892
5893 static bfd_byte *
5894 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5895 {
5896 p = savefpr (abfd, p, r);
5897 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5898 p = p + 4;
5899 bfd_put_32 (abfd, BLR, p);
5900 return p + 4;
5901 }
5902
5903 static bfd_byte *
5904 restfpr (bfd *abfd, bfd_byte *p, int r)
5905 {
5906 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5907 return p + 4;
5908 }
5909
5910 static bfd_byte *
5911 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5912 {
5913 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5914 p = p + 4;
5915 p = restfpr (abfd, p, r);
5916 bfd_put_32 (abfd, MTLR_R0, p);
5917 p = p + 4;
5918 if (r == 29)
5919 {
5920 p = restfpr (abfd, p, 30);
5921 p = restfpr (abfd, p, 31);
5922 }
5923 bfd_put_32 (abfd, BLR, p);
5924 return p + 4;
5925 }
5926
5927 static bfd_byte *
5928 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5929 {
5930 p = savefpr (abfd, p, r);
5931 bfd_put_32 (abfd, BLR, p);
5932 return p + 4;
5933 }
5934
5935 static bfd_byte *
5936 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5937 {
5938 p = restfpr (abfd, p, r);
5939 bfd_put_32 (abfd, BLR, p);
5940 return p + 4;
5941 }
5942
5943 static bfd_byte *
5944 savevr (bfd *abfd, bfd_byte *p, int r)
5945 {
5946 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5947 p = p + 4;
5948 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5949 return p + 4;
5950 }
5951
5952 static bfd_byte *
5953 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5954 {
5955 p = savevr (abfd, p, r);
5956 bfd_put_32 (abfd, BLR, p);
5957 return p + 4;
5958 }
5959
5960 static bfd_byte *
5961 restvr (bfd *abfd, bfd_byte *p, int r)
5962 {
5963 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5964 p = p + 4;
5965 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5966 return p + 4;
5967 }
5968
5969 static bfd_byte *
5970 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5971 {
5972 p = restvr (abfd, p, r);
5973 bfd_put_32 (abfd, BLR, p);
5974 return p + 4;
5975 }
5976
5977 /* Called via elf_link_hash_traverse to transfer dynamic linking
5978 information on function code symbol entries to their corresponding
5979 function descriptor symbol entries. */
5980
5981 static bfd_boolean
5982 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5983 {
5984 struct bfd_link_info *info;
5985 struct ppc_link_hash_table *htab;
5986 struct ppc_link_hash_entry *fh;
5987 struct ppc_link_hash_entry *fdh;
5988 bfd_boolean force_local;
5989
5990 fh = (struct ppc_link_hash_entry *) h;
5991 if (fh->elf.root.type == bfd_link_hash_indirect)
5992 return TRUE;
5993
5994 if (!fh->is_func)
5995 return TRUE;
5996
5997 if (fh->elf.root.root.string[0] != '.'
5998 || fh->elf.root.root.string[1] == '\0')
5999 return TRUE;
6000
6001 info = inf;
6002 htab = ppc_hash_table (info);
6003 if (htab == NULL)
6004 return FALSE;
6005
6006 /* Find the corresponding function descriptor symbol. */
6007 fdh = lookup_fdh (fh, htab);
6008
6009 /* Resolve undefined references to dot-symbols as the value
6010 in the function descriptor, if we have one in a regular object.
6011 This is to satisfy cases like ".quad .foo". Calls to functions
6012 in dynamic objects are handled elsewhere. */
6013 if ((fh->elf.root.type == bfd_link_hash_undefined
6014 || fh->elf.root.type == bfd_link_hash_undefweak)
6015 && (fdh->elf.root.type == bfd_link_hash_defined
6016 || fdh->elf.root.type == bfd_link_hash_defweak)
6017 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6018 && opd_entry_value (fdh->elf.root.u.def.section,
6019 fdh->elf.root.u.def.value,
6020 &fh->elf.root.u.def.section,
6021 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6022 {
6023 fh->elf.root.type = fdh->elf.root.type;
6024 fh->elf.forced_local = 1;
6025 fh->elf.def_regular = fdh->elf.def_regular;
6026 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6027 }
6028
6029 if (!fh->elf.dynamic)
6030 {
6031 struct plt_entry *ent;
6032
6033 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6034 if (ent->plt.refcount > 0)
6035 break;
6036 if (ent == NULL)
6037 return TRUE;
6038 }
6039
6040 /* Create a descriptor as undefined if necessary. */
6041 if (fdh == NULL
6042 && !bfd_link_executable (info)
6043 && (fh->elf.root.type == bfd_link_hash_undefined
6044 || fh->elf.root.type == bfd_link_hash_undefweak))
6045 {
6046 fdh = make_fdh (info, fh);
6047 if (fdh == NULL)
6048 return FALSE;
6049 }
6050
6051 /* We can't support overriding of symbols on a fake descriptor. */
6052 if (fdh != NULL
6053 && fdh->fake
6054 && (fh->elf.root.type == bfd_link_hash_defined
6055 || fh->elf.root.type == bfd_link_hash_defweak))
6056 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6057
6058 /* Transfer dynamic linking information to the function descriptor. */
6059 if (fdh != NULL)
6060 {
6061 fdh->elf.ref_regular |= fh->elf.ref_regular;
6062 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6063 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6064 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6065 fdh->elf.dynamic |= fh->elf.dynamic;
6066 fdh->elf.needs_plt |= (fh->elf.needs_plt
6067 || fh->elf.type == STT_FUNC
6068 || fh->elf.type == STT_GNU_IFUNC);
6069 move_plt_plist (fh, fdh);
6070
6071 if (!fdh->elf.forced_local
6072 && fh->elf.dynindx != -1)
6073 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6074 return FALSE;
6075 }
6076
6077 /* Now that the info is on the function descriptor, clear the
6078 function code sym info. Any function code syms for which we
6079 don't have a definition in a regular file, we force local.
6080 This prevents a shared library from exporting syms that have
6081 been imported from another library. Function code syms that
6082 are really in the library we must leave global to prevent the
6083 linker dragging in a definition from a static library. */
6084 force_local = (!fh->elf.def_regular
6085 || fdh == NULL
6086 || !fdh->elf.def_regular
6087 || fdh->elf.forced_local);
6088 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6089
6090 return TRUE;
6091 }
6092
6093 static const struct sfpr_def_parms save_res_funcs[] =
6094 {
6095 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6096 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6097 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6098 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6099 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6100 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6101 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6102 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6103 { "._savef", 14, 31, savefpr, savefpr1_tail },
6104 { "._restf", 14, 31, restfpr, restfpr1_tail },
6105 { "_savevr_", 20, 31, savevr, savevr_tail },
6106 { "_restvr_", 20, 31, restvr, restvr_tail }
6107 };
6108
6109 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6110 this hook to a) provide some gcc support functions, and b) transfer
6111 dynamic linking information gathered so far on function code symbol
6112 entries, to their corresponding function descriptor symbol entries. */
6113
6114 static bfd_boolean
6115 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6116 struct bfd_link_info *info)
6117 {
6118 struct ppc_link_hash_table *htab;
6119
6120 htab = ppc_hash_table (info);
6121 if (htab == NULL)
6122 return FALSE;
6123
6124 /* Provide any missing _save* and _rest* functions. */
6125 if (htab->sfpr != NULL)
6126 {
6127 unsigned int i;
6128
6129 htab->sfpr->size = 0;
6130 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6131 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6132 return FALSE;
6133 if (htab->sfpr->size == 0)
6134 htab->sfpr->flags |= SEC_EXCLUDE;
6135 }
6136
6137 if (bfd_link_relocatable (info))
6138 return TRUE;
6139
6140 if (htab->elf.hgot != NULL)
6141 {
6142 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6143 /* Make .TOC. defined so as to prevent it being made dynamic.
6144 The wrong value here is fixed later in ppc64_elf_set_toc. */
6145 if (!htab->elf.hgot->def_regular
6146 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6147 {
6148 htab->elf.hgot->root.type = bfd_link_hash_defined;
6149 htab->elf.hgot->root.u.def.value = 0;
6150 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6151 htab->elf.hgot->def_regular = 1;
6152 htab->elf.hgot->root.linker_def = 1;
6153 }
6154 htab->elf.hgot->type = STT_OBJECT;
6155 htab->elf.hgot->other
6156 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6157 }
6158
6159 if (htab->need_func_desc_adj)
6160 {
6161 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6162 htab->need_func_desc_adj = 0;
6163 }
6164
6165 return TRUE;
6166 }
6167
6168 /* Find dynamic relocs for H that apply to read-only sections. */
6169
6170 static asection *
6171 readonly_dynrelocs (struct elf_link_hash_entry *h)
6172 {
6173 struct ppc_link_hash_entry *eh;
6174 struct elf_dyn_relocs *p;
6175
6176 eh = (struct ppc_link_hash_entry *) h;
6177 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6178 {
6179 asection *s = p->sec->output_section;
6180
6181 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6182 return p->sec;
6183 }
6184 return NULL;
6185 }
6186
6187 /* Return true if we have dynamic relocs against H or any of its weak
6188 aliases, that apply to read-only sections. Cannot be used after
6189 size_dynamic_sections. */
6190
6191 static bfd_boolean
6192 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6193 {
6194 struct ppc_link_hash_entry *eh;
6195
6196 eh = (struct ppc_link_hash_entry *) h;
6197 do
6198 {
6199 if (readonly_dynrelocs (&eh->elf))
6200 return TRUE;
6201 eh = (struct ppc_link_hash_entry *) eh->elf.u.alias;
6202 }
6203 while (eh != NULL && &eh->elf != h);
6204
6205 return FALSE;
6206 }
6207
6208 /* Return whether EH has pc-relative dynamic relocs. */
6209
6210 static bfd_boolean
6211 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6212 {
6213 struct elf_dyn_relocs *p;
6214
6215 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6216 if (p->pc_count != 0)
6217 return TRUE;
6218 return FALSE;
6219 }
6220
6221 /* Return true if a global entry stub will be created for H. Valid
6222 for ELFv2 before plt entries have been allocated. */
6223
6224 static bfd_boolean
6225 global_entry_stub (struct elf_link_hash_entry *h)
6226 {
6227 struct plt_entry *pent;
6228
6229 if (!h->pointer_equality_needed
6230 || h->def_regular)
6231 return FALSE;
6232
6233 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6234 if (pent->plt.refcount > 0
6235 && pent->addend == 0)
6236 return TRUE;
6237
6238 return FALSE;
6239 }
6240
6241 /* Adjust a symbol defined by a dynamic object and referenced by a
6242 regular object. The current definition is in some section of the
6243 dynamic object, but we're not including those sections. We have to
6244 change the definition to something the rest of the link can
6245 understand. */
6246
6247 static bfd_boolean
6248 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6249 struct elf_link_hash_entry *h)
6250 {
6251 struct ppc_link_hash_table *htab;
6252 asection *s, *srel;
6253
6254 htab = ppc_hash_table (info);
6255 if (htab == NULL)
6256 return FALSE;
6257
6258 /* Deal with function syms. */
6259 if (h->type == STT_FUNC
6260 || h->type == STT_GNU_IFUNC
6261 || h->needs_plt)
6262 {
6263 bfd_boolean local = (((struct ppc_link_hash_entry *) h)->save_res
6264 || SYMBOL_CALLS_LOCAL (info, h)
6265 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6266 /* Discard dyn_relocs when non-pic if we've decided that a
6267 function symbol is local and not an ifunc. We keep dynamic
6268 relocs for ifuncs when local rather than always emitting a
6269 plt call stub for them and defining the symbol on the call
6270 stub. We can't do that for ELFv1 anyway (a function symbol
6271 is defined on a descriptor, not code) and it can be faster at
6272 run-time due to not needing to bounce through a stub. The
6273 dyn_relocs for ifuncs will be applied even in a static
6274 executable. */
6275 if (!bfd_link_pic (info)
6276 && h->type != STT_GNU_IFUNC
6277 && local)
6278 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6279
6280 /* Clear procedure linkage table information for any symbol that
6281 won't need a .plt entry. */
6282 struct plt_entry *ent;
6283 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6284 if (ent->plt.refcount > 0)
6285 break;
6286 if (ent == NULL
6287 || (h->type != STT_GNU_IFUNC
6288 && local
6289 && (htab->can_convert_all_inline_plt
6290 || (((struct ppc_link_hash_entry *) h)->tls_mask
6291 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6292 {
6293 h->plt.plist = NULL;
6294 h->needs_plt = 0;
6295 h->pointer_equality_needed = 0;
6296 }
6297 else if (abiversion (info->output_bfd) >= 2)
6298 {
6299 /* Taking a function's address in a read/write section
6300 doesn't require us to define the function symbol in the
6301 executable on a global entry stub. A dynamic reloc can
6302 be used instead. The reason we prefer a few more dynamic
6303 relocs is that calling via a global entry stub costs a
6304 few more instructions, and pointer_equality_needed causes
6305 extra work in ld.so when resolving these symbols. */
6306 if (global_entry_stub (h))
6307 {
6308 if (!readonly_dynrelocs (h))
6309 {
6310 h->pointer_equality_needed = 0;
6311 /* If we haven't seen a branch reloc and the symbol
6312 isn't an ifunc then we don't need a plt entry. */
6313 if (!h->needs_plt)
6314 h->plt.plist = NULL;
6315 }
6316 else if (!bfd_link_pic (info))
6317 /* We are going to be defining the function symbol on the
6318 plt stub, so no dyn_relocs needed when non-pic. */
6319 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6320 }
6321
6322 /* ELFv2 function symbols can't have copy relocs. */
6323 return TRUE;
6324 }
6325 else if (!h->needs_plt
6326 && !readonly_dynrelocs (h))
6327 {
6328 /* If we haven't seen a branch reloc and the symbol isn't an
6329 ifunc then we don't need a plt entry. */
6330 h->plt.plist = NULL;
6331 h->pointer_equality_needed = 0;
6332 return TRUE;
6333 }
6334 }
6335 else
6336 h->plt.plist = NULL;
6337
6338 /* If this is a weak symbol, and there is a real definition, the
6339 processor independent code will have arranged for us to see the
6340 real definition first, and we can just use the same value. */
6341 if (h->is_weakalias)
6342 {
6343 struct elf_link_hash_entry *def = weakdef (h);
6344 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6345 h->root.u.def.section = def->root.u.def.section;
6346 h->root.u.def.value = def->root.u.def.value;
6347 if (def->root.u.def.section == htab->elf.sdynbss
6348 || def->root.u.def.section == htab->elf.sdynrelro)
6349 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6350 return TRUE;
6351 }
6352
6353 /* If we are creating a shared library, we must presume that the
6354 only references to the symbol are via the global offset table.
6355 For such cases we need not do anything here; the relocations will
6356 be handled correctly by relocate_section. */
6357 if (bfd_link_pic (info))
6358 return TRUE;
6359
6360 /* If there are no references to this symbol that do not use the
6361 GOT, we don't need to generate a copy reloc. */
6362 if (!h->non_got_ref)
6363 return TRUE;
6364
6365 /* Don't generate a copy reloc for symbols defined in the executable. */
6366 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6367
6368 /* If -z nocopyreloc was given, don't generate them either. */
6369 || info->nocopyreloc
6370
6371 /* If we don't find any dynamic relocs in read-only sections, then
6372 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6373 || (ELIMINATE_COPY_RELOCS && !alias_readonly_dynrelocs (h))
6374
6375 /* Protected variables do not work with .dynbss. The copy in
6376 .dynbss won't be used by the shared library with the protected
6377 definition for the variable. Text relocations are preferable
6378 to an incorrect program. */
6379 || h->protected_def)
6380 return TRUE;
6381
6382 if (h->plt.plist != NULL)
6383 {
6384 /* We should never get here, but unfortunately there are versions
6385 of gcc out there that improperly (for this ABI) put initialized
6386 function pointers, vtable refs and suchlike in read-only
6387 sections. Allow them to proceed, but warn that this might
6388 break at runtime. */
6389 info->callbacks->einfo
6390 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6391 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6392 h->root.root.string);
6393 }
6394
6395 /* This is a reference to a symbol defined by a dynamic object which
6396 is not a function. */
6397
6398 /* We must allocate the symbol in our .dynbss section, which will
6399 become part of the .bss section of the executable. There will be
6400 an entry for this symbol in the .dynsym section. The dynamic
6401 object will contain position independent code, so all references
6402 from the dynamic object to this symbol will go through the global
6403 offset table. The dynamic linker will use the .dynsym entry to
6404 determine the address it must put in the global offset table, so
6405 both the dynamic object and the regular object will refer to the
6406 same memory location for the variable. */
6407 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6408 {
6409 s = htab->elf.sdynrelro;
6410 srel = htab->elf.sreldynrelro;
6411 }
6412 else
6413 {
6414 s = htab->elf.sdynbss;
6415 srel = htab->elf.srelbss;
6416 }
6417 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6418 {
6419 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6420 linker to copy the initial value out of the dynamic object
6421 and into the runtime process image. */
6422 srel->size += sizeof (Elf64_External_Rela);
6423 h->needs_copy = 1;
6424 }
6425
6426 /* We no longer want dyn_relocs. */
6427 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6428 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6429 }
6430
6431 /* If given a function descriptor symbol, hide both the function code
6432 sym and the descriptor. */
6433 static void
6434 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6435 struct elf_link_hash_entry *h,
6436 bfd_boolean force_local)
6437 {
6438 struct ppc_link_hash_entry *eh;
6439 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6440
6441 if (ppc_hash_table (info) == NULL)
6442 return;
6443
6444 eh = (struct ppc_link_hash_entry *) h;
6445 if (eh->is_func_descriptor)
6446 {
6447 struct ppc_link_hash_entry *fh = eh->oh;
6448
6449 if (fh == NULL)
6450 {
6451 const char *p, *q;
6452 struct elf_link_hash_table *htab = elf_hash_table (info);
6453 char save;
6454
6455 /* We aren't supposed to use alloca in BFD because on
6456 systems which do not have alloca the version in libiberty
6457 calls xmalloc, which might cause the program to crash
6458 when it runs out of memory. This function doesn't have a
6459 return status, so there's no way to gracefully return an
6460 error. So cheat. We know that string[-1] can be safely
6461 accessed; It's either a string in an ELF string table,
6462 or allocated in an objalloc structure. */
6463
6464 p = eh->elf.root.root.string - 1;
6465 save = *p;
6466 *(char *) p = '.';
6467 fh = (struct ppc_link_hash_entry *)
6468 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6469 *(char *) p = save;
6470
6471 /* Unfortunately, if it so happens that the string we were
6472 looking for was allocated immediately before this string,
6473 then we overwrote the string terminator. That's the only
6474 reason the lookup should fail. */
6475 if (fh == NULL)
6476 {
6477 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6478 while (q >= eh->elf.root.root.string && *q == *p)
6479 --q, --p;
6480 if (q < eh->elf.root.root.string && *p == '.')
6481 fh = (struct ppc_link_hash_entry *)
6482 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6483 }
6484 if (fh != NULL)
6485 {
6486 eh->oh = fh;
6487 fh->oh = eh;
6488 }
6489 }
6490 if (fh != NULL)
6491 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6492 }
6493 }
6494
6495 static bfd_boolean
6496 get_sym_h (struct elf_link_hash_entry **hp,
6497 Elf_Internal_Sym **symp,
6498 asection **symsecp,
6499 unsigned char **tls_maskp,
6500 Elf_Internal_Sym **locsymsp,
6501 unsigned long r_symndx,
6502 bfd *ibfd)
6503 {
6504 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6505
6506 if (r_symndx >= symtab_hdr->sh_info)
6507 {
6508 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6509 struct elf_link_hash_entry *h;
6510
6511 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6512 h = elf_follow_link (h);
6513
6514 if (hp != NULL)
6515 *hp = h;
6516
6517 if (symp != NULL)
6518 *symp = NULL;
6519
6520 if (symsecp != NULL)
6521 {
6522 asection *symsec = NULL;
6523 if (h->root.type == bfd_link_hash_defined
6524 || h->root.type == bfd_link_hash_defweak)
6525 symsec = h->root.u.def.section;
6526 *symsecp = symsec;
6527 }
6528
6529 if (tls_maskp != NULL)
6530 {
6531 struct ppc_link_hash_entry *eh;
6532
6533 eh = (struct ppc_link_hash_entry *) h;
6534 *tls_maskp = &eh->tls_mask;
6535 }
6536 }
6537 else
6538 {
6539 Elf_Internal_Sym *sym;
6540 Elf_Internal_Sym *locsyms = *locsymsp;
6541
6542 if (locsyms == NULL)
6543 {
6544 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6545 if (locsyms == NULL)
6546 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6547 symtab_hdr->sh_info,
6548 0, NULL, NULL, NULL);
6549 if (locsyms == NULL)
6550 return FALSE;
6551 *locsymsp = locsyms;
6552 }
6553 sym = locsyms + r_symndx;
6554
6555 if (hp != NULL)
6556 *hp = NULL;
6557
6558 if (symp != NULL)
6559 *symp = sym;
6560
6561 if (symsecp != NULL)
6562 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6563
6564 if (tls_maskp != NULL)
6565 {
6566 struct got_entry **lgot_ents;
6567 unsigned char *tls_mask;
6568
6569 tls_mask = NULL;
6570 lgot_ents = elf_local_got_ents (ibfd);
6571 if (lgot_ents != NULL)
6572 {
6573 struct plt_entry **local_plt = (struct plt_entry **)
6574 (lgot_ents + symtab_hdr->sh_info);
6575 unsigned char *lgot_masks = (unsigned char *)
6576 (local_plt + symtab_hdr->sh_info);
6577 tls_mask = &lgot_masks[r_symndx];
6578 }
6579 *tls_maskp = tls_mask;
6580 }
6581 }
6582 return TRUE;
6583 }
6584
6585 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6586 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6587 type suitable for optimization, and 1 otherwise. */
6588
6589 static int
6590 get_tls_mask (unsigned char **tls_maskp,
6591 unsigned long *toc_symndx,
6592 bfd_vma *toc_addend,
6593 Elf_Internal_Sym **locsymsp,
6594 const Elf_Internal_Rela *rel,
6595 bfd *ibfd)
6596 {
6597 unsigned long r_symndx;
6598 int next_r;
6599 struct elf_link_hash_entry *h;
6600 Elf_Internal_Sym *sym;
6601 asection *sec;
6602 bfd_vma off;
6603
6604 r_symndx = ELF64_R_SYM (rel->r_info);
6605 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6606 return 0;
6607
6608 if ((*tls_maskp != NULL
6609 && (**tls_maskp & TLS_TLS) != 0
6610 && **tls_maskp != (TLS_TLS | TLS_MARK))
6611 || sec == NULL
6612 || ppc64_elf_section_data (sec) == NULL
6613 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6614 return 1;
6615
6616 /* Look inside a TOC section too. */
6617 if (h != NULL)
6618 {
6619 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6620 off = h->root.u.def.value;
6621 }
6622 else
6623 off = sym->st_value;
6624 off += rel->r_addend;
6625 BFD_ASSERT (off % 8 == 0);
6626 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6627 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6628 if (toc_symndx != NULL)
6629 *toc_symndx = r_symndx;
6630 if (toc_addend != NULL)
6631 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6632 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6633 return 0;
6634 if ((h == NULL || is_static_defined (h))
6635 && (next_r == -1 || next_r == -2))
6636 return 1 - next_r;
6637 return 1;
6638 }
6639
6640 /* Find (or create) an entry in the tocsave hash table. */
6641
6642 static struct tocsave_entry *
6643 tocsave_find (struct ppc_link_hash_table *htab,
6644 enum insert_option insert,
6645 Elf_Internal_Sym **local_syms,
6646 const Elf_Internal_Rela *irela,
6647 bfd *ibfd)
6648 {
6649 unsigned long r_indx;
6650 struct elf_link_hash_entry *h;
6651 Elf_Internal_Sym *sym;
6652 struct tocsave_entry ent, *p;
6653 hashval_t hash;
6654 struct tocsave_entry **slot;
6655
6656 r_indx = ELF64_R_SYM (irela->r_info);
6657 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6658 return NULL;
6659 if (ent.sec == NULL || ent.sec->output_section == NULL)
6660 {
6661 _bfd_error_handler
6662 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6663 return NULL;
6664 }
6665
6666 if (h != NULL)
6667 ent.offset = h->root.u.def.value;
6668 else
6669 ent.offset = sym->st_value;
6670 ent.offset += irela->r_addend;
6671
6672 hash = tocsave_htab_hash (&ent);
6673 slot = ((struct tocsave_entry **)
6674 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6675 if (slot == NULL)
6676 return NULL;
6677
6678 if (*slot == NULL)
6679 {
6680 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6681 if (p == NULL)
6682 return NULL;
6683 *p = ent;
6684 *slot = p;
6685 }
6686 return *slot;
6687 }
6688
6689 /* Adjust all global syms defined in opd sections. In gcc generated
6690 code for the old ABI, these will already have been done. */
6691
6692 static bfd_boolean
6693 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6694 {
6695 struct ppc_link_hash_entry *eh;
6696 asection *sym_sec;
6697 struct _opd_sec_data *opd;
6698
6699 if (h->root.type == bfd_link_hash_indirect)
6700 return TRUE;
6701
6702 if (h->root.type != bfd_link_hash_defined
6703 && h->root.type != bfd_link_hash_defweak)
6704 return TRUE;
6705
6706 eh = (struct ppc_link_hash_entry *) h;
6707 if (eh->adjust_done)
6708 return TRUE;
6709
6710 sym_sec = eh->elf.root.u.def.section;
6711 opd = get_opd_info (sym_sec);
6712 if (opd != NULL && opd->adjust != NULL)
6713 {
6714 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6715 if (adjust == -1)
6716 {
6717 /* This entry has been deleted. */
6718 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6719 if (dsec == NULL)
6720 {
6721 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6722 if (discarded_section (dsec))
6723 {
6724 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6725 break;
6726 }
6727 }
6728 eh->elf.root.u.def.value = 0;
6729 eh->elf.root.u.def.section = dsec;
6730 }
6731 else
6732 eh->elf.root.u.def.value += adjust;
6733 eh->adjust_done = 1;
6734 }
6735 return TRUE;
6736 }
6737
6738 /* Handles decrementing dynamic reloc counts for the reloc specified by
6739 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6740 have already been determined. */
6741
6742 static bfd_boolean
6743 dec_dynrel_count (bfd_vma r_info,
6744 asection *sec,
6745 struct bfd_link_info *info,
6746 Elf_Internal_Sym **local_syms,
6747 struct elf_link_hash_entry *h,
6748 Elf_Internal_Sym *sym)
6749 {
6750 enum elf_ppc64_reloc_type r_type;
6751 asection *sym_sec = NULL;
6752
6753 /* Can this reloc be dynamic? This switch, and later tests here
6754 should be kept in sync with the code in check_relocs. */
6755 r_type = ELF64_R_TYPE (r_info);
6756 switch (r_type)
6757 {
6758 default:
6759 return TRUE;
6760
6761 case R_PPC64_TPREL16:
6762 case R_PPC64_TPREL16_LO:
6763 case R_PPC64_TPREL16_HI:
6764 case R_PPC64_TPREL16_HA:
6765 case R_PPC64_TPREL16_DS:
6766 case R_PPC64_TPREL16_LO_DS:
6767 case R_PPC64_TPREL16_HIGH:
6768 case R_PPC64_TPREL16_HIGHA:
6769 case R_PPC64_TPREL16_HIGHER:
6770 case R_PPC64_TPREL16_HIGHERA:
6771 case R_PPC64_TPREL16_HIGHEST:
6772 case R_PPC64_TPREL16_HIGHESTA:
6773 case R_PPC64_TPREL64:
6774 case R_PPC64_DTPMOD64:
6775 case R_PPC64_DTPREL64:
6776 case R_PPC64_ADDR64:
6777 case R_PPC64_REL30:
6778 case R_PPC64_REL32:
6779 case R_PPC64_REL64:
6780 case R_PPC64_ADDR14:
6781 case R_PPC64_ADDR14_BRNTAKEN:
6782 case R_PPC64_ADDR14_BRTAKEN:
6783 case R_PPC64_ADDR16:
6784 case R_PPC64_ADDR16_DS:
6785 case R_PPC64_ADDR16_HA:
6786 case R_PPC64_ADDR16_HI:
6787 case R_PPC64_ADDR16_HIGH:
6788 case R_PPC64_ADDR16_HIGHA:
6789 case R_PPC64_ADDR16_HIGHER:
6790 case R_PPC64_ADDR16_HIGHERA:
6791 case R_PPC64_ADDR16_HIGHEST:
6792 case R_PPC64_ADDR16_HIGHESTA:
6793 case R_PPC64_ADDR16_LO:
6794 case R_PPC64_ADDR16_LO_DS:
6795 case R_PPC64_ADDR24:
6796 case R_PPC64_ADDR32:
6797 case R_PPC64_UADDR16:
6798 case R_PPC64_UADDR32:
6799 case R_PPC64_UADDR64:
6800 case R_PPC64_TOC:
6801 case R_PPC64_D34:
6802 case R_PPC64_D34_LO:
6803 case R_PPC64_D34_HI30:
6804 case R_PPC64_D34_HA30:
6805 case R_PPC64_ADDR16_HIGHER34:
6806 case R_PPC64_ADDR16_HIGHERA34:
6807 case R_PPC64_ADDR16_HIGHEST34:
6808 case R_PPC64_ADDR16_HIGHESTA34:
6809 case R_PPC64_D28:
6810 break;
6811 }
6812
6813 if (local_syms != NULL)
6814 {
6815 unsigned long r_symndx;
6816 bfd *ibfd = sec->owner;
6817
6818 r_symndx = ELF64_R_SYM (r_info);
6819 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6820 return FALSE;
6821 }
6822
6823 if ((bfd_link_pic (info)
6824 && (must_be_dyn_reloc (info, r_type)
6825 || (h != NULL
6826 && (!SYMBOLIC_BIND (info, h)
6827 || h->root.type == bfd_link_hash_defweak
6828 || !h->def_regular))))
6829 || (ELIMINATE_COPY_RELOCS
6830 && !bfd_link_pic (info)
6831 && h != NULL
6832 && (h->root.type == bfd_link_hash_defweak
6833 || !h->def_regular)))
6834 ;
6835 else
6836 return TRUE;
6837
6838 if (h != NULL)
6839 {
6840 struct elf_dyn_relocs *p;
6841 struct elf_dyn_relocs **pp;
6842 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6843
6844 /* elf_gc_sweep may have already removed all dyn relocs associated
6845 with local syms for a given section. Also, symbol flags are
6846 changed by elf_gc_sweep_symbol, confusing the test above. Don't
6847 report a dynreloc miscount. */
6848 if (*pp == NULL && info->gc_sections)
6849 return TRUE;
6850
6851 while ((p = *pp) != NULL)
6852 {
6853 if (p->sec == sec)
6854 {
6855 if (!must_be_dyn_reloc (info, r_type))
6856 p->pc_count -= 1;
6857 p->count -= 1;
6858 if (p->count == 0)
6859 *pp = p->next;
6860 return TRUE;
6861 }
6862 pp = &p->next;
6863 }
6864 }
6865 else
6866 {
6867 struct ppc_dyn_relocs *p;
6868 struct ppc_dyn_relocs **pp;
6869 void *vpp;
6870 bfd_boolean is_ifunc;
6871
6872 if (local_syms == NULL)
6873 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6874 if (sym_sec == NULL)
6875 sym_sec = sec;
6876
6877 vpp = &elf_section_data (sym_sec)->local_dynrel;
6878 pp = (struct ppc_dyn_relocs **) vpp;
6879
6880 if (*pp == NULL && info->gc_sections)
6881 return TRUE;
6882
6883 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
6884 while ((p = *pp) != NULL)
6885 {
6886 if (p->sec == sec && p->ifunc == is_ifunc)
6887 {
6888 p->count -= 1;
6889 if (p->count == 0)
6890 *pp = p->next;
6891 return TRUE;
6892 }
6893 pp = &p->next;
6894 }
6895 }
6896
6897 /* xgettext:c-format */
6898 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
6899 sec->owner, sec);
6900 bfd_set_error (bfd_error_bad_value);
6901 return FALSE;
6902 }
6903
6904 /* Remove unused Official Procedure Descriptor entries. Currently we
6905 only remove those associated with functions in discarded link-once
6906 sections, or weakly defined functions that have been overridden. It
6907 would be possible to remove many more entries for statically linked
6908 applications. */
6909
6910 bfd_boolean
6911 ppc64_elf_edit_opd (struct bfd_link_info *info)
6912 {
6913 bfd *ibfd;
6914 bfd_boolean some_edited = FALSE;
6915 asection *need_pad = NULL;
6916 struct ppc_link_hash_table *htab;
6917
6918 htab = ppc_hash_table (info);
6919 if (htab == NULL)
6920 return FALSE;
6921
6922 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6923 {
6924 asection *sec;
6925 Elf_Internal_Rela *relstart, *rel, *relend;
6926 Elf_Internal_Shdr *symtab_hdr;
6927 Elf_Internal_Sym *local_syms;
6928 struct _opd_sec_data *opd;
6929 bfd_boolean need_edit, add_aux_fields, broken;
6930 bfd_size_type cnt_16b = 0;
6931
6932 if (!is_ppc64_elf (ibfd))
6933 continue;
6934
6935 sec = bfd_get_section_by_name (ibfd, ".opd");
6936 if (sec == NULL || sec->size == 0)
6937 continue;
6938
6939 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6940 continue;
6941
6942 if (sec->output_section == bfd_abs_section_ptr)
6943 continue;
6944
6945 /* Look through the section relocs. */
6946 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6947 continue;
6948
6949 local_syms = NULL;
6950 symtab_hdr = &elf_symtab_hdr (ibfd);
6951
6952 /* Read the relocations. */
6953 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6954 info->keep_memory);
6955 if (relstart == NULL)
6956 return FALSE;
6957
6958 /* First run through the relocs to check they are sane, and to
6959 determine whether we need to edit this opd section. */
6960 need_edit = FALSE;
6961 broken = FALSE;
6962 need_pad = sec;
6963 relend = relstart + sec->reloc_count;
6964 for (rel = relstart; rel < relend; )
6965 {
6966 enum elf_ppc64_reloc_type r_type;
6967 unsigned long r_symndx;
6968 asection *sym_sec;
6969 struct elf_link_hash_entry *h;
6970 Elf_Internal_Sym *sym;
6971 bfd_vma offset;
6972
6973 /* .opd contains an array of 16 or 24 byte entries. We're
6974 only interested in the reloc pointing to a function entry
6975 point. */
6976 offset = rel->r_offset;
6977 if (rel + 1 == relend
6978 || rel[1].r_offset != offset + 8)
6979 {
6980 /* If someone messes with .opd alignment then after a
6981 "ld -r" we might have padding in the middle of .opd.
6982 Also, there's nothing to prevent someone putting
6983 something silly in .opd with the assembler. No .opd
6984 optimization for them! */
6985 broken_opd:
6986 _bfd_error_handler
6987 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
6988 broken = TRUE;
6989 break;
6990 }
6991
6992 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6993 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6994 {
6995 _bfd_error_handler
6996 /* xgettext:c-format */
6997 (_("%pB: unexpected reloc type %u in .opd section"),
6998 ibfd, r_type);
6999 broken = TRUE;
7000 break;
7001 }
7002
7003 r_symndx = ELF64_R_SYM (rel->r_info);
7004 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7005 r_symndx, ibfd))
7006 goto error_ret;
7007
7008 if (sym_sec == NULL || sym_sec->owner == NULL)
7009 {
7010 const char *sym_name;
7011 if (h != NULL)
7012 sym_name = h->root.root.string;
7013 else
7014 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7015 sym_sec);
7016
7017 _bfd_error_handler
7018 /* xgettext:c-format */
7019 (_("%pB: undefined sym `%s' in .opd section"),
7020 ibfd, sym_name);
7021 broken = TRUE;
7022 break;
7023 }
7024
7025 /* opd entries are always for functions defined in the
7026 current input bfd. If the symbol isn't defined in the
7027 input bfd, then we won't be using the function in this
7028 bfd; It must be defined in a linkonce section in another
7029 bfd, or is weak. It's also possible that we are
7030 discarding the function due to a linker script /DISCARD/,
7031 which we test for via the output_section. */
7032 if (sym_sec->owner != ibfd
7033 || sym_sec->output_section == bfd_abs_section_ptr)
7034 need_edit = TRUE;
7035
7036 rel += 2;
7037 if (rel + 1 == relend
7038 || (rel + 2 < relend
7039 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7040 ++rel;
7041
7042 if (rel == relend)
7043 {
7044 if (sec->size == offset + 24)
7045 {
7046 need_pad = NULL;
7047 break;
7048 }
7049 if (sec->size == offset + 16)
7050 {
7051 cnt_16b++;
7052 break;
7053 }
7054 goto broken_opd;
7055 }
7056 else if (rel + 1 < relend
7057 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7058 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7059 {
7060 if (rel[0].r_offset == offset + 16)
7061 cnt_16b++;
7062 else if (rel[0].r_offset != offset + 24)
7063 goto broken_opd;
7064 }
7065 else
7066 goto broken_opd;
7067 }
7068
7069 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7070
7071 if (!broken && (need_edit || add_aux_fields))
7072 {
7073 Elf_Internal_Rela *write_rel;
7074 Elf_Internal_Shdr *rel_hdr;
7075 bfd_byte *rptr, *wptr;
7076 bfd_byte *new_contents;
7077 bfd_size_type amt;
7078
7079 new_contents = NULL;
7080 amt = OPD_NDX (sec->size) * sizeof (long);
7081 opd = &ppc64_elf_section_data (sec)->u.opd;
7082 opd->adjust = bfd_zalloc (sec->owner, amt);
7083 if (opd->adjust == NULL)
7084 return FALSE;
7085
7086 /* This seems a waste of time as input .opd sections are all
7087 zeros as generated by gcc, but I suppose there's no reason
7088 this will always be so. We might start putting something in
7089 the third word of .opd entries. */
7090 if ((sec->flags & SEC_IN_MEMORY) == 0)
7091 {
7092 bfd_byte *loc;
7093 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7094 {
7095 if (loc != NULL)
7096 free (loc);
7097 error_ret:
7098 if (local_syms != NULL
7099 && symtab_hdr->contents != (unsigned char *) local_syms)
7100 free (local_syms);
7101 if (elf_section_data (sec)->relocs != relstart)
7102 free (relstart);
7103 return FALSE;
7104 }
7105 sec->contents = loc;
7106 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7107 }
7108
7109 elf_section_data (sec)->relocs = relstart;
7110
7111 new_contents = sec->contents;
7112 if (add_aux_fields)
7113 {
7114 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7115 if (new_contents == NULL)
7116 return FALSE;
7117 need_pad = NULL;
7118 }
7119 wptr = new_contents;
7120 rptr = sec->contents;
7121 write_rel = relstart;
7122 for (rel = relstart; rel < relend; )
7123 {
7124 unsigned long r_symndx;
7125 asection *sym_sec;
7126 struct elf_link_hash_entry *h;
7127 struct ppc_link_hash_entry *fdh = NULL;
7128 Elf_Internal_Sym *sym;
7129 long opd_ent_size;
7130 Elf_Internal_Rela *next_rel;
7131 bfd_boolean skip;
7132
7133 r_symndx = ELF64_R_SYM (rel->r_info);
7134 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7135 r_symndx, ibfd))
7136 goto error_ret;
7137
7138 next_rel = rel + 2;
7139 if (next_rel + 1 == relend
7140 || (next_rel + 2 < relend
7141 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7142 ++next_rel;
7143
7144 /* See if the .opd entry is full 24 byte or
7145 16 byte (with fd_aux entry overlapped with next
7146 fd_func). */
7147 opd_ent_size = 24;
7148 if (next_rel == relend)
7149 {
7150 if (sec->size == rel->r_offset + 16)
7151 opd_ent_size = 16;
7152 }
7153 else if (next_rel->r_offset == rel->r_offset + 16)
7154 opd_ent_size = 16;
7155
7156 if (h != NULL
7157 && h->root.root.string[0] == '.')
7158 {
7159 fdh = ((struct ppc_link_hash_entry *) h)->oh;
7160 if (fdh != NULL)
7161 {
7162 fdh = ppc_follow_link (fdh);
7163 if (fdh->elf.root.type != bfd_link_hash_defined
7164 && fdh->elf.root.type != bfd_link_hash_defweak)
7165 fdh = NULL;
7166 }
7167 }
7168
7169 skip = (sym_sec->owner != ibfd
7170 || sym_sec->output_section == bfd_abs_section_ptr);
7171 if (skip)
7172 {
7173 if (fdh != NULL && sym_sec->owner == ibfd)
7174 {
7175 /* Arrange for the function descriptor sym
7176 to be dropped. */
7177 fdh->elf.root.u.def.value = 0;
7178 fdh->elf.root.u.def.section = sym_sec;
7179 }
7180 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7181
7182 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7183 rel = next_rel;
7184 else
7185 while (1)
7186 {
7187 if (!dec_dynrel_count (rel->r_info, sec, info,
7188 NULL, h, sym))
7189 goto error_ret;
7190
7191 if (++rel == next_rel)
7192 break;
7193
7194 r_symndx = ELF64_R_SYM (rel->r_info);
7195 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7196 r_symndx, ibfd))
7197 goto error_ret;
7198 }
7199 }
7200 else
7201 {
7202 /* We'll be keeping this opd entry. */
7203 long adjust;
7204
7205 if (fdh != NULL)
7206 {
7207 /* Redefine the function descriptor symbol to
7208 this location in the opd section. It is
7209 necessary to update the value here rather
7210 than using an array of adjustments as we do
7211 for local symbols, because various places
7212 in the generic ELF code use the value
7213 stored in u.def.value. */
7214 fdh->elf.root.u.def.value = wptr - new_contents;
7215 fdh->adjust_done = 1;
7216 }
7217
7218 /* Local syms are a bit tricky. We could
7219 tweak them as they can be cached, but
7220 we'd need to look through the local syms
7221 for the function descriptor sym which we
7222 don't have at the moment. So keep an
7223 array of adjustments. */
7224 adjust = (wptr - new_contents) - (rptr - sec->contents);
7225 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7226
7227 if (wptr != rptr)
7228 memcpy (wptr, rptr, opd_ent_size);
7229 wptr += opd_ent_size;
7230 if (add_aux_fields && opd_ent_size == 16)
7231 {
7232 memset (wptr, '\0', 8);
7233 wptr += 8;
7234 }
7235
7236 /* We need to adjust any reloc offsets to point to the
7237 new opd entries. */
7238 for ( ; rel != next_rel; ++rel)
7239 {
7240 rel->r_offset += adjust;
7241 if (write_rel != rel)
7242 memcpy (write_rel, rel, sizeof (*rel));
7243 ++write_rel;
7244 }
7245 }
7246
7247 rptr += opd_ent_size;
7248 }
7249
7250 sec->size = wptr - new_contents;
7251 sec->reloc_count = write_rel - relstart;
7252 if (add_aux_fields)
7253 {
7254 free (sec->contents);
7255 sec->contents = new_contents;
7256 }
7257
7258 /* Fudge the header size too, as this is used later in
7259 elf_bfd_final_link if we are emitting relocs. */
7260 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7261 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7262 some_edited = TRUE;
7263 }
7264 else if (elf_section_data (sec)->relocs != relstart)
7265 free (relstart);
7266
7267 if (local_syms != NULL
7268 && symtab_hdr->contents != (unsigned char *) local_syms)
7269 {
7270 if (!info->keep_memory)
7271 free (local_syms);
7272 else
7273 symtab_hdr->contents = (unsigned char *) local_syms;
7274 }
7275 }
7276
7277 if (some_edited)
7278 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7279
7280 /* If we are doing a final link and the last .opd entry is just 16 byte
7281 long, add a 8 byte padding after it. */
7282 if (need_pad != NULL && !bfd_link_relocatable (info))
7283 {
7284 bfd_byte *p;
7285
7286 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7287 {
7288 BFD_ASSERT (need_pad->size > 0);
7289
7290 p = bfd_malloc (need_pad->size + 8);
7291 if (p == NULL)
7292 return FALSE;
7293
7294 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7295 p, 0, need_pad->size))
7296 return FALSE;
7297
7298 need_pad->contents = p;
7299 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7300 }
7301 else
7302 {
7303 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7304 if (p == NULL)
7305 return FALSE;
7306
7307 need_pad->contents = p;
7308 }
7309
7310 memset (need_pad->contents + need_pad->size, 0, 8);
7311 need_pad->size += 8;
7312 }
7313
7314 return TRUE;
7315 }
7316
7317 /* Analyze inline PLT call relocations to see whether calls to locally
7318 defined functions can be converted to direct calls. */
7319
7320 bfd_boolean
7321 ppc64_elf_inline_plt (struct bfd_link_info *info)
7322 {
7323 struct ppc_link_hash_table *htab;
7324 bfd *ibfd;
7325 asection *sec;
7326 bfd_vma low_vma, high_vma, limit;
7327
7328 htab = ppc_hash_table (info);
7329 if (htab == NULL)
7330 return FALSE;
7331
7332 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7333 reduced somewhat to cater for possible stubs that might be added
7334 between the call and its destination. */
7335 if (htab->params->group_size < 0)
7336 {
7337 limit = -htab->params->group_size;
7338 if (limit == 1)
7339 limit = 0x1e00000;
7340 }
7341 else
7342 {
7343 limit = htab->params->group_size;
7344 if (limit == 1)
7345 limit = 0x1c00000;
7346 }
7347
7348 low_vma = -1;
7349 high_vma = 0;
7350 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7351 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7352 {
7353 if (low_vma > sec->vma)
7354 low_vma = sec->vma;
7355 if (high_vma < sec->vma + sec->size)
7356 high_vma = sec->vma + sec->size;
7357 }
7358
7359 /* If a "bl" can reach anywhere in local code sections, then we can
7360 convert all inline PLT sequences to direct calls when the symbol
7361 is local. */
7362 if (high_vma - low_vma < limit)
7363 {
7364 htab->can_convert_all_inline_plt = 1;
7365 return TRUE;
7366 }
7367
7368 /* Otherwise, go looking through relocs for cases where a direct
7369 call won't reach. Mark the symbol on any such reloc to disable
7370 the optimization and keep the PLT entry as it seems likely that
7371 this will be better than creating trampolines. Note that this
7372 will disable the optimization for all inline PLT calls to a
7373 particular symbol, not just those that won't reach. The
7374 difficulty in doing a more precise optimization is that the
7375 linker needs to make a decision depending on whether a
7376 particular R_PPC64_PLTCALL insn can be turned into a direct
7377 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7378 the sequence, and there is nothing that ties those relocs
7379 together except their symbol. */
7380
7381 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7382 {
7383 Elf_Internal_Shdr *symtab_hdr;
7384 Elf_Internal_Sym *local_syms;
7385
7386 if (!is_ppc64_elf (ibfd))
7387 continue;
7388
7389 local_syms = NULL;
7390 symtab_hdr = &elf_symtab_hdr (ibfd);
7391
7392 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7393 if (ppc64_elf_section_data (sec)->has_pltcall
7394 && !bfd_is_abs_section (sec->output_section))
7395 {
7396 Elf_Internal_Rela *relstart, *rel, *relend;
7397
7398 /* Read the relocations. */
7399 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7400 info->keep_memory);
7401 if (relstart == NULL)
7402 return FALSE;
7403
7404 relend = relstart + sec->reloc_count;
7405 for (rel = relstart; rel < relend; )
7406 {
7407 enum elf_ppc64_reloc_type r_type;
7408 unsigned long r_symndx;
7409 asection *sym_sec;
7410 struct elf_link_hash_entry *h;
7411 Elf_Internal_Sym *sym;
7412 unsigned char *tls_maskp;
7413
7414 r_type = ELF64_R_TYPE (rel->r_info);
7415 if (r_type != R_PPC64_PLTCALL
7416 && r_type != R_PPC64_PLTCALL_NOTOC)
7417 continue;
7418
7419 r_symndx = ELF64_R_SYM (rel->r_info);
7420 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7421 r_symndx, ibfd))
7422 {
7423 if (elf_section_data (sec)->relocs != relstart)
7424 free (relstart);
7425 if (local_syms != NULL
7426 && symtab_hdr->contents != (bfd_byte *) local_syms)
7427 free (local_syms);
7428 return FALSE;
7429 }
7430
7431 if (sym_sec != NULL && sym_sec->output_section != NULL)
7432 {
7433 bfd_vma from, to;
7434 if (h != NULL)
7435 to = h->root.u.def.value;
7436 else
7437 to = sym->st_value;
7438 to += (rel->r_addend
7439 + sym_sec->output_offset
7440 + sym_sec->output_section->vma);
7441 from = (rel->r_offset
7442 + sec->output_offset
7443 + sec->output_section->vma);
7444 if (to - from + limit < 2 * limit
7445 && !(r_type == R_PPC64_PLTCALL_NOTOC
7446 && (((h ? h->other : sym->st_other)
7447 & STO_PPC64_LOCAL_MASK)
7448 > 1 << STO_PPC64_LOCAL_BIT)))
7449 *tls_maskp &= ~PLT_KEEP;
7450 }
7451 }
7452 if (elf_section_data (sec)->relocs != relstart)
7453 free (relstart);
7454 }
7455
7456 if (local_syms != NULL
7457 && symtab_hdr->contents != (unsigned char *) local_syms)
7458 {
7459 if (!info->keep_memory)
7460 free (local_syms);
7461 else
7462 symtab_hdr->contents = (unsigned char *) local_syms;
7463 }
7464 }
7465
7466 return TRUE;
7467 }
7468
7469 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7470
7471 asection *
7472 ppc64_elf_tls_setup (struct bfd_link_info *info)
7473 {
7474 struct ppc_link_hash_table *htab;
7475
7476 htab = ppc_hash_table (info);
7477 if (htab == NULL)
7478 return NULL;
7479
7480 if (abiversion (info->output_bfd) == 1)
7481 htab->opd_abi = 1;
7482
7483 if (htab->params->no_multi_toc)
7484 htab->do_multi_toc = 0;
7485 else if (!htab->do_multi_toc)
7486 htab->params->no_multi_toc = 1;
7487
7488 /* Default to --no-plt-localentry, as this option can cause problems
7489 with symbol interposition. For example, glibc libpthread.so and
7490 libc.so duplicate many pthread symbols, with a fallback
7491 implementation in libc.so. In some cases the fallback does more
7492 work than the pthread implementation. __pthread_condattr_destroy
7493 is one such symbol: the libpthread.so implementation is
7494 localentry:0 while the libc.so implementation is localentry:8.
7495 An app that "cleverly" uses dlopen to only load necessary
7496 libraries at runtime may omit loading libpthread.so when not
7497 running multi-threaded, which then results in the libc.so
7498 fallback symbols being used and ld.so complaining. Now there
7499 are workarounds in ld (see non_zero_localentry) to detect the
7500 pthread situation, but that may not be the only case where
7501 --plt-localentry can cause trouble. */
7502 if (htab->params->plt_localentry0 < 0)
7503 htab->params->plt_localentry0 = 0;
7504 if (htab->params->plt_localentry0
7505 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7506 FALSE, FALSE, FALSE) == NULL)
7507 _bfd_error_handler
7508 (_("warning: --plt-localentry is especially dangerous without "
7509 "ld.so support to detect ABI violations"));
7510
7511 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7512 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7513 FALSE, FALSE, TRUE));
7514 /* Move dynamic linking info to the function descriptor sym. */
7515 if (htab->tls_get_addr != NULL)
7516 func_desc_adjust (&htab->tls_get_addr->elf, info);
7517 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7518 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7519 FALSE, FALSE, TRUE));
7520 if (htab->params->tls_get_addr_opt)
7521 {
7522 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7523
7524 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7525 FALSE, FALSE, TRUE);
7526 if (opt != NULL)
7527 func_desc_adjust (opt, info);
7528 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7529 FALSE, FALSE, TRUE);
7530 if (opt_fd != NULL
7531 && (opt_fd->root.type == bfd_link_hash_defined
7532 || opt_fd->root.type == bfd_link_hash_defweak))
7533 {
7534 /* If glibc supports an optimized __tls_get_addr call stub,
7535 signalled by the presence of __tls_get_addr_opt, and we'll
7536 be calling __tls_get_addr via a plt call stub, then
7537 make __tls_get_addr point to __tls_get_addr_opt. */
7538 tga_fd = &htab->tls_get_addr_fd->elf;
7539 if (htab->elf.dynamic_sections_created
7540 && tga_fd != NULL
7541 && (tga_fd->type == STT_FUNC
7542 || tga_fd->needs_plt)
7543 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7544 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd)))
7545 {
7546 struct plt_entry *ent;
7547
7548 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7549 if (ent->plt.refcount > 0)
7550 break;
7551 if (ent != NULL)
7552 {
7553 tga_fd->root.type = bfd_link_hash_indirect;
7554 tga_fd->root.u.i.link = &opt_fd->root;
7555 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7556 opt_fd->mark = 1;
7557 if (opt_fd->dynindx != -1)
7558 {
7559 /* Use __tls_get_addr_opt in dynamic relocations. */
7560 opt_fd->dynindx = -1;
7561 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7562 opt_fd->dynstr_index);
7563 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7564 return NULL;
7565 }
7566 htab->tls_get_addr_fd
7567 = (struct ppc_link_hash_entry *) opt_fd;
7568 tga = &htab->tls_get_addr->elf;
7569 if (opt != NULL && tga != NULL)
7570 {
7571 tga->root.type = bfd_link_hash_indirect;
7572 tga->root.u.i.link = &opt->root;
7573 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7574 opt->mark = 1;
7575 _bfd_elf_link_hash_hide_symbol (info, opt,
7576 tga->forced_local);
7577 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7578 }
7579 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7580 htab->tls_get_addr_fd->is_func_descriptor = 1;
7581 if (htab->tls_get_addr != NULL)
7582 {
7583 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7584 htab->tls_get_addr->is_func = 1;
7585 }
7586 }
7587 }
7588 }
7589 else if (htab->params->tls_get_addr_opt < 0)
7590 htab->params->tls_get_addr_opt = 0;
7591 }
7592 return _bfd_elf_tls_setup (info->output_bfd, info);
7593 }
7594
7595 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7596 HASH1 or HASH2. */
7597
7598 static bfd_boolean
7599 branch_reloc_hash_match (const bfd *ibfd,
7600 const Elf_Internal_Rela *rel,
7601 const struct ppc_link_hash_entry *hash1,
7602 const struct ppc_link_hash_entry *hash2)
7603 {
7604 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7605 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7606 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7607
7608 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7609 {
7610 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7611 struct elf_link_hash_entry *h;
7612
7613 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7614 h = elf_follow_link (h);
7615 if (h == &hash1->elf || h == &hash2->elf)
7616 return TRUE;
7617 }
7618 return FALSE;
7619 }
7620
7621 /* Run through all the TLS relocs looking for optimization
7622 opportunities. The linker has been hacked (see ppc64elf.em) to do
7623 a preliminary section layout so that we know the TLS segment
7624 offsets. We can't optimize earlier because some optimizations need
7625 to know the tp offset, and we need to optimize before allocating
7626 dynamic relocations. */
7627
7628 bfd_boolean
7629 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7630 {
7631 bfd *ibfd;
7632 asection *sec;
7633 struct ppc_link_hash_table *htab;
7634 unsigned char *toc_ref;
7635 int pass;
7636
7637 if (!bfd_link_executable (info))
7638 return TRUE;
7639
7640 htab = ppc_hash_table (info);
7641 if (htab == NULL)
7642 return FALSE;
7643
7644 /* Make two passes over the relocs. On the first pass, mark toc
7645 entries involved with tls relocs, and check that tls relocs
7646 involved in setting up a tls_get_addr call are indeed followed by
7647 such a call. If they are not, we can't do any tls optimization.
7648 On the second pass twiddle tls_mask flags to notify
7649 relocate_section that optimization can be done, and adjust got
7650 and plt refcounts. */
7651 toc_ref = NULL;
7652 for (pass = 0; pass < 2; ++pass)
7653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7654 {
7655 Elf_Internal_Sym *locsyms = NULL;
7656 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7657
7658 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7659 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7660 {
7661 Elf_Internal_Rela *relstart, *rel, *relend;
7662 bfd_boolean found_tls_get_addr_arg = 0;
7663
7664 /* Read the relocations. */
7665 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7666 info->keep_memory);
7667 if (relstart == NULL)
7668 {
7669 free (toc_ref);
7670 return FALSE;
7671 }
7672
7673 relend = relstart + sec->reloc_count;
7674 for (rel = relstart; rel < relend; rel++)
7675 {
7676 enum elf_ppc64_reloc_type r_type;
7677 unsigned long r_symndx;
7678 struct elf_link_hash_entry *h;
7679 Elf_Internal_Sym *sym;
7680 asection *sym_sec;
7681 unsigned char *tls_mask;
7682 unsigned char tls_set, tls_clear, tls_type = 0;
7683 bfd_vma value;
7684 bfd_boolean ok_tprel, is_local;
7685 long toc_ref_index = 0;
7686 int expecting_tls_get_addr = 0;
7687 bfd_boolean ret = FALSE;
7688
7689 r_symndx = ELF64_R_SYM (rel->r_info);
7690 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7691 r_symndx, ibfd))
7692 {
7693 err_free_rel:
7694 if (elf_section_data (sec)->relocs != relstart)
7695 free (relstart);
7696 if (toc_ref != NULL)
7697 free (toc_ref);
7698 if (locsyms != NULL
7699 && (elf_symtab_hdr (ibfd).contents
7700 != (unsigned char *) locsyms))
7701 free (locsyms);
7702 return ret;
7703 }
7704
7705 if (h != NULL)
7706 {
7707 if (h->root.type == bfd_link_hash_defined
7708 || h->root.type == bfd_link_hash_defweak)
7709 value = h->root.u.def.value;
7710 else if (h->root.type == bfd_link_hash_undefweak)
7711 value = 0;
7712 else
7713 {
7714 found_tls_get_addr_arg = 0;
7715 continue;
7716 }
7717 }
7718 else
7719 /* Symbols referenced by TLS relocs must be of type
7720 STT_TLS. So no need for .opd local sym adjust. */
7721 value = sym->st_value;
7722
7723 ok_tprel = FALSE;
7724 is_local = FALSE;
7725 if (h == NULL
7726 || !h->def_dynamic)
7727 {
7728 is_local = TRUE;
7729 if (h != NULL
7730 && h->root.type == bfd_link_hash_undefweak)
7731 ok_tprel = TRUE;
7732 else if (sym_sec != NULL
7733 && sym_sec->output_section != NULL)
7734 {
7735 value += sym_sec->output_offset;
7736 value += sym_sec->output_section->vma;
7737 value -= htab->elf.tls_sec->vma + TP_OFFSET;
7738 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
7739 }
7740 }
7741
7742 r_type = ELF64_R_TYPE (rel->r_info);
7743 /* If this section has old-style __tls_get_addr calls
7744 without marker relocs, then check that each
7745 __tls_get_addr call reloc is preceded by a reloc
7746 that conceivably belongs to the __tls_get_addr arg
7747 setup insn. If we don't find matching arg setup
7748 relocs, don't do any tls optimization. */
7749 if (pass == 0
7750 && sec->has_tls_get_addr_call
7751 && h != NULL
7752 && (h == &htab->tls_get_addr->elf
7753 || h == &htab->tls_get_addr_fd->elf)
7754 && !found_tls_get_addr_arg
7755 && is_branch_reloc (r_type))
7756 {
7757 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7758 "TLS optimization disabled\n"),
7759 ibfd, sec, rel->r_offset);
7760 ret = TRUE;
7761 goto err_free_rel;
7762 }
7763
7764 found_tls_get_addr_arg = 0;
7765 switch (r_type)
7766 {
7767 case R_PPC64_GOT_TLSLD16:
7768 case R_PPC64_GOT_TLSLD16_LO:
7769 expecting_tls_get_addr = 1;
7770 found_tls_get_addr_arg = 1;
7771 /* Fall through. */
7772
7773 case R_PPC64_GOT_TLSLD16_HI:
7774 case R_PPC64_GOT_TLSLD16_HA:
7775 /* These relocs should never be against a symbol
7776 defined in a shared lib. Leave them alone if
7777 that turns out to be the case. */
7778 if (!is_local)
7779 continue;
7780
7781 /* LD -> LE */
7782 tls_set = 0;
7783 tls_clear = TLS_LD;
7784 tls_type = TLS_TLS | TLS_LD;
7785 break;
7786
7787 case R_PPC64_GOT_TLSGD16:
7788 case R_PPC64_GOT_TLSGD16_LO:
7789 expecting_tls_get_addr = 1;
7790 found_tls_get_addr_arg = 1;
7791 /* Fall through. */
7792
7793 case R_PPC64_GOT_TLSGD16_HI:
7794 case R_PPC64_GOT_TLSGD16_HA:
7795 if (ok_tprel)
7796 /* GD -> LE */
7797 tls_set = 0;
7798 else
7799 /* GD -> IE */
7800 tls_set = TLS_TLS | TLS_TPRELGD;
7801 tls_clear = TLS_GD;
7802 tls_type = TLS_TLS | TLS_GD;
7803 break;
7804
7805 case R_PPC64_GOT_TPREL16_DS:
7806 case R_PPC64_GOT_TPREL16_LO_DS:
7807 case R_PPC64_GOT_TPREL16_HI:
7808 case R_PPC64_GOT_TPREL16_HA:
7809 if (ok_tprel)
7810 {
7811 /* IE -> LE */
7812 tls_set = 0;
7813 tls_clear = TLS_TPREL;
7814 tls_type = TLS_TLS | TLS_TPREL;
7815 break;
7816 }
7817 continue;
7818
7819 case R_PPC64_TLSGD:
7820 case R_PPC64_TLSLD:
7821 if (rel + 1 < relend
7822 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
7823 {
7824 if (pass != 0
7825 && (ELF64_R_TYPE (rel[1].r_info)
7826 != R_PPC64_PLTSEQ)
7827 && (ELF64_R_TYPE (rel[1].r_info)
7828 != R_PPC64_PLTSEQ_NOTOC))
7829 {
7830 r_symndx = ELF64_R_SYM (rel[1].r_info);
7831 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
7832 r_symndx, ibfd))
7833 goto err_free_rel;
7834 if (h != NULL)
7835 {
7836 struct plt_entry *ent = NULL;
7837
7838 for (ent = h->plt.plist;
7839 ent != NULL;
7840 ent = ent->next)
7841 if (ent->addend == rel[1].r_addend)
7842 break;
7843
7844 if (ent != NULL
7845 && ent->plt.refcount > 0)
7846 ent->plt.refcount -= 1;
7847 }
7848 }
7849 continue;
7850 }
7851 found_tls_get_addr_arg = 1;
7852 /* Fall through. */
7853
7854 case R_PPC64_TLS:
7855 case R_PPC64_TOC16:
7856 case R_PPC64_TOC16_LO:
7857 if (sym_sec == NULL || sym_sec != toc)
7858 continue;
7859
7860 /* Mark this toc entry as referenced by a TLS
7861 code sequence. We can do that now in the
7862 case of R_PPC64_TLS, and after checking for
7863 tls_get_addr for the TOC16 relocs. */
7864 if (toc_ref == NULL)
7865 toc_ref
7866 = bfd_zmalloc (toc->output_section->rawsize / 8);
7867 if (toc_ref == NULL)
7868 goto err_free_rel;
7869
7870 if (h != NULL)
7871 value = h->root.u.def.value;
7872 else
7873 value = sym->st_value;
7874 value += rel->r_addend;
7875 if (value % 8 != 0)
7876 continue;
7877 BFD_ASSERT (value < toc->size
7878 && toc->output_offset % 8 == 0);
7879 toc_ref_index = (value + toc->output_offset) / 8;
7880 if (r_type == R_PPC64_TLS
7881 || r_type == R_PPC64_TLSGD
7882 || r_type == R_PPC64_TLSLD)
7883 {
7884 toc_ref[toc_ref_index] = 1;
7885 continue;
7886 }
7887
7888 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7889 continue;
7890
7891 tls_set = 0;
7892 tls_clear = 0;
7893 expecting_tls_get_addr = 2;
7894 break;
7895
7896 case R_PPC64_TPREL64:
7897 if (pass == 0
7898 || sec != toc
7899 || toc_ref == NULL
7900 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7901 continue;
7902 if (ok_tprel)
7903 {
7904 /* IE -> LE */
7905 tls_set = TLS_EXPLICIT;
7906 tls_clear = TLS_TPREL;
7907 break;
7908 }
7909 continue;
7910
7911 case R_PPC64_DTPMOD64:
7912 if (pass == 0
7913 || sec != toc
7914 || toc_ref == NULL
7915 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7916 continue;
7917 if (rel + 1 < relend
7918 && (rel[1].r_info
7919 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7920 && rel[1].r_offset == rel->r_offset + 8)
7921 {
7922 if (ok_tprel)
7923 /* GD -> LE */
7924 tls_set = TLS_EXPLICIT | TLS_GD;
7925 else
7926 /* GD -> IE */
7927 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7928 tls_clear = TLS_GD;
7929 }
7930 else
7931 {
7932 if (!is_local)
7933 continue;
7934
7935 /* LD -> LE */
7936 tls_set = TLS_EXPLICIT;
7937 tls_clear = TLS_LD;
7938 }
7939 break;
7940
7941 default:
7942 continue;
7943 }
7944
7945 if (pass == 0)
7946 {
7947 if (!expecting_tls_get_addr
7948 || !sec->has_tls_get_addr_call)
7949 continue;
7950
7951 if (rel + 1 < relend
7952 && branch_reloc_hash_match (ibfd, rel + 1,
7953 htab->tls_get_addr,
7954 htab->tls_get_addr_fd))
7955 {
7956 if (expecting_tls_get_addr == 2)
7957 {
7958 /* Check for toc tls entries. */
7959 unsigned char *toc_tls;
7960 int retval;
7961
7962 retval = get_tls_mask (&toc_tls, NULL, NULL,
7963 &locsyms,
7964 rel, ibfd);
7965 if (retval == 0)
7966 goto err_free_rel;
7967 if (toc_tls != NULL)
7968 {
7969 if ((*toc_tls & TLS_TLS) != 0
7970 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
7971 found_tls_get_addr_arg = 1;
7972 if (retval > 1)
7973 toc_ref[toc_ref_index] = 1;
7974 }
7975 }
7976 continue;
7977 }
7978
7979 /* Uh oh, we didn't find the expected call. We
7980 could just mark this symbol to exclude it
7981 from tls optimization but it's safer to skip
7982 the entire optimization. */
7983 /* xgettext:c-format */
7984 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7985 "TLS optimization disabled\n"),
7986 ibfd, sec, rel->r_offset);
7987 ret = TRUE;
7988 goto err_free_rel;
7989 }
7990
7991 /* If we don't have old-style __tls_get_addr calls
7992 without TLSGD/TLSLD marker relocs, and we haven't
7993 found a new-style __tls_get_addr call with a
7994 marker for this symbol, then we either have a
7995 broken object file or an -mlongcall style
7996 indirect call to __tls_get_addr without a marker.
7997 Disable optimization in this case. */
7998 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
7999 && (tls_set & TLS_EXPLICIT) == 0
8000 && !sec->has_tls_get_addr_call
8001 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8002 != (TLS_TLS | TLS_MARK)))
8003 continue;
8004
8005 if (expecting_tls_get_addr)
8006 {
8007 struct plt_entry *ent = NULL;
8008
8009 if (htab->tls_get_addr != NULL)
8010 for (ent = htab->tls_get_addr->elf.plt.plist;
8011 ent != NULL;
8012 ent = ent->next)
8013 if (ent->addend == 0)
8014 break;
8015
8016 if (ent == NULL && htab->tls_get_addr_fd != NULL)
8017 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8018 ent != NULL;
8019 ent = ent->next)
8020 if (ent->addend == 0)
8021 break;
8022
8023 if (ent != NULL
8024 && ent->plt.refcount > 0)
8025 ent->plt.refcount -= 1;
8026 }
8027
8028 if (tls_clear == 0)
8029 continue;
8030
8031 if ((tls_set & TLS_EXPLICIT) == 0)
8032 {
8033 struct got_entry *ent;
8034
8035 /* Adjust got entry for this reloc. */
8036 if (h != NULL)
8037 ent = h->got.glist;
8038 else
8039 ent = elf_local_got_ents (ibfd)[r_symndx];
8040
8041 for (; ent != NULL; ent = ent->next)
8042 if (ent->addend == rel->r_addend
8043 && ent->owner == ibfd
8044 && ent->tls_type == tls_type)
8045 break;
8046 if (ent == NULL)
8047 abort ();
8048
8049 if (tls_set == 0)
8050 {
8051 /* We managed to get rid of a got entry. */
8052 if (ent->got.refcount > 0)
8053 ent->got.refcount -= 1;
8054 }
8055 }
8056 else
8057 {
8058 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8059 we'll lose one or two dyn relocs. */
8060 if (!dec_dynrel_count (rel->r_info, sec, info,
8061 NULL, h, sym))
8062 return FALSE;
8063
8064 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8065 {
8066 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8067 NULL, h, sym))
8068 return FALSE;
8069 }
8070 }
8071
8072 *tls_mask |= tls_set;
8073 *tls_mask &= ~tls_clear;
8074 }
8075
8076 if (elf_section_data (sec)->relocs != relstart)
8077 free (relstart);
8078 }
8079
8080 if (locsyms != NULL
8081 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8082 {
8083 if (!info->keep_memory)
8084 free (locsyms);
8085 else
8086 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8087 }
8088 }
8089
8090 if (toc_ref != NULL)
8091 free (toc_ref);
8092 htab->do_tls_opt = 1;
8093 return TRUE;
8094 }
8095
8096 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8097 the values of any global symbols in a toc section that has been
8098 edited. Globals in toc sections should be a rarity, so this function
8099 sets a flag if any are found in toc sections other than the one just
8100 edited, so that further hash table traversals can be avoided. */
8101
8102 struct adjust_toc_info
8103 {
8104 asection *toc;
8105 unsigned long *skip;
8106 bfd_boolean global_toc_syms;
8107 };
8108
8109 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8110
8111 static bfd_boolean
8112 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8113 {
8114 struct ppc_link_hash_entry *eh;
8115 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8116 unsigned long i;
8117
8118 if (h->root.type != bfd_link_hash_defined
8119 && h->root.type != bfd_link_hash_defweak)
8120 return TRUE;
8121
8122 eh = (struct ppc_link_hash_entry *) h;
8123 if (eh->adjust_done)
8124 return TRUE;
8125
8126 if (eh->elf.root.u.def.section == toc_inf->toc)
8127 {
8128 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8129 i = toc_inf->toc->rawsize >> 3;
8130 else
8131 i = eh->elf.root.u.def.value >> 3;
8132
8133 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8134 {
8135 _bfd_error_handler
8136 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8137 do
8138 ++i;
8139 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8140 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8141 }
8142
8143 eh->elf.root.u.def.value -= toc_inf->skip[i];
8144 eh->adjust_done = 1;
8145 }
8146 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8147 toc_inf->global_toc_syms = TRUE;
8148
8149 return TRUE;
8150 }
8151
8152 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8153 on a _LO variety toc/got reloc. */
8154
8155 static bfd_boolean
8156 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8157 {
8158 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
8159 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
8160 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8161 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8162 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8163 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8164 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8165 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8166 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8167 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8168 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8169 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8170 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8171 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8172 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8173 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
8174 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8175 /* Exclude lfqu by testing reloc. If relocs are ever
8176 defined for the reduced D field in psq_lu then those
8177 will need testing too. */
8178 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8179 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
8180 && (insn & 1) == 0)
8181 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
8182 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8183 /* Exclude stfqu. psq_stu as above for psq_lu. */
8184 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8185 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
8186 && (insn & 1) == 0));
8187 }
8188
8189 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8190 pld ra,symbol@got@pcrel
8191 load/store rt,0(ra)
8192 or
8193 pla ra,symbol@pcrel
8194 load/store rt,0(ra)
8195 may be translated to
8196 pload/pstore rt,symbol@pcrel
8197 nop.
8198 This function returns true if the optimization is possible, placing
8199 the prefix insn in *PINSN1 and a NOP in *PINSN2.
8200
8201 On entry to this function, the linker has already determined that
8202 the pld can be replaced with pla: *PINSN1 is that pla insn,
8203 while *PINSN2 is the second instruction. */
8204
8205 static bfd_boolean
8206 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2)
8207 {
8208 uint32_t insn2 = *pinsn2 >> 32;
8209 uint64_t i1new;
8210
8211 /* Check that regs match. */
8212 if (((insn2 >> 16) & 31) != ((*pinsn1 >> 21) & 31))
8213 return FALSE;
8214
8215 switch ((insn2 >> 26) & 63)
8216 {
8217 default:
8218 return FALSE;
8219
8220 case 32: /* lwz */
8221 case 34: /* lbz */
8222 case 36: /* stw */
8223 case 38: /* stb */
8224 case 40: /* lhz */
8225 case 42: /* lha */
8226 case 44: /* sth */
8227 case 48: /* lfs */
8228 case 50: /* lfd */
8229 case 52: /* stfs */
8230 case 54: /* stfd */
8231 /* These are the PMLS cases, where we just need to tack a prefix
8232 on the insn. Check that the D field is zero. */
8233 if ((insn2 & 0xffff) != 0)
8234 return FALSE;
8235 i1new = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8236 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8237 break;
8238
8239 case 58: /* lwa, ld */
8240 if ((insn2 & 0xfffd) != 0)
8241 return FALSE;
8242 i1new = ((1ULL << 58) | (1ULL << 52)
8243 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8244 | (insn2 & (31ULL << 21)));
8245 break;
8246
8247 case 57: /* lxsd, lxssp */
8248 if ((insn2 & 0xfffc) != 0 || (insn2 & 3) < 2)
8249 return FALSE;
8250 i1new = ((1ULL << 58) | (1ULL << 52)
8251 | ((40ULL | (insn2 & 3)) << 26)
8252 | (insn2 & (31ULL << 21)));
8253 break;
8254
8255 case 61: /* stxsd, stxssp, lxv, stxv */
8256 if ((insn2 & 3) == 0)
8257 return FALSE;
8258 else if ((insn2 & 3) >= 2)
8259 {
8260 if ((insn2 & 0xfffc) != 0)
8261 return FALSE;
8262 i1new = ((1ULL << 58) | (1ULL << 52)
8263 | ((44ULL | (insn2 & 3)) << 26)
8264 | (insn2 & (31ULL << 21)));
8265 }
8266 else
8267 {
8268 if ((insn2 & 0xfff0) != 0)
8269 return FALSE;
8270 i1new = ((1ULL << 58) | (1ULL << 52)
8271 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8272 | (insn2 & (31ULL << 21)));
8273 }
8274 break;
8275
8276 case 56: /* lq */
8277 if ((insn2 & 0xffff) != 0)
8278 return FALSE;
8279 i1new = ((1ULL << 58) | (1ULL << 52)
8280 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8281 break;
8282
8283 case 62: /* std, stq */
8284 if ((insn2 & 0xfffd) != 0)
8285 return FALSE;
8286 i1new = ((1ULL << 58) | (1ULL << 52)
8287 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8288 | (insn2 & (31ULL << 21)));
8289 break;
8290 }
8291
8292 *pinsn1 = i1new;
8293 *pinsn2 = (uint64_t) NOP << 32;
8294 return TRUE;
8295 }
8296
8297 /* Examine all relocs referencing .toc sections in order to remove
8298 unused .toc entries. */
8299
8300 bfd_boolean
8301 ppc64_elf_edit_toc (struct bfd_link_info *info)
8302 {
8303 bfd *ibfd;
8304 struct adjust_toc_info toc_inf;
8305 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8306
8307 htab->do_toc_opt = 1;
8308 toc_inf.global_toc_syms = TRUE;
8309 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8310 {
8311 asection *toc, *sec;
8312 Elf_Internal_Shdr *symtab_hdr;
8313 Elf_Internal_Sym *local_syms;
8314 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8315 unsigned long *skip, *drop;
8316 unsigned char *used;
8317 unsigned char *keep, last, some_unused;
8318
8319 if (!is_ppc64_elf (ibfd))
8320 continue;
8321
8322 toc = bfd_get_section_by_name (ibfd, ".toc");
8323 if (toc == NULL
8324 || toc->size == 0
8325 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8326 || discarded_section (toc))
8327 continue;
8328
8329 toc_relocs = NULL;
8330 local_syms = NULL;
8331 symtab_hdr = &elf_symtab_hdr (ibfd);
8332
8333 /* Look at sections dropped from the final link. */
8334 skip = NULL;
8335 relstart = NULL;
8336 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8337 {
8338 if (sec->reloc_count == 0
8339 || !discarded_section (sec)
8340 || get_opd_info (sec)
8341 || (sec->flags & SEC_ALLOC) == 0
8342 || (sec->flags & SEC_DEBUGGING) != 0)
8343 continue;
8344
8345 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8346 if (relstart == NULL)
8347 goto error_ret;
8348
8349 /* Run through the relocs to see which toc entries might be
8350 unused. */
8351 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8352 {
8353 enum elf_ppc64_reloc_type r_type;
8354 unsigned long r_symndx;
8355 asection *sym_sec;
8356 struct elf_link_hash_entry *h;
8357 Elf_Internal_Sym *sym;
8358 bfd_vma val;
8359
8360 r_type = ELF64_R_TYPE (rel->r_info);
8361 switch (r_type)
8362 {
8363 default:
8364 continue;
8365
8366 case R_PPC64_TOC16:
8367 case R_PPC64_TOC16_LO:
8368 case R_PPC64_TOC16_HI:
8369 case R_PPC64_TOC16_HA:
8370 case R_PPC64_TOC16_DS:
8371 case R_PPC64_TOC16_LO_DS:
8372 break;
8373 }
8374
8375 r_symndx = ELF64_R_SYM (rel->r_info);
8376 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8377 r_symndx, ibfd))
8378 goto error_ret;
8379
8380 if (sym_sec != toc)
8381 continue;
8382
8383 if (h != NULL)
8384 val = h->root.u.def.value;
8385 else
8386 val = sym->st_value;
8387 val += rel->r_addend;
8388
8389 if (val >= toc->size)
8390 continue;
8391
8392 /* Anything in the toc ought to be aligned to 8 bytes.
8393 If not, don't mark as unused. */
8394 if (val & 7)
8395 continue;
8396
8397 if (skip == NULL)
8398 {
8399 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8400 if (skip == NULL)
8401 goto error_ret;
8402 }
8403
8404 skip[val >> 3] = ref_from_discarded;
8405 }
8406
8407 if (elf_section_data (sec)->relocs != relstart)
8408 free (relstart);
8409 }
8410
8411 /* For largetoc loads of address constants, we can convert
8412 . addis rx,2,addr@got@ha
8413 . ld ry,addr@got@l(rx)
8414 to
8415 . addis rx,2,addr@toc@ha
8416 . addi ry,rx,addr@toc@l
8417 when addr is within 2G of the toc pointer. This then means
8418 that the word storing "addr" in the toc is no longer needed. */
8419
8420 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8421 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8422 && toc->reloc_count != 0)
8423 {
8424 /* Read toc relocs. */
8425 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8426 info->keep_memory);
8427 if (toc_relocs == NULL)
8428 goto error_ret;
8429
8430 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8431 {
8432 enum elf_ppc64_reloc_type r_type;
8433 unsigned long r_symndx;
8434 asection *sym_sec;
8435 struct elf_link_hash_entry *h;
8436 Elf_Internal_Sym *sym;
8437 bfd_vma val, addr;
8438
8439 r_type = ELF64_R_TYPE (rel->r_info);
8440 if (r_type != R_PPC64_ADDR64)
8441 continue;
8442
8443 r_symndx = ELF64_R_SYM (rel->r_info);
8444 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8445 r_symndx, ibfd))
8446 goto error_ret;
8447
8448 if (sym_sec == NULL
8449 || sym_sec->output_section == NULL
8450 || discarded_section (sym_sec))
8451 continue;
8452
8453 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8454 continue;
8455
8456 if (h != NULL)
8457 {
8458 if (h->type == STT_GNU_IFUNC)
8459 continue;
8460 val = h->root.u.def.value;
8461 }
8462 else
8463 {
8464 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8465 continue;
8466 val = sym->st_value;
8467 }
8468 val += rel->r_addend;
8469 val += sym_sec->output_section->vma + sym_sec->output_offset;
8470
8471 /* We don't yet know the exact toc pointer value, but we
8472 know it will be somewhere in the toc section. Don't
8473 optimize if the difference from any possible toc
8474 pointer is outside [ff..f80008000, 7fff7fff]. */
8475 addr = toc->output_section->vma + TOC_BASE_OFF;
8476 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8477 continue;
8478
8479 addr = toc->output_section->vma + toc->output_section->rawsize;
8480 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8481 continue;
8482
8483 if (skip == NULL)
8484 {
8485 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8486 if (skip == NULL)
8487 goto error_ret;
8488 }
8489
8490 skip[rel->r_offset >> 3]
8491 |= can_optimize | ((rel - toc_relocs) << 2);
8492 }
8493 }
8494
8495 if (skip == NULL)
8496 continue;
8497
8498 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8499 if (used == NULL)
8500 {
8501 error_ret:
8502 if (local_syms != NULL
8503 && symtab_hdr->contents != (unsigned char *) local_syms)
8504 free (local_syms);
8505 if (sec != NULL
8506 && relstart != NULL
8507 && elf_section_data (sec)->relocs != relstart)
8508 free (relstart);
8509 if (toc_relocs != NULL
8510 && elf_section_data (toc)->relocs != toc_relocs)
8511 free (toc_relocs);
8512 if (skip != NULL)
8513 free (skip);
8514 return FALSE;
8515 }
8516
8517 /* Now check all kept sections that might reference the toc.
8518 Check the toc itself last. */
8519 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8520 : ibfd->sections);
8521 sec != NULL;
8522 sec = (sec == toc ? NULL
8523 : sec->next == NULL ? toc
8524 : sec->next == toc && toc->next ? toc->next
8525 : sec->next))
8526 {
8527 int repeat;
8528
8529 if (sec->reloc_count == 0
8530 || discarded_section (sec)
8531 || get_opd_info (sec)
8532 || (sec->flags & SEC_ALLOC) == 0
8533 || (sec->flags & SEC_DEBUGGING) != 0)
8534 continue;
8535
8536 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8537 info->keep_memory);
8538 if (relstart == NULL)
8539 {
8540 free (used);
8541 goto error_ret;
8542 }
8543
8544 /* Mark toc entries referenced as used. */
8545 do
8546 {
8547 repeat = 0;
8548 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8549 {
8550 enum elf_ppc64_reloc_type r_type;
8551 unsigned long r_symndx;
8552 asection *sym_sec;
8553 struct elf_link_hash_entry *h;
8554 Elf_Internal_Sym *sym;
8555 bfd_vma val;
8556 enum {no_check, check_lo, check_ha} insn_check;
8557
8558 r_type = ELF64_R_TYPE (rel->r_info);
8559 switch (r_type)
8560 {
8561 default:
8562 insn_check = no_check;
8563 break;
8564
8565 case R_PPC64_GOT_TLSLD16_HA:
8566 case R_PPC64_GOT_TLSGD16_HA:
8567 case R_PPC64_GOT_TPREL16_HA:
8568 case R_PPC64_GOT_DTPREL16_HA:
8569 case R_PPC64_GOT16_HA:
8570 case R_PPC64_TOC16_HA:
8571 insn_check = check_ha;
8572 break;
8573
8574 case R_PPC64_GOT_TLSLD16_LO:
8575 case R_PPC64_GOT_TLSGD16_LO:
8576 case R_PPC64_GOT_TPREL16_LO_DS:
8577 case R_PPC64_GOT_DTPREL16_LO_DS:
8578 case R_PPC64_GOT16_LO:
8579 case R_PPC64_GOT16_LO_DS:
8580 case R_PPC64_TOC16_LO:
8581 case R_PPC64_TOC16_LO_DS:
8582 insn_check = check_lo;
8583 break;
8584 }
8585
8586 if (insn_check != no_check)
8587 {
8588 bfd_vma off = rel->r_offset & ~3;
8589 unsigned char buf[4];
8590 unsigned int insn;
8591
8592 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8593 {
8594 free (used);
8595 goto error_ret;
8596 }
8597 insn = bfd_get_32 (ibfd, buf);
8598 if (insn_check == check_lo
8599 ? !ok_lo_toc_insn (insn, r_type)
8600 : ((insn & ((0x3f << 26) | 0x1f << 16))
8601 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8602 {
8603 char str[12];
8604
8605 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8606 sprintf (str, "%#08x", insn);
8607 info->callbacks->einfo
8608 /* xgettext:c-format */
8609 (_("%H: toc optimization is not supported for"
8610 " %s instruction\n"),
8611 ibfd, sec, rel->r_offset & ~3, str);
8612 }
8613 }
8614
8615 switch (r_type)
8616 {
8617 case R_PPC64_TOC16:
8618 case R_PPC64_TOC16_LO:
8619 case R_PPC64_TOC16_HI:
8620 case R_PPC64_TOC16_HA:
8621 case R_PPC64_TOC16_DS:
8622 case R_PPC64_TOC16_LO_DS:
8623 /* In case we're taking addresses of toc entries. */
8624 case R_PPC64_ADDR64:
8625 break;
8626
8627 default:
8628 continue;
8629 }
8630
8631 r_symndx = ELF64_R_SYM (rel->r_info);
8632 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8633 r_symndx, ibfd))
8634 {
8635 free (used);
8636 goto error_ret;
8637 }
8638
8639 if (sym_sec != toc)
8640 continue;
8641
8642 if (h != NULL)
8643 val = h->root.u.def.value;
8644 else
8645 val = sym->st_value;
8646 val += rel->r_addend;
8647
8648 if (val >= toc->size)
8649 continue;
8650
8651 if ((skip[val >> 3] & can_optimize) != 0)
8652 {
8653 bfd_vma off;
8654 unsigned char opc;
8655
8656 switch (r_type)
8657 {
8658 case R_PPC64_TOC16_HA:
8659 break;
8660
8661 case R_PPC64_TOC16_LO_DS:
8662 off = rel->r_offset;
8663 off += (bfd_big_endian (ibfd) ? -2 : 3);
8664 if (!bfd_get_section_contents (ibfd, sec, &opc,
8665 off, 1))
8666 {
8667 free (used);
8668 goto error_ret;
8669 }
8670 if ((opc & (0x3f << 2)) == (58u << 2))
8671 break;
8672 /* Fall through. */
8673
8674 default:
8675 /* Wrong sort of reloc, or not a ld. We may
8676 as well clear ref_from_discarded too. */
8677 skip[val >> 3] = 0;
8678 }
8679 }
8680
8681 if (sec != toc)
8682 used[val >> 3] = 1;
8683 /* For the toc section, we only mark as used if this
8684 entry itself isn't unused. */
8685 else if ((used[rel->r_offset >> 3]
8686 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8687 && !used[val >> 3])
8688 {
8689 /* Do all the relocs again, to catch reference
8690 chains. */
8691 repeat = 1;
8692 used[val >> 3] = 1;
8693 }
8694 }
8695 }
8696 while (repeat);
8697
8698 if (elf_section_data (sec)->relocs != relstart)
8699 free (relstart);
8700 }
8701
8702 /* Merge the used and skip arrays. Assume that TOC
8703 doublewords not appearing as either used or unused belong
8704 to an entry more than one doubleword in size. */
8705 for (drop = skip, keep = used, last = 0, some_unused = 0;
8706 drop < skip + (toc->size + 7) / 8;
8707 ++drop, ++keep)
8708 {
8709 if (*keep)
8710 {
8711 *drop &= ~ref_from_discarded;
8712 if ((*drop & can_optimize) != 0)
8713 some_unused = 1;
8714 last = 0;
8715 }
8716 else if ((*drop & ref_from_discarded) != 0)
8717 {
8718 some_unused = 1;
8719 last = ref_from_discarded;
8720 }
8721 else
8722 *drop = last;
8723 }
8724
8725 free (used);
8726
8727 if (some_unused)
8728 {
8729 bfd_byte *contents, *src;
8730 unsigned long off;
8731 Elf_Internal_Sym *sym;
8732 bfd_boolean local_toc_syms = FALSE;
8733
8734 /* Shuffle the toc contents, and at the same time convert the
8735 skip array from booleans into offsets. */
8736 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8737 goto error_ret;
8738
8739 elf_section_data (toc)->this_hdr.contents = contents;
8740
8741 for (src = contents, off = 0, drop = skip;
8742 src < contents + toc->size;
8743 src += 8, ++drop)
8744 {
8745 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8746 off += 8;
8747 else if (off != 0)
8748 {
8749 *drop = off;
8750 memcpy (src - off, src, 8);
8751 }
8752 }
8753 *drop = off;
8754 toc->rawsize = toc->size;
8755 toc->size = src - contents - off;
8756
8757 /* Adjust addends for relocs against the toc section sym,
8758 and optimize any accesses we can. */
8759 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8760 {
8761 if (sec->reloc_count == 0
8762 || discarded_section (sec))
8763 continue;
8764
8765 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8766 info->keep_memory);
8767 if (relstart == NULL)
8768 goto error_ret;
8769
8770 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8771 {
8772 enum elf_ppc64_reloc_type r_type;
8773 unsigned long r_symndx;
8774 asection *sym_sec;
8775 struct elf_link_hash_entry *h;
8776 bfd_vma val;
8777
8778 r_type = ELF64_R_TYPE (rel->r_info);
8779 switch (r_type)
8780 {
8781 default:
8782 continue;
8783
8784 case R_PPC64_TOC16:
8785 case R_PPC64_TOC16_LO:
8786 case R_PPC64_TOC16_HI:
8787 case R_PPC64_TOC16_HA:
8788 case R_PPC64_TOC16_DS:
8789 case R_PPC64_TOC16_LO_DS:
8790 case R_PPC64_ADDR64:
8791 break;
8792 }
8793
8794 r_symndx = ELF64_R_SYM (rel->r_info);
8795 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8796 r_symndx, ibfd))
8797 goto error_ret;
8798
8799 if (sym_sec != toc)
8800 continue;
8801
8802 if (h != NULL)
8803 val = h->root.u.def.value;
8804 else
8805 {
8806 val = sym->st_value;
8807 if (val != 0)
8808 local_toc_syms = TRUE;
8809 }
8810
8811 val += rel->r_addend;
8812
8813 if (val > toc->rawsize)
8814 val = toc->rawsize;
8815 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8816 continue;
8817 else if ((skip[val >> 3] & can_optimize) != 0)
8818 {
8819 Elf_Internal_Rela *tocrel
8820 = toc_relocs + (skip[val >> 3] >> 2);
8821 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8822
8823 switch (r_type)
8824 {
8825 case R_PPC64_TOC16_HA:
8826 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8827 break;
8828
8829 case R_PPC64_TOC16_LO_DS:
8830 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8831 break;
8832
8833 default:
8834 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8835 ppc_howto_init ();
8836 info->callbacks->einfo
8837 /* xgettext:c-format */
8838 (_("%H: %s references "
8839 "optimized away TOC entry\n"),
8840 ibfd, sec, rel->r_offset,
8841 ppc64_elf_howto_table[r_type]->name);
8842 bfd_set_error (bfd_error_bad_value);
8843 goto error_ret;
8844 }
8845 rel->r_addend = tocrel->r_addend;
8846 elf_section_data (sec)->relocs = relstart;
8847 continue;
8848 }
8849
8850 if (h != NULL || sym->st_value != 0)
8851 continue;
8852
8853 rel->r_addend -= skip[val >> 3];
8854 elf_section_data (sec)->relocs = relstart;
8855 }
8856
8857 if (elf_section_data (sec)->relocs != relstart)
8858 free (relstart);
8859 }
8860
8861 /* We shouldn't have local or global symbols defined in the TOC,
8862 but handle them anyway. */
8863 if (local_syms != NULL)
8864 for (sym = local_syms;
8865 sym < local_syms + symtab_hdr->sh_info;
8866 ++sym)
8867 if (sym->st_value != 0
8868 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8869 {
8870 unsigned long i;
8871
8872 if (sym->st_value > toc->rawsize)
8873 i = toc->rawsize >> 3;
8874 else
8875 i = sym->st_value >> 3;
8876
8877 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8878 {
8879 if (local_toc_syms)
8880 _bfd_error_handler
8881 (_("%s defined on removed toc entry"),
8882 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8883 do
8884 ++i;
8885 while ((skip[i] & (ref_from_discarded | can_optimize)));
8886 sym->st_value = (bfd_vma) i << 3;
8887 }
8888
8889 sym->st_value -= skip[i];
8890 symtab_hdr->contents = (unsigned char *) local_syms;
8891 }
8892
8893 /* Adjust any global syms defined in this toc input section. */
8894 if (toc_inf.global_toc_syms)
8895 {
8896 toc_inf.toc = toc;
8897 toc_inf.skip = skip;
8898 toc_inf.global_toc_syms = FALSE;
8899 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8900 &toc_inf);
8901 }
8902
8903 if (toc->reloc_count != 0)
8904 {
8905 Elf_Internal_Shdr *rel_hdr;
8906 Elf_Internal_Rela *wrel;
8907 bfd_size_type sz;
8908
8909 /* Remove unused toc relocs, and adjust those we keep. */
8910 if (toc_relocs == NULL)
8911 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8912 info->keep_memory);
8913 if (toc_relocs == NULL)
8914 goto error_ret;
8915
8916 wrel = toc_relocs;
8917 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8918 if ((skip[rel->r_offset >> 3]
8919 & (ref_from_discarded | can_optimize)) == 0)
8920 {
8921 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8922 wrel->r_info = rel->r_info;
8923 wrel->r_addend = rel->r_addend;
8924 ++wrel;
8925 }
8926 else if (!dec_dynrel_count (rel->r_info, toc, info,
8927 &local_syms, NULL, NULL))
8928 goto error_ret;
8929
8930 elf_section_data (toc)->relocs = toc_relocs;
8931 toc->reloc_count = wrel - toc_relocs;
8932 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8933 sz = rel_hdr->sh_entsize;
8934 rel_hdr->sh_size = toc->reloc_count * sz;
8935 }
8936 }
8937 else if (toc_relocs != NULL
8938 && elf_section_data (toc)->relocs != toc_relocs)
8939 free (toc_relocs);
8940
8941 if (local_syms != NULL
8942 && symtab_hdr->contents != (unsigned char *) local_syms)
8943 {
8944 if (!info->keep_memory)
8945 free (local_syms);
8946 else
8947 symtab_hdr->contents = (unsigned char *) local_syms;
8948 }
8949 free (skip);
8950 }
8951
8952 /* Look for cases where we can change an indirect GOT access to
8953 a GOT relative or PC relative access, possibly reducing the
8954 number of GOT entries. */
8955 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8956 {
8957 asection *sec;
8958 Elf_Internal_Shdr *symtab_hdr;
8959 Elf_Internal_Sym *local_syms;
8960 Elf_Internal_Rela *relstart, *rel;
8961 bfd_vma got;
8962
8963 if (!is_ppc64_elf (ibfd))
8964 continue;
8965
8966 if (!ppc64_elf_tdata (ibfd)->has_gotrel)
8967 continue;
8968
8969 sec = ppc64_elf_tdata (ibfd)->got;
8970 got = sec->output_section->vma + sec->output_offset + 0x8000;
8971
8972 local_syms = NULL;
8973 symtab_hdr = &elf_symtab_hdr (ibfd);
8974
8975 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8976 {
8977 if (sec->reloc_count == 0
8978 || !ppc64_elf_section_data (sec)->has_gotrel
8979 || discarded_section (sec))
8980 continue;
8981
8982 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8983 info->keep_memory);
8984 if (relstart == NULL)
8985 {
8986 got_error_ret:
8987 if (local_syms != NULL
8988 && symtab_hdr->contents != (unsigned char *) local_syms)
8989 free (local_syms);
8990 if (sec != NULL
8991 && relstart != NULL
8992 && elf_section_data (sec)->relocs != relstart)
8993 free (relstart);
8994 return FALSE;
8995 }
8996
8997 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8998 {
8999 enum elf_ppc64_reloc_type r_type;
9000 unsigned long r_symndx;
9001 Elf_Internal_Sym *sym;
9002 asection *sym_sec;
9003 struct elf_link_hash_entry *h;
9004 struct got_entry *ent;
9005 bfd_vma sym_addend, val, pc;
9006 unsigned char buf[8];
9007 unsigned int insn;
9008
9009 r_type = ELF64_R_TYPE (rel->r_info);
9010 switch (r_type)
9011 {
9012 /* Note that we don't delete GOT entries for
9013 R_PPC64_GOT16_DS since we'd need a lot more
9014 analysis. For starters, the preliminary layout is
9015 before the GOT, PLT, dynamic sections and stubs are
9016 laid out. Then we'd need to allow for changes in
9017 distance between sections caused by alignment. */
9018 default:
9019 continue;
9020
9021 case R_PPC64_GOT16_HA:
9022 case R_PPC64_GOT16_LO_DS:
9023 sym_addend = rel->r_addend;
9024 break;
9025
9026 case R_PPC64_GOT_PCREL34:
9027 sym_addend = 0;
9028 break;
9029 }
9030
9031 r_symndx = ELF64_R_SYM (rel->r_info);
9032 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9033 r_symndx, ibfd))
9034 goto got_error_ret;
9035
9036 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9037 continue;
9038
9039 if (h != NULL)
9040 val = h->root.u.def.value;
9041 else
9042 val = sym->st_value;
9043 val += sym_addend;
9044 val += sym_sec->output_section->vma + sym_sec->output_offset;
9045
9046 /* Fudge factor to allow for the fact that the preliminary layout
9047 isn't exact. Reduce limits by this factor. */
9048 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9049
9050 switch (r_type)
9051 {
9052 default:
9053 continue;
9054
9055 case R_PPC64_GOT16_HA:
9056 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9057 >= LIMIT_ADJUST (0x100000000ULL))
9058 continue;
9059
9060 if (!bfd_get_section_contents (ibfd, sec, buf,
9061 rel->r_offset & ~3, 4))
9062 goto got_error_ret;
9063 insn = bfd_get_32 (ibfd, buf);
9064 if (((insn & ((0x3f << 26) | 0x1f << 16))
9065 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9066 continue;
9067 break;
9068
9069 case R_PPC64_GOT16_LO_DS:
9070 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9071 >= LIMIT_ADJUST (0x100000000ULL))
9072 continue;
9073 if (!bfd_get_section_contents (ibfd, sec, buf,
9074 rel->r_offset & ~3, 4))
9075 goto got_error_ret;
9076 insn = bfd_get_32 (ibfd, buf);
9077 if ((insn & (0x3f << 26 | 0x3)) != 58u << 26 /* ld */)
9078 continue;
9079 break;
9080
9081 case R_PPC64_GOT_PCREL34:
9082 pc = rel->r_offset;
9083 pc += sec->output_section->vma + sec->output_offset;
9084 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9085 >= LIMIT_ADJUST (1ULL << 34))
9086 continue;
9087 if (!bfd_get_section_contents (ibfd, sec, buf,
9088 rel->r_offset & ~3, 8))
9089 goto got_error_ret;
9090 insn = bfd_get_32 (ibfd, buf);
9091 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9092 continue;
9093 insn = bfd_get_32 (ibfd, buf + 4);
9094 if ((insn & (0x3f << 26)) != 57u << 26)
9095 continue;
9096 break;
9097 }
9098 #undef LIMIT_ADJUST
9099
9100 if (h != NULL)
9101 ent = h->got.glist;
9102 else
9103 {
9104 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9105 ent = local_got_ents[r_symndx];
9106 }
9107 for (; ent != NULL; ent = ent->next)
9108 if (ent->addend == sym_addend
9109 && ent->owner == ibfd
9110 && ent->tls_type == 0)
9111 break;
9112 BFD_ASSERT (ent && ent->got.refcount > 0);
9113 ent->got.refcount -= 1;
9114 }
9115
9116 if (elf_section_data (sec)->relocs != relstart)
9117 free (relstart);
9118 }
9119
9120 if (local_syms != NULL
9121 && symtab_hdr->contents != (unsigned char *) local_syms)
9122 {
9123 if (!info->keep_memory)
9124 free (local_syms);
9125 else
9126 symtab_hdr->contents = (unsigned char *) local_syms;
9127 }
9128 }
9129
9130 return TRUE;
9131 }
9132
9133 /* Return true iff input section I references the TOC using
9134 instructions limited to +/-32k offsets. */
9135
9136 bfd_boolean
9137 ppc64_elf_has_small_toc_reloc (asection *i)
9138 {
9139 return (is_ppc64_elf (i->owner)
9140 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9141 }
9142
9143 /* Allocate space for one GOT entry. */
9144
9145 static void
9146 allocate_got (struct elf_link_hash_entry *h,
9147 struct bfd_link_info *info,
9148 struct got_entry *gent)
9149 {
9150 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9151 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9152 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9153 ? 16 : 8);
9154 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9155 ? 2 : 1) * sizeof (Elf64_External_Rela);
9156 asection *got = ppc64_elf_tdata (gent->owner)->got;
9157
9158 gent->got.offset = got->size;
9159 got->size += entsize;
9160
9161 if (h->type == STT_GNU_IFUNC)
9162 {
9163 htab->elf.irelplt->size += rentsize;
9164 htab->got_reli_size += rentsize;
9165 }
9166 else if (((bfd_link_pic (info)
9167 && !((gent->tls_type & TLS_TPREL) != 0
9168 && bfd_link_executable (info)
9169 && SYMBOL_REFERENCES_LOCAL (info, h)))
9170 || (htab->elf.dynamic_sections_created
9171 && h->dynindx != -1
9172 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9173 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9174 {
9175 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9176 relgot->size += rentsize;
9177 }
9178 }
9179
9180 /* This function merges got entries in the same toc group. */
9181
9182 static void
9183 merge_got_entries (struct got_entry **pent)
9184 {
9185 struct got_entry *ent, *ent2;
9186
9187 for (ent = *pent; ent != NULL; ent = ent->next)
9188 if (!ent->is_indirect)
9189 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9190 if (!ent2->is_indirect
9191 && ent2->addend == ent->addend
9192 && ent2->tls_type == ent->tls_type
9193 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9194 {
9195 ent2->is_indirect = TRUE;
9196 ent2->got.ent = ent;
9197 }
9198 }
9199
9200 /* If H is undefined, make it dynamic if that makes sense. */
9201
9202 static bfd_boolean
9203 ensure_undef_dynamic (struct bfd_link_info *info,
9204 struct elf_link_hash_entry *h)
9205 {
9206 struct elf_link_hash_table *htab = elf_hash_table (info);
9207
9208 if (htab->dynamic_sections_created
9209 && ((info->dynamic_undefined_weak != 0
9210 && h->root.type == bfd_link_hash_undefweak)
9211 || h->root.type == bfd_link_hash_undefined)
9212 && h->dynindx == -1
9213 && !h->forced_local
9214 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9215 return bfd_elf_link_record_dynamic_symbol (info, h);
9216 return TRUE;
9217 }
9218
9219 /* Allocate space in .plt, .got and associated reloc sections for
9220 dynamic relocs. */
9221
9222 static bfd_boolean
9223 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9224 {
9225 struct bfd_link_info *info;
9226 struct ppc_link_hash_table *htab;
9227 asection *s;
9228 struct ppc_link_hash_entry *eh;
9229 struct got_entry **pgent, *gent;
9230
9231 if (h->root.type == bfd_link_hash_indirect)
9232 return TRUE;
9233
9234 info = (struct bfd_link_info *) inf;
9235 htab = ppc_hash_table (info);
9236 if (htab == NULL)
9237 return FALSE;
9238
9239 eh = (struct ppc_link_hash_entry *) h;
9240 /* Run through the TLS GD got entries first if we're changing them
9241 to TPREL. */
9242 if ((eh->tls_mask & (TLS_TLS | TLS_TPRELGD)) == (TLS_TLS | TLS_TPRELGD))
9243 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9244 if (gent->got.refcount > 0
9245 && (gent->tls_type & TLS_GD) != 0)
9246 {
9247 /* This was a GD entry that has been converted to TPREL. If
9248 there happens to be a TPREL entry we can use that one. */
9249 struct got_entry *ent;
9250 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9251 if (ent->got.refcount > 0
9252 && (ent->tls_type & TLS_TPREL) != 0
9253 && ent->addend == gent->addend
9254 && ent->owner == gent->owner)
9255 {
9256 gent->got.refcount = 0;
9257 break;
9258 }
9259
9260 /* If not, then we'll be using our own TPREL entry. */
9261 if (gent->got.refcount != 0)
9262 gent->tls_type = TLS_TLS | TLS_TPREL;
9263 }
9264
9265 /* Remove any list entry that won't generate a word in the GOT before
9266 we call merge_got_entries. Otherwise we risk merging to empty
9267 entries. */
9268 pgent = &h->got.glist;
9269 while ((gent = *pgent) != NULL)
9270 if (gent->got.refcount > 0)
9271 {
9272 if ((gent->tls_type & TLS_LD) != 0
9273 && !h->def_dynamic)
9274 {
9275 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9276 *pgent = gent->next;
9277 }
9278 else
9279 pgent = &gent->next;
9280 }
9281 else
9282 *pgent = gent->next;
9283
9284 if (!htab->do_multi_toc)
9285 merge_got_entries (&h->got.glist);
9286
9287 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9288 if (!gent->is_indirect)
9289 {
9290 /* Make sure this symbol is output as a dynamic symbol. */
9291 if (!ensure_undef_dynamic (info, h))
9292 return FALSE;
9293
9294 if (!is_ppc64_elf (gent->owner))
9295 abort ();
9296
9297 allocate_got (h, info, gent);
9298 }
9299
9300 /* If no dynamic sections we can't have dynamic relocs, except for
9301 IFUNCs which are handled even in static executables. */
9302 if (!htab->elf.dynamic_sections_created
9303 && h->type != STT_GNU_IFUNC)
9304 eh->dyn_relocs = NULL;
9305
9306 /* Discard relocs on undefined symbols that must be local. */
9307 else if (h->root.type == bfd_link_hash_undefined
9308 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9309 eh->dyn_relocs = NULL;
9310
9311 /* Also discard relocs on undefined weak syms with non-default
9312 visibility, or when dynamic_undefined_weak says so. */
9313 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9314 eh->dyn_relocs = NULL;
9315
9316 if (eh->dyn_relocs != NULL)
9317 {
9318 struct elf_dyn_relocs *p, **pp;
9319
9320 /* In the shared -Bsymbolic case, discard space allocated for
9321 dynamic pc-relative relocs against symbols which turn out to
9322 be defined in regular objects. For the normal shared case,
9323 discard space for relocs that have become local due to symbol
9324 visibility changes. */
9325
9326 if (bfd_link_pic (info))
9327 {
9328 /* Relocs that use pc_count are those that appear on a call
9329 insn, or certain REL relocs (see must_be_dyn_reloc) that
9330 can be generated via assembly. We want calls to
9331 protected symbols to resolve directly to the function
9332 rather than going via the plt. If people want function
9333 pointer comparisons to work as expected then they should
9334 avoid writing weird assembly. */
9335 if (SYMBOL_CALLS_LOCAL (info, h))
9336 {
9337 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9338 {
9339 p->count -= p->pc_count;
9340 p->pc_count = 0;
9341 if (p->count == 0)
9342 *pp = p->next;
9343 else
9344 pp = &p->next;
9345 }
9346 }
9347
9348 if (eh->dyn_relocs != NULL)
9349 {
9350 /* Make sure this symbol is output as a dynamic symbol. */
9351 if (!ensure_undef_dynamic (info, h))
9352 return FALSE;
9353 }
9354 }
9355 else if (ELIMINATE_COPY_RELOCS && h->type != STT_GNU_IFUNC)
9356 {
9357 /* For the non-pic case, discard space for relocs against
9358 symbols which turn out to need copy relocs or are not
9359 dynamic. */
9360 if (h->dynamic_adjusted
9361 && !h->def_regular
9362 && !ELF_COMMON_DEF_P (h))
9363 {
9364 /* Make sure this symbol is output as a dynamic symbol. */
9365 if (!ensure_undef_dynamic (info, h))
9366 return FALSE;
9367
9368 if (h->dynindx == -1)
9369 eh->dyn_relocs = NULL;
9370 }
9371 else
9372 eh->dyn_relocs = NULL;
9373 }
9374
9375 /* Finally, allocate space. */
9376 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9377 {
9378 asection *sreloc = elf_section_data (p->sec)->sreloc;
9379 if (eh->elf.type == STT_GNU_IFUNC)
9380 sreloc = htab->elf.irelplt;
9381 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9382 }
9383 }
9384
9385 /* We might need a PLT entry when the symbol
9386 a) is dynamic, or
9387 b) is an ifunc, or
9388 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9389 d) has plt16 relocs and we are linking statically. */
9390 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9391 || h->type == STT_GNU_IFUNC
9392 || (h->needs_plt && h->dynamic_adjusted)
9393 || (h->needs_plt
9394 && h->def_regular
9395 && !htab->elf.dynamic_sections_created
9396 && !htab->can_convert_all_inline_plt
9397 && (((struct ppc_link_hash_entry *) h)->tls_mask
9398 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9399 {
9400 struct plt_entry *pent;
9401 bfd_boolean doneone = FALSE;
9402 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9403 if (pent->plt.refcount > 0)
9404 {
9405 if (!htab->elf.dynamic_sections_created
9406 || h->dynindx == -1)
9407 {
9408 if (h->type == STT_GNU_IFUNC)
9409 {
9410 s = htab->elf.iplt;
9411 pent->plt.offset = s->size;
9412 s->size += PLT_ENTRY_SIZE (htab);
9413 s = htab->elf.irelplt;
9414 }
9415 else
9416 {
9417 s = htab->pltlocal;
9418 pent->plt.offset = s->size;
9419 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9420 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9421 }
9422 }
9423 else
9424 {
9425 /* If this is the first .plt entry, make room for the special
9426 first entry. */
9427 s = htab->elf.splt;
9428 if (s->size == 0)
9429 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9430
9431 pent->plt.offset = s->size;
9432
9433 /* Make room for this entry. */
9434 s->size += PLT_ENTRY_SIZE (htab);
9435
9436 /* Make room for the .glink code. */
9437 s = htab->glink;
9438 if (s->size == 0)
9439 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9440 if (htab->opd_abi)
9441 {
9442 /* We need bigger stubs past index 32767. */
9443 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9444 s->size += 4;
9445 s->size += 2*4;
9446 }
9447 else
9448 s->size += 4;
9449
9450 /* We also need to make an entry in the .rela.plt section. */
9451 s = htab->elf.srelplt;
9452 }
9453 if (s != NULL)
9454 s->size += sizeof (Elf64_External_Rela);
9455 doneone = TRUE;
9456 }
9457 else
9458 pent->plt.offset = (bfd_vma) -1;
9459 if (!doneone)
9460 {
9461 h->plt.plist = NULL;
9462 h->needs_plt = 0;
9463 }
9464 }
9465 else
9466 {
9467 h->plt.plist = NULL;
9468 h->needs_plt = 0;
9469 }
9470
9471 return TRUE;
9472 }
9473
9474 #define PPC_LO(v) ((v) & 0xffff)
9475 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9476 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9477 #define D34(v) \
9478 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9479 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9480
9481 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9482 to set up space for global entry stubs. These are put in glink,
9483 after the branch table. */
9484
9485 static bfd_boolean
9486 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9487 {
9488 struct bfd_link_info *info;
9489 struct ppc_link_hash_table *htab;
9490 struct plt_entry *pent;
9491 asection *s, *plt;
9492
9493 if (h->root.type == bfd_link_hash_indirect)
9494 return TRUE;
9495
9496 if (!h->pointer_equality_needed)
9497 return TRUE;
9498
9499 if (h->def_regular)
9500 return TRUE;
9501
9502 info = inf;
9503 htab = ppc_hash_table (info);
9504 if (htab == NULL)
9505 return FALSE;
9506
9507 s = htab->global_entry;
9508 plt = htab->elf.splt;
9509 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9510 if (pent->plt.offset != (bfd_vma) -1
9511 && pent->addend == 0)
9512 {
9513 /* For ELFv2, if this symbol is not defined in a regular file
9514 and we are not generating a shared library or pie, then we
9515 need to define the symbol in the executable on a call stub.
9516 This is to avoid text relocations. */
9517 bfd_vma off, stub_align, stub_off, stub_size;
9518 unsigned int align_power;
9519
9520 stub_size = 16;
9521 stub_off = s->size;
9522 if (htab->params->plt_stub_align >= 0)
9523 align_power = htab->params->plt_stub_align;
9524 else
9525 align_power = -htab->params->plt_stub_align;
9526 /* Setting section alignment is delayed until we know it is
9527 non-empty. Otherwise the .text output section will be
9528 aligned at least to plt_stub_align even when no global
9529 entry stubs are needed. */
9530 if (s->alignment_power < align_power)
9531 s->alignment_power = align_power;
9532 stub_align = (bfd_vma) 1 << align_power;
9533 if (htab->params->plt_stub_align >= 0
9534 || ((((stub_off + stub_size - 1) & -stub_align)
9535 - (stub_off & -stub_align))
9536 > ((stub_size - 1) & -stub_align)))
9537 stub_off = (stub_off + stub_align - 1) & -stub_align;
9538 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9539 off -= stub_off + s->output_offset + s->output_section->vma;
9540 /* Note that for --plt-stub-align negative we have a possible
9541 dependency between stub offset and size. Break that
9542 dependency by assuming the max stub size when calculating
9543 the stub offset. */
9544 if (PPC_HA (off) == 0)
9545 stub_size -= 4;
9546 h->root.type = bfd_link_hash_defined;
9547 h->root.u.def.section = s;
9548 h->root.u.def.value = stub_off;
9549 s->size = stub_off + stub_size;
9550 break;
9551 }
9552 return TRUE;
9553 }
9554
9555 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9556 read-only sections. */
9557
9558 static bfd_boolean
9559 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9560 {
9561 asection *sec;
9562
9563 if (h->root.type == bfd_link_hash_indirect)
9564 return TRUE;
9565
9566 sec = readonly_dynrelocs (h);
9567 if (sec != NULL)
9568 {
9569 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9570
9571 info->flags |= DF_TEXTREL;
9572 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9573 " in read-only section `%pA'\n"),
9574 sec->owner, h->root.root.string, sec);
9575
9576 /* Not an error, just cut short the traversal. */
9577 return FALSE;
9578 }
9579 return TRUE;
9580 }
9581
9582 /* Set the sizes of the dynamic sections. */
9583
9584 static bfd_boolean
9585 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9586 struct bfd_link_info *info)
9587 {
9588 struct ppc_link_hash_table *htab;
9589 bfd *dynobj;
9590 asection *s;
9591 bfd_boolean relocs;
9592 bfd *ibfd;
9593 struct got_entry *first_tlsld;
9594
9595 htab = ppc_hash_table (info);
9596 if (htab == NULL)
9597 return FALSE;
9598
9599 dynobj = htab->elf.dynobj;
9600 if (dynobj == NULL)
9601 abort ();
9602
9603 if (htab->elf.dynamic_sections_created)
9604 {
9605 /* Set the contents of the .interp section to the interpreter. */
9606 if (bfd_link_executable (info) && !info->nointerp)
9607 {
9608 s = bfd_get_linker_section (dynobj, ".interp");
9609 if (s == NULL)
9610 abort ();
9611 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9612 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9613 }
9614 }
9615
9616 /* Set up .got offsets for local syms, and space for local dynamic
9617 relocs. */
9618 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9619 {
9620 struct got_entry **lgot_ents;
9621 struct got_entry **end_lgot_ents;
9622 struct plt_entry **local_plt;
9623 struct plt_entry **end_local_plt;
9624 unsigned char *lgot_masks;
9625 bfd_size_type locsymcount;
9626 Elf_Internal_Shdr *symtab_hdr;
9627
9628 if (!is_ppc64_elf (ibfd))
9629 continue;
9630
9631 for (s = ibfd->sections; s != NULL; s = s->next)
9632 {
9633 struct ppc_dyn_relocs *p;
9634
9635 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9636 {
9637 if (!bfd_is_abs_section (p->sec)
9638 && bfd_is_abs_section (p->sec->output_section))
9639 {
9640 /* Input section has been discarded, either because
9641 it is a copy of a linkonce section or due to
9642 linker script /DISCARD/, so we'll be discarding
9643 the relocs too. */
9644 }
9645 else if (p->count != 0)
9646 {
9647 asection *srel = elf_section_data (p->sec)->sreloc;
9648 if (p->ifunc)
9649 srel = htab->elf.irelplt;
9650 srel->size += p->count * sizeof (Elf64_External_Rela);
9651 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9652 info->flags |= DF_TEXTREL;
9653 }
9654 }
9655 }
9656
9657 lgot_ents = elf_local_got_ents (ibfd);
9658 if (!lgot_ents)
9659 continue;
9660
9661 symtab_hdr = &elf_symtab_hdr (ibfd);
9662 locsymcount = symtab_hdr->sh_info;
9663 end_lgot_ents = lgot_ents + locsymcount;
9664 local_plt = (struct plt_entry **) end_lgot_ents;
9665 end_local_plt = local_plt + locsymcount;
9666 lgot_masks = (unsigned char *) end_local_plt;
9667 s = ppc64_elf_tdata (ibfd)->got;
9668 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9669 {
9670 struct got_entry **pent, *ent;
9671
9672 pent = lgot_ents;
9673 while ((ent = *pent) != NULL)
9674 if (ent->got.refcount > 0)
9675 {
9676 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9677 {
9678 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9679 *pent = ent->next;
9680 }
9681 else
9682 {
9683 unsigned int ent_size = 8;
9684 unsigned int rel_size = sizeof (Elf64_External_Rela);
9685
9686 ent->got.offset = s->size;
9687 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9688 {
9689 ent_size *= 2;
9690 rel_size *= 2;
9691 }
9692 s->size += ent_size;
9693 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9694 {
9695 htab->elf.irelplt->size += rel_size;
9696 htab->got_reli_size += rel_size;
9697 }
9698 else if (bfd_link_pic (info)
9699 && !((ent->tls_type & TLS_TPREL) != 0
9700 && bfd_link_executable (info)))
9701 {
9702 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9703 srel->size += rel_size;
9704 }
9705 pent = &ent->next;
9706 }
9707 }
9708 else
9709 *pent = ent->next;
9710 }
9711
9712 /* Allocate space for plt calls to local syms. */
9713 lgot_masks = (unsigned char *) end_local_plt;
9714 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
9715 {
9716 struct plt_entry *ent;
9717
9718 for (ent = *local_plt; ent != NULL; ent = ent->next)
9719 if (ent->plt.refcount > 0)
9720 {
9721 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9722 {
9723 s = htab->elf.iplt;
9724 ent->plt.offset = s->size;
9725 s->size += PLT_ENTRY_SIZE (htab);
9726 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9727 }
9728 else if (htab->can_convert_all_inline_plt
9729 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
9730 ent->plt.offset = (bfd_vma) -1;
9731 else
9732 {
9733 s = htab->pltlocal;
9734 ent->plt.offset = s->size;
9735 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9736 if (bfd_link_pic (info))
9737 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
9738 }
9739 }
9740 else
9741 ent->plt.offset = (bfd_vma) -1;
9742 }
9743 }
9744
9745 /* Allocate global sym .plt and .got entries, and space for global
9746 sym dynamic relocs. */
9747 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9748
9749 if (!htab->opd_abi && !bfd_link_pic (info))
9750 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9751
9752 first_tlsld = NULL;
9753 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9754 {
9755 struct got_entry *ent;
9756
9757 if (!is_ppc64_elf (ibfd))
9758 continue;
9759
9760 ent = ppc64_tlsld_got (ibfd);
9761 if (ent->got.refcount > 0)
9762 {
9763 if (!htab->do_multi_toc && first_tlsld != NULL)
9764 {
9765 ent->is_indirect = TRUE;
9766 ent->got.ent = first_tlsld;
9767 }
9768 else
9769 {
9770 if (first_tlsld == NULL)
9771 first_tlsld = ent;
9772 s = ppc64_elf_tdata (ibfd)->got;
9773 ent->got.offset = s->size;
9774 ent->owner = ibfd;
9775 s->size += 16;
9776 if (bfd_link_pic (info))
9777 {
9778 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9779 srel->size += sizeof (Elf64_External_Rela);
9780 }
9781 }
9782 }
9783 else
9784 ent->got.offset = (bfd_vma) -1;
9785 }
9786
9787 /* We now have determined the sizes of the various dynamic sections.
9788 Allocate memory for them. */
9789 relocs = FALSE;
9790 for (s = dynobj->sections; s != NULL; s = s->next)
9791 {
9792 if ((s->flags & SEC_LINKER_CREATED) == 0)
9793 continue;
9794
9795 if (s == htab->brlt || s == htab->relbrlt)
9796 /* These haven't been allocated yet; don't strip. */
9797 continue;
9798 else if (s == htab->elf.sgot
9799 || s == htab->elf.splt
9800 || s == htab->elf.iplt
9801 || s == htab->pltlocal
9802 || s == htab->glink
9803 || s == htab->global_entry
9804 || s == htab->elf.sdynbss
9805 || s == htab->elf.sdynrelro)
9806 {
9807 /* Strip this section if we don't need it; see the
9808 comment below. */
9809 }
9810 else if (s == htab->glink_eh_frame)
9811 {
9812 if (!bfd_is_abs_section (s->output_section))
9813 /* Not sized yet. */
9814 continue;
9815 }
9816 else if (CONST_STRNEQ (s->name, ".rela"))
9817 {
9818 if (s->size != 0)
9819 {
9820 if (s != htab->elf.srelplt)
9821 relocs = TRUE;
9822
9823 /* We use the reloc_count field as a counter if we need
9824 to copy relocs into the output file. */
9825 s->reloc_count = 0;
9826 }
9827 }
9828 else
9829 {
9830 /* It's not one of our sections, so don't allocate space. */
9831 continue;
9832 }
9833
9834 if (s->size == 0)
9835 {
9836 /* If we don't need this section, strip it from the
9837 output file. This is mostly to handle .rela.bss and
9838 .rela.plt. We must create both sections in
9839 create_dynamic_sections, because they must be created
9840 before the linker maps input sections to output
9841 sections. The linker does that before
9842 adjust_dynamic_symbol is called, and it is that
9843 function which decides whether anything needs to go
9844 into these sections. */
9845 s->flags |= SEC_EXCLUDE;
9846 continue;
9847 }
9848
9849 if (bfd_is_abs_section (s->output_section))
9850 _bfd_error_handler (_("warning: discarding dynamic section %s"),
9851 s->name);
9852
9853 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9854 continue;
9855
9856 /* Allocate memory for the section contents. We use bfd_zalloc
9857 here in case unused entries are not reclaimed before the
9858 section's contents are written out. This should not happen,
9859 but this way if it does we get a R_PPC64_NONE reloc in .rela
9860 sections instead of garbage.
9861 We also rely on the section contents being zero when writing
9862 the GOT and .dynrelro. */
9863 s->contents = bfd_zalloc (dynobj, s->size);
9864 if (s->contents == NULL)
9865 return FALSE;
9866 }
9867
9868 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9869 {
9870 if (!is_ppc64_elf (ibfd))
9871 continue;
9872
9873 s = ppc64_elf_tdata (ibfd)->got;
9874 if (s != NULL && s != htab->elf.sgot)
9875 {
9876 if (s->size == 0)
9877 s->flags |= SEC_EXCLUDE;
9878 else
9879 {
9880 s->contents = bfd_zalloc (ibfd, s->size);
9881 if (s->contents == NULL)
9882 return FALSE;
9883 }
9884 }
9885 s = ppc64_elf_tdata (ibfd)->relgot;
9886 if (s != NULL)
9887 {
9888 if (s->size == 0)
9889 s->flags |= SEC_EXCLUDE;
9890 else
9891 {
9892 s->contents = bfd_zalloc (ibfd, s->size);
9893 if (s->contents == NULL)
9894 return FALSE;
9895 relocs = TRUE;
9896 s->reloc_count = 0;
9897 }
9898 }
9899 }
9900
9901 if (htab->elf.dynamic_sections_created)
9902 {
9903 bfd_boolean tls_opt;
9904
9905 /* Add some entries to the .dynamic section. We fill in the
9906 values later, in ppc64_elf_finish_dynamic_sections, but we
9907 must add the entries now so that we get the correct size for
9908 the .dynamic section. The DT_DEBUG entry is filled in by the
9909 dynamic linker and used by the debugger. */
9910 #define add_dynamic_entry(TAG, VAL) \
9911 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9912
9913 if (bfd_link_executable (info))
9914 {
9915 if (!add_dynamic_entry (DT_DEBUG, 0))
9916 return FALSE;
9917 }
9918
9919 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9920 {
9921 if (!add_dynamic_entry (DT_PLTGOT, 0)
9922 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9923 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9924 || !add_dynamic_entry (DT_JMPREL, 0)
9925 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9926 return FALSE;
9927 }
9928
9929 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9930 {
9931 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9932 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9933 return FALSE;
9934 }
9935
9936 tls_opt = (htab->params->tls_get_addr_opt
9937 && htab->tls_get_addr_fd != NULL
9938 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
9939 if (tls_opt || !htab->opd_abi)
9940 {
9941 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
9942 return FALSE;
9943 }
9944
9945 if (relocs)
9946 {
9947 if (!add_dynamic_entry (DT_RELA, 0)
9948 || !add_dynamic_entry (DT_RELASZ, 0)
9949 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9950 return FALSE;
9951
9952 /* If any dynamic relocs apply to a read-only section,
9953 then we need a DT_TEXTREL entry. */
9954 if ((info->flags & DF_TEXTREL) == 0)
9955 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
9956
9957 if ((info->flags & DF_TEXTREL) != 0)
9958 {
9959 if (!add_dynamic_entry (DT_TEXTREL, 0))
9960 return FALSE;
9961 }
9962 }
9963 }
9964 #undef add_dynamic_entry
9965
9966 return TRUE;
9967 }
9968
9969 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
9970
9971 static bfd_boolean
9972 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
9973 {
9974 if (h->plt.plist != NULL
9975 && !h->def_regular
9976 && !h->pointer_equality_needed)
9977 return FALSE;
9978
9979 return _bfd_elf_hash_symbol (h);
9980 }
9981
9982 /* Determine the type of stub needed, if any, for a call. */
9983
9984 static inline enum ppc_stub_type
9985 ppc_type_of_stub (asection *input_sec,
9986 const Elf_Internal_Rela *rel,
9987 struct ppc_link_hash_entry **hash,
9988 struct plt_entry **plt_ent,
9989 bfd_vma destination,
9990 unsigned long local_off)
9991 {
9992 struct ppc_link_hash_entry *h = *hash;
9993 bfd_vma location;
9994 bfd_vma branch_offset;
9995 bfd_vma max_branch_offset;
9996 enum elf_ppc64_reloc_type r_type;
9997
9998 if (h != NULL)
9999 {
10000 struct plt_entry *ent;
10001 struct ppc_link_hash_entry *fdh = h;
10002 if (h->oh != NULL
10003 && h->oh->is_func_descriptor)
10004 {
10005 fdh = ppc_follow_link (h->oh);
10006 *hash = fdh;
10007 }
10008
10009 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10010 if (ent->addend == rel->r_addend
10011 && ent->plt.offset != (bfd_vma) -1)
10012 {
10013 *plt_ent = ent;
10014 return ppc_stub_plt_call;
10015 }
10016
10017 /* Here, we know we don't have a plt entry. If we don't have a
10018 either a defined function descriptor or a defined entry symbol
10019 in a regular object file, then it is pointless trying to make
10020 any other type of stub. */
10021 if (!is_static_defined (&fdh->elf)
10022 && !is_static_defined (&h->elf))
10023 return ppc_stub_none;
10024 }
10025 else if (elf_local_got_ents (input_sec->owner) != NULL)
10026 {
10027 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10028 struct plt_entry **local_plt = (struct plt_entry **)
10029 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10030 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10031
10032 if (local_plt[r_symndx] != NULL)
10033 {
10034 struct plt_entry *ent;
10035
10036 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10037 if (ent->addend == rel->r_addend
10038 && ent->plt.offset != (bfd_vma) -1)
10039 {
10040 *plt_ent = ent;
10041 return ppc_stub_plt_call;
10042 }
10043 }
10044 }
10045
10046 /* Determine where the call point is. */
10047 location = (input_sec->output_offset
10048 + input_sec->output_section->vma
10049 + rel->r_offset);
10050
10051 branch_offset = destination - location;
10052 r_type = ELF64_R_TYPE (rel->r_info);
10053
10054 /* Determine if a long branch stub is needed. */
10055 max_branch_offset = 1 << 25;
10056 if (r_type == R_PPC64_REL14
10057 || r_type == R_PPC64_REL14_BRTAKEN
10058 || r_type == R_PPC64_REL14_BRNTAKEN)
10059 max_branch_offset = 1 << 15;
10060
10061 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10062 /* We need a stub. Figure out whether a long_branch or plt_branch
10063 is needed later. */
10064 return ppc_stub_long_branch;
10065
10066 return ppc_stub_none;
10067 }
10068
10069 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10070 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10071 . mflr %r12
10072 . bcl 20,31,1f
10073 .1: mflr %r11
10074 . mtlr %r12
10075 . lis %r12,xxx-1b@highest
10076 . ori %r12,%r12,xxx-1b@higher
10077 . sldi %r12,%r12,32
10078 . oris %r12,%r12,xxx-1b@high
10079 . ori %r12,%r12,xxx-1b@l
10080 . add/ldx %r12,%r11,%r12 */
10081
10082 static bfd_byte *
10083 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10084 {
10085 bfd_put_32 (abfd, MFLR_R12, p);
10086 p += 4;
10087 bfd_put_32 (abfd, BCL_20_31, p);
10088 p += 4;
10089 bfd_put_32 (abfd, MFLR_R11, p);
10090 p += 4;
10091 bfd_put_32 (abfd, MTLR_R12, p);
10092 p += 4;
10093 if (off + 0x8000 < 0x10000)
10094 {
10095 if (load)
10096 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10097 else
10098 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10099 p += 4;
10100 }
10101 else if (off + 0x80008000ULL < 0x100000000ULL)
10102 {
10103 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10104 p += 4;
10105 if (load)
10106 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10107 else
10108 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10109 p += 4;
10110 }
10111 else
10112 {
10113 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10114 {
10115 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10116 p += 4;
10117 }
10118 else
10119 {
10120 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10121 p += 4;
10122 if (((off >> 32) & 0xffff) != 0)
10123 {
10124 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10125 p += 4;
10126 }
10127 }
10128 if (((off >> 32) & 0xffffffffULL) != 0)
10129 {
10130 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10131 p += 4;
10132 }
10133 if (PPC_HI (off) != 0)
10134 {
10135 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10136 p += 4;
10137 }
10138 if (PPC_LO (off) != 0)
10139 {
10140 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10141 p += 4;
10142 }
10143 if (load)
10144 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10145 else
10146 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10147 p += 4;
10148 }
10149 return p;
10150 }
10151
10152 static unsigned int
10153 size_offset (bfd_vma off)
10154 {
10155 unsigned int size;
10156 if (off + 0x8000 < 0x10000)
10157 size = 4;
10158 else if (off + 0x80008000ULL < 0x100000000ULL)
10159 size = 8;
10160 else
10161 {
10162 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10163 size = 4;
10164 else
10165 {
10166 size = 4;
10167 if (((off >> 32) & 0xffff) != 0)
10168 size += 4;
10169 }
10170 if (((off >> 32) & 0xffffffffULL) != 0)
10171 size += 4;
10172 if (PPC_HI (off) != 0)
10173 size += 4;
10174 if (PPC_LO (off) != 0)
10175 size += 4;
10176 size += 4;
10177 }
10178 return size + 16;
10179 }
10180
10181 static unsigned int
10182 num_relocs_for_offset (bfd_vma off)
10183 {
10184 unsigned int num_rel;
10185 if (off + 0x8000 < 0x10000)
10186 num_rel = 1;
10187 else if (off + 0x80008000ULL < 0x100000000ULL)
10188 num_rel = 2;
10189 else
10190 {
10191 num_rel = 1;
10192 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10193 && ((off >> 32) & 0xffff) != 0)
10194 num_rel += 1;
10195 if (PPC_HI (off) != 0)
10196 num_rel += 1;
10197 if (PPC_LO (off) != 0)
10198 num_rel += 1;
10199 }
10200 return num_rel;
10201 }
10202
10203 static Elf_Internal_Rela *
10204 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10205 bfd_vma roff, bfd_vma targ, bfd_vma off)
10206 {
10207 bfd_vma relative_targ = targ - (roff - 8);
10208 if (bfd_big_endian (info->output_bfd))
10209 roff += 2;
10210 r->r_offset = roff;
10211 r->r_addend = relative_targ + roff;
10212 if (off + 0x8000 < 0x10000)
10213 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10214 else if (off + 0x80008000ULL < 0x100000000ULL)
10215 {
10216 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10217 ++r;
10218 roff += 4;
10219 r->r_offset = roff;
10220 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10221 r->r_addend = relative_targ + roff;
10222 }
10223 else
10224 {
10225 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10226 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10227 else
10228 {
10229 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10230 if (((off >> 32) & 0xffff) != 0)
10231 {
10232 ++r;
10233 roff += 4;
10234 r->r_offset = roff;
10235 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10236 r->r_addend = relative_targ + roff;
10237 }
10238 }
10239 if (((off >> 32) & 0xffffffffULL) != 0)
10240 roff += 4;
10241 if (PPC_HI (off) != 0)
10242 {
10243 ++r;
10244 roff += 4;
10245 r->r_offset = roff;
10246 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10247 r->r_addend = relative_targ + roff;
10248 }
10249 if (PPC_LO (off) != 0)
10250 {
10251 ++r;
10252 roff += 4;
10253 r->r_offset = roff;
10254 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10255 r->r_addend = relative_targ + roff;
10256 }
10257 }
10258 return r;
10259 }
10260
10261 static bfd_byte *
10262 build_powerxx_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10263 bfd_boolean load)
10264 {
10265 uint64_t insn;
10266 if (off - odd + (1ULL << 33) < 1ULL << 34)
10267 {
10268 off -= odd;
10269 if (odd)
10270 {
10271 bfd_put_32 (abfd, NOP, p);
10272 p += 4;
10273 }
10274 if (load)
10275 insn = PLD_R12_PC;
10276 else
10277 insn = PADDI_R12_PC;
10278 insn |= D34 (off);
10279 bfd_put_32 (abfd, insn >> 32, p);
10280 p += 4;
10281 bfd_put_32 (abfd, insn, p);
10282 }
10283 /* The minimum value for paddi is -0x200000000. The minimum value
10284 for li is -0x8000, which when shifted by 34 and added gives a
10285 minimum value of -0x2000200000000. The maximum value is
10286 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10287 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10288 {
10289 off -= 8 - odd;
10290 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10291 p += 4;
10292 if (!odd)
10293 {
10294 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10295 p += 4;
10296 }
10297 insn = PADDI_R12_PC | D34 (off);
10298 bfd_put_32 (abfd, insn >> 32, p);
10299 p += 4;
10300 bfd_put_32 (abfd, insn, p);
10301 p += 4;
10302 if (odd)
10303 {
10304 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10305 p += 4;
10306 }
10307 if (load)
10308 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10309 else
10310 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10311 }
10312 else
10313 {
10314 off -= odd + 8;
10315 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10316 p += 4;
10317 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10318 p += 4;
10319 if (odd)
10320 {
10321 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10322 p += 4;
10323 }
10324 insn = PADDI_R12_PC | D34 (off);
10325 bfd_put_32 (abfd, insn >> 32, p);
10326 p += 4;
10327 bfd_put_32 (abfd, insn, p);
10328 p += 4;
10329 if (!odd)
10330 {
10331 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10332 p += 4;
10333 }
10334 if (load)
10335 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10336 else
10337 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10338 }
10339 p += 4;
10340 return p;
10341 }
10342
10343 static unsigned int
10344 size_powerxx_offset (bfd_vma off, int odd)
10345 {
10346 if (off - odd + (1ULL << 33) < 1ULL << 34)
10347 return odd + 8;
10348 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10349 return 20;
10350 else
10351 return 24;
10352 }
10353
10354 static unsigned int
10355 num_relocs_for_powerxx_offset (bfd_vma off, int odd)
10356 {
10357 if (off - odd + (1ULL << 33) < 1ULL << 34)
10358 return 1;
10359 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10360 return 2;
10361 else
10362 return 3;
10363 }
10364
10365 static Elf_Internal_Rela *
10366 emit_relocs_for_powerxx_offset (struct bfd_link_info *info,
10367 Elf_Internal_Rela *r, bfd_vma roff,
10368 bfd_vma targ, bfd_vma off, int odd)
10369 {
10370 if (off - odd + (1ULL << 33) < 1ULL << 34)
10371 roff += odd;
10372 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10373 {
10374 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10375 r->r_offset = roff + d_offset;
10376 r->r_addend = targ + 8 - odd - d_offset;
10377 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10378 ++r;
10379 roff += 8 - odd;
10380 }
10381 else
10382 {
10383 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10384 r->r_offset = roff + d_offset;
10385 r->r_addend = targ + 8 + odd - d_offset;
10386 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10387 ++r;
10388 roff += 4;
10389 r->r_offset = roff + d_offset;
10390 r->r_addend = targ + 4 + odd - d_offset;
10391 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10392 ++r;
10393 roff += 4 + odd;
10394 }
10395 r->r_offset = roff;
10396 r->r_addend = targ;
10397 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10398 return r;
10399 }
10400
10401 /* Emit .eh_frame opcode to advance pc by DELTA. */
10402
10403 static bfd_byte *
10404 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10405 {
10406 delta /= 4;
10407 if (delta < 64)
10408 *eh++ = DW_CFA_advance_loc + delta;
10409 else if (delta < 256)
10410 {
10411 *eh++ = DW_CFA_advance_loc1;
10412 *eh++ = delta;
10413 }
10414 else if (delta < 65536)
10415 {
10416 *eh++ = DW_CFA_advance_loc2;
10417 bfd_put_16 (abfd, delta, eh);
10418 eh += 2;
10419 }
10420 else
10421 {
10422 *eh++ = DW_CFA_advance_loc4;
10423 bfd_put_32 (abfd, delta, eh);
10424 eh += 4;
10425 }
10426 return eh;
10427 }
10428
10429 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10430
10431 static unsigned int
10432 eh_advance_size (unsigned int delta)
10433 {
10434 if (delta < 64 * 4)
10435 /* DW_CFA_advance_loc+[1..63]. */
10436 return 1;
10437 if (delta < 256 * 4)
10438 /* DW_CFA_advance_loc1, byte. */
10439 return 2;
10440 if (delta < 65536 * 4)
10441 /* DW_CFA_advance_loc2, 2 bytes. */
10442 return 3;
10443 /* DW_CFA_advance_loc4, 4 bytes. */
10444 return 5;
10445 }
10446
10447 /* With power7 weakly ordered memory model, it is possible for ld.so
10448 to update a plt entry in one thread and have another thread see a
10449 stale zero toc entry. To avoid this we need some sort of acquire
10450 barrier in the call stub. One solution is to make the load of the
10451 toc word seem to appear to depend on the load of the function entry
10452 word. Another solution is to test for r2 being zero, and branch to
10453 the appropriate glink entry if so.
10454
10455 . fake dep barrier compare
10456 . ld 12,xxx(2) ld 12,xxx(2)
10457 . mtctr 12 mtctr 12
10458 . xor 11,12,12 ld 2,xxx+8(2)
10459 . add 2,2,11 cmpldi 2,0
10460 . ld 2,xxx+8(2) bnectr+
10461 . bctr b <glink_entry>
10462
10463 The solution involving the compare turns out to be faster, so
10464 that's what we use unless the branch won't reach. */
10465
10466 #define ALWAYS_USE_FAKE_DEP 0
10467 #define ALWAYS_EMIT_R2SAVE 0
10468
10469 static inline unsigned int
10470 plt_stub_size (struct ppc_link_hash_table *htab,
10471 struct ppc_stub_hash_entry *stub_entry,
10472 bfd_vma off)
10473 {
10474 unsigned size;
10475
10476 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10477 {
10478 if (htab->powerxx_stubs)
10479 {
10480 bfd_vma start = (stub_entry->stub_offset
10481 + stub_entry->group->stub_sec->output_offset
10482 + stub_entry->group->stub_sec->output_section->vma);
10483 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10484 start += 4;
10485 size = 8 + size_powerxx_offset (off, start & 4);
10486 }
10487 else
10488 size = 8 + size_offset (off - 8);
10489 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10490 size += 4;
10491 return size;
10492 }
10493
10494 size = 12;
10495 if (ALWAYS_EMIT_R2SAVE
10496 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10497 size += 4;
10498 if (PPC_HA (off) != 0)
10499 size += 4;
10500 if (htab->opd_abi)
10501 {
10502 size += 4;
10503 if (htab->params->plt_static_chain)
10504 size += 4;
10505 if (htab->params->plt_thread_safe
10506 && htab->elf.dynamic_sections_created
10507 && stub_entry->h != NULL
10508 && stub_entry->h->elf.dynindx != -1)
10509 size += 8;
10510 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10511 size += 4;
10512 }
10513 if (stub_entry->h != NULL
10514 && (stub_entry->h == htab->tls_get_addr_fd
10515 || stub_entry->h == htab->tls_get_addr)
10516 && htab->params->tls_get_addr_opt)
10517 {
10518 size += 7 * 4;
10519 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10520 size += 6 * 4;
10521 }
10522 return size;
10523 }
10524
10525 /* Depending on the sign of plt_stub_align:
10526 If positive, return the padding to align to a 2**plt_stub_align
10527 boundary.
10528 If negative, if this stub would cross fewer 2**plt_stub_align
10529 boundaries if we align, then return the padding needed to do so. */
10530
10531 static inline unsigned int
10532 plt_stub_pad (struct ppc_link_hash_table *htab,
10533 struct ppc_stub_hash_entry *stub_entry,
10534 bfd_vma plt_off)
10535 {
10536 int stub_align;
10537 unsigned stub_size;
10538 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10539
10540 if (htab->params->plt_stub_align >= 0)
10541 {
10542 stub_align = 1 << htab->params->plt_stub_align;
10543 if ((stub_off & (stub_align - 1)) != 0)
10544 return stub_align - (stub_off & (stub_align - 1));
10545 return 0;
10546 }
10547
10548 stub_align = 1 << -htab->params->plt_stub_align;
10549 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10550 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10551 > ((stub_size - 1) & -stub_align))
10552 return stub_align - (stub_off & (stub_align - 1));
10553 return 0;
10554 }
10555
10556 /* Build a .plt call stub. */
10557
10558 static inline bfd_byte *
10559 build_plt_stub (struct ppc_link_hash_table *htab,
10560 struct ppc_stub_hash_entry *stub_entry,
10561 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10562 {
10563 bfd *obfd = htab->params->stub_bfd;
10564 bfd_boolean plt_load_toc = htab->opd_abi;
10565 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10566 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10567 && htab->elf.dynamic_sections_created
10568 && stub_entry->h != NULL
10569 && stub_entry->h->elf.dynindx != -1);
10570 bfd_boolean use_fake_dep = plt_thread_safe;
10571 bfd_vma cmp_branch_off = 0;
10572
10573 if (!ALWAYS_USE_FAKE_DEP
10574 && plt_load_toc
10575 && plt_thread_safe
10576 && !((stub_entry->h == htab->tls_get_addr_fd
10577 || stub_entry->h == htab->tls_get_addr)
10578 && htab->params->tls_get_addr_opt))
10579 {
10580 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10581 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10582 / PLT_ENTRY_SIZE (htab));
10583 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10584 bfd_vma to, from;
10585
10586 if (pltindex > 32768)
10587 glinkoff += (pltindex - 32768) * 4;
10588 to = (glinkoff
10589 + htab->glink->output_offset
10590 + htab->glink->output_section->vma);
10591 from = (p - stub_entry->group->stub_sec->contents
10592 + 4 * (ALWAYS_EMIT_R2SAVE
10593 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10594 + 4 * (PPC_HA (offset) != 0)
10595 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10596 != PPC_HA (offset))
10597 + 4 * (plt_static_chain != 0)
10598 + 20
10599 + stub_entry->group->stub_sec->output_offset
10600 + stub_entry->group->stub_sec->output_section->vma);
10601 cmp_branch_off = to - from;
10602 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10603 }
10604
10605 if (PPC_HA (offset) != 0)
10606 {
10607 if (r != NULL)
10608 {
10609 if (ALWAYS_EMIT_R2SAVE
10610 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10611 r[0].r_offset += 4;
10612 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10613 r[1].r_offset = r[0].r_offset + 4;
10614 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10615 r[1].r_addend = r[0].r_addend;
10616 if (plt_load_toc)
10617 {
10618 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10619 {
10620 r[2].r_offset = r[1].r_offset + 4;
10621 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10622 r[2].r_addend = r[0].r_addend;
10623 }
10624 else
10625 {
10626 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10627 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10628 r[2].r_addend = r[0].r_addend + 8;
10629 if (plt_static_chain)
10630 {
10631 r[3].r_offset = r[2].r_offset + 4;
10632 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10633 r[3].r_addend = r[0].r_addend + 16;
10634 }
10635 }
10636 }
10637 }
10638 if (ALWAYS_EMIT_R2SAVE
10639 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10640 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10641 if (plt_load_toc)
10642 {
10643 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10644 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10645 }
10646 else
10647 {
10648 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10649 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10650 }
10651 if (plt_load_toc
10652 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10653 {
10654 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10655 offset = 0;
10656 }
10657 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10658 if (plt_load_toc)
10659 {
10660 if (use_fake_dep)
10661 {
10662 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10663 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10664 }
10665 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10666 if (plt_static_chain)
10667 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10668 }
10669 }
10670 else
10671 {
10672 if (r != NULL)
10673 {
10674 if (ALWAYS_EMIT_R2SAVE
10675 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10676 r[0].r_offset += 4;
10677 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10678 if (plt_load_toc)
10679 {
10680 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10681 {
10682 r[1].r_offset = r[0].r_offset + 4;
10683 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10684 r[1].r_addend = r[0].r_addend;
10685 }
10686 else
10687 {
10688 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10689 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10690 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10691 if (plt_static_chain)
10692 {
10693 r[2].r_offset = r[1].r_offset + 4;
10694 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10695 r[2].r_addend = r[0].r_addend + 8;
10696 }
10697 }
10698 }
10699 }
10700 if (ALWAYS_EMIT_R2SAVE
10701 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10702 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10703 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10704 if (plt_load_toc
10705 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10706 {
10707 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10708 offset = 0;
10709 }
10710 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10711 if (plt_load_toc)
10712 {
10713 if (use_fake_dep)
10714 {
10715 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10716 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10717 }
10718 if (plt_static_chain)
10719 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10720 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10721 }
10722 }
10723 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10724 {
10725 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10726 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10727 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10728 }
10729 else
10730 bfd_put_32 (obfd, BCTR, p), p += 4;
10731 return p;
10732 }
10733
10734 /* Build a special .plt call stub for __tls_get_addr. */
10735
10736 #define LD_R11_0R3 0xe9630000
10737 #define LD_R12_0R3 0xe9830000
10738 #define MR_R0_R3 0x7c601b78
10739 #define CMPDI_R11_0 0x2c2b0000
10740 #define ADD_R3_R12_R13 0x7c6c6a14
10741 #define BEQLR 0x4d820020
10742 #define MR_R3_R0 0x7c030378
10743 #define STD_R11_0R1 0xf9610000
10744 #define BCTRL 0x4e800421
10745 #define LD_R11_0R1 0xe9610000
10746 #define MTLR_R11 0x7d6803a6
10747
10748 static inline bfd_byte *
10749 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10750 struct ppc_stub_hash_entry *stub_entry,
10751 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10752 {
10753 bfd *obfd = htab->params->stub_bfd;
10754 bfd_byte *loc = p;
10755
10756 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10757 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10758 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10759 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10760 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10761 bfd_put_32 (obfd, BEQLR, p), p += 4;
10762 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10763 if (r != NULL)
10764 r[0].r_offset += 7 * 4;
10765 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
10766 return build_plt_stub (htab, stub_entry, p, offset, r);
10767
10768 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10769 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10770
10771 if (r != NULL)
10772 r[0].r_offset += 2 * 4;
10773 p = build_plt_stub (htab, stub_entry, p, offset, r);
10774 bfd_put_32 (obfd, BCTRL, p - 4);
10775
10776 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10777 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10778 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10779 bfd_put_32 (obfd, BLR, p), p += 4;
10780
10781 if (htab->glink_eh_frame != NULL
10782 && htab->glink_eh_frame->size != 0)
10783 {
10784 bfd_byte *base, *eh;
10785 unsigned int lr_used, delta;
10786
10787 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
10788 eh = base + stub_entry->group->eh_size;
10789 lr_used = stub_entry->stub_offset + (p - 20 - loc);
10790 delta = lr_used - stub_entry->group->lr_restore;
10791 stub_entry->group->lr_restore = lr_used + 16;
10792 eh = eh_advance (htab->elf.dynobj, eh, delta);
10793 *eh++ = DW_CFA_offset_extended_sf;
10794 *eh++ = 65;
10795 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
10796 *eh++ = DW_CFA_advance_loc + 4;
10797 *eh++ = DW_CFA_restore_extended;
10798 *eh++ = 65;
10799 stub_entry->group->eh_size = eh - base;
10800 }
10801 return p;
10802 }
10803
10804 static Elf_Internal_Rela *
10805 get_relocs (asection *sec, int count)
10806 {
10807 Elf_Internal_Rela *relocs;
10808 struct bfd_elf_section_data *elfsec_data;
10809
10810 elfsec_data = elf_section_data (sec);
10811 relocs = elfsec_data->relocs;
10812 if (relocs == NULL)
10813 {
10814 bfd_size_type relsize;
10815 relsize = sec->reloc_count * sizeof (*relocs);
10816 relocs = bfd_alloc (sec->owner, relsize);
10817 if (relocs == NULL)
10818 return NULL;
10819 elfsec_data->relocs = relocs;
10820 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10821 sizeof (Elf_Internal_Shdr));
10822 if (elfsec_data->rela.hdr == NULL)
10823 return NULL;
10824 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10825 * sizeof (Elf64_External_Rela));
10826 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10827 sec->reloc_count = 0;
10828 }
10829 relocs += sec->reloc_count;
10830 sec->reloc_count += count;
10831 return relocs;
10832 }
10833
10834 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
10835 forms, to the equivalent relocs against the global symbol given by
10836 STUB_ENTRY->H. */
10837
10838 static bfd_boolean
10839 use_global_in_relocs (struct ppc_link_hash_table *htab,
10840 struct ppc_stub_hash_entry *stub_entry,
10841 Elf_Internal_Rela *r, unsigned int num_rel)
10842 {
10843 struct elf_link_hash_entry **hashes;
10844 unsigned long symndx;
10845 struct ppc_link_hash_entry *h;
10846 bfd_vma symval;
10847
10848 /* Relocs are always against symbols in their own object file. Fake
10849 up global sym hashes for the stub bfd (which has no symbols). */
10850 hashes = elf_sym_hashes (htab->params->stub_bfd);
10851 if (hashes == NULL)
10852 {
10853 bfd_size_type hsize;
10854
10855 /* When called the first time, stub_globals will contain the
10856 total number of symbols seen during stub sizing. After
10857 allocating, stub_globals is used as an index to fill the
10858 hashes array. */
10859 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10860 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10861 if (hashes == NULL)
10862 return FALSE;
10863 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10864 htab->stub_globals = 1;
10865 }
10866 symndx = htab->stub_globals++;
10867 h = stub_entry->h;
10868 hashes[symndx] = &h->elf;
10869 if (h->oh != NULL && h->oh->is_func)
10870 h = ppc_follow_link (h->oh);
10871 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
10872 || h->elf.root.type == bfd_link_hash_defweak);
10873 symval = (h->elf.root.u.def.value
10874 + h->elf.root.u.def.section->output_offset
10875 + h->elf.root.u.def.section->output_section->vma);
10876 while (num_rel-- != 0)
10877 {
10878 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
10879 if (h->elf.root.u.def.section != stub_entry->target_section)
10880 {
10881 /* H is an opd symbol. The addend must be zero, and the
10882 branch reloc is the only one we can convert. */
10883 r->r_addend = 0;
10884 break;
10885 }
10886 else
10887 r->r_addend -= symval;
10888 --r;
10889 }
10890 return TRUE;
10891 }
10892
10893 static bfd_vma
10894 get_r2off (struct bfd_link_info *info,
10895 struct ppc_stub_hash_entry *stub_entry)
10896 {
10897 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10898 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
10899
10900 if (r2off == 0)
10901 {
10902 /* Support linking -R objects. Get the toc pointer from the
10903 opd entry. */
10904 char buf[8];
10905 if (!htab->opd_abi)
10906 return r2off;
10907 asection *opd = stub_entry->h->elf.root.u.def.section;
10908 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10909
10910 if (strcmp (opd->name, ".opd") != 0
10911 || opd->reloc_count != 0)
10912 {
10913 info->callbacks->einfo
10914 (_("%P: cannot find opd entry toc for `%pT'\n"),
10915 stub_entry->h->elf.root.root.string);
10916 bfd_set_error (bfd_error_bad_value);
10917 return (bfd_vma) -1;
10918 }
10919 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10920 return (bfd_vma) -1;
10921 r2off = bfd_get_64 (opd->owner, buf);
10922 r2off -= elf_gp (info->output_bfd);
10923 }
10924 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
10925 return r2off;
10926 }
10927
10928 static bfd_boolean
10929 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10930 {
10931 struct ppc_stub_hash_entry *stub_entry;
10932 struct ppc_branch_hash_entry *br_entry;
10933 struct bfd_link_info *info;
10934 struct ppc_link_hash_table *htab;
10935 bfd_byte *loc;
10936 bfd_byte *p, *relp;
10937 bfd_vma targ, off;
10938 Elf_Internal_Rela *r;
10939 asection *plt;
10940 int num_rel;
10941 int odd;
10942
10943 /* Massage our args to the form they really have. */
10944 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10945 info = in_arg;
10946
10947 htab = ppc_hash_table (info);
10948 if (htab == NULL)
10949 return FALSE;
10950
10951 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
10952 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
10953
10954 htab->stub_count[stub_entry->stub_type - 1] += 1;
10955 switch (stub_entry->stub_type)
10956 {
10957 case ppc_stub_long_branch:
10958 case ppc_stub_long_branch_r2off:
10959 /* Branches are relative. This is where we are going to. */
10960 targ = (stub_entry->target_value
10961 + stub_entry->target_section->output_offset
10962 + stub_entry->target_section->output_section->vma);
10963 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10964
10965 /* And this is where we are coming from. */
10966 off = (stub_entry->stub_offset
10967 + stub_entry->group->stub_sec->output_offset
10968 + stub_entry->group->stub_sec->output_section->vma);
10969 off = targ - off;
10970
10971 p = loc;
10972 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10973 {
10974 bfd_vma r2off = get_r2off (info, stub_entry);
10975
10976 if (r2off == (bfd_vma) -1)
10977 {
10978 htab->stub_error = TRUE;
10979 return FALSE;
10980 }
10981 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
10982 p += 4;
10983 if (PPC_HA (r2off) != 0)
10984 {
10985 bfd_put_32 (htab->params->stub_bfd,
10986 ADDIS_R2_R2 | PPC_HA (r2off), p);
10987 p += 4;
10988 }
10989 if (PPC_LO (r2off) != 0)
10990 {
10991 bfd_put_32 (htab->params->stub_bfd,
10992 ADDI_R2_R2 | PPC_LO (r2off), p);
10993 p += 4;
10994 }
10995 off -= p - loc;
10996 }
10997 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
10998 p += 4;
10999
11000 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11001 {
11002 _bfd_error_handler
11003 (_("long branch stub `%s' offset overflow"),
11004 stub_entry->root.string);
11005 htab->stub_error = TRUE;
11006 return FALSE;
11007 }
11008
11009 if (info->emitrelocations)
11010 {
11011 r = get_relocs (stub_entry->group->stub_sec, 1);
11012 if (r == NULL)
11013 return FALSE;
11014 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11015 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11016 r->r_addend = targ;
11017 if (stub_entry->h != NULL
11018 && !use_global_in_relocs (htab, stub_entry, r, 1))
11019 return FALSE;
11020 }
11021 break;
11022
11023 case ppc_stub_plt_branch:
11024 case ppc_stub_plt_branch_r2off:
11025 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11026 stub_entry->root.string + 9,
11027 FALSE, FALSE);
11028 if (br_entry == NULL)
11029 {
11030 _bfd_error_handler (_("can't find branch stub `%s'"),
11031 stub_entry->root.string);
11032 htab->stub_error = TRUE;
11033 return FALSE;
11034 }
11035
11036 targ = (stub_entry->target_value
11037 + stub_entry->target_section->output_offset
11038 + stub_entry->target_section->output_section->vma);
11039 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11040 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11041
11042 bfd_put_64 (htab->brlt->owner, targ,
11043 htab->brlt->contents + br_entry->offset);
11044
11045 if (br_entry->iter == htab->stub_iteration)
11046 {
11047 br_entry->iter = 0;
11048
11049 if (htab->relbrlt != NULL)
11050 {
11051 /* Create a reloc for the branch lookup table entry. */
11052 Elf_Internal_Rela rela;
11053 bfd_byte *rl;
11054
11055 rela.r_offset = (br_entry->offset
11056 + htab->brlt->output_offset
11057 + htab->brlt->output_section->vma);
11058 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11059 rela.r_addend = targ;
11060
11061 rl = htab->relbrlt->contents;
11062 rl += (htab->relbrlt->reloc_count++
11063 * sizeof (Elf64_External_Rela));
11064 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11065 }
11066 else if (info->emitrelocations)
11067 {
11068 r = get_relocs (htab->brlt, 1);
11069 if (r == NULL)
11070 return FALSE;
11071 /* brlt, being SEC_LINKER_CREATED does not go through the
11072 normal reloc processing. Symbols and offsets are not
11073 translated from input file to output file form, so
11074 set up the offset per the output file. */
11075 r->r_offset = (br_entry->offset
11076 + htab->brlt->output_offset
11077 + htab->brlt->output_section->vma);
11078 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11079 r->r_addend = targ;
11080 }
11081 }
11082
11083 targ = (br_entry->offset
11084 + htab->brlt->output_offset
11085 + htab->brlt->output_section->vma);
11086
11087 off = (elf_gp (info->output_bfd)
11088 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11089 off = targ - off;
11090
11091 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11092 {
11093 info->callbacks->einfo
11094 (_("%P: linkage table error against `%pT'\n"),
11095 stub_entry->root.string);
11096 bfd_set_error (bfd_error_bad_value);
11097 htab->stub_error = TRUE;
11098 return FALSE;
11099 }
11100
11101 if (info->emitrelocations)
11102 {
11103 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11104 if (r == NULL)
11105 return FALSE;
11106 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11107 if (bfd_big_endian (info->output_bfd))
11108 r[0].r_offset += 2;
11109 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11110 r[0].r_offset += 4;
11111 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11112 r[0].r_addend = targ;
11113 if (PPC_HA (off) != 0)
11114 {
11115 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11116 r[1].r_offset = r[0].r_offset + 4;
11117 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11118 r[1].r_addend = r[0].r_addend;
11119 }
11120 }
11121
11122 p = loc;
11123 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11124 {
11125 if (PPC_HA (off) != 0)
11126 {
11127 bfd_put_32 (htab->params->stub_bfd,
11128 ADDIS_R12_R2 | PPC_HA (off), p);
11129 p += 4;
11130 bfd_put_32 (htab->params->stub_bfd,
11131 LD_R12_0R12 | PPC_LO (off), p);
11132 }
11133 else
11134 bfd_put_32 (htab->params->stub_bfd,
11135 LD_R12_0R2 | PPC_LO (off), p);
11136 }
11137 else
11138 {
11139 bfd_vma r2off = get_r2off (info, stub_entry);
11140
11141 if (r2off == (bfd_vma) -1)
11142 {
11143 htab->stub_error = TRUE;
11144 return FALSE;
11145 }
11146
11147 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11148 p += 4;
11149 if (PPC_HA (off) != 0)
11150 {
11151 bfd_put_32 (htab->params->stub_bfd,
11152 ADDIS_R12_R2 | PPC_HA (off), p);
11153 p += 4;
11154 bfd_put_32 (htab->params->stub_bfd,
11155 LD_R12_0R12 | PPC_LO (off), p);
11156 }
11157 else
11158 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11159
11160 if (PPC_HA (r2off) != 0)
11161 {
11162 p += 4;
11163 bfd_put_32 (htab->params->stub_bfd,
11164 ADDIS_R2_R2 | PPC_HA (r2off), p);
11165 }
11166 if (PPC_LO (r2off) != 0)
11167 {
11168 p += 4;
11169 bfd_put_32 (htab->params->stub_bfd,
11170 ADDI_R2_R2 | PPC_LO (r2off), p);
11171 }
11172 }
11173 p += 4;
11174 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11175 p += 4;
11176 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11177 p += 4;
11178 break;
11179
11180 case ppc_stub_long_branch_notoc:
11181 case ppc_stub_long_branch_both:
11182 case ppc_stub_plt_branch_notoc:
11183 case ppc_stub_plt_branch_both:
11184 case ppc_stub_plt_call_notoc:
11185 case ppc_stub_plt_call_both:
11186 p = loc;
11187 off = (stub_entry->stub_offset
11188 + stub_entry->group->stub_sec->output_offset
11189 + stub_entry->group->stub_sec->output_section->vma);
11190 if (stub_entry->stub_type == ppc_stub_long_branch_both
11191 || stub_entry->stub_type == ppc_stub_plt_branch_both
11192 || stub_entry->stub_type == ppc_stub_plt_call_both)
11193 {
11194 off += 4;
11195 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11196 p += 4;
11197 }
11198 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11199 {
11200 targ = stub_entry->plt_ent->plt.offset & ~1;
11201 if (targ >= (bfd_vma) -2)
11202 abort ();
11203
11204 plt = htab->elf.splt;
11205 if (!htab->elf.dynamic_sections_created
11206 || stub_entry->h == NULL
11207 || stub_entry->h->elf.dynindx == -1)
11208 {
11209 if (stub_entry->symtype == STT_GNU_IFUNC)
11210 plt = htab->elf.iplt;
11211 else
11212 plt = htab->pltlocal;
11213 }
11214 targ += plt->output_offset + plt->output_section->vma;
11215 }
11216 else
11217 targ = (stub_entry->target_value
11218 + stub_entry->target_section->output_offset
11219 + stub_entry->target_section->output_section->vma);
11220 odd = off & 4;
11221 off = targ - off;
11222
11223 relp = p;
11224 num_rel = 0;
11225 if (htab->powerxx_stubs)
11226 {
11227 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11228 p = build_powerxx_offset (htab->params->stub_bfd, p, off, odd, load);
11229 }
11230 else
11231 {
11232 /* The notoc stubs calculate their target (either a PLT entry or
11233 the global entry point of a function) relative to the PC
11234 returned by the "bcl" two instructions past the start of the
11235 sequence emitted by build_offset. The offset is therefore 8
11236 less than calculated from the start of the sequence. */
11237 off -= 8;
11238 p = build_offset (htab->params->stub_bfd, p, off,
11239 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11240 }
11241
11242 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11243 {
11244 bfd_vma from;
11245 num_rel = 1;
11246 from = (stub_entry->stub_offset
11247 + stub_entry->group->stub_sec->output_offset
11248 + stub_entry->group->stub_sec->output_section->vma
11249 + (p - loc));
11250 bfd_put_32 (htab->params->stub_bfd,
11251 B_DOT | ((targ - from) & 0x3fffffc), p);
11252 }
11253 else
11254 {
11255 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11256 p += 4;
11257 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11258 }
11259 p += 4;
11260
11261 if (info->emitrelocations)
11262 {
11263 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11264 if (htab->powerxx_stubs)
11265 num_rel += num_relocs_for_powerxx_offset (off, odd);
11266 else
11267 {
11268 num_rel += num_relocs_for_offset (off);
11269 roff += 16;
11270 }
11271 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11272 if (r == NULL)
11273 return FALSE;
11274 if (htab->powerxx_stubs)
11275 r = emit_relocs_for_powerxx_offset (info, r, roff, targ, off, odd);
11276 else
11277 r = emit_relocs_for_offset (info, r, roff, targ, off);
11278 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11279 || stub_entry->stub_type == ppc_stub_long_branch_both)
11280 {
11281 ++r;
11282 roff = p - 4 - stub_entry->group->stub_sec->contents;
11283 r->r_offset = roff;
11284 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11285 r->r_addend = targ;
11286 if (stub_entry->h != NULL
11287 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11288 return FALSE;
11289 }
11290 }
11291
11292 if (!htab->powerxx_stubs
11293 && htab->glink_eh_frame != NULL
11294 && htab->glink_eh_frame->size != 0)
11295 {
11296 bfd_byte *base, *eh;
11297 unsigned int lr_used, delta;
11298
11299 base = (htab->glink_eh_frame->contents
11300 + stub_entry->group->eh_base + 17);
11301 eh = base + stub_entry->group->eh_size;
11302 lr_used = stub_entry->stub_offset + 8;
11303 if (stub_entry->stub_type == ppc_stub_long_branch_both
11304 || stub_entry->stub_type == ppc_stub_plt_branch_both
11305 || stub_entry->stub_type == ppc_stub_plt_call_both)
11306 lr_used += 4;
11307 delta = lr_used - stub_entry->group->lr_restore;
11308 stub_entry->group->lr_restore = lr_used + 8;
11309 eh = eh_advance (htab->elf.dynobj, eh, delta);
11310 *eh++ = DW_CFA_register;
11311 *eh++ = 65;
11312 *eh++ = 12;
11313 *eh++ = DW_CFA_advance_loc + 2;
11314 *eh++ = DW_CFA_restore_extended;
11315 *eh++ = 65;
11316 stub_entry->group->eh_size = eh - base;
11317 }
11318 break;
11319
11320 case ppc_stub_plt_call:
11321 case ppc_stub_plt_call_r2save:
11322 if (stub_entry->h != NULL
11323 && stub_entry->h->is_func_descriptor
11324 && stub_entry->h->oh != NULL)
11325 {
11326 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11327
11328 /* If the old-ABI "dot-symbol" is undefined make it weak so
11329 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11330 if (fh->elf.root.type == bfd_link_hash_undefined
11331 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11332 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11333 fh->elf.root.type = bfd_link_hash_undefweak;
11334 }
11335
11336 /* Now build the stub. */
11337 targ = stub_entry->plt_ent->plt.offset & ~1;
11338 if (targ >= (bfd_vma) -2)
11339 abort ();
11340
11341 plt = htab->elf.splt;
11342 if (!htab->elf.dynamic_sections_created
11343 || stub_entry->h == NULL
11344 || stub_entry->h->elf.dynindx == -1)
11345 {
11346 if (stub_entry->symtype == STT_GNU_IFUNC)
11347 plt = htab->elf.iplt;
11348 else
11349 plt = htab->pltlocal;
11350 }
11351 targ += plt->output_offset + plt->output_section->vma;
11352
11353 off = (elf_gp (info->output_bfd)
11354 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11355 off = targ - off;
11356
11357 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11358 {
11359 info->callbacks->einfo
11360 /* xgettext:c-format */
11361 (_("%P: linkage table error against `%pT'\n"),
11362 stub_entry->h != NULL
11363 ? stub_entry->h->elf.root.root.string
11364 : "<local sym>");
11365 bfd_set_error (bfd_error_bad_value);
11366 htab->stub_error = TRUE;
11367 return FALSE;
11368 }
11369
11370 r = NULL;
11371 if (info->emitrelocations)
11372 {
11373 r = get_relocs (stub_entry->group->stub_sec,
11374 ((PPC_HA (off) != 0)
11375 + (htab->opd_abi
11376 ? 2 + (htab->params->plt_static_chain
11377 && PPC_HA (off + 16) == PPC_HA (off))
11378 : 1)));
11379 if (r == NULL)
11380 return FALSE;
11381 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11382 if (bfd_big_endian (info->output_bfd))
11383 r[0].r_offset += 2;
11384 r[0].r_addend = targ;
11385 }
11386 if (stub_entry->h != NULL
11387 && (stub_entry->h == htab->tls_get_addr_fd
11388 || stub_entry->h == htab->tls_get_addr)
11389 && htab->params->tls_get_addr_opt)
11390 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11391 else
11392 p = build_plt_stub (htab, stub_entry, loc, off, r);
11393 break;
11394
11395 case ppc_stub_save_res:
11396 return TRUE;
11397
11398 default:
11399 BFD_FAIL ();
11400 return FALSE;
11401 }
11402
11403 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11404
11405 if (htab->params->emit_stub_syms)
11406 {
11407 struct elf_link_hash_entry *h;
11408 size_t len1, len2;
11409 char *name;
11410 const char *const stub_str[] = { "long_branch",
11411 "long_branch",
11412 "long_branch",
11413 "long_branch",
11414 "plt_branch",
11415 "plt_branch",
11416 "plt_branch",
11417 "plt_branch",
11418 "plt_call",
11419 "plt_call",
11420 "plt_call",
11421 "plt_call" };
11422
11423 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11424 len2 = strlen (stub_entry->root.string);
11425 name = bfd_malloc (len1 + len2 + 2);
11426 if (name == NULL)
11427 return FALSE;
11428 memcpy (name, stub_entry->root.string, 9);
11429 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11430 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11431 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11432 if (h == NULL)
11433 return FALSE;
11434 if (h->root.type == bfd_link_hash_new)
11435 {
11436 h->root.type = bfd_link_hash_defined;
11437 h->root.u.def.section = stub_entry->group->stub_sec;
11438 h->root.u.def.value = stub_entry->stub_offset;
11439 h->ref_regular = 1;
11440 h->def_regular = 1;
11441 h->ref_regular_nonweak = 1;
11442 h->forced_local = 1;
11443 h->non_elf = 0;
11444 h->root.linker_def = 1;
11445 }
11446 }
11447
11448 return TRUE;
11449 }
11450
11451 /* As above, but don't actually build the stub. Just bump offset so
11452 we know stub section sizes, and select plt_branch stubs where
11453 long_branch stubs won't do. */
11454
11455 static bfd_boolean
11456 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11457 {
11458 struct ppc_stub_hash_entry *stub_entry;
11459 struct bfd_link_info *info;
11460 struct ppc_link_hash_table *htab;
11461 asection *plt;
11462 bfd_vma targ, off, r2off;
11463 unsigned int size, extra, lr_used, delta, odd;
11464
11465 /* Massage our args to the form they really have. */
11466 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11467 info = in_arg;
11468
11469 htab = ppc_hash_table (info);
11470 if (htab == NULL)
11471 return FALSE;
11472
11473 /* Make a note of the offset within the stubs for this entry. */
11474 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11475
11476 if (stub_entry->h != NULL
11477 && stub_entry->h->save_res
11478 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11479 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11480 {
11481 /* Don't make stubs to out-of-line register save/restore
11482 functions. Instead, emit copies of the functions. */
11483 stub_entry->group->needs_save_res = 1;
11484 stub_entry->stub_type = ppc_stub_save_res;
11485 return TRUE;
11486 }
11487
11488 switch (stub_entry->stub_type)
11489 {
11490 case ppc_stub_plt_branch:
11491 case ppc_stub_plt_branch_r2off:
11492 /* Reset the stub type from the plt branch variant in case we now
11493 can reach with a shorter stub. */
11494 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11495 /* Fall through. */
11496 case ppc_stub_long_branch:
11497 case ppc_stub_long_branch_r2off:
11498 targ = (stub_entry->target_value
11499 + stub_entry->target_section->output_offset
11500 + stub_entry->target_section->output_section->vma);
11501 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11502 off = (stub_entry->stub_offset
11503 + stub_entry->group->stub_sec->output_offset
11504 + stub_entry->group->stub_sec->output_section->vma);
11505
11506 size = 4;
11507 r2off = 0;
11508 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11509 {
11510 r2off = get_r2off (info, stub_entry);
11511 if (r2off == (bfd_vma) -1)
11512 {
11513 htab->stub_error = TRUE;
11514 return FALSE;
11515 }
11516 size = 8;
11517 if (PPC_HA (r2off) != 0)
11518 size += 4;
11519 if (PPC_LO (r2off) != 0)
11520 size += 4;
11521 off += size - 4;
11522 }
11523 off = targ - off;
11524
11525 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11526 Do the same for -R objects without function descriptors. */
11527 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11528 && r2off == 0
11529 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11530 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11531 {
11532 struct ppc_branch_hash_entry *br_entry;
11533
11534 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11535 stub_entry->root.string + 9,
11536 TRUE, FALSE);
11537 if (br_entry == NULL)
11538 {
11539 _bfd_error_handler (_("can't build branch stub `%s'"),
11540 stub_entry->root.string);
11541 htab->stub_error = TRUE;
11542 return FALSE;
11543 }
11544
11545 if (br_entry->iter != htab->stub_iteration)
11546 {
11547 br_entry->iter = htab->stub_iteration;
11548 br_entry->offset = htab->brlt->size;
11549 htab->brlt->size += 8;
11550
11551 if (htab->relbrlt != NULL)
11552 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11553 else if (info->emitrelocations)
11554 {
11555 htab->brlt->reloc_count += 1;
11556 htab->brlt->flags |= SEC_RELOC;
11557 }
11558 }
11559
11560 targ = (br_entry->offset
11561 + htab->brlt->output_offset
11562 + htab->brlt->output_section->vma);
11563 off = (elf_gp (info->output_bfd)
11564 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11565 off = targ - off;
11566
11567 if (info->emitrelocations)
11568 {
11569 stub_entry->group->stub_sec->reloc_count
11570 += 1 + (PPC_HA (off) != 0);
11571 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11572 }
11573
11574 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11575 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11576 {
11577 size = 12;
11578 if (PPC_HA (off) != 0)
11579 size = 16;
11580 }
11581 else
11582 {
11583 size = 16;
11584 if (PPC_HA (off) != 0)
11585 size += 4;
11586
11587 if (PPC_HA (r2off) != 0)
11588 size += 4;
11589 if (PPC_LO (r2off) != 0)
11590 size += 4;
11591 }
11592 }
11593 else if (info->emitrelocations)
11594 {
11595 stub_entry->group->stub_sec->reloc_count += 1;
11596 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11597 }
11598 break;
11599
11600 case ppc_stub_plt_branch_notoc:
11601 case ppc_stub_plt_branch_both:
11602 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11603 /* Fall through. */
11604 case ppc_stub_long_branch_notoc:
11605 case ppc_stub_long_branch_both:
11606 off = (stub_entry->stub_offset
11607 + stub_entry->group->stub_sec->output_offset
11608 + stub_entry->group->stub_sec->output_section->vma);
11609 size = 0;
11610 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11611 size = 4;
11612 off += size;
11613 targ = (stub_entry->target_value
11614 + stub_entry->target_section->output_offset
11615 + stub_entry->target_section->output_section->vma);
11616 odd = off & 4;
11617 off = targ - off;
11618
11619 if (info->emitrelocations)
11620 {
11621 unsigned int num_rel;
11622 if (htab->powerxx_stubs)
11623 num_rel = num_relocs_for_powerxx_offset (off, odd);
11624 else
11625 num_rel = num_relocs_for_offset (off - 8);
11626 stub_entry->group->stub_sec->reloc_count += num_rel;
11627 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11628 }
11629
11630 if (htab->powerxx_stubs)
11631 extra = size_powerxx_offset (off, odd);
11632 else
11633 extra = size_offset (off - 8);
11634 /* Include branch insn plus those in the offset sequence. */
11635 size += 4 + extra;
11636 /* The branch insn is at the end, or "extra" bytes along. So
11637 its offset will be "extra" bytes less that that already
11638 calculated. */
11639 off -= extra;
11640
11641 if (!htab->powerxx_stubs)
11642 {
11643 /* After the bcl, lr has been modified so we need to emit
11644 .eh_frame info saying the return address is in r12. */
11645 lr_used = stub_entry->stub_offset + 8;
11646 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11647 lr_used += 4;
11648 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11649 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11650 DW_CFA_restore_extended 65. */
11651 delta = lr_used - stub_entry->group->lr_restore;
11652 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11653 stub_entry->group->lr_restore = lr_used + 8;
11654 }
11655
11656 /* If the branch can't reach, use a plt_branch. */
11657 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11658 {
11659 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
11660 - ppc_stub_long_branch_notoc);
11661 size += 4;
11662 }
11663 else if (info->emitrelocations)
11664 stub_entry->group->stub_sec->reloc_count +=1;
11665 break;
11666
11667 case ppc_stub_plt_call_notoc:
11668 case ppc_stub_plt_call_both:
11669 off = (stub_entry->stub_offset
11670 + stub_entry->group->stub_sec->output_offset
11671 + stub_entry->group->stub_sec->output_section->vma);
11672 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11673 off += 4;
11674 targ = stub_entry->plt_ent->plt.offset & ~1;
11675 if (targ >= (bfd_vma) -2)
11676 abort ();
11677
11678 plt = htab->elf.splt;
11679 if (!htab->elf.dynamic_sections_created
11680 || stub_entry->h == NULL
11681 || stub_entry->h->elf.dynindx == -1)
11682 {
11683 if (stub_entry->symtype == STT_GNU_IFUNC)
11684 plt = htab->elf.iplt;
11685 else
11686 plt = htab->pltlocal;
11687 }
11688 targ += plt->output_offset + plt->output_section->vma;
11689 odd = off & 4;
11690 off = targ - off;
11691
11692 if (htab->params->plt_stub_align != 0)
11693 {
11694 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11695
11696 stub_entry->group->stub_sec->size += pad;
11697 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11698 off -= pad;
11699 }
11700
11701 if (info->emitrelocations)
11702 {
11703 unsigned int num_rel;
11704 if (htab->powerxx_stubs)
11705 num_rel = num_relocs_for_powerxx_offset (off, odd);
11706 else
11707 num_rel = num_relocs_for_offset (off - 8);
11708 stub_entry->group->stub_sec->reloc_count += num_rel;
11709 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11710 }
11711
11712 size = plt_stub_size (htab, stub_entry, off);
11713
11714 if (!htab->powerxx_stubs)
11715 {
11716 /* After the bcl, lr has been modified so we need to emit
11717 .eh_frame info saying the return address is in r12. */
11718 lr_used = stub_entry->stub_offset + 8;
11719 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11720 lr_used += 4;
11721 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11722 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11723 DW_CFA_restore_extended 65. */
11724 delta = lr_used - stub_entry->group->lr_restore;
11725 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11726 stub_entry->group->lr_restore = lr_used + 8;
11727 }
11728 break;
11729
11730 case ppc_stub_plt_call:
11731 case ppc_stub_plt_call_r2save:
11732 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11733 if (targ >= (bfd_vma) -2)
11734 abort ();
11735 plt = htab->elf.splt;
11736 if (!htab->elf.dynamic_sections_created
11737 || stub_entry->h == NULL
11738 || stub_entry->h->elf.dynindx == -1)
11739 {
11740 if (stub_entry->symtype == STT_GNU_IFUNC)
11741 plt = htab->elf.iplt;
11742 else
11743 plt = htab->pltlocal;
11744 }
11745 targ += plt->output_offset + plt->output_section->vma;
11746
11747 off = (elf_gp (info->output_bfd)
11748 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11749 off = targ - off;
11750
11751 if (htab->params->plt_stub_align != 0)
11752 {
11753 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11754
11755 stub_entry->group->stub_sec->size += pad;
11756 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11757 }
11758
11759 if (info->emitrelocations)
11760 {
11761 stub_entry->group->stub_sec->reloc_count
11762 += ((PPC_HA (off) != 0)
11763 + (htab->opd_abi
11764 ? 2 + (htab->params->plt_static_chain
11765 && PPC_HA (off + 16) == PPC_HA (off))
11766 : 1));
11767 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11768 }
11769
11770 size = plt_stub_size (htab, stub_entry, off);
11771
11772 if (stub_entry->h != NULL
11773 && (stub_entry->h == htab->tls_get_addr_fd
11774 || stub_entry->h == htab->tls_get_addr)
11775 && htab->params->tls_get_addr_opt
11776 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
11777 {
11778 /* After the bctrl, lr has been modified so we need to
11779 emit .eh_frame info saying the return address is
11780 on the stack. In fact we put the EH info specifying
11781 that the return address is on the stack *at* the
11782 call rather than after it, because the EH info for a
11783 call needs to be specified by that point.
11784 See libgcc/unwind-dw2.c execute_cfa_program. */
11785 lr_used = stub_entry->stub_offset + size - 20;
11786 /* The eh_frame info will consist of a DW_CFA_advance_loc
11787 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
11788 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
11789 delta = lr_used - stub_entry->group->lr_restore;
11790 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11791 stub_entry->group->lr_restore = size - 4;
11792 }
11793 break;
11794
11795 default:
11796 BFD_FAIL ();
11797 return FALSE;
11798 }
11799
11800 stub_entry->group->stub_sec->size += size;
11801 return TRUE;
11802 }
11803
11804 /* Set up various things so that we can make a list of input sections
11805 for each output section included in the link. Returns -1 on error,
11806 0 when no stubs will be needed, and 1 on success. */
11807
11808 int
11809 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11810 {
11811 unsigned int id;
11812 bfd_size_type amt;
11813 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11814
11815 if (htab == NULL)
11816 return -1;
11817
11818 htab->sec_info_arr_size = _bfd_section_id;
11819 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
11820 htab->sec_info = bfd_zmalloc (amt);
11821 if (htab->sec_info == NULL)
11822 return -1;
11823
11824 /* Set toc_off for com, und, abs and ind sections. */
11825 for (id = 0; id < 3; id++)
11826 htab->sec_info[id].toc_off = TOC_BASE_OFF;
11827
11828 return 1;
11829 }
11830
11831 /* Set up for first pass at multitoc partitioning. */
11832
11833 void
11834 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11835 {
11836 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11837
11838 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11839 htab->toc_bfd = NULL;
11840 htab->toc_first_sec = NULL;
11841 }
11842
11843 /* The linker repeatedly calls this function for each TOC input section
11844 and linker generated GOT section. Group input bfds such that the toc
11845 within a group is less than 64k in size. */
11846
11847 bfd_boolean
11848 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11849 {
11850 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11851 bfd_vma addr, off, limit;
11852
11853 if (htab == NULL)
11854 return FALSE;
11855
11856 if (!htab->second_toc_pass)
11857 {
11858 /* Keep track of the first .toc or .got section for this input bfd. */
11859 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11860
11861 if (new_bfd)
11862 {
11863 htab->toc_bfd = isec->owner;
11864 htab->toc_first_sec = isec;
11865 }
11866
11867 addr = isec->output_offset + isec->output_section->vma;
11868 off = addr - htab->toc_curr;
11869 limit = 0x80008000;
11870 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11871 limit = 0x10000;
11872 if (off + isec->size > limit)
11873 {
11874 addr = (htab->toc_first_sec->output_offset
11875 + htab->toc_first_sec->output_section->vma);
11876 htab->toc_curr = addr;
11877 htab->toc_curr &= -TOC_BASE_ALIGN;
11878 }
11879
11880 /* toc_curr is the base address of this toc group. Set elf_gp
11881 for the input section to be the offset relative to the
11882 output toc base plus 0x8000. Making the input elf_gp an
11883 offset allows us to move the toc as a whole without
11884 recalculating input elf_gp. */
11885 off = htab->toc_curr - elf_gp (info->output_bfd);
11886 off += TOC_BASE_OFF;
11887
11888 /* Die if someone uses a linker script that doesn't keep input
11889 file .toc and .got together. */
11890 if (new_bfd
11891 && elf_gp (isec->owner) != 0
11892 && elf_gp (isec->owner) != off)
11893 return FALSE;
11894
11895 elf_gp (isec->owner) = off;
11896 return TRUE;
11897 }
11898
11899 /* During the second pass toc_first_sec points to the start of
11900 a toc group, and toc_curr is used to track the old elf_gp.
11901 We use toc_bfd to ensure we only look at each bfd once. */
11902 if (htab->toc_bfd == isec->owner)
11903 return TRUE;
11904 htab->toc_bfd = isec->owner;
11905
11906 if (htab->toc_first_sec == NULL
11907 || htab->toc_curr != elf_gp (isec->owner))
11908 {
11909 htab->toc_curr = elf_gp (isec->owner);
11910 htab->toc_first_sec = isec;
11911 }
11912 addr = (htab->toc_first_sec->output_offset
11913 + htab->toc_first_sec->output_section->vma);
11914 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
11915 elf_gp (isec->owner) = off;
11916
11917 return TRUE;
11918 }
11919
11920 /* Called via elf_link_hash_traverse to merge GOT entries for global
11921 symbol H. */
11922
11923 static bfd_boolean
11924 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11925 {
11926 if (h->root.type == bfd_link_hash_indirect)
11927 return TRUE;
11928
11929 merge_got_entries (&h->got.glist);
11930
11931 return TRUE;
11932 }
11933
11934 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11935 symbol H. */
11936
11937 static bfd_boolean
11938 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11939 {
11940 struct got_entry *gent;
11941
11942 if (h->root.type == bfd_link_hash_indirect)
11943 return TRUE;
11944
11945 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11946 if (!gent->is_indirect)
11947 allocate_got (h, (struct bfd_link_info *) inf, gent);
11948 return TRUE;
11949 }
11950
11951 /* Called on the first multitoc pass after the last call to
11952 ppc64_elf_next_toc_section. This function removes duplicate GOT
11953 entries. */
11954
11955 bfd_boolean
11956 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11957 {
11958 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11959 struct bfd *ibfd, *ibfd2;
11960 bfd_boolean done_something;
11961
11962 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11963
11964 if (!htab->do_multi_toc)
11965 return FALSE;
11966
11967 /* Merge global sym got entries within a toc group. */
11968 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11969
11970 /* And tlsld_got. */
11971 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11972 {
11973 struct got_entry *ent, *ent2;
11974
11975 if (!is_ppc64_elf (ibfd))
11976 continue;
11977
11978 ent = ppc64_tlsld_got (ibfd);
11979 if (!ent->is_indirect
11980 && ent->got.offset != (bfd_vma) -1)
11981 {
11982 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11983 {
11984 if (!is_ppc64_elf (ibfd2))
11985 continue;
11986
11987 ent2 = ppc64_tlsld_got (ibfd2);
11988 if (!ent2->is_indirect
11989 && ent2->got.offset != (bfd_vma) -1
11990 && elf_gp (ibfd2) == elf_gp (ibfd))
11991 {
11992 ent2->is_indirect = TRUE;
11993 ent2->got.ent = ent;
11994 }
11995 }
11996 }
11997 }
11998
11999 /* Zap sizes of got sections. */
12000 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12001 htab->elf.irelplt->size -= htab->got_reli_size;
12002 htab->got_reli_size = 0;
12003
12004 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12005 {
12006 asection *got, *relgot;
12007
12008 if (!is_ppc64_elf (ibfd))
12009 continue;
12010
12011 got = ppc64_elf_tdata (ibfd)->got;
12012 if (got != NULL)
12013 {
12014 got->rawsize = got->size;
12015 got->size = 0;
12016 relgot = ppc64_elf_tdata (ibfd)->relgot;
12017 relgot->rawsize = relgot->size;
12018 relgot->size = 0;
12019 }
12020 }
12021
12022 /* Now reallocate the got, local syms first. We don't need to
12023 allocate section contents again since we never increase size. */
12024 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12025 {
12026 struct got_entry **lgot_ents;
12027 struct got_entry **end_lgot_ents;
12028 struct plt_entry **local_plt;
12029 struct plt_entry **end_local_plt;
12030 unsigned char *lgot_masks;
12031 bfd_size_type locsymcount;
12032 Elf_Internal_Shdr *symtab_hdr;
12033 asection *s;
12034
12035 if (!is_ppc64_elf (ibfd))
12036 continue;
12037
12038 lgot_ents = elf_local_got_ents (ibfd);
12039 if (!lgot_ents)
12040 continue;
12041
12042 symtab_hdr = &elf_symtab_hdr (ibfd);
12043 locsymcount = symtab_hdr->sh_info;
12044 end_lgot_ents = lgot_ents + locsymcount;
12045 local_plt = (struct plt_entry **) end_lgot_ents;
12046 end_local_plt = local_plt + locsymcount;
12047 lgot_masks = (unsigned char *) end_local_plt;
12048 s = ppc64_elf_tdata (ibfd)->got;
12049 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12050 {
12051 struct got_entry *ent;
12052
12053 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12054 {
12055 unsigned int ent_size = 8;
12056 unsigned int rel_size = sizeof (Elf64_External_Rela);
12057
12058 ent->got.offset = s->size;
12059 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12060 {
12061 ent_size *= 2;
12062 rel_size *= 2;
12063 }
12064 s->size += ent_size;
12065 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12066 {
12067 htab->elf.irelplt->size += rel_size;
12068 htab->got_reli_size += rel_size;
12069 }
12070 else if (bfd_link_pic (info)
12071 && !((ent->tls_type & TLS_TPREL) != 0
12072 && bfd_link_executable (info)))
12073 {
12074 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12075 srel->size += rel_size;
12076 }
12077 }
12078 }
12079 }
12080
12081 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12082
12083 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12084 {
12085 struct got_entry *ent;
12086
12087 if (!is_ppc64_elf (ibfd))
12088 continue;
12089
12090 ent = ppc64_tlsld_got (ibfd);
12091 if (!ent->is_indirect
12092 && ent->got.offset != (bfd_vma) -1)
12093 {
12094 asection *s = ppc64_elf_tdata (ibfd)->got;
12095 ent->got.offset = s->size;
12096 s->size += 16;
12097 if (bfd_link_pic (info))
12098 {
12099 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12100 srel->size += sizeof (Elf64_External_Rela);
12101 }
12102 }
12103 }
12104
12105 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12106 if (!done_something)
12107 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12108 {
12109 asection *got;
12110
12111 if (!is_ppc64_elf (ibfd))
12112 continue;
12113
12114 got = ppc64_elf_tdata (ibfd)->got;
12115 if (got != NULL)
12116 {
12117 done_something = got->rawsize != got->size;
12118 if (done_something)
12119 break;
12120 }
12121 }
12122
12123 if (done_something)
12124 (*htab->params->layout_sections_again) ();
12125
12126 /* Set up for second pass over toc sections to recalculate elf_gp
12127 on input sections. */
12128 htab->toc_bfd = NULL;
12129 htab->toc_first_sec = NULL;
12130 htab->second_toc_pass = TRUE;
12131 return done_something;
12132 }
12133
12134 /* Called after second pass of multitoc partitioning. */
12135
12136 void
12137 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12138 {
12139 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12140
12141 /* After the second pass, toc_curr tracks the TOC offset used
12142 for code sections below in ppc64_elf_next_input_section. */
12143 htab->toc_curr = TOC_BASE_OFF;
12144 }
12145
12146 /* No toc references were found in ISEC. If the code in ISEC makes no
12147 calls, then there's no need to use toc adjusting stubs when branching
12148 into ISEC. Actually, indirect calls from ISEC are OK as they will
12149 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12150 needed, and 2 if a cyclical call-graph was found but no other reason
12151 for a stub was detected. If called from the top level, a return of
12152 2 means the same as a return of 0. */
12153
12154 static int
12155 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12156 {
12157 int ret;
12158
12159 /* Mark this section as checked. */
12160 isec->call_check_done = 1;
12161
12162 /* We know none of our code bearing sections will need toc stubs. */
12163 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12164 return 0;
12165
12166 if (isec->size == 0)
12167 return 0;
12168
12169 if (isec->output_section == NULL)
12170 return 0;
12171
12172 ret = 0;
12173 if (isec->reloc_count != 0)
12174 {
12175 Elf_Internal_Rela *relstart, *rel;
12176 Elf_Internal_Sym *local_syms;
12177 struct ppc_link_hash_table *htab;
12178
12179 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12180 info->keep_memory);
12181 if (relstart == NULL)
12182 return -1;
12183
12184 /* Look for branches to outside of this section. */
12185 local_syms = NULL;
12186 htab = ppc_hash_table (info);
12187 if (htab == NULL)
12188 return -1;
12189
12190 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12191 {
12192 enum elf_ppc64_reloc_type r_type;
12193 unsigned long r_symndx;
12194 struct elf_link_hash_entry *h;
12195 struct ppc_link_hash_entry *eh;
12196 Elf_Internal_Sym *sym;
12197 asection *sym_sec;
12198 struct _opd_sec_data *opd;
12199 bfd_vma sym_value;
12200 bfd_vma dest;
12201
12202 r_type = ELF64_R_TYPE (rel->r_info);
12203 if (r_type != R_PPC64_REL24
12204 && r_type != R_PPC64_REL24_NOTOC
12205 && r_type != R_PPC64_REL14
12206 && r_type != R_PPC64_REL14_BRTAKEN
12207 && r_type != R_PPC64_REL14_BRNTAKEN
12208 && r_type != R_PPC64_PLTCALL
12209 && r_type != R_PPC64_PLTCALL_NOTOC)
12210 continue;
12211
12212 r_symndx = ELF64_R_SYM (rel->r_info);
12213 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12214 isec->owner))
12215 {
12216 ret = -1;
12217 break;
12218 }
12219
12220 /* Calls to dynamic lib functions go through a plt call stub
12221 that uses r2. */
12222 eh = (struct ppc_link_hash_entry *) h;
12223 if (eh != NULL
12224 && (eh->elf.plt.plist != NULL
12225 || (eh->oh != NULL
12226 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12227 {
12228 ret = 1;
12229 break;
12230 }
12231
12232 if (sym_sec == NULL)
12233 /* Ignore other undefined symbols. */
12234 continue;
12235
12236 /* Assume branches to other sections not included in the
12237 link need stubs too, to cover -R and absolute syms. */
12238 if (sym_sec->output_section == NULL)
12239 {
12240 ret = 1;
12241 break;
12242 }
12243
12244 if (h == NULL)
12245 sym_value = sym->st_value;
12246 else
12247 {
12248 if (h->root.type != bfd_link_hash_defined
12249 && h->root.type != bfd_link_hash_defweak)
12250 abort ();
12251 sym_value = h->root.u.def.value;
12252 }
12253 sym_value += rel->r_addend;
12254
12255 /* If this branch reloc uses an opd sym, find the code section. */
12256 opd = get_opd_info (sym_sec);
12257 if (opd != NULL)
12258 {
12259 if (h == NULL && opd->adjust != NULL)
12260 {
12261 long adjust;
12262
12263 adjust = opd->adjust[OPD_NDX (sym_value)];
12264 if (adjust == -1)
12265 /* Assume deleted functions won't ever be called. */
12266 continue;
12267 sym_value += adjust;
12268 }
12269
12270 dest = opd_entry_value (sym_sec, sym_value,
12271 &sym_sec, NULL, FALSE);
12272 if (dest == (bfd_vma) -1)
12273 continue;
12274 }
12275 else
12276 dest = (sym_value
12277 + sym_sec->output_offset
12278 + sym_sec->output_section->vma);
12279
12280 /* Ignore branch to self. */
12281 if (sym_sec == isec)
12282 continue;
12283
12284 /* If the called function uses the toc, we need a stub. */
12285 if (sym_sec->has_toc_reloc
12286 || sym_sec->makes_toc_func_call)
12287 {
12288 ret = 1;
12289 break;
12290 }
12291
12292 /* Assume any branch that needs a long branch stub might in fact
12293 need a plt_branch stub. A plt_branch stub uses r2. */
12294 else if (dest - (isec->output_offset
12295 + isec->output_section->vma
12296 + rel->r_offset) + (1 << 25)
12297 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12298 ? h->other
12299 : sym->st_other))
12300 {
12301 ret = 1;
12302 break;
12303 }
12304
12305 /* If calling back to a section in the process of being
12306 tested, we can't say for sure that no toc adjusting stubs
12307 are needed, so don't return zero. */
12308 else if (sym_sec->call_check_in_progress)
12309 ret = 2;
12310
12311 /* Branches to another section that itself doesn't have any TOC
12312 references are OK. Recursively call ourselves to check. */
12313 else if (!sym_sec->call_check_done)
12314 {
12315 int recur;
12316
12317 /* Mark current section as indeterminate, so that other
12318 sections that call back to current won't be marked as
12319 known. */
12320 isec->call_check_in_progress = 1;
12321 recur = toc_adjusting_stub_needed (info, sym_sec);
12322 isec->call_check_in_progress = 0;
12323
12324 if (recur != 0)
12325 {
12326 ret = recur;
12327 if (recur != 2)
12328 break;
12329 }
12330 }
12331 }
12332
12333 if (local_syms != NULL
12334 && (elf_symtab_hdr (isec->owner).contents
12335 != (unsigned char *) local_syms))
12336 free (local_syms);
12337 if (elf_section_data (isec)->relocs != relstart)
12338 free (relstart);
12339 }
12340
12341 if ((ret & 1) == 0
12342 && isec->map_head.s != NULL
12343 && (strcmp (isec->output_section->name, ".init") == 0
12344 || strcmp (isec->output_section->name, ".fini") == 0))
12345 {
12346 if (isec->map_head.s->has_toc_reloc
12347 || isec->map_head.s->makes_toc_func_call)
12348 ret = 1;
12349 else if (!isec->map_head.s->call_check_done)
12350 {
12351 int recur;
12352 isec->call_check_in_progress = 1;
12353 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12354 isec->call_check_in_progress = 0;
12355 if (recur != 0)
12356 ret = recur;
12357 }
12358 }
12359
12360 if (ret == 1)
12361 isec->makes_toc_func_call = 1;
12362
12363 return ret;
12364 }
12365
12366 /* The linker repeatedly calls this function for each input section,
12367 in the order that input sections are linked into output sections.
12368 Build lists of input sections to determine groupings between which
12369 we may insert linker stubs. */
12370
12371 bfd_boolean
12372 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12373 {
12374 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12375
12376 if (htab == NULL)
12377 return FALSE;
12378
12379 if ((isec->output_section->flags & SEC_CODE) != 0
12380 && isec->output_section->id < htab->sec_info_arr_size)
12381 {
12382 /* This happens to make the list in reverse order,
12383 which is what we want. */
12384 htab->sec_info[isec->id].u.list
12385 = htab->sec_info[isec->output_section->id].u.list;
12386 htab->sec_info[isec->output_section->id].u.list = isec;
12387 }
12388
12389 if (htab->multi_toc_needed)
12390 {
12391 /* Analyse sections that aren't already flagged as needing a
12392 valid toc pointer. Exclude .fixup for the linux kernel.
12393 .fixup contains branches, but only back to the function that
12394 hit an exception. */
12395 if (!(isec->has_toc_reloc
12396 || (isec->flags & SEC_CODE) == 0
12397 || strcmp (isec->name, ".fixup") == 0
12398 || isec->call_check_done))
12399 {
12400 if (toc_adjusting_stub_needed (info, isec) < 0)
12401 return FALSE;
12402 }
12403 /* Make all sections use the TOC assigned for this object file.
12404 This will be wrong for pasted sections; We fix that in
12405 check_pasted_section(). */
12406 if (elf_gp (isec->owner) != 0)
12407 htab->toc_curr = elf_gp (isec->owner);
12408 }
12409
12410 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12411 return TRUE;
12412 }
12413
12414 /* Check that all .init and .fini sections use the same toc, if they
12415 have toc relocs. */
12416
12417 static bfd_boolean
12418 check_pasted_section (struct bfd_link_info *info, const char *name)
12419 {
12420 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12421
12422 if (o != NULL)
12423 {
12424 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12425 bfd_vma toc_off = 0;
12426 asection *i;
12427
12428 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12429 if (i->has_toc_reloc)
12430 {
12431 if (toc_off == 0)
12432 toc_off = htab->sec_info[i->id].toc_off;
12433 else if (toc_off != htab->sec_info[i->id].toc_off)
12434 return FALSE;
12435 }
12436
12437 if (toc_off == 0)
12438 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12439 if (i->makes_toc_func_call)
12440 {
12441 toc_off = htab->sec_info[i->id].toc_off;
12442 break;
12443 }
12444
12445 /* Make sure the whole pasted function uses the same toc offset. */
12446 if (toc_off != 0)
12447 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12448 htab->sec_info[i->id].toc_off = toc_off;
12449 }
12450 return TRUE;
12451 }
12452
12453 bfd_boolean
12454 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12455 {
12456 return (check_pasted_section (info, ".init")
12457 & check_pasted_section (info, ".fini"));
12458 }
12459
12460 /* See whether we can group stub sections together. Grouping stub
12461 sections may result in fewer stubs. More importantly, we need to
12462 put all .init* and .fini* stubs at the beginning of the .init or
12463 .fini output sections respectively, because glibc splits the
12464 _init and _fini functions into multiple parts. Putting a stub in
12465 the middle of a function is not a good idea. */
12466
12467 static bfd_boolean
12468 group_sections (struct bfd_link_info *info,
12469 bfd_size_type stub_group_size,
12470 bfd_boolean stubs_always_before_branch)
12471 {
12472 struct ppc_link_hash_table *htab;
12473 asection *osec;
12474 bfd_boolean suppress_size_errors;
12475
12476 htab = ppc_hash_table (info);
12477 if (htab == NULL)
12478 return FALSE;
12479
12480 suppress_size_errors = FALSE;
12481 if (stub_group_size == 1)
12482 {
12483 /* Default values. */
12484 if (stubs_always_before_branch)
12485 stub_group_size = 0x1e00000;
12486 else
12487 stub_group_size = 0x1c00000;
12488 suppress_size_errors = TRUE;
12489 }
12490
12491 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12492 {
12493 asection *tail;
12494
12495 if (osec->id >= htab->sec_info_arr_size)
12496 continue;
12497
12498 tail = htab->sec_info[osec->id].u.list;
12499 while (tail != NULL)
12500 {
12501 asection *curr;
12502 asection *prev;
12503 bfd_size_type total;
12504 bfd_boolean big_sec;
12505 bfd_vma curr_toc;
12506 struct map_stub *group;
12507 bfd_size_type group_size;
12508
12509 curr = tail;
12510 total = tail->size;
12511 group_size = (ppc64_elf_section_data (tail) != NULL
12512 && ppc64_elf_section_data (tail)->has_14bit_branch
12513 ? stub_group_size >> 10 : stub_group_size);
12514
12515 big_sec = total > group_size;
12516 if (big_sec && !suppress_size_errors)
12517 /* xgettext:c-format */
12518 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12519 tail->owner, tail);
12520 curr_toc = htab->sec_info[tail->id].toc_off;
12521
12522 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12523 && ((total += curr->output_offset - prev->output_offset)
12524 < (ppc64_elf_section_data (prev) != NULL
12525 && ppc64_elf_section_data (prev)->has_14bit_branch
12526 ? (group_size = stub_group_size >> 10) : group_size))
12527 && htab->sec_info[prev->id].toc_off == curr_toc)
12528 curr = prev;
12529
12530 /* OK, the size from the start of CURR to the end is less
12531 than group_size and thus can be handled by one stub
12532 section. (or the tail section is itself larger than
12533 group_size, in which case we may be toast.) We should
12534 really be keeping track of the total size of stubs added
12535 here, as stubs contribute to the final output section
12536 size. That's a little tricky, and this way will only
12537 break if stubs added make the total size more than 2^25,
12538 ie. for the default stub_group_size, if stubs total more
12539 than 2097152 bytes, or nearly 75000 plt call stubs. */
12540 group = bfd_alloc (curr->owner, sizeof (*group));
12541 if (group == NULL)
12542 return FALSE;
12543 group->link_sec = curr;
12544 group->stub_sec = NULL;
12545 group->needs_save_res = 0;
12546 group->lr_restore = 0;
12547 group->eh_size = 0;
12548 group->eh_base = 0;
12549 group->next = htab->group;
12550 htab->group = group;
12551 do
12552 {
12553 prev = htab->sec_info[tail->id].u.list;
12554 /* Set up this stub group. */
12555 htab->sec_info[tail->id].u.group = group;
12556 }
12557 while (tail != curr && (tail = prev) != NULL);
12558
12559 /* But wait, there's more! Input sections up to group_size
12560 bytes before the stub section can be handled by it too.
12561 Don't do this if we have a really large section after the
12562 stubs, as adding more stubs increases the chance that
12563 branches may not reach into the stub section. */
12564 if (!stubs_always_before_branch && !big_sec)
12565 {
12566 total = 0;
12567 while (prev != NULL
12568 && ((total += tail->output_offset - prev->output_offset)
12569 < (ppc64_elf_section_data (prev) != NULL
12570 && ppc64_elf_section_data (prev)->has_14bit_branch
12571 ? (group_size = stub_group_size >> 10)
12572 : group_size))
12573 && htab->sec_info[prev->id].toc_off == curr_toc)
12574 {
12575 tail = prev;
12576 prev = htab->sec_info[tail->id].u.list;
12577 htab->sec_info[tail->id].u.group = group;
12578 }
12579 }
12580 tail = prev;
12581 }
12582 }
12583 return TRUE;
12584 }
12585
12586 static const unsigned char glink_eh_frame_cie[] =
12587 {
12588 0, 0, 0, 16, /* length. */
12589 0, 0, 0, 0, /* id. */
12590 1, /* CIE version. */
12591 'z', 'R', 0, /* Augmentation string. */
12592 4, /* Code alignment. */
12593 0x78, /* Data alignment. */
12594 65, /* RA reg. */
12595 1, /* Augmentation size. */
12596 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
12597 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
12598 };
12599
12600 /* Stripping output sections is normally done before dynamic section
12601 symbols have been allocated. This function is called later, and
12602 handles cases like htab->brlt which is mapped to its own output
12603 section. */
12604
12605 static void
12606 maybe_strip_output (struct bfd_link_info *info, asection *isec)
12607 {
12608 if (isec->size == 0
12609 && isec->output_section->size == 0
12610 && !(isec->output_section->flags & SEC_KEEP)
12611 && !bfd_section_removed_from_list (info->output_bfd,
12612 isec->output_section)
12613 && elf_section_data (isec->output_section)->dynindx == 0)
12614 {
12615 isec->output_section->flags |= SEC_EXCLUDE;
12616 bfd_section_list_remove (info->output_bfd, isec->output_section);
12617 info->output_bfd->section_count--;
12618 }
12619 }
12620
12621 /* Determine and set the size of the stub section for a final link.
12622
12623 The basic idea here is to examine all the relocations looking for
12624 PC-relative calls to a target that is unreachable with a "bl"
12625 instruction. */
12626
12627 bfd_boolean
12628 ppc64_elf_size_stubs (struct bfd_link_info *info)
12629 {
12630 bfd_size_type stub_group_size;
12631 bfd_boolean stubs_always_before_branch;
12632 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12633
12634 if (htab == NULL)
12635 return FALSE;
12636
12637 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
12638 htab->params->plt_thread_safe = 1;
12639 if (!htab->opd_abi)
12640 htab->params->plt_thread_safe = 0;
12641 else if (htab->params->plt_thread_safe == -1)
12642 {
12643 static const char *const thread_starter[] =
12644 {
12645 "pthread_create",
12646 /* libstdc++ */
12647 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12648 /* librt */
12649 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12650 "mq_notify", "create_timer",
12651 /* libanl */
12652 "getaddrinfo_a",
12653 /* libgomp */
12654 "GOMP_parallel",
12655 "GOMP_parallel_start",
12656 "GOMP_parallel_loop_static",
12657 "GOMP_parallel_loop_static_start",
12658 "GOMP_parallel_loop_dynamic",
12659 "GOMP_parallel_loop_dynamic_start",
12660 "GOMP_parallel_loop_guided",
12661 "GOMP_parallel_loop_guided_start",
12662 "GOMP_parallel_loop_runtime",
12663 "GOMP_parallel_loop_runtime_start",
12664 "GOMP_parallel_sections",
12665 "GOMP_parallel_sections_start",
12666 /* libgo */
12667 "__go_go",
12668 };
12669 unsigned i;
12670
12671 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
12672 {
12673 struct elf_link_hash_entry *h;
12674 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12675 FALSE, FALSE, TRUE);
12676 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12677 if (htab->params->plt_thread_safe)
12678 break;
12679 }
12680 }
12681 stubs_always_before_branch = htab->params->group_size < 0;
12682 if (htab->params->group_size < 0)
12683 stub_group_size = -htab->params->group_size;
12684 else
12685 stub_group_size = htab->params->group_size;
12686
12687 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
12688 return FALSE;
12689
12690 #define STUB_SHRINK_ITER 20
12691 /* Loop until no stubs added. After iteration 20 of this loop we may
12692 exit on a stub section shrinking. This is to break out of a
12693 pathological case where adding stubs on one iteration decreases
12694 section gaps (perhaps due to alignment), which then requires
12695 fewer or smaller stubs on the next iteration. */
12696
12697 while (1)
12698 {
12699 bfd *input_bfd;
12700 unsigned int bfd_indx;
12701 struct map_stub *group;
12702
12703 htab->stub_iteration += 1;
12704
12705 for (input_bfd = info->input_bfds, bfd_indx = 0;
12706 input_bfd != NULL;
12707 input_bfd = input_bfd->link.next, bfd_indx++)
12708 {
12709 Elf_Internal_Shdr *symtab_hdr;
12710 asection *section;
12711 Elf_Internal_Sym *local_syms = NULL;
12712
12713 if (!is_ppc64_elf (input_bfd))
12714 continue;
12715
12716 /* We'll need the symbol table in a second. */
12717 symtab_hdr = &elf_symtab_hdr (input_bfd);
12718 if (symtab_hdr->sh_info == 0)
12719 continue;
12720
12721 /* Walk over each section attached to the input bfd. */
12722 for (section = input_bfd->sections;
12723 section != NULL;
12724 section = section->next)
12725 {
12726 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12727
12728 /* If there aren't any relocs, then there's nothing more
12729 to do. */
12730 if ((section->flags & SEC_RELOC) == 0
12731 || (section->flags & SEC_ALLOC) == 0
12732 || (section->flags & SEC_LOAD) == 0
12733 || (section->flags & SEC_CODE) == 0
12734 || section->reloc_count == 0)
12735 continue;
12736
12737 /* If this section is a link-once section that will be
12738 discarded, then don't create any stubs. */
12739 if (section->output_section == NULL
12740 || section->output_section->owner != info->output_bfd)
12741 continue;
12742
12743 /* Get the relocs. */
12744 internal_relocs
12745 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12746 info->keep_memory);
12747 if (internal_relocs == NULL)
12748 goto error_ret_free_local;
12749
12750 /* Now examine each relocation. */
12751 irela = internal_relocs;
12752 irelaend = irela + section->reloc_count;
12753 for (; irela < irelaend; irela++)
12754 {
12755 enum elf_ppc64_reloc_type r_type;
12756 unsigned int r_indx;
12757 enum ppc_stub_type stub_type;
12758 struct ppc_stub_hash_entry *stub_entry;
12759 asection *sym_sec, *code_sec;
12760 bfd_vma sym_value, code_value;
12761 bfd_vma destination;
12762 unsigned long local_off;
12763 bfd_boolean ok_dest;
12764 struct ppc_link_hash_entry *hash;
12765 struct ppc_link_hash_entry *fdh;
12766 struct elf_link_hash_entry *h;
12767 Elf_Internal_Sym *sym;
12768 char *stub_name;
12769 const asection *id_sec;
12770 struct _opd_sec_data *opd;
12771 struct plt_entry *plt_ent;
12772
12773 r_type = ELF64_R_TYPE (irela->r_info);
12774 r_indx = ELF64_R_SYM (irela->r_info);
12775
12776 if (r_type >= R_PPC64_max)
12777 {
12778 bfd_set_error (bfd_error_bad_value);
12779 goto error_ret_free_internal;
12780 }
12781
12782 /* Only look for stubs on branch instructions. */
12783 if (r_type != R_PPC64_REL24
12784 && r_type != R_PPC64_REL24_NOTOC
12785 && r_type != R_PPC64_REL14
12786 && r_type != R_PPC64_REL14_BRTAKEN
12787 && r_type != R_PPC64_REL14_BRNTAKEN)
12788 continue;
12789
12790 /* Now determine the call target, its name, value,
12791 section. */
12792 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12793 r_indx, input_bfd))
12794 goto error_ret_free_internal;
12795 hash = (struct ppc_link_hash_entry *) h;
12796
12797 ok_dest = FALSE;
12798 fdh = NULL;
12799 sym_value = 0;
12800 if (hash == NULL)
12801 {
12802 sym_value = sym->st_value;
12803 if (sym_sec != NULL
12804 && sym_sec->output_section != NULL)
12805 ok_dest = TRUE;
12806 }
12807 else if (hash->elf.root.type == bfd_link_hash_defined
12808 || hash->elf.root.type == bfd_link_hash_defweak)
12809 {
12810 sym_value = hash->elf.root.u.def.value;
12811 if (sym_sec->output_section != NULL)
12812 ok_dest = TRUE;
12813 }
12814 else if (hash->elf.root.type == bfd_link_hash_undefweak
12815 || hash->elf.root.type == bfd_link_hash_undefined)
12816 {
12817 /* Recognise an old ABI func code entry sym, and
12818 use the func descriptor sym instead if it is
12819 defined. */
12820 if (hash->elf.root.root.string[0] == '.'
12821 && hash->oh != NULL)
12822 {
12823 fdh = ppc_follow_link (hash->oh);
12824 if (fdh->elf.root.type == bfd_link_hash_defined
12825 || fdh->elf.root.type == bfd_link_hash_defweak)
12826 {
12827 sym_sec = fdh->elf.root.u.def.section;
12828 sym_value = fdh->elf.root.u.def.value;
12829 if (sym_sec->output_section != NULL)
12830 ok_dest = TRUE;
12831 }
12832 else
12833 fdh = NULL;
12834 }
12835 }
12836 else
12837 {
12838 bfd_set_error (bfd_error_bad_value);
12839 goto error_ret_free_internal;
12840 }
12841
12842 destination = 0;
12843 local_off = 0;
12844 if (ok_dest)
12845 {
12846 sym_value += irela->r_addend;
12847 destination = (sym_value
12848 + sym_sec->output_offset
12849 + sym_sec->output_section->vma);
12850 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12851 ? hash->elf.other
12852 : sym->st_other);
12853 }
12854
12855 code_sec = sym_sec;
12856 code_value = sym_value;
12857 opd = get_opd_info (sym_sec);
12858 if (opd != NULL)
12859 {
12860 bfd_vma dest;
12861
12862 if (hash == NULL && opd->adjust != NULL)
12863 {
12864 long adjust = opd->adjust[OPD_NDX (sym_value)];
12865 if (adjust == -1)
12866 continue;
12867 code_value += adjust;
12868 sym_value += adjust;
12869 }
12870 dest = opd_entry_value (sym_sec, sym_value,
12871 &code_sec, &code_value, FALSE);
12872 if (dest != (bfd_vma) -1)
12873 {
12874 destination = dest;
12875 if (fdh != NULL)
12876 {
12877 /* Fixup old ABI sym to point at code
12878 entry. */
12879 hash->elf.root.type = bfd_link_hash_defweak;
12880 hash->elf.root.u.def.section = code_sec;
12881 hash->elf.root.u.def.value = code_value;
12882 }
12883 }
12884 }
12885
12886 /* Determine what (if any) linker stub is needed. */
12887 plt_ent = NULL;
12888 stub_type = ppc_type_of_stub (section, irela, &hash,
12889 &plt_ent, destination,
12890 local_off);
12891
12892 if (r_type == R_PPC64_REL24_NOTOC)
12893 {
12894 if (stub_type == ppc_stub_plt_call)
12895 stub_type = ppc_stub_plt_call_notoc;
12896 else if (stub_type == ppc_stub_long_branch
12897 || (code_sec != NULL
12898 && code_sec->output_section != NULL
12899 && (((hash ? hash->elf.other : sym->st_other)
12900 & STO_PPC64_LOCAL_MASK)
12901 > 1 << STO_PPC64_LOCAL_BIT)))
12902 stub_type = ppc_stub_long_branch_notoc;
12903 }
12904 else if (stub_type != ppc_stub_plt_call)
12905 {
12906 /* Check whether we need a TOC adjusting stub.
12907 Since the linker pastes together pieces from
12908 different object files when creating the
12909 _init and _fini functions, it may be that a
12910 call to what looks like a local sym is in
12911 fact a call needing a TOC adjustment. */
12912 if ((code_sec != NULL
12913 && code_sec->output_section != NULL
12914 && (htab->sec_info[code_sec->id].toc_off
12915 != htab->sec_info[section->id].toc_off)
12916 && (code_sec->has_toc_reloc
12917 || code_sec->makes_toc_func_call))
12918 || (((hash ? hash->elf.other : sym->st_other)
12919 & STO_PPC64_LOCAL_MASK)
12920 == 1 << STO_PPC64_LOCAL_BIT))
12921 stub_type = ppc_stub_long_branch_r2off;
12922 }
12923
12924 if (stub_type == ppc_stub_none)
12925 continue;
12926
12927 /* __tls_get_addr calls might be eliminated. */
12928 if (stub_type != ppc_stub_plt_call
12929 && stub_type != ppc_stub_plt_call_notoc
12930 && hash != NULL
12931 && (hash == htab->tls_get_addr
12932 || hash == htab->tls_get_addr_fd)
12933 && section->has_tls_reloc
12934 && irela != internal_relocs)
12935 {
12936 /* Get tls info. */
12937 unsigned char *tls_mask;
12938
12939 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12940 irela - 1, input_bfd))
12941 goto error_ret_free_internal;
12942 if ((*tls_mask & TLS_TLS) != 0)
12943 continue;
12944 }
12945
12946 if (stub_type == ppc_stub_plt_call)
12947 {
12948 if (!htab->opd_abi
12949 && htab->params->plt_localentry0 != 0
12950 && is_elfv2_localentry0 (&hash->elf))
12951 htab->has_plt_localentry0 = 1;
12952 else if (irela + 1 < irelaend
12953 && irela[1].r_offset == irela->r_offset + 4
12954 && (ELF64_R_TYPE (irela[1].r_info)
12955 == R_PPC64_TOCSAVE))
12956 {
12957 if (!tocsave_find (htab, INSERT,
12958 &local_syms, irela + 1, input_bfd))
12959 goto error_ret_free_internal;
12960 }
12961 else
12962 stub_type = ppc_stub_plt_call_r2save;
12963 }
12964
12965 /* Support for grouping stub sections. */
12966 id_sec = htab->sec_info[section->id].u.group->link_sec;
12967
12968 /* Get the name of this stub. */
12969 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12970 if (!stub_name)
12971 goto error_ret_free_internal;
12972
12973 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12974 stub_name, FALSE, FALSE);
12975 if (stub_entry != NULL)
12976 {
12977 enum ppc_stub_type old_type;
12978 /* A stub has already been created, but it may
12979 not be the required type. We shouldn't be
12980 transitioning from plt_call to long_branch
12981 stubs or vice versa, but we might be
12982 upgrading from plt_call to plt_call_r2save or
12983 from long_branch to long_branch_r2off. */
12984 free (stub_name);
12985 old_type = stub_entry->stub_type;
12986 switch (old_type)
12987 {
12988 default:
12989 abort ();
12990
12991 case ppc_stub_save_res:
12992 continue;
12993
12994 case ppc_stub_plt_call:
12995 case ppc_stub_plt_call_r2save:
12996 case ppc_stub_plt_call_notoc:
12997 case ppc_stub_plt_call_both:
12998 if (stub_type == ppc_stub_plt_call)
12999 continue;
13000 else if (stub_type == ppc_stub_plt_call_r2save)
13001 {
13002 if (old_type == ppc_stub_plt_call_notoc)
13003 stub_type = ppc_stub_plt_call_both;
13004 }
13005 else if (stub_type == ppc_stub_plt_call_notoc)
13006 {
13007 if (old_type == ppc_stub_plt_call_r2save)
13008 stub_type = ppc_stub_plt_call_both;
13009 }
13010 else
13011 abort ();
13012 break;
13013
13014 case ppc_stub_plt_branch:
13015 case ppc_stub_plt_branch_r2off:
13016 case ppc_stub_plt_branch_notoc:
13017 case ppc_stub_plt_branch_both:
13018 old_type += (ppc_stub_long_branch
13019 - ppc_stub_plt_branch);
13020 /* Fall through. */
13021 case ppc_stub_long_branch:
13022 case ppc_stub_long_branch_r2off:
13023 case ppc_stub_long_branch_notoc:
13024 case ppc_stub_long_branch_both:
13025 if (stub_type == ppc_stub_long_branch)
13026 continue;
13027 else if (stub_type == ppc_stub_long_branch_r2off)
13028 {
13029 if (old_type == ppc_stub_long_branch_notoc)
13030 stub_type = ppc_stub_long_branch_both;
13031 }
13032 else if (stub_type == ppc_stub_long_branch_notoc)
13033 {
13034 if (old_type == ppc_stub_long_branch_r2off)
13035 stub_type = ppc_stub_long_branch_both;
13036 }
13037 else
13038 abort ();
13039 break;
13040 }
13041 if (old_type < stub_type)
13042 stub_entry->stub_type = stub_type;
13043 continue;
13044 }
13045
13046 stub_entry = ppc_add_stub (stub_name, section, info);
13047 if (stub_entry == NULL)
13048 {
13049 free (stub_name);
13050 error_ret_free_internal:
13051 if (elf_section_data (section)->relocs == NULL)
13052 free (internal_relocs);
13053 error_ret_free_local:
13054 if (local_syms != NULL
13055 && (symtab_hdr->contents
13056 != (unsigned char *) local_syms))
13057 free (local_syms);
13058 return FALSE;
13059 }
13060
13061 stub_entry->stub_type = stub_type;
13062 if (stub_type >= ppc_stub_plt_call
13063 && stub_type <= ppc_stub_plt_call_both)
13064 {
13065 stub_entry->target_value = sym_value;
13066 stub_entry->target_section = sym_sec;
13067 }
13068 else
13069 {
13070 stub_entry->target_value = code_value;
13071 stub_entry->target_section = code_sec;
13072 }
13073 stub_entry->h = hash;
13074 stub_entry->plt_ent = plt_ent;
13075 stub_entry->symtype
13076 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13077 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13078
13079 if (hash != NULL
13080 && (hash->elf.root.type == bfd_link_hash_defined
13081 || hash->elf.root.type == bfd_link_hash_defweak))
13082 htab->stub_globals += 1;
13083 }
13084
13085 /* We're done with the internal relocs, free them. */
13086 if (elf_section_data (section)->relocs != internal_relocs)
13087 free (internal_relocs);
13088 }
13089
13090 if (local_syms != NULL
13091 && symtab_hdr->contents != (unsigned char *) local_syms)
13092 {
13093 if (!info->keep_memory)
13094 free (local_syms);
13095 else
13096 symtab_hdr->contents = (unsigned char *) local_syms;
13097 }
13098 }
13099
13100 /* We may have added some stubs. Find out the new size of the
13101 stub sections. */
13102 for (group = htab->group; group != NULL; group = group->next)
13103 {
13104 group->lr_restore = 0;
13105 group->eh_size = 0;
13106 if (group->stub_sec != NULL)
13107 {
13108 asection *stub_sec = group->stub_sec;
13109
13110 if (htab->stub_iteration <= STUB_SHRINK_ITER
13111 || stub_sec->rawsize < stub_sec->size)
13112 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13113 stub_sec->rawsize = stub_sec->size;
13114 stub_sec->size = 0;
13115 stub_sec->reloc_count = 0;
13116 stub_sec->flags &= ~SEC_RELOC;
13117 }
13118 }
13119
13120 if (htab->stub_iteration <= STUB_SHRINK_ITER
13121 || htab->brlt->rawsize < htab->brlt->size)
13122 htab->brlt->rawsize = htab->brlt->size;
13123 htab->brlt->size = 0;
13124 htab->brlt->reloc_count = 0;
13125 htab->brlt->flags &= ~SEC_RELOC;
13126 if (htab->relbrlt != NULL)
13127 htab->relbrlt->size = 0;
13128
13129 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13130
13131 for (group = htab->group; group != NULL; group = group->next)
13132 if (group->needs_save_res)
13133 group->stub_sec->size += htab->sfpr->size;
13134
13135 if (info->emitrelocations
13136 && htab->glink != NULL && htab->glink->size != 0)
13137 {
13138 htab->glink->reloc_count = 1;
13139 htab->glink->flags |= SEC_RELOC;
13140 }
13141
13142 if (htab->glink_eh_frame != NULL
13143 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13144 && htab->glink_eh_frame->output_section->size > 8)
13145 {
13146 size_t size = 0, align = 4;
13147
13148 for (group = htab->group; group != NULL; group = group->next)
13149 if (group->eh_size != 0)
13150 size += (group->eh_size + 17 + align - 1) & -align;
13151 if (htab->glink != NULL && htab->glink->size != 0)
13152 size += (24 + align - 1) & -align;
13153 if (size != 0)
13154 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13155 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13156 size = (size + align - 1) & -align;
13157 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13158 htab->glink_eh_frame->size = size;
13159 }
13160
13161 if (htab->params->plt_stub_align != 0)
13162 for (group = htab->group; group != NULL; group = group->next)
13163 if (group->stub_sec != NULL)
13164 {
13165 int align = abs (htab->params->plt_stub_align);
13166 group->stub_sec->size
13167 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13168 }
13169
13170 for (group = htab->group; group != NULL; group = group->next)
13171 if (group->stub_sec != NULL
13172 && group->stub_sec->rawsize != group->stub_sec->size
13173 && (htab->stub_iteration <= STUB_SHRINK_ITER
13174 || group->stub_sec->rawsize < group->stub_sec->size))
13175 break;
13176
13177 if (group == NULL
13178 && (htab->brlt->rawsize == htab->brlt->size
13179 || (htab->stub_iteration > STUB_SHRINK_ITER
13180 && htab->brlt->rawsize > htab->brlt->size))
13181 && (htab->glink_eh_frame == NULL
13182 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
13183 break;
13184
13185 /* Ask the linker to do its stuff. */
13186 (*htab->params->layout_sections_again) ();
13187 }
13188
13189 if (htab->glink_eh_frame != NULL
13190 && htab->glink_eh_frame->size != 0)
13191 {
13192 bfd_vma val;
13193 bfd_byte *p, *last_fde;
13194 size_t last_fde_len, size, align, pad;
13195 struct map_stub *group;
13196
13197 /* It is necessary to at least have a rough outline of the
13198 linker generated CIEs and FDEs written before
13199 bfd_elf_discard_info is run, in order for these FDEs to be
13200 indexed in .eh_frame_hdr. */
13201 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13202 if (p == NULL)
13203 return FALSE;
13204 htab->glink_eh_frame->contents = p;
13205 last_fde = p;
13206 align = 4;
13207
13208 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13209 /* CIE length (rewrite in case little-endian). */
13210 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13211 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13212 p += last_fde_len + 4;
13213
13214 for (group = htab->group; group != NULL; group = group->next)
13215 if (group->eh_size != 0)
13216 {
13217 group->eh_base = p - htab->glink_eh_frame->contents;
13218 last_fde = p;
13219 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13220 /* FDE length. */
13221 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13222 p += 4;
13223 /* CIE pointer. */
13224 val = p - htab->glink_eh_frame->contents;
13225 bfd_put_32 (htab->elf.dynobj, val, p);
13226 p += 4;
13227 /* Offset to stub section, written later. */
13228 p += 4;
13229 /* stub section size. */
13230 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13231 p += 4;
13232 /* Augmentation. */
13233 p += 1;
13234 /* Make sure we don't have all nops. This is enough for
13235 elf-eh-frame.c to detect the last non-nop opcode. */
13236 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13237 p = last_fde + last_fde_len + 4;
13238 }
13239 if (htab->glink != NULL && htab->glink->size != 0)
13240 {
13241 last_fde = p;
13242 last_fde_len = ((24 + align - 1) & -align) - 4;
13243 /* FDE length. */
13244 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13245 p += 4;
13246 /* CIE pointer. */
13247 val = p - htab->glink_eh_frame->contents;
13248 bfd_put_32 (htab->elf.dynobj, val, p);
13249 p += 4;
13250 /* Offset to .glink, written later. */
13251 p += 4;
13252 /* .glink size. */
13253 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13254 p += 4;
13255 /* Augmentation. */
13256 p += 1;
13257
13258 *p++ = DW_CFA_advance_loc + 1;
13259 *p++ = DW_CFA_register;
13260 *p++ = 65;
13261 *p++ = htab->opd_abi ? 12 : 0;
13262 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13263 *p++ = DW_CFA_restore_extended;
13264 *p++ = 65;
13265 p += ((24 + align - 1) & -align) - 24;
13266 }
13267 /* Subsume any padding into the last FDE if user .eh_frame
13268 sections are aligned more than glink_eh_frame. Otherwise any
13269 zero padding will be seen as a terminator. */
13270 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13271 size = p - htab->glink_eh_frame->contents;
13272 pad = ((size + align - 1) & -align) - size;
13273 htab->glink_eh_frame->size = size + pad;
13274 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13275 }
13276
13277 maybe_strip_output (info, htab->brlt);
13278 if (htab->glink_eh_frame != NULL)
13279 maybe_strip_output (info, htab->glink_eh_frame);
13280
13281 return TRUE;
13282 }
13283
13284 /* Called after we have determined section placement. If sections
13285 move, we'll be called again. Provide a value for TOCstart. */
13286
13287 bfd_vma
13288 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13289 {
13290 asection *s;
13291 bfd_vma TOCstart, adjust;
13292
13293 if (info != NULL)
13294 {
13295 struct elf_link_hash_entry *h;
13296 struct elf_link_hash_table *htab = elf_hash_table (info);
13297
13298 if (is_elf_hash_table (htab)
13299 && htab->hgot != NULL)
13300 h = htab->hgot;
13301 else
13302 {
13303 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13304 if (is_elf_hash_table (htab))
13305 htab->hgot = h;
13306 }
13307 if (h != NULL
13308 && h->root.type == bfd_link_hash_defined
13309 && !h->root.linker_def
13310 && (!is_elf_hash_table (htab)
13311 || h->def_regular))
13312 {
13313 TOCstart = (h->root.u.def.value - TOC_BASE_OFF
13314 + h->root.u.def.section->output_offset
13315 + h->root.u.def.section->output_section->vma);
13316 _bfd_set_gp_value (obfd, TOCstart);
13317 return TOCstart;
13318 }
13319 }
13320
13321 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13322 order. The TOC starts where the first of these sections starts. */
13323 s = bfd_get_section_by_name (obfd, ".got");
13324 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13325 s = bfd_get_section_by_name (obfd, ".toc");
13326 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13327 s = bfd_get_section_by_name (obfd, ".tocbss");
13328 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13329 s = bfd_get_section_by_name (obfd, ".plt");
13330 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13331 {
13332 /* This may happen for
13333 o references to TOC base (SYM@toc / TOC[tc0]) without a
13334 .toc directive
13335 o bad linker script
13336 o --gc-sections and empty TOC sections
13337
13338 FIXME: Warn user? */
13339
13340 /* Look for a likely section. We probably won't even be
13341 using TOCstart. */
13342 for (s = obfd->sections; s != NULL; s = s->next)
13343 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13344 | SEC_EXCLUDE))
13345 == (SEC_ALLOC | SEC_SMALL_DATA))
13346 break;
13347 if (s == NULL)
13348 for (s = obfd->sections; s != NULL; s = s->next)
13349 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13350 == (SEC_ALLOC | SEC_SMALL_DATA))
13351 break;
13352 if (s == NULL)
13353 for (s = obfd->sections; s != NULL; s = s->next)
13354 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13355 == SEC_ALLOC)
13356 break;
13357 if (s == NULL)
13358 for (s = obfd->sections; s != NULL; s = s->next)
13359 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13360 break;
13361 }
13362
13363 TOCstart = 0;
13364 if (s != NULL)
13365 TOCstart = s->output_section->vma + s->output_offset;
13366
13367 /* Force alignment. */
13368 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13369 TOCstart -= adjust;
13370 _bfd_set_gp_value (obfd, TOCstart);
13371
13372 if (info != NULL && s != NULL)
13373 {
13374 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13375
13376 if (htab != NULL)
13377 {
13378 if (htab->elf.hgot != NULL)
13379 {
13380 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13381 htab->elf.hgot->root.u.def.section = s;
13382 }
13383 }
13384 else
13385 {
13386 struct bfd_link_hash_entry *bh = NULL;
13387 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13388 s, TOC_BASE_OFF - adjust,
13389 NULL, FALSE, FALSE, &bh);
13390 }
13391 }
13392 return TOCstart;
13393 }
13394
13395 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13396 write out any global entry stubs, and PLT relocations. */
13397
13398 static bfd_boolean
13399 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13400 {
13401 struct bfd_link_info *info;
13402 struct ppc_link_hash_table *htab;
13403 struct plt_entry *ent;
13404 asection *s;
13405
13406 if (h->root.type == bfd_link_hash_indirect)
13407 return TRUE;
13408
13409 info = inf;
13410 htab = ppc_hash_table (info);
13411 if (htab == NULL)
13412 return FALSE;
13413
13414 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13415 if (ent->plt.offset != (bfd_vma) -1)
13416 {
13417 /* This symbol has an entry in the procedure linkage
13418 table. Set it up. */
13419 Elf_Internal_Rela rela;
13420 asection *plt, *relplt;
13421 bfd_byte *loc;
13422
13423 if (!htab->elf.dynamic_sections_created
13424 || h->dynindx == -1)
13425 {
13426 if (!(h->def_regular
13427 && (h->root.type == bfd_link_hash_defined
13428 || h->root.type == bfd_link_hash_defweak)))
13429 continue;
13430 if (h->type == STT_GNU_IFUNC)
13431 {
13432 plt = htab->elf.iplt;
13433 relplt = htab->elf.irelplt;
13434 htab->local_ifunc_resolver = 1;
13435 if (htab->opd_abi)
13436 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13437 else
13438 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13439 }
13440 else
13441 {
13442 plt = htab->pltlocal;
13443 if (bfd_link_pic (info))
13444 {
13445 relplt = htab->relpltlocal;
13446 if (htab->opd_abi)
13447 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13448 else
13449 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13450 }
13451 else
13452 relplt = NULL;
13453 }
13454 rela.r_addend = (h->root.u.def.value
13455 + h->root.u.def.section->output_offset
13456 + h->root.u.def.section->output_section->vma
13457 + ent->addend);
13458
13459 if (relplt == NULL)
13460 {
13461 loc = plt->contents + ent->plt.offset;
13462 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13463 if (htab->opd_abi)
13464 {
13465 bfd_vma toc = elf_gp (info->output_bfd);
13466 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13467 bfd_put_64 (info->output_bfd, toc, loc + 8);
13468 }
13469 }
13470 else
13471 {
13472 rela.r_offset = (plt->output_section->vma
13473 + plt->output_offset
13474 + ent->plt.offset);
13475 loc = relplt->contents + (relplt->reloc_count++
13476 * sizeof (Elf64_External_Rela));
13477 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13478 }
13479 }
13480 else
13481 {
13482 rela.r_offset = (htab->elf.splt->output_section->vma
13483 + htab->elf.splt->output_offset
13484 + ent->plt.offset);
13485 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13486 rela.r_addend = ent->addend;
13487 loc = (htab->elf.srelplt->contents
13488 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13489 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13490 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13491 htab->maybe_local_ifunc_resolver = 1;
13492 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13493 }
13494 }
13495
13496 if (!h->pointer_equality_needed)
13497 return TRUE;
13498
13499 if (h->def_regular)
13500 return TRUE;
13501
13502 s = htab->global_entry;
13503 if (s == NULL || s->size == 0)
13504 return TRUE;
13505
13506 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13507 if (ent->plt.offset != (bfd_vma) -1
13508 && ent->addend == 0)
13509 {
13510 bfd_byte *p;
13511 asection *plt;
13512 bfd_vma off;
13513
13514 p = s->contents + h->root.u.def.value;
13515 plt = htab->elf.splt;
13516 if (!htab->elf.dynamic_sections_created
13517 || h->dynindx == -1)
13518 {
13519 if (h->type == STT_GNU_IFUNC)
13520 plt = htab->elf.iplt;
13521 else
13522 plt = htab->pltlocal;
13523 }
13524 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
13525 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
13526
13527 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
13528 {
13529 info->callbacks->einfo
13530 (_("%P: linkage table error against `%pT'\n"),
13531 h->root.root.string);
13532 bfd_set_error (bfd_error_bad_value);
13533 htab->stub_error = TRUE;
13534 }
13535
13536 htab->stub_count[ppc_stub_global_entry - 1] += 1;
13537 if (htab->params->emit_stub_syms)
13538 {
13539 size_t len = strlen (h->root.root.string);
13540 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
13541
13542 if (name == NULL)
13543 return FALSE;
13544
13545 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
13546 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
13547 if (h == NULL)
13548 return FALSE;
13549 if (h->root.type == bfd_link_hash_new)
13550 {
13551 h->root.type = bfd_link_hash_defined;
13552 h->root.u.def.section = s;
13553 h->root.u.def.value = p - s->contents;
13554 h->ref_regular = 1;
13555 h->def_regular = 1;
13556 h->ref_regular_nonweak = 1;
13557 h->forced_local = 1;
13558 h->non_elf = 0;
13559 h->root.linker_def = 1;
13560 }
13561 }
13562
13563 if (PPC_HA (off) != 0)
13564 {
13565 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
13566 p += 4;
13567 }
13568 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
13569 p += 4;
13570 bfd_put_32 (s->owner, MTCTR_R12, p);
13571 p += 4;
13572 bfd_put_32 (s->owner, BCTR, p);
13573 break;
13574 }
13575 return TRUE;
13576 }
13577
13578 /* Write PLT relocs for locals. */
13579
13580 static bfd_boolean
13581 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
13582 {
13583 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13584 bfd *ibfd;
13585
13586 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13587 {
13588 struct got_entry **lgot_ents, **end_lgot_ents;
13589 struct plt_entry **local_plt, **lplt, **end_local_plt;
13590 Elf_Internal_Shdr *symtab_hdr;
13591 bfd_size_type locsymcount;
13592 Elf_Internal_Sym *local_syms = NULL;
13593 struct plt_entry *ent;
13594
13595 if (!is_ppc64_elf (ibfd))
13596 continue;
13597
13598 lgot_ents = elf_local_got_ents (ibfd);
13599 if (!lgot_ents)
13600 continue;
13601
13602 symtab_hdr = &elf_symtab_hdr (ibfd);
13603 locsymcount = symtab_hdr->sh_info;
13604 end_lgot_ents = lgot_ents + locsymcount;
13605 local_plt = (struct plt_entry **) end_lgot_ents;
13606 end_local_plt = local_plt + locsymcount;
13607 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
13608 for (ent = *lplt; ent != NULL; ent = ent->next)
13609 if (ent->plt.offset != (bfd_vma) -1)
13610 {
13611 Elf_Internal_Sym *sym;
13612 asection *sym_sec;
13613 asection *plt, *relplt;
13614 bfd_byte *loc;
13615 bfd_vma val;
13616
13617 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
13618 lplt - local_plt, ibfd))
13619 {
13620 if (local_syms != NULL
13621 && symtab_hdr->contents != (unsigned char *) local_syms)
13622 free (local_syms);
13623 return FALSE;
13624 }
13625
13626 val = sym->st_value + ent->addend;
13627 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
13628 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
13629 if (sym_sec != NULL && sym_sec->output_section != NULL)
13630 val += sym_sec->output_offset + sym_sec->output_section->vma;
13631
13632 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13633 {
13634 htab->local_ifunc_resolver = 1;
13635 plt = htab->elf.iplt;
13636 relplt = htab->elf.irelplt;
13637 }
13638 else
13639 {
13640 plt = htab->pltlocal;
13641 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
13642 }
13643
13644 if (relplt == NULL)
13645 {
13646 loc = plt->contents + ent->plt.offset;
13647 bfd_put_64 (info->output_bfd, val, loc);
13648 if (htab->opd_abi)
13649 {
13650 bfd_vma toc = elf_gp (ibfd);
13651 bfd_put_64 (info->output_bfd, toc, loc + 8);
13652 }
13653 }
13654 else
13655 {
13656 Elf_Internal_Rela rela;
13657 rela.r_offset = (ent->plt.offset
13658 + plt->output_offset
13659 + plt->output_section->vma);
13660 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13661 {
13662 if (htab->opd_abi)
13663 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13664 else
13665 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13666 }
13667 else
13668 {
13669 if (htab->opd_abi)
13670 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13671 else
13672 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13673 }
13674 rela.r_addend = val;
13675 loc = relplt->contents + (relplt->reloc_count++
13676 * sizeof (Elf64_External_Rela));
13677 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13678 }
13679 }
13680
13681 if (local_syms != NULL
13682 && symtab_hdr->contents != (unsigned char *) local_syms)
13683 {
13684 if (!info->keep_memory)
13685 free (local_syms);
13686 else
13687 symtab_hdr->contents = (unsigned char *) local_syms;
13688 }
13689 }
13690 return TRUE;
13691 }
13692
13693 /* Build all the stubs associated with the current output file.
13694 The stubs are kept in a hash table attached to the main linker
13695 hash table. This function is called via gldelf64ppc_finish. */
13696
13697 bfd_boolean
13698 ppc64_elf_build_stubs (struct bfd_link_info *info,
13699 char **stats)
13700 {
13701 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13702 struct map_stub *group;
13703 asection *stub_sec;
13704 bfd_byte *p;
13705 int stub_sec_count = 0;
13706
13707 if (htab == NULL)
13708 return FALSE;
13709
13710 /* Allocate memory to hold the linker stubs. */
13711 for (group = htab->group; group != NULL; group = group->next)
13712 {
13713 group->eh_size = 0;
13714 group->lr_restore = 0;
13715 if ((stub_sec = group->stub_sec) != NULL
13716 && stub_sec->size != 0)
13717 {
13718 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
13719 stub_sec->size);
13720 if (stub_sec->contents == NULL)
13721 return FALSE;
13722 stub_sec->size = 0;
13723 }
13724 }
13725
13726 if (htab->glink != NULL && htab->glink->size != 0)
13727 {
13728 unsigned int indx;
13729 bfd_vma plt0;
13730
13731 /* Build the .glink plt call stub. */
13732 if (htab->params->emit_stub_syms)
13733 {
13734 struct elf_link_hash_entry *h;
13735 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
13736 TRUE, FALSE, FALSE);
13737 if (h == NULL)
13738 return FALSE;
13739 if (h->root.type == bfd_link_hash_new)
13740 {
13741 h->root.type = bfd_link_hash_defined;
13742 h->root.u.def.section = htab->glink;
13743 h->root.u.def.value = 8;
13744 h->ref_regular = 1;
13745 h->def_regular = 1;
13746 h->ref_regular_nonweak = 1;
13747 h->forced_local = 1;
13748 h->non_elf = 0;
13749 h->root.linker_def = 1;
13750 }
13751 }
13752 plt0 = (htab->elf.splt->output_section->vma
13753 + htab->elf.splt->output_offset
13754 - 16);
13755 if (info->emitrelocations)
13756 {
13757 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
13758 if (r == NULL)
13759 return FALSE;
13760 r->r_offset = (htab->glink->output_offset
13761 + htab->glink->output_section->vma);
13762 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
13763 r->r_addend = plt0;
13764 }
13765 p = htab->glink->contents;
13766 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
13767 bfd_put_64 (htab->glink->owner, plt0, p);
13768 p += 8;
13769 if (htab->opd_abi)
13770 {
13771 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
13772 p += 4;
13773 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13774 p += 4;
13775 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13776 p += 4;
13777 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13778 p += 4;
13779 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
13780 p += 4;
13781 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13782 p += 4;
13783 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13784 p += 4;
13785 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
13786 p += 4;
13787 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13788 p += 4;
13789 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
13790 p += 4;
13791 }
13792 else
13793 {
13794 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
13795 p += 4;
13796 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13797 p += 4;
13798 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13799 p += 4;
13800 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
13801 p += 4;
13802 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13803 p += 4;
13804 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
13805 p += 4;
13806 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
13807 p += 4;
13808 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13809 p += 4;
13810 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
13811 p += 4;
13812 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13813 p += 4;
13814 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
13815 p += 4;
13816 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13817 p += 4;
13818 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
13819 p += 4;
13820 }
13821 bfd_put_32 (htab->glink->owner, BCTR, p);
13822 p += 4;
13823 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
13824
13825 /* Build the .glink lazy link call stubs. */
13826 indx = 0;
13827 while (p < htab->glink->contents + htab->glink->size)
13828 {
13829 if (htab->opd_abi)
13830 {
13831 if (indx < 0x8000)
13832 {
13833 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
13834 p += 4;
13835 }
13836 else
13837 {
13838 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
13839 p += 4;
13840 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
13841 p);
13842 p += 4;
13843 }
13844 }
13845 bfd_put_32 (htab->glink->owner,
13846 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
13847 indx++;
13848 p += 4;
13849 }
13850 }
13851
13852 /* Build .glink global entry stubs, and PLT relocs for globals. */
13853 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
13854
13855 if (!write_plt_relocs_for_local_syms (info))
13856 return FALSE;
13857
13858 if (htab->brlt != NULL && htab->brlt->size != 0)
13859 {
13860 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
13861 htab->brlt->size);
13862 if (htab->brlt->contents == NULL)
13863 return FALSE;
13864 }
13865 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
13866 {
13867 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
13868 htab->relbrlt->size);
13869 if (htab->relbrlt->contents == NULL)
13870 return FALSE;
13871 }
13872
13873 /* Build the stubs as directed by the stub hash table. */
13874 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
13875
13876 for (group = htab->group; group != NULL; group = group->next)
13877 if (group->needs_save_res)
13878 group->stub_sec->size += htab->sfpr->size;
13879
13880 if (htab->relbrlt != NULL)
13881 htab->relbrlt->reloc_count = 0;
13882
13883 if (htab->params->plt_stub_align != 0)
13884 for (group = htab->group; group != NULL; group = group->next)
13885 if ((stub_sec = group->stub_sec) != NULL)
13886 {
13887 int align = abs (htab->params->plt_stub_align);
13888 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
13889 }
13890
13891 for (group = htab->group; group != NULL; group = group->next)
13892 if (group->needs_save_res)
13893 {
13894 stub_sec = group->stub_sec;
13895 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
13896 htab->sfpr->contents, htab->sfpr->size);
13897 if (htab->params->emit_stub_syms)
13898 {
13899 unsigned int i;
13900
13901 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
13902 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
13903 return FALSE;
13904 }
13905 }
13906
13907 if (htab->glink_eh_frame != NULL
13908 && htab->glink_eh_frame->size != 0)
13909 {
13910 bfd_vma val;
13911 size_t align = 4;
13912
13913 p = htab->glink_eh_frame->contents;
13914 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13915
13916 for (group = htab->group; group != NULL; group = group->next)
13917 if (group->eh_size != 0)
13918 {
13919 /* Offset to stub section. */
13920 val = (group->stub_sec->output_section->vma
13921 + group->stub_sec->output_offset);
13922 val -= (htab->glink_eh_frame->output_section->vma
13923 + htab->glink_eh_frame->output_offset
13924 + (p + 8 - htab->glink_eh_frame->contents));
13925 if (val + 0x80000000 > 0xffffffff)
13926 {
13927 _bfd_error_handler
13928 (_("%s offset too large for .eh_frame sdata4 encoding"),
13929 group->stub_sec->name);
13930 return FALSE;
13931 }
13932 bfd_put_32 (htab->elf.dynobj, val, p + 8);
13933 p += (group->eh_size + 17 + 3) & -4;
13934 }
13935 if (htab->glink != NULL && htab->glink->size != 0)
13936 {
13937 /* Offset to .glink. */
13938 val = (htab->glink->output_section->vma
13939 + htab->glink->output_offset
13940 + 8);
13941 val -= (htab->glink_eh_frame->output_section->vma
13942 + htab->glink_eh_frame->output_offset
13943 + (p + 8 - htab->glink_eh_frame->contents));
13944 if (val + 0x80000000 > 0xffffffff)
13945 {
13946 _bfd_error_handler
13947 (_("%s offset too large for .eh_frame sdata4 encoding"),
13948 htab->glink->name);
13949 return FALSE;
13950 }
13951 bfd_put_32 (htab->elf.dynobj, val, p + 8);
13952 p += (24 + align - 1) & -align;
13953 }
13954 }
13955
13956 for (group = htab->group; group != NULL; group = group->next)
13957 if ((stub_sec = group->stub_sec) != NULL)
13958 {
13959 stub_sec_count += 1;
13960 if (stub_sec->rawsize != stub_sec->size
13961 && (htab->stub_iteration <= STUB_SHRINK_ITER
13962 || stub_sec->rawsize < stub_sec->size))
13963 break;
13964 }
13965
13966 if (group != NULL)
13967 {
13968 htab->stub_error = TRUE;
13969 _bfd_error_handler (_("stubs don't match calculated size"));
13970 }
13971
13972 if (htab->stub_error)
13973 return FALSE;
13974
13975 if (stats != NULL)
13976 {
13977 size_t len;
13978 *stats = bfd_malloc (500);
13979 if (*stats == NULL)
13980 return FALSE;
13981
13982 len = sprintf (*stats,
13983 ngettext ("linker stubs in %u group\n",
13984 "linker stubs in %u groups\n",
13985 stub_sec_count),
13986 stub_sec_count);
13987 sprintf (*stats + len, _(" branch %lu\n"
13988 " branch toc adj %lu\n"
13989 " branch notoc %lu\n"
13990 " branch both %lu\n"
13991 " long branch %lu\n"
13992 " long toc adj %lu\n"
13993 " long notoc %lu\n"
13994 " long both %lu\n"
13995 " plt call %lu\n"
13996 " plt call save %lu\n"
13997 " plt call notoc %lu\n"
13998 " plt call both %lu\n"
13999 " global entry %lu"),
14000 htab->stub_count[ppc_stub_long_branch - 1],
14001 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14002 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14003 htab->stub_count[ppc_stub_long_branch_both - 1],
14004 htab->stub_count[ppc_stub_plt_branch - 1],
14005 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14006 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14007 htab->stub_count[ppc_stub_plt_branch_both - 1],
14008 htab->stub_count[ppc_stub_plt_call - 1],
14009 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14010 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14011 htab->stub_count[ppc_stub_plt_call_both - 1],
14012 htab->stub_count[ppc_stub_global_entry - 1]);
14013 }
14014 return TRUE;
14015 }
14016
14017 /* What to do when ld finds relocations against symbols defined in
14018 discarded sections. */
14019
14020 static unsigned int
14021 ppc64_elf_action_discarded (asection *sec)
14022 {
14023 if (strcmp (".opd", sec->name) == 0)
14024 return 0;
14025
14026 if (strcmp (".toc", sec->name) == 0)
14027 return 0;
14028
14029 if (strcmp (".toc1", sec->name) == 0)
14030 return 0;
14031
14032 return _bfd_elf_default_action_discarded (sec);
14033 }
14034
14035 /* The RELOCATE_SECTION function is called by the ELF backend linker
14036 to handle the relocations for a section.
14037
14038 The relocs are always passed as Rela structures; if the section
14039 actually uses Rel structures, the r_addend field will always be
14040 zero.
14041
14042 This function is responsible for adjust the section contents as
14043 necessary, and (if using Rela relocs and generating a
14044 relocatable output file) adjusting the reloc addend as
14045 necessary.
14046
14047 This function does not have to worry about setting the reloc
14048 address or the reloc symbol index.
14049
14050 LOCAL_SYMS is a pointer to the swapped in local symbols.
14051
14052 LOCAL_SECTIONS is an array giving the section in the input file
14053 corresponding to the st_shndx field of each local symbol.
14054
14055 The global hash table entry for the global symbols can be found
14056 via elf_sym_hashes (input_bfd).
14057
14058 When generating relocatable output, this function must handle
14059 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14060 going to be the section symbol corresponding to the output
14061 section, which means that the addend must be adjusted
14062 accordingly. */
14063
14064 static bfd_boolean
14065 ppc64_elf_relocate_section (bfd *output_bfd,
14066 struct bfd_link_info *info,
14067 bfd *input_bfd,
14068 asection *input_section,
14069 bfd_byte *contents,
14070 Elf_Internal_Rela *relocs,
14071 Elf_Internal_Sym *local_syms,
14072 asection **local_sections)
14073 {
14074 struct ppc_link_hash_table *htab;
14075 Elf_Internal_Shdr *symtab_hdr;
14076 struct elf_link_hash_entry **sym_hashes;
14077 Elf_Internal_Rela *rel;
14078 Elf_Internal_Rela *wrel;
14079 Elf_Internal_Rela *relend;
14080 Elf_Internal_Rela outrel;
14081 bfd_byte *loc;
14082 struct got_entry **local_got_ents;
14083 bfd_vma TOCstart;
14084 bfd_boolean ret = TRUE;
14085 bfd_boolean is_opd;
14086 /* Assume 'at' branch hints. */
14087 bfd_boolean is_isa_v2 = TRUE;
14088 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14089
14090 /* Initialize howto table if needed. */
14091 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14092 ppc_howto_init ();
14093
14094 htab = ppc_hash_table (info);
14095 if (htab == NULL)
14096 return FALSE;
14097
14098 /* Don't relocate stub sections. */
14099 if (input_section->owner == htab->params->stub_bfd)
14100 return TRUE;
14101
14102 if (!is_ppc64_elf (input_bfd))
14103 {
14104 bfd_set_error (bfd_error_wrong_format);
14105 return FALSE;
14106 }
14107
14108 local_got_ents = elf_local_got_ents (input_bfd);
14109 TOCstart = elf_gp (output_bfd);
14110 symtab_hdr = &elf_symtab_hdr (input_bfd);
14111 sym_hashes = elf_sym_hashes (input_bfd);
14112 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14113
14114 rel = wrel = relocs;
14115 relend = relocs + input_section->reloc_count;
14116 for (; rel < relend; wrel++, rel++)
14117 {
14118 enum elf_ppc64_reloc_type r_type;
14119 bfd_vma addend;
14120 bfd_reloc_status_type r;
14121 Elf_Internal_Sym *sym;
14122 asection *sec;
14123 struct elf_link_hash_entry *h_elf;
14124 struct ppc_link_hash_entry *h;
14125 struct ppc_link_hash_entry *fdh;
14126 const char *sym_name;
14127 unsigned long r_symndx, toc_symndx;
14128 bfd_vma toc_addend;
14129 unsigned char tls_mask, tls_gd, tls_type;
14130 unsigned char sym_type;
14131 bfd_vma relocation;
14132 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14133 bfd_boolean warned;
14134 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14135 unsigned int insn;
14136 unsigned int mask;
14137 struct ppc_stub_hash_entry *stub_entry;
14138 bfd_vma max_br_offset;
14139 bfd_vma from;
14140 Elf_Internal_Rela orig_rel;
14141 reloc_howto_type *howto;
14142 struct reloc_howto_struct alt_howto;
14143 uint64_t pinsn;
14144 bfd_vma offset;
14145
14146 again:
14147 orig_rel = *rel;
14148
14149 r_type = ELF64_R_TYPE (rel->r_info);
14150 r_symndx = ELF64_R_SYM (rel->r_info);
14151
14152 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14153 symbol of the previous ADDR64 reloc. The symbol gives us the
14154 proper TOC base to use. */
14155 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14156 && wrel != relocs
14157 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14158 && is_opd)
14159 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14160
14161 sym = NULL;
14162 sec = NULL;
14163 h_elf = NULL;
14164 sym_name = NULL;
14165 unresolved_reloc = FALSE;
14166 warned = FALSE;
14167
14168 if (r_symndx < symtab_hdr->sh_info)
14169 {
14170 /* It's a local symbol. */
14171 struct _opd_sec_data *opd;
14172
14173 sym = local_syms + r_symndx;
14174 sec = local_sections[r_symndx];
14175 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14176 sym_type = ELF64_ST_TYPE (sym->st_info);
14177 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14178 opd = get_opd_info (sec);
14179 if (opd != NULL && opd->adjust != NULL)
14180 {
14181 long adjust = opd->adjust[OPD_NDX (sym->st_value
14182 + rel->r_addend)];
14183 if (adjust == -1)
14184 relocation = 0;
14185 else
14186 {
14187 /* If this is a relocation against the opd section sym
14188 and we have edited .opd, adjust the reloc addend so
14189 that ld -r and ld --emit-relocs output is correct.
14190 If it is a reloc against some other .opd symbol,
14191 then the symbol value will be adjusted later. */
14192 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14193 rel->r_addend += adjust;
14194 else
14195 relocation += adjust;
14196 }
14197 }
14198 }
14199 else
14200 {
14201 bfd_boolean ignored;
14202
14203 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14204 r_symndx, symtab_hdr, sym_hashes,
14205 h_elf, sec, relocation,
14206 unresolved_reloc, warned, ignored);
14207 sym_name = h_elf->root.root.string;
14208 sym_type = h_elf->type;
14209 if (sec != NULL
14210 && sec->owner == output_bfd
14211 && strcmp (sec->name, ".opd") == 0)
14212 {
14213 /* This is a symbol defined in a linker script. All
14214 such are defined in output sections, even those
14215 defined by simple assignment from a symbol defined in
14216 an input section. Transfer the symbol to an
14217 appropriate input .opd section, so that a branch to
14218 this symbol will be mapped to the location specified
14219 by the opd entry. */
14220 struct bfd_link_order *lo;
14221 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14222 if (lo->type == bfd_indirect_link_order)
14223 {
14224 asection *isec = lo->u.indirect.section;
14225 if (h_elf->root.u.def.value >= isec->output_offset
14226 && h_elf->root.u.def.value < (isec->output_offset
14227 + isec->size))
14228 {
14229 h_elf->root.u.def.value -= isec->output_offset;
14230 h_elf->root.u.def.section = isec;
14231 sec = isec;
14232 break;
14233 }
14234 }
14235 }
14236 }
14237 h = (struct ppc_link_hash_entry *) h_elf;
14238
14239 if (sec != NULL && discarded_section (sec))
14240 {
14241 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14242 input_bfd, input_section,
14243 contents, rel->r_offset);
14244 wrel->r_offset = rel->r_offset;
14245 wrel->r_info = 0;
14246 wrel->r_addend = 0;
14247
14248 /* For ld -r, remove relocations in debug sections against
14249 symbols defined in discarded sections. Not done for
14250 non-debug to preserve relocs in .eh_frame which the
14251 eh_frame editing code expects to be present. */
14252 if (bfd_link_relocatable (info)
14253 && (input_section->flags & SEC_DEBUGGING))
14254 wrel--;
14255
14256 continue;
14257 }
14258
14259 if (bfd_link_relocatable (info))
14260 goto copy_reloc;
14261
14262 if (h != NULL && &h->elf == htab->elf.hgot)
14263 {
14264 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14265 sec = bfd_abs_section_ptr;
14266 unresolved_reloc = FALSE;
14267 }
14268
14269 /* TLS optimizations. Replace instruction sequences and relocs
14270 based on information we collected in tls_optimize. We edit
14271 RELOCS so that --emit-relocs will output something sensible
14272 for the final instruction stream. */
14273 tls_mask = 0;
14274 tls_gd = 0;
14275 toc_symndx = 0;
14276 if (h != NULL)
14277 tls_mask = h->tls_mask;
14278 else if (local_got_ents != NULL)
14279 {
14280 struct plt_entry **local_plt = (struct plt_entry **)
14281 (local_got_ents + symtab_hdr->sh_info);
14282 unsigned char *lgot_masks = (unsigned char *)
14283 (local_plt + symtab_hdr->sh_info);
14284 tls_mask = lgot_masks[r_symndx];
14285 }
14286 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14287 && (r_type == R_PPC64_TLS
14288 || r_type == R_PPC64_TLSGD
14289 || r_type == R_PPC64_TLSLD))
14290 {
14291 /* Check for toc tls entries. */
14292 unsigned char *toc_tls;
14293
14294 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14295 &local_syms, rel, input_bfd))
14296 return FALSE;
14297
14298 if (toc_tls)
14299 tls_mask = *toc_tls;
14300 }
14301
14302 /* Check that tls relocs are used with tls syms, and non-tls
14303 relocs are used with non-tls syms. */
14304 if (r_symndx != STN_UNDEF
14305 && r_type != R_PPC64_NONE
14306 && (h == NULL
14307 || h->elf.root.type == bfd_link_hash_defined
14308 || h->elf.root.type == bfd_link_hash_defweak)
14309 && (IS_PPC64_TLS_RELOC (r_type)
14310 != (sym_type == STT_TLS
14311 || (sym_type == STT_SECTION
14312 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
14313 {
14314 if ((tls_mask & TLS_TLS) != 0
14315 && (r_type == R_PPC64_TLS
14316 || r_type == R_PPC64_TLSGD
14317 || r_type == R_PPC64_TLSLD))
14318 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14319 ;
14320 else
14321 info->callbacks->einfo
14322 (!IS_PPC64_TLS_RELOC (r_type)
14323 /* xgettext:c-format */
14324 ? _("%H: %s used with TLS symbol `%pT'\n")
14325 /* xgettext:c-format */
14326 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14327 input_bfd, input_section, rel->r_offset,
14328 ppc64_elf_howto_table[r_type]->name,
14329 sym_name);
14330 }
14331
14332 /* Ensure reloc mapping code below stays sane. */
14333 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14334 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14335 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14336 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14337 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14338 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14339 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14340 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14341 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14342 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14343 abort ();
14344
14345 switch (r_type)
14346 {
14347 default:
14348 break;
14349
14350 case R_PPC64_LO_DS_OPT:
14351 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
14352 if ((insn & (0x3f << 26)) != 58u << 26)
14353 abort ();
14354 insn += (14u << 26) - (58u << 26);
14355 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
14356 r_type = R_PPC64_TOC16_LO;
14357 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14358 break;
14359
14360 case R_PPC64_TOC16:
14361 case R_PPC64_TOC16_LO:
14362 case R_PPC64_TOC16_DS:
14363 case R_PPC64_TOC16_LO_DS:
14364 {
14365 /* Check for toc tls entries. */
14366 unsigned char *toc_tls;
14367 int retval;
14368
14369 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14370 &local_syms, rel, input_bfd);
14371 if (retval == 0)
14372 return FALSE;
14373
14374 if (toc_tls)
14375 {
14376 tls_mask = *toc_tls;
14377 if (r_type == R_PPC64_TOC16_DS
14378 || r_type == R_PPC64_TOC16_LO_DS)
14379 {
14380 if ((tls_mask & TLS_TLS) != 0
14381 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
14382 goto toctprel;
14383 }
14384 else
14385 {
14386 /* If we found a GD reloc pair, then we might be
14387 doing a GD->IE transition. */
14388 if (retval == 2)
14389 {
14390 tls_gd = TLS_TPRELGD;
14391 if ((tls_mask & TLS_TLS) != 0
14392 && (tls_mask & TLS_GD) == 0)
14393 goto tls_ldgd_opt;
14394 }
14395 else if (retval == 3)
14396 {
14397 if ((tls_mask & TLS_TLS) != 0
14398 && (tls_mask & TLS_LD) == 0)
14399 goto tls_ldgd_opt;
14400 }
14401 }
14402 }
14403 }
14404 break;
14405
14406 case R_PPC64_GOT_TPREL16_HI:
14407 case R_PPC64_GOT_TPREL16_HA:
14408 if ((tls_mask & TLS_TLS) != 0
14409 && (tls_mask & TLS_TPREL) == 0)
14410 {
14411 rel->r_offset -= d_offset;
14412 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14413 r_type = R_PPC64_NONE;
14414 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14415 }
14416 break;
14417
14418 case R_PPC64_GOT_TPREL16_DS:
14419 case R_PPC64_GOT_TPREL16_LO_DS:
14420 if ((tls_mask & TLS_TLS) != 0
14421 && (tls_mask & TLS_TPREL) == 0)
14422 {
14423 toctprel:
14424 insn = bfd_get_32 (input_bfd,
14425 contents + rel->r_offset - d_offset);
14426 insn &= 31 << 21;
14427 insn |= 0x3c0d0000; /* addis 0,13,0 */
14428 bfd_put_32 (input_bfd, insn,
14429 contents + rel->r_offset - d_offset);
14430 r_type = R_PPC64_TPREL16_HA;
14431 if (toc_symndx != 0)
14432 {
14433 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14434 rel->r_addend = toc_addend;
14435 /* We changed the symbol. Start over in order to
14436 get h, sym, sec etc. right. */
14437 goto again;
14438 }
14439 else
14440 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14441 }
14442 break;
14443
14444 case R_PPC64_TLS:
14445 if ((tls_mask & TLS_TLS) != 0
14446 && (tls_mask & TLS_TPREL) == 0)
14447 {
14448 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14449 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
14450 if (insn == 0)
14451 abort ();
14452 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
14453 /* Was PPC64_TLS which sits on insn boundary, now
14454 PPC64_TPREL16_LO which is at low-order half-word. */
14455 rel->r_offset += d_offset;
14456 r_type = R_PPC64_TPREL16_LO;
14457 if (toc_symndx != 0)
14458 {
14459 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14460 rel->r_addend = toc_addend;
14461 /* We changed the symbol. Start over in order to
14462 get h, sym, sec etc. right. */
14463 goto again;
14464 }
14465 else
14466 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14467 }
14468 break;
14469
14470 case R_PPC64_GOT_TLSGD16_HI:
14471 case R_PPC64_GOT_TLSGD16_HA:
14472 tls_gd = TLS_TPRELGD;
14473 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14474 goto tls_gdld_hi;
14475 break;
14476
14477 case R_PPC64_GOT_TLSLD16_HI:
14478 case R_PPC64_GOT_TLSLD16_HA:
14479 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14480 {
14481 tls_gdld_hi:
14482 if ((tls_mask & tls_gd) != 0)
14483 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
14484 + R_PPC64_GOT_TPREL16_DS);
14485 else
14486 {
14487 rel->r_offset -= d_offset;
14488 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14489 r_type = R_PPC64_NONE;
14490 }
14491 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14492 }
14493 break;
14494
14495 case R_PPC64_GOT_TLSGD16:
14496 case R_PPC64_GOT_TLSGD16_LO:
14497 tls_gd = TLS_TPRELGD;
14498 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14499 goto tls_ldgd_opt;
14500 break;
14501
14502 case R_PPC64_GOT_TLSLD16:
14503 case R_PPC64_GOT_TLSLD16_LO:
14504 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14505 {
14506 unsigned int insn1, insn2;
14507
14508 tls_ldgd_opt:
14509 offset = (bfd_vma) -1;
14510 /* If not using the newer R_PPC64_TLSGD/LD to mark
14511 __tls_get_addr calls, we must trust that the call
14512 stays with its arg setup insns, ie. that the next
14513 reloc is the __tls_get_addr call associated with
14514 the current reloc. Edit both insns. */
14515 if (input_section->has_tls_get_addr_call
14516 && rel + 1 < relend
14517 && branch_reloc_hash_match (input_bfd, rel + 1,
14518 htab->tls_get_addr,
14519 htab->tls_get_addr_fd))
14520 offset = rel[1].r_offset;
14521 /* We read the low GOT_TLS (or TOC16) insn because we
14522 need to keep the destination reg. It may be
14523 something other than the usual r3, and moved to r3
14524 before the call by intervening code. */
14525 insn1 = bfd_get_32 (input_bfd,
14526 contents + rel->r_offset - d_offset);
14527 if ((tls_mask & tls_gd) != 0)
14528 {
14529 /* IE */
14530 insn1 &= (0x1f << 21) | (0x1f << 16);
14531 insn1 |= 58 << 26; /* ld */
14532 insn2 = 0x7c636a14; /* add 3,3,13 */
14533 if (offset != (bfd_vma) -1)
14534 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14535 if ((tls_mask & TLS_EXPLICIT) == 0)
14536 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
14537 + R_PPC64_GOT_TPREL16_DS);
14538 else
14539 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
14540 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14541 }
14542 else
14543 {
14544 /* LE */
14545 insn1 &= 0x1f << 21;
14546 insn1 |= 0x3c0d0000; /* addis r,13,0 */
14547 insn2 = 0x38630000; /* addi 3,3,0 */
14548 if (tls_gd == 0)
14549 {
14550 /* Was an LD reloc. */
14551 if (toc_symndx)
14552 sec = local_sections[toc_symndx];
14553 for (r_symndx = 0;
14554 r_symndx < symtab_hdr->sh_info;
14555 r_symndx++)
14556 if (local_sections[r_symndx] == sec)
14557 break;
14558 if (r_symndx >= symtab_hdr->sh_info)
14559 r_symndx = STN_UNDEF;
14560 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14561 if (r_symndx != STN_UNDEF)
14562 rel->r_addend -= (local_syms[r_symndx].st_value
14563 + sec->output_offset
14564 + sec->output_section->vma);
14565 }
14566 else if (toc_symndx != 0)
14567 {
14568 r_symndx = toc_symndx;
14569 rel->r_addend = toc_addend;
14570 }
14571 r_type = R_PPC64_TPREL16_HA;
14572 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14573 if (offset != (bfd_vma) -1)
14574 {
14575 rel[1].r_info = ELF64_R_INFO (r_symndx,
14576 R_PPC64_TPREL16_LO);
14577 rel[1].r_offset = offset + d_offset;
14578 rel[1].r_addend = rel->r_addend;
14579 }
14580 }
14581 bfd_put_32 (input_bfd, insn1,
14582 contents + rel->r_offset - d_offset);
14583 if (offset != (bfd_vma) -1)
14584 {
14585 bfd_put_32 (input_bfd, insn2, contents + offset);
14586 if (offset + 8 <= input_section->size)
14587 {
14588 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14589 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
14590 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
14591 }
14592 }
14593 if ((tls_mask & tls_gd) == 0
14594 && (tls_gd == 0 || toc_symndx != 0))
14595 {
14596 /* We changed the symbol. Start over in order
14597 to get h, sym, sec etc. right. */
14598 goto again;
14599 }
14600 }
14601 break;
14602
14603 case R_PPC64_TLSGD:
14604 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
14605 && rel + 1 < relend)
14606 {
14607 unsigned int insn2;
14608 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14609
14610 offset = rel->r_offset;
14611 if (is_plt_seq_reloc (r_type1))
14612 {
14613 bfd_put_32 (output_bfd, NOP, contents + offset);
14614 if (r_type1 == R_PPC64_PLT_PCREL34
14615 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14616 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14617 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14618 break;
14619 }
14620
14621 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14622 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14623
14624 if ((tls_mask & TLS_TPRELGD) != 0)
14625 {
14626 /* IE */
14627 r_type = R_PPC64_NONE;
14628 insn2 = 0x7c636a14; /* add 3,3,13 */
14629 }
14630 else
14631 {
14632 /* LE */
14633 if (toc_symndx != 0)
14634 {
14635 r_symndx = toc_symndx;
14636 rel->r_addend = toc_addend;
14637 }
14638 r_type = R_PPC64_TPREL16_LO;
14639 rel->r_offset = offset + d_offset;
14640 insn2 = 0x38630000; /* addi 3,3,0 */
14641 }
14642 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14643 /* Zap the reloc on the _tls_get_addr call too. */
14644 BFD_ASSERT (offset == rel[1].r_offset);
14645 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14646 bfd_put_32 (input_bfd, insn2, contents + offset);
14647 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
14648 goto again;
14649 }
14650 break;
14651
14652 case R_PPC64_TLSLD:
14653 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
14654 && rel + 1 < relend)
14655 {
14656 unsigned int insn2;
14657 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14658
14659 offset = rel->r_offset;
14660 if (is_plt_seq_reloc (r_type1))
14661 {
14662 bfd_put_32 (output_bfd, NOP, contents + offset);
14663 if (r_type1 == R_PPC64_PLT_PCREL34
14664 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14665 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14666 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14667 break;
14668 }
14669
14670 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14671 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14672
14673 if (toc_symndx)
14674 sec = local_sections[toc_symndx];
14675 for (r_symndx = 0;
14676 r_symndx < symtab_hdr->sh_info;
14677 r_symndx++)
14678 if (local_sections[r_symndx] == sec)
14679 break;
14680 if (r_symndx >= symtab_hdr->sh_info)
14681 r_symndx = STN_UNDEF;
14682 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14683 if (r_symndx != STN_UNDEF)
14684 rel->r_addend -= (local_syms[r_symndx].st_value
14685 + sec->output_offset
14686 + sec->output_section->vma);
14687
14688 r_type = R_PPC64_TPREL16_LO;
14689 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14690 rel->r_offset = offset + d_offset;
14691 /* Zap the reloc on the _tls_get_addr call too. */
14692 BFD_ASSERT (offset == rel[1].r_offset);
14693 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14694 insn2 = 0x38630000; /* addi 3,3,0 */
14695 bfd_put_32 (input_bfd, insn2, contents + offset);
14696 goto again;
14697 }
14698 break;
14699
14700 case R_PPC64_DTPMOD64:
14701 if (rel + 1 < relend
14702 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
14703 && rel[1].r_offset == rel->r_offset + 8)
14704 {
14705 if ((tls_mask & TLS_GD) == 0)
14706 {
14707 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
14708 if ((tls_mask & TLS_TPRELGD) != 0)
14709 r_type = R_PPC64_TPREL64;
14710 else
14711 {
14712 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14713 r_type = R_PPC64_NONE;
14714 }
14715 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14716 }
14717 }
14718 else
14719 {
14720 if ((tls_mask & TLS_LD) == 0)
14721 {
14722 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14723 r_type = R_PPC64_NONE;
14724 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14725 }
14726 }
14727 break;
14728
14729 case R_PPC64_TPREL64:
14730 if ((tls_mask & TLS_TPREL) == 0)
14731 {
14732 r_type = R_PPC64_NONE;
14733 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14734 }
14735 break;
14736
14737 case R_PPC64_ENTRY:
14738 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14739 if (!bfd_link_pic (info)
14740 && !info->traditional_format
14741 && relocation + 0x80008000 <= 0xffffffff)
14742 {
14743 unsigned int insn1, insn2;
14744
14745 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14746 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14747 if ((insn1 & ~0xfffc) == LD_R2_0R12
14748 && insn2 == ADD_R2_R2_R12)
14749 {
14750 bfd_put_32 (input_bfd,
14751 LIS_R2 + PPC_HA (relocation),
14752 contents + rel->r_offset);
14753 bfd_put_32 (input_bfd,
14754 ADDI_R2_R2 + PPC_LO (relocation),
14755 contents + rel->r_offset + 4);
14756 }
14757 }
14758 else
14759 {
14760 relocation -= (rel->r_offset
14761 + input_section->output_offset
14762 + input_section->output_section->vma);
14763 if (relocation + 0x80008000 <= 0xffffffff)
14764 {
14765 unsigned int insn1, insn2;
14766
14767 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14768 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14769 if ((insn1 & ~0xfffc) == LD_R2_0R12
14770 && insn2 == ADD_R2_R2_R12)
14771 {
14772 bfd_put_32 (input_bfd,
14773 ADDIS_R2_R12 + PPC_HA (relocation),
14774 contents + rel->r_offset);
14775 bfd_put_32 (input_bfd,
14776 ADDI_R2_R2 + PPC_LO (relocation),
14777 contents + rel->r_offset + 4);
14778 }
14779 }
14780 }
14781 break;
14782
14783 case R_PPC64_REL16_HA:
14784 /* If we are generating a non-PIC executable, edit
14785 . 0: addis 2,12,.TOC.-0b@ha
14786 . addi 2,2,.TOC.-0b@l
14787 used by ELFv2 global entry points to set up r2, to
14788 . lis 2,.TOC.@ha
14789 . addi 2,2,.TOC.@l
14790 if .TOC. is in range. */
14791 if (!bfd_link_pic (info)
14792 && !info->traditional_format
14793 && !htab->opd_abi
14794 && rel->r_addend == d_offset
14795 && h != NULL && &h->elf == htab->elf.hgot
14796 && rel + 1 < relend
14797 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
14798 && rel[1].r_offset == rel->r_offset + 4
14799 && rel[1].r_addend == rel->r_addend + 4
14800 && relocation + 0x80008000 <= 0xffffffff)
14801 {
14802 unsigned int insn1, insn2;
14803 offset = rel->r_offset - d_offset;
14804 insn1 = bfd_get_32 (input_bfd, contents + offset);
14805 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14806 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
14807 && (insn2 & 0xffff0000) == ADDI_R2_R2)
14808 {
14809 r_type = R_PPC64_ADDR16_HA;
14810 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14811 rel->r_addend -= d_offset;
14812 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
14813 rel[1].r_addend -= d_offset + 4;
14814 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
14815 }
14816 }
14817 break;
14818 }
14819
14820 /* Handle other relocations that tweak non-addend part of insn. */
14821 insn = 0;
14822 max_br_offset = 1 << 25;
14823 addend = rel->r_addend;
14824 reloc_dest = DEST_NORMAL;
14825 switch (r_type)
14826 {
14827 default:
14828 break;
14829
14830 case R_PPC64_TOCSAVE:
14831 if (relocation + addend == (rel->r_offset
14832 + input_section->output_offset
14833 + input_section->output_section->vma)
14834 && tocsave_find (htab, NO_INSERT,
14835 &local_syms, rel, input_bfd))
14836 {
14837 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14838 if (insn == NOP
14839 || insn == CROR_151515 || insn == CROR_313131)
14840 bfd_put_32 (input_bfd,
14841 STD_R2_0R1 + STK_TOC (htab),
14842 contents + rel->r_offset);
14843 }
14844 break;
14845
14846 /* Branch taken prediction relocations. */
14847 case R_PPC64_ADDR14_BRTAKEN:
14848 case R_PPC64_REL14_BRTAKEN:
14849 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
14850 /* Fall through. */
14851
14852 /* Branch not taken prediction relocations. */
14853 case R_PPC64_ADDR14_BRNTAKEN:
14854 case R_PPC64_REL14_BRNTAKEN:
14855 insn |= bfd_get_32 (input_bfd,
14856 contents + rel->r_offset) & ~(0x01 << 21);
14857 /* Fall through. */
14858
14859 case R_PPC64_REL14:
14860 max_br_offset = 1 << 15;
14861 /* Fall through. */
14862
14863 case R_PPC64_REL24:
14864 case R_PPC64_REL24_NOTOC:
14865 case R_PPC64_PLTCALL:
14866 case R_PPC64_PLTCALL_NOTOC:
14867 /* Calls to functions with a different TOC, such as calls to
14868 shared objects, need to alter the TOC pointer. This is
14869 done using a linkage stub. A REL24 branching to these
14870 linkage stubs needs to be followed by a nop, as the nop
14871 will be replaced with an instruction to restore the TOC
14872 base pointer. */
14873 fdh = h;
14874 if (h != NULL
14875 && h->oh != NULL
14876 && h->oh->is_func_descriptor)
14877 fdh = ppc_follow_link (h->oh);
14878 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
14879 htab);
14880 if ((r_type == R_PPC64_PLTCALL
14881 || r_type == R_PPC64_PLTCALL_NOTOC)
14882 && stub_entry != NULL
14883 && stub_entry->stub_type >= ppc_stub_plt_call
14884 && stub_entry->stub_type <= ppc_stub_plt_call_both)
14885 stub_entry = NULL;
14886
14887 if (stub_entry != NULL
14888 && ((stub_entry->stub_type >= ppc_stub_plt_call
14889 && stub_entry->stub_type <= ppc_stub_plt_call_both)
14890 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
14891 || stub_entry->stub_type == ppc_stub_plt_branch_both
14892 || stub_entry->stub_type == ppc_stub_long_branch_r2off
14893 || stub_entry->stub_type == ppc_stub_long_branch_both))
14894 {
14895 bfd_boolean can_plt_call = FALSE;
14896
14897 if (stub_entry->stub_type == ppc_stub_plt_call
14898 && !htab->opd_abi
14899 && htab->params->plt_localentry0 != 0
14900 && is_elfv2_localentry0 (&h->elf))
14901 {
14902 /* The function doesn't use or change r2. */
14903 can_plt_call = TRUE;
14904 }
14905 else if (r_type == R_PPC64_REL24_NOTOC)
14906 {
14907 /* NOTOC calls don't need to restore r2. */
14908 can_plt_call = TRUE;
14909 }
14910
14911 /* All of these stubs may modify r2, so there must be a
14912 branch and link followed by a nop. The nop is
14913 replaced by an insn to restore r2. */
14914 else if (rel->r_offset + 8 <= input_section->size)
14915 {
14916 unsigned long br;
14917
14918 br = bfd_get_32 (input_bfd,
14919 contents + rel->r_offset);
14920 if ((br & 1) != 0)
14921 {
14922 unsigned long nop;
14923
14924 nop = bfd_get_32 (input_bfd,
14925 contents + rel->r_offset + 4);
14926 if (nop == LD_R2_0R1 + STK_TOC (htab))
14927 can_plt_call = TRUE;
14928 else if (nop == NOP
14929 || nop == CROR_151515
14930 || nop == CROR_313131)
14931 {
14932 if (h != NULL
14933 && (h == htab->tls_get_addr_fd
14934 || h == htab->tls_get_addr)
14935 && htab->params->tls_get_addr_opt)
14936 {
14937 /* Special stub used, leave nop alone. */
14938 }
14939 else
14940 bfd_put_32 (input_bfd,
14941 LD_R2_0R1 + STK_TOC (htab),
14942 contents + rel->r_offset + 4);
14943 can_plt_call = TRUE;
14944 }
14945 }
14946 }
14947
14948 if (!can_plt_call && h != NULL)
14949 {
14950 const char *name = h->elf.root.root.string;
14951
14952 if (*name == '.')
14953 ++name;
14954
14955 if (strncmp (name, "__libc_start_main", 17) == 0
14956 && (name[17] == 0 || name[17] == '@'))
14957 {
14958 /* Allow crt1 branch to go via a toc adjusting
14959 stub. Other calls that never return could do
14960 the same, if we could detect such. */
14961 can_plt_call = TRUE;
14962 }
14963 }
14964
14965 if (!can_plt_call)
14966 {
14967 /* g++ as of 20130507 emits self-calls without a
14968 following nop. This is arguably wrong since we
14969 have conflicting information. On the one hand a
14970 global symbol and on the other a local call
14971 sequence, but don't error for this special case.
14972 It isn't possible to cheaply verify we have
14973 exactly such a call. Allow all calls to the same
14974 section. */
14975 asection *code_sec = sec;
14976
14977 if (get_opd_info (sec) != NULL)
14978 {
14979 bfd_vma off = (relocation + addend
14980 - sec->output_section->vma
14981 - sec->output_offset);
14982
14983 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
14984 }
14985 if (code_sec == input_section)
14986 can_plt_call = TRUE;
14987 }
14988
14989 if (!can_plt_call)
14990 {
14991 if (stub_entry->stub_type >= ppc_stub_plt_call
14992 && stub_entry->stub_type <= ppc_stub_plt_call_both)
14993 info->callbacks->einfo
14994 /* xgettext:c-format */
14995 (_("%H: call to `%pT' lacks nop, can't restore toc; "
14996 "(plt call stub)\n"),
14997 input_bfd, input_section, rel->r_offset, sym_name);
14998 else
14999 info->callbacks->einfo
15000 /* xgettext:c-format */
15001 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15002 "(toc save/adjust stub)\n"),
15003 input_bfd, input_section, rel->r_offset, sym_name);
15004
15005 bfd_set_error (bfd_error_bad_value);
15006 ret = FALSE;
15007 }
15008
15009 if (can_plt_call
15010 && stub_entry->stub_type >= ppc_stub_plt_call
15011 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15012 unresolved_reloc = FALSE;
15013 }
15014
15015 if ((stub_entry == NULL
15016 || stub_entry->stub_type == ppc_stub_long_branch
15017 || stub_entry->stub_type == ppc_stub_plt_branch)
15018 && get_opd_info (sec) != NULL)
15019 {
15020 /* The branch destination is the value of the opd entry. */
15021 bfd_vma off = (relocation + addend
15022 - sec->output_section->vma
15023 - sec->output_offset);
15024 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15025 if (dest != (bfd_vma) -1)
15026 {
15027 relocation = dest;
15028 addend = 0;
15029 reloc_dest = DEST_OPD;
15030 }
15031 }
15032
15033 /* If the branch is out of reach we ought to have a long
15034 branch stub. */
15035 from = (rel->r_offset
15036 + input_section->output_offset
15037 + input_section->output_section->vma);
15038
15039 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15040 ? fdh->elf.other
15041 : sym->st_other);
15042
15043 if (stub_entry != NULL
15044 && (stub_entry->stub_type == ppc_stub_long_branch
15045 || stub_entry->stub_type == ppc_stub_plt_branch)
15046 && (r_type == R_PPC64_ADDR14_BRTAKEN
15047 || r_type == R_PPC64_ADDR14_BRNTAKEN
15048 || (relocation + addend - from + max_br_offset
15049 < 2 * max_br_offset)))
15050 /* Don't use the stub if this branch is in range. */
15051 stub_entry = NULL;
15052
15053 if (stub_entry != NULL
15054 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15055 || stub_entry->stub_type == ppc_stub_long_branch_both
15056 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15057 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15058 && (r_type != R_PPC64_REL24_NOTOC
15059 || ((fdh ? fdh->elf.other : sym->st_other)
15060 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15061 && (relocation + addend - from + max_br_offset
15062 < 2 * max_br_offset))
15063 stub_entry = NULL;
15064
15065 if (stub_entry != NULL
15066 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15067 || stub_entry->stub_type == ppc_stub_long_branch_both
15068 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15069 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15070 && r_type == R_PPC64_REL24_NOTOC
15071 && (relocation + addend - from + max_br_offset
15072 < 2 * max_br_offset))
15073 stub_entry = NULL;
15074
15075 if (stub_entry != NULL)
15076 {
15077 /* Munge up the value and addend so that we call the stub
15078 rather than the procedure directly. */
15079 asection *stub_sec = stub_entry->group->stub_sec;
15080
15081 if (stub_entry->stub_type == ppc_stub_save_res)
15082 relocation += (stub_sec->output_offset
15083 + stub_sec->output_section->vma
15084 + stub_sec->size - htab->sfpr->size
15085 - htab->sfpr->output_offset
15086 - htab->sfpr->output_section->vma);
15087 else
15088 relocation = (stub_entry->stub_offset
15089 + stub_sec->output_offset
15090 + stub_sec->output_section->vma);
15091 addend = 0;
15092 reloc_dest = DEST_STUB;
15093
15094 if (((stub_entry->stub_type == ppc_stub_plt_call
15095 && ALWAYS_EMIT_R2SAVE)
15096 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15097 || stub_entry->stub_type == ppc_stub_plt_call_both)
15098 && !(h != NULL
15099 && (h == htab->tls_get_addr_fd
15100 || h == htab->tls_get_addr)
15101 && htab->params->tls_get_addr_opt)
15102 && rel + 1 < relend
15103 && rel[1].r_offset == rel->r_offset + 4
15104 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15105 relocation += 4;
15106 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15107 || stub_entry->stub_type == ppc_stub_plt_branch_both
15108 || stub_entry->stub_type == ppc_stub_plt_call_both)
15109 && r_type == R_PPC64_REL24_NOTOC)
15110 relocation += 4;
15111
15112 if (r_type == R_PPC64_REL24_NOTOC
15113 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15114 || stub_entry->stub_type == ppc_stub_plt_call_both))
15115 htab->notoc_plt = 1;
15116 }
15117
15118 if (insn != 0)
15119 {
15120 if (is_isa_v2)
15121 {
15122 /* Set 'a' bit. This is 0b00010 in BO field for branch
15123 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15124 for branch on CTR insns (BO == 1a00t or 1a01t). */
15125 if ((insn & (0x14 << 21)) == (0x04 << 21))
15126 insn |= 0x02 << 21;
15127 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15128 insn |= 0x08 << 21;
15129 else
15130 break;
15131 }
15132 else
15133 {
15134 /* Invert 'y' bit if not the default. */
15135 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15136 insn ^= 0x01 << 21;
15137 }
15138
15139 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15140 }
15141
15142 /* NOP out calls to undefined weak functions.
15143 We can thus call a weak function without first
15144 checking whether the function is defined. */
15145 else if (h != NULL
15146 && h->elf.root.type == bfd_link_hash_undefweak
15147 && h->elf.dynindx == -1
15148 && (r_type == R_PPC64_REL24
15149 || r_type == R_PPC64_REL24_NOTOC)
15150 && relocation == 0
15151 && addend == 0)
15152 {
15153 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15154 goto copy_reloc;
15155 }
15156 break;
15157
15158 case R_PPC64_GOT16_DS:
15159 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15160 if (relocation + addend - from + 0x8000 < 0x10000
15161 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15162 {
15163 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15164 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15165 {
15166 insn += (14u << 26) - (58u << 26);
15167 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15168 r_type = R_PPC64_TOC16;
15169 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15170 }
15171 }
15172 break;
15173
15174 case R_PPC64_GOT16_LO_DS:
15175 case R_PPC64_GOT16_HA:
15176 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15177 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15178 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15179 {
15180 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15181 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15182 {
15183 insn += (14u << 26) - (58u << 26);
15184 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15185 r_type = R_PPC64_TOC16_LO;
15186 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15187 }
15188 else if ((insn & (0x3f << 26)) == 15u << 26 /* addis */)
15189 {
15190 r_type = R_PPC64_TOC16_HA;
15191 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15192 }
15193 }
15194 break;
15195
15196 case R_PPC64_GOT_PCREL34:
15197 from = (rel->r_offset
15198 + input_section->output_section->vma
15199 + input_section->output_offset);
15200 if (relocation - from + (1ULL << 33) < 1ULL << 34
15201 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15202 {
15203 offset = rel->r_offset;
15204 pinsn = bfd_get_32 (input_bfd, contents + offset);
15205 pinsn <<= 32;
15206 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15207 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15208 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15209 {
15210 /* Replace with paddi. */
15211 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15212 r_type = R_PPC64_PCREL34;
15213 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15214 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15215 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15216 goto pcrelopt;
15217 }
15218 }
15219 break;
15220
15221 case R_PPC64_PCREL34:
15222 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15223 {
15224 offset = rel->r_offset;
15225 pinsn = bfd_get_32 (input_bfd, contents + offset);
15226 pinsn <<= 32;
15227 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15228 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15229 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15230 | (14ULL << 26) /* paddi */))
15231 {
15232 pcrelopt:
15233 if (rel + 1 < relend
15234 && rel[1].r_offset == offset
15235 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15236 {
15237 bfd_vma off2 = rel[1].r_addend;
15238 if (off2 == 0)
15239 /* zero means next insn. */
15240 off2 = 8;
15241 off2 += offset;
15242 if (off2 + 4 <= input_section->size)
15243 {
15244 uint64_t pinsn2;
15245 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15246 pinsn2 <<= 32;
15247 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15248 break;
15249 if (xlate_pcrel_opt (&pinsn, &pinsn2))
15250 {
15251 bfd_put_32 (input_bfd, pinsn >> 32,
15252 contents + offset);
15253 bfd_put_32 (input_bfd, pinsn,
15254 contents + offset + 4);
15255 bfd_put_32 (input_bfd, pinsn2 >> 32,
15256 contents + off2);
15257 }
15258 }
15259 }
15260 }
15261 }
15262 break;
15263 }
15264
15265 /* Set `addend'. */
15266 tls_type = 0;
15267 save_unresolved_reloc = unresolved_reloc;
15268 switch (r_type)
15269 {
15270 default:
15271 /* xgettext:c-format */
15272 _bfd_error_handler (_("%pB: %s unsupported"),
15273 input_bfd, ppc64_elf_howto_table[r_type]->name);
15274
15275 bfd_set_error (bfd_error_bad_value);
15276 ret = FALSE;
15277 goto copy_reloc;
15278
15279 case R_PPC64_NONE:
15280 case R_PPC64_TLS:
15281 case R_PPC64_TLSGD:
15282 case R_PPC64_TLSLD:
15283 case R_PPC64_TOCSAVE:
15284 case R_PPC64_GNU_VTINHERIT:
15285 case R_PPC64_GNU_VTENTRY:
15286 case R_PPC64_ENTRY:
15287 case R_PPC64_PCREL_OPT:
15288 goto copy_reloc;
15289
15290 /* GOT16 relocations. Like an ADDR16 using the symbol's
15291 address in the GOT as relocation value instead of the
15292 symbol's value itself. Also, create a GOT entry for the
15293 symbol and put the symbol value there. */
15294 case R_PPC64_GOT_TLSGD16:
15295 case R_PPC64_GOT_TLSGD16_LO:
15296 case R_PPC64_GOT_TLSGD16_HI:
15297 case R_PPC64_GOT_TLSGD16_HA:
15298 tls_type = TLS_TLS | TLS_GD;
15299 goto dogot;
15300
15301 case R_PPC64_GOT_TLSLD16:
15302 case R_PPC64_GOT_TLSLD16_LO:
15303 case R_PPC64_GOT_TLSLD16_HI:
15304 case R_PPC64_GOT_TLSLD16_HA:
15305 tls_type = TLS_TLS | TLS_LD;
15306 goto dogot;
15307
15308 case R_PPC64_GOT_TPREL16_DS:
15309 case R_PPC64_GOT_TPREL16_LO_DS:
15310 case R_PPC64_GOT_TPREL16_HI:
15311 case R_PPC64_GOT_TPREL16_HA:
15312 tls_type = TLS_TLS | TLS_TPREL;
15313 goto dogot;
15314
15315 case R_PPC64_GOT_DTPREL16_DS:
15316 case R_PPC64_GOT_DTPREL16_LO_DS:
15317 case R_PPC64_GOT_DTPREL16_HI:
15318 case R_PPC64_GOT_DTPREL16_HA:
15319 tls_type = TLS_TLS | TLS_DTPREL;
15320 goto dogot;
15321
15322 case R_PPC64_GOT16:
15323 case R_PPC64_GOT16_LO:
15324 case R_PPC64_GOT16_HI:
15325 case R_PPC64_GOT16_HA:
15326 case R_PPC64_GOT16_DS:
15327 case R_PPC64_GOT16_LO_DS:
15328 case R_PPC64_GOT_PCREL34:
15329 dogot:
15330 {
15331 /* Relocation is to the entry for this symbol in the global
15332 offset table. */
15333 asection *got;
15334 bfd_vma *offp;
15335 bfd_vma off;
15336 unsigned long indx = 0;
15337 struct got_entry *ent;
15338 bfd_vma sym_addend = orig_rel.r_addend;
15339
15340 if (r_type == R_PPC64_GOT_PCREL34)
15341 sym_addend = 0;
15342
15343 if (tls_type == (TLS_TLS | TLS_LD)
15344 && (h == NULL
15345 || !h->elf.def_dynamic))
15346 ent = ppc64_tlsld_got (input_bfd);
15347 else
15348 {
15349 if (h != NULL)
15350 {
15351 if (!htab->elf.dynamic_sections_created
15352 || h->elf.dynindx == -1
15353 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
15354 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
15355 /* This is actually a static link, or it is a
15356 -Bsymbolic link and the symbol is defined
15357 locally, or the symbol was forced to be local
15358 because of a version file. */
15359 ;
15360 else
15361 {
15362 indx = h->elf.dynindx;
15363 unresolved_reloc = FALSE;
15364 }
15365 ent = h->elf.got.glist;
15366 }
15367 else
15368 {
15369 if (local_got_ents == NULL)
15370 abort ();
15371 ent = local_got_ents[r_symndx];
15372 }
15373
15374 for (; ent != NULL; ent = ent->next)
15375 if (ent->addend == sym_addend
15376 && ent->owner == input_bfd
15377 && ent->tls_type == tls_type)
15378 break;
15379 }
15380
15381 if (ent == NULL)
15382 abort ();
15383 if (ent->is_indirect)
15384 ent = ent->got.ent;
15385 offp = &ent->got.offset;
15386 got = ppc64_elf_tdata (ent->owner)->got;
15387 if (got == NULL)
15388 abort ();
15389
15390 /* The offset must always be a multiple of 8. We use the
15391 least significant bit to record whether we have already
15392 processed this entry. */
15393 off = *offp;
15394 if ((off & 1) != 0)
15395 off &= ~1;
15396 else
15397 {
15398 /* Generate relocs for the dynamic linker, except in
15399 the case of TLSLD where we'll use one entry per
15400 module. */
15401 asection *relgot;
15402 bfd_boolean ifunc;
15403
15404 *offp = off | 1;
15405 relgot = NULL;
15406 ifunc = (h != NULL
15407 ? h->elf.type == STT_GNU_IFUNC
15408 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
15409 if (ifunc)
15410 {
15411 relgot = htab->elf.irelplt;
15412 if (indx == 0)
15413 htab->local_ifunc_resolver = 1;
15414 else if (is_static_defined (&h->elf))
15415 htab->maybe_local_ifunc_resolver = 1;
15416 }
15417 else if (indx != 0
15418 || (bfd_link_pic (info)
15419 && (h == NULL
15420 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf)
15421 || (tls_type == (TLS_TLS | TLS_LD)
15422 && !h->elf.def_dynamic))
15423 && !(tls_type == (TLS_TLS | TLS_TPREL)
15424 && bfd_link_executable (info)
15425 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
15426 relgot = ppc64_elf_tdata (ent->owner)->relgot;
15427 if (relgot != NULL)
15428 {
15429 outrel.r_offset = (got->output_section->vma
15430 + got->output_offset
15431 + off);
15432 outrel.r_addend = sym_addend;
15433 if (tls_type & (TLS_LD | TLS_GD))
15434 {
15435 outrel.r_addend = 0;
15436 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
15437 if (tls_type == (TLS_TLS | TLS_GD))
15438 {
15439 loc = relgot->contents;
15440 loc += (relgot->reloc_count++
15441 * sizeof (Elf64_External_Rela));
15442 bfd_elf64_swap_reloca_out (output_bfd,
15443 &outrel, loc);
15444 outrel.r_offset += 8;
15445 outrel.r_addend = sym_addend;
15446 outrel.r_info
15447 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15448 }
15449 }
15450 else if (tls_type == (TLS_TLS | TLS_DTPREL))
15451 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15452 else if (tls_type == (TLS_TLS | TLS_TPREL))
15453 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
15454 else if (indx != 0)
15455 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
15456 else
15457 {
15458 if (ifunc)
15459 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
15460 else
15461 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
15462
15463 /* Write the .got section contents for the sake
15464 of prelink. */
15465 loc = got->contents + off;
15466 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
15467 loc);
15468 }
15469
15470 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
15471 {
15472 outrel.r_addend += relocation;
15473 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
15474 {
15475 if (htab->elf.tls_sec == NULL)
15476 outrel.r_addend = 0;
15477 else
15478 outrel.r_addend -= htab->elf.tls_sec->vma;
15479 }
15480 }
15481 loc = relgot->contents;
15482 loc += (relgot->reloc_count++
15483 * sizeof (Elf64_External_Rela));
15484 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
15485 }
15486
15487 /* Init the .got section contents here if we're not
15488 emitting a reloc. */
15489 else
15490 {
15491 relocation += sym_addend;
15492 if (tls_type != 0)
15493 {
15494 if (htab->elf.tls_sec == NULL)
15495 relocation = 0;
15496 else
15497 {
15498 if (tls_type & TLS_LD)
15499 relocation = 0;
15500 else
15501 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
15502 if (tls_type & TLS_TPREL)
15503 relocation += DTP_OFFSET - TP_OFFSET;
15504 }
15505
15506 if (tls_type & (TLS_GD | TLS_LD))
15507 {
15508 bfd_put_64 (output_bfd, relocation,
15509 got->contents + off + 8);
15510 relocation = 1;
15511 }
15512 }
15513 bfd_put_64 (output_bfd, relocation,
15514 got->contents + off);
15515 }
15516 }
15517
15518 if (off >= (bfd_vma) -2)
15519 abort ();
15520
15521 relocation = got->output_section->vma + got->output_offset + off;
15522 if (r_type != R_PPC64_GOT_PCREL34)
15523 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
15524 }
15525 break;
15526
15527 case R_PPC64_PLT16_HA:
15528 case R_PPC64_PLT16_HI:
15529 case R_PPC64_PLT16_LO:
15530 case R_PPC64_PLT16_LO_DS:
15531 case R_PPC64_PLT_PCREL34:
15532 case R_PPC64_PLT_PCREL34_NOTOC:
15533 case R_PPC64_PLT32:
15534 case R_PPC64_PLT64:
15535 case R_PPC64_PLTSEQ:
15536 case R_PPC64_PLTSEQ_NOTOC:
15537 case R_PPC64_PLTCALL:
15538 case R_PPC64_PLTCALL_NOTOC:
15539 /* Relocation is to the entry for this symbol in the
15540 procedure linkage table. */
15541 unresolved_reloc = TRUE;
15542 {
15543 struct plt_entry **plt_list = NULL;
15544 if (h != NULL)
15545 plt_list = &h->elf.plt.plist;
15546 else if (local_got_ents != NULL)
15547 {
15548 struct plt_entry **local_plt = (struct plt_entry **)
15549 (local_got_ents + symtab_hdr->sh_info);
15550 plt_list = local_plt + r_symndx;
15551 }
15552 if (plt_list)
15553 {
15554 struct plt_entry *ent;
15555 bfd_vma sym_addend = orig_rel.r_addend;
15556
15557 if (r_type == R_PPC64_PLT_PCREL34
15558 || r_type == R_PPC64_PLT_PCREL34_NOTOC)
15559 sym_addend = 0;
15560
15561 for (ent = *plt_list; ent != NULL; ent = ent->next)
15562 if (ent->plt.offset != (bfd_vma) -1
15563 && ent->addend == sym_addend)
15564 {
15565 asection *plt;
15566 bfd_vma got;
15567
15568 plt = htab->elf.splt;
15569 if (!htab->elf.dynamic_sections_created
15570 || h == NULL
15571 || h->elf.dynindx == -1)
15572 {
15573 if (h != NULL
15574 ? h->elf.type == STT_GNU_IFUNC
15575 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15576 plt = htab->elf.iplt;
15577 else
15578 plt = htab->pltlocal;
15579 }
15580 relocation = (plt->output_section->vma
15581 + plt->output_offset
15582 + ent->plt.offset);
15583 if (r_type == R_PPC64_PLT16_HA
15584 || r_type == R_PPC64_PLT16_HI
15585 || r_type == R_PPC64_PLT16_LO
15586 || r_type == R_PPC64_PLT16_LO_DS)
15587 {
15588 got = (elf_gp (output_bfd)
15589 + htab->sec_info[input_section->id].toc_off);
15590 relocation -= got;
15591 }
15592 if (r_type != R_PPC64_PLT_PCREL34
15593 && r_type != R_PPC64_PLT_PCREL34_NOTOC)
15594 addend = 0;
15595 unresolved_reloc = FALSE;
15596 break;
15597 }
15598 }
15599 }
15600 break;
15601
15602 case R_PPC64_TOC:
15603 /* Relocation value is TOC base. */
15604 relocation = TOCstart;
15605 if (r_symndx == STN_UNDEF)
15606 relocation += htab->sec_info[input_section->id].toc_off;
15607 else if (unresolved_reloc)
15608 ;
15609 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
15610 relocation += htab->sec_info[sec->id].toc_off;
15611 else
15612 unresolved_reloc = TRUE;
15613 goto dodyn;
15614
15615 /* TOC16 relocs. We want the offset relative to the TOC base,
15616 which is the address of the start of the TOC plus 0x8000.
15617 The TOC consists of sections .got, .toc, .tocbss, and .plt,
15618 in this order. */
15619 case R_PPC64_TOC16:
15620 case R_PPC64_TOC16_LO:
15621 case R_PPC64_TOC16_HI:
15622 case R_PPC64_TOC16_DS:
15623 case R_PPC64_TOC16_LO_DS:
15624 case R_PPC64_TOC16_HA:
15625 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
15626 break;
15627
15628 /* Relocate against the beginning of the section. */
15629 case R_PPC64_SECTOFF:
15630 case R_PPC64_SECTOFF_LO:
15631 case R_PPC64_SECTOFF_HI:
15632 case R_PPC64_SECTOFF_DS:
15633 case R_PPC64_SECTOFF_LO_DS:
15634 case R_PPC64_SECTOFF_HA:
15635 if (sec != NULL)
15636 addend -= sec->output_section->vma;
15637 break;
15638
15639 case R_PPC64_REL16:
15640 case R_PPC64_REL16_LO:
15641 case R_PPC64_REL16_HI:
15642 case R_PPC64_REL16_HA:
15643 case R_PPC64_REL16_HIGH:
15644 case R_PPC64_REL16_HIGHA:
15645 case R_PPC64_REL16_HIGHER:
15646 case R_PPC64_REL16_HIGHERA:
15647 case R_PPC64_REL16_HIGHEST:
15648 case R_PPC64_REL16_HIGHESTA:
15649 case R_PPC64_REL16_HIGHER34:
15650 case R_PPC64_REL16_HIGHERA34:
15651 case R_PPC64_REL16_HIGHEST34:
15652 case R_PPC64_REL16_HIGHESTA34:
15653 case R_PPC64_REL16DX_HA:
15654 case R_PPC64_REL14:
15655 case R_PPC64_REL14_BRNTAKEN:
15656 case R_PPC64_REL14_BRTAKEN:
15657 case R_PPC64_REL24:
15658 case R_PPC64_REL24_NOTOC:
15659 case R_PPC64_PCREL34:
15660 case R_PPC64_PCREL28:
15661 break;
15662
15663 case R_PPC64_TPREL16:
15664 case R_PPC64_TPREL16_LO:
15665 case R_PPC64_TPREL16_HI:
15666 case R_PPC64_TPREL16_HA:
15667 case R_PPC64_TPREL16_DS:
15668 case R_PPC64_TPREL16_LO_DS:
15669 case R_PPC64_TPREL16_HIGH:
15670 case R_PPC64_TPREL16_HIGHA:
15671 case R_PPC64_TPREL16_HIGHER:
15672 case R_PPC64_TPREL16_HIGHERA:
15673 case R_PPC64_TPREL16_HIGHEST:
15674 case R_PPC64_TPREL16_HIGHESTA:
15675 if (h != NULL
15676 && h->elf.root.type == bfd_link_hash_undefweak
15677 && h->elf.dynindx == -1)
15678 {
15679 /* Make this relocation against an undefined weak symbol
15680 resolve to zero. This is really just a tweak, since
15681 code using weak externs ought to check that they are
15682 defined before using them. */
15683 bfd_byte *p = contents + rel->r_offset - d_offset;
15684
15685 insn = bfd_get_32 (input_bfd, p);
15686 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
15687 if (insn != 0)
15688 bfd_put_32 (input_bfd, insn, p);
15689 break;
15690 }
15691 if (htab->elf.tls_sec != NULL)
15692 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15693 /* The TPREL16 relocs shouldn't really be used in shared
15694 libs or with non-local symbols as that will result in
15695 DT_TEXTREL being set, but support them anyway. */
15696 goto dodyn;
15697
15698 case R_PPC64_DTPREL16:
15699 case R_PPC64_DTPREL16_LO:
15700 case R_PPC64_DTPREL16_HI:
15701 case R_PPC64_DTPREL16_HA:
15702 case R_PPC64_DTPREL16_DS:
15703 case R_PPC64_DTPREL16_LO_DS:
15704 case R_PPC64_DTPREL16_HIGH:
15705 case R_PPC64_DTPREL16_HIGHA:
15706 case R_PPC64_DTPREL16_HIGHER:
15707 case R_PPC64_DTPREL16_HIGHERA:
15708 case R_PPC64_DTPREL16_HIGHEST:
15709 case R_PPC64_DTPREL16_HIGHESTA:
15710 if (htab->elf.tls_sec != NULL)
15711 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15712 break;
15713
15714 case R_PPC64_ADDR64_LOCAL:
15715 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
15716 ? h->elf.other
15717 : sym->st_other);
15718 break;
15719
15720 case R_PPC64_DTPMOD64:
15721 relocation = 1;
15722 addend = 0;
15723 goto dodyn;
15724
15725 case R_PPC64_TPREL64:
15726 if (htab->elf.tls_sec != NULL)
15727 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15728 goto dodyn;
15729
15730 case R_PPC64_DTPREL64:
15731 if (htab->elf.tls_sec != NULL)
15732 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15733 /* Fall through. */
15734
15735 /* Relocations that may need to be propagated if this is a
15736 dynamic object. */
15737 case R_PPC64_REL30:
15738 case R_PPC64_REL32:
15739 case R_PPC64_REL64:
15740 case R_PPC64_ADDR14:
15741 case R_PPC64_ADDR14_BRNTAKEN:
15742 case R_PPC64_ADDR14_BRTAKEN:
15743 case R_PPC64_ADDR16:
15744 case R_PPC64_ADDR16_DS:
15745 case R_PPC64_ADDR16_HA:
15746 case R_PPC64_ADDR16_HI:
15747 case R_PPC64_ADDR16_HIGH:
15748 case R_PPC64_ADDR16_HIGHA:
15749 case R_PPC64_ADDR16_HIGHER:
15750 case R_PPC64_ADDR16_HIGHERA:
15751 case R_PPC64_ADDR16_HIGHEST:
15752 case R_PPC64_ADDR16_HIGHESTA:
15753 case R_PPC64_ADDR16_LO:
15754 case R_PPC64_ADDR16_LO_DS:
15755 case R_PPC64_ADDR16_HIGHER34:
15756 case R_PPC64_ADDR16_HIGHERA34:
15757 case R_PPC64_ADDR16_HIGHEST34:
15758 case R_PPC64_ADDR16_HIGHESTA34:
15759 case R_PPC64_ADDR24:
15760 case R_PPC64_ADDR32:
15761 case R_PPC64_ADDR64:
15762 case R_PPC64_UADDR16:
15763 case R_PPC64_UADDR32:
15764 case R_PPC64_UADDR64:
15765 case R_PPC64_D34:
15766 case R_PPC64_D34_LO:
15767 case R_PPC64_D34_HI30:
15768 case R_PPC64_D34_HA30:
15769 case R_PPC64_D28:
15770 dodyn:
15771 if ((input_section->flags & SEC_ALLOC) == 0)
15772 break;
15773
15774 if (NO_OPD_RELOCS && is_opd)
15775 break;
15776
15777 if (bfd_link_pic (info)
15778 ? ((h == NULL
15779 || h->dyn_relocs != NULL)
15780 && ((h != NULL && pc_dynrelocs (h))
15781 || must_be_dyn_reloc (info, r_type)))
15782 : (h != NULL
15783 ? h->dyn_relocs != NULL
15784 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
15785 {
15786 bfd_boolean skip, relocate;
15787 asection *sreloc;
15788 bfd_vma out_off;
15789 long indx = 0;
15790
15791 /* When generating a dynamic object, these relocations
15792 are copied into the output file to be resolved at run
15793 time. */
15794
15795 skip = FALSE;
15796 relocate = FALSE;
15797
15798 out_off = _bfd_elf_section_offset (output_bfd, info,
15799 input_section, rel->r_offset);
15800 if (out_off == (bfd_vma) -1)
15801 skip = TRUE;
15802 else if (out_off == (bfd_vma) -2)
15803 skip = TRUE, relocate = TRUE;
15804 out_off += (input_section->output_section->vma
15805 + input_section->output_offset);
15806 outrel.r_offset = out_off;
15807 outrel.r_addend = rel->r_addend;
15808
15809 /* Optimize unaligned reloc use. */
15810 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
15811 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
15812 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
15813 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
15814 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
15815 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
15816 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
15817 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
15818 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
15819
15820 if (skip)
15821 memset (&outrel, 0, sizeof outrel);
15822 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
15823 && !is_opd
15824 && r_type != R_PPC64_TOC)
15825 {
15826 indx = h->elf.dynindx;
15827 BFD_ASSERT (indx != -1);
15828 outrel.r_info = ELF64_R_INFO (indx, r_type);
15829 }
15830 else
15831 {
15832 /* This symbol is local, or marked to become local,
15833 or this is an opd section reloc which must point
15834 at a local function. */
15835 outrel.r_addend += relocation;
15836 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
15837 {
15838 if (is_opd && h != NULL)
15839 {
15840 /* Lie about opd entries. This case occurs
15841 when building shared libraries and we
15842 reference a function in another shared
15843 lib. The same thing happens for a weak
15844 definition in an application that's
15845 overridden by a strong definition in a
15846 shared lib. (I believe this is a generic
15847 bug in binutils handling of weak syms.)
15848 In these cases we won't use the opd
15849 entry in this lib. */
15850 unresolved_reloc = FALSE;
15851 }
15852 if (!is_opd
15853 && r_type == R_PPC64_ADDR64
15854 && (h != NULL
15855 ? h->elf.type == STT_GNU_IFUNC
15856 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
15857 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
15858 else
15859 {
15860 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
15861
15862 /* We need to relocate .opd contents for ld.so.
15863 Prelink also wants simple and consistent rules
15864 for relocs. This make all RELATIVE relocs have
15865 *r_offset equal to r_addend. */
15866 relocate = TRUE;
15867 }
15868 }
15869 else
15870 {
15871 if (h != NULL
15872 ? h->elf.type == STT_GNU_IFUNC
15873 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15874 {
15875 info->callbacks->einfo
15876 /* xgettext:c-format */
15877 (_("%H: %s for indirect "
15878 "function `%pT' unsupported\n"),
15879 input_bfd, input_section, rel->r_offset,
15880 ppc64_elf_howto_table[r_type]->name,
15881 sym_name);
15882 ret = FALSE;
15883 }
15884 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
15885 ;
15886 else if (sec == NULL || sec->owner == NULL)
15887 {
15888 bfd_set_error (bfd_error_bad_value);
15889 return FALSE;
15890 }
15891 else
15892 {
15893 asection *osec = sec->output_section;
15894
15895 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
15896 {
15897 /* TLS symbol values are relative to the
15898 TLS segment. Dynamic relocations for
15899 local TLS symbols therefore can't be
15900 reduced to a relocation against their
15901 section symbol because it holds the
15902 address of the section, not a value
15903 relative to the TLS segment. We could
15904 change the .tdata dynamic section symbol
15905 to be zero value but STN_UNDEF works
15906 and is used elsewhere, eg. for TPREL64
15907 GOT relocs against local TLS symbols. */
15908 osec = htab->elf.tls_sec;
15909 indx = 0;
15910 }
15911 else
15912 {
15913 indx = elf_section_data (osec)->dynindx;
15914 if (indx == 0)
15915 {
15916 if ((osec->flags & SEC_READONLY) == 0
15917 && htab->elf.data_index_section != NULL)
15918 osec = htab->elf.data_index_section;
15919 else
15920 osec = htab->elf.text_index_section;
15921 indx = elf_section_data (osec)->dynindx;
15922 }
15923 BFD_ASSERT (indx != 0);
15924 }
15925
15926 /* We are turning this relocation into one
15927 against a section symbol, so subtract out
15928 the output section's address but not the
15929 offset of the input section in the output
15930 section. */
15931 outrel.r_addend -= osec->vma;
15932 }
15933
15934 outrel.r_info = ELF64_R_INFO (indx, r_type);
15935 }
15936 }
15937
15938 sreloc = elf_section_data (input_section)->sreloc;
15939 if (h != NULL
15940 ? h->elf.type == STT_GNU_IFUNC
15941 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15942 {
15943 sreloc = htab->elf.irelplt;
15944 if (indx == 0)
15945 htab->local_ifunc_resolver = 1;
15946 else if (is_static_defined (&h->elf))
15947 htab->maybe_local_ifunc_resolver = 1;
15948 }
15949 if (sreloc == NULL)
15950 abort ();
15951
15952 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
15953 >= sreloc->size)
15954 abort ();
15955 loc = sreloc->contents;
15956 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
15957 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
15958
15959 /* If this reloc is against an external symbol, it will
15960 be computed at runtime, so there's no need to do
15961 anything now. However, for the sake of prelink ensure
15962 that the section contents are a known value. */
15963 if (!relocate)
15964 {
15965 unresolved_reloc = FALSE;
15966 /* The value chosen here is quite arbitrary as ld.so
15967 ignores section contents except for the special
15968 case of .opd where the contents might be accessed
15969 before relocation. Choose zero, as that won't
15970 cause reloc overflow. */
15971 relocation = 0;
15972 addend = 0;
15973 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
15974 to improve backward compatibility with older
15975 versions of ld. */
15976 if (r_type == R_PPC64_ADDR64)
15977 addend = outrel.r_addend;
15978 /* Adjust pc_relative relocs to have zero in *r_offset. */
15979 else if (ppc64_elf_howto_table[r_type]->pc_relative)
15980 addend = outrel.r_offset;
15981 }
15982 }
15983 break;
15984
15985 case R_PPC64_COPY:
15986 case R_PPC64_GLOB_DAT:
15987 case R_PPC64_JMP_SLOT:
15988 case R_PPC64_JMP_IREL:
15989 case R_PPC64_RELATIVE:
15990 /* We shouldn't ever see these dynamic relocs in relocatable
15991 files. */
15992 /* Fall through. */
15993
15994 case R_PPC64_PLTGOT16:
15995 case R_PPC64_PLTGOT16_DS:
15996 case R_PPC64_PLTGOT16_HA:
15997 case R_PPC64_PLTGOT16_HI:
15998 case R_PPC64_PLTGOT16_LO:
15999 case R_PPC64_PLTGOT16_LO_DS:
16000 case R_PPC64_PLTREL32:
16001 case R_PPC64_PLTREL64:
16002 /* These ones haven't been implemented yet. */
16003
16004 info->callbacks->einfo
16005 /* xgettext:c-format */
16006 (_("%P: %pB: %s is not supported for `%pT'\n"),
16007 input_bfd,
16008 ppc64_elf_howto_table[r_type]->name, sym_name);
16009
16010 bfd_set_error (bfd_error_invalid_operation);
16011 ret = FALSE;
16012 goto copy_reloc;
16013 }
16014
16015 /* Multi-instruction sequences that access the TOC can be
16016 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16017 to nop; addi rb,r2,x; */
16018 switch (r_type)
16019 {
16020 default:
16021 break;
16022
16023 case R_PPC64_GOT_TLSLD16_HI:
16024 case R_PPC64_GOT_TLSGD16_HI:
16025 case R_PPC64_GOT_TPREL16_HI:
16026 case R_PPC64_GOT_DTPREL16_HI:
16027 case R_PPC64_GOT16_HI:
16028 case R_PPC64_TOC16_HI:
16029 /* These relocs would only be useful if building up an
16030 offset to later add to r2, perhaps in an indexed
16031 addressing mode instruction. Don't try to optimize.
16032 Unfortunately, the possibility of someone building up an
16033 offset like this or even with the HA relocs, means that
16034 we need to check the high insn when optimizing the low
16035 insn. */
16036 break;
16037
16038 case R_PPC64_PLTCALL_NOTOC:
16039 if (!unresolved_reloc)
16040 htab->notoc_plt = 1;
16041 /* Fall through. */
16042 case R_PPC64_PLTCALL:
16043 if (unresolved_reloc)
16044 {
16045 /* No plt entry. Make this into a direct call. */
16046 bfd_byte *p = contents + rel->r_offset;
16047 insn = bfd_get_32 (input_bfd, p);
16048 insn &= 1;
16049 bfd_put_32 (input_bfd, B_DOT | insn, p);
16050 if (r_type == R_PPC64_PLTCALL)
16051 bfd_put_32 (input_bfd, NOP, p + 4);
16052 unresolved_reloc = save_unresolved_reloc;
16053 r_type = R_PPC64_REL24;
16054 }
16055 break;
16056
16057 case R_PPC64_PLTSEQ_NOTOC:
16058 case R_PPC64_PLTSEQ:
16059 if (unresolved_reloc)
16060 {
16061 unresolved_reloc = FALSE;
16062 goto nop_it;
16063 }
16064 break;
16065
16066 case R_PPC64_PLT_PCREL34_NOTOC:
16067 if (!unresolved_reloc)
16068 htab->notoc_plt = 1;
16069 /* Fall through. */
16070 case R_PPC64_PLT_PCREL34:
16071 if (unresolved_reloc)
16072 {
16073 bfd_byte *p = contents + rel->r_offset;
16074 bfd_put_32 (input_bfd, PNOP >> 32, p);
16075 bfd_put_32 (input_bfd, PNOP, p + 4);
16076 unresolved_reloc = FALSE;
16077 goto copy_reloc;
16078 }
16079 break;
16080
16081 case R_PPC64_PLT16_HA:
16082 if (unresolved_reloc)
16083 {
16084 unresolved_reloc = FALSE;
16085 goto nop_it;
16086 }
16087 /* Fall through. */
16088 case R_PPC64_GOT_TLSLD16_HA:
16089 case R_PPC64_GOT_TLSGD16_HA:
16090 case R_PPC64_GOT_TPREL16_HA:
16091 case R_PPC64_GOT_DTPREL16_HA:
16092 case R_PPC64_GOT16_HA:
16093 case R_PPC64_TOC16_HA:
16094 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16095 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16096 {
16097 bfd_byte *p;
16098 nop_it:
16099 p = contents + (rel->r_offset & ~3);
16100 bfd_put_32 (input_bfd, NOP, p);
16101 goto copy_reloc;
16102 }
16103 break;
16104
16105 case R_PPC64_PLT16_LO:
16106 case R_PPC64_PLT16_LO_DS:
16107 if (unresolved_reloc)
16108 {
16109 unresolved_reloc = FALSE;
16110 goto nop_it;
16111 }
16112 /* Fall through. */
16113 case R_PPC64_GOT_TLSLD16_LO:
16114 case R_PPC64_GOT_TLSGD16_LO:
16115 case R_PPC64_GOT_TPREL16_LO_DS:
16116 case R_PPC64_GOT_DTPREL16_LO_DS:
16117 case R_PPC64_GOT16_LO:
16118 case R_PPC64_GOT16_LO_DS:
16119 case R_PPC64_TOC16_LO:
16120 case R_PPC64_TOC16_LO_DS:
16121 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16122 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16123 {
16124 bfd_byte *p = contents + (rel->r_offset & ~3);
16125 insn = bfd_get_32 (input_bfd, p);
16126 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
16127 {
16128 /* Transform addic to addi when we change reg. */
16129 insn &= ~((0x3f << 26) | (0x1f << 16));
16130 insn |= (14u << 26) | (2 << 16);
16131 }
16132 else
16133 {
16134 insn &= ~(0x1f << 16);
16135 insn |= 2 << 16;
16136 }
16137 bfd_put_32 (input_bfd, insn, p);
16138 }
16139 break;
16140
16141 case R_PPC64_TPREL16_HA:
16142 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16143 {
16144 bfd_byte *p = contents + (rel->r_offset & ~3);
16145 insn = bfd_get_32 (input_bfd, p);
16146 if ((insn & ((0x3f << 26) | 0x1f << 16))
16147 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16148 /* xgettext:c-format */
16149 info->callbacks->minfo
16150 (_("%H: warning: %s unexpected insn %#x.\n"),
16151 input_bfd, input_section, rel->r_offset,
16152 ppc64_elf_howto_table[r_type]->name, insn);
16153 else
16154 {
16155 bfd_put_32 (input_bfd, NOP, p);
16156 goto copy_reloc;
16157 }
16158 }
16159 break;
16160
16161 case R_PPC64_TPREL16_LO:
16162 case R_PPC64_TPREL16_LO_DS:
16163 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16164 {
16165 bfd_byte *p = contents + (rel->r_offset & ~3);
16166 insn = bfd_get_32 (input_bfd, p);
16167 insn &= ~(0x1f << 16);
16168 insn |= 13 << 16;
16169 bfd_put_32 (input_bfd, insn, p);
16170 }
16171 break;
16172 }
16173
16174 /* Do any further special processing. */
16175 switch (r_type)
16176 {
16177 default:
16178 break;
16179
16180 case R_PPC64_REL16_HA:
16181 case R_PPC64_REL16_HIGHA:
16182 case R_PPC64_REL16_HIGHERA:
16183 case R_PPC64_REL16_HIGHESTA:
16184 case R_PPC64_REL16DX_HA:
16185 case R_PPC64_ADDR16_HA:
16186 case R_PPC64_ADDR16_HIGHA:
16187 case R_PPC64_ADDR16_HIGHERA:
16188 case R_PPC64_ADDR16_HIGHESTA:
16189 case R_PPC64_TOC16_HA:
16190 case R_PPC64_SECTOFF_HA:
16191 case R_PPC64_TPREL16_HA:
16192 case R_PPC64_TPREL16_HIGHA:
16193 case R_PPC64_TPREL16_HIGHERA:
16194 case R_PPC64_TPREL16_HIGHESTA:
16195 case R_PPC64_DTPREL16_HA:
16196 case R_PPC64_DTPREL16_HIGHA:
16197 case R_PPC64_DTPREL16_HIGHERA:
16198 case R_PPC64_DTPREL16_HIGHESTA:
16199 /* It's just possible that this symbol is a weak symbol
16200 that's not actually defined anywhere. In that case,
16201 'sec' would be NULL, and we should leave the symbol
16202 alone (it will be set to zero elsewhere in the link). */
16203 if (sec == NULL)
16204 break;
16205 /* Fall through. */
16206
16207 case R_PPC64_GOT16_HA:
16208 case R_PPC64_PLTGOT16_HA:
16209 case R_PPC64_PLT16_HA:
16210 case R_PPC64_GOT_TLSGD16_HA:
16211 case R_PPC64_GOT_TLSLD16_HA:
16212 case R_PPC64_GOT_TPREL16_HA:
16213 case R_PPC64_GOT_DTPREL16_HA:
16214 /* Add 0x10000 if sign bit in 0:15 is set.
16215 Bits 0:15 are not used. */
16216 addend += 0x8000;
16217 break;
16218
16219 case R_PPC64_D34_HA30:
16220 case R_PPC64_ADDR16_HIGHERA34:
16221 case R_PPC64_ADDR16_HIGHESTA34:
16222 case R_PPC64_REL16_HIGHERA34:
16223 case R_PPC64_REL16_HIGHESTA34:
16224 if (sec != NULL)
16225 addend += 1ULL << 33;
16226 break;
16227
16228 case R_PPC64_ADDR16_DS:
16229 case R_PPC64_ADDR16_LO_DS:
16230 case R_PPC64_GOT16_DS:
16231 case R_PPC64_GOT16_LO_DS:
16232 case R_PPC64_PLT16_LO_DS:
16233 case R_PPC64_SECTOFF_DS:
16234 case R_PPC64_SECTOFF_LO_DS:
16235 case R_PPC64_TOC16_DS:
16236 case R_PPC64_TOC16_LO_DS:
16237 case R_PPC64_PLTGOT16_DS:
16238 case R_PPC64_PLTGOT16_LO_DS:
16239 case R_PPC64_GOT_TPREL16_DS:
16240 case R_PPC64_GOT_TPREL16_LO_DS:
16241 case R_PPC64_GOT_DTPREL16_DS:
16242 case R_PPC64_GOT_DTPREL16_LO_DS:
16243 case R_PPC64_TPREL16_DS:
16244 case R_PPC64_TPREL16_LO_DS:
16245 case R_PPC64_DTPREL16_DS:
16246 case R_PPC64_DTPREL16_LO_DS:
16247 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16248 mask = 3;
16249 /* If this reloc is against an lq, lxv, or stxv insn, then
16250 the value must be a multiple of 16. This is somewhat of
16251 a hack, but the "correct" way to do this by defining _DQ
16252 forms of all the _DS relocs bloats all reloc switches in
16253 this file. It doesn't make much sense to use these
16254 relocs in data, so testing the insn should be safe. */
16255 if ((insn & (0x3f << 26)) == (56u << 26)
16256 || ((insn & (0x3f << 26)) == (61u << 26) && (insn & 3) == 1))
16257 mask = 15;
16258 relocation += addend;
16259 addend = insn & (mask ^ 3);
16260 if ((relocation & mask) != 0)
16261 {
16262 relocation ^= relocation & mask;
16263 info->callbacks->einfo
16264 /* xgettext:c-format */
16265 (_("%H: error: %s not a multiple of %u\n"),
16266 input_bfd, input_section, rel->r_offset,
16267 ppc64_elf_howto_table[r_type]->name,
16268 mask + 1);
16269 bfd_set_error (bfd_error_bad_value);
16270 ret = FALSE;
16271 goto copy_reloc;
16272 }
16273 break;
16274 }
16275
16276 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
16277 because such sections are not SEC_ALLOC and thus ld.so will
16278 not process them. */
16279 howto = ppc64_elf_howto_table[(int) r_type];
16280 if (unresolved_reloc
16281 && !((input_section->flags & SEC_DEBUGGING) != 0
16282 && h->elf.def_dynamic)
16283 && _bfd_elf_section_offset (output_bfd, info, input_section,
16284 rel->r_offset) != (bfd_vma) -1)
16285 {
16286 info->callbacks->einfo
16287 /* xgettext:c-format */
16288 (_("%H: unresolvable %s against `%pT'\n"),
16289 input_bfd, input_section, rel->r_offset,
16290 howto->name,
16291 h->elf.root.root.string);
16292 ret = FALSE;
16293 }
16294
16295 /* 16-bit fields in insns mostly have signed values, but a
16296 few insns have 16-bit unsigned values. Really, we should
16297 have different reloc types. */
16298 if (howto->complain_on_overflow != complain_overflow_dont
16299 && howto->dst_mask == 0xffff
16300 && (input_section->flags & SEC_CODE) != 0)
16301 {
16302 enum complain_overflow complain = complain_overflow_signed;
16303
16304 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16305 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
16306 complain = complain_overflow_bitfield;
16307 else if (howto->rightshift == 0
16308 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
16309 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
16310 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
16311 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
16312 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
16313 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
16314 complain = complain_overflow_unsigned;
16315 if (howto->complain_on_overflow != complain)
16316 {
16317 alt_howto = *howto;
16318 alt_howto.complain_on_overflow = complain;
16319 howto = &alt_howto;
16320 }
16321 }
16322
16323 switch (r_type)
16324 {
16325 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
16326 case R_PPC64_D34:
16327 case R_PPC64_D34_LO:
16328 case R_PPC64_D34_HI30:
16329 case R_PPC64_D34_HA30:
16330 case R_PPC64_PCREL34:
16331 case R_PPC64_GOT_PCREL34:
16332 case R_PPC64_PLT_PCREL34:
16333 case R_PPC64_PLT_PCREL34_NOTOC:
16334 case R_PPC64_D28:
16335 case R_PPC64_PCREL28:
16336 if (rel->r_offset + 8 > input_section->size)
16337 r = bfd_reloc_outofrange;
16338 else
16339 {
16340 relocation += addend;
16341 if (howto->pc_relative)
16342 relocation -= (rel->r_offset
16343 + input_section->output_offset
16344 + input_section->output_section->vma);
16345 relocation >>= howto->rightshift;
16346
16347 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16348 pinsn <<= 32;
16349 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
16350
16351 pinsn &= ~howto->dst_mask;
16352 pinsn |= (((relocation << 16) | (relocation & 0xffff))
16353 & howto->dst_mask);
16354 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
16355 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
16356 r = bfd_reloc_ok;
16357 if (howto->complain_on_overflow == complain_overflow_signed
16358 && (relocation + (1ULL << (howto->bitsize - 1))
16359 >= 1ULL << howto->bitsize))
16360 r = bfd_reloc_overflow;
16361 }
16362 break;
16363
16364 case R_PPC64_REL16DX_HA:
16365 if (rel->r_offset + 4 > input_section->size)
16366 r = bfd_reloc_outofrange;
16367 else
16368 {
16369 relocation += addend;
16370 relocation -= (rel->r_offset
16371 + input_section->output_offset
16372 + input_section->output_section->vma);
16373 relocation = (bfd_signed_vma) relocation >> 16;
16374 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16375 insn &= ~0x1fffc1;
16376 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
16377 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16378 r = bfd_reloc_ok;
16379 if (relocation + 0x8000 > 0xffff)
16380 r = bfd_reloc_overflow;
16381 }
16382 break;
16383
16384 default:
16385 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
16386 contents, rel->r_offset,
16387 relocation, addend);
16388 }
16389
16390 if (r != bfd_reloc_ok)
16391 {
16392 char *more_info = NULL;
16393 const char *reloc_name = howto->name;
16394
16395 if (reloc_dest != DEST_NORMAL)
16396 {
16397 more_info = bfd_malloc (strlen (reloc_name) + 8);
16398 if (more_info != NULL)
16399 {
16400 strcpy (more_info, reloc_name);
16401 strcat (more_info, (reloc_dest == DEST_OPD
16402 ? " (OPD)" : " (stub)"));
16403 reloc_name = more_info;
16404 }
16405 }
16406
16407 if (r == bfd_reloc_overflow)
16408 {
16409 /* On code like "if (foo) foo();" don't report overflow
16410 on a branch to zero when foo is undefined. */
16411 if (!warned
16412 && (reloc_dest == DEST_STUB
16413 || !(h != NULL
16414 && (h->elf.root.type == bfd_link_hash_undefweak
16415 || h->elf.root.type == bfd_link_hash_undefined)
16416 && is_branch_reloc (r_type))))
16417 info->callbacks->reloc_overflow (info, &h->elf.root,
16418 sym_name, reloc_name,
16419 orig_rel.r_addend,
16420 input_bfd, input_section,
16421 rel->r_offset);
16422 }
16423 else
16424 {
16425 info->callbacks->einfo
16426 /* xgettext:c-format */
16427 (_("%H: %s against `%pT': error %d\n"),
16428 input_bfd, input_section, rel->r_offset,
16429 reloc_name, sym_name, (int) r);
16430 ret = FALSE;
16431 }
16432 if (more_info != NULL)
16433 free (more_info);
16434 }
16435 copy_reloc:
16436 if (wrel != rel)
16437 *wrel = *rel;
16438 }
16439
16440 if (wrel != rel)
16441 {
16442 Elf_Internal_Shdr *rel_hdr;
16443 size_t deleted = rel - wrel;
16444
16445 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
16446 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16447 if (rel_hdr->sh_size == 0)
16448 {
16449 /* It is too late to remove an empty reloc section. Leave
16450 one NONE reloc.
16451 ??? What is wrong with an empty section??? */
16452 rel_hdr->sh_size = rel_hdr->sh_entsize;
16453 deleted -= 1;
16454 }
16455 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
16456 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16457 input_section->reloc_count -= deleted;
16458 }
16459
16460 /* If we're emitting relocations, then shortly after this function
16461 returns, reloc offsets and addends for this section will be
16462 adjusted. Worse, reloc symbol indices will be for the output
16463 file rather than the input. Save a copy of the relocs for
16464 opd_entry_value. */
16465 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
16466 {
16467 bfd_size_type amt;
16468 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
16469 rel = bfd_alloc (input_bfd, amt);
16470 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
16471 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
16472 if (rel == NULL)
16473 return FALSE;
16474 memcpy (rel, relocs, amt);
16475 }
16476 return ret;
16477 }
16478
16479 /* Adjust the value of any local symbols in opd sections. */
16480
16481 static int
16482 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
16483 const char *name ATTRIBUTE_UNUSED,
16484 Elf_Internal_Sym *elfsym,
16485 asection *input_sec,
16486 struct elf_link_hash_entry *h)
16487 {
16488 struct _opd_sec_data *opd;
16489 long adjust;
16490 bfd_vma value;
16491
16492 if (h != NULL)
16493 return 1;
16494
16495 opd = get_opd_info (input_sec);
16496 if (opd == NULL || opd->adjust == NULL)
16497 return 1;
16498
16499 value = elfsym->st_value - input_sec->output_offset;
16500 if (!bfd_link_relocatable (info))
16501 value -= input_sec->output_section->vma;
16502
16503 adjust = opd->adjust[OPD_NDX (value)];
16504 if (adjust == -1)
16505 return 2;
16506
16507 elfsym->st_value += adjust;
16508 return 1;
16509 }
16510
16511 /* Finish up dynamic symbol handling. We set the contents of various
16512 dynamic sections here. */
16513
16514 static bfd_boolean
16515 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
16516 struct bfd_link_info *info,
16517 struct elf_link_hash_entry *h,
16518 Elf_Internal_Sym *sym)
16519 {
16520 struct ppc_link_hash_table *htab;
16521 struct plt_entry *ent;
16522
16523 htab = ppc_hash_table (info);
16524 if (htab == NULL)
16525 return FALSE;
16526
16527 if (!htab->opd_abi && !h->def_regular)
16528 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
16529 if (ent->plt.offset != (bfd_vma) -1)
16530 {
16531 /* Mark the symbol as undefined, rather than as
16532 defined in glink. Leave the value if there were
16533 any relocations where pointer equality matters
16534 (this is a clue for the dynamic linker, to make
16535 function pointer comparisons work between an
16536 application and shared library), otherwise set it
16537 to zero. */
16538 sym->st_shndx = SHN_UNDEF;
16539 if (!h->pointer_equality_needed)
16540 sym->st_value = 0;
16541 else if (!h->ref_regular_nonweak)
16542 {
16543 /* This breaks function pointer comparisons, but
16544 that is better than breaking tests for a NULL
16545 function pointer. */
16546 sym->st_value = 0;
16547 }
16548 break;
16549 }
16550
16551 if (h->needs_copy)
16552 {
16553 /* This symbol needs a copy reloc. Set it up. */
16554 Elf_Internal_Rela rela;
16555 asection *srel;
16556 bfd_byte *loc;
16557
16558 if (h->dynindx == -1
16559 || (h->root.type != bfd_link_hash_defined
16560 && h->root.type != bfd_link_hash_defweak)
16561 || htab->elf.srelbss == NULL
16562 || htab->elf.sreldynrelro == NULL)
16563 abort ();
16564
16565 rela.r_offset = (h->root.u.def.value
16566 + h->root.u.def.section->output_section->vma
16567 + h->root.u.def.section->output_offset);
16568 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
16569 rela.r_addend = 0;
16570 if (h->root.u.def.section == htab->elf.sdynrelro)
16571 srel = htab->elf.sreldynrelro;
16572 else
16573 srel = htab->elf.srelbss;
16574 loc = srel->contents;
16575 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
16576 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
16577 }
16578
16579 return TRUE;
16580 }
16581
16582 /* Used to decide how to sort relocs in an optimal manner for the
16583 dynamic linker, before writing them out. */
16584
16585 static enum elf_reloc_type_class
16586 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
16587 const asection *rel_sec,
16588 const Elf_Internal_Rela *rela)
16589 {
16590 enum elf_ppc64_reloc_type r_type;
16591 struct ppc_link_hash_table *htab = ppc_hash_table (info);
16592
16593 if (rel_sec == htab->elf.irelplt)
16594 return reloc_class_ifunc;
16595
16596 r_type = ELF64_R_TYPE (rela->r_info);
16597 switch (r_type)
16598 {
16599 case R_PPC64_RELATIVE:
16600 return reloc_class_relative;
16601 case R_PPC64_JMP_SLOT:
16602 return reloc_class_plt;
16603 case R_PPC64_COPY:
16604 return reloc_class_copy;
16605 default:
16606 return reloc_class_normal;
16607 }
16608 }
16609
16610 /* Finish up the dynamic sections. */
16611
16612 static bfd_boolean
16613 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
16614 struct bfd_link_info *info)
16615 {
16616 struct ppc_link_hash_table *htab;
16617 bfd *dynobj;
16618 asection *sdyn;
16619
16620 htab = ppc_hash_table (info);
16621 if (htab == NULL)
16622 return FALSE;
16623
16624 dynobj = htab->elf.dynobj;
16625 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16626
16627 if (htab->elf.dynamic_sections_created)
16628 {
16629 Elf64_External_Dyn *dyncon, *dynconend;
16630
16631 if (sdyn == NULL || htab->elf.sgot == NULL)
16632 abort ();
16633
16634 dyncon = (Elf64_External_Dyn *) sdyn->contents;
16635 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
16636 for (; dyncon < dynconend; dyncon++)
16637 {
16638 Elf_Internal_Dyn dyn;
16639 asection *s;
16640
16641 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
16642
16643 switch (dyn.d_tag)
16644 {
16645 default:
16646 continue;
16647
16648 case DT_PPC64_GLINK:
16649 s = htab->glink;
16650 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16651 /* We stupidly defined DT_PPC64_GLINK to be the start
16652 of glink rather than the first entry point, which is
16653 what ld.so needs, and now have a bigger stub to
16654 support automatic multiple TOCs. */
16655 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
16656 break;
16657
16658 case DT_PPC64_OPD:
16659 s = bfd_get_section_by_name (output_bfd, ".opd");
16660 if (s == NULL)
16661 continue;
16662 dyn.d_un.d_ptr = s->vma;
16663 break;
16664
16665 case DT_PPC64_OPT:
16666 if ((htab->do_multi_toc && htab->multi_toc_needed)
16667 || htab->notoc_plt)
16668 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
16669 if (htab->has_plt_localentry0)
16670 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
16671 break;
16672
16673 case DT_PPC64_OPDSZ:
16674 s = bfd_get_section_by_name (output_bfd, ".opd");
16675 if (s == NULL)
16676 continue;
16677 dyn.d_un.d_val = s->size;
16678 break;
16679
16680 case DT_PLTGOT:
16681 s = htab->elf.splt;
16682 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16683 break;
16684
16685 case DT_JMPREL:
16686 s = htab->elf.srelplt;
16687 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16688 break;
16689
16690 case DT_PLTRELSZ:
16691 dyn.d_un.d_val = htab->elf.srelplt->size;
16692 break;
16693
16694 case DT_TEXTREL:
16695 if (htab->local_ifunc_resolver)
16696 info->callbacks->einfo
16697 (_("%X%P: text relocations and GNU indirect "
16698 "functions will result in a segfault at runtime\n"));
16699 else if (htab->maybe_local_ifunc_resolver)
16700 info->callbacks->einfo
16701 (_("%P: warning: text relocations and GNU indirect "
16702 "functions may result in a segfault at runtime\n"));
16703 continue;
16704 }
16705
16706 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
16707 }
16708 }
16709
16710 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
16711 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
16712 {
16713 /* Fill in the first entry in the global offset table.
16714 We use it to hold the link-time TOCbase. */
16715 bfd_put_64 (output_bfd,
16716 elf_gp (output_bfd) + TOC_BASE_OFF,
16717 htab->elf.sgot->contents);
16718
16719 /* Set .got entry size. */
16720 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
16721 = 8;
16722 }
16723
16724 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
16725 && htab->elf.splt->output_section != bfd_abs_section_ptr)
16726 {
16727 /* Set .plt entry size. */
16728 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
16729 = PLT_ENTRY_SIZE (htab);
16730 }
16731
16732 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
16733 brlt ourselves if emitrelocations. */
16734 if (htab->brlt != NULL
16735 && htab->brlt->reloc_count != 0
16736 && !_bfd_elf_link_output_relocs (output_bfd,
16737 htab->brlt,
16738 elf_section_data (htab->brlt)->rela.hdr,
16739 elf_section_data (htab->brlt)->relocs,
16740 NULL))
16741 return FALSE;
16742
16743 if (htab->glink != NULL
16744 && htab->glink->reloc_count != 0
16745 && !_bfd_elf_link_output_relocs (output_bfd,
16746 htab->glink,
16747 elf_section_data (htab->glink)->rela.hdr,
16748 elf_section_data (htab->glink)->relocs,
16749 NULL))
16750 return FALSE;
16751
16752
16753 if (htab->glink_eh_frame != NULL
16754 && htab->glink_eh_frame->size != 0
16755 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
16756 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
16757 htab->glink_eh_frame,
16758 htab->glink_eh_frame->contents))
16759 return FALSE;
16760
16761 /* We need to handle writing out multiple GOT sections ourselves,
16762 since we didn't add them to DYNOBJ. We know dynobj is the first
16763 bfd. */
16764 while ((dynobj = dynobj->link.next) != NULL)
16765 {
16766 asection *s;
16767
16768 if (!is_ppc64_elf (dynobj))
16769 continue;
16770
16771 s = ppc64_elf_tdata (dynobj)->got;
16772 if (s != NULL
16773 && s->size != 0
16774 && s->output_section != bfd_abs_section_ptr
16775 && !bfd_set_section_contents (output_bfd, s->output_section,
16776 s->contents, s->output_offset,
16777 s->size))
16778 return FALSE;
16779 s = ppc64_elf_tdata (dynobj)->relgot;
16780 if (s != NULL
16781 && s->size != 0
16782 && s->output_section != bfd_abs_section_ptr
16783 && !bfd_set_section_contents (output_bfd, s->output_section,
16784 s->contents, s->output_offset,
16785 s->size))
16786 return FALSE;
16787 }
16788
16789 return TRUE;
16790 }
16791
16792 #include "elf64-target.h"
16793
16794 /* FreeBSD support */
16795
16796 #undef TARGET_LITTLE_SYM
16797 #undef TARGET_LITTLE_NAME
16798
16799 #undef TARGET_BIG_SYM
16800 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
16801 #undef TARGET_BIG_NAME
16802 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
16803
16804 #undef ELF_OSABI
16805 #define ELF_OSABI ELFOSABI_FREEBSD
16806
16807 #undef elf64_bed
16808 #define elf64_bed elf64_powerpc_fbsd_bed
16809
16810 #include "elf64-target.h"